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Abstract

The advancement of data systems demands continuous learning, yet traditional educational materials
often fall short of meeting evolving learning needs. YouTube has emerged as a widely used platform
for informal learning, but its role in data systems education remains underexamined. This thesis ad-
dresses that gap by constructing a curated dataset of 17,434 instructional YouTube videos related to
data systems, focusing on content availability and organization, key video characteristics, factors influ-
encing audience engagement, and subtopic coverage in SQL education. Using a curriculum-aligned
query strategy and a machine learning filtering pipeline, the dataset maintains relevance to educational
objectives and offers broad topical coverage within the data systems domain. Video characteristics are
analyzed across dimensions such as content volume, engagement metrics, transcript availability, lan-
guage, geographic origin, and topic distribution. Findings reveal that content and engagement are
highly uneven, with a small subset of videos, channels, languages, countries, and topics capturing
disproportionate attention. Statistical modeling shows that engagement in this domain is positively as-
sociated with longer video duration, SQL focus, and high-subscriber channels, while overly long titles,
frequent uploads, and older channels correlate negatively. Subtle patterns suggest that culturally or
regionally tailored content may further enhance engagement. While SQL-related topics dominate in
volume and engagement, a subtopic classification of 4,242 SQL videos reveals that although 87% of
textbook-derived subtopics are covered, content is heavily concentrated on core querying and schema
commands. Advanced, theoretical, systems-level, and integration-related topics are rarely addressed.
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1
Introduction

Data systems education has become increasingly vital in both industry and academia, as organizations
in industry rely on robust data management and database skills in the era of big data and Data systems
education has long been an essential element of various information technology programs in higher
education [1, 90]. However, formal educational offerings in this domain often struggle to keep up with
the rapid evolution of technology. Recent studies indicate a misalignment between the competencies
demanded by industry and the content taught in academic programs, with curricula adapting slowly to
emerging needs [58].

At the same time, online platforms have risen to fill this gap by offering more up-to-date and accessible
learning materials. YouTube, in particular, has emerged as an important informal learning platform for
technical subjects, including computer science and data systems. According to recent reports, YouTube
is one of the most visited websites globally, with over 2.7 billion monthly active users and more than
1 billion hours of video watched daily1. It has provided education with a large collection of content
spanning diverse academic disciplines, transforming the way people engage with learning materials.
Extensive studies have demonstrated YouTube’s broad role in education, from informal [74] to formal
education [64], and from self-directed learning [52] to integration in classroom teaching [29]. YouTube
is also used to enhance traditional education, often with positive outcomes. For instance, engineering
students report that certain YouTube channels provide mobile, multi-functional support that traditional
classroom settings fail to offer [22]. These examples highlight YouTube’s growing influence on learner
engagement and comprehension.

Despite YouTube’s popularity as a learning tool, its educational content in specialized fields remains
fragmented across topics and creators. Many studies of YouTube in education focus on general edu-
cational use [79, 63, 54]. Field-dedicated studies remain limited or tend to be narrowly scoped, often
concentrating on a single video series, channel, or pedagogical module [8, 22, 70, 93], rather than
offering a broader mapping of the landscape. This is especially true in computing domains like data
systems, where comprehensive studies that measure the YouTube content in the domain are still lack-
ing. We also know relatively little about what drives audience engagement for educational videos in
such specialized fields. Prior research in science communication studied whether factors like how con-
tent is structured and presented [89] and the emotional cues [17, 24] in delivery can influence viewer
engagement. However, it remains unclear which features make data systems videos engaging, and
to what extent the content actually provides coverage of topics in the domain. In summary, there is
a need to map out the landscape of data systems educational content on YouTube and to investigate
what engages learners versus what truly educates them.

To address these gaps, this thesis is guided by the following research questions:

1. What types of educational video content related to data systems are available on YouTube, and
how can they be systematically collected and organized?

1https://blog.youtube/press/
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2. What are the key characteristics of educational YouTube videos on data systems in terms of
content volume, engagement metrics, transcript availability, language, geographic distribution,
and topical coverage?

3. Which features of educational YouTube videos on data systems are associated with audience
engagement?

4. What gaps and popular areas exist in YouTube video coverage of data systems topics, based on
alignment with academic textbook-derived topics?

To answer RQ1, the thesis constructs a curriculum-aligned dataset of educational YouTube videos on
data systems using structured search queries derived from international curriculum surveys and a multi-
level data collection pipeline. This includes metadata extraction, transcript retrieval, and a relevance
filtering process combining manual annotation, large language model classification, and supervised
learning. RQ2 is addressed through descriptive analysis of the curated dataset, examining trends in
video content volume, engagement metrics, transcript availability, language usage, geographic dis-
tribution of channels, and topical coverage. For RQ3, the thesis models audience engagement by
identifying and analyzing structural, linguistic, and contextual attributes derived from video and channel-
level metadata associated with user interaction, using correlation analysis and explanatory modeling
to uncover significant engagement factors. RQ4 is answered by an in-depth case study on Structured
Query Language (SQL), a core subfield in data systems education. Using a textbook-derived structure
of SQL subtopics, the thesis classifies relevant videos into fine-grained categories with large language
models, making it possible to identify both commonly addressed areas and critical gaps in YouTube’s
educational coverage of SQL.

This work makes several contributions: (1) it presents an open dataset2 of 17, 434 data systems ed-
ucational videos on YouTube with comprehensive metadata such as engagement metrics, channel
information, comments, and transcripts; (2) it provides empirical insights through detailed descriptive
analyses that map the global landscape of data systems content on YouTube, including patterns in
volume, engagement, transcript coverage, language use, and geographic distribution; (3) it develops
models to identify which video attributes are associated with stronger audience engagement, offering
new understanding of what makes educational videos in data systems field more impactful; and (4) it
analyzes topic coverage by classifying YouTube videos against a textbook-derived structure, revealing
both strengths and gaps in the platform’s curriculum coverage and pointing to opportunities for future
content development.

The structure of this thesis is organized to address the research questions and objectives in a logical
progression. Chapter 2 reviews existing research on YouTube as an educational platform and surveys
the current state of data systems education. Chapter 3 describes the dataset creation process, in-
cluding data collection, filtering, and descriptive analysis, to address the first two research questions
concerning content availability and characteristics. Chapter 4 focuses on audience engagement, ex-
amining factors associated with engagement (RQ3), explaining the feature engineering and modeling
approaches used to analyze engagement, and presenting the results of correlation analyses andmodel-
ing. Chapter 5 addresses RQ4 by investigating how well YouTube’s educational videos cover the range
of textbook-derived topics. Using SQL topics as a case study, it outlines the extraction of subtopics
from authoritative database textbooks, the classification of YouTube videos into these subtopics, and
the analysis of coverage gaps versus popular content areas. Chapter 6 discusses the findings, their
implications for educators and learners, and chapter 7 explains the limitations of the study. Finally,
chapter 9 summarizes the contributions of the thesis and proposes directions for future research.

2https://doi.org/10.17605/OSF.IO/FTN2S
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2
Related Work

This chapter reviews prior research to contextualize the thesis within two key areas: YouTube as an
educational platform and the state of data systems education. Section 2.1 surveys interdisciplinary
studies that examine YouTube’s role in informal and formal education, emphasizing STEM fields and
identifying research gaps in domain-specific content. Section 2.2 then reviews the literature on data
systems education, highlighting both instructional challenges and pedagogical innovations in founda-
tional topics of data systems.

2.1. YouTube as an Educational Platform
Existing literature reviews have provided broad interdisciplinary insights into the educational applica-
tions of YouTube. For instance, Dughera et al. [19] offer a comprehensive synthesis of research
on YouTube and its relationship with teaching and learning practices, identifying four major thematic
strands: general learning via YouTube, users’ educational needs and motivations, the platform’s role
in formal education, and the practices of educational content creators, or “edutubers”. Shoufan and
Mohamed [79] similarly synthesized research on YouTube in education, identifying general themes
including content creation, user attitudes, usage behaviors, and learning outcomes. Snelson [81] pro-
vided an early review in 2011 of YouTube research by that time, summarizing research distribution
across different disciplines, pedagogical application methods, and research trends.

Despite a growing body of research on YouTube in educational contexts, most of it remains fragmented
within disciplines. In Science, Technology, Engineering, and Mathematics (STEM) education, many
studies focus on isolated use cases within particular courses or classroom environments. Compre-
hensive investigations that characterize educational content on YouTube across an entire academic
field, such as computer science or even more specific data systems, still remain scarce. Outside of
STEM, Duncan et al. [20] conducted a study in the domain of clinical skills education, evaluating 100
YouTube videos across ten common nursing procedures using structured criteria for both pedagogical
and technical quality.

Across several STEM disciplines, particularly Mathematics, Physics, Information Technology, Electrical
Engineering, and Mechanical Engineering, there is a shared focus on evaluating YouTube’s potential
as an educational tool to improve learning outcomes. This interest is pronounced in Mathematics and
Engineering, where many studies investigate the platform’s role in enhancing student engagement,
comprehension, and satisfaction.

For instance, in Mathematics education, studies have shown that YouTube facilitates self-paced learn-
ing, increases access to explanations, and fosters learner autonomy [52]. A study found that engi-
neering students view mathematics YouTube channels as mobile and multifunctional sources of help
that traditional settings often fail to offer [22]. Similarly, Insorio and Macandog highlighted how teacher-
created YouTube video lessons enhanced student understanding and performance in modular distance
learning environments [35]. Sari et al. observed that while students initially used YouTube more for en-
tertainment, integrating educational content transformed their experience of mathematics into a more

3
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enjoyable and comprehensible process [75]. Additionally, research further emphasized the value of
YouTube mathematics lectures in Content and Language Integrated Learning (CLIL) settings, showing
their effectiveness in developing both domain knowledge and academic English communication skills
among mathematics students [25].

In Engineering disciplines, particularly Electrical and Mechanical Engineering, research has empha-
sized YouTube’s value in conveying abstract and technical concepts. Studies conducted qualitative
and quantitative studies on an Electrical Engineering YouTube channel, revealing high perceived edu-
cational value and student engagement, especially for complex content that benefits from multimedia
explanations [49, 50]. Kibirige and Odora showed that YouTube videos improved cognitive achieve-
ment among technology students in a mechanical systems module compared to traditional PowerPoint
lectures [40]. Kanetaki et al. demonstrated how YouTube could support sustainable, hybrid learning in
Mechanical Engineering, offering consistent engagement across both remote and in-person learning
contexts [38].

In Automotive Engineering, studies have focused on developing and evaluating YouTube-assisted
learning models tailored to improve students’ grasp of complex procedures, such as those involved
in engineering drawing. Haryanto et al. [29] proposed a video-assisted project-based learning model
using YouTube videos, specifically curated and integrated into a structured guidebook. These videos,
including animated tutorials and 2D/3D projection simulations, visually simplify intricate drawing pro-
cesses and foster independent, flexible learning. The model demonstrated high feasibility and received
positive responses from educators and students.

Research in Environmental Science primarily investigates how YouTube videos engage public audi-
ences and shape perceptions of environmental issues by leveraging various strategies such as real-
time documentation, influencer collaboration, and event-based educational content [97, 66, 39].

In the broader context of science communication, several studies have explored the factors influencing
the communicative effectiveness and user engagement of science-related content on YouTube. This
includes the impact of communication styles such as humor and aggression on message reception and
activism intentions [101]; the interplay between cognitive features (e.g., segmenting and signaling) and
user engagement metrics [89]; the role of emotional cues and affective language in shaping audience
responses [24, 17]; and the orchestration of multimodal ensembles, such as embodied, linguistic, and
filmic modes, to enhance clarity, coherence, and engagement [93, 9]. Scholars have also examined
how informal educational videos reach diverse audiences globally [8], the implications of comment
sentiment, participatory behaviors, and argumentative expressions [17, 46], and how references to
popular culture like movies may both support and distract from conceptual understanding [46]. Broader
analyses of popular science YouTubers and educational content production further highlight success
factors such as video structure, editing styles, and educational intent [95, 65].

Complementing these content- and audience-centered studies, other research has examined the per-
spectives and practices of science communicators themselves. For instance, some studies explore
how prominent YouTubers perceive their audience relationships, assess their societal impact, and nav-
igate the algorithmic constraints of the platform [30]. Others focus on the sociodemographic profiles,
motivations, financial sustainability, and institutional affiliations of science content creators, revealing
an ecosystem that includes both individual and organizational actors with varied goals, resources, and
levels of audience engagement [15].

A few works have adopted approaches more closely aligned with our study, either by analyzing large
numbers of existing YouTube videos or by applying automated filtering and classification techniques.
Kadriu et al. [36] conducted a large-scale investigation of programming-related YouTube tutorials,
scraping thousands of videos and analyzing their metadata using a quantitative framework. Their
work focused on instructional trends such as programming language popularity, publication timelines,
and viewer engagement metrics. They also examined video localization and presentation language,
aiming to characterize patterns in self-directed learning through YouTube. Several studies have devel-
oped YouTube video classification methods using machine learning techniques. For instance, Kalra
et al. [37] applied natural language processing and Random Forest classifiers to categorize approx-
imately 6,000 YouTube videos into six general categories, such as Travel, Food, and Art, based on
their titles and descriptions. Meanwhile, Ajwani and Arolkar [5] focused specifically on classifying com-
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puter science-related videos. They used keyphrase extraction from VTT (Video Text Track) files and
a Random Forest model trained on keyphrase weights to assign videos to specialized areas like Artifi-
cial Intelligence and Bioinformatics. Their approach relies on the Computer Science Ontology (CSO),
a broad taxonomy well-suited for general CS research domains, but not necessarily aligned with the
finer-grained and pedagogically grounded categories needed for data systems and SQL instruction.
Generally, while these studies share methodological overlap with our work in using text-derived fea-
tures to perform large-scale filtering or categorization, their classification targets remain high-level and
often coarse-grained. Our study implements a domain-specific filtering mechanism tailored to data
systems, followed by a fine-grained subtopic classification aligned with SQL learning objectives, which
are not addressed in those works. Additionally, a research [14] similarly approached YouTube at scale,
but with a focus on assessing video quality rather than content area. They experimented with multiple
machine learning models to predict whether videos are reputable or not, based on attributes such as
view counts, comment counts, title length, and sentiment polarity.

2.2. Data Systems Education
Research that examines data systems education as an integrated whole remains limited. Much of the
existing literature tends to focus on isolated components such as SQL instruction, database design,
or individual pedagogical interventions. Miedema et al. [58] recently presented a structured synthesis
that combines curriculum guidelines, course syllabi, and industry input to provide a comprehensive
overview of the data systems education landscape. It reveals a misalignment between industry needs
and academic offerings.

More research focuses on specific foundational topics within data systems. One such area is concep-
tual modeling, which is a critical step in database design. Several studies have focused on improving
the teaching of conceptual Entity-Relationship (ER) modeling by addressing student difficulties and de-
veloping instructional strategies. Research has examined why novices struggle with modeling tasks,
emphasizing issues such as misinterpreting assumptions, difficulties in identifying relationships, and
cognitive overload during abstraction and semantic transformation [32, 78, 34]. To address these chal-
lenges, various methods have been proposed, including the use of concept maps [78], interactive
learning systems [34], and structured modeling templates or worksheets to organize problem informa-
tion [99, 10]. These approaches aim to reduce cognitive load, improve contextual understanding, and
support accurate model construction through guided practice and reusable patterns.

Research on database design education has explored how to enhance both conceptual understand-
ing and student engagement through diverse pedagogical approaches. Project-based learning and
constructivist models have been used to connect theory to practice and foster authentic, collaborative
design experiences [16, 12, 42]. To support novice designers, researchers have developed intelli-
gent or visual tools that guide normalization and schema development [7, 18]. Gamified techniques
have also been introduced to increase motivation and reinforce normalization principles through level-
based progression [18]. Some studies examine which factors make database assignments engaging
for students, identifying personal interest, perceived real-world relevance, and well-matched structural
complexity as key contributors [57, 85].

Among all the query languages, SQL is the most widely taught and studied one in data systems educa-
tion, forming a core component of nearly all database-related curricula. As such, it has become a pri-
mary focus of research seeking to improve student learning outcomes, engagement, and instructional
efficiency. Researchers have compared the relative difficulty of different SQL constructs [3]. Some
have then investigated the types, causes, and persistence of student errors, especially semantic, logi-
cal, and syntax errors across various query concepts and assignment formats [4, 86, 100]. Knowledge
transfer across query languages is also discussed [48]. Some of the works have examined underly-
ing misconceptions or recognized the importance of it, both from expert interpretations and students’
perspectives, to inform more targeted instructional strategies [56, 87]. In response, pedagogical inter-
ventions include visual query representations, semantic modeling tools, and conversational agents to
support understanding and reduce error rates [55, 45, 68]. Gamification has emerged as another ap-
proach for improving motivation and engagement [6, 60]. Moreover, some researchers have proposed
the automated generation of SQL exercises using large languagemodels to scale and personalize prac-
tice [2]. Broader reviews of SQL education also highlight gaps in teaching methods and recommend
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research-driven frameworks for improving curricular design and learner support [87, 72].

Understanding how queries are executed in database systems is critical for advanced data systems
education. To support this, pedagogical frameworks and instructional modules have been proposed to
scaffold the learning of relational query optimization [55]. Various studies have focused on improving
learners’ comprehension of query execution plans (QEPs). Tools have been developed to visualize and
explain QEPs in intuitive ways, allowing students to explore how alternative physical operators affect
execution strategies and performance [88, 96]. Some systems translate QEPs into natural language to
enhance interpretability and accessibility for novices [51, 98]. Others highlight the potential of QEPs for
revealing semantic errors that are not flagged by syntax-based checks, advocating their educational
use for usability improvements and deeper understanding of query logic [84].

Database programming education focuses on bridging theory with practical application through various
pedagogical methods. Active learning strategies, such as problem-driven labs and “learning by doing,”
have been implemented to help students gain hands-on competence in SQL and PL/SQL [92]. To
improve student engagement, studies have explored fun and interactive approaches, including gami-
fied learning platforms and simulations of real-world vulnerabilities like SQL injection [69, 76]. Some
researchers have focused on integrating security practices directly into database programming cur-
ricula via modular gamified systems that teach secure coding principles such as input validation and
authentication [83]. Others have proposed frameworks that embed database access programming into
web development workflows, supported by tools like continuous integration and automated testing to
enhance code quality and learning outcomes [67, 53]. These efforts reflect a trend toward practical,
security-aware, and student-centered instruction in database programming courses.



3
Data Systems Educational Content on

YouTube

This chapter describes how the dataset of YouTube educational videos was constructed and analyzes
its main characteristics. Section 3.1 focuses on the methods used to obtain the dataset, detailing the
processes of data collection and preprocessing. Section 3.2 then presents the results for RQ1 by de-
scribing the dataset’s composition and structure, and addresses RQ2 through a descriptive analysis of
key characteristics of the dataset, including content volume, engagement metrics, transcript availability,
language distribution, geographic origin, and topical coverage.

3.1. Methods
To answer RQ1: What types of educational video content related to data systems are available on
YouTube, and how can they be systematically collected and organized?, we developed a data col-
lection and processing process as shown in Figure 3.1. This section details our methods of dataset
construction, including search query design, multi-level metadata extraction, transcript retrieval, prepro-
cessing, and a relevance filtering process. The process was designed to ensure both breadth of topical
coverage and precision in isolating genuinely instructional content, enabling subsequent analyses of
educational trends and content characteristics on the platform.

3.1.1. Dataset Construction
Topic Query Design
To construct a dataset of educational YouTube videos relevant to data systems, we needed a com-
prehensive and representative set of search queries. We grounded our topic selection in the survey
presented by Miedema et al. [58]. The research synthesizes input from 19 national and international
curriculum guidelines across 12 countries and global organizations, integrating both academic and
industry perspectives. The study surveyed 105 post-secondary data systems educators from 24 coun-
tries, as well as 34 industry professionals, to identify the knowledge areas and competencies most
relevant to both formal education and professional practice. In the educator survey in the study, re-
spondents were asked to report topic coverage in their courses based on a structured list of high-level
topics and 38 detailed subtopics. These subtopics presented in Table 2 of the report served as the
foundation for defining our search scope. For each subtopic, we created one or more natural language
search queries designed to retrieve relevant content using the YouTube Data API. Table 3.1 provides
a mapping between the original subtopic formulations and the corresponding search queries used in
our dataset collection process. In total, we covered all 38 subtopics from the educator survey in the
reference study, converting them into 67 distinct search queries. This approach balances coverage
and precision, aiming to retrieve a diverse but thematically relevant set of videos across both general
and specific instructional content relevant to each concept.

By anchoring the topic queries in this structured and internationally informed curriculum framework, we

7
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Survey Subtopic(s) Expanded Search Queries
relational theory: relations, tuples and attributes ”relational theory”, ”relational theory relations”, ”relational theory tu-

ples”, ”relational theory attributes”
tuple relational calculus ”tuple relational calculus”
relational algebra ”relational algebra”
data visualization ”data visualization”
database optimization: indexing ”database optimization”, ”database optimization indexing”
database optimization: query execution plans ”database optimization query execution plans”
database optimization: query optimization ”database optimization query optimization”
database scalability: replication ”database scalability”, ”database scalability replication”
database scalability: sharding ”database scalability sharding”
NoSQL database management systems ”NoSQL database management systems”
logical and physical data independence ”data independence”, ”logical data independence”, ”physical data in-

dependence”, ”logical and physical data independence”
database management system components ”database management system components”
functions and stored procedures ”functions and stored procedures”
data modeling: conceptual modeling ”data modeling”, ”data modeling conceptual modeling”
datamodeling: mapping conceptual models to logical
models

”data modeling mapping conceptual models to logical models”

data modeling: creating tables and columns ”data modeling creating tables and columns”
database normalization: functional dependency ”database normalization”, ”database normalization functional depen-

dency”
database normalization: candidate ”database normalization candidate”
database normalization: super keys ”database normalization super keys”
database normalization: normal forms up to BCNF ”database normalization normal forms up to BCNF”
database normalization: multivalued dependency ”database normalization multivalued dependency”
database normalization: join dependency ”database normalization join dependency”
object-oriented data models ”object-oriented data models”
semi-structured traditional data models ”semi-structured traditional data models”
SQL: select, project, join ”SQL”, ”SQL select”, ”SQL project”, ”SQL join”
SQL: insert, update, delete ”SQL insert”, ”SQL update”, ”SQL delete”
SQL: aggregation and group by ”SQL aggregation”, ”SQL group by”
SQL subqueries ”SQL subqueries”
SQL: common table expressions ”SQL common table expressions”
transaction processing ”transaction processing”
concurrency control and isolation levels ”concurrency control”, ”isolation levels”, ”concurrency control and

isolation levels”
database back-ups and recovery ”database back-ups”, ”database recovery”, ”database back-ups and

recovery”
distributed database management systems ”distributed database management systems”
data mining: algorithm ”data mining”, ”data mining algorithms”
data mining: associative and sequential patterns ”data mining associative pattern”, ”data mining sequential pattern”,

”data mining associative and sequential patterns”
data mining: data cleaning ”data mining data cleaning”
data mining: market basket analysis ”data mining market basket analysis”
data privacy and ethics ”data privacy”, ”data ethics”, ”data privacy and ethics”
data security and database access management ”data security”, ”database access management”, ”data security and

database access management”
data warehousing ”data warehousing”

Table 3.1: Mapping from survey subtopics [58] to YouTube API search queries
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Figure 3.1: Overview of the dataset construction process

ensure that the resulting dataset reflects the actual instructional needs and terminologies of the global
data systems education community. This also facilitates downstream analyses of content coverage
and topic representation.

Metadata Collection
Video metadata was collected using the YouTube Data API v31 through a staged querying process.
For each search query derived from the curriculum-informed expert curated topic list, videos were
retrieved in descending order of view count using paginated calls to the search.list endpoint, with up
to 50 results per page. From each response, we extracted basic metadata including the video ID, title,
channel name, and publication date.

Subsequently, we passed the collected video IDs to the videos.list endpoint to retrieve detailed
video-level metadata. This included:

• Content attributes: video description, tags, duration, and definition (HD/SD);
• Engagement statistics: view count, like count, comment count;
• Language and accessibility: default audio language, default textual language, caption availability;
• Monetization flag: the presence of paid product placement.

The initial video search and metadata collection were completed on December 24, 2024, yielding a
dataset of 21, 631 videos. In the following week, a secondary round of data collection was conducted
to retrieve channel-level and comment-level metadata for these videos.

To enrich video-level data with additional context, we extracted channel-level metadata by resolving
channel IDs through the channels.list endpoint. This included subscriber count, total view count,
upload count, country of origin, and channel creation date, along with both default and English-localized

1https://developers.google.com/youtube/v3

https://developers.google.com/youtube/v3
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channel titles and descriptions. Each video entry was linked back to its source channel for potential
cross-level analysis. In total, we successfully retrieved channel metadata for 10, 115 entries.

Finally, we collected comment-level metadata for each video using the commentThreads.list and
comments.list endpoints, handling pagination to ensure all comments are retrieved. To facilitate re-
lational analysis, top-level comments and their replies were stored in two separate normalized tables,
comments and replies, respectively, within the same database.

Each top-level comment was stored in the comments table, which included the comment text, number
of likes, publication and last update timestamps, and the total number of replies. These entries were
uniquely identified by a thread ID and linked to their parent video via a foreign key. All replies to
these top-level comments were stored in the replies table, with each reply associated with both its
thread and video. The table similarly captured the reply text, like count, and timestamps. This structure
supports many-to-one relationships from replies to comments and enables precisemapping of threaded
discussions under each video. In total, we collected 616, 575 top-level comments and 213, 200 replies.

During the secondary round of data collection, some videos became unavailable due to deletion or
changes in access permissions. After removing these entries, the dataset is reduced to 21, 566 videos.

State-saving mechanisms implemented in scrapers enabled the seamless resumption of scraping af-
ter interruptions or quota limits in the process of data collection, ensuring dataset completeness. All
metadata was stored in a structured SQLite database.

Transcript Collection
To support downstream text-based analyses, we collected English transcripts for each video using the
youtube-transcript-api Python library2. The transcript retrieval was performed separately from the
metadata collection, using the list of video identifiers previously stored in the dataset. All transcripts
were fetched via an authenticated proxy service to improve request reliability and access rate. The
process of transcript collection was performed in two phases.

In the initial phase, we attempted to retrieve English transcripts directly for each video ID in the dataset.
The YouTubeTranscriptApi.list(video_id) method was used to provide available caption tracks for
each video, and the transcript marked for the ”en” language was selected where present. YouTube
provides two types of captions: those manually uploaded by the video creator and those automatically
generated using speech recognition. Manually uploaded captions are prioritized over auto-generated
ones if available. Captions were concatenated into a single string and stored in the SQLite database
in a separate transcripts table along with the type and translatability flag of transcripts.

Videos with captions disabled, unavailable, or lacking any transcript were skipped, and retry logic was
implemented for transient failures. A persistent state file ensured the process could resume in the event
of interruption.

To improve transcript coverage, we conducted an additional pass to identify videos that were missing
transcripts in the initial collection phase. For these cases, we attempted to retrieve translated En-
glish transcripts, leveraging the built-in translation functionality transcript.translate('en'). When
a transcript was found in a non-English language, it was translated into English using YouTube’s built-in
caption translation service.

In this second phase, we prioritized manually uploaded captions when available, as before. If none
were present, we then fell back to automatically generated captions. Translated transcripts were la-
beled with their type and original language (e.g., ”creator-uploaded (Translated from French)”). This
enhanced coverage enabled the inclusion of additional videos in language-based analysis while pre-
serving information about transcript provenance and reliability.

We collected 18, 554 transcripts in total at this stage. The transcripts were stored in a dedicated table
transcripts, keyed by video_id, and linked back to the video metadata tables.

2https://pypi.org/project/youtube-transcript-api/

https://pypi.org/project/youtube-transcript-api/
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3.1.2. Data Processing
Data Cleaning and Preprocessing
Following initial data collection, a series of preprocessing steps were applied to standardize the dataset.
While a wide range of features was gathered to ensure analytical flexibility, certain fields were later
removed due to redundancy, low variance, or lack of meaningful informational value.

Specifically, the following fields were excluded from the final working dataset:

• translatable: The flag indicating whether a transcript could be translated was dropped because
all usable transcripts in the final dataset were translatable by default, and it was unnecessary once
English-translated transcripts were incorporated.

• top_level_published_at and reply_published_at: These timestamps were removed because
only the most recent update time for each comment and reply to comment was retained, as the
original publication time was no longer meaningful without access to full historical text content.

• likes_playlist: This field, representing the ID of a playlist containing a channel’s liked videos,
was consistently empty across all entries and thus discarded.

In addition, all time-related attributes (e.g., video and channel publication dates) were retained in ISO
8601 extended format (e.g., ”2018-06-29T04:52:00Z”) to ensure consistent temporal representation.
Video durations, originally encoded in ISO 8601 format (e.g., ”PT6M30S”), were parsed into standard
HH:MM:SS strings (e.g., ”0:04:24”) to facilitate human-readable inspection and summary statistics.

These preprocessing steps ensured uniformity across temporal fields and helped reduce feature noise
before relevance filtering and feature engineering. All cleaning operations were applied consistently
across the video, channel, and comment-level tables.

Relevance Filtering: Sampling and Training Label Production
While all videos in the dataset were retrieved using predefined search queries, YouTube’s search engine
often returns content that is tangential, promotional, or unrelated to educational goals. For example,
the query ”data privacy and ethics” returned videos such as news reports on corporate data breaches
and political commentary on surveillance laws, content that, while loosely related, does not serve in-
structional purposes. Similarly, a query on ”relational theory” produced results about Relational Frame
Theory, a concept in behavioral psychology, which is unrelated to relational databases. To ensure the
dataset reflected genuinely instructional content in data systems, we implemented a multi-step rele-
vance filtering process combining manual annotation, synthetic training label generation, instruction
fine-tuned embedding model, and classifier-based prediction.

We first drew a stratified sample of 564 videos, proportionally distributed across all survey subtopics.
Each video was manually annotated as either relevant (i.e., educational and within the scope of data
systems) or irrelevant (e.g., marketing, entertainment, or only loosely related). This resulted in 485
relevant and 79 irrelevant samples. These manual labels were used to evaluate automated methods
of generating labels for training data.

To expand the labeled set efficiently, we used GPT-4o with designed prompts to classify a broader
sample of 3, 000 videos. We tested multiple prompting strategies with GPT-4o, using title, description,
and transcript as input, varying two elements: (1) whether to include chain-of-thought (CoT) reasoning
and (2) whether to include explicit exclusion criteria concluded based on observations (e.g., excluding
news, promotional content, legal interpretations). Each variant was evaluated on the manually labeled
sample of 564 videos.

Given the strong class imbalance, where relevant videos (positive class) greatly outnumber irrelevant
ones, our priority was to minimize false positives, i.e., avoid retaining off-topic content. We therefore
evaluated prompts based on false positive rate (FPR) in addition to accuracy, precision, and recall.

As shown in Table 3.2, the selected prompt without CoT but with exclusion rules achieved a balanced
performance with the relatively low FPR (22.8%) among variants that maintained high recall (94.0%) and
precision (96.2%). While the With CoT and Exclusion prompt achieved a slightly lower FPR (16.5%),
but came with two trade-offs: (1) a noticeable drop in recall (91.6%), meaning more relevant videos
were mistakenly excluded; and (2) significantly higher token usage, due to the verbosity introduced by



3.1. Methods 12

chain-of-thought reasoning. This increases both inference time and computational cost when labeling
thousands of samples. The No CoT, No Exclusion variant performed worst on FPR (27.9%) despite
slightly higher recall.

Prompt Variant Accuracy Precision Recall FPR

With Exclusion, No CoT (Selected) 91.7% 96.2% 94.0% 22.8%
With CoT and Exclusion 90.4% 97.2% 91.6% 16.5%
No CoT, No Exclusion 91.5% 95.4% 94.6% 27.9%

Table 3.2: Performance Comparison of Prompt Variants for Relevance Classification

Given that false positives (i.e., incorrectly retaining irrelevant content) were considered more costly
than false negatives in our context, and that cost-efficiency was a practical concern for scaling, the
selected prompt offered the best trade-off between precision, recall, and labeling efficiency.

The final chosen prompt included a clear definition of “instructional video”, a list of data systems
subtopics from the referenced survey, and a set of exclusion criteria. Additionally, the prompt was
structured to elicit a strictly binary response, either “1” (relevant) or “0” (irrelevant), to facilitate consis-
tent parsing and automatic label extraction. The full prompt is provided in Appendix section A.1.

Based on the selected prompt, we classified an additional set of 3, 000 videos, which are also sampled
proportionally to the video population on different subtopics to ensure topic-wise representativeness
and prevent overfitting to more frequent content areas. This expanded set yielded 2, 486 relevant and
514 irrelevant cases, which formed the basis for the synthetic dataset used in downstream classifier
development.

Eventually, the labeled data were drawn from two sources: the 3, 000 videos labeled by GPT-4o with
the selected prompt (used for training), and the manually annotated set of 564 videos (reserved for
validation and testing).

To construct the final training dataset, we applied the Synthetic Minority Over-sampling Technique
(SMOTE) to the GPT-labeled subset to balance class distributions. This resulted in a training set with
4, 972 samples, equally split between relevant (n = 2, 486) and irrelevant (n = 2, 486) classes. The
manually labeled data were stratified and split 50/50 into a validation set and a test set, each contain-
ing 282 samples with similar class proportions (approximately 86% relevant and 14% irrelevant). This
setup ensured reliable performance evaluation while preventing label leakage between the training and
evaluation phases. Table 3.3 summarizes the allocation and class composition. This hybrid dataset
provided sufficient coverage of both classes to support supervised filtering while preserving human
oversight and LLM-informed generalization.

Data Source Subset Relevant (n) Irrelevant (n)

GPT-4o labeled (3,000 videos) Training (after SMOTE) 2, 486 2, 486

Manual annotation (564 videos) Validation 243 39
Test 242 40

Table 3.3: Composition and allocation of labeled data used in classification

Relevance Filtering: Embedding Model Comparison
To scale relevance prediction to the full dataset, we adopted an embedding-based classification method.
For each video, we constructed a textual representation using a structured textual prompt composed of
three parts: the video title, a keyword-extracted description, and a keyword-extracted transcript. The
description and transcript texts were first cleaned and truncated to fit within the model’s token limit
(2, 000 tokens for description, 6, 000 for transcript). We applied the RAKE (Rapid Automatic Keyword
Extraction) algorithm [73] through the Python package rake-nltk3 to both fields to reduce redundancy
and retain key topical phrases. The final composite input took the form:

3https://pypi.org/project/rake-nltk/

https://pypi.org/project/rake-nltk/
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Title: <cleaned title>
Description Keywords: <RAKE keywords>
Transcript Keywords: <RAKE keywords>

These texts served as input for generating vector embeddings via instruction-tuned language models.
This format encouraged the embedding model to focus on semantically rich tokens while discarding
noisy or generic language.

To identify suitable embedding models, we initially referred to the Massive Text Embedding Bench-
mark (MTEB) [62], which ranks models based on their zero-shot and supervised performance across a
wide range of NLP tasks. We began with KaLM-embedding-multilingual-mini-instruct-v1.5 [31],
a compact instruction-finetuned model based on Qwen2-0.5B, trained using weak supervision followed
by supervised fine-tuning. This model was used as an exploratory baseline due to its small size and
fast inference, allowing us to quickly validate the feasibility of instruction-tuned embedding models for
the task.

Encouraged by the initial performance, we expanded our experiments to two larger and more competi-
tive MTEB-ranked models: gte-Qwen2-1.5B-instruct and gte-Qwen2-7B-instruct [47]. Each com-
bined input was encodedwith an instruction-style prompt “Instruct: Determine whether the video
provides educational content related to data systems.” to align with the instruction-tuned na-
ture of the selected models. Embeddings were generated in batches using the models and were then
L2-normalized, stored as NumPy arrays, and indexed by video ID for downstream use in classifier
training and full-dataset filtering.

To compare the effectiveness of different embedding models, we trained XGBoost classifiers on the
same downstream classification task using embeddings generated by each candidate model. Model
performance of the test set was evaluated using a set of metrics:

• ROC-AUC (Receiver Operating Characteristic AreaUnder the Curve), whichmeasures themodel’s
ability to distinguish between relevant and irrelevant videos regardless of threshold;

• PR-AUC (Precision–Recall AUC), which is more sensitive to class imbalance and highlights per-
formance in identifying positive (relevant) cases;

• F1-score, Precision, and Recall, reported separately for both the relevant (Rel) and irrelevant (Irr)
classes to assess class-specific behavior.

This metric suite was chosen to balance global discriminative ability (ROC-AUC), robustness under
class imbalance (PR-AUC), and sensitivity to minority class recall, which is important in filtering out
off-topic videos.

As shown in Table 3.4, gte-Qwen2-7B-instruct consistently outperformed the smaller models across
nearly all metrics. It achieved the highest ROC-AUC (0.937) and PR-AUC (0.985), and showed the
strongest performance for the irrelevant class with an F1-score of 0.722, reflecting improved ability to
correctly detect and exclude irrelevant content. While Qwen2-1.5B-instruct produced the highest re-
call for the relevant class (0.950), its precision and F1 for the irrelevant class were notably lower. Based
on these results, gte-Qwen2-7B-instruct was adopted as the final embedding model for subsequent
filtering and analysis.

Model ROC-AUC PR-AUC F1-Rel F1-Irr P-Rel P-Irr R-Rel R-Irr

KaLM-mini 0.873 0.968 0.872 0.562 0.979 0.409 0.785 0.900
Qwen2-1.5B 0.905 0.977 0.862 0.563 0.989 0.400 0.764 0.950
Qwen2-7B 0.937 0.985 0.942 0.722 0.978 0.614 0.930 0.795

Table 3.4: Embedding Model Performance on Classification using XGBoost Classifier. Model names are abbreviated. The
best-performing metrics are highlighted in bold.

In addition to the main experiments, we conducted a controlled ablation to assess the contribution
of the instruction component in prompt-based embedding generation. Specifically, we tested both
gte-Qwen2-1.5B-instruct and gte-Qwen2-7B-instruct on the downstream classification task with
and without the instruction specified. As shown in Table 3.5, the effect of including this instruction
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varied by model. For gte-Qwen2-7B-instruct, including the instruction improved performance for the
minority (irrelevant) class, increasing F1 from 0.607 to 0.722. In contrast, the 1.5B model performed
slightly better without the instruction.

Model ROC-AUC PR-AUC F1-Rel F1-Irr P-Rel P-Irr R-Rel R-Irr

Qwen2-1.5B (w/ instr.) 0.905 0.977 0.862 0.563 0.989 0.400 0.764 0.950
Qwen2-1.5B (no instr.) 0.907 0.985 0.895 0.598 0.976 0.455 0.826 0.875

Qwen2-7B (w/ instr.) 0.937 0.985 0.942 0.722 0.978 0.614 0.930 0.795
Qwen2-7B (no instr.) 0.927 0.988 0.891 0.607 0.985 0.451 0.814 0.925

Table 3.5: Impact of Instruction Prompts on Embedding-Based Classification (XGBoost Classifier)

However, this observation is based on the fact that the results are conditioned on a single phrasing of
the instruction. Different wordings, task formulations, or input structuring strategies could yield different
outcomes. A more comprehensive analysis of instruction design is beyond the scope of this work, but
our findings suggest that prompt style should be treated as a tunable component in embedding-based
pipelines.

Relevance Filtering: Classifier Performance Comparison and Filtering Outcome
To identify the most suitable classification model for final filtering, we evaluated a suite of commonly
used classifiers, including Logistic Regression (LR), Random Forest (RF), Support Vector Machines
(SVM) with both linear and RBF kernels, Multilayer Perceptron (MLP), and XGBoost. All models were
trained using embeddings from gte-Qwen2-7B-instruct and evaluated on the same validation and test
splits. Class imbalance was addressed through class weighting or scale_pos_weight, and probability
calibration was applied for models not natively supporting probabilistic outputs.

We additionally introduced interaction features and applied standard scaling across all models. To ac-
count for the asymmetric cost of classification errors, where false positives (retaining irrelevant content)
are considered more detrimental, we adopted a cost-aware decision threshold optimization strategy.
Specifically, for each model, we selected the classification threshold that minimized the total cost:

Total Cost = FN · CostFN + FP · CostFP (3.1)

where the cost ratio was set to CostFP = 2, CostFN = 1.

Table 3.6 reports the model performance on the test set, using standard metrics including ROC-AUC,
PR-AUC, F1-scores, precision, and recall for both relevant and irrelevant videos. Among all evaluated
models, XGBoost achieved the strongest balance between discrimination power (ROC-AUC = 0.937),
recall for relevant videos (R = 0.930), and F1 for the minority irrelevant class (F1 = 0.722). While MLP
achieved slightly higher recall for the relevant class (R = 0.988), its F1-score for the irrelevant class
was lower (0.590), indicating lower robustness for filtering noise. We therefore selected XGBoost as
the final classifier for filtering out irrelevant videos from the dataset.

Table 3.6: Classifier performance using gte-Qwen2-7B-instruct embeddings

Classifier ROC-AUC PR-AUC F1-Rel F1-Irr P-Rel P-Irr R-Rel R-Irr

LR 0.924 0.985 0.890 0.588 0.975 0.443 0.818 0.875
RF 0.905 0.976 0.876 0.585 0.990 0.422 0.785 0.950
SVM (Linear) 0.921 0.986 0.914 0.600 0.955 0.500 0.876 0.750
SVM (RBF) 0.921 0.986 0.914 0.600 0.903 0.600 0.959 0.375
MLP 0.926 0.982 0.950 0.590 0.916 0.857 0.988 0.450
XGBoost 0.937 0.985 0.942 0.722 0.978 0.614 0.930 0.795

GPT-4o - - 0.950 0.727 0.966 0.667 0.934 0.800

After finalizing the classifier, we applied the trained XGBoost model to the full unlabeled dataset to filter
out irrelevant videos. Out of the initial 21, 566 collected videos, 4, 132 were classified as irrelevant and
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excluded from further analysis. This left a curated dataset of 17, 434 videos deemed to be topically
relevant and educational in nature. The data entries from other levels referencing the removed irrel-
evant videos are also removed. The resulting database with 17, 434 videos, 7, 587 channels, 373, 733
comments, 138, 921 replies, and 14, 933 transcripts forms the final dataset for analyses in subsequent
chapters.

3.2. Results
This section presents the results of our data collection and processing process and the descriptive
analyses conducted to address both RQ1 and RQ2. Subsection 3.2.1 examines the composition of
the curated dataset, details the structure of the resulting relational database, and provides an overview
of its key components. Subsection 3.2.2 presents descriptive analysis results organized into five an-
alytical themes: (1) content volume and engagement metrics; (2) transcript availability; (3) language
distribution based on audio and textual metadata; (4) geographical distribution; and (5) topic distribu-
tion.

3.2.1. RQ1: Dataset Composition
To address RQ1: What educational content related to data systems is available on YouTube, and how
can it be systematically collected and organized?, we constructed a dataset for data systems educa-
tional videos on YouTube. Using the survey from Miedema et al. [58] as a foundational taxonomy, we
created 67 keyword queries that expanded 38 high-level data systems subtopics into natural language
search strings. These queries were submitted to the YouTube Data API, resulting in the initial retrieval
of 21, 631 video entries across topics. Metadata was then collected at multiple levels, such as video-
level, channel-level, comment-level, and transcript-level. Following metadata and transcript collection,
a multi-step filtering pipeline involving embedding models and supervised classification was conducted
to exclude off-topic or non-instructional content, resulting in a curated set of 17, 434 instructional videos.

To support scalable querying and analysis, all collected data were organized into a normalized relational
schema and stored in a SQLite database. The final schema is illustrated in Figure 3.2 as an Entity
Relationship (ER) diagram. The database is composed of five interconnected tables:

• videos: video-level descriptors and statistics;
• channels: channel-level descriptors and statistics;
• comments: comment thread with top-level comment resources;
• replies: attributes of replies to top-level comments;
• transcripts: manually or automatically generated captions associated with each video.

Figure 3.2: Entity Relationship (ER) Diagram of the final YouTube educational video database
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Table: videos (17,434)
Column Description Type
video_id Unique YouTube video identifier TEXT
title Original video title TEXT
en_title English video title (if available, otherwise original title displayed) TEXT
channel_title Original channel name TEXT
published_at Video publication timestamp (ISO 8601) TEXT
description Original video description TEXT
en_description English description (if available) TEXT
tags List of video tags created by the video uploader to describe the video content TEXT
audio_language Language code (I18nLanguages code) of default audio track TEXT
textual_language Text content (title, description) language code (I18nLanguages code) TEXT
duration Duration in HH:MM:SS format TEXT
definition Video resolution (HD/SD) TEXT
caption_availability Availability of manual captions (true/false) TEXT
view_count Number of views INTEGER
like_count Number of likes INTEGER
comment_count Number of comments INTEGER
paid_product_placement Paid placement indicator (true/false) TEXT
keywords List of matched search queries TEXT
channel_id Unique YouTube channel identifier TEXT

Table: channels (7,587)
channel_id Unique channel identifier TEXT
title Original channel title TEXT
en_title English title (if available) TEXT
description Channel description TEXT
en_description English description (if available) TEXT
published_at Channel creation timestamp (ISO 8601) TEXT
country Channel registration country (ISO) TEXT
uploads_playlist ID of uploads playlist TEXT
view_count Channel total views INTEGER
subscriber_count Number of subscribers INTEGER
video_count Number of uploaded videos INTEGER

Table: comments (373,733)
thread_id Unique comment thread identifier TEXT
video_id Unique YouTube video identifier TEXT
top_level_text Top-level comment text TEXT
top_level_like_count Likes on top-level comment INTEGER
top_level_updated_at Last update timestamp (ISO 8601) TEXT
total_reply_count Number of replies INTEGER

Table: replies (138,921)
reply_id Unique reply identifier TEXT
thread_id Unique comment thread identifier TEXT
video_id Unique YouTube video identifier TEXT
reply_text Reply text TEXT
reply_like_count Likes on reply INTEGER
reply_updated_at Last update timestamp (ISO 8601) TEXT

Table: transcripts (14,933)
video_id Unique YouTube video identifier TEXT
transcript Transcript text TEXT
type Transcript type (manual / auto-generated) TEXT

Table 3.7: Overview of the database composition
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Foreign key constraints were used to maintain referential integrity between video entries and their
associated channels, comments, replies, and transcripts. These relationships support structured joins
across metadata levels and enable multi-level analytical operations. The referencing relations are as
follows:

• videos.channel_id → channels.channel_id
• comments.video_id → videos.video_id
• replies.thread_id → comments.thread_id
• replies.video_id → videos.video_id
• transcripts.video_id → videos.video_id

This schema enables fine-grained analysis at different levels (e.g., per-video engagement, per-channel
distribution, or thread-level discourse) and supports efficient downstream processing tasks such as
filtering, feature modeling, and topic classification.

Table 3.7 provides an overview of the final dataset structure, including the main tables, their field de-
scriptions, data types, and observed record counts after the full data processing pipeline. The dataset
contains 17, 434 curated educational YouTube videos on data systems topics across 7, 587 channels,
with 373, 733 top-level comments, 138, 921 threaded replies, and 14, 933 English transcripts. Impor-
tantly, this corpus represents the full set of retrievable results from the YouTube Data API for each of
the 67 curriculum-aligned search queries, ensuring maximum content coverage within the queryable
constraints of the platform. To support further research and reproducibility, the dataset is publicly avail-
able at The Open Science Framework4.

3.2.2. RQ2: Key Characteristics of the Dataset
To address the second research question: What are the key characteristics of educational YouTube
videos on data systems in terms of content volume, engagement metrics, transcript availability, lan-
guage, geographic distribution, and topical coverage?, we conducted a set of descriptive analyses
based on the final filtered dataset.

We structure this exploration into five analytical facets: (1) content volume and engagement metrics, (2)
transcript availability, (3) language characteristics, (4) geographic distribution, and (5) topic coverage
trends, reported in the following subsections.

Content Volume and Engagement Metrics
Table 3.8 summarizes descriptive statistics for key video, comment, and channel-level attributes, in-
cluding quartiles and log-scale histograms, which illustrate the skewed distributions characteristic of
online educational content.

Across the dataset, videos span a wide range of durations and audience engagement levels. With a
median duration of 10.03 minutes and an interquartile range from 4.82 to 21.96 minutes. However, the
substantial standard deviation (47.08minutes) andmaximum duration (1, 753.78minutes, approximately
29 hours) indicate a small subset of content creators offering long videos alongside the more prevalent
shorter tutorials. The histogram confirms this right-skewed distribution, with most videos clustering in
the shorter duration range.

Engagement metrics exhibit classic Power law distribution characteristics. Video view counts show
a median of 2, 274 views per video, but with a mean of 45, 322.06 and a maximum of 19, 064, 477, in-
dicating that a small percentage of videos capture disproportionate audience attention. This pattern
repeats across like counts (median: 35, maximum: 356, 316) and comment counts (median: 2, maxi-
mum: 11, 494), which are more sparsely distributed. The near-zero first quartile values for likes (Q1: 6)
and comments (Q1: 0) reveal that many data systems educational videos receive minimal engagement,
while a select few generate substantial viewer interaction. Comment-level metrics provide additional in-
sights into viewer interaction patterns. The median values of zero for both top-level comment likes and
replies indicate that most comments receive no engagement, with interaction concentrated on a small

4https://doi.org/10.17605/OSF.IO/FTN2S

https://doi.org/10.17605/OSF.IO/FTN2S
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subset of comments (maximum likes: 7, 839, maximum replies: 353). Similarly, most replies receive
minimal likes (median: 0, mean: 0.83).

The 7, 587 channels in our dataset range from small educational producers (Q1 subscriber count: 158)
to major content platforms with up to 42.2 million subscribers. The median channel hosts 121 videos
and has accumulated 127, 736 views across its content library. The substantial gap between median
and mean values for channel views (median: 127, 736, mean: 8, 914, 953) and subscribers (median:
1, 280, mean: 65, 692.28) reinforces the highly skewed nature of the ecosystem, where a few dominant
channels have significantly larger audiences than common content creators.

Attribute Count STD Mean Min Q1 Median Q3 Max Histogram (log scale)

Video Duration (minutes) 17, 434 47.08 21.37 0 4.82 10.03 21.96 1, 753.78

Video View Count 17, 433 288, 716.23 45, 322.06 0 283 2, 274 15, 081 19, 064, 477

Video Like Count 17, 029 5, 512.79 859.99 0 6 35 222 356, 316

Video Comment Count 16, 948 187.41 31.40 0 0 2 13 11, 494

Comment Like Count 373, 733 49.43 2.88 0 0 0 1 7, 839

Comment Reply Count 373, 733 2.09 0.43 0 0 0 1 353

Reply Like Count 138, 921 6.96 0.83 0 0 0 1 905

Channel View Count 7, 587 126, 522, 808.75 8, 914, 953 2 16, 084 127, 736 1, 006, 418 8, 187, 923, 440

Channel Subscriber Count 7, 587 738, 761.20 65, 692.28 0 158 1, 280 8, 600 42, 200, 000

Channel Video Count 7, 587 29, 937.28 1, 118.51 1 34 121 351 2, 035, 401

Table 3.8: Descriptive statistics of key video and channel metrics

Figure 3.3 visualizes the annual trends in video publication and channel creation. Video production
rose steadily throughout the 2010s and saw a sharp spike in 2020, coinciding with global shifts toward
remote learning due to the COVID-19 pandemic. Since 2021, the number of new videos has plateaued
at a relatively high level, indicating sustained content creation post-pandemic.

In contrast, channel creation does not strictly follow the same trajectory. While the number of new
educational channels gradually increased in the early years and peaked sharply in 2020, it exhibited
notable fluctuations. In particular, there was a smaller surge in 2011. Following this, growth remained
relatively steady until the dramatic spike in 2020. Since 2021, the number of new channels has declined
significantly, even as video production remained high. This decoupling suggests that recent content
growth is driven less by new entrants and more by intensified output from existing creators.

Figure 3.3: Temporal trends of video publishing and channel creation

Transcript Availability
Transcripts are critical for enabling text-based analysis and supporting accessibility and multilingual
comprehension. Out of the final set of 17, 434 videos retained after relevance filtering, English tran-
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scripts were successfully retrieved for 14, 933 videos, representing an overall coverage of 85.6%. This
includes both manually uploaded captions and auto-generated ones provided by YouTube’s speech
recognition system.

Table 3.9 breaks down the availability and engagement profiles of four transcript types: manually
created captions, translations of manual captions, auto-generated captions, and their translations.
The most prevalent category was auto-generated English captions, which accounted for 54.3% of the
dataset (n = 9, 464). An additional 25.4% (n = 4, 430) of videos had translated auto-generated captions,
further increasing accessibility for non-English content.

Only a small proportion of videos included manually created captions, with 898 videos (5.2%) containing
original English captions uploaded by creators. Another 141 videos (0.8%) featured English transcripts
translated from manually created captions in other languages.

We also reported engagement figures to illustrate the differences brought about by the availability of
different types of captions. These are reported using median values rather than means to better reflect
central tendencies in the presence of right-skewed distributions. View, like, and comment counts in
the datasets follow a long-tailed distribution, where a small fraction of viral videos accumulate dispro-
portionately large numbers, inflating the mean and obscuring the behavior of the majority. The use of
medians thus offers a more robust summary of typical audience interaction.

While manually created and translated-from-manual transcripts are relatively rare, they have higher
median engagement metrics. For instance, videos with manually created transcripts had a median
view count of 15, 323, compared to just 1, 655.5 for those with auto-generated captions. They also
received more comments (median = 6 vs. 1) and likes (median = 118 vs. 24).

Transcript Type Count Share of All Videos Median View Median Comment Median Like
Manually Created 898 5.2% 15,323 6 118
Translated from Manually Created Captions 141 0.8% 11, 482 21 165
Auto-Generated 9,464 54.3% 1, 655.5 1 24
Translated from Auto-Generated Captions 4, 430 25.4% 2, 262.5 3 40.5

Total w/ Transcript 14,933 85.6% - - -

Table 3.9: Availability and types of English transcripts in the final dataset

Language Distribution
Given the global nature of YouTube and the diversity of its creator base, understanding the linguistic
composition of the dataset provides insight into its accessibility and potential reach. Each video in
the dataset includes two key language metadata fields provided by the YouTube API: audio_language
and textual_language, corresponding to the original caption language and the language of textual
metadata (e.g., title, description), respectively.

Audio Language. As shown in Table 3.10, 59.05% of the videos (n = 10, 294) had a specified audio
language. Among those, various English dialects collectively dominated the corpus. The most frequent
audio language tag was “English” (as labeled by YouTube), which alone accounted for 27.2% of all
videos. When combined with other regional variants explicitly tagged by YouTube, such as English
(United States), English (India), and English (United Kingdom), English language content collectively
represented 43.9% of the dataset. Other widely represented languages included Hindi (4.72%) and
Arabic (1.04%), and several regional Indian languages such as Telugu, Urdu, and Tamil.

Some languages with smaller representation (e.g., Telugu, Tamil) had relatively high median engage-
ment: videos in Telugu, for example, had the highest median view count (6, 262) and like count (141).
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Top 10 Audio Languages Count Share of All Videos Median View Median Comment Median Like
English 4,748 27.23% 3, 714 3 51
English (United States) 1, 224 7.02% 1, 753 1 23
English (India) 1, 028 5.90% 1, 951.5 2 37
Hindi 823 4.72% 3, 892 5 73
English (United Kingdom) 656 3.76% 3, 959 3 61.5
Arabic 182 1.04% 5, 976.5 3 100.5
Telugu 169 0.97% 6,262 6 141
Urdu 146 0.84% 959.5 4 27.5
Tamil 126 0.72% 4, 839.5 10 109
Indonesian 105 0.60% 2, 083 3 42
Other 1, 087 6.23% 3, 743 4 62

Total w/ Audio Language Specified 10,294 59.05% - - -

Table 3.10: Top 10 most frequent languages by video audio metadata

Textual Language. Textual metadata (titles, descriptions) displayed more sparsity as shown in Ta-
ble 3.11: only 21.74% of videos (n = 3, 790) had a textual_language tag. English and its regional
variants again dominated, with plain “English” tagged in 12.36% of all videos, followed by English (In-
dia), English (US), and English (UK). Other languages like Portuguese, Hindi, Arabic, and Spanish
(Latin America) occurred less frequently, though several exhibited high median engagement levels.
For instance, Spanish (LATAM) videos showed the highest median view (15, 716) and like counts (511)
among all tagged textual languages.

Top 10 Textual Languages Count Share of All Videos Median View Median Comment Median Like
English 2,155 12.36% 2, 989 2 44
English (India) 573 3.29% 753 2 20
English (United States) 348 2.00% 2, 055 3 45
English (United Kingdom) 228 1.31% 3, 581 3 53
Portuguese 37 0.21% 9, 946 12 388
Hindi 34 0.20% 15, 230 19 264.5
Arabic 30 0.17% 3, 041 2.5 65.5
Spanish (Latin America) 27 0.15% 15,716 27 511
Indonesian 27 0.15% 3, 394 4 40
German 24 0.14% 818.5 0 10.5
Other 307 1.76% 4, 205 6 64

Total w/ Textual Language Specified 3790 21.74% - - -

Table 3.11: Top 10 most frequent languages by video textual metadata

This discrepancy between audio and textual tagging coverage indicates possible limitations in metadata
quality and creator-side language settings. Moreover, the sparse labeling on textual language suggests
that many videos lack explicitly set metadata, relying instead on default or inferred settings.

Geographical Distribution
To understand the global provenance of educational content in data systems, we analyzed the country
field associated with each video’s originating channel. This metadata field, provided by the YouTube
API, indicates the registered country of the channel creator and thus serves as a proxy for the geo-
graphic origin of production. Of the 7, 587 unique channels in the final dataset, 5, 038 (66.4%) provided
a non-null country identifier, enabling a fairly comprehensive geographic analysis. These channels ac-
count for 13, 213 videos, approximately 75.8% of all content in the final dataset, making country-based
patterns representative of broader production trends.

Table 3.12 summarizes the top 10 countries by channel count. The largest share of content in our
dataset originates from India, which accounts for 2, 100 channels (41.7% of those with country regis-
tered), and 6, 507 videos (37.3% of all videos). Indian creators tend to operate mid-sized channels
(median 2, 240 subscribers) with a median video output of 188 videos per channel. Their videos are
moderately engaging, with a median of 3, 886 views, 59 likes, and 4 comments.

The United States, as the second-largest producer, contributed 1, 051 channels and 2, 918 videos
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(16.7%). These channels typically show higher production activity (median 250 videos/channel) and
more subscribers (median 5, 330), though video-level engagement is slightly lower than India’s (me-
dian 2, 763 views, 36 likes, 2 comments).

Despite a smaller number of channels, Brazil exhibits exceptional performance across multiple indica-
tors. It has the highest median number of videos per channel (265.5), the highest median subscriber
count (9, 045), and the strongest per-video engagement: median of 6, 590 views, 235 likes, and 11 com-
ments.

Although the United Kingdom only accounts for 2.2% of all videos and has 167 associated channels,
it demonstrates relatively strong audience engagement. Its videos show a higher median view count
(6, 385.5) and like count (61.5) than most other countries with more contributions. This suggests that
while UK-based content is less prevalent in volume, it may attract more attention per video.

Country Channels Videos (%) Median Video Median Subs Median View Median Comment Median Like
India 2,100 6,507 (37.32%) 188 2, 240 3, 886 4 59
United States 1, 051 2, 918 (16.74%) 250 5, 330 2, 763 2 36
Pakistan 249 566 (3.25%) 155 1, 380 922.5 1 18
United Kingdom 167 384 (2.20%) 175 5, 570 6, 385.5 5 61.5
Canada 114 227 (1.30%) 138 2, 415 2, 633 3 35
Indonesia 114 163 (0.93%) 89 1, 020 1, 360 1 25
Germany 92 207 (1.19%) 191 2, 785 3, 142 4 55
Brazil 72 129 (0.74%) 265.5 9,045 6,590 11 235
Egypt 57 123 (0.76%) 197 4, 390 1, 487 2 32.5
Australia 48 143 (0.82%) 147.5 4, 790 3, 844 1 73
Other 974 1, 846 (10.59%) 154.25 2, 885 2, 670.5 2 32.5

Total w/ Country Specified 5,038 13,213(75.79%) - - - - -

Table 3.12: Top 10 countries by channel count and associated median metrics. ”Median Video” and ”Median Subs” are
calculated per channel; ”Median View”, ”Median Like”, and ”Median Comment” are calculated per video.

Topic Distribution
To examine how comprehensively the collected dataset reflects the curriculum-informed subtopic space,
we analyzed the topical coverage of videos based on their matched search queries. Each video in the
dataset was originally retrieved via one or more queries corresponding to the 38 subtopics proposed in
the educator survey by Miedema et al. [58]. However, due to the granularity and fragmentation of the
original subtopic list, we consolidated several closely related subtopics into higher-level categories to
facilitate summarization and pattern recognition.

For example, the subtopic “relational theory: relations, tuples and attributes” was aggregated under
the broader topic “relational theory”, and three separate subtopics on ”database optimization: index-
ing”, ”database optimization: query optimization”, and ”database optimization: execution plans” were
unified under “database optimization” based on the heading topic. This consolidation enabled us to vi-
sualize broader trends in topic prevalence while still retaining the alignment with the original curriculum
structure.

Using the query-to-topic mapping, we computed the number of videos associated with each topic. The
resulting topics and their distribution are shown in Table 3.13. It presents the number of videos matched
to each topic (based on query associations), alongside median values for view count, comment count,
like count, and video duration. The most prominent topic by volume is SQL, accounting for 27.3% of all
videos (n = 4, 915), followed by Database Normalization (10.2%) and Data Mining (9.7%).

However, higher volume does not always equate to higher viewer engagement. For instance, videos
under Data Visualization, while comprising only 2.6% of the dataset, achieved the highest median like
count (175), and are among the top three in comment volume (median = 5). Data Security and Access
Management also stands out, with the highest median view count (12, 716) and strong engagement
across other metrics, despite representing under 2% of videos. Additionally, Distributed Database Man-
agement Systems and Object-Oriented Data Models, while not large in volume, demonstrated relatively
higher overall engagement levels.

At the other end of the distribution, topics such as Semi-Structured Traditional Data Models (0.16%)
and Relational Theory (0.79%) are the most underrepresented, with low audience engagement. No-
tably, Semi-Structured Data Models also exhibited the longest median video duration (23.13 minutes).
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Topics like Database Scalability, Tuple Relational Calculus, and Data Privacy and Ethics exhibited both
relatively low volume and the lowest median engagement.

Topic Videos (%) Median View Median Comment Median Like Median Duration (min)
SQL 4,915 (27.28%) 3, 106 3 51 8.10
Database Normalization 1, 844 (10.23%) 1, 153.5 2 25 11.38
Data Mining 1, 752 (9.72%) 2, 377.5 2 28 9.75
Database Optimization 1, 164 (6.46%) 883.5 1 14 10.92
Data Modeling 979 (5.43%) 5, 382 4 63 13.68
Concurrency Control and Isolation Levels 777 (4.31%) 1, 312 1 25 13.90
Database Back-ups and Recovery 697 (3.87%) 4, 150 2 36 10.45
Logical and Physical Data Independence 576 (3.20%) 1, 152.5 2 21 10.51
Data Warehousing 504 (2.80%) 2, 420.5 3 47.5 8.88
Functions and Stored Procedures 500 (2.77%) 2, 031 4 29 11.92
Relational Algebra 491 (2.72%) 5, 582 3 89 12.63
Database Scalability 477 (2.65%) 388 0 6 14.73
Data Visualization 467 (2.59%) 10, 212 5 175 12.33
NoSQL Database Management Systems 453 (2.52%) 512 1 12 6.20
Tuple Relational Calculus 405 (2.25%) 402 0 8 11.48
Distributed Database Management Systems 380 (2.11%) 7, 209.8 5 80 9.18
Database Management Systems Components 357 (1.98%) 2, 269 4 38 8.82
Data Security and Database Access Management 347 (1.93%) 12,716 4 124 11.57
Transaction Processing 298 (1.65%) 3, 457 3 44 12.09
Data Privacy and Ethics 240 (1.33%) 507.5 1 5.5 11.30
Object-Oriented Data Models 226 (1.25%) 9, 664 5 100.5 10.79
Relational Theory 142 (0.79%) 1, 011 2 24.5 13.68
Semi-Structured Traditional Data Models 28 (0.16%) 3, 083.5 0 19 23.13

Table 3.13: Data systems topics by video count and median engagement metrics.

To further explore topic-specific trends over time, Figure 3.4 plots the annual count of videos published
for each consolidated topic from 2005 to 2024. This faceted line chart highlights how the presence of
different data systems topics has evolved on YouTube, both in timing and intensity. Overall, most topics
show a clear upward trend after 2020, though the rate and consistency of growth differ significantly
across categories. The most prominent growth is seen in SQL, which experienced an explosive rise
in 2020, reaching nearly 1, 000 videos in 2023, far exceeding any other topic. Topics like Database
Normalization and Data Mining also saw notable spikes during 2019–2021, though their growth slowed
or declined in the subsequent years. Other foundational topics, such as Database Optimization, Data
Modeling, Data Warehousing, Database Scalability, and Data Visualization, exhibited more steady,
incremental growth, especially Data Visualization, which saw its video count rise consistently post-
2020. Meanwhile, niche or more theoretical topics such as Object-Oriented Data Models, Relational
Theory, and Semi-Structured Data Models remained a steady presence but relatively underrepresented
over time.
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Figure 3.4: Temporal distribution of video production across 23 data systems topics (2007–2024)



4
Audience Engagement Modeling

This chapter presents the analytical framework and empirical findings for modeling audience engage-
ment with educational YouTube videos on data systems. Section 4.1 describes the analytical proce-
dures used to address RQ3, including the construction of an engagement index, the engineering of
structural, linguistic, and contextual features, and the implementation of correlation and regression
modeling. Section 4.2 presents the results of the statistical modeling, identifying which features are
significantly associated with audience engagement.

4.1. Methods
To address RQ3: Which features of educational YouTube videos on data systems are associated with
audience engagement?, we conducted a statistical modeling analysis linking video, channel, content,
and language level attributes to audience responses. The modeling goal was to identify both the native
and derived features affecting audience engagement of data systems educational videos on YouTube,
measured through views, likes, and comments. This section describes the construction of the engage-
ment metric, feature engineering, correlation analysis, and modeling techniques employed.

4.1.1. Feature Engineering: Engagement Metric Construction
To model audience engagement with educational YouTube videos on data systems, three behavioral
indicators were selected: views per day, likes per day, and comments per day. These metrics reflect the
frequency and intensity of user interaction with video content and collectively represent key dimensions
of engagement: exposure, positive evaluation, and participatory response.

While past research has often combined engagement as a single composite score, typically calculated
as a weighted sum of likes, comments, shares, and other interaction metrics [33, 41, 43, 91], such
approaches can mask variation across different types of user responses. A study [82] found that image-
based posts on social media tend to attract more likes than comments, while text-based posts elicit
more comments than likes, suggesting that different content characteristics may drive different types of
engagement. To address such concerns, Fischer et al. applied principal component analysis (PCA) to
four engagement metrics obtained from the YouTube API (views, likes, dislikes, comments), extracting
two distinct latent dimensions: popularity and polarity [24]. Inspired by this approach, we adopted a
similar dimensionality reduction strategy, adapted to the specific constraints of our dataset. By the time
our study was conducted, YouTube API access policies had changed, and interaction data on dislikes
and shares were no longer publicly available. Consequently, our thesis focused on the three remaining
accessible metrics: views (number of times a video was played), likes (number of times viewers clicked
the ”like” button), and comments (number of viewers left a comment). To normalize for video lifespan,
all metrics were converted to per-day rates: views/day, likes/day, and comments/day.

Descriptive analysis performed before in subsection 3.2.2 and Shapiro-Wilk tests revealed that all three
engagement metrics were non-normally distributed (p < .001), exhibiting the strong skewness typical
of social media interaction data. Accordingly, Spearman’s rank correlation was used to assess their

24
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relationships. The results showed high correlations between these metrics (ρ = 0.93 between views
and likes, ρ = 0.83 between views and comments, and ρ = 0.86 between likes and comments). These
high correlations suggested substantial redundancy, making dimensionality reduction appropriate. To
construct a composite measure while preserving shared variance, we applied Principal Component
Analysis (PCA) to the three engagement metrics.

As shown in the scree plot in Figure 4.1, the first principal component accounted for 82.2% of the total
variance, capturing the common engagement signal across views, likes, and comments. Figure 4.1
presents the loadings of each original variable on the first principal component. All three metrics con-
tributed substantially to the component, supporting its interpretation as a general engagement index.
This component, referred to as the Engagement Index, was retained as the measure of audience en-
gagement in the subsequent regression modeling.

Figure 4.1: Scree plot of engagement PCA showing the variance explained
by each principal component.

Variable PC1 Loading

Views per day 0.540
Likes per day 0.632
Comments per day 0.555

Table 4.1: Loadings of engagement
variables on the first principal component

(PC1).

Given that the engagement index exhibited a highly skewed distribution with a long right tail, we applied
a log1p transformation to the engagement index before regression modeling. All subsequent analyses,
including feature screening and regression modeling, used the log1p-transformed engagement index
as the dependent variable.

4.1.2. Feature Engineering: Covariates Extraction
To identify factors associated with audience engagement, we extracted a comprehensive set of features
encompassing structural, linguistic, affective, and contextual attributes. These features were grouped
into three major types: interval, binary, and nominal variables. Informed by prior research on science
communication and video popularity on YouTube [95, 24], our selection included both directly available
metadata from the dataset and derived variables constructed through computational methods.

Interval Variables
The set of interval-scale variables includes both native features from the dataset and variables that
were derived through feature transformation or text analysis. These variables are:

1. video duration: length of the video in seconds.
2. subscriber count: number of subscribers to the video’s hosting channel.
3. channel productivity: a derived metric indicating how frequently a channel publishes content. It

has been shown to be associated with video popularity in prior studies of science content on
YouTube [95]. It was calculated as the ratio of the total number of videos on a channel to the
number of days since the channel was created.

4. number of tags: number of tags manually created by the video uploader to describe or categorize
the video content.
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5. channel-level view count: total number of views accumulated by the channel up to the time of
data collection.

6. video age: number of days since the video was published.
7. channel age: number of days since the channel was first created.
8. title length: number of words in the video title, used as a proxy for headline complexity.
9. valence: a derived linguistic-affective feature representing the average emotional polarity of the

words in a video’s transcript. Following the method proposed by Fischer et al. [24]. Valence
was calculated as the average difference between positive and negative scores across all valid
sentiment-bearing words:

valence =
1

|W|
∑

wj∈W
(pos(wj)− neg(wj)) (4.1)

where W denotes the set of words in the transcript that carry sentiment scores according to
SentiWordNet, and pos(wj), neg(wj) refer to the positive and negative sentiment scores assigned
to word wj , respectively.

10. density: computed alongside valence using the same transcript-level analysis, density captures
the proportion of words in the transcript that were identified as emotionally expressive (i.e., those
with non-zero sentiment scores in SentiWordNet) [24]. It was calculated as:

density =
1

N

N∑
j=1

δ(wj) (4.2)

where N is the total number of tokens in the transcript and δ(wj) is an indicator function such
that:

δ(wj) =

{
1 if wj ∈ W
0 otherwise

Both valence and density were extracted using the following process: transcripts were cleaned
and tokenized, stopwords were removed, tokens were part-of-speech (POS)-tagged and lemma-
tized. Each sentiment-carrying word was identified using its WordNet POS tag and scored using
the first matching SentiWordNet synset. Words without sentiment scores or outside recognized
POS categories were excluded. The resulting per-transcript values were computed using the
custom functions applied across the full dataset.

11. readability score: a readability metric based on the Flesch-Kincaid Grade Level (FKGL), calcu-
lated using the textstat.flesch_kincaid_grade function. This score estimates the U.S. school
grade level required to understand the video transcript, serving as a proxy for the linguistic acces-
sibility of the educational content.

Among these, all text-based variables (i.e., valence, density, and readability score) were computed only
for 1, 039 videos with creator-uploaded English captions (English translations included). After exclud-
ing entries with empty values for all interval variables, 1, 002 videos remained, ensuring sufficient input
quality for analysis. This restriction was necessary due to the poor quality of many auto-generated
captions on YouTube. In some cases, auto-captioning systems produced transcripts for videos that
contained no speech at all, such as screen recordings or background music with no narration, re-
sulting in meaningless or repetitive text. In other cases, even when speech was present, automatic
recognition frequently misidentified words or omitted sentence boundaries, undermining the reliability
of downstream linguistic analyses. By focusing only on human-curated transcripts, we aimed to ensure
that valence, density, and readability scores were calculated on semantically meaningful content rather
than noise or artifacts of automated captioning. Additionally, for the readability score, we observed that
some transcripts, even when creator-uploaded, still lacked basic punctuation such as periods and com-
mas, which are essential for accurate sentence boundary detection in Flesch–Kincaid computation. To
address this issue, all transcripts were further processed using a multilingual punctuation restoration
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model fullstop-punctuation-multilang-large [27]. This model, applied after text cleaning (e.g., re-
moval of bracketed metadata and whitespace normalization), restored punctuation marks (i.e., period,
comma, equation mark, hyphen, colon) for likely sentence and clause boundaries to improve sentence
segmentation quality. Only creator-uploaded transcripts that passed this preprocessing step were used
to compute the Flesch–Kincaid readability grade, ensuring the resulting scores reflected linguistically
coherent and punctuated input text.

This derivation process of valence, density, and readability enabled the modeling of latent or abstract
video qualities that are not explicitly captured in platform metadata but may nevertheless influence user
engagement.

Binary Variables
Two binary variables were initially considered as potential covariates of audience engagement:

1. definition: indicating whether the video was uploaded in high-definition (HD) format.
2. paid product placement: indicating whether the video was flagged as containing paid product

placement or sponsorship.

Both variables are directly obtainable in the YouTube metadata. In theory, HD quality could be asso-
ciated with more professional production standards and better viewer experience, while product place-
ment might signal commercial intent, potentially influencing audience perception and interaction.

Nominal Variables
Several nominal variables were extracted to capture linguistic and contextual attributes that could influ-
ence audience engagement:

1. audio language: the language of the video’s default audio track.
2. textual language: the language of the text in the video’s title and description.
3. country: the country associated with the channel.
4. topic: assigned based on search terms following the same categories as in Table 3.13.

Together, the feature engineering process produced a set of covariates that combined platform ac-
cessible metadata with computationally derived variables from transcript text. This multi-dimensional
feature set allowed for the modeling of both structural properties (e.g., channel and video structural
characteristics) and latent qualities (e.g., affective tone, linguistic complexity) of educational videos.

4.1.3. Correlation Analysis
Following feature engineering, we performed correlation analysis to examine the relationships between
candidate covariates and the dependent variable, log1p-transformed engagement index. This stage
aimed to provide an overview of how individual features relate to engagement and to inform the sub-
sequent regression modeling. The process combined distributional assessment, visual inspection of
variable relationships, and calculation of correlation coefficients.

Interval Variable
Histograms were generated for each interval variable to assess distributional characteristics as shown
in Figure 4.2. Several variables, including subscriber count, channel-level view count, and video du-
ration, exhibited extreme positive skewness with long right tails as indicated in subsection 3.2.2. To
address this, we applied a log1p transformation to these variables, compressing their range and reduc-
ing the influence of outliers while preserving relationships. Variables that were already symmetrically
distributed, for which log transformation was inappropriate (e.g., valence, density), or distributions af-
ter log1p transformation that remained concentrated in lower ranges (i.e., channel productivity) were
retained in their original scale.

Scatterplots were constructed to visualize the relationships between each covariate and the log1p-
transformed engagement index as indicated in Figure 4.3. This step enabled the detection of possible
trends and potential high-leverage points that could influence correlation estimates or model stability.
The scatterplots confirmed that variables with log1p transformations exhibited more balanced distribu-
tions along both axes.
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Figure 4.2: Distributions of interval covariates, with log1p transformation applied where appropriate.

Spearman’s rank correlation coefficients were calculated to assess the correlations between each co-
variate and the log1p-transformed engagement index. The results are summarized in Table 4.2. The
strongest positive associations were observed for log1p(Subscriber Count) (ρ = 0.56, p < 0.001) and
log1p(Channel-level View Count) (ρ = 0.50, p < 0.001). Readability (FKGL) showed a moderate neg-
ative association (ρ = −0.31, p < 0.001). Variables such as Number of Tags, log1p(Video Duration),
Title Length, and Channel Productivity had weaker positive correlations (all ρ > 0.3). Density, Video
Age, Channel Age, and Valence exhibited weak associations (all |ρ| < 0.11).

Binary Variables
Point-biserial correlation coefficients were computed to assess the relationships between the binary
covariates and the log1p-transformed engagement index. The results showed weak positive associa-
tions: ρ = 0.123 (p = 8.91 × 10−5) for High-definition (HD) and ρ = 0.137 (p = 1.35 × 10−5) for Paid
Product Placement.

However, initial inspection of their distributions revealed extreme class imbalance: 93% of the videos
were published in HD, and 99.4% of the videos did not contain any declared product placement. Be-
cause of this imbalance, these variables offered minimal variance and informational value for explaining
differences in engagement. Specifically, HD video is now a normal form for most videos, so its research
value as a variable for distinguishing between different levels of engagement is limited. Similarly, paid
product placement is self-reported by uploaders, and the proportion of videos that declared such place-
ment is less than 1%, so the information is both unreliable and of less meaning for analysis. For these
reasons, both variables were excluded from the following regression analysis.
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Figure 4.3: Scatterplots of interval covariates versus log1p-transformed engagement index.

Nominal Variables
For nominal covariates, associations with the log1p-transformed engagement index were evaluated
using different correlation measures based on the structure of the nominal variables. For categorical
variables with multiple levels (audio language, textual language, and country), the Kruskal-Wallis H-test
was used to assess whether engagement index distributions differed significantly across categories.
For topic indicators, which were coded as binary presence variables (1 = present, 0 = absent) as
a video can be assigned to multiple topics, point-biserial correlations were computed to quantify the
association between topic presence and engagement.

The Kruskal-Wallis tests indicated significant differences in engagement index distributions across cat-
egories of audio language (H = 59.58, p < 0.001), textual language (H = 33.98, p < 0.001), and
country (H = 24.47, p < 0.001) as in Table 4.3. Boxplots in Figure 4.4 and Figure 4.5 illustrate these
distributions for languages and countries with over 30 samples, showing that videos in English (India)
and channels from India tended to have higher engagement indices, although videos from the UK have
slightly higher median engagement.

For topic indicators, point-biserial correlations revealed generally weak associations with engagement
index as seen in Table 4.4. The strongest correlation was observed for SQL (ρ = 0.18, p < 0.001), with
other topics showing negligible or no association. Figure 4.6 provides a visual summary of engagement
index distributions by topic presence.

Therefore, topic indicators were excluded from the regression model as correlation analysis revealed
generally weak associations with the engagement index (all |ρ| < 0.10 except for SQL). For the simplicity
of the model, only the SQL topic indicator was retained for further topic-wise analysis.
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Figure 4.4: Boxplots of log1p-transformed engagement index by audio language (left) and textual language (right), including
only languages with over 30 samples.

Figure 4.5: Boxplot of log1p-transformed engagement index by country, including only countries with over 30 samples.

Figure 4.6: Boxplots of log1p-transformed engagement index by topic presence.
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Variable Spearman ρ p-value
log1p(Subscriber Count) 0.563 5.73× 10−85

log1p(Channel-level View Count) 0.504 1.00× 10−65

Readability (FKGL) −0.312 3.97× 10−24

Number of Tags 0.241 1.12× 10−14

log1p(Video Duration (Seconds)) 0.173 3.62× 10−8

Title Length (Word Count) 0.150 1.82× 10−6

Channel Productivity (Videos/Day) 0.117 2.00× 10−4

Density −0.109 5.33× 10−4

Video Age (Days) −0.088 5.23× 10−3

Channel Age (Days) −0.075 1.74× 10−2

Valence −0.052 9.95× 10−2

Table 4.2: Spearman’s rank correlations between interval covariates and log1p-transformed engagement index.

Variable H-statistic p-value
Audio Language 59.58 1.49× 10−11

Textual Language 33.98 4.19× 10−8

Country 24.47 4.87× 10−6

Table 4.3: Kruskal–Wallis test results for
language and country covariates.

Topic ρ p-value
SQL 0.183 5.62× 10−9

Data Mining −0.050 0.11
Data Modeling 0.037 0.24
Database Normalization 0.050 0.12
Database Optimization −0.040 0.21
Database Back-ups and Recovery −0.080 0.01
Data Visualization 0.043 0.18
Concurrency Control and Isolation Levels −0.026 0.41
Database Scalability −0.021 0.50
Data Security and Database Access Management −0.010 0.74
Data Warehousing −0.016 0.62

Table 4.4: Point-biserial correlations between topic presence and
log1p-transformed engagement index.

4.1.4. Modeling Procedures
An ordinary least squares (OLS) regression model was used to examine the relationships between
covariates and the log1p-transformed engagement index. All interval variables were included as co-
variates, reflecting structural, temporal, and content characteristics of the videos and channels. The
SQL topic indicator was included as the sole topic variable, as prior correlation analysis had shown
negligible associations for other topics. Nominal variables (audio language, textual language, and
country) were dummy-coded after merging rare categories (fewer than 30 observations) and data with
unspecified nominal variables into an ’Other’ group to ensure model simplicity and interpretability. All
dummy-coded variables were processed using one-hot encoding, with one reference category omitted
to avoid multicollinearity due to the dummy variable trap. The final model was estimated on 1,002 videos
with creator-uploaded captions and complete data for the selected interval features. We required com-
plete data for all interval variables because these represent core structural features of the videos or
channels that are generally available and reliable, apart from rare instances where the YouTube API
failed to return valid values due to technical issues. These cases were excluded to preserve data in-
tegrity. In contrast, nominal variables such as language and country are primarily based on creator
self-reports or optional metadata and exhibit substantial missingness. To maximize sample retention
and reduce bias from listwise deletion, records with missing nominal data were assigned to the ’Other’
category along with rare groups.

After building a multiple linear regression model, variance inflation factors (VIFs) were computed to as-
sess multicollinearity among covariates. All analyses were conducted using the statsmodels package
in Python, and model summaries reported coefficients, standard errors, t-statistics, p-values, R2, and
adjusted R2.

4.2. RQ3 Results: Factors Associated with Audience Engagement
The results of the multiple linear regression model explained approximately 35% of the variance in the
log1p-transformed engagement index (R2 = 0.351, adjusted R2 = 0.335). The overall model was sta-
tistically significant (F (24, 977) = 22.01, p < 0.001). Table 4.5 summarizes the regression coefficients,
standard errors, p-values, and 95% confidence intervals for all covariates in the model. Several co-
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Covariate Coef Std Err t P>|t| Confidence Interval (95%)
Intercept −1.569 0.186 −8.457 0.000 [−1.933, −1.205]
Video Duration (log1p) 0.078 0.012 6.717 0.000 [0.055, 0.101]
Subscriber Count (log1p) 0.040 0.018 2.180 0.029 [0.004, 0.076]
Channel-level View Count (log1p) 0.036 0.018 1.980 0.048 [0.000, 0.071]
Channel Productivity −0.056 0.009 −5.936 0.000 [−0.075, −0.038]
Number of Tags 0.001 0.002 0.668 0.504 [−0.002, 0.004]
Video Age (Days) −2.05× 10−5 1.31× 10−5 −1.564 0.118 [−4.62× 10−5, 5.22× 10−6]
Channel Age (Days) −5.84× 10−5 9.99× 10−6 −5.849 0.000 [−7.8× 10−5, −3.88× 10−5]
Title Length (Word Count) −0.0075 0.004 −1.975 0.049 [−0.015, −0.00005]
Valence −0.305 0.589 −0.517 0.605 [−1.460, 0.851]
Density 0.404 0.249 1.624 0.105 [−0.084, 0.893]
Readability (FKGL) −0.0096 0.005 −1.770 0.077 [−0.020, 0.001]
SQL Topic 0.117 0.031 3.817 0.000 [0.057, 0.177]
Audio: Other −0.095 0.069 −1.375 0.170 [−0.231, 0.041]
Audio: English 0.059 0.052 1.132 0.258 [−0.043, 0.162]
Audio: English (UK) 0.027 0.080 0.339 0.734 [−0.130, 0.184]
Audio: English (India) 0.028 0.110 0.254 0.800 [−0.189, 0.245]
Audio: English (US) 0.113 0.068 1.664 0.097 [−0.020, 0.246]
Audio: Hindi −0.108 0.092 −1.180 0.238 [−0.289, 0.072]
Text: Other 0.014 0.056 0.255 0.799 [−0.096, 0.125]
Text: English 0.012 0.033 0.371 0.711 [−0.052, 0.076]
Text: English (India) 0.377 0.108 3.481 0.001 [0.164, 0.590]
Country: India 0.059 0.075 0.788 0.431 [−0.088, 0.206]
Country: Other 0.116 0.074 1.584 0.114 [−0.028, 0.261]
Country: US 0.009 0.074 0.114 0.909 [−0.137, 0.154]

Table 4.5: OLS regression results for covariates of log1p-transformed engagement index.

variates were significantly associated with the engagement index. Among the interval variables, log1p
duration (β = 0.078, p < 0.001), log1p subscriber count (β = 0.040, p = 0.029), and log1p channel
view count (β = 0.036, p = 0.048) showed positive associations with engagement. Channel productiv-
ity exhibited a negative association (β = −0.056, p < 0.001), as did channel age (β = −5.84 × 10−5,
p < 0.001). Title length showed a marginal negative association (β = −0.0075, p = 0.049).

For nominal variables, the presence of the SQL topic (β = 0.117, p < 0.001) was associated with
higher engagement. Among the language variables, videos with textual language: English (India) were
positively associated with engagement (β = 0.377, p = 0.001). Other language and country variables
showed no statistically significant associations at the 5% level.

Covariate VIF
Intercept 226.03
Video Duration (log1p) 1.22
Subscriber Count (log1p) 20.14
Channel-level View Count (log1p) 21.37
Channel Productivity 1.46
Number of Tags 1.38
Video Age (Days) 1.93
Channel Age (Days) 1.79
Title Length (Word Count) 1.39
Valence 1.08
Density 1.37
Readability (FKGL) 1.37

Covariate VIF
SQL Topic 1.33
Audio: Other 2.60
Audio: English 4.30
Audio: English (UK) 1.57
Audio: English (India) 3.14
Audio: English (US) 2.24
Audio: Hindi 1.61
Text: Other 1.25
Text: English 1.24
Text: English (India) 2.38
Country: India 7.86
Country: Other 7.74
Country: US 8.01

Table 4.6: Variance inflation factors (VIFs) for covariates in the final model.

VIFs were examined to assess multicollinearity. Table 4.6 presents the VIF values for all covariates.
Most of them had VIF values below 5, indicating no serious multicollinearity. As expected, country
dummy variables exhibited higher VIFs (approximately 7−8) might be due to their mutual exclusivity and
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overlap with language indicators. Log-transformed subscriber count and channel view count showed
elevated VIFs (≈ 20), reflecting their correlation, but key coefficients remained interpretable and stable.
The model’s condition number was large (2.05× 105), indicating potential numerical sensitivity, yet the
results were consistent with theoretical expectations.



5
Textbook-Derived SQL Subtopics

Coverage on YouTube

This chapter explores the extent to which YouTube videos cover SQL subtopics derived from stan-
dard database textbooks. Section 5.1 outlines our approach for identifying gaps and concentrations
in topic coverage by aligning SQL-related YouTube content with a textbook-derived subtopic structure.
This includes the construction of a SQL topic structure based on widely-used textbooks, the selection
of a SQL-related video subset, and the evaluation of multiple classification strategies. Section 5.2
presents the findings from applying this classification to all SQL-related videos, revealing both heavily
covered core areas of SQL and subtopics that are entirely absent or rarely exist in the YouTube corpus,
thus highlighting both pedagogical strengths and blind spots in user-generated educational content on
YouTube.

5.1. Methods
To address RQ4: What gaps and popular areas exist in YouTube video coverage of data systems top-
ics, based on alignment with academic textbook-derived topics?, we conducted a focused subtopic
coverage analysis using SQL as a case study. The choice of SQL was motivated by several reasons.
(1) Prevalence: SQL emerged as the single most frequently covered topic in our YouTube dataset, ac-
counting for approximately one-quarter of all curated data systems videos. (2) Engagement correlation:
In the audience engagement modeling presented in chapter 4, the presence of SQL content in a video
showed the strongest positive correlation with engagement metrics (ρ ≈ 0.18), and SQL remained one
of the most significant covariates of engagement in the final regression model, highlighting its partic-
ular resonance with viewers. (3) Curricular centrality: SQL is a foundational and well-structured topic
in data systems education, taught in nearly all database courses and consistently covered across text-
books, which makes it ideal for deriving a textbook-aligned topic structure. (4) Scope feasibility: A
comprehensive classification of all data systems topics at similar granularity would have resulted in a
task beyond a manageable size, given the scale of the dataset and the number of subtopics involved.
By focusing on SQL, we balanced between methodological rigor and feasibility, while still examining
a topic that is representative and sufficiently rich to reflect how the topics derived according to data
systems textbooks are represented in user-generated educational content on YouTube.

5.1.1. Textbook-Derived Subtopic Extraction
To analyze the instructional coverage of SQL topics across videos, we required a grounded and peda-
gogically relevant taxonomy of SQL subtopics. We sought to anchor our topic structure in established
curricular sources. SQL subtopics covered in textbooks tend to reflect instructional focuses and con-
sensus within the academic community. Therefore, we first constructed a list of SQL keyword terms
grounded in three textbooks. To achieve this, index terms related to SQL were collected from three
widely used data systems textbooks:

34



5.1. Methods 35

1. Database Management Systems (3rd Edition) by Ramakrishnan and Gehrke
2. Database System Concepts (7th Edition) by Silberschatz, Korth, and Sudarshan
3. Database Systems: The Complete Book by Garcia-Molina, Ullman, and Widom

Using these textbooks’ indexes ensured coverage of the full breadth of SQL concepts as presented
in formal curricula. From each textbook, all index terms along with their corresponding page numbers
were collected. We then identified the core SQL chapters in each book: Database Management Sys-
tems Chapter 5: SQL: Queries, Constraints, Triggers, Database System Concepts Part 1: Relational
Languages, and Database Systems: The Complete Book Chapter 6: The Database Language SQL,
and filtered the index terms to include only those appearing within the page ranges of these chapters.
The resulting raw keyword lists for each textbook are provided in Appendix B.1.

The combined raw list contained a total of 505 unique index terms, which included many synonyms,
variations in phrasing, and some entries that were not directly related to SQL concepts (e.g., author
names or marginal terms). This resulted in a long, unstructured list that was impractical as a basis for
further analysis. To transform this into a usable structure for subtopic classification, we then used the
OpenAI o3 model, guided by a structured prompt provided in Appendix A.2, to group the terms into
higher-level subtopics that reflect coherent and meaningful SQL concepts. The proposed groupings
were subsequently refined by removing redundant synonyms and unrelated marginal terms to stream-
line the keywords in each group and through domain expert review to ensure that the subtopics were
sound in curricular and suitable for further analysis. This process resulted in a final structure comprising
70 subtopics, which are listed in Table 5.1, with their associated 406 unique textbook-derived keyword
terms provided in full in Appendix B.2.

Active Databases Aggregate Functions Aliases & Correlation
Arity Atomicity & Domains Authorization & Privileges
Backup & Recovery Business Logic Cartesian & Product
Catalogs & Metadata Change Tracking & Delta Common Language Runtime (CLR)
Cursor Operations Data Definition Language (DDL) Data Manipulation Language (DML)
Data Types - Large Objects Data Types - Scalar Database Systems
Difference & EXCEPT Dirty Data Domain & Check Constraints
Duplicate Handling Embedded & Dynamic SQL Example Databases
Exceptions & Debugging Expressions & Syntax Fetch/Result APIs
Group BY & Having Hierarchies Identity Columns
Index Integrity Constraints Join Operations
Key Constraints Language Integrated Query (LINQ) Logical Connectives
Null & Unknown Handling Operating Systems Ordering & Limits
Partitioning Pointers Prepared Statements
Procedures & PSM Programming Languages Projection & Project Operation
Queries & Paradigms Recursive Queries Referential Integrity
Relational Model & Algebra Row-Level Security Scalar Functions
Schema Security Select Variants
Sequence Set & Assignment Set Operations
SQL Standards & History Statistics String Functions
Subqueries Table Table Functions
Temporal Concepts Transactions & Isolation Triggers
Type View Windowing & Pivoting
WITH Clauses

Table 5.1: SQL subtopics (sorted alphabetically). The full mapping to textbook-derived keyword terms is provided in
Appendix B.2.

5.1.2. SQL Video Subset Selection
From our dataset of 17, 434 curated educational videos on data systems, we extracted the subset of
videos related to SQL for this SQL-dedicated analysis. Videos had been originally tagged by topic based
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on their search query matches (as did in subsection 3.2.2); we therefore filtered for all videos retrieved
via SQL-related queries (e.g., “SQL”, “SQL select”, “SQL join”). This yielded 4, 915 videos identified as
SQL-focused. Among these, 4, 242 videos included transcripts, either manually created or automatically
generated. This subset formed the basis for subtopic classification. Videos without transcripts were
excluded from this stage of analysis for the reason that our research question required examining
the actual instructional content of each video, which cannot be reliably inferred without access to its
actual content. While video titles and descriptions are available, titles are often too generic to identify
which specific concepts are taught, and descriptions, when present, frequently consist of promotional or
channel-related information rather than instructional substance. Therefore, transcripts were essential
to enable meaningful and fine-grained classification of videos into SQL subtopics.

5.1.3. Video Classification Approach
We experimented with multiple methods to classify each video (specifically, each video’s transcript)
into the 70 SQL subtopics defined above. Early attempts relied on keyword matching and embedding
similarity, but these proved inadequate. In a first approach, we used KeyBERT [26], a BERT-based
keyword extraction tool that identifies the most relevant words or phrases within a document by ranking
terms based on their embedding similarity to the document as a whole. However, KeyBERT proved
unsuitable for our task. The tool struggles when provided with a large candidate keyword set for direct
matching. In our case, with 406 textbook-derived keyword terms across 70 subtopics, KeyBERT could not
effectively rank the candidates in a way that reflected the true subtopic focus of the videos. Attempts to
process candidates in batches, whether using subtopics directly or their associated keyword terms with
post-hoc mapping to subtopics, failed to produce reliable rankings that meaningfully corresponded to
the core educational focus of each video transcript. The same limitations applied when using KeyBERT
purely for free-form keyword extraction without predefined candidates; the extracted keywords were
often too generic or too fragmented to support accurate subtopic classification.

To further test whether this class of embedding-based similarity methods could be viable, we imple-
mented a more general approach: representing both transcripts and subtopic (or their associated key-
word terms) as high-dimensional vectors using sentence-transformer models and computing cosine
similarity scores between them. We experimented with two variations: (1) directly comparing video
transcript embeddings to subtopic embeddings, and (2) comparing transcript embeddings to the em-
beddings of individual keyword terms and aggregating or mapping the results back to subtopics. In both
cases, although semantic matching allowed greater tolerance to lexical variation, the methods failed to
reliably rank subtopics in a way that aligned with the true focus of the videos. Similarity scores often re-
flected spurious associations due to overlapping terminology in unrelated contexts, and did not provide
a meaningful signal of topical focus. Another critical challenge in these embedding-based methods was
the absence of a robust decision criterion for determining which subtopics to assign to a given video.
Since videos could belong to zero, one, or multiple subtopics, naive strategies such as assigning the
top-n most similar subtopics were unsatisfactory. We attempted to define a threshold by reviewing the
literature. Rekabsaz et al. [71] proposed a general threshold for separating semantically related terms
in word embeddings based on uncertainty analysis, but their method is tailored to term-term similarity in
retrieval contexts rather than document-topic assignment and most of our transcript–subtopic similarity
scores fell well below those thresholds, rendering them ineffective for our task. Elekes et al. [21] further
demonstrated that general-purpose similarity thresholds do not exist across embedding models, and
that thresholds must be determined on a per-model basis.

Given these limitations and in view of the primary focus of this thesis, we turned to prompting large
language models (LLMs) for a more robust classification. We tested two state-of-the-art 8-billion-
parameter instruction-tunedmodels, Qwen3-8B and LLaMA-3.1-8B-Instruct, as zero-shot content clas-
sifiers guided through structured few-shot prompting. The prompt, which is provided in Appendix A.3 for
reference, framed the task clearly: the model was to classify a transcript snippet of a SQL tutorial video
into one or more predefined SQL subcategories, or return an empty list if no subcategory was relevant.
The few-shot examples demonstrated three scenarios to the model: videos with one subtopic match,
multiple subtopic matches, and no subtopic match at all, to help the model handle these possibilities
appropriately. The prompt included not only the task instructions but also the full list of subcategories
with associated keywords. The instructions specified that the model could use the presence or se-
mantic meaning of keywords as soft signals and should avoid assigning broad or tangential categories
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unless they were clearly supported by the transcript content. The model was also required to produce
structured output in JSON format enclosed within triple backticks, facilitating direct parsing and analy-
sis. For each video, we provided the video title and either the full transcript or a representative excerpt
(truncated at 2, 000 tokens). This LLM-based approach allowed the model to reason over the transcript
in light of the provided subtopic compositions and examples, leading to more interpretable and contex-
tually accurate subtopic assignments. The models’ outputs, often accompanied by implicit justifications
through their alignment with the few-shot guidance, were straightforward to validate programmatically.

Both models outperformed earlier keyword and embedding similarity methods in terms of assignment
relevance and consistency. We observed some differences between Qwen3-8B and LLaMA-3.1-8B-
Instruct in terms of precision and granularity of classification, which is detailed in subsection 5.1.4
where an evaluation was conducted to select the better-performing model for final large-scale labeling
of the SQL video dataset.

5.1.4. LLM Model Evaluation
Evaluating the accuracy of multi-label topic classification is challenging without an existing ground truth
for each video. Because manually annotating thousands of videos across 70 categories was imprac-
tical, we used a proxy evaluation method leveraging textbook content as test inputs. Specifically, we
randomly sampled thirty index terms from the consolidated textbook keyword list. For each sampled
term, we identified a page in one of the source textbooks and extracted a passage discussing that
term in context. We then gathered all index terms on that page to identify any additional index terms
that accurately reflected the concepts covered in the passage. All verified keywords were mapped to
their corresponding subtopics to define the ground truth labels for that sample. This process required
manual effort, as although index terms indicate page ranges where a concept is mentioned, they do
not specify the exact location or extent of the discussion on the page. As such, automated extraction
and validation were not feasible.

We performed themanual validation on 30 randomly sampled cases. Both Qwen3-8B and LLaMA-3.1-8B-
Instruct were tested on these samples, with each model tasked with assigning subtopics to the pas-
sage using the structured prompt. An example of one of these evaluation samples is included in Ap-
pendix C.1 for reference. As the task allowed multiple valid subtopics per sample, standard multi-label
metrics were used to evaluate performance, including micro-averaged precision, recall, and F1-score
(see Table 5.2), as well as the confusion matrices summarized in Table 5.3.

Model Precision Recall F1-score Support
Qwen3-8B 0.78 0.73 0.75 44
LLaMA-3.1-8B 0.43 0.75 0.55 44

Table 5.2: Micro-averaged evaluation results of Qwen3-8B and LLaMA-3.1-8B-Instruct on textbook-derived SQL passages (30
samples, 44 ground truth subtopic labels).

Model TP FP TN FN
Qwen3-8B 32 9 1,297 12
LLaMA-3.1-8B 33 44 1, 262 11

Table 5.3: Confusion matrix summary for Qwen3-8B and LLaMA-3.1-8B-Instruct on the evaluation set.

Both models achieved similar recall, as indicated by the confusion matrices and micro-averaged met-
rics. However, Qwen3-8B demonstrated substantially higher precision by producing fewer false posi-
tives (9 compared to LLaMA-3.1-8B’s 44). This indicates that Qwen3-8B was more selective, assigning
subtopics only when more confident, whereas LLaMA-3.1-8B tended to overpredict, covering broader
subtopics at the cost of precision. For example, LLaMA-3.1-8B often added tangential subtopics (e.g.,
predicting additional categories like Set Operations or Logical Connectives where they were only
weakly implied), while Qwen3-8B’s outputs generally aligned more closely with the annotated ground
truth.

Beyond these quantitative results, we also examined the validity of the predicted subtopics. In this
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evaluation set, Qwen3-8B achieved a valid prediction rate of 97.56%, with only 2.44% of its more con-
cise predictions corresponding to subtopics not present in the predefined subtopic set. In contrast,
LLaMA-3.1-8B had a valid prediction rate of 92.21%, with 7.79% invalid predictions. The invalid subtopics
produced by LLaMA-3.1-8B included plausible but non-existent categories such as Privileges & Roles,
Assertions in SQL, Row-Level Triggers, Views, Statement-Level Triggers, and Trigger Types. These
invalid labels were likely the result of the models inferring labels based on the presence of related
keywords provided in the prompt (e.g., Privileges, Triggers, or Views) or those that appeared in the
surrounding content or index terms of the sampled texts.

These findings indicate that while both models occasionally assigned subtopics outside the defined set,
Qwen3-8B exhibited this behavior less frequently. The higher precision and lower rate of invalid subtopic
labels reinforced the decision to select Qwen3-8B as the final classifier for SQL video transcript labeling,
suggesting a more reliable and valid subtopic assignment for downstream analysis. To illustrate the
model output for real video content, one example of a sound classification result and one example
containing representative imperfections are included in Appendix C.2.

5.2. RQ4 Results: Subtopic Coverage Analysis in SQL Videos
The zero-shot Qwen3-8B run produced 9,986 raw subtopic labels for the 4,242 SQL-related videos with
transcripts. In total, 300 spurious subtopics that were never defined in the curated list were hallucinated
by the model and applied 1, 312 times. These labels were discarded, leaving 8, 674 valid assignments.
After filtering, 328 videos (7.73%) ended with an empty label set, typically because the transcripts were
either very short (e.g. channel trailers), contained little technical detail (e.g. marketing or motivational
content), or focused on tangential material such as installation walk-throughs rather than SQL concepts.
Of the 4,242 SQL-related videos that contained transcripts, the remaining 3, 914 classified videos cover
61 of the 70 textbook-derived subtopics, giving an overall coverage of 87.1%. The nine subtopics with
zero assignments indicate complete curricular gaps on YouTube within the analyzed sample:

1. Arity (arity): No videos explicitly focus on the notion of relation arity (the number of attributes in
a relation).

2. Atomicity & Domains (atomic domains, atomicity): No videos explicitly focus on atomic do-
mains or the atomicity properties of data values.

3. Change Tracking & Delta (delta relation, change relation): No videos explicitly focus on the
concepts around delta relations or change relations, used to capture incremental updates.

4. Difference & EXCEPT (minus, except all, except clause, except construct, Difference
operation, set-difference operation): No videos explicitly focus on SQL’s EXCEPT (or MI-
NUS) operator for set-difference.

5. Example Databases (banking, university database, sandbox): No videos explicitly focus on
canonical example schemas (e.g., banking or university databases) or sandbox environments.

6. Exceptions & Debugging (exceptions, exception conditions, sqlstate, debugging, bugs): No
videos explicitly focus on handling SQL exceptions, inspecting SQLSTATE codes, or debugging
database code.

7. Operating Systems (Unix): This concept appears only in the context of certain SQL implementa-
tions, most notably PostgreSQL’s SIMILAR TO operator, which uses Unix-style regular-expression
syntax for more powerful pattern matching than the standard LIKE [80]. No videos explicitly focus
on this aspect.

8. Pointers (pointers): This concept appears in the context of external procedures and functions
written in C, where arguments may be passed as pointers rather than by value to efficiently han-
dle null values, return multiple outputs, and minimize data copying overhead. Such pointer-based
interfaces are not supported in “safe” host languages (e.g., Java, C#) that execute within a sand-
boxed environment, as these languages restrict direct memory manipulation to ensure security
and isolation [80]. No videos explicitly cover these low-level pointer mechanics.

9. Row-Level Security (Row-level triggers): While triggers were discussed, no content specifi-
cally explored row-level security models or trigger-based access control.
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The distribution of the 8, 674 valid labels is highly skewed. As shown in Table 5.4, the ten most-covered
subtopics account for 70.96% of all assignments. These subtopics span core SQL functionality: Data
Manipulation Language (DML) concerns inserting, deleting, and updating tuples in relations; Expres-
sions & Syntax covers SQL’s conditional constructs and operators such as WHERE, IN, and EXISTS;
Join Operations addresses ways of combining relations using various join types and conditions; Group
BY & Having involves grouping mechanisms and post-group filtering; Subqueries focuses on nested
and correlated queries; Aggregate Functions relates to computing summary statistics over sets of tu-
ples; Ordering & Limits concerns result sorting and output restriction; Data Definition Language (DDL)
covers schema definition and modification; Select Variants includes forms and options of the SELECT
statement; and Logical Connective encompasses Boolean operations such as AND, OR, and NOT. Col-
lectively, these subtopics represent the core querying and schema commands that form the foundation
of standard SQL usage.

Subtopic Videos (%) Median View Median Like Median Comment Median Duration (min)
Data Manipulation Language (DML) 1, 335 (31.47%) 5, 011 78.5 5 8.75
Expressions & Syntax 882 (20.79%) 4, 883 101.5 5 12.12
Join Operations 717 (16.90%) 8, 509 188 10 12.02
Group BY & Having 682 (16.08%) 1, 986 35.5 3 10.46
Subqueries 650 (15.32%) 5, 481 89 6 11.67
Aggregate Functions 582 (13.72%) 666.5 14 1 10.20
Ordering & Limits 410 (9.66%) 3, 669.5 90.5 4 12.72
Data Definition Language (DDL) 326 (7.69%) 64, 572 1, 176 56 35.54
Select Variants 303 (7.14%) 4, 828 52 4 7.47
Logical Connectives 268 (6.32%) 9, 998 219 12 14.58

Table 5.4: Top 10 SQL subtopics covered in the analyzed YouTube dataset (N = 4, 242 SQL-related videos with transcripts),
showing video count, relative frequency, and median engagement metrics and video duration. Full list is available in

Appendix C.3.

While the top 10 subtopics in Table 5.4 dominate coverage, their engagement and duration metrics
show considerable variation. For example, Data Definition Language (DDL) stands out not only for its
high coverage but also for its markedly higher median view count (64, 572), likes (1, 176), and comments
(56), alongside a much longer median duration (35.54 minutes) compared to other frequently covered
subtopics such as highest Data Manipulation Language (DML) (median 5, 011 views, 78.5 likes, 5 com-
ments, 8.75 minutes) or secondary Expressions & Syntax (4, 883 views, 101.5 likes, 5 comments, 12.12
minutes). Conversely, several other high-coverage subtopics, such as Aggregate Functions andGroup
BY & Having, exhibit lower median view counts (e.g., 666.5 and 1, 986, respectively) and shorter dura-
tions (10.2 minutes and 10.46 minutes, respectively), suggesting that coverage frequency does not
consistently align with higher audience engagement or longer content.

At the long-tail end, as shown in Table 5.5, these are the subtopics that have been assigned the least.
Each appears in at most 4 videos, fewer than 0.1% of the sample. Table Functions offer a way to treat
stored routines as relations, enabling queries to retrieve rows dynamically as if querying a regular ta-
ble; Type, comprising user-defined and structured types, extends SQL’s built-in types by allowing the
definition of complex, custom data structures; Set & Assignment covers operations that assign values
to attributes, including the use of the SET clause, assignment statements, and setting attributes to NULL;
Active Databases embed triggers and rules to react automatically to changes in data; Business Logic
facilities capture domain rules directly in stored procedures and constraints; Fetch/Result APIs (JDBC,
ODBC, ADO.NET, CLI) define how host programs connect to the database and retrieve query results;
Dirty Data refers to data written by uncommitted transactions, where premature visibility of such data
(via dirty reads) can lead to inconsistent or incorrect results; Common Language Runtime integration
(CLR) in some systems allows developers to write database code, such as stored procedures and
functions, using .NET languages; Sequences provides a construct to define a sequence by generating
unique numeric values; and Language Integrated Query (LINQ) brings query syntax directly into host
languages like C#, seamlessly embedding SQL-style operations in code. Together, these topics rep-
resent the fringes of SQL’s capabilities, encompassing advanced extensions, external interfaces, and
embedded programming facilities that extend beyond the typically covered core querying and schema
commands.
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Subtopic Videos (%) Median View Median Like Median Comment Median Duration (min)
Table Functions 4 (0.09%) 22, 248.5 271 3 6.95
Type 4 (0.09%) 23,090 374.5 18 30.20
Set & Assignment 3 (0.07%) 2, 540 154 3 715.48
Active Databases 3 (0.07%) 2, 540 154 3 715.48
Business Logic 3 (0.07%) 567 15 0 1.02
Fetch/Result APIs 3 (0.07%) 41, 735 558 22 21.60
Dirty Data 2 (0.05%) 32, 693 1,110 69 72.61
Common Language Runtime (CLR) 2 (0.05%) 1, 518 15.5 3.5 12.07
Sequence 1 (0.02%) 49, 784 787 31 17.92
Language Integrated Query (LINQ) 1 (0.02%) 60, 855 161 15 4.57

Table 5.5: Bottom 10 SQL subtopics covered in the analyzed YouTube dataset (N = 4, 242 SQL-related videos with
transcripts), showing video count, relative frequency, and median engagement metrics and video duration. Full list is available

in Appendix C.3.

Although the bottom 10 subtopics in Table 5.5 appearing in at most four videos each sometimes display
disproportionately high engagementmetrics. For example, Language IntegratedQuery (LINQ) (1 video)
and Sequence (1 video) both report median view counts above 49, 000, and Dirty Data (2 videos) shows
a median like count exceeding 1, 100. However, these figures are based on extremely small sample
sizes and are therefore heavily influenced by individual videos rather than representing broader pat-
terns. Similarly, duration values in the bottom subtopics vary widely, from typical tutorial lengths (e.g.,
Table Functions at 6.95 minutes) to outliers such as Set & Assignment and Active Database (715.48
minutes). These indicate the presence of high audience interest and long content in rare subtopics.
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Discussion

From the perspective of YouTube dataset construction (RQ1), this study constructed a large-scale
dataset of 17, 434 educational YouTube videos related to data systems, using a pipeline grounded in
curriculum-aligned search queries and multi-step data cleaning and filtering. The resulting dataset
spans a wide range of subtopics within data systems and includes relevant instructional videos and
structured information on video structure, context, content, and engagement. Many prior studies fo-
cused primarily on specific channels over which the researchers had creator-level access [44, 8]. This
approach allowed these studies to obtain deeper viewer profile data or internal analytics not accessible
to the general public, but at the cost of dataset breadth. As the scope of their datasets was limited,
their focus on a few channels meant they could not reflect the diversity of YouTube educational re-
sources at scale. At the same time, because of the higher-level access, their metadata tended to be
more fine-grained and could support deeper analysis on specific audiences or creator-side metrics.
Other studies concentrated on features of videos that are difficult to collect automatically, such as mul-
timodal presentation characteristics or cognitive signals [9, 93, 89]. Those studies typically relied on
small-scale, manually collected and annotated samples, due to the labor-intensive nature of such data
gathering. In cases where certain metadata was not directly accessible to the public, some studies
supplemented their datasets by obtaining proxy data from commercial marketing analytics services,
such as sharing metrics, to approximate user interaction patterns [89].

Some large-scale collection and analysis of YouTube educational data in STEM fields are at a general
science level, as reflected in works such as Shaikh et al. [77] and Debove et al. [15]. Shaikh et al.
focused on videos that cite research articles, aiming to explore their societal and scholarly impact. Their
dataset was broad across scientific domains but limited to videos mentioning scholarly outputs, without
aiming at any specific field. Debove et al. conducted a survey and metadata analysis of French science
communication channels, examining their characteristics, institutional background, and communicator
goals. However, their work did not target any specific academic subfield, nor did it attempt curriculum-
aligned data collection.

In the computer science domain, some work [36] primarily focused on analyzing popularity trends in pro-
gramming tutorials using video-level metadata (e.g., views, upload dates) across multiple programming
languages. Some work [5] applied machine learning techniques to classify videos into broad computer
science subfields (e.g., computer hardware, computer networks) based on subtitle keyword extraction.
However, their effort remained at a task-specific dataset and did not aim for curricular coverage or
dataset reusability.

In this context, the dataset constructed in this study aimed to collect all publicly accessible YouTube
educational resources within a well-defined and specialized field, data systems in computer science, at
a level of granularity aligned with curriculum topics, and ensure broad topical coverage within this area.
Efforts were made to preserve as much potentially useful metadata as possible so that the dataset
could serve not only the immediate objectives of this research but also support future investigations
with varied interests. The scale, transparency, and reproducibility of the data pipeline are intended to
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complement prior work by providing a resource that enables repeatable analyses and facilitates further
exploration of educational YouTube content in this domain.

Regarding the key characteristics of the dataset (RQ2), this study provides a descriptive overview of
educational YouTube videos related to data systems, including their volume, engagement patterns,
transcript availability, language distribution, and geographic origins. All key interaction metrics, view
counts, like counts, comment counts, channel total views, and channel subscriber counts, exhibit power-
law distributions, where a small fraction of videos and channels attract the vast majority of attention.
This dynamic aligns with known patterns on social platforms [61]. The pronounced gap between view
counts and comment/like counts suggests that data systems educational YouTube videos tend to func-
tion more as passive content consumption resources rather than dialogic or interactive spaces. Data
systems videos and their hosting channels experienced marked growth in 2020, coinciding with the
educational shift to online formats triggered by the COVID-19 pandemic. An earlier increase in chan-
nel creation around 2011 may relate to the rise of smartphones, mobile internet access, and the early
wave of MOOCs. In recent years, while the annual number of new videos has remained at a high level
with some fluctuations, the number of new contributing channels has declined year by year, possibly
reflecting the consolidation of content creation into established producers and higher barriers to entry
for new creators.

Only about 6% of videos had creator-provided or reviewed captions, while around 80% relied on auto-
generated captions, and the remaining 14% lacked usable transcripts due to poor audio quality or
creator-disabled captioning. This reflects a general underinvestment by creators in accessibility fea-
tures, despite evidence that creator-uploaded captions are linked to stronger audience engagement.
Moreover, language attributes were often missing or incomplete in the metadata, limiting a full under-
standing of language trends. Nevertheless, some underrepresented languages, either in audio or text,
showed high audience engagement, hinting at unmet local demand in data systems education. The
geographic distribution reinforces this point with India and the United States as the main sources of
data systems educational content, but countries like Brazil and the United Kingdom contribute content
with comparatively more active communities. Regional variation in content volume and engagement
suggests differences in production incentives, platform strategies, or audience demand.

The distribution of data systems topics shows similar trends. Most creations focused on SQL, database
normalization, and data mining. This concentration likely reflects a combination of user demand, the
accessibility of these topics to beginner audiences, and the amplification effect of YouTube’s recom-
mendation algorithm. Meanwhile, topics like data visualization, data security and access management,
distributed database management systems, and object-oriented data models, though less represented,
achieved higher engagement, indicating possible areas of learner interest that exceed the available sup-
ply. Some advanced but less frequent topics, such as Object-Oriented Data Models, Relational Theory,
and Semi-Structured Data Models, are highly theoretical, conceptually abstract, and typically consist
of stable foundational knowledge that may not readily stimulate the production of new content.

From the audience engagement modeling (RQ3), several key patterns emerge regarding the factors
that shape how data systems educational videos on YouTube capture viewer interest. First, longer
videos were associated with higher engagement, suggesting that despite pedagogical recommenda-
tions favoring instructional units shorter than 6 minutes [28, 11], viewers in this domain may seek more
comprehensive explanations that require longer runtime. This finding aligns with the descriptive statis-
tics of the dataset: the videos had a median duration of 10.03minutes, with an interquartile range of 4.82
to 21.96 minutes, indicating videos are generally longer than 6 minutes. These suggest that creators
should balance brevity with the depth required to adequately cover technical topics like data systems,
rather than adhering rigidly to generalized guidelines on video length.

Channel-level indicators, subscriber count, and total view count were positive predictors of engagement.
This aligns with findings from Velho et al. [95] and Bello-Bravo et al. [8], both of which noted the “rich-
get-richer” dynamic where established channels accrue more engagement, partly through platform
recommendation algorithms, which implies that newer or smaller creators face structural disadvantages.
However, higher channel productivity, defined as the frequency of uploads relative to channel age, was
negatively associated with engagement, as was channel age itself. These patterns imply that simply
producing more content or being active on the platform for longer does not guarantee sustained or
increasing engagement; creators should focus on producing content that meets learner needs and
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platform dynamics rather than sheer volume.

Moreover, the topic of the video itself influenced engagement. The presence of SQL-related content
was strongly associated with higher audience interaction, confirming SQL’s centrality within data sys-
tems education and its continued appeal to learners, which suggests that focusing on high-demand,
foundational topics can be an effective engagement strategy.

Additionally, title length had a small but negative association with engagement, indicating that longer
or more complex titles might slightly deter viewer interaction. Clear, concise titling may help improve
click-through and engagement rates, aligning with best practices in educational media communication.

Language and regional attributes revealed more nuanced patterns. While most language and country
indicators did not significantly predict engagement, videos labeled with the textual language “English
(India)” showed notably higher engagement. While the linguistic content may not differ markedly from
standard English, this label likely functions as a proxy for regionally localized content tailored to Indian
audiences, such as videos created by Indian educators, using local examples or communication styles
familiar to learners in the region. Given India’s large and highly active user base on YouTube, such
videos may benefit from both cultural resonance and algorithmic amplification, leading to enhanced
engagement. On the cultural side, a study shows that YouTube actively aligns itself with regional lan-
guage markets in India by foregrounding content that resonates with linguistic and cultural identities
[59]. On the algorithmic side, Covington et al. [13] detailed how YouTube’s recommendation engine
uses deep neural networks trained on user behavior signals, including watch history, geolocation, and
language preferences, to personalize recommendations at scale. Videos that match a user’s regional
and linguistic profile are more likely to be recommended and promoted through home feeds and auto-
play, increasing their exposure and engagement potential. This points to an opportunity for targeted
content development or localization efforts aimed at audiences of different cultural backgrounds, and
it hints at regional preferences that deserve further exploration. The lack of significant effects for other
language and country variables may reflect the limitations of available metadata or the need to consider
deeper contextual factors beyond self-declared tags.

Other factors, such as valence, density, readability, and most language and country attributes, did not
show any significant association with engagement. This contrasts with Fischer et al. [24], who found
affective characteristics significant in driving engagement for TED Talks. The divergence may reflect
differences in content type: while affective tone matters in science communication aimed at broad
public audiences like TED Talks, it appears less influential in specialized technical education, where
structural and informational qualities may dominate.

From the analysis of subtopic coverage in SQL-related YouTube videos (RQ4), several key findings
emerge that highlight both the strengths and gaps of current educational content. First, the overall
subtopic coverage is reasonably broad: 87.1% of the textbook-derived SQL subtopics are represented
across the sampled videos, indicating that YouTube offers substantial material spanning core aspects
of SQL. However, the distribution of subtopic coverage is highly skewed, with the top 10 subtopics,
such as Data Manipulation Language (DML), Expressions & Syntax, Join Operations, and Subqueries,
accounting for over 70% of all valid label assignments. This dominance of core querying and schema
commands suggests that YouTube content largely aligns with beginner and intermediate learning pri-
orities, focusing on practical tasks that directly support common SQL use cases.

Conversely, certain subtopics received little or no attention at all. Notably, subtopics, such as Arity,
Atomicity & Domains, Change Tracking & Delta, Difference & EXCEPT, Exceptions & Debugging, point-
ers, and Row-Level Security, related concepts, were entirely absent in the labeled dataset. These
omissions reveal content gaps, particularly in areas of foundational data model concepts, advanced
database management features, security mechanisms, and systems-level implementation details that
are less frequently addressed in instructional materials. While YouTube may serve as a rich source for
essential SQL instruction, this is not the case for more advanced or theoretical topics. Learners who
want to go deeper into the language may find it difficult to locate much accessible content on these ar-
eas. This also signals an opportunity for educators, institutions, and creators to target these neglected
areas, thereby enriching the ecosystem of openly accessible educational resources.

Similarly, the rare subtopics, spanning integration, extension, and procedural mechanisms, remain
notably underrepresented in SQL-related YouTube content. These include, among others, Table Func-
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tions, Type, Set & Assignment, Active Databases, Business Logic, Fetch/Result APIs, Dirty Data, Com-
mon Language Runtime (CLR), Sequence, and Language Integrated Query (LINQ). While these fea-
tures are technically significant as they support advanced modeling, automation, and system-level
integration, they are often tied to specific platforms or require interaction with external programming
environments. Their niche applicability, steeper learning curves, and lower demand from entry-level
audiences might make them less compatible with the general-purpose tutorial format that dominates
the platform. Much of the SQL-related content on YouTube appears to be created toward practical,
industry-oriented learning goals, such as interview preparation, job-focused upskilling, or hands-on
demonstrations with specific DBMS tools. In such contexts, creators may prioritize widely used SQL
constructs that align with hiring expectations or certification standards, rather than exploring more the-
oretical or specialized extensions. This emphasis on practicality contributes to the skewed represen-
tation of SQL knowledge, where portable, query-centric skills dominate, while leaving gaps for more
advanced or academic aspects of the language.



7
Limitations

While the dataset offers broad coverage of data systems educational content on YouTube, its design
is shaped by the use of publicly accessible metadata from the YouTube Data API. This approach en-
ables reproducibility and transparency but excludes proprietary metrics such as detailed audience de-
mographics or precise watch-time analytics. The dataset is thus more suited for analyses focused
on structural, linguistic, and content-level characteristics, rather than fine-grained viewer behavior or
creator-side performance indicators typically available only through privileged creator access. Addi-
tionally, while search queries were carefully crafted to ensure wide topical coverage, their reach was
inherently influenced by both query phrasing and YouTube’s search-matching behavior. Some relevant
videos may not have been retrieved, such as those with unconventional titles or tags, or if the algorithm
failed to surface content due to misalignment with the query terms.

The dataset captures a snapshot of publicly available content as of December 24, 2024. Given the
dynamic nature of YouTube, where videos may be deleted, made private, or affected by policy enforce-
ment, some content may become unavailable over time. While this static snapshot enables consistent
and replicable analysis, it reflects the platform’s state at a specific point in time and may not fully rep-
resent longer-term trends or content stability.

The relevance filtering process employed a 7B-parameter embedding model, chosen as a balance
between performance and resource constraints. While effective for large-scale classification, this setup
may not fully explore the marginal benefits of more advanced or larger-scale models, such as the
potential gains in embedding quality and classification accuracy.

In addition to dataset-related limitations, some constraints specific to the regression analysis should
be noted. First, although the model explained approximately 35% of the variance in engagement, this
leaves a substantial proportion of variance unaccounted for. This is consistent with the inherent com-
plexity of audience behavior on social platforms and the limited set of features used in this study. The
model’s covariates included structural, linguistic, and channel-level metrics that were publicly acces-
sible through the YouTube API and transcript processing. More nuanced features requiring manual
annotation, such as visual style, cognitive signals, or instructional style, were not in the scope of this
study. This limits the interpretability of the model regarding presentation factors that could affect educa-
tional impact. In addition, the lack of declarations in some videos and the potential mismatch between
declared and actual language or location may have weakened the model’s ability to detect associations
involving linguistic or geographic context.

Some predictor variables, such as subscriber count and total channel views, exhibited multicollinearity,
which posed challenges in isolating their unique contributions. While variance inflation factors were
monitored and coefficients remained interpretable, the overlap between these metrics reflects a com-
mon difficulty in distinguishing between closely correlated indicators of creator popularity and reach.
The joint presence of subscriber count and total channel views in the model may result in shared ex-
planatory power, making it difficult to determine which of the two is the stronger independent driver of
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engagement. The findings imply that those two channel metrics should be interpreted as indicating a
general effect of creator popularity, rather than distinct effects of each metric.

Finally, the analysis was inherently correlational. As with all observational studies on platform data,
causal inferences about the effects of video features on engagement cannot be drawn from these
results alone. Unobserved confounders, such as external promotion or recommendation algorithm
dynamics, likely influenced outcomes.

Apart from the dataset- and model-level limitations already discussed, the subtopic coverage analysis
in RQ4 involved some methodological trade-offs. Subtopic labels were assigned using a zero-shot
large language model applied to video transcripts, enabling efficient large-scale classification without
manual annotation. However, this approach could be inherently sensitive to ambiguity in terminology
and conceptual overlap between subtopics. Although spurious labels were filtered and assignments
reviewed at the aggregate level, individual label assignments were too many to be manually verified
per assignment, which may introduce susceptibility to hallucinations, omission, or misclassification for
subtopics. Apart from that, because the prompting strategy relied on a mapping of index keywords
to subtopics, content with few or vague lexical cues may have been harder for the model to identify
reliably, as well as subtopics lacking strong or distinctive keywords might therefore be more prone to
being overlooked or incorrectly assigned.

Another limitation is that the SQL subtopic coverage analysis was necessarily limited to videos with
transcripts, and the quality of those transcripts may have influenced subtopic detection. Videos with
incomplete, inaccurate, or low-quality transcripts (for example, due to poor auto-captioning or unclear
speech) were less likely to have subtopics assigned or were labeled less reliably. The results, therefore,
may underrepresent videos where relevant SQL concepts were present but not adequately captured
in text form. Similarly, while the subtopic list was derived from standard curriculum sources, it may not
fully reflect the varied ways in which SQL concepts are described or taught informally by creators on
YouTube. Thus, content using alternative terminology or non-standard framing could be underrepre-
sented in the analysis.
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Ethical Considerations

This chapter outlines the ethical considerations undertaken in the design and execution of this study,
including how data was collected, processed, and analyzed responsibly. Although the research focuses
on publicly available content, particular care was taken to ensure that all steps adhered to principles of
transparency, fairness, and respect for the individuals and communities represented in the dataset.

8.1. Data Management
The dataset used in this study was constructed entirely from publicly accessible metadata and tran-
scripts of YouTube videos related to data systems education. All data was obtained via official APIs
provided by YouTube, including the retrieval of video transcripts using the youtube-transcript-api
library, which internally accesses YouTube’s official transcript API endpoints.

Importantly, the dataset contains no personal identifiers or sensitive information related to user privacy.
All collected attributes were already openly available to all users of YouTube at the time of data retrieval.
The dataset explicitly excludes any personal information about individual viewers or commenters, and
no attempts were made to collect, infer, or analyze personal or demographic data from users.

The analysis conducted within this research exclusively focuses on aggregated trends and educational
characteristics pertinent to the data systems domain. At no point were individual users or channels
tracked, profiled, or linked to external datasets. The sole analytical aim was to examine content-level
patterns, engagement metrics, and topical coverage relevant to educational use in data systems.

To clarify the intent and scope of use, a clear academic use statement was included alongside the
open dataset1. This statement specifies that the data was collected exclusively for non-commercial,
research purposes and is composed only of content already publicly accessible on YouTube. This is
to ensure transparency and to explicitly reject any intention to misuse, redistribute, or facilitate misuse
of platform content in ways that would violate intellectual property rights or individual privacy.

8.2. Responsible Use of Automated Methods
This study makes use of automated techniques, including large language models and embedding-
based classifiers, in tasks such as video relevance filtering and subtopic classification. While these
methods enable the reduction of manual labeling effort and large-scale analysis, particular care was
taken to apply them responsibly.

In the video relevance classification pipeline, synthetic training labels were generated using multiple
prompt strategies with an LLM, which were evaluated on a manually annotated subset of videos to bal-
ance high recall of relevant content with a minimized false positive rate. Following label generation, a
binary classifier was trained under class imbalance conditions. SMOTE was applied to the training data
to mitigate class imbalance and improve the model’s ability to recognize underrepresented irrelevant

1https://doi.org/10.17605/OSF.IO/FTN2S
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cases. Multiple performance metrics were reported for both classes to assess class-specific perfor-
mance. Cost-sensitive thresholding was also applied to better control for the asymmetric cost of false
positives and false negatives.

For SQL subtopic classification, LLMs were used to group dispersed textbook-derived index terms into
coherent subtopics. This grouping process was not fully automated: the initial groupings generated
by the LLM were manually reviewed and adjusted to ensure pedagogical consistency and topical clar-
ity. To assess the reliability of using LLMs to assign videos to fine-grained subtopics, especially in
the absence of large-scale, human-labeled ground truth data, an evaluation was conducted in which
textbook passages corresponding to specific subtopics were compiled and used as inputs to the same
classification pipeline. The model’s ability to correctly classify these known instructional texts served
as an external validation of its behavior.

These design choices reflect a broader commitment to ethical use of automated tools in research.
By validating model behavior against human-labeled samples, applying corrective techniques such
as SMOTE, and transparently reporting class-specific performance, the study minimizes the risk of
unintended bias, misclassification, or misuse. Particular attention was given to class imbalance, false
positive risk, and domain-specific consistency to reduce the amplification of systemic or model-induced
biases. Manual oversight in key stages, such as prompt selection, subtopic grouping, and evaluation
without ground truth, ensures that automated methods remain aligned with the research’s educational
focus and do not compromise interpretability, fairness, or integrity.

8.3. Reflection on Research Impact and Fairness
This study analyzes patterns of engagement and topical coverage in YouTube’s educational videos on
data systems. While no direct interaction with human subjects occurred, the research proposes implica-
tions for creators, platforms, and learners. For example, associations identified between engagement
and video features may inform content strategies or affect how material is surfaced by recommendation
systems. To avoid overgeneralization or misinterpretation, several steps were taken during analysis.
Descriptive statistics and model results were reported alongside variance, outlier effects, and class
imbalance considerations. Engagement trends were interpreted in relative rather than absolute terms,
and no normative claims were made about what content “should” be promoted. Language, geography,
and topic distributions were analyzed with attention to platform dynamics and content availability, not
as indicators of creator or learner intent.

This study also highlights disparities in topic representation and language coverage within educational
content on YouTube, such as the overrepresentation of beginner-level SQL content and the dominance
of English-language material, which may shape inequalities in informal educational resource access.
The work aims to document these patterns and contribute empirical evidence to inform future efforts
toward improving content diversity, accessibility, and topical balance on open learning platforms.

8.4. Transparency and Reproducibility
This study was designed with an emphasis on transparency and reproducibility. All core methods,
such as the data collection pipeline, filtering processes, prompt design, model configurations, and
classification strategies, are described in detail within the thesis. Evaluation metrics and key results
are also included to support interpretability and traceability. Furthermore, the related code and dataset
have been published openly on the Open Science Framework (OSF)2, ensuring that other researchers
can independently verify, replicate, and build upon this work.

2https://doi.org/10.17605/OSF.IO/FTN2S
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Conclusion

This thesis presents a comprehensive investigation into educational content on YouTube within the
domain of data systems. Motivated by the growing influence of informal online learning platforms and
the relative scarcity of structured analyses in specialized technical fields on YouTube, the study ad-
dresses four core research questions regarding the availability, characteristics, engagement dynamics,
and topical distribution of educational videos. A curated dataset of 17,434 instructional YouTube videos
on data systems was constructed using curriculum-informed search queries and multilevel metadata
collection. A filtering pipeline leveraging large language models and embedding-based classification
was employed to retain relevant educational videos. Using this dataset, descriptive analyses mapped
the landscape of available material and revealed disparities across content volume, engagement levels,
transcript availability, language use, and geographical origin. Statistical engagement modeling identi-
fied potential features associated with audience engagement, based on a diverse set of structural, lin-
guistic, and contextual attributes derived from video and channel-level metadata. By classifying video
content against textbook-based subtopics, using SQL as a case study, the analysis identified patterns
of both overrepresented and underrepresented SQL themes. Overall, this work charted the types and
characteristics of data systems educational videos on YouTube, examined factors associated with their
engagement, and evaluated the coverage of YouTube content under a fine-grained, textbook-aligned
topic structure.

49
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Future Work

A potential next step is to improve and expand the dataset of educational videos, both in breadth and
depth. One opportunity is to broaden the dataset’s language coverage. Although our current collec-
tion includes videos in multiple languages, the search queries used were exclusively in English, and it
remains unclear how effective YouTube’s search is at retrieving multilingual content based on English
queries. Future work could therefore incorporate multilingual search queries and localized data collec-
tion strategies to capture educational videos that may have been missed due to language limitations.
This expansion would enable a more robust analysis of cross-linguistic differences in educational con-
tent and user engagement. Notably, our data suggest that some under-represented languages may
host disproportionately engaged learning communities. Such findings point to rich educational ecosys-
tems that benefit deeper investigation.

Moreover, real-time and continual data collection can be considered to keep the dataset up-to-date. The
landscape of YouTube content is highly dynamic, and millions of new videos are uploaded daily. A static
snapshot collected at one time will soon become outdated as new educational videos, channels, and
trends emerge. Future work can implement an automated pipeline to periodically query the YouTube
API and refresh the dataset with new videos and updated engagement metrics. Such a live dataset
would enable a longitudinal analysis of how educational content evolves. It also opens the possibility
for real-time monitoring of audience responses to current educational videos. Additionally, improving
data quality through richer metadata is worthwhile, for example, retrieving higher-resolution transcripts
transcribed by state-of-the-art transcription models for videos with auto-generated captions or those
initially missing transcripts, and capturing multimodal features like embodied modes and filmic modes
[93, 9]. Ensuring the dataset remains comprehensive, multilingual, current, and multimodal will provide
a stronger foundation for all subsequent analyses.

While this thesis focused on measuring engagement at the video level, future work could incorporate
learner-centric outcomes. This could involve surveys, interviews, or behavioral studies to assess how
learners perceive educational quality, usefulness, or learning gains from YouTube videos, as previous
studies have practiced [22]. Integrating feedback loops from actual learners would enrich the under-
standing of educational effectiveness beyond engagement metrics. Moreover, analyzing the sentiment
and argumentative expression of viewer comments could reveal how positively or negatively learners
react to a video, and measure audience attitudes and satisfaction, complementing quantitative metrics
beyond the count of views, likes, and comments [17, 46].

The current SQL subtopic coverage study revealed both covered and neglected areas. Future research
could extend this work by analyzing concept-conveying strategies in different subtopics. Previous stud-
ies have revealed the difficulty of different SQL constructs [3] and identified the types, causes, and
persistence of student errors [4, 86, 100]. Some have also explored knowledge transfer difficulties
across different database query languages [48]. Building on this, our dataset of classified SQL instruc-
tional videos provides a source to investigate how knowledge transfer is dealt with and how complex
concepts are explained among the creators. Notional machines like visualizations and analogies could
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be applied to help learners build mental models for understanding abstract concepts [23]. Researchers
have studied how the concept of variables is introduced and explained in online courses of program-
ming education, often using metaphors like ”variables as boxes” to aid conceptual understanding [94].

While this study focuses on data systems, many other computer science domains, such as program-
ming languages, algorithms, data structures, and web development, also have rich educational ecosys-
tems on YouTube. Future research could replicate and adapt the methodology to map and analyze
content coverage and engagement patterns across these domains. A comparative analysis of fields
might reveal differences in learner preferences, content formats, or creation strategies. Additionally,
broadening the scope enables cross-domain insights, as we might discover best practices in one field
that could benefit content creation in another.
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A
Prompts

A.1. Prompt for GPT-based Relevance Classification
Video Relevance Classification Prompt

Given the following YouTube video INFORMATION, we are looking to see if it matches our
KEYWORD LIST. Reply with “1” if and only if INFORMATION is an “instructional video” on any
data system topic that matches KEYWORD LIST. Otherwise, reply “0”.
Instructional Video Definition: A video is instructional if it is designed to educate, train, or
inform viewers by demonstrating a process, explaining a concept, or providing expert insights.
Exclusions: Do not consider news reports, marketing/promotional material, or legal interpreta-
tions/explanations.
—- INFORMATION START —–
Title: {title}
Description: {description}
Video Transcript: {transcript}
—- INFORMATION END —–
—- KEYWORD LIST START —–
[... all search queries ...]
—- KEYWORD LIST END —–

A.2. Prompt for Grouping SQL Index Terms
SQL Index Term Grouping Prompt

You are a linguistic and domain expert. Given the list of technical terms below (mostly related
to SQL and databases), group them into coherent, non-overlapping subgroups. Each group
should contain terms that refer to the same concept, variant forms, plural/singular differences,
or phrases commonly used together in the same context.
Please follow these rules:

• Group terms by meaning, not just word similarity (e.g., aggregation, aggregation in
sql, and aggregation operation go together).

• Include synonyms, plurals/singulars, and closely related forms in the same group.
• Prefer 1–5 words per group label.
• The labels should be really specific, with small granularity.
• Use bullet points, where each group starts with a bolded group name, followed by a list of
related terms.

• Do not skip or omit any term. Every term in the list must appear in exactly one group.
Here is the list:
[raw list of all index terms from the three textbooks]
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A.3. Prompt for LLM-based SQL Subtopic Classification
Sample Prompt for SQL Subtopic Classification

You are an expert in SQL topic classification. Given a transcript snippet of a SQL tutorial video,
your task is to determine which of the predefined SQL subcategories the content belongs to.
Instructions:

• You may use the presence or semantic meaning of keywords as soft signals to guide
classification.

• Only include subcategories that are directly relevant. Avoid selecting broad or tangential
categories unless clearly supported by the transcript.

• If no match is confidently inferred from either explicit terms or implicit context, return an
empty list.

• Your response must only include the JSON output enclosed in triple backticks.
========== Example 1 ==========
Title: SQL Constraints Tutorial - Enforcing Data Rules
Transcript Snippet: Let’s say you want to ensure that every employee in your table has a non-
null salary value. You can use the NOT NULL constraint on the salary column when defining
the table.
Output:
{

"matching_categories": [
"Domain & Check Constraints"

]
}
========== Example 2 ==========
Title: How to Install MySQL on Windows 11
Transcript Snippet: First, go to the MySQL website, download the installer, and follow the
steps to install the MySQL Workbench and server on your machine.
Output:
{

"matching_categories": []
}
========== Example 3 ==========
Title: Filtering and Sorting Data in SQL
Transcript Snippet: We’ll use the WHERE clause to limit the rows, then sort the result with
ORDER BY. You can also use AND and OR to combine multiple filter conditions.
Output:
{

"matching_categories": [
"Expressions & Syntax",
"Logical Connectives",
"Ordering & Limits"

]
}
========== SQL Category Keywords ==========
[mapping of SQL subtopics to textbook-derived keyword terms as detailed in Appendix B.2]
========== Classification Task ==========
Title: {title}
Transcript Snippet: {transcript snippet truncated at 3,000 tokens}
Output:



B
Textbook Derived SQL Index Terms

and Grouped Subtopics

B.1. Textbook SQL Index Terms
SQL index terms referenced in Database Management Systems (3rd Edition) by Ramakrishnan and
Gehrke, Chapter 5 on SQL: Queries, Constraints, Triggers:

Active databases Aggregation in SQL Assertions in SQL
AVG Collations in SQL Conceptual evaluation strategy
Correlated queries COUNT CREATE DOMAIN
CREATE TRIGGER CREATE TYPE Data Definition Language (DDL)
Data Manipulation Language (DML) Dates and times in SQL Difference operation
Distinct type in SQL Domain constraints Duplicates in SQL
Events activating triggers Expressions in SQL Grouping in SQL
IBM DB2 Informix UDS Intersection operation
MAX MIN Multisets
Nested queries Outer joins Packages in SQL1999
Row-level triggers Set comparisons in SQL Set operators
SQL Statement-level triggers Strings in SQL
SUM Triggers Union operation

SQL index terms referenced in Database System Concepts (7th Edition) by Silberschatz, Korth, and
Sudarshan, Part 1: Relational Languages:

ADO.NET ANSI (American National Standards
Institute)

Boolean operations

C C++ CLI (Call Level Interface) standards
CLR (Common Language Runtime) Call Level Interface (CLI) standards Cartesian products
Cartesian-product operation Common Language Runtime (CLR) DriverManager class
EXEC SQL IBM DB2 ISO (International Organization for

Standardization)
International Organization for
Standardization (ISO)

JDBC (Java Database Connectivity) Java

LINQ (Language Integrated Query) Language Integrated Query (LINQ) Microsoft SQL Server
MySQL ODBC (Open Database Connectivity) Oracle
PL/SQL PSM (Persistent Storage Module) Perl
Persistent Storage Module (PSM) PostgreSQL Python
ResultSet object SQL (Structured Query Language) SQL environment
SQL injection Sequel Statement object
System R Tcl TransactSQL
United States Unix VPD (Virtual Private Database)
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Virtual Private Database (VPD) Visual Basic add constraint
advanced SQL after triggers aggregate functions
aggregation aggregation operation aliases
all construct alter table alter trigger
alter type and connective and operation
anti-join operation application program interfaces (APIs) arity
as clause as of period for asc expression
assertions assignment operation associations
atomic domains atomicity attributes
authorization authorization graph automatic commit
avg expression backup banking
base query before triggers begin atomic...end
binary operations blobs bugs
business logic call statement callable statements
candidate keys cascades case construct
cast catalogs change relation
char check clause check constraints
clobs coalesce function commit work
compatible relations conformance levels conversions
correlated subqueries correlation name correlation variables
count function count values create assertion
create distinct type create domain create function
create index create procedure create recursive view
create role create schema create sequence construct
create table...as create table...like create temporary table
create type create unique index create view
cross join cross-tabulation cube construct
current date data-definition language (DDL) data-manipulation language (DML)
database instance database-management systems

(DBMSs)
databases

databases administrator (DBA) datetime data type debugging
declarative queries declare statement decode
default values deferred integrity constraints deletion
delta relation desc expression disable trigger
distinct types domain constraints domain of attributes
drop index drop schema drop table
drop trigger drop type dynamic SQL
embedded SQL embedded databases empty relations test
equivalence equivalent queries escape
every function except all except clause
except construct except operation exception conditions
exceptions execute privilege exists construct
external language routines false values fetching
fixed point of recursive view definition float for each row clause
for each statement clause foreign keys from clause
full outer joins functional dependencies functional query language
functions getColumnCount method getConnection method
getFloat method getString method grant command
grant privileges granted by current role group by clause
grouping sets construct handlers having clause
hierarchies histograms host language
identity specification if clauses if-then-else statements
imperative query language in construct initially deferred integrity constraints
inner joins insertion instead of feature
integrity constraints intermediate SQL intersect all
intersect operation interval data type is not null
is not unknown is null is unknown
iteration join conditions join operation
join using operation joins keys
language constructs large-object types lateral clause
left outer join like operator limit clause
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localtimestamp materialized views max function
metadata min function minus
monotonic queries multiset except multiset relational algebra
natural join operation natural joins nested subqueries
next method nondeclarative actions not connective
not exists construct not in construct not null
not operation not unique construct null values
numeric nvarchar on condition
on delete cascade on update cascade or connective
or operation order by clause outer union operation
outer-join operation parameter style general parameterized views
partitions passwords period declaration
pivot attribute pivot clause pivot-table
pivoting pointers prepared statements
primary keys privileges procedural languages
procedures programming languages project operation
queries query languages ranking
real, double precision recursive queries referenced relation
references references privilege referencing new row as clause
referencing new table as clause referencing old row as clause referencing old table as clause
referencing relation referential integrity relation
relational algebra relational instance relational model
relational schema relational-algebra expressions rename operation
repeat loop repeat statements restriction
revoke privileges right outer join roles
rollback rollback work rollup clause
rollup construct row-level authorization sandbox
scalar subqueries schema diagrams schemas
security select all select authorization, privileges and
select clause select distinct select operation
select privilege select-from-where semijoin operation
set autocommit off set clause set default
set null set operations set role
set statement set-difference operation some construct
some function sql security invoker sqlstate
standards start with/connect by prior syntax string operations
structured types sum function superkeys
superusers syntax sys.context function
table alias table functions tables
temporal validity terms then clause
timestamps timezone transaction control
transition tables transition variables transitive closure
triggers trim true predicate
true values try-with-resources construct tuple variables
tuples types unary operations
union all union of sets union operation
unique construct unique key values university database
unknown values updatable result sets updates
user-defined types valid time varchar
versions period for view definition view maintenance
views when clause when statement
where clause while loop while statements
windows and windowing with check option with clause
with data clause with grant option with recursive clause
with timezone specification

SQL index terms referenced in Database Systems: The Complete Book by Garcia-Molina, Ullman, and
Widom, Chapter 6: The Database Language SQL:

Aggregation ALL And
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ANSI ANY AS
Astrohan, M. M. Atomicity Attribute
Average Berenson, H. Bernstein, P. A.
Bit string Case sensitivity Celko, J.
Chamberlin, D. D. Commit Corrolated subquery
Count CROSS JOIN Darwen, H.
Date Date, C. J. Deletion
Difference Dirty data Duplicate elimination
Escape character EXISTS FROM
Generic interface Gray, J. N. GROUP BY
Gulutzan, P. HAVING Host language
IN Insertion Intersection
Isolation level Join Left outerjoin
Lexicographic order LIKE Maximum
Melton, J. Minimum Natural join
Negation Null value O’Neil, E.
O’Neil, P. Or ORDER BY
Outerjoin Pelzer, P. Product
Projection Read commited Read uncommited
Read-only transaction Relational algebra Repeatable read
Right outerjoin Rollback SELECT
Selection Serializability Set
Simon, A. R. SQL Subquery
Sum System R Three-valued logic
Time Timestamp Transaction
Truth value Union UNKNOWN
Update WHERE

B.2. Mapping of SQL Subtopics to Textbook-Derived Keyword Terms
Subtopic Keyword Terms
Active Databases Active databases
Aggregate Functions Aggregation, AVG, COUNT, MAX, MIN, SUM
Aliases & Correlation aliases, table alias, correlation name, correlation variables, tuple

variables, lateral clause, AS
Arity arity
Atomicity & Domains atomic domains, atomicity
Authorization & Privileges authorization, authorization graph, privileges, grant command, re-

voke privileges, select privilege, references privilege, roles, cre-
ate role, set role, row-level authorization, sql security invoker,
passwords, security, sys.context function, superusers, VPD (Vir-
tual Private Database), granted by current role, execute privilege

Backup & Recovery backup
Business Logic business logic
Common Language Runtime (CLR) Common Language Runtime (CLR)
Cartesian & Product Cartesian products, Product
Catalogs & Metadata catalogs
Change Tracking & Delta delta relation, change relation
Cursor Operations fetching, updatable result sets, next method
Data Definition Language (DDL) Data definition language (DDL)
Data Manipulation Language (DML) Data Manipulation Language (DML), Insertion, deletion, Update,

change relation, tuples
Data Types - Large Objects large-object types, blobs, clobs

Continued on next page
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Continued from previous page
Subtopic Keyword Terms
Data Types - Scalar char, varchar, nvarchar, numeric, float, real, double precision, Bit

string, datetime data type, timestamp, interval data type
Database Systems IBM DB2, Microsoft SQL Server, MySQL, Oracle, Post-

greSQL, Informix UDS, System R, database-management sys-
tems (DBMSs), database instance, databases, databases admin-
istrator (DBA)

Difference & EXCEPT minus, except all, except clause, except construct, Difference op-
eration, set-difference operation

Dirty Data Dirty data
Domain & Check Constraints domain constraints, check constraints, check clause, default val-

ues, set default, not null, Assertions in SQL, create assertion, add
constraint, CREATE DOMAIN, domain of attributes

Duplicate Handling Duplicate elimination, Duplicates in SQL
Embedded & Dynamic SQL embedded SQL, embedded databases, dynamic SQL, EXEC

SQL, host language
Example Databases banking, university database, sandbox
Exceptions & Debugging exceptions, exception conditions, sqlstate, debugging, bugs
Expressions & Syntax Expressions in SQL, syntax, WHERE, FROM, IN, in construct, not

in construct, not exists construct, some construct, some function,
EXISTS, ANY, ALL, case construct, decode, empty relations test

Fetch/Result APIs application program interfaces (APIs), Call Level Interface (CLI)
standards, Open Database Connectivity (ODBC), Generic inter-
face, DriverManager class, getConnection method, Statement
object, ResultSet object, getFloat method, getString method,
ADO.NET, try-with-resources construct, jdbc (java database con-
nectivity), getcolumncount method

Group BY & Having GROUP BY, group by clause, Grouping in SQL, grouping sets
construct, rollup clause, rollup construct, HAVING, cube construct

Hierarchies hierarchies, start with/connect by prior syntax
Identity Columns identity specification
Index create index, create unique index, drop index
Integrity Constraints integrity constraints, deferred integrity constraints, initially de-

ferred integrity constraints, set null
Join Operations Join, Natural join, CROSS JOIN, Left outerjoin, Right outerjoin,

inner joins, Outer join, anti-join operation, semijoin operation, on
condition, join using operation, full outer join

Key Constraints keys, candidate keys, primary keys, superkeys, unique construct,
unique key values, not unique construct

Language Integrated Query (LINQ) Language Integrated Query (LINQ)
Logical Connectives and connective, or connective, not connective, not operation,

Negation, Boolean operations, or operation
Null & Unknown Handling Null value, UNKNOWN, unknown values, is null, is not null, is

unknown, is not unknown, Three-valued logic, Truth value, true
predicate, true values, false values

Operating Systems Unix
Ordering & Limits ORDER BY, asc expression, desc expression, limit clause, Lexi-

cographic order
Partitioning partitions
Pointers pointers

Continued on next page
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Continued from previous page
Subtopic Keyword Terms
Prepared Statements prepared statements, parameter style general, call statement, pa-

rameterized views
Procedures & PSM procedures, create procedure, functions, create function, han-

dlers, procedural languages, Persistent Storage Module (PSM),
PL/SQL, begin atomic...end, repeat loop, repeat statements,
while loop, while statements, if clauses, if-then-else statements,
then clause, when clause, when statement, nondeclarative ac-
tions, Packages in SQL: 1999, declare statement, iteration, exter-
nal language routines

Programming Languages C, C++, Java, Perl, Python, Tcl, Visual Basic, TransactSQL, pro-
gramming languages

Projection & Project Operation project operation, Projection, Attribute
Queries & Paradigms queries, query languages, declarative queries, functional query

language, imperative query language
Recursive Queries recursive queries, with recursive clause, fixed point of recursive

view definition, transitive closure
Referential Integrity referential integrity, references, referenced relation, referencing

relation, referencing new row as clause, referencing new table
as clause, referencing old row as clause, referencing old table as
clause, on delete cascade, on update cascade, cascades, foreign
keys

Relational Model & Algebra relation, relational model, relational schema, relational instance,
relational algebra, relational-algebra expressions, functional de-
pendencies, multiset relational algebra, Multisets, multiset ex-
cept, Set comparisons in SQL, compatible relations, equivalence,
equivalent queries, Conceptual evaluation strategy, monotonic
queries, binary operations, unary operations, rename operation

Row-Level Security Row-level triggers
SQL Standards & History Structured Query Language (SQL), Sequel, American National

Standards Institute (ANSI), International Organization for Stan-
dardization (ISO), standards, SQL environment, conformance lev-
els

Scalar Functions cast, coalesce function, every function
Schema create schema, drop schema, schemas, schema diagrams
Security SQL injection
Select Variants SELECT, select clause, select distinct, select all, select operation,

select privilege, select authorization, privileges and, select-from-
where, Selection, base query, restriction

Sequence create sequence construct
Set & Assignment set clause, Set, assignment operation, set null, set statement
Set Operations Union, union all, union of sets, intersect all, Intersection, outer

union operation, set operations, Set operators
Statistics histograms
String Functions Strings in SQL, string operations, trim, LIKE, escape, Escape

character, Case sensitivity, Collations in SQL
Subqueries Subquery, Nested queries, nested subqueries, correlated sub-

queries, scalar subqueries
Table create table...as, create table...like, create temporary table, alter

table, drop table, tables
Table Functions table functions

Continued on next page
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Continued from previous page
Subtopic Keyword Terms
Temporal Concepts as of period for, versions period for, period declaration, valid time,

temporal validity, current date, localtimestamp, Dates and times
in SQL, timezone, timestamp

Transactions & Isolation Transaction, Commit, rollback, rollback work, automatic commit,
set autocommit off, transaction control, Read commited, Read un-
commited, Repeatable read, Serializability, Isolation level, Read-
only transaction

Triggers triggers, after triggers, before triggers, Row-level triggers,
Statement-level triggers, Events activating triggers, CREATE
TRIGGER, alter trigger, disable trigger, drop trigger, for each row
clause, for each statement clause, instead of feature, transition
tables, transition variables

Type distinct type, create distinct type, CREATE TYPE, alter type, drop
type, types, user-defined types, structured types

View views, create view, parameterized views, create recursive view,
view definition, materialized views, view maintenance

WITH Clauses with clause, with data clause, with check option, with grant option,
with timezone specification

Windowing & Pivoting windows and windowing, pivot clause, pivot attribute, pivot-table,
pivoting, ranking



C
SQL Subtopics Classification Samples

and Statistics

C.1. Manual Validation Sample for SQL Subtopics Classification
Evaluation Sample (JSONL Format)

Sample ID: sample_029
Passage:

In general, a cross-tab is a table derived from a relation (say, R), where values for some
attribute of relation R (say, A) become attribute names in the result; the attribute A is the pivot
attribute. Cross-tabs are widely used for data analysis, and are discussed in more detail in
Section 11.3.
Several SQL implementations, such as Microsoft SQL Server, and Oracle, support a pivot
clause that allows creation of cross-tabs. Given the sales relation from Figure 5.17, the query:
select * from sales pivot (sum(quantity) for color in ('dark', 'pastel',
'white'))
returns the result shown in Figure 5.18.
Note that the for clause within the pivot clause specifies (i) a pivot attribute (color, in the above
query), (ii) the values of that attribute that should appear as attribute names in the pivot result
(dark, pastel and white, in the above query), and (iii) the aggregate function that should be
used to compute the value of the new attributes (aggregate function sum, on the attribute
quantity, in the above query).
The attribute color and quantity do not appear in the result, but all other attributes are retained.
In case more than one tuple contributes values to a given cell, the aggregate operation within
the pivot clause specifies how the values should be combined. In the above example, the
quantity values are aggregated using the sum function.
A query using pivot can be written using basic SQL constructs, without using the pivot con-
struct, but the construct simplifies the task of writing such queries.

Index Terms: pivot clause, pivot attribute, pivoting, pivot-table
Ground Truth: Windowing & Pivoting

Qwen3 Prediction: Windowing & Pivoting

LLaMA3 Prediction: Expressions & Syntax, Join Operations, Set Operations, Windowing & Pivoting
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C.2. Representative Samples for SQL Subtopic Classification Results
Sample 1: Video 5OpBjU-OWh8

Video Title: How to Join two or more than two Tables using multiple columns | How to Join Multiple Tables
#Joins

Transcript Snippet:
Hey everyone, welcome to Data Millennials. I am Atul and in this video we are going to discuss
about joining multiple tables. Suppose you have three tables: student data, student course
data, and student marks data. In your student data table, you have details about students. In
your student course data, you have details about the courses in which students have enrolled.
The student marks data contains marks for the corresponding subjects or courses. Now, if you
have to join all of these three tables, how can you join them? Let’s go to our SQL workbench
and first run all three SELECT queries to see the data in our SQL tables. First, SELECT
FROM student_data returns 10 records. Then, SELECT FROM student_course_data shows
60 records because each student is enrolled in five different courses—so there’s duplicacy
in roll numbers, but the records are unique at roll number and course name level. SELECT
FROM student_marks_data also returns 60 rows, with columns roll number, course name,
and marks. This table contains marks for each course for every student.
What we have to do is get the name, class, and roll number from student data, the courses
from student course data, and the marks from student marks data. We’ll consider student
data as the first (left) table: SELECT sd.roll_number, sd.class, sd.name FROM student_data
sd. Now we left join this with student_course_data: LEFT JOIN student_course_data scd ON
sd.roll_number = scd.roll_number, and select scd.course_name. Running this query returns
50 rows because student data is the left table...

Note: This transcript snippet is truncated for brevity; full input (up to 3000 tokens) was provided to the
model during classification.

Qwen3-8B Predicted Categories: Join Operations

Sample 2: Video AZ29DXaJ1Ts

Video Title: SQL Project | SQL Case Study to SOLVE and PRACTICE SQL Queries | 20+ SQL Problems

Transcript Snippet:
Hey everyone. In this video let’s work on an SQL case study. As part of this case study,
first we will try to download the data set from Kaggle. Once we have the data set, we’ll then
try to upload it into our database using a very simple Python script. Once we have the data
available, we’ll try to analyze it and then we will try to solve around 20 plus SQL queries as
part of this SQL case study. Now you can call this like a case study or you can call it like an
SQL project, but basically, if you want to solve basic to intermediate level of SQL queries, then
this is pretty perfect. Now, of course, I will not be able to solve all the 20 plus SQL queries as
part of this video, because then the video is going to be very long, but rather I’ll take a handful
of the queries and I’ll try to solve it during this video. But for all the remaining SQL queries,
the data set, the scripts and everything else—you’ll find it in my blog. I’ll leave the link in the
video description. Let’s start. So first of all, let’s take our data set from Kaggle. I will leave this
link in the description so you can go through this link and can download the data set yourself.
The name is Famous Paintings. It’s given by Maxwell and I think he has taken this data set
from Data World. He has mentioned that detail there. Now, if I go down, you can see that
this data set has eight different files and it has information about artist, paintings, museums,
etc. The first thing that we will do is click on the download so that all these eight CSV files
are downloaded into our system. I have already downloaded them and I have placed them in
one of my folders. The next thing that we need to do is load this data into our database. Now,
there are two ways I can do this. One is I can go into my database. I’m using PostgreSQL
database and the PGAdmin tool. Of course, you can use any other database of your choice...

Note: This transcript snippet is truncated for brevity; the full input (up to 3000 tokens) was provided to the
model during classification.

Qwen3-8B Predicted Categories: Data Loading & Integration, Python Integration, Data Import/Export
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C.3. Full SQL Subtopic Coverage Statistics
Table C.1: SQL subtopics covered in the analyzed YouTube dataset (N = 4,242 SQL-related videos with transcripts), showing

video count, relative frequency, and median engagement metrics and video duration.

Subtopic Videos (%) Median
View

Median
Like

Median
Comment

Median
Duration
(min)

Data Manipulation Language (DML) 1, 335 (31.47%) 5, 011 78.5 5 8.75

Expressions & Syntax 882 (20.79%) 4, 883 101.5 5 12.12

Join Operations 717 (16.90%) 8, 509 188 10 12.02

Group BY & Having 682 (16.08%) 1, 986 35.5 3 10.46

Subqueries 650 (15.32%) 5, 481 89 6 11.67

Aggregate Functions 582 (13.72%) 666.5 14 1 10.20

Ordering & Limits 410 (9.66%) 3, 669.5 90.5 4 12.72

Data Definition Language (DDL) 326 (7.69%) 64, 572 1, 176 56 35.54

Select Variants 303 (7.14%) 4, 828 52 4 7.47

Logical Connectives 268 (6.32%) 9, 998 219 12 14.58

Transactions & Isolation 265 (6.25%) 7,933 157 12 12.38

Queries & Paradigms 224 (5.28%) 48,525.5 1,139.5 59 44.59

Windowing & Pivoting 193 (4.55%) 5,423 163 9.5 15.83

Database Systems 150 (3.54%) 75,692 1,283 58.5 41.41

Relational Model & Algebra 134 (3.16%) 72,926 1,862 64.5 52.98

Data Types - Scalar 129 (3.04%) 54,774 979 56 46.75

Table 128 (3.02%) 16,551 270 18 13.06

Schema 96 (2.26%) 52,801 1,106 49 52.05

Duplicate Handling 95 (2.24%) 3,178 69 5 6.45

Recursive Queries 90 (2.12%) 1,103.5 21.5 3 14.59

String Functions 88 (2.07%) 5,339.5 154 10 14.84

WITH Clauses 74 (1.74%) 1,939.0 41 4 7.84

Procedures & PSM 71 (1.67%) 10,326 197 6 11.32

Key Constraints 62 (1.46%) 44,591.5 954 44.5 17.36

Index 61 (1.44%) 12,105 368 20 25.38

Domain & Check Constraints 57 (1.34%) 32,981 488 23 38.15

Integrity Constraints 53 (1.25%) 34,772 337 22 26.03

Scalar Functions 53 (1.25%) 8,677 154 6 19.70

Referential Integrity 50 (1.18%) 18,077.5 309 17 12.81

Security 48 (1.13%) 40,855 454.5 22 35.12

SQL Standards & History 46 (1.08%) 53,824.5 1,222.5 32 17.67

Null & Unknown Handling 44 (1.04%) 4,881.5 154 3 19.70

Triggers 42 (0.99%) 4,828.5 94 3 14.64

Data Types - Large Objects 39 (0.92%) 30,773 604 42 96.00

Set Operations 36 (0.85%) 4,188.5 176 4 21.37

Backup & Recovery 27 (0.64%) 12,105 323 22 21.60

Aliases & Correlation 22 (0.52%) 2,927.5 62.5 2.5 11.95

Temporal Concepts 13 (0.31%) 8,271 169 4 7.52

View 12 (0.28%) 2,567.5 191 1 11.26

Continued on next page
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Continued from previous page

Subtopic Videos (%) Median
View

Median
Like

Median
Comment

Median
Duration
(min)

Programming Languages 12 (0.28%) 35,816.5 412 19.5 15.83

Authorization & Privileges 10 (0.24%) 64,167 778 26.5 20.58

Projection & Project Operation 9 (0.21%) 4,911 74 2 20.98

Cartesian & Product 8 (0.19%) 3,276.5 154 1.5 10.75

Statistics 8 (0.19%) 59,897.5 1,426.5 71 10.12

Hierarchies 8 (0.19%) 1,705 28 3 9.95

Identity Columns 8 (0.19%) 1,455.5 27.5 0.5 5.33

Embedded & Dynamic SQL 7 (0.17%) 41,735 558 22 17.78

Prepared Statements 6 (0.14%) 24,665.5 315.5 14 16.23

Partitioning 5 (0.12%) 217 7 0 19.70

Catalogs & Metadata 5 (0.12%) 53,420 1,162 138 136.92

Cursor Operations 5 (0.12%) 41,735 558 22 21.60

Table Functions 4 (0.09%) 22,248.5 271 3 6.95

Type 4 (0.09%) 23,090 374.5 18 30.20

Set & Assignment 3 (0.07%) 2,540 154 3 715.48

Active Databases 3 (0.07%) 2,540 154 3 715.48

Business Logic 3 (0.07%) 567 15 0 1.02

Fetch/Result APIs 3 (0.07%) 41,735 558 22 21.60

Dirty Data 2 (0.05%) 32,693 1,110 69 72.61

Common Language Runtime (CLR) 2 (0.05%) 1,518 15.5 3.5 12.07

Sequence 1 (0.02%) 49,784 787 31 17.92

Language Integrated Query (LINQ) 1 (0.02%) 60,855 161 15 4.57
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