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1. Introduction 

From the classical work of Foster )̂ and Cauer ^), network synthesis has 
developed to a remarkable state of complexity and generality. Yet, in 
spite of the achievements, there are some notable gaps in the theory — 
problems skipped over, for which we have no general solution, and in 
connection with which our knowledge of even quite simple cases is unfor­
tunately meagre. The theory of the synthesis of linear, constant, passive, 
reciprocal networks has developed along two main streams of generaliza­
tion. One is the extension of results valid for two-terminal networks, or 
two-poles as they are frequently called, to three-poles, four-poles and, in 
general, n-poles; the other is the extension of results pertaining to networks 
composed of two kinds of elements to those consisting of three kinds. These 
extensions all follow the pattern exemplified by Foster's reactance theorem ^). 

Foster's theorem, in fact, gives a solution to the problem of finding a 
set of necessary and sufficient conditions for a given function of frequency 
to be the impedance function of a two-pole composed of two kinds of ele­
ments, and of constructing such a two-pole corresponding to any function 
satisfying these conditions. From this result, th«! work of Brune ^) in con­
nection with two-poles composed of three kinds of elements and the work 
of Cauer )̂ andGewertz*) relating to four-poles appear as natural extensions. 
Yet, from a practical viewpoint, their work is open to a serious objection, 
namely, the inclusion of transformers, especially ideal transformers, in 
their networks. True, in the case of the Brune problem, Bott and Duffin ^), 
many years later, were able to show that transformers are not necessary 
for realization; but this still leaves unanswered the question to what extent 
one can dispense with them in the case of four-poles. Another noteworthy 
fact is that although much has been done in connection with four-poles, 
and more generally n-terminal-pair networks, very little investigation of the 
properties of three-poles has taken place. 

There are various reasons for this. One is that the early filter theory was 
evolved by analogy with transmission-line theory, and the transmission 
line is definitely a two-terminal-pair device. Moreover, the ideal transformer, 
so essential in the early synthesis theory, is also a two-terminal-pair device, 
and this fact has further enhanced the influence of the transmission-line 
analogy. But perhaps most important, the three-pole can be regarded as a 
special kind of four-pole; it can be analysed by means of four-pole theory, 
with the result that a separate three-pole theory has seldom been considered 
necessary. This point of view is not always to be recommended for, as we 
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shall show in sec. 2, three-poles containing no transformers have an im­
portant special property which is inevitably lost sight of if general four-pole 
analysis is applied. 

Now the three-pole is a very important system in practice. A large num­
ber of amplifier circuits and their associated coupling and corrective net­
works are three-poles. Moreover, many of such three-poles are resistance-
capacitance networks, so that it becomes important to know precisely what 
one can do with three-poles constructed of two kinds of elements. In fact, 
it would be very useful to know the answer to the problem of finding a set 
of necessary and sufficient conditions for a set of three functions to charac­
terize a three-pole composed of two kinds of elements, and of coustrticting 
such a three-pole corresponding to any set of functions satisfying the con­
ditions. This problem has not yet been solved. The difficulty is that there are, 
as yet, no general methods of synthesis from the functions that are able 
to guarantee the exclusion of transformers in the network. During recent 
years some progress has been made with the study of networks by means of 
algebraic topology *), and since this is the most fundamental treatment of 
electrical networks yet given, there is some hope that a general method will 
be forthcoming; but at the present time this viewpoint is insufficiently 
developed to be applied to synthesis problems. 

With no general method available, the only alternative is to consider a 
simpler special case. One such special case is the synthesis for a prescribed 
transfer ratio of a three-pole composed of two kinds of elements. This sim­
pler problem was solved by Fialkow and Gerst ' ) , who gave necessary and 
sufficient conditions for the exclusion of transformers. Ozaki *) speciaUzed 
the problem in a different way. He considered the case when two of the 
transfer admittances bear a constant (frequency-independent) ratio to one 
another while the real parts of the zeros of the third transfer admittance 
are non-positive, and was able to obtain a set of necessary and sufficient 
conditions as well as a method of constructing the network. Lucal ' ) , 
following the same path, attempted to remove Ozaki's restrictions on the 
functions. He was able to show that, for some simple functions outside the 
class considered by Ozaki, the technique could still be applied, but he did 
not give a set of necessary and sufficient conditions. Darlington ^''), in a 
review of the whole field of realization techniques, considered the following 
essential features of such techniques: 

(i) a class of networks, 
(Ü) a class of functions (of the networks in the network class), 

{Hi) necessary and sufficient conditions which define the function class in 
mathematical terms, 
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{iv) a "canonical configuration" or sub-class of the network class which is 
sufficient for the realization of the entire function class, 

(v) a straightforward technique for finding the element values of the 
canonical configuration, given specific functions within the function 
class. 

In terms of these five items, Ozaki's function class is a sub-class of the 
class of RC three-pole functions; his cononical configuration is a sub-class 
of the class of series-parallel *) three-poles. Lucal's network class is the 
class of RC three-poles of the series-parallel type, but his function class 
is not completely defined. In connection with Lucal's work Darlington was 
led to conjecture that the series-parallel type of RC three-pole constitutes 
a canonical sub-class of the class of RC three-poles. This conjecture has 
neither been proved nor disproved. 

In this paper we consider a special case of the three-pole two-element 
problem, but of a type different from that considered by Ozaki. Our net­
work class is the class of three-poles composed of capacitances and induc­
tances without mutual coupling, and of the series-parallel type. Our func­
tion class is the class of sets of transfer admittance functions, of the sixth 
and lower degrees **), that define a three-pole composed of capacitances 
and inductances without mutual coupling. We give necessary and sufficient 
conditions for the realization of the function class by networks of the 
network class. In proving the sufficiency of the conditions we give a proce­
dure for computing the element values of a network corresponding to any 
set of functions of the function class that satisfy these necessary and suf­
ficient conditions. We have chosen the LC type of network in preference 
to the RC type in order to make use of certain symmetry properties that 
are not so obvious in the case of RC-networks. 

The classification of three-poles according to the degree of the defining 
functions may seem rather artificial. A classification according to the num­
ber of elements would be more useful for practical applications and would 
be a first step towards the solution of Darhngton's "price list" problem i"). 
However, this approach proves to be far less successful with the present 
algebraic methods available. For more than five elements it becomes very 
difficult to formulate a set of necessary and sufficient conditions or to ob­
tain any general relationships. 

In sees 2,3 and 4 the fundamental concepts are introduced and the problem 
is set up. In sec. 5 some general theorems applicable to functions of arbi-

*) This term will be defined in sec. 4. 
•*) This term will be defined in sec. 3. 
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trary degree are given. In sees 6 to 9 the third, fourth, fifth and sixth degrees 
are investigated with the help of the theorems of sec. 5. The second and 
lower degrees are treated as special cases of the third. For the fifth and 
lower degrees it is shown that the conditions given by Cauer )̂ and 
Fialkow and Gerst ') are both necessary and sufficient. In sec. 9 some 
extra necessary conditions are derived for the sixth degree. These conditions 
together with the earlier known ones are shown to be sufficient. 

2. The polynomial notation and the three-pole equations 

Let us examine a general three-pole network from first principles with 
the aim of expressing its essential properties in algebraic form. For this 
purpose it will be convenient to make use of a polynomial notation intro­
duced by Tellegen ^^), and used by him in the study of four-poles. 

Fig. 2.L Linear, reciprocal three-pole connected to three external voltage sources. 

Consider a general linear, reciprocal three-pole connected to three exter­
nal voltage sources as shown in fig. 2.1. Since the network is linear, the 
relations between the voltages and the currents can be expressed in the 
form 

•'2 =^ ^21 ^1 ' ^22 ^̂ 2 ^23 ^^3' | 

•* 3 "^ ^31 " l̂ ^32 '•̂ 2 "T ^^33 ''^3 > 

(2.1) 

where the Y's depend only on the network, and not on the J's or Vs. 
Also, since the three-pole is reciprocal, we have 

J 23 — Y32 , ^ 3 1 — ' l 3 ' ^12 — ^21 • 

Kirchhoff's current law applied at the point 0 leads us to conclude that 

I^+I, + I,= 0. (2.2) 
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Since V^, V^, V^ are arbitrary, it follows from (2.2) that 

Y,. ^11 ^21 ^ 1 = 0., 

32 (2.3) 

^23 + ^3; 0. 

Thus only three of the Y quantities are independent, with the result that 
Y23, Ygj, Y12 can be taken as defining the three-pole. Consequently, eqs (2.1) 
can be represented by the equivalent circuit shown in fig. 2.2, in which 
it is to be noted that Y23, Y3j, Yjj are not necessarily realizable driving-
point admittances. For a network composed of more than one kind of 
element these functions will be rational functions of the complex frequency 
parameter A. Let D be a polynomial divisible by the denominators of 

^ 2 3 ' ^ 3 1 ' ^ 1 2 ' 

^31 ^12 I ^12 ^23 + ^23 ^ 31 • 

Fig. 2.2. Network equivalent to the network of fig. 2.1. 

We now define the polynomials F, G, H, C by the relations 

D 

C 

D 

^ 2 3 ' 
D 

H _ 
^ = ^ 2 , 

— ^31 ^12 ' ^12 ^23 "T ^23 ^ 31 ' 

(2.4) 

from which it follows immediately that 

GH + HF+ FG= CD. (2.5) 
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Dually, one can consider the three-pole connected to external current 
sources as shown in fig. 2.3. With reference to this diagram, we can write 
the equations 

F,. ^ 1 1 - ' 2 3 •'^12-'31 Z i 3 i i 2 ' 

•^23^12 ' I ' 3 1 — •^21-'23 I •^22^31 

^ 1 2 = '^31^i3 •̂ 32̂ 31 + Z33/j2, 

where the Z's depend only on the network, and where 

^ 2 3 — •'^32 » -'31 •^13' Zi2 — Z21. 

(2.6) 

Fig. 2.3. Linear, reciprocal three-pole connected to three external current sources. 

By Kirchhoff's voltage law, we have 

F23+ F31+ Fi2 = 0, 

so that, since J23, ƒ31, I-^^ are independent, 

-"ii ^21 ^31 0, 

— Z ] ^ 2 r ^ 2 2 •'^32 ^ ^ " » 

(2.7) 

(2.8) 

- Z . 13 Z23 + Z; 33 0. 

Thus only three of the Z quantities are independent, with the result that 
Z23, Zg ,̂ Zj2 can be taken as defining the three-pole. Equations (2.6) can 
now be represented by the equivalent circuit shown in fig. 2.4, where Z23, 

Fig. 2.4. Network equivalent to the network of fig. 2.3. 
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Zgĵ , Zĵ 2 a'"̂  not necessarily realizable driving-point impedances. If the 
delta representation of the three-pole depicted in fig. 2.2 is transformed 
into the star representation shown in fig. 2.4, the values of the impedances 
wiU be given by 

^ 2 3 
^ 1 

^ 3 1 

^ 2 

^ 2 

+ 

+ 

^ 2 3 

^12^23 

^ 1 

^12 M3 

^ 1 2 

+ 

+ 

^ 3 3 ^ 3 1 

^23*^31 
^31 = TF^^-r^^t , . ^ ^ F - ' (2-9) 

Z = 
^^31^12 + ^12^23 + ^33^31 

from which it is clear that 

W f* hf 
^ 2 3 = ^ ' • ^ 3 1 = ^ ' •̂ 12 = ^- (2-10) 

Thus we see that, if F/D, GjD, H/D are the three short-circuit transfer 
admittances of the three-pole, where 

GH + HF+ FG= CD, 

then the three open-circuit transfer impedances are F/C, G/C, HjC, and 
vice versa. That is to say, the dual connections of fig. 2.5 are equally valid 
representations of the same three-pole, where it is to be understood that 
FjC, G/C, H/C, F/D, GjD, H/D are not necessarily realizable driving-point 
immittances. From eq. (2.5) and fig. 2.5 it is clear that an interchange of 
any two of F, G, H has the effect of merely permuting the terminal number­
ing of the three-pole. In sec. 5.2 we shall prove that, for planar networks, 

92230 

Fig. 2.5. Equivalent representations of the general three-pole network. 

the interchange of C and D corresponds to taking the dual of the three-
pole network. These simple results will prove to be extremely useful when 
we come to study special cases in sees 6 to 9. For planar networks, it means 
that twelve different configurations can be synthesized from five given 
polynomials by the same algebraic operations, a fact which is not immedi­
ately obvious if the usual four-pole parameters Z^^, Z^j, Zgg are employed. 
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3. Necessary conditions in terms of the polynomials 

From eqs (2.1), (2.3), (2.4), and (2.6), (2.8), (2.10) it follows that 

G + H H+F F+G G + H H+F F+G 

^ 3 " ' ~D~' ^ D ^ ' " ~ ^ ' ~ C ~ ' ~ ^ ~ ^^-^ 

are driving-point immittance functions. For a network composed exclusive­

ly of capacitances and inductances, classical theory predicts: 

I. F, G, H are of even and C, D of odd degree, or vice versa. 

II. Each of the functions (3.1) has the properties: its poles and zeros 

lie exclusively on the imaginary axis, the poles separating the zeros 

(and vice versa); it is non-negative for positive real A. 

III. lifi, gi, hi arc the residues of F/D, G/D, H/D, respectively, at a pole, 

A = Ai, then 

igi + hi)ihi+fi)~hl^O, 
that is, 

gik + hifi + figi ;^ 0. (3.2) 

Also, if/i', gi, h'i are the residues of F/C, G/C, H/C, respectively, at a 

pole, A = X'i, then 

gihi + hifl+flgi^O. (3.3) 

Conditions (3.2) and (3.3) will be called the D-Cauer condition and the 

C-Cauer condition, respectively^). 

Furthermore, if the network contains no mutual inductances, then 

IV. the functions F/D, G/D, H/D are positive for positive real values of A. 

This result, first proved by Fialkow and Gerst ') for RC networks, also 

applies to LC networks. It is conceivable that some of the coefficients of 

F, G, H will be negative. However, Fialkow and Gerst proved in the case 

of RC networks that it is always possible to find a polynomial with negative 

real zeros whose product with F is a polynomial with non-negative coef­

ficients. We therefore conclude that in the LC case it is always possible to 

find a polynomial with zeros exclusively on the imaginary axis such that 

its product with F is a polynomial with entirely non-negative coefficients. 

Since the multiplier itself contains only positive coefficients, it is clear that 

such a common multiplier can be found for all five polynomials F, G, H, 

C, D. Since the network is defined by the ratio of the polynomials, the 

introduction of common factors does not affect the three-pole. 

At this point it will be convenient to introduce two definitions which 

will help to simplify our subsequent work. 
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Definitions 

(a) The highest degree of C, D, F , G, H after division by all factors common 

to the five polynomials is called the order of the three-pole ^^). 

(b) If, after cancellation of the common factors, the polynomials are 

multiplied b y a polynomial having zeros exclusively on the imaginary 

axis, and of the lowest degree necessary to produce polynomials wi th 

exclusively non-negative coefficients, then the highest degree of the 

resulting polynomials will be called the degree of the three-pole (or 

polynomials), or simply, the degree. In the sequel we shall use the 

word degree in this special sense, except where otherwise s ta ted . 

4. Statement of the problem 

Before we can give a complete s ta tement of the problem it will be ne­

cessary to introduce the concept of series-parallel three-pole. 

4 . 1 . Series-parallel LC three-poles 

I n wha t follows, we shall denote two-poles and three-poles by the num­

bers assigned to their terminals . Thus a three-pole wi th terminals 1, 2, 

3 will be denoted by three-pole (1,2,3). B y elementary three-pole we shall 

unders tand one of the configurations shown in fig. 4 .1 , viz: 

elementary three-pole (a): terminals 1,2 short-circuited, te rminal 3 isolated; 

elementary three-pole (6): terminals 1,2,3 isolated; 

elementary three-pole (c): terminals 1,2,3 short-circuited. 

t 0 o2 10 

30 to 

Fig. 4.1. Elementary three-poles. 

B y elementary two-pole we shall unders tand two terminals connected by 

either a single element, or two elements in seri«!S, or two elements in paral­

lel. The elements are restricted to inductances and capacitances. 

We next consider three elementary connections: 

(i) The series connection of a three-pole and an elementary two-pole is 

a three-pole (1,2,3) formed from a three-pole ( 1 ' , 2,3) and an elementary 

two-pole (1,1") by connecting terminals ( 1 ' , 1") together (fig. 4.2). 
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(ii) The parallel connection of a three-pole and an elementary two-pole 
is a three-pole (1,2,3) formed from a second three-pole (1,2,3) and 
an elementary two-pole (2',3') by connecting the terminals (2,2') 
and (3,3') pairwise together (fig. 4.3). This connection is the dual of (i). 

(Hi) The parallel connection of two three-poles is a three-pole (1,2,3) 
formed from two three-poles (1,2,3) and (l',2',3') by connecting the 
terminals (1,1'), (2,2'), (3,3') pairwise together (fig. 4.4). This con­
nection has no dual, as a series connection of three-poles is not a 
three-pole. 

elementary 
ICK^ /two-pole 

Fig. 4.2. Series connection of a three-pole and an elementary two-pole. 

2,2' 

elementary 
two-pdo 

3,3 92233 

Fig. 4.3. Parallel connection of a three-pole and an elementary two-pole. 

Fig. 4.4. Parallel connection of two three-poles. 



— 13 — 

Definition (a) 

A series-parallel LC three-pole is a three-pole network that can be built 
up by the parallel and series connections of elementary three-poles and 
elementary two-poles. Examples of series-parallel and non-series-
parallel three-poles are shown in figs 4.5, 4.6, respectively. 

Definition (b) 

If a three-pole defined by a given set of polynomials can be constructed 
from only capacitances and (self) inductances, then the set of polynom­
ials is said to be realizable, and the network is caDed the realization of 
the set of polynomials. 

-n^ 

Fig. 4.5. A series-parallel three-pole. 

9223a 

Fig. 4.6. A non-series-parallel three-pole. 

4.2. The problem 

The problem can now be stated as follows: 
I . To find a set of necessary and sufficient conditions for a given set of 

polynomials to be realizable by a series-parallel LC three-pole. 
I I . To construct a series-parallel LC three-pole corresponding to any set 

of polynomials satisfying these necessary and sufficient conditions. 
Our answer to this problem is incomplete. A set of necessary and suffi­

cient conditions for realizability by series-parallel three-poles and a method 
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of construction have been obtained only for polynomials of the s ixth and 

lower degrees. For higher degrees t h e number of special cases is very large 

and not easily handled wi thout further development of the general methods 

of sec. 5. 

5. General properties of the polynomials 

Before proceeding to a s tudy of the polynomials of the 0th, 1st, . . . , 6 th 

degrees we shall consider some general results which hold for polynomials 

of any degree. Throughout it will be supposed t ha t all the necessary con­

ditions of sec. 3 are satisfied; however, some of the results will be v a h d 

under less s tr ingent conditions. In part icular , some of the results will be 

valid for the polynomials of networks containing mutua l inductance, in 

which case i t will be mentioned explicitly. 

5 .1 . Interchange of X and jx 

Suppose in a ne twork composed exclusively of capacitances and self 

inductances we replace each capacitance C; by an inductance h'i = l / C ; 

and each inductance L; by a capacitance C'i = 1/L(; then each b ranch 

admit tance XCi \- l/XLi will be replaced by l/AL; + ^C'i = Ci/X -\- X/Li. 

The effect of the operation is thus to interchange A and 1/A; consequently 

the polynomials of the new network will be the same as those of the old 

wi th 1/A in place of A. I n w h a t follows, we shall frequently wri te /j, in place 

of 1/A and the polynomials, as far as possible, as functions wi th like 

powers of A and fi. Thus if a ne twork realization can be found for a 
given set of polynomials, t hen we know immediately t h a t a corresponding 

realization can be found for the set of polynomials obtained by inter­

changing A and fi. 

5.2. Interchange of C and D 

If a given set of polynomials is realizable by a p lanar network, then the 

set obtained b y interchanging C and D is realizable b y the dual network. 

To see this we consider the mesh equations of the complete network, i.e., 

t he three-pole plus the external voltage sources. In solving for the currents 

7j , /g. Is of fig. 2.1 we obtain the admi t tance equations (2.1), in which the 

common denominator , D, of the admit tances is the de terminant of the 

mesh equations. For the dual ne twork the node equations will have precisely 

the same coefficients as the previously considered mesh equations. When we 

solve for the voltages Fgs» Fg^, F12 ^^ ^8 - 2.3, we obtain the impedance 

equations (2.6), in which the common denominator , C', of the impedances 

is the de terminant of the node equat ions, and is therefore equal to D. 

On the other hand, F , G, H are the same functions of the coefficients in 
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the two cases and have therefore the same values. Thus the operation of 
taking the dual has solely the effect of interchanging C and D. 

If, however, the network is non-planar, no dual network exists. We shall 
see later that for certain fourth-degree non-planar networks the inter­
change of C and D still has network significance. In this case the "pseudo-
dual", that is to say, a network with the same F, G, H but with C and D 
interchanged, is of precisely the same configuration as the original. How­
ever, the values of corresponding elements do not bear any particularly 
simple relationship to one another. 

5.3. Residue conditions 

We now prove an important theorem concerning the Cauer conditions 
(3.2) and (3.3). 

Theorem 1 

If C, D, F , G, H are polynomials such that 

(a) GH + HF + FG = CD, 

(b) A + akfi {ak > 0) is a simple factor of D, 

(c) (G-\-H)/D, {H-\-F)/D, (F4-G)/D are driving-point reactance functions, 

then gkhk + hkfk + fkgk = 0, where fk, gk, hk are the coefficients of 
(A + akfi)^^ in the partial-fraction expansions of F/D, G/D, H/D, 
respectively. 

Proof: 

From (c), we can expand (G+H)/D, {H+F)/D, (F+G)/D in the form 

y„^ + Jo/* + 
y yi_ 

é^^ + "'̂  [ (5.1) 
where y^, JQ, yi are non-negative, 
a i > 0 ; aj4=ay ( i ^ : ; ) , (i == 1, ..., r ) . 

But F = ^[-{G + H) + (H+F) + (F+G)], etc., so that F/D, G/D, 
H/D can be expanded in the forms 

D j-i^ X + ai/j. 

D " j-i^ X-\-ain ' 

H h hi 
-^ = h^X + h„u -4- ) 
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From (a) we have 

GH+ HF+ FG = 0 (mod D), 

so that, by (b), 

GH+ HF+ FG = 0 (mod [A + akfi]). 

From (b) and (5.2) we have *) 

F =fk 77 (A + aifi) 
>=i 

r 

•4k 

H = hk n {X + aifi) 
1 = 1 

(5.3) 

(5.4) 

(5.5) 

From (5.4) and (5.5) we now obtain 

{gkhk + hkfk + fkgk) n{X + ai,i) = 0 (mod [A -f afe/<]). 

Since by (5.1) the oj (i = 1, ..., r) are distinct, we must have 

gkhk + /li/fc + fkgk = 0 . 

Remark 

(5.6) 

Since /fc 
= è fu 

+ 
/fe 

A + afc// [̂  + y_a^ X~i~ ak 

fk is equal to twice the value of the residues of F/D at the poles 
A = ± (—ak)i. Thus (5.6) will still be valid ii fk, gk, hk are replaced by the 
corresponding residues of F/D, G/D, H/D. Accordingly, we shall call (5.6) 
the D-residue condition. A dual result holds for C residues and will be 
called the C-residue condition. These results are special cases of the Cauer 
conditions (sec. 3). If, however, the D-Cauer condition takes the form 

gkhk + hkfk + fkgk > 0, 

then A + akfi must be a multiple factor of D. For the purposes of realiza­
tion, this possibility does not give rise to any special difficulties. 

*) If A -|- akH is a multiple factor of D of multiplicity s, then from (5.2) i t must be a 
factor of F of multiplicity s—1; whence it then follows that F ^ O (mod [A-|-ajt/u]). 
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5.4. Separation conditions 

In the last section we saw that the coefficients j j are non-negative, i.e., 

gi + hi^O,\ 

hi+fi>0,i (5.7) 

fi+gi>0.) 

We shall refer to (5.7) as the D-separation conditions, since they follow 
from the separation of the poles and zeros of driving-point reactance 
functions. Similar results hold for the functions {G-\-H)/C, {H~\-F)/C, 
{F-\-G)/C, and will be called the C-separation conditions. 

It follows from Theorem 1 that, if A -f Uj/u (ay > 0) is a simple factor of D, 
either 

(i) fj = gj = hj = 0, . 
or 1 

{ii) two of the coefficients (say gj and hj) are zero, / 
and the remaining,/ƒ, is positive, \ (5.8) 

or I 
{Hi) two of the coefficients (say gj and hj) are positive, | 

and the remaining, fj, is negative. 

In case {Hi), we have from (5.6) that 

1 1 1 

from which it follows that 

gj+fj>0, hj+fj>0. 
5.5. Interdependence of the necessary conditions 

The conditions formulated in the preceding two sections are rather 
numerous, and it may be asked whether they are in fact all independent. 
That they are not so is proved in the following two algebraic theorems. 

Theorem 2 

If C, D, F, G, H are polynomials such that 

(a) GH+HF-\-FG= CD, 

(b) F and D have no common factor of the form A + ai^ (oj > 0), 

(c) {G+H)/D, {H+F)/D, {F+G)/D are driving-point reactance functions, 

(d) the coefficients of the highest and lowest powers of A in CD are positive, 

then 
{G-\-H)/C, {H-\-F)jC, {F-{-G)/C are driving-point reactance functions. 
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All the factors of D of the form A + a;/* (oj > 0) are simple; for, b y (c), 

a multiple factor would divide H+F, F+G, and thus F. Thus it follows 

from Theorem 1 t ha t 

gihi + hifi + figi = 0 . 

(i) We consider first a special case in which D has no factor of the form 

A + aiju («i > 0) in common wi th either F , G, or J7. 

Since {F+G)/D is a driving-point reactance function, D/{F+G) is also, 

and may be expanded in par t ia l fractions in the form 

vn di 

Z_i ffijA + niju 
i 

where d i > 0 , m^ > 0 , Wg > 0; mi>Q{i^l); ni>0{i^2). 

Here, F+G has no factor of the form A 4- aiju (aj > 0) in common with 

D; for, if m.-A + Uj/j. were a factor of D , the coefficient ƒƒ + gj in the part ial-

fraction expansion of ( F + G)/D would be zero, and thus by (5.8) we 

would have 

fj = gj = 0, 

in contradiction to (b) . 

I t follows from (c) t h a t if D is odd, F , G, H are all even, and therefore 

from (a), C is odd. Similarly, if D is even, C is even. Moreover, F -|- G 

cannot have multiple factors, for otherwise F+G and D would have a 

factor in common. Hence C/{F+G) can be expanded in par t ia l fractions 

in the form 

Vn Ci 

Z-J miX + nifi 

Also, from (a) and (c) , any other binomial or t r inomial factor of 

F+G m u s t also be a factor of C. 

Now F/{F+G) can be wri t ten as a function of A ,̂ since F and G are either 

bo th odd or bo th even. The partial-fraction expansion of F/{F+G) is t h u s 

" Z_j miX^ + ni Z-J miX + Uifi 

Hence we have the congruences: 
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r 

D^dk n {miX + nifi) ^ 
i=i I 

C=ck n {miX + niij) \ (mod ^mkX + nkfi]). 

ni ( 
F = qkpU {miX + ni/j.) j 

1=1 

From (a) we have 
CD = FG = -F^ (mod [ F f G]). 

Since the factors m/A + rej^M are all distinct, wc have 

ckdk^—qkf'^ (mod [mkX + nkfJ.]), 

for all k except the special cases when mfc = 0, or nk = 0. 
Thus 

2 f'^k\ 
Ckdk=qk\ > 0 {niknk + O). 

\nk/ 
Since 

dk> 0, cfe > 0 {mkuk =t= 0) . 

By (c) and (d), the coefficients of the highest and lowest powers of X in 
C and F+G are of the same sign. Hence the quantities c^ , CQ, corre­
sponding to mi = 0, ni = 0, respectively, are non-negative. Hence 
C/{F+G) is a driving-point reactance function. Similarly, C/{G + H), 
C/{H + F) are driving-point reactance functions, and thus also {G+H)/C, 
{H+F)/C, {F+G)/C. 

{ii) We now suppose that D has factors of the form A -f- am {ai > 0) in 
common with G, H but not with F . That is to say, we now permit case {ii) 
of (5.8). (Case (i) of (5.8) is contrary to condition (a)). 

Then 
figA^O {i = I, . . . , />), 

fi>0, gi=hi=^0 {i = p+l, ..., r). 

We can apply the argument of case (i) to the functions C/{F+G), C/{H+F), 
but not to C/{G+H). To deal with the last-mentioned function we consider 

F Fi 

G _ G^ 

D^ IJy" 
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7 7 _ 77i 

D^ D^ 
where 

p 
F^ S? fi ^ V̂  fi 
Dl /-iX+aifi /-i X + ain 

1=1 l = p + l 
=z 

l=p-l-l 

Thus X is a driving-point reactance function. 
Let 

r 

77 {X + ain) = D^; 

Dĵ  is then defined by 7) = D^D^. 
Then 

F = F i 7 ) 2 + XDiD2, 

G = GJ)^, 
H = H^D^, 

and thus 

C = (Gi77i + H^Fi + F^G,) ^ + X(Gi + 77^)^2. 

Let 

then 

and 

Hence 

^ 1 

Gi77i + 77 iF i - fF iG , . 
^ 1 — 

G 
C 

77 
C 

C 

Ci 

Q 

i^i 

Gi 

-t-X(Gi + 

^ 1 

+ X{G,+ 

Ci 

^ i ) ' 

^ i ) 

- + X. 
G + 77 Gi + 77i 

But Ci/{Gi+Hi) is a driving-point reactance function by case (i); since 
X is a driving-point reactance function, it follows that C/{G+H) and there­
fore {G+H)/C is a driving-point reactance function. 

Theorem 3 

If C, D, F, G, H are polynomials such that 

(a) G77 + 77F + FG = CD, 

(b) {G+H)/D, {H+F)/D, {F+G)/D, {G+H)/C, {H+F)/C, {F+G)/C 
are driving-point reactance functions, 
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then gihi + hifi -i- figi ^ 0, where ƒ;, gi, hi are the coefficients of {X+ai/n) ^ 
in the partial-fraction expansions of F/D, G/D, H/D, respectively. 

Proof: 

We suppose that for a particular value k of i, the coefficients satisfy 

gkhk + hkfk + fkgk < 0. 
From (b) we have 

gk + hk>0, hk+fk>0, fk+gk>0. 

Thus two offk, gk, hk must be positive and one negative. Let 

fk<0, and gk, ftfe > 0 . 

We rewrite the polynomials in the form 

F F' fk + gkhkKgk + hk) F ' 
— = — -\- = — -\- I . say, 
D D' X + akiu D 

G 
D~' 

H 
D~ 

G' 
D' 

H' 
D' 

Now let 
G'77' + H'F' + F'G' 

C' = D 

then in the same way as in the proof of case {ii). Theorem 2, we find 

C C' 
7+^^. 

G + 77 G' + 77 

Suppose that A + akfi is a factor of G' + 77' of multipUcity s— 1. Then, 
since gfe + ftfe 4= 0, X + akfi must be a factor of D of multipUcity s. 
We can therefore write 

F ' = - - ? ^ (A + akfi)"-' 77 (A + aifx) 
gk + nk i+fc 

G' =gk{X + akfiy-' n{X + aifi) ^ (^««l [̂  + «*=/̂ ]') 

H'=hk{X + akfi)'-' n{X + aifi) 
«+* 

Thus 
G'77' + 77'F' + F'G' = 0 (mod [A + akfiT'''), 

whence 
C' = 0 (mod [A + ak/i]'-^). 
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Hence the factor (A + afe^)*"' can be cancelled out of the numerator and 
denominator of C'/{G' + 77'). But the coefficient of (A + akfi)~^ in the 
partial-fraction expansion of Y is 

gkhk + hkfk + fkgk , „ , , ,̂ . 
<. 0, by hypothesis. 

gk + hk 

Hence C'/{H' + G') -|- Y cannot be a driving-point reactance function. 
But this violates condition (b) and thus gkhk + hkfk + fkgk cannot be 
negative. 

Note that C and D can be interchanged throughout, and that the con­
ditions of validity of Theorems 2 and 3 hold also for the polynomials of 
three-pole networks containing capacitances, self and mutual inductances. 
The significance of the theorems is as follows: 

Suppose we start with a set of polynomials satisfying the conditions of 
sec. 3 and Theorem 2. We then split this set into two simpler sets of lower 
degree than the original (in a way to be explained in the next section) 
such that the conditions of Theorem 2 and condition IV of sec. 3 hold for 
the two simpler sets. Then we know from Theorems 2 and 3 that all the 
conditions of sec. 3 will be satisfied for these simpler sets. That is to say, 
under the conditions of Theorem 2, it is sufficient to ensure that condition 
lY of sec. 3 is satisfied. Theorem 2 then guarantees the C-separation condi­
tions, while Theorem 3 and its dual guarantee the C- and 7)-Cauer con­
ditions. 

5.6. Elementary realization operations 

We are now ready to introduce three algebraic operations*) which 
correspond to the network operations of dividing a given three-pole into 
two component three-poles in parallel or into a three-pole and a two-pole 
in series. These operations will be called D pole-removal, C pole-removal and 
partitioning. Throughout we shall suppose that the conditions of sec. 3 
are satisfied for aU sets of polynomials. 

D pole-removal 

If the functions can be expressed in the form 

F F^ F2 

D^D~i^D~^' 

G ^G^ 

D D,' 

• ) These operations are equivalent to the six operations given by Ozaki ' ) . 
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77 
D ~ 

D = DJ)^, 

such t h a t FJD^ is a driving-point reactance function, and such t h a t 

(F2, Gg, 772, Q ' -^2) i^ a set of polynomials of lower degree t han ( F , G, 77, 

C, D), and known to be realizable, then the given set can be realized by 

the configuration shown in fig. 5 .1. This readily follows from (2.1) and 

(2.4). The operation consists in removing the t e rm FJD^ from the functions 

and in realizing it by a two-pole admit tance between terminals 2 and 3. 

The operation is called D pole-removal since in m a n y cases the expression 

FJD^ is a single t e rm f^ X, fgfc or fi{X+aifi)"^ and the operation has the 

effect of removing a pole from t h e expression F/D. When , however, FJD^ 

has a pole in common with FJD^, we shall say t h a t the pole has been 

"incompletely removed" , and the operation will be referred to as partial 

D pole-removal. 

Fig. 5.1. Realization by D pole-removal. 

C pole-removal 

C pole-removal is the dual operation of D pole-removal. If D is replaced 

throughout b y C in the above argument , then the realization takes the 

form shown in fig. 5.2. 

(F2.G2,H2.C.2,Di) 

Fig. 5.2. Realization by C pole-removal. 



— 24 — 

Partitioning 

Partitioning is a more general operation than D pole-removal. I t is more 
difficult to carry out and leads to more compUcated networks than does 
pole-removal, so that we shall use it only when the other operations faU. 
There is no dual operation, so that it is not surprising to learn that it leads 
to non-planar networks. I t consists in writing the functions in the form 

F 

D^ 

G 

D" 

H 

D^ 

Fi_^F, 

D^ D' 

G. G2 
7) + 7 ) ' 

77i 772 

7) + 7 ) ' 

where (Fj, G ,̂ 77i, C ,̂ D) and (Fg, G2, 772, Q» ^ ) are polynomial sets of 
lower degree than (F, G, 77, C, D), and are known to be realizable by 
three-poles F j , Fg. From (2.1) and (2.4) it follows that the given polynomial 
set (F, G, 77, C, D) can then be realized by the paraUel connection of F^ 
and F2, as shown in fig. 5.3. We shall refer to {F-^, Gj, 77j, C ,̂ D) and 
(F2, G2, 772, Q ' D) as partitions of (F, G, 77, C, D). 

Fig. 5.3. Realization by partitioning. 

These three operations will constitute the basis of our synthesis tech­
nique. I t will be noted that the phrase known to be realizable occurs in all 
the statements of the operations. The technique, however, will be to make 
the reaUzability of a given degree depend upon that of a lower degree by 
means of one of the operations. The reaUzation of this lower degree can 
then be made to depend on that of a still lower degree by a subsequent 
operation, and proceeding in this way one eventually arrives at a degree 
low enough for the network to be reaUzed by inspection. These three 
operations are the inverses of the operations of building up a three-pole 
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by the elementary connections of sec. 4.1. We conclude that, if a given 
three-pole network can be decomposed into its elements and elementary 
three-poles by the use of the three operations, then it must be a series-
parallel three-pole. Conversely, all series-parallel three-poles can be 
decomposed into their elements and elementary three-poles by ap­
plication of the three operations. 

At this point it will be fitting to introduce a theorem that limits the 
range of appUcability of the partitioning operation. 

Theorem 4 (the partitioning theorem) 

L e t / , g, h be the coefficients of {X+afi)"^ in the partial-fraction expan­
sions of F/D, G/D, H/D; let the residue condition, gh + hf + fg — 0, 
and the separation conditions be satisfied, and. let/=t=0. 

Then a partitioning of {f,g,h) into {f, g^, hj) and (ƒ—/i, g~gi, h—hi), 
such that the separation and Cauer conditions hold for the corresponding 
partitions of {F,G,H,C,D), is possible if and only if 

ƒ g h ^ 
Proof: 

We have 
gh + hf + fg = 0. (5.9) 

If the Cauer conditions hold for the partitions of {F,G,H,C,D), then 

gA + ^ ƒ l + Agi =e^>0, (5.10) 
and 

{g-8i) {h-K) + {h-h,) ( ƒ -ƒ , ) + (ƒ -ƒ , ) {g-gi) = £2 > 0. (5.11) 

Expanding (5.11) with the aid of (5.9) and (5.10), we obtain 

£1 - £2 = ghi + g^h + hf + hif + fgi + fg. (5.12) 

Since ƒ 4= 0, we have either f^O or f—f 4= 0. Let f 4= 0; then, in virtue 
of (5.9) and (5.10), 

^i-^2=fg+fgi-^{f+gi) + {f+g)( "' '^'^' 
f+g Vi + gi f + gi 

ifg-fgi)' gi(/+g) 
' ' ' ' {f+g){f+gi) f+gi' 

Thus, since Cg ^ 0, 

~ ^ l If f^rr „ ^ ^ iflg-fglf 
if—f+g—gl) > f + g^-' • ' {f+g)(f + gx) 
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If the separation conditions hold, we have, from (5.9), (5.10), and the 
fact that / i /4= 0, 

f+g>0, f+gi>0, f-f^+g-g^^O. 

Since fij > 0, the only possibility is 

1̂ = 0, fg~fgi=0. 

By similar reasoning we obtain, with h in place of g, 

fh-fhi^O. 
Thus 

f gi K 

But (/ i+gi) = m{f+g) > 0. Hence m > 0, since ƒ + § > 0. I f / - / i = 0, 
then, by (5.13), /n == 1. 

Similarly, replacing f^ by ƒ—f̂  in the above argument, we obtain 
1 — m > 0. 

Conversely, if (5.13) holds, then ê  = gg = 0, i.e., the Cauer conditions 
hold. Also if 1 > m > 0, then A + gj > 0 and ƒ — / i + g — gi > 0, etc. 
Thus the separation conditions hold. 

Corollary (i) 

lff=g = h=0, then f=g^ = hi= 0. 
For, by the separation conditions,/^ + g^^ 0,f—f + g ~ gi = —{f+gi) 
> 0, and similar expressions for g^ + h^, h^ +f. Hence gi + ^i = h^ -H A = 

f+gi = 0, i.e., f = g^ = h^ = 0. 

Corollary (HJ 

If the order of a set of polynomials is lower than the degree, then the set is 
unrealizable by a series-parallel network. For, this impUes that if the common 
factors are cancelled out, a set of polynomials will be obtained at least one 
of which has negative coefficients. If this set is partitioned then at least 
one of the partitions will contain some negative coefficients. Otherwise, 
if the common factors are re-introduced and the system again partitioned, 
then by corollary (i) the partitions will also contain the same common 
factors, and after these have been cancelled out the negative coefficients 
will be recovered. Pole-removal and further partitioning can lead eventually 
only to a polynomial of the first degree *) consisting of a single negative 

*) Here, we use the word degree in the ordinary sense and not with the special meaning 
of definition (b), sec. 3. 

(5.13) 
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t e rm. B u t the product of this t e rm with any common factor containing 

only positive coefficients is a polynomial with negative coefficients and 

thus the set to which it belongs cannot be realizable. Since any sequence 

of the three operations leads to the same result, it follows t h a t the given 

set is unrealizable b y a series-paraUel network. 

Thus the condition t h a t F , G, 77, C, D are polynomials with non-negative 

coefficients, is necessary for reaUzation by series-parallel networks . Whethe r 

or not i t is also necessary for the reaUzation by networks of a rb i t ra ry 

s t ructure , as has been conjectured i"), is a question which this analysis 

does not answer. 

5.7. Realization when one of the polynomials is zero 

Before considering the realization of polynomials of the th i rd , fourth and 

higher degrees, we will consider a trivial case of arb i t rary degree. 

^'' C = 0; 

*^*"^ G77 + TTF + FG = 0 . 

Thus at least two of the polynomials, say G and 77, mus t be zero, since 
none can be negat ive for positive real values of A. F rom sec. 3 it t hen follows 
t h a t F/D is a driving-point reactance function. Thus the system is reaUz-
able as shown in fig. 5.4. 

o p 

/ / -£ y ° 
o 9S240 

Fig. 5.4. Realization when C == 0. 

Fig. 5.5. Realization when D :^; 0. 

Fig. 5.6. Realization when F E:E 0. 

Similarly if 7) ^ 0, the reaUzation is the dual of fig. 5.4, viz, fig. 5.5. 

On the other hand, if F ^ 0, then G/D and H/D are driving-point reactance 

functions. The system is then realizable as shown in fig. 5.6. 
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6. The third degree 

The third-degree polynomials are of a sufficiently simple form to be 
realized directly without first investigating the lower degrees. Consequently, 
we shall begin our study of the various degrees with an investigation of 
the third degree. The zeroth, first, and second degrees will then be treated 
as degenerate cases. 

The general third-degree polynomials can be written as 
either (i) 

F = p^X^+p^X, 
C = X2X + XQ, 

G = q^X^ + q^X, 
D = y,X'+y„ 

H=r^X^ + r^X, 
or {ii) 

F = p2X^+Po, 

G = 92̂ ^ + 9o' 
D^y,X^+yiX. 

H=r^X^ + r„ 

From eq. (2.5) it follows that in case (i) 

93'"3 + '•37'3+P393 = 0 , 

^0 Jo = 0 , 
while in case (ii) 

?o''o + ^oPo + Po% = 0, 
%J3 = 0. 

(6.1) 

(6.2) 

Since the coefficients are aU non-negative, it follows that at least two of 
P3, 53, Tg and two of p^, q^, r^ must be zero. Let Ï3 — TJ = 0 and qo = Tg = 0. 
We also take JQ = 0 and jg = 0. Then the polynomials of case (i) may be 
rewritten as 

^ = / i ^ + / - i i " . 
C = CQ + ^̂ -2/* > 

G = g_i/«, } (6.3) 
D = do 4= 0 . 

7 7 = h_ifi, 

Case {ii) is then obtained from this set by interchanging A and fi. From 
the non-negativeness of the coefficients it foUows that (6.3) can be realized 
by the network shown in fig. 6.1. 
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The other possibilities resulting from (6.1) and (6.2) lead to polynomials 
that may be obtained from the standard form (6.3) by the interchange 
of F , G, 77, or of C and D. Since the dual of the network of fig. 6.1 exists, 
it follows that a reaUzation is possible in all these cases. 

Fig. 6.1. Realization of the standard form of the third-degree polynomials. 

The second-degree polynomials are obtained by putting 

either {Hi) f = 0, in which case Cg = 0; 

or {iv) c_2 = 0, in which case f_i = 0 and either g_j or A_j = 0. 

The first degree results from the additional conditions 

c_2 = 0 in {Hi), 

or f = 0, or g_i = h_i = 0 in {iv). 

Thus for the first degree it is necessary that either C ^ 0 or 7) ^ 0, a case 
which was considered in sec. 5.7. This condition is also necessary for the 
zeroth degree. 

We conclude that all systems of the third and lower degrees and satis­
fying the conditions of sec. 3 are realizable. The network of fig. 6.1 serves 
as a basic type for aU these reaUzations; they can be derived from it by 
the simple transformations of sees 5.1 and 5.2 or by letting some of the 
element values become zero or infinite. 

7. The fourth degree 

In this and the following sections we use a decimal system of classifica­
tion of the various cases which arise. The initial figure denotes the degree. 
Moreover, we shaU consider only certain basic cases from which the others 
can be derived by C, D, or A, fi, or F , G, 77 interchanges. We have two cases 
to consider according as F , G, 77 are even and C, D odd (case 4.1), or F , 
G, 77 are odd and C, D even (case 4.2). 

Case 4.1 

The polynomials are 
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F = p,X* + p,X^ + Po, 
C = A;3A* + x-^X, 

G = q^X*+ q^X^ f qo, 
D^y.X^+y^X, 

H = r^X'' + r^X^ + ro, 
where 

10^0 + roPo+Poqo = O, 

?4''4 + '•4P4 + 7'4?4 = O • 
Let Q̂ = TQ = O. 

There are two sub-cases to consider, viz., ^^ = r4 = O (case 4.11) and 
P4 = ?4 = O (case 4.12). 

Case 4.11 

The polynomials may be 

F 

D "" 

G 

D^'~ 

77 

D 

D = 

?4 = '•4 = 0 . 

• rewritten in the form 

f„^+foF + j 

gi 

X + a-ifi 

hl 

X + a-ifi 

X + a-ifji. 

f 
+ a-ijx 

(7.1) 

(Here, we suppose that j^y j 4= 0; otherwise the system is of the third degree 
or falls under sec. 5.7.) By Theorem 1, 

gifti + A i / i + / i ê i = 0, 
so that 

c={gi + K){f^x+fofx). 

Here, the only possibility is f^ < 0, gĵ  > 0, h-^ > 0; otherwise either nega­
tive coefficients would be present or this case would faU under sec. 5.7. 

This case is further divided into two sub-cases, case 4.111 and case 4.112. 

Case 4.111 

If either a i / „ + / i > 0 , 

/o +f>0 ' i (7.2) 

then, from {1.1), f fi o r / ^ A can be removed to leave a third-degree residual 
with non-negative coefficients. Theorems 2 and 3 then guarantee that this 
residual satisfies all the conditions of sec. 3. 
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^1 , , , fl 

D-J«^ + x + ay 
Gl gil 

D X + aifj, 

Hl hii 

D ^ X+ a,fi^ 

Fi f . ƒ12 
D X + a^fi 

^ 2 gl2 

D X + aifi' 

H2 fti2 

D ^ X + a,ii' 

Case 4.112 

If (7.2) does not hold we partition into two third-degree systems accord­
ing to the following scheme: 

(7.3) 

where the introduced constants are given, in accordance with Theorem 4, by 

f gl Ai l / i l ' ^ (^4j 

f gl K l/il 
Theorems 2,3,4 guarantee the separation and Cauer conditions for both 
partitions. We must, however, check that condition IV of sec. 3 is not 
violated. 

Since (7.2) does not hold, we have 

. « i / « > 0 , 
l/il 

so that the G and 77 partitions have positive coefficients. Also, F j = f^ }? 
and F2 = a^f^fi^ + {f +f + aj^ ) . But ƒ, + f^ + aj^ > 0, since this 
is the middle term of F . Thus the F partitions also satisfy IV of sec. 3. 
Both partitions are of the third degree. Hence this case is realizable; the 
network is shown in fig. 7.1. The C polynomials of the two partitions are 
/os^(gi i+^i ) ^^•^/()/*(gi2+^i2)' respectively. The values of the elements 
are then readily calculated: 

9224.) 

Fig. 7.1. Realization of case 4.112. 
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L , = gl2 gl 

/o(gi2 + '112) /o(gi + hj) 

na K 
/o(gi2 + hi^) f{gi + hl) 

/o + ƒ12 

/o(gl2 + hi2) ' 
1 

gn + «11 

Cl 
Ja,igii+hn) ^ ƒ,5 (gl + fel) 

gil gl 

fa, (gil + feil) ƒ<» (gl + ' 'l) 

(7.5) 

C3 = 

"11 

gl2 + fel2 

«1 

fel 

This is not the only possible way of partitioning unless a^/^ + / o + / i — 0; 
for, the range of/^ is limited by the condition that F j and F2 should have 
non-negative coefficients, i.e., 

« i / = o + / u > 0 , 

/o+ƒ12 5=0, 
from which it follows that 

fo+f>fii>-aif„-
When «i/jo + /o + A = 0, only one value is possible for fi. In this case, 
both Fl and Fg consist of single terms with the result that only six ele­
ments are used for the reaUzation. Otherwise, if «lAo "l~ A 4 A > 0 and 

Al=t=-«l /co ' 

Jll T Jo T A ' *) 

Fl and Fg consist of two terms each, so that eight elements are then used 
for realization. 

The network of fig. 7.1, consisting of seven elements, contains two so-
caUed redundant elements. There are precisely five independent parameters, 
viz, Ao' A' A ' gl' "i- Thus we would expect five independent elements. 
This is indeed the case, for two relations between the element values can 
be found, viz, 

*) The c a s e / n = ƒ(, - f / i is derived from (7.3) and (7.4) by interchanging X and ft. 
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7/ĵ Lj — L/2^2' 

L , ( Q + C 2 ) 2 = C3(L,Q -f L3C1 -f L3C2) 2 r (T n \ r n \ T n \ K v ' w 

Since C is a polynomial of the same form as D, it follows t h a t the pseudo-

dual is reaUzable b y a network of the same s t ructure , and we need not 

discuss it further. 

I t was suggested by Ozaki *) t h a t in some cases par t ia l C pole-removal 

might enable D pole-removal to be performed in place of par t i t ioning. 

Since par t i t ioning introduces more elements than D pole-removal, the net 

effect would be a saving in the number of elements. In this case, however, 

it is not possible, as the following reasoning shows. Since C and D are of 

the same form it is sufficient to consider the effect of par t ia l D pole-removal 

on the possibility of C pole-removal. F rom (7.1) it follows t h a t the effect 

of this is to reduce the values of either A^ or f^, or bo th . We find t h a t 

(7.7) 

From (7.7), C pole-removal is possible if and only if 

«lAo + A > o , 

A+A>o. 

But if this condition is not initially satisfied, it will certainly not be after 

Ao or A have been reduced, and thus the effect of the operation is adverse. 

We are forced to the conclusion tha t , in the general case, the circuit of fig. 7.1 

uses the least number of elements required for a series-paraUel realization. 

F 1 
C gl + fei 

G 

L Ao^+A/*J 

gl 

c (gi + fei)(A»^+A;^)' 
77 hi 

C {g,+K) (A.A+A^) 

Case 

The 

4.72 

polynomials can be 

P4 = 94 = 

rewri t ten as 

F 
D 

G 
D 

H 

0. 

- A-" + 5 , 
A + aifi 

gl 

X + aifjL 

= fe-.A + -
hi 

X + Uifx 
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By sec. 3 and (5.8), gi > 0 and one of A» fei is non-negative. Let 
A > 0; then we can remove f^fi to leave a third-degree residual. This 
is most easily seen by calculating the resulting polynomials F ' , G, 77, C', 
taking D = X + aifi. Theorems 2, 3 and sec. 6 guarantee the reaUzation 
(see fig. 7.2). 

Jl JVi-y-noolrM 

92249 

Fig. 7.2. Realization of case 4.12. 

Case 4.2 

The polynomials are 

F = psX^ + piX, 
C = x^X* + x^X^ + Xo, 

G = 93A* + qiX, 
D^y^X^ + y^X^ + yo. 

7 7 = r^X^+ riX, 
Thus 

« 4 ^ 4 = 0 , x^ya^O. 

We takey^ = 0. There are two sub-cases, viz,yQ = 0 (case 4.21) and XQ = 0 
(case 4.22). 

Case 4.21 

Rewrite as 
F 
D 

G 
D 

H 
D 

yo = o-

f„^+fof^ 
do 

g„ ^ + gOi" 

do 

h„^+ Kfi 

do 

This is clearly realizable as a delta connection (fig. 7.3). 



— 35 

Case 4.22 

Rewrite as 

92J4I-) 

Fig. 7.3. Realization of case 4.21. 

^0 = 0 . 

D X + aifi 

G 3 , g l 
D X + aifi 

H 

D fe«A + 
fei 

A + aifi 

From (5.8), we can take A ^ 0 , gi ^ 0. Then A, ^ and g^ X can hf 
removed to leave a third-degree residual (fig. 7.4). 

h^(t,*g,l h^(t,+g,j^ 

Fig. 7.4. Realization of case 4.22. 

8. The fifth degree 

Two forms of the polynomials are possible: 

(i) F = p5A«+p3A3-fpiA, 

G = qsX^ + g3A*+ giA, 
C = *4A* + X^X^ + Xg , 

D ^ y^X* + y^X^ + y^. 
7 7 = r^X'+ r^X^+ riX, 

*oJo = 0, 



C = x^X^ + «3A* + «jA, 

D=y,X^+y,X^+yiX. 
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%^5 + r^Pi + Psq^ = O 

We take yo == ^ and ?6 = '"s = 0. 

{H) F = p,X* + p^X^ + Po, 

G = q^X* + q^X^ + q^, 

7 7 = r^XU- r2A2+ r^, 

HJh = O, 

ïof̂ o +'•oPo +/'o9o = 0. 

We take jg = O and ^̂  = r̂  = 0. 
Both cases can now be standardized in the form 

F A 
77 = ƒ« ^ + A/'- + 7— ' 
D X + aifi 
G , gl 
n =go^ + y— ' 
U X + aifx 
77 hi 
— = feo/< + -— 
U X + aifi 

Case 5.1 
If A ^ 0, we can remove Ao ^ + AA' '̂̂  leave a fourth-degree residual 

(case 4.22). 
Case 5.2 

If A < 0, then gj, hi > 0; we can remove g^fi and feo/« to leave a fourth-
degree residual (case 4.11). 
9. The sixth degree 

We have two principal cases to consider, namely, case 6.1 in which 
F, G, 77 are odd and C, D even, and case 6.2 in which F , G, 77 are even and 
C, D odd. The further sub-division of these cases is shown in fig. 9.1. 

CtJ (.11 

e.m cm 

tmi sow «.mi e-mi 

6.t2t.2t B.W.32 

t.i, 

fin e.m 

ê.ltt.J S ^ 2 

6.211.21 €.211.22 

6.22 

«.221 6.>2? 

$W.I e.221.3 €.222.1 €222.2 

6.22U21 6.321.22 6-22122 €.222.21 6 222.22 

S.21l.2n 6^1-212 $711.221 6.211222 €.221.211 €.221.212 6.211.221 €.321.222 9231ft 

Fig. 9.1. The sub-cases of the sixth degree, 
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Case 6.1 

F=p,X' + P3X^ + PiX, 

G = q^X^ + ggA^H- giA, 

7)=jgA«+j4A4 + y2>l'+yo-
H^ r,X'+ r^X^+ riX, 

HJo = 0, and x^y^ = 0. Take Jo = ^ . 

We consider two sub-cases, viz, j , = 0 (case 6.11) 

and «, = 0 (case 6.12). 

Case 6.11 

We can write 
J 6 = 0 . 

F f 
AO'^+AM ' 7) • '" ' •'"'^ ' X+ajfi' 

^g=c'^+go/' + 7) X + aifi 

H hi 
= h X + hofi + D ~ ""̂  A + «i/z * 

By (5.8), we may take f > 0, ĝ  > 0, so that Ao ̂  + Ai« and g„X + g^fi 
can be removed to leave a fourth-degree residual (case 4.11). 

Case 6.12 
x,= 0. 

We consider two sub-cases, viz, D does not (case 6.121) or does (case 
6.122) contain multiple factors. 

Case 6.121 

If D has no multiple factors of the form A + aifi (oj > 0), then Theorem 1 
and (5.8) are appUcable. We have 

F . , A , A 
TT = A/« + T-r-—1-D X + aifi X + a^fi^ 

G I g l _L ^" 
•K = go/* + r̂-; + D X + aifi A. + a^fi' 
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77 fej feg 

D X + aifi X + a^fi' 

We have two sub-cases to consider. 

Case 6.121.1 

If f>^, f>0, 

g i ^ O , g 2 ^ 0 , 

then A/M and g^fi can be removed to leave a fifth-degree *) residual. 

Case 6.121.2 
Otherwise, we consider 

A > o , gi>o, hi<o, I 
f<o, g^>o, h2>o. S 

We take Cg > a .̂ (If % > a^, interchange F and 77.) First remove g^fi. 
(This does not lower the degree.) 
Since F and 77 have non-negative coefficients we have 

fo+f+f>0, 
(«i + «2)A + «2A + « i A > o , 

ho + hi + h^^O, 

(«1 + Ö2)feo + a2fei + «ifez > 0 • 

From Theorem 1 and (9.1) we have 

1 1 1 

I A r g 2 ^ f e 2 ' 

1 I 1 

ifeirA^gi' 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

Since a^ > a ,̂ (9.2) impUes (9.3). Consequently, (9.2) to (9.5) are equiv­
alent to 

A + A > - ^ , (9.8) 
gi + hi 

K + h>~^, (9.9) 
A + gl 

*) This is most easily seen by calculating the highest powers of A, /< in J**, C, H, D, 
from which the corresponding powers in C may be deduced. 
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(«, + a2)feo + « i fe2>-?4^. (9-10) 
A + gi 

We have two sub-cases to consider. 

Case 6.121.21 

If either 

A > I A I , 
or 

hz ^ — \hi\, 
«1 

we can remove fgfi or h^fi, respectively, since (9.8) is, or (9.9), (9.10) are, 
then satisfied for f = 0 OT h^ = 0, respectively, This then leaves a fifth-
degree residual. 

Case 6.121.22 

Otherwise, 

and 

From (9.11), 

hence 

and 

Also, from (9.12), 

henc 

g2 + fe2 

fe2<-7%- = - | f e i | . (9-12) 

«1A + gl «1 

1 1 1 
A ga «2 

1 1 

A fea' 

1 1 1 

A gl «2 

fh>J^=\hi\- (9.13) 
A + gi 

1 a w l 1\ 

^ «2 V i gi^ fea 

1 1 ai 1 

82 "2 «2 A 
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I.e., 

I A K - A - (9.14) 
«1 

Rewrit ing (9.11) to (9.14) we have 

A<IAI<-A, 
«1 

| f e i | < A 2 < ^ N . 
a 1 

We now par t i t ion according to the scheme 

-'* f 1 7ii I Jai I A2 I As 
—• foF + -7—, ^ 1—; + T-, \- • D X + Uifi X + a^fJi X + aifj, X + a^fi' 

G 

D X + aifi X + a^fi X + aifi X + a^fi' 

^ fell I Ki , , I fel2 , fe| 

D X + aifi X + a^fi X + aifi X + a^fn ' 

where 

A i _ gii _ ''11 _ e 

J l gl fei 

A2 g]2 fel2 

A gl fei 

A l _ g21 _ 'Hi __ V 
. ~" I. ^ ^2 ' 

A g2 fe2 

A2 ga2 ^22 

A gi K 

(9.15) 

^" + _ ^ ? _ + ĝ ^ + "'"' , > (9.16) 

(9.17) 

^ ^ ^ - « i f e 2 ( A + A ) ^ (9.18) 

a2Afei — «lAfea 

.i=i-^i=^-^;f-+tf> (^-1^) 
a2Afei — aiAfe2 

(9.20) 

^I'^^'l,, ^ 2 = ] - l 2 = i4T'/i- (9.21) 
aA lAI 

From (9.15) it follows t h a t f̂ , f2' ' ïn '?2 are positive. The part i t ioning is 
in conformity wi th the conditions of Theorems 2, 3 and 4; consequently 
it is only necessary to check t h a t the polynomials all have non-negative 
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coefficients. The details are given in Appendix 1. Since the partitions are 
of the fifth degree, we conclude that this case is realizable. 

It will be noted that when D pole-removal failed we tried partitioning 
next, thereby introducing more elements than would be necessary if C 
pole-removal were possible. Unfortunately, it is not possible to obtain 
simple relations between the D residues and the C residues, so that it 
is not known under what conditions C and D pole-removal are simul­
taneously impossible. 

Case 6.122 

If D has multiple factors of the form A + aifi (ai>0), then 

F 
D^ 

G 
D~ 

77 
D 

fofi + 

go/" + 

Kfi + 

A 
X + oifi' 

gl 
X + aifi' 

hi 

X + aifi' 

where, from Theorem 3 and since the system is of the sixth degree, 
we have 

gifei + feiA+Agi>0. (9.22) 

There are two sub-cases to consider. 

Case 6.122.1 

If all three residues are non-negative, then the system can be realized 
as a delta connection of two-pole admittances. 

Case 6.122.2 

Otherwise, we consider f < 0. Then by (5.7), g^ > 0, hi> 0. By (9.22), 

1 1 1 

jAi^7i^fe;" 
Let 

1 1 1 1 

gï~JAJ~fe;^^^^' 
Then 

gï = g i -g i>0. 
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Thus we can remove g'i/{^^aifi) from G/D leaving a residual such that 

gifei + feiA+Agi = o. 

Now F = {aifofi^ + A + A) (•̂  + ^ifi) is a polynomial with non-negative 
coefficients. I t follows that the coefficients of aiffi^ -'T f o + A are non-
negative. Hence the residual set of polynomials is of the fourth degree 
and is therefore reaUzable. 

Case 6.2 

F = p,X^ + p^X'^ + p^X^ + Po, 

c = v^-f V + M. 

G = ?6^«+ 94^*+ q2^^+ qo, 

7 7 = rtX'^+ r,X* + r^X^ + r^, 

qaU+ '•«P6+7'6?6 = 0, 

9o''o + ''oPo + Polo = 0 . 

We take q^ = r^ — 0. There are two sub-cases to consider, namely, 

Pg = gg = 0 (case 6.21) and ïs = ''e = ^ (case 6.22). 
Case 6.21 

PB = ?6 = 0 . 

We have two sub-cases to consider, viz, D does not (case 6.211) or does 
(case 6.212) contain multiple factors. 

Case 6.211 

If D has no multiple factors of the form A + Oifi {ai > 0), then Theorem 1 
and (5.8) are applicable. We have 

F . . f I A 
= A/" + -7—, f" D X + aifi X + a^fi 

G gl ^ g2 

D X + aifi X + a^fJ. 

D " X + aifi X + a^fi 

There are two sub-cases to consider. 

Case 6.211.1 

If either 

A^o. A^o. 
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or hl ^ O, /i2 ^ 0 , 

thenA;M or h^ A, respectively, can be removed to leave a fifth-degree residual. 

Case 6.211.2 

Otherwise, we consider 

A > o , g i > o , fei<o, 
A < o , g2>o, fe2>o-

The conditions that F and 77 should have non-negative coefficients be­
come 

(«1 + a2)A + «zA + <hf > 0 , (9.23) 

A + A + A ; > 0 , (9.24) 

(«i + a2)fe„ +fei + fe2>0, (9.25) 

«löafeco + «a'»! -^ «i'»2 > 0 . (9.26) 

There are two sub-cases to consider, viz, a^ > % (case 6.211.21) and 
ai > 02 (case 6.211.22). 

Case 6.211.21 
«2 > Oi . 

Then (9.24) implies (9.23) and (9.26) impUes (9.25). Thus it is sufficient to 
consider only the inequaUties 

A+A+A^o, 
aia2fe„ + «jfei + 

This case is further sub-divided into two 

. 'i (9.27) 

Case 6.211.211 

If either 

A^IAU ) 
or J (9.28) 

foP or A^ A, respectively, can be removed to leave a fifth-degree residual. 

Case 6.211.212 

Otherwise, 

IAI>A. ^ 
and / 

l A i | > - l A , . ) 
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We partition according to the scheme 

^ /. I Al , Al I A2 I A2 — — f _L . / l l I J 21 I J12 _|_ 

D X + aip X + a^fi X + aip X + a^p 

G g l l g21 I g l 2 I g22 \ /Q n(v\ 
7: — 7— r -T— h -7— r -7— ' ; ^y.ou) 
U X + aifi A + a^fi X + aifi A + a^p 

H All ^ Ki ^ ^ ;i + _ j ! 2 _ + ^^^ 
D X + aip X + a^p " A + aifi X + a^fi 

where Aj, gij, fey ( i j = 1,2) are given by (9.17) to (9.21). By (9.29), l i , fg, 
rii, i]2 are positive. The partitions are of the fifth degree and the partitioning 
is in accordance with Theorems 2,3,4. Moreover, the coefficients are all 
non-negative (for details see Appendix 1); hence this case is realizable. 

Case 6.211.22 
«1 > «2. 

This case is further sub-divided into two. 

Case 6.211.221 

If either 
aaA + aiA^O,^ 

A+ A >o,\ 

hi+ fe2 > 0 , | 

Oafei + â feg > 0 , ) 

we can remove ffi or A^ A, respectively, since (9.23), (9.24) or (9.25), 
(9.26) are then satisfied for A = 0 or A^ = 0, respectively. This then leaves 
a fifth-degree residual. 

Case 6.211.222 

Otherwise, 

and 

Thus 

A<-|A1, 
a» 

fe2<|fel|. 

1 « 2 / 1 1 \ 

T>-(- + T)' 
fl «1 ^g2 fea/ 

(9.31) 
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Hence 

i e 
I . e . , 

Simili 

Hence 

I.e., 

Thus, 

irly, from (9.31), 

with (9.31), we 

« 2 

1 

A 

1 

1 

fe2 

have 

IA1< 

|feil< 

1 

gl 

fea 

1 

l^il 

1 
+ -

g2 

A 

A< 

fea < 

«ifea 

>^w-

1 1 
'--f+-

f Si 
1 

" A ' 

> lAI-

«2 r 

| f e i | . 

(9.32) 

We employ the partitioning of (9.30) but this time with different values 
for the partitioned residues, viz, 

Al gu fell 

A-^-feT^"^' 
Aa gi2 fei2 

A = ^ = ̂  = ^̂ ' 

(9.33) 

,i = :±^l^^±^i (9.34) 
aJihi — aJih, 2 

aiA(fei + fe2) ,0 l':.\ 

«lAfei — «2Afe2 

A l g21 fe21 

h ga "a 

Aa g22 fe22 

A ga fea 

(9.36) 

I • I ft 

<P2 = -r-<Pi, V2 = l - 9 ' 2 = -^JFT V i ' (9.37) 
fea «ilAl 
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By (9.32), <pi, q>2, fi, Wi are positive. In Appendix 1 it is proved that 
the coefficients of the partitions are non-negative. The partitions are of 
the fifth degree and in accordance with Theorems 2,3 and 4. Hence this 
case is reaUzable. 

Case 6.212 

If D has multiple factors of the form A + ai/i (af > 0) then 

F 

D~ 

G 

D 

H 

D~ 

foM + 

'•«-̂  + 

A 
A + aip 

gl 

X + aifi 

X + Oip 
where 

glfel + ^ A + A g l > o • 

This case is then treated in the same way as case 6.122. 

Case 6.22 
96 = rj = 0 . 

We consider two sub-cases, viz, D does not (case 6.221) or does (case 
6.222) contain multiple factors. 

Case 6.221 

If D has no multiple factors of the form A + aip (a; > 0), then Theorem 1 
and (5.8) are appUcable. We have 

F 

D 

G 

D~ 

H 

D 

ƒ , A+A-« + 
A 

A + aifi 

gl 

A + aip 

fei 

A + a,M 

+ j 

+ j 

4_ 
' A 

A 
+ difi 

gi 

K 
+ Oift 

The conditions that F should have non-negative coefficients are 

(ai + a2)A„ + A + A + A ^ 0 , (9.38) 

«i«aA» + («1 + «a)A + «aA + «lA > 0 . (9.39) 
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Case 6.221.1 

If either 
(ai + a 2 ) A o + A + A > 0 , > (9.40) 

«i«2Ao+«2A + a i A > 0 , i (9.41) 
or 

A + A + A > 0 , ) (9.42) 

(«1 + a2)A + OLJI + aiA :> 0, i (9.43) 

then A/ ' *"" Ao •̂ ' respectively, can be removed to leave a fifth-degree residual. 
(If in addition A ^ *̂ ' A ^̂  '̂  then f^p + Ao '̂  ^^^ ^^ removed to leave a 
fourth-degree residual.) 

Case 6.221.2 

Otherwise, at least one of (9.40), (9.41) and at least one of (9.42), 
(9.43) are violated. Thus at least one of A^A "̂^ negative. We have three 
sub-cases to consider, viz, 

A < 0, A < 0 (case 6.221.21), 

A < 0, A > 0, «2 > «1 (case 6.221.22), 

A < 0, A > 0, 02 < oi (case 6.221.23). 

Case 6.221.21 
A < o , A < o . 

Without loss of generaUty we can take 02 > Oĵ . 
From (9.40) to (9.43), the conditions that neither ƒ A nor fp can be 

removed are 

«l«2Ao + « 2 A + « l A < 0 , ) ,0 44X 

A+A+A<oJ ^^-^^ 

since these conditions are implied by (but do not imply) 

(ai + a2)A, + A + A < 0 , 

(«1 + aa)A + «aA + «lA < 0, 

respectively. 
We shall now show that reduction of the degree by partitioning is not 

always possible. If the system is to be partitioned into two systems of 
lower degree, the only possibiUty is 
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F fl 

D ^ X + aifi X + a^fJ, 
fl I /. I Aa 

+ • 
A 22 

G 

D 

77 

g i l 

+ 
g21 

A + OjjM A + «2/^ + 

A + aifi X + a^fi 

gl2 . g22 

X + aip X + a^p 
(9.45) 

*ii 
+ • + 

"12 
+ • 

"22 

A + a^^ A + 02/̂  ' A + aip ' X + a^fi 

The conditions that the partitions should have non-negative coefficients 

(«i + «a)Ao + A i + A i 5 s O , 

«löaAc + «2A1 •+• «lAi > 0 , 

A + A 2 + A 2 > o , 

(«1 + a2)A + a2A2 + aiA2 > 0 . 

Furthermore, Theorem 4 requires that A/ ^ 0 {i, j = 1,2). 

(9.46) 

(9.47) 

(9.48) 

(9.49) 

(9.50) 

We note that (9.47) implies (9.46) and (9.48) implies (9.49). From 
(9.47), (9.48) we have 

ai«aAo •+" «2A + a2A + «lA + («2 —ai)A2 > 0 . 

By (9.50), A2 ^ 0- Hence, since 02 > o^, 

aia2Ao + «aA + «aA + «lA > 0. (9.51) 

Also from (9.47), (9.48) we have 

aia2Ao + «i/o + «lA + «lA + ( « a - a J A i > ^ • 

By (9.50), Al < 0. Hence aiaj^ + aj^ + «lA + «lA > 0, i.e., 

«2Ao + A + A + A > 0 . (9.52) 

Thus (9.51) and (9.52) are necessary for partitioning. We note that they 
are essentially new conditions, being stronger than (9.39) and (9.38), 
respectively. To prove that they are sufficient we must show that it is 
possible to choose Ai and Ai consistent with (9.47), (9.48) and subject to 
(9.50) when (9.51) and (9.52) hold. We consider two sub-cases, viz, (9.51) 
and (9.52) hold (case 6.221.211) and one of (9.51), (9.52) is violated 
(case 6.211.212). 

Case 6.221.211 

Conditions (9.51) and (9.52) hold. 
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By (9.44), either it is possible to choose Ai» Ai such that 

«aAo + A i = 0,) 

Ai = o,> 

so that (9.47) is satisfied, while at the same time it follows from (9.52) that 

A + A + A 2 > o , 
i.e., (9.48) is satisfied; 
or it is possible to choose Ai, A2 such that 

«lOaAo + «i/a + «aAi = 0, ) 

Aa = 0 ,^ 

so that (9.47) is satisfied, while at the same time it follows from (9.51) 
that 

«aA + «2A2 > 0 , 
i.e., (9.48) is satisfied. 

This proves that (9.51) and (9.52) are sufficient for the partitioning of F 
without inducing negative coefficients. Since G and 77 have non-negative 
residues the conditions are sufficient for partitioning the complete set of 
polynomials. 

Case 6.221.212 

At least one of conditions (9.51) and (9.52) is violated. Partitioning is 
now impossible, but what can one say of C pole-removal? In Appendix 2.1 
it is proved that C pole-removal at either infinity or zero is impossible. 
(Partial or complete C or 7) pole-removal at any other point can lead only 
to a violation of the Cauer conditions.) 

We now proceed to examine the effects of partial pole-removal. The 
effect of partial D pole-removal at infinity or zero is simply to reduce 
Ao or A or both, that is, to reduce the left-hand sides of (9.51) and (9.52). 
It follows that, if partitioning is initiaUy impossible, it will remain so after 
partial D pole-removal has been carried out, and therefore, in virtue of 
Appendix 2.1, C pole-removal will be impossible. 

We next have to consider the effect ot partial C pole-removal. Before 
doing this, however, it will be necessary to consider the other sub-cases of 
case 6.221.2. 

Case 6.221.22 
A < 0 , A ^ O , a i j > a i . 

We take gi > 0, gj < 0, so that Â  > 0, Ag > 0 . 
For this case also we shall show that partitioning is not always possible. 
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We note that if (9.40) is violated, then (9.41) is violated. Thus, from (9.41), 
the condition that A/^ cannot be removed is 

«i«2Ac + «2A + « i A < 0 . (9.53) 

From (9.42), (9.43), the condition that A, A cannot be removed is either 
(case 6.221.221) 

(oi + a2)A + OaA + «lA < 0, 
f+f+f>0, 

or (case 6.221.222) 

A + A + A < o . 
Case 6.221.221 

(«1 + a2)A + «aA + aif<0,) 

fo+f+f>O.S 
(9.54) 

We partition according to the scheme of (9.45) such that 

A l gll feu ./21 _ gai ^21 ^ 

A gl fei A êa fea 
where } (9.55) 

^ ^ -«i«aAo 

«lA + a2A 

By (9.53), t > 0. 
The partitioning is in accordance with Theorem 4, since 1 — C > 0, by 

(9.53). The non-negativeness of the coefficients is proved in Appendix 3. 
Hence this case is realizable. 

Case 6.221.222 
A + A ^ A < 0 . (9.56) 

From (9.47) and (9.48) we have 

«iQaAo + "aA + aji + OoA + («1 —a2)Ai > 0. 

By Theorem 4, 

Ai>o . 
Hence 

«lOaAo + «2A + «aA -f «aA > 0 , 
i.e., 

«iA= + A + A + A ^ o - (9.57) 

Thus (9.57) is a necessary condition for partitioning. To prove its sufficiency 
we employ the partitioning of (9.45), but this time with the values 
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r L n •'11 gll 11 «lAo /n ro \ 
Ai = g2i = fe2i = 0; — = — = - — = - - - ^ . (9.58) 

A gl fel lAI 
In Appendix 3 it is proved that the partitioning is in accordance with 
Theorem 4 and that the coefficients are non-negative. 

If, however, (9.57) is violated, then C pole-removal at either zero or 
infinity is impossible (proof in Appendix 2.2). Partial or complete C or D 
pole-removal at any other point can lead only to a violation of the Cauer 
conditions. Moreover, the effect of partial D pole-removal at infinity or 
zero is simply to reduce Ao or A or both, so that this operation cannot 
induce the possibilities of partitioning or C pole-removal if (9.57) is initially 
violated. We note in passing that (9.57) holds for case 6.221.221 also; 
it is imphed by (9.54). 

Case 6.221.23 
fl < 0, A > 0 , 02 < Oj. 

This is not an essentially new case, for, by the transformations 

1 1 A" 
•̂  = 7 7 ' «1 = -^ ' A A" a 1 

1 f 
r r/r /• J 2 

70 — J«j ' «2 — ~; ' J2 

ƒ CO . '0 ' 

F/D transforms to 

«2 «2 

JoM ^Jco^ -^TTT 
X + ttlP X + Og/̂  

where Og > a[. A ' < *̂ ' A ' =̂  ^• 
This is then in the form of case 6.221.22. 

Cases 6.221.212, 6.221.22 (continued) 

We are now ready to take up the question of partial C pole-removal. 
We find that if partitioning is initially impossible, then it is also impossible 
after carrying out partial C pole-removal (the details of the proof may be 
found in Appendix 4). 

Case 6.221.2 (continued) 

Thus, to sum up this discussion, we can say 

(i) if A < 0» A ^ ^' «2 ^ «1» tUen a series-parallel reaUzation is possible 
if and only if 

«i«2Ao + «a/o + «2A + «lA 2* 0, ^ 
«2A0 + A + A + A 2 * 0 ; S 
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{ii) if A < O, A ^ ^' «a > «1, tUen a series-parallel reaUzation is possible 
if and only if 

«Jcc + A+A+As^o. 
These are the extra conditions required for case 6.221.2. 

Case 6.222 

If D has multiple factors of the form A + Uip {ai > 0), then 

F A 
^=/«A+A/^ + ^ ^ ^ . 

G^ gl 
D X + aip 

77 _ hi 

D X + aifi 

where ĝ Aj + AJA + Agi > 0-
There are two sub-cases to consider. 

Case 6.222.1 

If A ^ ^1 then a realization by a delta connection is possible 
(cf. cases 6.212 and 6.122). 

Case 6.222.2 

Otherwise, 

A<o. 
We consider two sub-cases. 

Case 6.222.21 

If the middle coefficient of F/{X+aip) is non-negative, i.e., if 

«J« + A+A>o , 
then the method of case 6.122.2 can be applied. 

Case 6.222.22 

Otherwise, 

«lAo + A + A < o . 

This case is unreaUzable by a series-parallel network. This is most easily 
seen by considering it as a limiting case of 6.221.21, with a^ = o^ and A + A 
replaced by A- Then both (9.51) and (9.52) reduce to 

«iAo + / o + A ^ O . 
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Consequently, if this condition is violated neither partitioning nor C pole-
removal is possible. The same result is obtained if this case is regarded 
as a limiting case of 6.221.22. 

10. Conclusion 

It has been shown that, for polynomials of the sixth or lower degrees, 
the following conditions are necessary and sufficient for realization by a 
series-parallel three-pole network: 

(i) Conditions I, I I , I I I , IV of sec. 3; 
{ii) When F/D, G/D, H/D are written in the form 

ƒ„ A + A^ + 7 " ^ ^ — + 7 ^ ' — * ) , A + aip X + a^fi 
the conditions 

(a) OiOaAo + «aA + «aA + «lA > ^ , ) r ^ n f ^ t\ 
f <r<f<f^n if «a > «1. A < 0, A ' - 0 ' 

«aAo + A + A + A > o , ) 
(b) « l A o + A +f +f > 0, if «2 > ai,f < 0 , A > 0, 
(c) aia2Ao + a2A + a2A + «lA > ^ , if Og < Oj, A < 0, A > 0. 

The last condition, (c), follows from (b) by applying the transformations 
given under the heading case 6.221.23. If any of f^ , f, f, f is zero, then 
conditions (a), (b), (c) are automatically implied by the condition that the 
coefficients of F , G, 77 be non-negative. 

Two important questions remain unanswered, namely: 
(i) Can the procedure developed here be applied to higher degrees than 

the sixth? 
{ii) Are conditions (a), (b), (c) necessary for realization by a three-pole 

network of arbitrary structure? 
Concerning the first question, the series-parallel realization of the seventh 

degree can comparatively easily be made to depend upon that of the 
sixth degree. However, the eigth degree is much more formidable. The 
number of possible combinations is very much ip-eater, and the discussion 
of partitioning for all of them would be very laborious in the absence of 
a general theorem giving necessary and sufficient conditions for partitioning 
without introducing negative coefficients. Such a theorem would replace 
the process adopted here of first partitioning and then checking whether 
the coefficients are non-negative. 

Very little can be said concerning question {ii). To answer this question 
for even so simple a network as that of fig. 4.6, consisting of only seven 
elements, would require, with the methods at present available, a long 
and detailed investigation. 

*) Here we permit any o f / „ , ƒ(, , /j , /j to be zero as well as Oj and â  to be equal. 
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Appendix 1 

The partitions of cases 6.121.22, 6.211.212 and 6.211.222 have non-negative 
coefficients 

For all three cases we note that 

Al + A2 = A ' 
f +f ~f ^ '̂'-'̂  
J 2 I I J22 — J 2 ' 

and similar expressions hold for gj, g2, Aj, Ag. 
Further, from (9.15, (9.29), (9.32) we have that 

f l , I2, Vv V2, <Pv 92, fl, f2 
are all positive. 

Since gi and g^ are positive, it follows that the partitions of G have 
non-negative coefficients in all cases. 

Appendix 1.1. Case 6.121.22 

Considering F, we need to show that 

A + A i + A i > 0 ' (11-2) 

(«1 + a2)A + «2A1 + «lAi > 0 , (11.3) 

A 2 + A 2 > o , (11.4) 

«2A2 + « i A 2 > 0 - (11-5) 
We have 

A + Al + Al > -A2 - A2 (by (9.2) and (11.1)) 

= -Vif - '?2A (by (9.17) and (9.20)) 

= 0 (by (9.21)). 

This proves (11.2) and (11.4); (11.3) follows from (11.2), and (11.5) foUows 
from (11.4), since 02 > a .̂ 

Next, considering 77, we need to show that 

hii + h^i>0, (11.6) 

ogfeii + aih^i > 0 , (11-7) 

feo + Ai2 + fe22 > 0 , (11.8) 

(«1 + O2)feo + a2fei2 + aiA22 ^ 0 . (11.9) 
We have 

by (9.21). 

a^iii + aji^i = 02l̂ ifei + ai^Jii' 

= 0, (11.10) 



— 55 — 

This proves (11.7); (11-6) then follows since a^ > Oj. 
Also, 

feo + fel2 + fe22 ^ fel feg + fei2 + feaa 
«1 + «2 «1 + «a 

«ifeia — «2feii + «2fe22 ~ «ifeai 

Oi + Og 

OjAig + a2A22 

«1 + «2 

^^ (ah "̂ -̂ ^ A \ rbv ^9^0^ 
oi»! «2 i "y l-*-""; 

«1 + «2 ^ /2 / 
0 

(by (9.5)) 

(by 11.1)) 

(by (11.10)) 

and (9.21)) 

(by (9.15). >o 
Finally, 

(«1 + a2)feo + «2fei2 + «ifeaa > ~ a2feii - « A i (by (9-5) and (11.1)) 

= 0 (by (11.10)). 
Appendix 1.2. Case 6.211.212 

By (9.16), (9.30) and Appendix 1.1 it follows that the partitions of F 
have non-negative coefficients. 

Considering 77, we need to show that 

a2feii + Oife2i > 0 , (11.11) 

«ia2feco + «2fel2 + «lfe22 > 0 , (11-12) 

Aii + fe2i>0„ (11.13) 

(Oi + a2)fe„ + fei2 + fe22 > 0 . (11.14) 

Since 02 > Oj, (11.11) implies (11.13) and (11.12) implies (11.14). Now 

«gfeu + aife2i = a^iihi + ai^Ji2 

= 0 (by (9.21)); ^^^^^^ 

«i«2feco + «2feia + «ifeaa > —«afeu —«Ai (by (9.26) and (11.1)) 
= 0 (by (11.15)). 

This proves (11.11) and (11.12). 

Appendix 1.3. Case 6.211.222 

For F we need to show that 

(«1 + «2)A + «2A1 + «lAi > 0 , (11.16) 

A + A i + A i > o , (11.17) 
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«2Aa + a j 2 2 > 0 , (I1.I8) 

A 2 + A a > 0 . (11.19) 

We have 

(ai + aa)A + «aAi + «lAi > —«aAa —«lAa (by (9.23), (11.1)) 

= —«aViA — «1V2A (by (9.33) and (9.36)) 

= O (by (9.37)). (11.20) 

This establishes (11.16) and (11.18); (11.19) then follows since Oi > 02-
Furthermore, we have 

A + Al + Al > - ^ 7 - A - ^ — A + Al + Al (by (9.23)) 
«1 + «2 «1 + «2 

«lAi — «2A2 + a2Ai — «1A2 ,, n 1 1 \\ = j (by (11.1)) 
«1 + «2 

= "l-^" + "̂ -̂ 1̂ (by (11.10)) 
«1 + «2 

= - 5 - ( « I A - ^ A ) (by (9.33), (9.36) and (9.37)) 
Oi + OgV Ag / 

> 0 (by (9.32)). 

This establishes (11.17). 

For 77 we need to show that 

feii + fe2i>0, (11.21) 

a2feii + a i f t 2 i>0 , (11.22) 

(Oi + 02)fe„ + fei2 + fe22 > 0 , (11.23) 

«lOafeos + «afeia + «Aa > 0. (11.24) 
We have 

fell + feai = ^'ifei + 9'2fe2 •> 

= 0 (by (9.37)). (11.25) 

This proves (11.21); (11.22) then follows since a,. > 02. Furthermore, we 
have 

{ai + a2)h^ + fei2 + ft22 > -fen - fe2i (by (9.25), (11.1)) 

= 0 (by (11.25)); 

«lOafeco + «a'Ha + « ^ 2 > ~ - ih + h) + OjAu + 0 ^ 2 (by (9-25)) 
Oi + Og 
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«1+ «2 

1 

«1+ 02 

«2^1 

(«afeia — «i«afeii + «ïfeaa — «lOafeai) (by (H-l)) 

(«afeia + «ïfeaa) 

«lAfea 

(by (11.25)) 

a2fei 
A 

(by (9.33) and (9.37)) 

(by (9.32)). 
«1+ «2 

> 0 

This proves (11.24); (11.23) then follows since â  > Oj. 

Appendix 2 

Conditions (9.51), (9.52) and (9.57) are necessary conditions for C pole-

removal at infinity or zero in case 6.221.2. 

Appendix 2.1. C pole-removal at either zero or infinity is impossible if 

either (9.51) or (9.52) is violated {case 6.221.212) 

We have 

C = (Ao A + A/*) [(gl + fei) (A + «2/") + (ga + fe2) (A + ctifi)] + 

+ A(g2 + hi) + A(gi + fei) + gih + gihi 

= Ao (gl + ga + fel + fea)^" + [Ao )«a(gi + fei) + «i(g2 + hi)l + 

+ foigi + g2 + fei + fea) + gifea + g2fei + feiA + fe2A + Aga + Agil + 

+ A [«a(gi + fei) + ai(g2 + fea)] /^^ (12-1) 

^ = Ao ̂ ' + [(«1 + «2)Ao + A + A + A] ^ + [«i«2Ao + 
+ («1 + a2)A + «2A + «lA] /« + ai«aA /"' • (12-2) 

Thus 

F _ A 

C ~ g i + g g + fel-f fe2 
• + 

+ 

+ -c\ 

«laa/co + (hf + «lA + 

f CO )«2 (g2 + fe2) + ai(gi + fei)( - (Al + fe2)(gl + gj) 

gl + g2 + fei + fea 

A)«i(gi + fei) + «2 (g2+ fea)t 

gl + ga + fei + fea 

^ + 

/« + aiaJofi^l^. 

(12.3) 
Also, we have 

F _ Oia^ fl 

C a2(gi+fei)+ai(g2+fe2) 

+ 
+ 

Ĵ  \ rA)«2(gl+ fei) + «l(g2+ fe2)( — («lg2 + «2gl) («lfe2+ a2fel) 
C( . 

+ A+A+A+ 

«2(gl+fel) +ai(g2+fe2) 

/co)«l(g2+fe2) + «^(gl+fel)( 

a2(gi+fei) +«l(g2+fe2) 
^+/«^i' (12.4) 
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We now suppose (9.51) is violated, i.e., 

aia2/co + «2A + «aA + «lA < 0 • (12.5) 

Then, from (12.3), the coefficient of p in the numerator of 

F / C - A / ( g i + g2 + fei + fe2) 
is 

[(gl + fei) («l«2Ao + «lA + a2A + «lA) + (g2 + fe2) («l«2Ao + «2A + 
+ «aA + «lA] < 0, since 02 > Oj. 

Thus (12.5) implies that it is impossible to remove the pole at A ^ cjo from 
the function F/C. In abbreviated form we shall say that X-C pole-removal 
is impossible. (Similarly, if it is impossible to remove the pole at /̂  = 00 
from the function F/C we shall say that p-C pole-removal is impossible.) 

Now, if (12.5) and (9.52) both hold, then the elimination of f^ from 
these two inequalities leads to 

( « i - « 2 ) ( A + A ) > o , 

that is, A - lAI' since O2 > o^. 

Hence the coefficient of p in the numerator of 

F/C — aia^fi/[ai{gi+ hi) + ai(g2+ K)] is less than 

lAI W\ ( g i+ fei) + «f(g2+ fe2)] - (aig2+ «agi) (aife2+ a2fei) 

= al (g2 + fea) — \ ^ — a?g2fe2 — aia2(g2fei + g A ) 
gi + fei 

ai(«i—«2)gifei (g2+fe2) 2 , ai«2(g2fei+gife2) 
= —r aig2fe2 -7-7 

gl + fei gl + fei 

< 0, since 02 > o,̂ . 

On the other hand, if (12.5) holds but (9.52) is violated, i.e., if 

«2/=c + A + A + A < o . (12.6) 

then the coefficient of A in the numerator of 

F/C — aiaifj./[ai{gi+ hi) + Oi(g2+ feg)] is 

[«i(ga+ fea) («i/co + A + A + A) + «2(gi+ fei) («2A» + A + A + A)] < 0 . 

Thus, in either case (12.5) implies the impossibility of fi-C pole-removal. 
At the same time, we note that (12.6) also implies the impossibility of 
fi-C pole-removal. 
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Next , if (9.51) and (12.6) bo th hold, t he elimination of A from these 

inequalities leads to 

{ai-~ai){aj„ + f)>0, 

that is, OgAo < lAI • 

The coefficient of A in the numerator of F/C — A/(gi+g2+fei+fe2) i* then 
less than 

lAI [ga + fea + - (gl + fei)] - (fei + fea) (gi + ga) 
«2 

= - (gi+ fel) —VV " ihigi+higz+ higi) 
«2 ga + hi 

(01/02 — 1) gafea (gl + fei) , feigl + hlgi 
= -~7 feigi - — r — < 0 . 

ga + "2 g2 + fe2 
Thus (9.51) and (12.6) together imply the impossibiUty of A-C pole-removal. 

Moreover, if (12.6) and (12.5) bo th hold, X-C pole-removal is impossible, 

since this is implied by (12.5). 

We conclude t h a t C pole-removal is impossible if a t least one of (9.51), 

(9.52) is violated. T h a t is, (9.51) and (9.52) are necessary conditions for 

C pole-removal. 

Appendix 2.2. C pole-removal at either zero or infinity is impossible if (9.57) 

is violated {case 6.221.222) 

If (9.57) is violated, then 

«i/« + A + A + A < o . (12.7) 

We note that (12.7) implies (12.5); hence, X-C pole-removal is impossible. 

The coefficient of fx in the numerator of F/C — 0]^a2,M/[a2(gi+fei) + 

ai(g2+fe2)] is» by (12.4) and (12.7), less than 

— (A + A) [a2(gi+ fei) + <4ig2+ hi)] — {aigi+aigi) {aihi+aihi) 

= -«2A(gi + fel) - a?A(g2 + fea) - aia2(gife2 + g2fei) 

= — a A ( A + ^gij-«i«afei(g2 + ^ A ) - «2Agi — aïAg2 < 0, 

since A < 0, gi > 0, fe^ > 0, 

02 > Oi. 

A > o , g2<o, fe2^o, 

We conclude t h a t (9.57) is a necessary condition for C pole-removal. 
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Appendix 3 

The coefficients of the partitions of F, G in case 6.221.22 are non-negative 

Considering F , we observe that (9.47) implies (9.46), so that it is sufficient 
to prove (9.47), (9.48) and (9.49). 

Appendix 3.1. Case 6.221.221 

From (9.55) we have 

ai«2Ao + «2A1 + «lAi = aia2Ao / ^ " ^ («2A + «lA) = 0 . 
«lA + a2A 

A + A a + A a = A + ( 1 - 0 ( A + A ) > 0, if A + A > o. 

Otherwise, if A H" A < ^' tben 

A + A 2 -f A2 = A + A + A + "^"^•('^y^ + /^^ > 0 (by(9.54)), 
a2A + «lA 

/ , N ^ i r , r / I \ r i «i«2Ao + «2A+ «lA / /• I r\ 
(«1+ «2)A+ a2A2+ aiA2 == («1+ a2)AH J-. 7 («2A + «lA) 

a2A+ «lA 

= («1 + a2)A + «i«a/„ + «2A + «lA > 0 (by (9.39)). 

This establishes the non-negativeness of the coefficients of the F partitions. 
For the G partitions, it is sufficient to note that 

Gi=CG, G 2 = ( 1 - C ) G , 

from which it follows that the coefficients of Gi and Gj are non-negative. 

Appendix 3.2. Case 6.221.222 

From (9.53) we have 

From (9.58), 

aia2Ao + «a/ii + «i/ai = <̂ ' 

A + Aa + Aa = A + A + A + «1 ƒ„ > 0 (by (9-57)), 

(«1+ aa)A+ «2A2+aiA2 = («1+ a2)A+ «2A+ «lA-f ai«aAo > ^ (by (12.2)). 

This establishes the non-negativeness of the coefficients of the F partitions. 
For G, it is sufficient to show that gu + g^^ ^ 0, since 02 > o^. 

By the separation conditions and Theorem 4, 

gia + g22 > IA2I - A a = - « l A o - A - A > 0 . 
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Appendix 4 

Partial pole-removal in case 6.221.2 is impossible 

Under the operation of partial C pole-removal C, G, 77 remain invariant 
while F and D take on new values. Denoting these by F + öF and D + öD, 
we have, from (2.5), 

dF{G + H) = CdD. \ 
By (12.3), (12.4), [ (13.1) 

dF=:-{lX + mfi)C, ) 
where 

0 < i < 
gl -f ga + fei + fe; 

0 < m < 

a 

«102 
(13.2) 

Thus 

Since 

we can put 

a2(gi4-fei) + «i(ga+fea) 

(57) = -{IX + mfi) {G + H). (13.3) 

F/D =f^X+fofi+ fi/{X + aip) + A/(A + aifx), 

F={fa,}^+fof^)D + xX+yfi, ) 

(F+dF) = {f'„X+fip) {D + ÖD) + x'X+y'fi. S 
(13.4) 

' CO 

Also, 
G + H = pX + qp, ^ 

P = gl + g2+ hi+ hi, q = a2(gi+fei) + Oi(g2 + fe2) . 
where . . . . . . j ^̂ '̂̂ ^ 

From (13.1), (13.3), (13.4), (13.5), 

F-{lX+mfi)C={f'^X+fifi) [D-{lX + mfi){pX+qfi)] + x'X+y'fi. (13.6) 

Comparing the coefficients of A*, fi^ on the two sides of (13.6), by means 
of (12.1), we find 

/ „ ( i - i p ) = / ; ( i - / p ) , 

A(ai«a — mq) = A(aiaa — mq), 

" '^ '^ ' '^ ƒ ; = ƒ « , A = A , (13.7) 
1 1 «i«a 

smce t < —, m < - — . 
P 9 

From (13.4), (13.6) and (13.7), 

xX+yp- {IX + mfi)C^ x'X + y'fx - {f^ X +ffi) {pX + qfx) {IX + mfi). 
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But, from (12.1), 
C={f„X+fofl){pX + qp) + A, 

where 
^ = Ag2 + Agi + gife2 + g2fei + feiA + fe2A 

(g2+ fea) W- (gl + fei) + g A + gafei 
gl + fel ga + fea 

(gA-gafei)^ 

(gi+fei)(g2+fe2) 
> 0 . 

Thus 
x' ^ X — lA ^x, \ 

. (13.8) 
J = J — mA ^ y . ' 

Next, from (13.3), (13.5), we have 

D' = {l — lp)X'^+ (oi + a^—lq — mp) + (01O2 — mq) fi^. (13.9) 

Let the factors of D' be A + a!ip, X + a'^fx; then, substituting —03/(1—Ip) 
for Â  in D', we obtain 

Oi — Iq — mp — — («i«2 — "*?) (1 — 'p) 
«2 

= /(OJP — q) h "il P) < 0, in virtue of (13.5). 

, «a «a Hence either < o^, or > Og, where O2 > ô  . 
1 — Ip 1 — Ip 

But Og is a continuous function of /, m in the ranges 

1 „ «1«2 
0 < / < - , 0 < m < - ^ - ^ . 

P 9 

Since for i = m = 0, Og = O2, the only possibility is 

a, 1 —/p 
Also, V (13.10) 

aitti—mq OjOg 
a^a,. = — < 
^ " 1-lp -1-lp 

We now consider conditions (9.51), (9.52), (9.57) after partial C pole-
removal has been carried out. Denoting the new values of A? A by f, f, 
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we have, from (13.4), (12.2) and the fact that the coefficient of Â  in D -|- dD 
is 1—lp, 

^' = (f+fï)a-ip), 
y'={a'if + a'if^){l-lp). 

Hence, from (13.4), (13.8), (13.10), 

aia2Ao + «2A + a2A + «lA 

- . p ) . i ^''-''^ 

«i«a/=o + «aA + «2A + «iA < 

a2Ao + A + A + A < 

1 — lp 

«2A0 + A + A + A 
1-lp 

(13.12) 

Thus in case 6.221.21, if partitioning is initiaUy impossible, it will 
remain so after performing partial C pole-removal, provided 

A<o, A<o. 

Since x' < 0, at least one of A', A' i® negative. We thus have to consider the 
possibiUty of 6.221.21 going over to 6.221.22 or to 6.221.23. 

In Appendix 5 we prove that 

[«i/co + A + A + A - («i/co + A + A + A)] (1 - ip) 

decreases as /, m increase, so that if (12.7) holds for / ^ m = 0, it will 
hold for all other l,m. Now (12.6) impUes (12.7). Also, if A' > 0 for parti­
cular values of /, m, then A'=^ 0 for some intermediate, i.e., smaller values 
of /, m, since A' is a continuous function of /, m. But (12.5) with A zero is 
equivalent to (12.7) with A zero. Therefore, if either (12.5) or (12.6) holds, 
and if, as I, m increase, case 6.221.21 is carried over into case 6.221.22, 
then (12.7) will hold under the new conditions. 

Next, we observe that 6.221.22 cannot go over to 6.221.23 without first 
going over to 6.221.21, since, otherwise, A and A would have to be simul­
taneously zero for a particular I, rn, in contradiction to (12.7). Finally, 
we observe that (12.7) implies (12.5). 

We therefore conclude that if partitioning is initially impossible then no 
amount of partial C pole-removal can induce conditions under which 
partitioning becomes possible. 

Appendix 5 

The function [(o^—oJAo + A' + A ' — ( A + A ) ] (1—'p) decreases as I, m 
increase in the intervals 

1 0,0, 
0 « : / < - , 0 < m < ^ - ^ . 

P S 
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From (13.9), we have 

"i = ^71—r^)ai + « 2 - / 9 - ' » P - [ ( « i + « 2 - ' n p - ^ 9 ) ' ' - 4 ( « i a 2 - ' " 9 ) ( l - ' p ) ] ' ' ' | -
2(1 —«P) 

Let W = (1- ip) [ ( a i - a , ) / „ + f + f -f -f] • 

From (13.8), (13.11), 

^ = l f \— 4 -2 2g(oi+aa—wp—^g) — 4p(aia2~mg) ^ 

dl ^^"i * ^ " ' 2[(oi+Oa-mp-/g)2-4(aia2-mg) {1-lp)]''' S ^ 

-fp(A+A)-^. 
ö ^ ^ 1 ƒ ( _| 2p(ai+02—mp—Zg)—4g(l-fp) t 
dm ^ • ' " ^ ^ ^ 2 [ ( o i + 0 2 - m p - / g ) 2 - 4 ( 0 ^ 0 2 - m g ) ( l - / p ) ] ' / ' V 

ö /ö^ = ^ )P9[(«i+ a 2 - ' » P - i 9 ) ' ' - 4 ( a i « 2 - ' » 9 ) (l-'^P)] + 

+ [P(ai+a2—ny—'9) —29(1—''P)] [9(«i+ Oa—mp—/g) —2p(oi02—mg)](, 

where X = [(0^+02—mp — /g)2 — 4(0103—mg) (1 —/p)f'^ > 0. 

(By (13.2), (13.5), (13.9) o^, Og are positive, so that X is real.) 
Thus 

d^W ƒ 
^ ^ == ^ («1+ «2— mp — Iq) (oap — g) (g — aip) > 0, 

for aU 0 < i < 1/p, 0 < m < o^Oa/g. 

Thus dW/dl increases with m, attaining its maximum at m = o^Oa/g, 
and dW/dm increases with I, attaining its maximum at / = 1/p. Hence 
dW/dl < Oip/„ + p(A + A) - ^ < 0 (by (12.7)), and dW/dm < 0 . 
Hence W decreases as /, m increase. 
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Summary 
The synthesis of series-parallel LC three-terminal networks is inves­
tigated. A set of necessary and sufficient conditions and a method of 
realization of all sets of series-parallel LC three-terminal-network 
functions from the zeroth to the sixth degree are given. Some of these 
conditions are essentially new, tha t is, independent of any previously 
derived conditions. They are necessary for the synthesis of series-paral­
lel LC three-terminal networks, but it is not known whether they are 
also necessary for the synthesis of three-terminal networks of arbitrary 
structure. In principle, i t is possible to apply the method to functions 
of higher degree than the sixth, but the amount of computation 
required increases in general very rapidly with the degree. 

Résumé 
Etude de la synthese des tripöles série-parallèle composes d'inductan-
ces et de capacités. On donne des conditions nécessaires et suffisantes 
et une m.éthode de realisation de tous les systèmes de fonctions des 
degrés zéro a six qui définissent des tripóles LC série-parallèle. Quel-
ques-unes de ces conditions sont essentiellement nouvelles, c.-a-d. 
indépendantes de conditions déja connues. Elles sont nécessaires a la 
synthese des tripöles LC série-parallèles, mais on ignore si elles sont 
nécessaires également a la synthese des tripóles de structure arbitraire. 
En principe, il est possible d'appliquer la methode aux fonctions d'un 
degré supérieur au sixième, mais en general Ie calcul devient rapide-
ment plus compliqué a degré croissant. 
Zusammenfassung 

Die Synthese der ausschlieUlich aus Kapazitaten und Induktivitaten 
bestehenden Serie-Parallel-Netzwerke mit drei Klemmen wird unter-
sucht. Notwendige und hinreichende Bedingungen und eine Methode 
zur Verwirklichung aller Funktionensysteme vom nullten bis ztmi 
sechsten Grad für diese Dreipole werden angegeben. Einige dieser 
Bedingungen sind neu und nicht aus bereits bekannten Bedingungen 
ableitbar. Für die Synthese von Serie-Parallel-LC-Dreipolen sind 
diese Bedingungen notwendig; es ist j edoch unbekannt, ob sie für 
die Synthese von Dreipolen wiUkürlicher Struktur notwendig sind. 
Die angegebene Methode kann an sich auch bei Funktionen von 
höherem als dem sechsten Grad angeweudet werden, jedoch nimmt 
das AusmaB der erforderlichen Berechnungen im allgemeinen mit 
Erhöhung des Grades ausserordentlich schneU zu. 

Samenvatting 
De synthese van serie-parallel-driepolen, uitsluitend opgebouwd 
uit zelfinducties en capaciteiten, wordt onderzocht. Noodzakelijke en 
voldoende voorwaarden alsmede een methode voor de realisatie van 
alle stelsels van functies van de nulde tot de zesde graad, die deze drie-
polen beschrijven, worden aangegeven. Enige van deze voorwaarden 
zijn wezenlijk nieuw, d.w.z. onafhankelijk van de tot nu toe bekende 
voorwaarden. Voor de synthese van serie-parallel-L C - driepolen zijn 
deze voorwaarden nodig, doch het is onbekend of zij voor de synthese 
van driepolen van willekeurige structuur nodig zijn. In principe is het 
mogelijk de methode op functies van hogere dan de zesde graad toe te 
passen, echter wordt in het algemeen de vereiste berekening snel inge­
wikkelder bij verhoging van de graad. 
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STELLINGEN 

I 

The properties of parallel-T networks given by Smith foUow directly 
from eqs (7.1) et seq. of this thesis. 

D. H. Smith, Electron. Eng. 71-77, Feb., 1957. 

II 

The theorem concerning current distribution in a network, proved by 
Vratsanos, can be very simply established by means of a general network 
theorem of Tellegen. 

J. Vratsanos, A.E.Ü. 11, 76-80, 1957. 
B. D. H. Tellegen, Philips Res. Rep. 7, 259-269, 1952. 

I l l 

A low frequency ideal gyrator can be reaUzed by a point-contact transis­
tor and a resistance network. 

rv 
The calculation by Rotow of the signal-to-noise ratio of an image Orthicon 

is based on erroneous physical assumptions. 

A. A. R o t o w , IRE Conv. Record, 4, III, Electron devices and 
receivers, 41-49, 1956. 

V 

The Binet-Cauchy Theorem of matrix algebra is not employed in 
engineering research as much as its simphcity and usefulness would 
justify. 

vr 
The development of a topological theory of multi-coloured linear graphs 

would be of great help in the search for general methods of network 
synthesis. 



VII 

The excursion into homology theory in Roth's proof of the vaUdity of 
Kron's method of tearing is not necessary for establishing the main result. 

J. P. R o t h , Proc. Nat. Acad. So. 41, 518-521, 1955. 
41, 599-600, 1955. 

VIII 

The advent of the Kron process of tearing opens up the possibiUty of 
replacing analogue computers by digital computers in guided missile 
simulation. 

IX 

The Fialkow and Gerst method of synthesis of transfer functions often 
introduces extra common factors when partitioning is carried out, thereby 
leading to unnecessarily many elements in the reaUzation. 

A. F i a l k o w and I. Gerst , Quart, appl. Math. 10, 113-127, 1952. 

X 

The various equivalent circuits for anti-symmetrical electro-mechanical 
transducers, given by Hunt, cannot be regarded as satisfactory representa­
tions of the given physical system. 

F.V. H u n t , "Electroacoustics", Wüey N.Y., 1954, chap. 3. 

XI 
The setting up of the Schmidt cameras for tracking the proposed artiScial 

satellite provides an opportunity, which should not be missed, for the 
accurate observation of unidentified flying objects. 

XI I 

A closer co-operation between the various firms of the aircraft industry 
of Western Europe would lead to favourable consequences for the industry 
as a whole. 

XI I I 

The existing custom in New Zealand whereby it is usual for students 
during their long vacation to engage in some kind of manual work has an 
important influence upon their general development. 

XIV 

The system of technical education at present existing in the Soviet Union 
would lead to undesirable long-term consequences if adopted in Western 
Europe. 


