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Abstract

We present Sadcher, a real-time task assignment framework for heterogeneous multi-robot teams that
incorporates dynamic coalition formation and task precedence constraints. Sadcher is trained through
Imitation Learning and combines graph attention and transformers to predict assignment rewards be-
tween robots and tasks. Based on the predicted rewards, a relaxed bipartite matching step generates
high-quality schedules with feasibility guarantees. We explicitly model robot and task positions, task
durations, and robots’ remaining processing times, enabling advanced temporal and spatial reason-
ing and generalization to environments with different spatiotemporal distributions compared to training.
Trained on optimally solved small-scale instances, our method can scale to larger task sets and team
sizes. Sadcher outperforms other learning-based and heuristic baselines on randomized, unseen prob-
lems for small and medium-sized teams with computation times suitable for real-time operation. We
also explore sampling-based variants and evaluate scalability across robot and task counts.

To address performance limitations identified for large-scale problem instances, we experiment with
using Reinforcement Learning (RL) to fine-tune the imitation-learned model. Both discrete and con-
tinuous RL formulations are explored, leveraging Proximal Policy Optimization (PPO). This allows for
training on larger problem instances, for which optimal solutions for IL are infeasible to obtain. Our RL
experiments provide insights into the comparative advantages and trade-offs of IL and RL methods.

In addition, we release our dataset of 250,000 optimal schedules to facilitate future research. We
include a detailed description of the instance generation and the Mixed-Integer Linear Programming
(MILP) formulation used to solve them optimally. Furthermore, this thesis contributes a lightweight
simulation environment with visualization tools for benchmarking different task assignment algorithms.
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1
Introduction

Preliminaries
The field of Scheduling and Multi-Robot Task Assignment includes many specialized approaches, and
terms are often used differently depending on the context and paper, which might lead to confusion.
This section defines the key terms used throughout the thesis to provide a consistent foundation.

Multi-Robot Task Assignment
Multi-robot task assignment (MRTA) aims to assign tasks to robots while meeting constraints to min-
imize an application-specific cost function [1]. The result is a (near-) optimal mapping from robots to
tasks with corresponding starting times [2], called a schedule. Robots are assigned to tasks based on
their required skills, with tasks varying in type and requirements. The value of completing each task
can differ based on its finish time, the assigned robot, or other factors. Furthermore, task constraints
influence the optimal schedule, since a specific order for task completion may be necessary [3].

Heterogeneous Robots
A team of robots is considered heterogeneous if the members offer different capabilities [4]. According
to [5] robots can either differ in physical or behavioral aspects. Physical heterogeneity refers to differ-
ences in hardware or physical constraints. For example, a team consisting of a fast drone equipped
with a camera and a slow mobile manipulator that can lift heavier objects. Behavioral heterogeneity
occurs when the software that produces the behavioral model differs. Some robots might try to maxi-
mize a different objective function than others. For this work, a heterogeneous robot team is defined
as physically different robots that work together to optimize for a shared goal.

Dynamic Coalition Formation
In MRTA robots might need to form coalitions (also called sub-teams) to execute a task when no single
robot can provide all required capabilities [6]. Coalitions can either be formed statically or dynamically.
Static formations are grouped once and remain the same over the complete task assignment horizon.
Dynamic coalitions change their formation from task to task to ensure efficiency [7]. The requirement
to form coalitions is closely related to tackling multi-robot (MR) tasks in the iTax taxonomy [8].

Motivation
Autonomous multi-robot systems (MRS) are designed for complex, real-world settings, including earth-
quake disaster response scenarios [9], autonomous construction [10], production assembly processes
[11], or search and rescue missions [12]. Interest in MRS and multi-robot task assignment (MRTA) has
grown rapidly in recent years [13]. Efficient MRTA algorithms are essential to optimize resource usage
and minimize operational time [14]. MRS improve performance and enhance system robustness as
a multi-robot team is more resilient against individual robot failures and performance bottlenecks [15,
16]. Using sub-teams of robots, i.e., dynamic coalition formation, enables teams to tackle complex
tasks that would otherwise be infeasible for a single robot [16–18]. In practice, relying on a team of
homogeneous, interchangeable robots where each robot possesses all skills can become impractical
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2

if task requirements are numerous or highly diverse, involving different sensors and actuators [19]. In-
stead, using (redundant) heterogeneous robots brings practical and economic advantages. It allows
leveraging existing specialized robots [20] and deploying simpler robots that are more cost-effective
to implement and maintain [16] and are more robust to failures [14]. MRS operate in dynamic envi-
ronments where sudden changes, new tasks, unexpected task requirements, robot malfunctions, or
moving obstacles can occur [13]. Hence, the ability to replan adaptively and in real-time is essential.
Modeling precedence constraints, which impose a logical temporal sequence among tasks, further en-
hances applicability to real-world scenarios [21] where some tasks depend on the completion of prior
tasks. E.g., in autonomous construction, gathering materials must precede assembly [10].

Contributions
Motivated by these challenges, this thesis proposes Sadcher, a framework for real-time scheduling of
heterogeneous multi-robot teams with dynamic coalition formation and precedence constraints, based
on Imitation Learning (IL). Additionally, fine-tuning with Reinforcement Learning (RL) is explored. The
main contributions are:

• A learning-based model, combining graph attention networks and transformers, inspired by [22],
but extended by explicitly modeling robot and task positions, task durations, and robots’ remaining
processing times. This enables advanced spatiotemporal reasoning and generalization.

• A dataset containing 250,000 optimally solved small-scale problem instances (8 tasks, 3 robots, 3
skills, 1-6 precedence constraints), including detailed reporting on the dataset generation. While
primarily intended for training IL models, it also enables benchmarking against optimal solutions.

• A lightweight simulation environment to test different scheduling algorithms on varying problem
instances, including tools for visualization and benchmarking.

• An extensive evaluation of two Sadcher variants (deterministic and sampled outputs) against
multiple baselines across problem scales.

• Quantifying the model’s emergent understanding of task dependencies via a predecessor assign-
ment ratio, showing anticipatory behavior in scheduling.

• An exploration of different RL formulations - with continuous and discrete action spaces - and
experiments to research fine-tuning the IL model. We also provide a detailed discussion of the
(dis-)advantages of RL and IL.



2
Related Work

This chapter provides a brief overview of related work. For a more detailed analysis, refer to the com-
prehensive literature review conducted at the start of this thesis project.

Referencing the taxonomy introduced in [23] and extended in [8], MRTA problems can be categorized
on 4 axes: (1) single- or multi-task robots (ST/MT), (2) single- or multi-robot tasks (SR/MR), (3) instan-
taneous or time-extended assignment (IA/TA) where TA incorporates information about future tasks
and scheduling decisions, (4) interdependence of agent-task utilities, i.e. with cross-dependencies
(XD), an agent’s utility for a task depends on the tasks assigned to other agents. This work addresses
ST-MR-TA-XD settings

Conventional Methods
Mixed Integer Linear Programming (MILP) offers exact solutions for complex ST-MR-TA-XD problems
[24], though its exponential runtime hinders real-time use. The MILP-based CTAS framework [19]
explicitly models risk in agent capability for task decomposition and scheduling. Simpler heteroge-
neous ST-SR scenarios can be addressed with the Tercio algorithm [11], which uses an MILP-based
task allocator and a polynomial runtime task scheduler. Auction algorithms like [12, 25] treat tasks
as non-atomic – tasks execution can be incremental, not requiring coalition formation. [26] uses auc-
tions to solve heterogeneous ST-MR problems with atomic tasks. Genetic Algorithms offer anytime
solutions that balance exploration and exploitation: [27] tackles heterogeneous ST-SR, [28] focusses
on coalition formation of homogeneous robots, while [20] can handle both heterogeneity and coalition
formation. Other optimization metaheuristics applied to the heterogeneous ST-MR case include Ant
Colony Optimization [18] and Particle Swarm Optimization [29]. Greedy formulations, such as [14],
employ construction and improvement heuristics to balance runtime and performance.

Learning-based Methods
Deep learning methods promise fast solution generation and good scalability, by offloading most of
the computation to the training phase [30]. Reinforcement Learning (RL) does not require a training
dataset, but might spend a lot of time on infeasible solutions [31]. RL is used to solve ST-SR problems
with mildly heterogeneous robots – robots differ in efficiency but can all perform any task – in [32]
and [33]. Other RL methods solve ST-MR problems with dynamic coalition formation, but only for
homogeneous robots [7, 34]. Recently, RL has been used to tackle heterogeneous ST-MR problems
with dynamic coalition formation in [35]. The authors mitigate some of the problems RL faces through
a flash-forward mechanism which allows for decision reordering to avoid deadlocks during training.

Instead of RL, other methods use Imitation Learning (IL) from optimal solutions during training, which
requires a (computationally expensive) expert dataset, but benefits from stable and efficient training.
[31] presents an IL method for mildly heterogeneous robots without coalition formation (ST-SR). Both
[36] and [22] address heterogeneous ST-MR problems with a network predicting task assignment re-
wards and a bipartite matching algorithm yielding task assignments based on these rewards. In [36],
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4

coalition formation is only considered if a task fails to be completed by a single robot . There are cases
in which a more optimal schedule could be obtained by considering coalition formation for all tasks,
e.g., two robots are faster at completing the task than one. [22] improves upon this by always consid-
ering coalition formation. Furthermore, they introduce voluntary waiting, which increases performance
through enabling better future coalition formation by delaying task assignments. However, [22] omits
task/robot locations and durations in the input to their network. This implicitly assumes task durations
and travel times to be negligible or to match the distribution of the training data.

In this thesis, we extend previous IL methods by explicitly modeling robot/task positions, task durations,
and robots’ remaining time to complete the current task. This enables advanced spatiotemporal reason-
ing, e.g., synchronizing robot arrivals and anticipating task readiness and robot availability. Additionally,
it supports generalization to environments with unseen spatiotemporal distributions.



3
Problem Statement

Fig. 3.1. Illustrative use case of autonomous construction on Mars. Circles represent tasks, color indicates required skills. Robot
skills are shown as colored squares. Since no robot possesses all three skills, tasks requiring multiple skills (e.g., search for
material in top left) must be executed by a synchronized coalition of robots.

Notation. Matrices are boldface uppercase (e.g. M ∈ IRn×m), vectors are boldface lowercase (e.g.
v ∈ IRd), and scalars are lowercase (e.g. s).

We model a system of N heterogeneous robots, M tasks, and a set of robot skills S. Each robot
is capable of performing a subset of skills from S; each task requires a subset of skills from S to be
performed at its location for the given task duration.

The N heterogeneous robots with Si ⊆ S distinct skills, are modeled as an undirected graph Gr =
(R,C), where each vertex inR = {ri}N is a robot. Robot states ri = [pr

i , t
r
i , a

r
i , c

r
i ] include position pr

i ∈
IR2, remaining duration at the current task tri , the robot’s availability ari ∈ {0, 1}, and the binary capability
vector over the global skill set cri ∈ {0, 1}|S|. C ∈ {0, 1}N×N represents the network connection among
the robots. For simplicity, we assume a fully connected graph, so Ci,j = 1 ∀i, j. However, our model is
designed to accept any connected graph structure as input.
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6

The M tasks and their respective precedence constraints are represented as a directed acyclic graph
Gt = (T ,P). Each task is a vertex in T = {tj}M , and is described by tj =

[
pt
j , t

t
j , r

t
j , s

t
j

]
, with position

pr
i ∈ IR2, expected duration ttj , required skills rtj ∈ {0, 1}|S| and status stj ∈ {0, 1}3. The status indicates

whether tasks are ready, assigned, or incomplete, e.g., stj = [1, 0, 1] represents a task that is ready to
be scheduled, currently not assigned, and incomplete. Precedence constraints are encoded in the
edges PM×M , where Pi,j = 1 means the i-th task is a predecessor of the j-th task. The j-th task is
only ready to be scheduled if all its preceding tasks have been completed. A task can only commence
when all required skills are covered by the dynamically formed coalition of robots assigned to it. This
can be denoted as cC � rtj where cC is the element-wise sum of robot capabilities cri of assigned
robots and� is the element-wise greater-or-equal operator. The tasks require tightly coupled coalitions
[28] - all robots have to be present at the task location for the entire execution duration. Furthermore,
we introduce an idle task tM+1 that robots can choose to increase overall performance by delaying
assignments until a better coalition can be formed. The idle task is always ready to be assigned.

Robots start at location pstart
i and end at pend

i . The cost function aims to minimize themakespan, defined
as the latest arrival time of any robot at its end location after completing all its assigned tasks:

min max
i∈{1,...,N}

(
tfinishi + τ

(
pfinish
i ,pend

i

))
(3.1)

where tfinishi is the time robot i finishes its final task, which is computed as the sum of its execution times,
idling times, and travel times. τ

(
pfinish
i ,pend

i

)
is the travel time from the location of the last finished task

pfinish
i to the end location pend

i . Travel times can be computed using simple Euclidean distance or more
advanced path planning algorithms that account for obstacles.

There are several assumptions to be made to scope the problem:

A1: There exists a perception/task decomposition system, that due to previously learned affordances
[37] can generate tasks with according:

(a) Locations
(b) Estimated task durations (per robot)
(c) Required skills
(d) Precedence constraints relating to other tasks

A2: The robot team composition is known, including:

(a) Number of robots
(b) Position of each robot
(c) Skills of each robot
(d) Travel speeds

A3: The robots are equipped with a perception system, capable of:

(a) Locating obstacles for collision avoidance
(b) Assessing whether a task was successfully completed after attempted execution

A4: The robots are equipped with a low-level control/motion planning system, capable of:

(a) Generating feasible/collision-free trajectories for task execution
(b) Locally avoiding dynamic obstacles, e.g. other robots, customers
(c) Execute the generated trajectories, both for traveling and task execution

A5: All robots are connected through a stable communication network so the schedules generated by
a centralized planner can be sent and executed



4
Dataset

4.1. Problem Instance Generation
To generate each problem instance and the corresponding solution, we:

1. Draw the robot skill matrix Q ∼ Bernoulli(0.5)n×ℓ until every robot has ≥ 1 skill and every skill is
present in at least one robot.

2. Draw the task requirement matrix R ∼ Bernoulli(0.5)m×ℓ until every task requires ≥ 1 skill;
prepend/append all-zero rows for the start and end locations to obtain R ∈ {0, 1}(m+2)×ℓ.

3. Draw task execution times T e ∼ U{50, 100}m and pad with zeros for start and end task.
4. Place each task uniformly at random on a 100× 100 grid
5. Set T t

jk to the Euclidean distance between tasks j and k (continuous, symmetric, deterministic).
6. Sample up to nprec random, acyclic precedence constraints from the internal task indices 1, . . . ,m.
7. Solve the drawn problem instance with the MILP formulation below in Section 4.2.

To generate a dataset on the order of 105 solved instances within feasible computation time (around 1
week), we limit the problem size to 8 tasks, 3 robots, and 3 unique skills. The dataset was generated us-
ing the available resources of the DelftBlue High PerformanceCompute Cluster1 using a dedicated CPU
node equipped with 48 cores (2× Intel Xeon E5-6248R, 24C, 3.0 GHz), leveraging full multi-threading
capabilities. We generate 250,000 problem instances and solutions, with a varying number of prece-
dence constraints. To ensure full open-source reproducibility, the model is built in PuLP2 and solved
with the CBC3 MILP solver.

1https://www.tudelft.nl/dhpc/system
2https://github.com/coin-or/pulp
3https://github.com/coin-or/Cbc
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4.2. MILP formulation 8

4.2. MILP formulation
For optimal ”ground-truth” data generation we use the following formulation. Compared to [24], we add
constraint C16 to model explicit temporal precedence constraints between pairs of tasks. Furthermore,
we omit the stochastic travel times, modeled as the Gaussian delay buffer T s, and the associated
chance-constrained derivations (Equations (17)–(19) in the paper). In our formulation, travel times are
assumed to be fixed and known, since our framework handles deviations via real-time re-planning and
does not benefit from conservative safety margins.

Notation
R = {0, . . . , n−1} index set of robots
T = {0, . . . ,m+ 1} index set of tasks; 0: start depot, m+1: end depot
S = {0, . . . , ℓ−1} index set of skills
Qis ∈ {0, 1} 1 iff robot i possesses skill s
Rks ∈ {0, 1} 1 iff task k requires skill s
T e
k ∈ R≥0 deterministic execution time of task k

T t
jk ∈ R≥0 deterministic travel time from task j to k (identical for all robots)
P ⊆ {(j, k) | 1 ≤ j < k ≤ m} given pairwise precedence constraints

M =
∑
k

T e
k +

m∑
j=0

max
k

T t
jk a valid “big-M ” upper bound on any arrival time

Decision variables
Xijk ∈ {0, 1} 1 iff robot i performs task k immediately after task j

Yik ∈ R≥0 arrival time of robot i at task k

Y max
k ∈ R≥0 start time of task k = latest robot arrival

Zks ∈ Z≥0 # robots at task k that offer skill s
Zb
ks ∈ {0, 1} 1 iff skill s is excessive (superfluous) at task k

Tmax ∈ R≥0 makespan (objective)

Objective
minTmax (4.1)

where:
Tmax ≥ Yi,m+1 + T e

m+1 ∀i ∈ R. (C0)

Route-validity Constraints
• Start from the start location 0

m+1∑
k=1

Xi0k = 1 ∀i ∈ R. (C1)

• End at exit location m+ 1
m∑
j=0

Xij,m+1 = 1 ∀i ∈ R. (C2)

• Start location is exit only
m+1∑
j=1

Xij0 = 0 ∀i ∈ R. (C3)

• End location is entry only
m∑

k=0

Xi,m+1,k = 0 ∀i ∈ R. (C4)
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• Enter each task k at most once
m∑
j=0

Xijk ≤ 1 ∀i ∈ R, k = 1, . . . ,m. (C5)

• Leave each task j at most once
m+1∑
k=1

Xijk ≤ 1 ∀i ∈ R, j = 1, . . . ,m. (C6)

• Flow conservation at task j

m∑
k=0

Xikj =

m+1∑
k=1

Xijk ∀i ∈ R, j = 1, . . . ,m. (C7)

• No self-loops
Xijj = 0 ∀i ∈ R, j ∈ T . (C8)

Skill-feasibility Constraints
• Eligibility of a robot for a task (providing at least one skill)

m∑
j=0

Xijk ≤
∑
s∈S

QisRks ∀i, k ∈ {1, . . . ,m}. (C9)

• Computation of delivered skills

Zks =
∑
i∈R

m∑
j=0

Xijk Qis ∀k ∈ {1, . . . ,m}, s ∈ S. (C10)

• Skill coverage
Zks ≥ Rks ∀k ∈ {1, . . . ,m}, s ∈ S. (C11)

• Identifying excess skills:
Binary Zb

ks is 1, if skill s is provided by more robots than required

Zks −Rks − nZb
ks ≤ 0 (C12a)

Zks −Rks − 1 + n
(
1− Zb

ks

)
≥ 0 (C12b)

• Rejecting robots that only provide redundant skills∑
s∈S

QisRks(1− Zb
ks) ≥

m∑
j=0

Xijk ∀i, k ∈ {1, . . . ,m}. (C13)

Temporal Constraints
• Task start time

Y max
k ≥ Yik ∀k ≥ 1, i. (C14)

• Temporal Coherence (for assigned robots: arrival time of robot i at task k is sum of arrival time
at previous task j, execution time of j and travel time between j and k

Yik ≥ Y max
j + T e

j + T t
jk −M

(
1−Xijk

)
Yik ≤ Y max

j + T e
j + T t

jk +M
(
1−Xijk

) ∀i, j ≤ m, k ≥ 1. (C15)

Precedence Constraints
• Successor k can only start after completion of predecessor j

Y max
k ≥ Y max

j + T e
j . ∀(j, k) ∈ P (C16)



5
Method

We design the Sadcher framework, consisting of a neural network based on attention mechanisms
to predict assignment rewards for robots to tasks that is agnostic to changes in the size of the input
graphs, i.e. can handle arbitrary numbers of robots and tasks. A relaxed bipartite matching algorithm
extracts task assignments based on the predicted reward. During runtime, the method asynchronously
recomputes assignments at decision steps, i.e., when robots finish tasks or new tasks are announced.

5.1. Network Architecture
The high-level network structure is depicted in Fig. 5.1 and is similar to [22], but extended with a dis-
tance multilayer perceptron (MLP) that informs the network about relative distances between all robots
and tasks and separate heads for predicting rewards for ”normal” tasks and idle action. Furthermore,
we feed richer features to the network by explicitly modeling robot/task positions, task durations, and
robots’ remaining time to complete the current task. This enables advanced spatiotemporal reasoning,
e.g., synchronizing robot arrivals and anticipating task readiness and robot availability. Additionally, it
supports generalization to environments with unseen spatiotemporal distributions.

The key components of the network are graph attention encoders (GAT) [38], transformer blocks [39],
and reward MLPs that project latent embeddings into a reward matrix.

5.1.1. Graph Attention (GAT) Encoder Blocks
After mapping robot features ri and task features tj into d-dimensional embeddings, the embedded
robot and task features are processed by separate GATs to capture local information-rich latent repre-
sentations of the input graphs. GATs process a set of node features, incorporating information from
neighboring nodes based on an adjacency matrix. While the robot features are processed as a fully
connected graph, assuming all-to-all attention, the task GAT leverages the encoded precedence con-
straints in the adjacency matrix to understand the temporal task logic. A single head of the GAT com-
putes attention weights αij between node i and its neighbors j (including itself), based on a projected
feature vector h′ = hWh:

αij =
exp(LeakyReLU(a([h′

i||h′
j ])))∑

k∈N i∪i exp(LeakyReLU(a([h′
i||h′

k])))
(5.1)

where a is a learnable linear transformation, || denotes concatenation and Ni is the set of neighbors
of node i. A Leaky ReLU [40] in combination with a softmax function over the neighbors of node i
yields the final αij . The resulting αij represent the relative importance of node j to node i, enabling
context-aware feature propagation. Spatiotemporally related tasks or robots with complementary skills
will attend more strongly to each other.

10



5.1. Network Architecture 11

Fig. 5.1. Sadcher architecture overview. Robot and task graphs are processed by graph attention and transformer encoders and
concatenated with distance features. The reward matrix is estimated by the Idle and Reward MLPs and final task assignments
are extracted using relaxed bipartite matching. B: batch size, N : number of robots, M : number of tasks, dr : robot input
dimension, dt: task input dimension, d: latent dimension.

The output hGAT
i for a single head at node i is a sum of a self-loop contribution and the transformed

neighbor contributions:

hGAT
i = αiih

′
i + LeakyReLU

 ∑
j∈Ni,j ̸=i

αijh
′
j

 (5.2)

In the GAT encoder blocks, we apply multi-head GAT, concatenating the outputs of ZGAT independent
heads and applying residual connections and layer normalization. The GAT encoder consist of LGAT
such layers and outputs hGAT_R for robots and hGAT_T for tasks respectively.

5.1.2. Transformer Encoder Blocks
Following the GAT encoders, the representations hGAT_R and hGAT_T are processed by independent
transformer encoders, to build the global context of robots and tasks. Each transformer blocks ap-
plies multi-head self-attention, followed by layer normalization, MLP, and another layer normalization,
with residual connections [39]. Multi-head self-attention transforms input queries, keys, and values
(Q,K,V) derived from the input representation h via linear projections WQ,WK ,WV :

Q = WQh, K = WKh, V = WV h (5.3)

αz = Softmax

(
QzK

⊤
z√

d

)
Vz (5.4)

MHA(h) =
(
α1||α2|| . . . ||αZ

)
WO (5.5)

where dk is the dimension of the keys. Multi-head attention computes this operation in parallel for ZT

heads and concatenates their outputs, followed by a linear projectionWO to generate the final outputs
hT_R for robots and hT_T for tasks respectively.

5.1.3. Reward Prediction
The normalized relative distances between robot i and task j are passed through the distance head
MLPD to compute the distance feature dij :

dij = MLPD
(
Normalize(‖pR

i − pT
j ‖2)

)
(5.6)

While task and robot positions are part of the raw input features in Gr and Gt, this explicit distance term
provides the network with direct access to spatial proximity.

We construct feature vectors fij for each robot-task pair by concatenating the local (GAT) and global
(Transformer) representation of robot i and task j with the distance term dij , so fij ∈ IR4×dk+1:
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fij = hGAT_R
i ‖ hGAT_T

j ‖ hT_R
i ‖ hT_T

j ‖ dij (5.7)

This information-rich representation is then passed through the reward head MLPR to compute the task
assignment reward Rij to assign robot i to task j. The idle reward RIDLE

i is computed by passing fij to
the idle head MLPI and summing the outputs across all tasks for each robot i:

Rtask
ij = MLPR (fij) , RIDLE

i =

M∑
j=1

MLPI(fij) (5.8)

MLPI can be understood as learning per-task signals that encourage a robot to wait when short-term
idling is advantageous (e.g., a nearby task will become ready soon). The final predicted reward R
contains the task rewards Rtask

ij for all robot-task pairs, concatenated with the idle rewards RIDLE
i for

each robot, so R ∈ IRN×(M+1).

5.2. Task Assignment through Bipartite Matching
The final reward R can be interpreted as the edge rewards between robots R and tasks T at a given
timestep, encoding the full complexity of the current problem state. To extract task assignments at this
timestep, we employ a relaxed bipartite matching formulation (no strict one-to-one matching), which
finds the optimal assignment matrixA∗ ∈ IRN×(M+1) that maximizes the selected edge reward encoded
in R:

A∗ = argmax
A

∑
i,j

Ai,jRi,j (5.9)

subject to:

∑
j

Ai,j ≤ 1, ∀i ∈ R (5.10)

Ai,j = 0, ∀i, j : i /∈ Ridle ∨ j /∈ Tready (5.11)

∑
i

Ai,j c
r
i � ctj , ∀j (5.12)

These constraints guarantee valid assignments: (5.10) prevents robots from being assigned more than
one task, (5.11) enforces that only idle robots and ready tasks are matched, and (5.12) guarantees that
each task’s required skills are fully covered by the assigned coalition using the element-wise inequality
�. This formulation prevents deadlocks, since no coalition can be assigned to a task that it cannot exe-
cute/finish. The above formulation allows redundant assignments, so after computing A∗, we remove
robots that do not contribute unique required skills, prioritizing those with the highest travel time to the
task.

Additionally, we implement a pre-moving strategy: If robot ri is assigned the idle task tM+1, it moves
towards the task with the highest reward tihighest = argmax1≤j≤M Ri,j , without being formally assigned
to it. This does not concatenate the tasks into a fixed schedule for the robot, since assignments are
recomputed at decision steps, i.e., when robots finish tasks or new tasks are announced. The robot is
likely to be assigned to tihighest at the next decision step, so pre-moving can reduce the delay to task
start if ri would have been the last coalition member to arrive at tihighest.



6
Imitation Learning

6.1. Training
We generate 250,000 small-scale problem instances (8 tasks, 3 robots, 3 skills, 3 precedence con-
straints) with fully randomized configurations, as detailed in Section 4.1. To solve these scenarios
optimally, we use the exact MILP formulation, described in Section 4.2. A high-level overview of the
training pipeline is depicted in Fig. 6.1.

Fig. 6.1. Overview of the Imitation Learning training pipeline and concept. The optimal schedule is sliced into decision points
(yellow lines), with an example showing the extraction of the expert reward at the first decision point (T dec

k = 0). This expert
reward encodes the optimal decision logic, which the model learns to imitate during training.

6.1.1. Optimal Reward Extraction
To train the network to imitate the optimal behavior, we extract “ground-truth” reward matrices Ok ∈
IRN×(M+1). The optimal schedules are sliced into K decision points T dec

k , corresponding to timesteps
when a task finishes and the robots require reassignment. At each decision point the optimal discounted
reward is calculated based on the time difference between the decision point T dec

k and the finish time
of task j with discount factor γ ∈ (0, 1] (in practice, γ = 0.99):

Okij = γ

(
T finish
j −T dec

k

)
okij (6.1)

13
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where okij is 1 if robot i executes task j in the optimal solution and the decision point precedes the task
start time:

okij =

{
1, if T dec

k < Tij,start ∧ ri executes tj

0, otherwise
(6.2)

We handle the idle action tM+1 in the same way: whenever the time between a robot’s last finish time
and its next start time exceeds the travel time between the corresponding tasks, we treat this interval
as an explicit idle assignment and compute its reward using the above formulas.

By design, this reward encoding captures the optimal decision logic: The next selected task will have
the highest reward, with decreasing rewards for later tasks. Given the sequence of optimal rewards
Ok over all decision steps T dec

k , the bipartite matching algorithm outputs the exact solution.

6.1.2. Loss Function
We modify the loss L from [22] by applying the inverse mask (1−Xk) to the second term:

L = ‖Xk ◦ (Rk −Ok)‖1 + λ‖(1−Xk) ◦ (Rk −Ok)‖1 (6.3)

where ◦ denotes the element-wise product operator,Ok is the optimal reward,Rk the predicted reward
andXk ∈ IRN×(M+1) a feasibility mask andXi,j = 1 if robot i is available and task j is ready, elseXi,j =
0. The first term encourages accurate prediction of feasible rewards, while the second discourages high
values for infeasible ones. λ balances the two terms (in practice, λ = 0.1), intuitively: accurate feasible
predictions are more important than suppressing infeasible ones, as the bipartite matching will select
high reward tasks. We use the ADAM optimizer [41] to train the network.

6.1.3. Hyperparameter Search
To optimize the performance of our Sadcher IL model, we conduct a hyperparameter search using
the OPTUNA framework1. The search space targets key architectural and training parameters and
is limited to discrete, computationally feasible values, guided by prior empirical validation. OPTUNA
automates the search by constructing a sampler that suggests promising hyperparameter combinations
based on previous exploration of the search space. Since training the ILmodel takes only around 1 hour,
hundreds of different combinations were tried during the hyperparameter search. Table 6.1 summarizes
the explored hyperparameters and the best values identified through the optimization process and Fig.
6.2 shows the average loss for the runs during hyperparameter search.

Parameter Type Tried Values Best Value
Embedding Dimension dk Categorical {32, 64, 128, 256, 512} 256
Fead-Forward Dimension dff Categorical {64, 128, 256, 512, 1024} 512
Transformer Heads ZT Categorical {2, 4, 8, 16} 4
Transformer Layers LT Integer {1, 2, 3, 4, 6, 8} 2
GAT Heads ZGAT Categorical {2, 4, 8, 16} 8
GAT Layers LGAT Integer {1, 2, 3, 4, 6, 8} 1
Loss Weight Factor λ Categorical {0.1, 0.2, 0.3} 0.1
Learning Rate α Continuous {1e-4, 5e-4, 1.e-3, 5e-3} 1e-3
Dropout (Transformer) δ Continuous {0.0, 0.1, 0.2, 0.3, 0.4} 0.0

Table 6.1: Summary of the hyperparameter search for the Imitation Learning Model

The final model, configured with the best-found hyperparameters, has approximately 3.3 million train-
able parameters. Of these, about 0.1% belong to the embedding layers, 4% to the GATN encoders,
64% to the Transformer encoders, and 16% each to the reward MLP and idle MLP components.

1https://optuna.org/

https://optuna.org/
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Fig. 6.2. Objective value (average loss per batch) over steps (full training epochs) for different OPTUNA training runs during
hyperparameter optimization episodes for the Imitation Learning Sadcher model.

6.2. Results
We report makespan, travel distance, and computation time metrics for all six evaluated algorithms.
Results are averaged over hundreds of unseen, randomized problem instances, varying task locations,
skill requirements and durations, robot capabilities, depot locations, and precedence constraints. All
experiments are conducted on a consumer-grade machine with an AMD Ryzen 7 4800H CPU (8 cores,
2.9 GHz) and NVIDIA GeForce GTX 1650 GPU (4 GB GDDR6 VRAM).

6.2.1. Compared Algorithms
Baselines
We compare our method to: (1) An optimal MILP formulation based on [24], adding precedence
constraints and omitting stochastic travel times. The decentralized RL framework HeteroMRTA [35],
adapted for precedence constraints by masking out tasks that have incomplete predecessors during ac-
tion selection. We compare against (2), the single solution variant HeteroMRTA, where agents choose
the highest-probability task at decision steps, and (3), the sampling variant S-HeteroMRTA (Boltzmann
weighted-random action selection) which returns the best makespan solution across 10 runs per in-
stance. We also implement and compare (4), a greedy heuristic that assigns robots to tasks based
on reducing the remaining skill requirements the most and breaking ties based on travel time (shortest
first).

Sadcher Variants
(5) The Sadcher framework predicts robot-task rewards deterministically as described in Section 5. We
also benchmark (6), a S-Sadcher variant, which samples reward matrices from a normal distribution
centered around the deterministic output then used by the bipartite matching. This introduces stochastic
variations in resulting schedules. As for S-HeteroMRTA we run this process 10 times per instance and
select the best-performing rollout.

6.2.2. Training-Domain Evaluation
We evaluate the algorithms on 500 randomized problem instances of the size of the training domain (8
tasks, 3 robots, 3 precedence constraints). Results are shown in Fig. 6.3 and 6.4.

Makespan
The MILP formulation provides optimal makespans, establishing a baseline for comparing the aver-
age relative gaps of other methods. Sample-Sadcher (gap: 3.8%) and Sadcher (gap: 6.8%) are the
best-performing non-optimal algorithms. HeteroMRTA without sampling performs worst (gap: 21.5%),
but sampling reduces the optimality gap to 10.8%, leveraging its RL policy, which follows a sampling
strategy during training. In the pairwise comparison in Fig. 6.4, Sadcher achieves a lower makespan
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for 403 of 500 instances (80.6%, binomial test: p ≈ 2× 10−45). Sample-Sadcher outperforms Sample-
HeteroMRTA on 389 of 500 instances (77.8%, binomial test: p ≈ 3 × 10−37). The greedy algorithm
reaches an average gap of 20.4%. All pairwise differences in average makespan are statistically sig-
nificant (p < 0.05) according to the Wilcoxon test (see Table 6.2, except between Sample-HeteroMRTA
and Greedy, where no significant difference is observed (p = 0.2).

Computation Time
For dynamic scenarios with real-time requirements, the time per assignment decision (tdec) is cru-
cial. MILP cannot compute instantaneous assignments, but only globally optimal schedules. Sample-
HeteroMRTA and Sample-Sadcher rely on rolling out the full scenario to select the best assignments.
Therefore, these three algorithms, do not yield a time per decision, but only for full solution construc-
tion (tfull). Due to its simplicity, the greedy algorithm computes the fastest (tdec: 0.080 ms; tfull: 1.7 ms).
HeteroMRTA is significantly faster (tdec: 9.1 ms; tfull: 0.20 s) than Sadcher which needs to solve the rel-
atively expensive bipartite matching for each decision (tdec: 22 ms; tfull: 0.57 s). Sample-HeteroMRTA
computes full solutions in 0.96 s, Sadcher in 5.7 s and the MILP on average in 76 s. In the worst
case, MILP can take up to 12 minutes, rendering it infeasible for real-time applications, even on small
problem instances.

Fig. 6.3. Comparison on 500 unseen, randomized problem instances (8 tasks, 3 robots, 3 precedence constraints) for makespan
(left), and computation time (right). Lower means better performance. For algorithms requiring full solution construction, only total
computation time is reported; for methods returning instantaneous assignments, both time per decision and total computation
time are shown.

MILP Sadcher S-Sadcher HeteroMRTA S-HeteroMRTA Greedy

MILP 1.0e+00 1.2e-58 8.6e-48 5.5e-69 2.4e-58 3.4e-70
Sadcher 1.0e+00 3.4e-20 5.2e-49 5.0e-11 4.0e-48
S-Sadcher 1.0e+00 3.7e-62 8.5e-34 2.0e-63
HeteroMRTA 1.0e+00 7.2e-52 2.0e-01
S-HeteroMRTA 1.0e+00 1.9e-31
Greedy 1.0e+00

Table 6.2: Upper-triangle matrix of pairwise Wilcoxon p-values for makespan comparison reported in Fig. 6.3. Sample-Sadcher
is abbreviated as S-Sadcher and Sample-HeteroMRTA as S-HeteroMRTA
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Fig. 6.4. Pair-wise makespan comparison of HeteroMRTA vs. Sadcher (left) and Sample-HeteroMRTA vs. Sample-Sadcher
(right). Each point represents one solved problem instance. Points below the diagonal parity line indicate instances where
(Sample-)Sadcher achieved a lower makespan, and points above the parity line indicate instances where (Sample-)HeteroMRTA
achieved a lower makespan.

6.2.3. Out-of-Domain Generalization
In the following, we analyze the generalization for out-of-domain problem instances, with the number of
robots scaled to N ∈ [3, 20] and tasks toM ∈ [6, 250]. The Sadcher model was trained only on optimal
schedules for problems with N = 3 robots and M = 8 tasks, whereas HeteroMRTA was trained on a
different distribution during RL: N ∈ [9, 25] andM ∈ [15, 50]. We impose a 1-hour time limit for solution
generation, under which the MILP fails to solve even moderately sized instances.

Fig. 6.5 shows the performance and runtime scalability for 3-robot scenarios for all compared algo-
rithms. The optimal MILP performs best for problem sizes it can solve within the time limit, outper-
forming Sadcher by 6% to 7%. Across all task numbers M , Sample-Sadcher and Sadcher are the
best-performing non-optimal methods. For M ≤ 60, Sample-HeteroMRTA outperforms the Greedy
algorithm, for M ≥ 60, greedy surpasses Sample-HeteroMRTA and converges to a relative perfor-
mance gap w.r.t. Sadcher of around 4%. The non-sampling HeteroMRTA performs worst across all
M . Both sampling methods improve performance more on smaller problems. This is because the sam-
ller solution space increases the chance that repeated rollouts will yield substantially different - and
better - schedules. As the task count grows, this benefit diminishes, since the likelihood that small
variations lead to meaningfully improved schedules lowers. Due to the its exponential complexity, the
exact MILP solver fails to find any solutions for problems with 10 or more tasks within the time limit and
requires approximately 500 s to solve 9 tasks-problems. In contrast, Greedy is near-instantaneous
across all scales taking less than 3 ms to generate new task assignments even for the 250-task prob-
lems. HeteroMRTA has a per-decision computation time of less than 20ms, showing minimal sensitivity
to scaling. Full solution generation for Sample-HeteroMRTA requires from 1–40 s. Sadcher is slower
(20–80 ms per decision) and computation time scales worse than HeteroMRTA, with Sample-Sadcher
runtimes ranging from 4 to 500 s. The increasing runtime gap is due to Sadcher’s bipartite matching
step, whose cost grows with problem size, while HeteroMRTA’s sampling cost remains nearly constant.



6.2. Results 18

Fig. 6.5. Comparison for problem instances withN = 3 robots, task countsM ∈ [6, 250], S = 3 skills, andM/5 precedence con-
straints. Left: Relative makespan gap to the Sadcher algorithm (negative values indicate better performance), Center: absolute
makespan, Right: Computation time (for algorithms requiring full solution construction (Sample-HeteroMRTA, Sample-Sadcher,
MILP), total computation time is reported, for methods returning instantaneous assignments (HeteroMRTA, Sadcher, Greedy),
time per decision is reported). Each point represents the mean across 100 runs per problem size.

In Fig. 6.6 we report the scalability results for 5-robot problems. The computation times are similar to the
3-robot case (Fig. 6.5): The MILP solver fails to find solutions for problems with 10 or more tasks within
the time limit, Greedy remains fastest, HeteroMRTA has a per-decision computation time of less than
20 ms. The full solution generation for Sample-HeteroMRTA can take up to 40 s forM = 250. Sadcher
is slower (20–100 ms per decision) and Sample-Sadcher runtimes range from 5 to 600 s. However,
relative performance, shifts significantly compared to the 3-robot analysis: MILP outperforms Sadcher
by 12% to 14%. Across all task numbers, Sample-Sadcher remains the best-performing learning-based
method, but Sample-HeteroMRTA outperforms Sadcher for instances with M ≤ 9 and Greedy for
M ≥ 60. For problems withM ≥ 10, Sadcher is superior and Greedy surpasses Sample-HeteroMRTA
forM ≥ 60 and reaches its best relative performance atM = 150 (gap around 2%). The non-sampling
HeteroMRTA is better than Greedy for 7 ≤ M ≤ 10. Both sampling methods improve performance
more on smaller problems, as explained above in the 3-robot analysis (smaller solution space).

Fig. 6.6. Comparison for problem instances withN = 5 robots, task countsM ∈ [6, 250], S = 3 skills, andM/5 precedence con-
straints. Left: Relative makespan gap to the Sadcher algorithm (negative values indicate better performance), Center: absolute
makespan, Right: Computation time (for algorithms requiring full solution construction (Sample-HeteroMRTA, Sample-Sadcher,
MILP), total computation time is reported, for methods returning instantaneous assignments (HeteroMRTA, Sadcher, Greedy),
time per decision is reported). Each point represents the mean across 100 runs per problem size.

In Fig. 6.7 we extend the scalability analysis to 7-robot problems. The patterns for computation times
remain consistent with the 3- and 5-robot cases (Fig. 6.5, 6.6), but the MILP solver now takes up
to 2000 s to solve M = 9 instances, and Sampling-Sadcher up to 950 s for M = 250. Relative
performance rankings shift for N = 7: MILP has a performance gap of 11% to 16%, Sample-Sadcher
remains the best learning-based algorithm, but only the best non-optimal method forM ≤ 150. Sample-
HeteroMRTA outperforms Sadcher forM ≤ 40. Notably, the performance of all learning-basedmethods
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degrades with high task numbers: Greedy begins to outperform Sample-HeteroMRTA at M ≥ 60,
Sadcher at M ≥ 100, and Sample-Sadcher at M ≥ 200.

Fig. 6.7. Comparison for problem instances withN = 7 robots, task countsM ∈ [6, 250], S = 3 skills, andM/5 precedence con-
straints. Left: Relative makespan gap to the Sadcher algorithm (negative values indicate better performance), Center: absolute
makespan, Right: Computation time (for algorithms requiring full solution construction (Sample-HeteroMRTA, Sample-Sadcher,
MILP), total computation time is reported, for methods returning instantaneous assignments (HeteroMRTA, Sadcher, Greedy),
time per decision is reported). Each point represents the mean across 100 runs per problem size.

Scaling to 20-robot problems leads to notable shifts in generalization results, as shown in Fig. 6.8.
MILP results are omitted, as no solutions are found within the 1-hour time limit. Computation time pat-
terns are consistent with the 3-, 5-, and 7-robot cases (Figs. 6.5, 6.6, 6.7), but Sadcher exhibits the
steepest increase as task countM grows: Greedy remains fastest (<3 ms per instance), HeteroMRTA
stays under 20 ms per decision, and Sample-HeteroMRTA takes up to 55 s for M = 250. Sadcher
reaches 40–300 ms per decision, with Sample-Sadcher requiring 12–2000 s for full 10 rollouts. Rela-
tive performance changes significantly: Sample-Sadcher is the best method for M ≤ 70, but Greedy
becomes superior beyond that. Sample-HeteroMRTA consistently beats Sadcher, yet only outperforms
Greedy for M ≤ 50. Notably, this is the only problem size where HeteroMRTA surpasses Sadcher (for
M ≥ 150), and the performance gap for M ≤ 100 between the two narrows compared to smaller robot
teams.

Fig. 6.8. Comparison for problem instances with N = 20 robots, task counts M ∈ [6, 250], S = 3 skills, and M/5 prece-
dence constraints. Left: Relative makespan gap to the Sadcher algorithm (negative values indicate better performance), Center:
absolute makespan, Right: Computation time (for algorithms requiring full solution construction (Sample-HeteroMRTA, Sample-
Sadcher), total computation time is reported, for methods returning instantaneous assignments (HeteroMRTA, Sadcher, Greedy),
time per decision is reported). Each point represents the mean across 100 runs per problem size.
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6.2.4. Focus on Precedence Constraints
The model demonstrates an emergent understanding of task dependencies by prioritizing the assign-
ment of predecessor tasks – tasks that enable other dependent tasks once completed. This strategy
improves overall scheduling performance by unlocking successor tasks earlier, thereby increasing the
number of available tasks in future decision steps and enabling better global optimization of the task
allocation sequence. This behavior emerges during the training phase.

To quantify this, we define the predecessor assignment ratio rprecS, which measures how strongly the
model favors assigning predecessor tasks compared to a uniform (random) selection strategy:

rprec =
1

N

N∑
i=1

a
(i)
prec

a
(i)
total · r

(i)
ready

(6.4)

with:

• N : Total number of decision steps.

• a
(i)
prec: Number of predecessor tasks assigned at decision step i.

• a
(i)
total: Total number of tasks assigned at step i.

• r
(i)
ready: Fraction of ready tasks at step i that are also predecessors:

r
(i)
ready =

a
(i)
ready, prec

a
(i)
ready, total

(6.5)

where:

• a
(i)
ready, prec: Number of ready tasks that are predecessors at step i.

• a
(i)
ready, total: Total number of ready tasks at step i.

Our model shows an average predecessor assignment ratiorprec ≈ 1.71. A value > 1 indicates that
the policy assigns predecessor tasks earlier than would be expected from a policy that is not informed
about task dependencies.

6.3. Discussion
The results presented in this chapter highlight the performance of our IL methods, Sadcher and Sample-
Sadcher, in comparison to several baselines across varying problem sizes. For problem instance within
the training domain (8 tasks, 3 robots), both methods significantly outperform the baselines. Sample-
Sadcher achieves an average optimality gap of 3.8%, with Sadcher following at 6.8%, compared to
10.8% for the best baseline, Sample-HeteroMRTA. These results show that the reward prediction frame-
work combined with bipartite matching yields high-quality schedules.

One contributor to this performance is the model’s emergent understanding of precedence constraints.
The IL-trained policy learns to assign predecessor tasks early, increasing the availability of successor
tasks and enabling more efficient future assignments. This behavior is quantified by a predecessor
assignment ratio of approximately 1.71, indicating that the model selects enabling tasks significantly
more often than methods that rely on masking to avoid assigning unready tasks.

In generalization experiments on out-of-distribution problems, both Sadcher methods maintain strong
performance as the number of tasks increases. For team sizes of 3 and 5 robots, Sample-Sadcher
remains the best-performing non-optimal method across all task counts. An intuitive explanation is that
increasing the number of tasks while keeping the number of robots fixed is similar to solving multiple
smaller subproblems sequentially, where local scheduling rules learned during training remain effective.
However, performance declines with larger robot teams. For 7 robots, Sample-Sadcher performs best
only up to 150 tasks, and for 20 robots, only up to 70 tasks. In these cases, the increased coordination
complexity introduces new dynamics - larger teams require different local scheduling strategies and
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decision logic that diverge from the training distribution. As a result, the greedy baseline, although
simple, begins to outperform all learning-based methods at large-scale problems.

Real-time applicability becomes a challenge for Sample-Sadcher on large problem instances, as it re-
quires generating multiple full rollout solutions. As problem size increases, computation times increase
to several minutes. This is mainly due to the repeated bipartite matching at each decision step, whose
cost grows with the number of robots and tasks. In comparison, HeteroMRTA scales more efficiently
in terms of runtime.

These findings motivate the use of RL for fine-tuning our model to increase performance on big prob-
lem instances (see Chapter 7). RL does not rely on access to ground-truth schedules. As optimal
solutions for medium- and large-scale problems are computationally infeasible to generate, IL cannot
be extended to these domains. RL provides a practical alternative that can train directly on medium
and large problem instances.



7
Reinforcement Learning

To further increase performance – specifically scalability, which becomes a bottleneck for larger problem
sizes (see Section 6.2.3) – we experiment with using Reinforcement Learning (RL) to fine-tune the
imitation-learned model. This also allows for the comparison between IL and RL. To do so, we frame
the problem in two different ways: once to apply discrete RL and once to apply continuous RL.

7.1. General
Markov Decision Process
RL is a paradigm of machine learning concerned with agents making sequential decisions to maxi-
mize a cumulative reward signal. The agent learns by interacting with its environment, receiving feed-
back in the form of rewards for the actions it takes. This learning process is typically formalized as a
Markov Decision Process (MDP). An MDP provides a mathematical framework for modeling sequential
decision-making. An MDP is usually defined by a tuple (S,A, P,R, γ), where:

• S is a finite set of states, representing all possible configurations of the environment relevant to
the decision-making agent.

• A is a finite set of actions available to the agent.
• P (s′|s, a) is the state transition probability function, denoting the probability of transitioning from
state s ∈ S to state s′ ∈ S after taking action a ∈ A.

• R(s, a, s′) is the reward function, which specifies the immediate reward received by the agent
after transitioning from state s to state s′ as a result of action a. This can be simplified to R(s, a)
or R(s′).

• γ ∈ [0, 1] is the discount factor, which balances the importance of immediate rewards versus
future rewards. A value closer to 0 prioritizes immediate rewards, while a value closer to 1 gives
more weight to long-term rewards.

The agent’s decision-making strategy is called a policy, denoted π(a|s), which is a mapping from states
to probabilities of selecting each possible action. The primary goal in RL is to find an optimal policy π∗

that maximizes the expected cumulative discounted reward, often referred to as the expected return,
starting from an initial state.

Proximal Policy Optimization
Proximal Policy Optimization (PPO) [42] is a highly effective and widely used policy gradient algorithm
in Reinforcement Learning, known for its stability and sample efficiency. PPO aims to learn a policy
πθ(a|s), parameterized by θ, by optimizing a surrogate objective function that encourages conserva-
tive policy updates. This helps to avoid performance collapses that can occur with overly aggressive
updates often seen in standard policy gradient methods.

22
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The core idea of PPO is to constrain the policy update at each iteration, ensuring that the new pol-
icy does not deviate too drastically from the old policy. This is achieved through a clipped surrogate
objective function, defined as:

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(7.1)

In this objective, Êt denotes the expectation over a batch of timesteps. The term rt(θ) is the probability
ratio between the current policy πθ and the policy used to collect the data (the old policy) πθold :

rt(θ) =
πθ(at|st)
πθold(at|st)

(7.2)

where st and at are the state and action at timestep t. The term Ât is an estimator of the advantage
function at timestep t, which typically quantifies how much better action at is compared to the average
action in state st. The clip(rt(θ), 1 − ϵ, 1 + ϵ) function constrains rt(θ) to the interval [1 − ϵ, 1 + ϵ],
where ϵ is a small hyperparameter (e.g., 0.1 or 0.2). This clipping discourages the policy from moving
too far from the old policy by penalizing large changes in the probability ratio, thereby ensuring more
stable learning. PPO algorithms typically alternate between sampling trajectories from the environment
using the current policy and performing multiple epochs of stochastic gradient ascent on the objective
LCLIP (θ) using the collected data.

7.1.1. Reinforcement Learning on our use case

State
As for the Imitation Learning approach, we model the state/input to our RL policy as robot and task
graphs: The N heterogeneous robots with Si ⊆ S distinct skills, are modeled as an undirected graph
Gr = (R,C), where each vertex in R = {ri}N is a robot. Robot states ri = [pr

i , t
r
i , a

r
i , c

r
i ] include

position pr
i ∈ IR2, remaining duration at the current task tri , the robot’s availability ari ∈ {0, 1}, and the

binary capability vector over the global skill set cri ∈ {0, 1}|S|. C ∈ {0, 1}N×N represents the network
connection among the robots. For simplicity, we assume a fully connected graph, so Ci,j = 1 ∀i, j.
However, our model is designed to accept any connected graph structure as input. The M tasks and
their respective precedence constraints are represented as a directed acyclic graph Gt = (T ,P). Each
task is a vertex in T = {tj}M , and is described by tj =

[
pt
j , t

t
j , r

t
j , s

t
j

]
, with position pr

i ∈ IR2, expected
duration ttj , required skills rtj ∈ {0, 1}|S| and status stj ∈ {0, 1}3. The status indicates whether tasks
are ready, assigned, or incomplete, e.g., stj = [1, 0, 1] represents a task that is ready to be scheduled,
currently not assigned, and incomplete. Precedence constraints are encoded in the edges PM×M ,
where Pi,j = 1 means the i-th task is a predecessor of the j-th task.

Action
The form of the action depends on which of the two RL formulations is used: For the discrete variant
(Section 7.3) the policy outputs, for every currently available robot, a soft-maxed categorical distribution
over the M real tasks that are sampled from to generate into robot-task assignments. For the contin-
uous variant (Section 7.2), the policy outputs an (N × (M+1)) sampled reward matrix – including an
explicit idle task, that the bipartite matcher turns into assignments.

Transition Function
The simulation is fully deterministic: once the current state s and the chosen action a (the set of robot–
task assignments) are known, the simulator advances the clock to the next decision point and updates
every component of the state in a deterministc way – robots traverse straight-line paths at a constant
speed, task timers count down at a fixed rate, and precedence flags are flipped as soon as all prereq-
uisites finish. Hence the state-transition kernel reduces to a Dirac delta,

P (s′ | s, a) =

1, if s′ = sim(s, a),

0, otherwise.
(7.3)

where sim(s, a) is the deterministic simulator that computes the successor state.
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Reward
The reward function is sparse, provided only at the termination of an episode (i.e., when all tasks are
completed and robots have reached their final destination or the worst-case makespan is exceeded).
The worst-case makespan Twc is equivalent to the time a single robot would need to perform all tasks
back-to-back while always traveling the maximum possible distance between subsequent tasks:

Twc =

M∑
j=1

Te,j +

M∑
j=1

max
i∈{1,...,M}

Tt,i,j (7.4)

where Te,j is the execution time of task j and Tt,i,j is the travel time for robot i to reach task j. When
the simulation time exceeds Twc (because a deadlock occured), we set Tms, policy = Twc. Since sampled
problem instances can have different complexity and expected makespans (e.g., due to varying task
durations and requirements), using the negative makespan directly as the reward signal is unstable.
Therefore, we normalize the reward w.r.t the makespan the greedy algorithm finds. This gives a good
estimate on the difficulty of the sampled instance and is fast to evaluate. The total episodic reward
Rep is designed to guide the policy towards minimizing the makespan relative to the baseline greedy
scheduler:

Rep = −
Tms, policy − Tms, greedy

Tms, greedy
(7.5)

where Tms, policy is the makespan achieved by the learned policy in the episode, and Tms, greedy is the
makespan achieved by the greedy scheduling heuristic on the same problem instance. A positive
reward indicates an improvement over the greedy scheduler.

Discount Factor
Throughout all experiments, we use the standard discount factor γ = 0.99.

7.1.2. Training
For both the discrete formulation (Section 7.3) and the continuous formulation (Section 7.2) we employ
the PPO implementation provided by the skrl library [43].1 Across all experiments — independent of
the formulation-specific tuned hyper-parameters — we explore all combinations of the following design
choices:

1. Initialization. Either initialize the policy network with weights obtained from the IL stage, or train
the policy entirely from scratch (random weight initialization).

2. Frozen encoders versus training the full network. When the policy is initialized from IL, we
optionally freeze all encoder layers and optimize only the final MLP that maps the latent repre-
sentation to the reward. This keeps roughly 85% of the total parameters fixed.

3. Advantage estimation with or without a learned critic. Because our reward depends simulta-
neously on the performance of the greedy baseline and the current policy, fitting a value function
V (s) proved difficult, as two similar instances can yield highly different returns for the greedy pol-
icy. We therefore compared the standard PPO variant, which learns V (s), with an alternative that
replaces V (s) by a constant zero baseline (explained below).

Generalized Advantage Estimation
PPO estimates the advantage Ât using Generalized Advantage Estimation (GAE) [44] to reduce vari-
ance:

ÂGAE
t (γ, λ) =

∞∑
l=0

(γλ)l δt+l, (7.6)

with the temporal-difference residual

δt = rt + γV (st+1)− V (st). (7.7)

1https://skrl.readthedocs.io/en/latest/

https://skrl.readthedocs.io/en/latest/
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Zero-critic variant
Setting V (st) ≡ 0 for all t turns the TD residual into δt = rt, yielding a discounted-return estimator

ÂGAE
t (γ, λ) =

∞∑
l=0

(γλ)l rt+l. (7.8)

Thus, when the critic is disabled PPO effectively optimizes online Monte-Carlo returns while still bene-
fiting from the PPO clipping objective and KL divergence threshold.

7.2. Continuous Reinforcement Learning
To stay close to the IL formulation—allowing the reuse of the pre-trained network parameters and
preserving feasibility guarantees—we first explore a continuous RL approach.

7.2.1. Formulation
Extending the general formulation (Section 7.1.1), the continuous RL approach keeps the scheduling
pipeline of the IL baseline. The policy therefore does not directly sample actions from categorical
distributions like the discrete approach (Section 7.3). Instead, the policy samples a reward matrix
R ∈ RN×(M+1), visualized in Fig. 7.1 and task assignments are generated via bipartite matching
based on this reward matrix. Because the bipartite matcher enforces feasibility, assignments are only
made when the coalition of assigned robots fully satisfies a task’s skill requirements. To allow for
strategic waiting, the action space includes an explicit idle/waiting task M+1. This enables robots to
delay their assignments when no suitable coalition can yet be formed or when postponing execution is
advantageous.

Fig. 7.1. High-level overview of the continuous Reinforcement Learning pipeline. The bipartitematching is part of the environment
and not the agent’s policy, which outputs the sampled reward assignment matrix as its action.

Stochastic reward matrix sampling
The policy outputs a mean matrix µk ∈ RN×(M+1) together with a single log-standard-deviation param-
eter ℓk ∈ R+, which is shared by every entry of the score matrix: ℓi,j = ℓ ∀ i, j. Hence the common
standard deviation is σk = exp(ℓk). Drawing element-wise noise εk ∼ N (0, I), the reward matrix passed
to the bipartite matcher is sampled with the re-parameterization trick

Rk = µk + σkεk (7.9)

Extraction of task assignments
We employ a relaxed bipartite matching formulation (no strict one-to-one matching), which finds the
optimal assignment matrix A∗

k ∈ IRN×(M+1) that maximizes the selected edge reward encoded in Rk,
exactly like in the IL formulation, described in Section 5.2. Technically, this matching step is handled
by the environment. The PPO agent itself only outputs a stochastic reward matrixRk given the current
state sk. In this sense, the policy does not make actual task-selection decisions directly but instead
learns to produce continuous-valued preferences over all possible robot–task pairs:

πθ(sk) −→ Rk ∈ RN×(M+1) (7.10)
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These scores are then interpreted and resolved into assignments by the environment.

Training on continuous action space
Because the re-parameterization trick r = µ+σε is differentiable, gradients flow through both the mean
matrix and the shared log-std ℓ. With the PPO formulation (Section 7.1) , the policy therefore learns to:

(i) raise µi,j for robot–task pairs that the matcher selects in high-reward episodes,
(ii) lower it for pairs that lead to dead-ends or long makespans,
(iii) and anneal σ over time, shrinking exploration as soon as the clipped objective signals conver-

gence, i.e. the best-performing episodes are sampled close to the mean µ.

7.2.2. Results
We evaluate various PPO hyperparameter configurations in combination with the training strategies
described in Section 7.1.2 to fine-tune the continuous RL policy. As shown in Figure 7.2, the initial
average reward (i.e., performance gap relative to the greedy baseline) starts around 4%. While several
runs initially show improvements during training, none surpass the performance of the pure IL approach,
which achieves an average performance gap of 8% (indicated by the blue dashed line). The IL policy is
trained on smaller instances (8 tasks, 3 robots), whereas the fine-tuning is performed on medium-sized
instances (20 tasks, 5 robots) to assess the feasibility of RL to improve scalability. In some training
runs, the policy collapses - typically caused by overly aggressive or unstable hyperparameter settings,
like high clip ratio rt or high learning rates α. We also experiment with curriculum learning, gradually
increasing the problem size during fine-tuning up to 100 tasks and 20 robots. However, this approach
also resulted in policy collapse or failed to yield improvements over the pure IL baseline.

Fig. 7.2. Continuous RL fine-tuning training runs with different hyperparameters. Objective value (mean reward as performance
gap w.r.t. greedy, see Section 7.1.1) over finished training step (episodes). The model is fine-tuned on problem instances of 20
tasks, 5 robots, 3 skills, and 5 precedence constraints. On this problem size, the pure IL approach achieves a value of 0.08 (blue
horizontal line). Some runs approach this value, but none outperform it.

7.2.3. Discussion
The continuous RL formulation does not yield improvements over the pure IL baseline. Several inter-
related factors might contribute to this result:

High-dimensional action space
In the continuous formulation, the policy outputs an entire reward matrix of size RN×(M+1) at each
timestep. For instance, with 20 tasks and 5 robots, this amounts to 105 continuous values per decision
step. Such a high-dimensional action space makes optimization difficult: gradient signals must propa-
gate through many parameters, increasing the risk of vanishing gradients and hindering the policy to
update in a way that improves scheduling decisions.
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Obscured reward–action mapping due to black-box matching
Another critical challenge lies in the separation between the policy’s output (assignment reward matrix)
and the actual action taken (task assignments). The assignment logic is handled as part of the environ-
ment via bipartite matching. While this design offers feasibility guarantees, it introduces a black-box
step that obscures the reward–action mapping. The policy does not directly choose actions; it only
influences them via the output assignment matrix, making it harder to learn which parts of the matrix
led to high or low-performing episodes.

Improving strong IL baseline proves hard
The IL baseline policy imitates optimal schedules and already achieves strong performance. Fine-
tuning this policy through PPO may not yield further gains, particularly because the solution landscape
discovered by IL differs fromwhat RL gradients typically optimize. In other words, while IL approximates
optimal actions through direct supervision, RL relies on sparse, delayed feedback and trial-and-error
exploration. Starting from an IL policy may bias the RL policy into a local optimum that is hard to escape
through PPO updates alone.

Environment complexity and sparse rewards
The RL agent operates in a highly complex environment with sparse, episodic rewards— only provided
after task completion. This lack of intermediate signals severely restricts the policy’s ability to learn
effective long-horizon strategies. The challenge is further intensified by the large action space and the
black-box reward–action mapping introduced by the bipartite matching step.

7.3. Discrete Reinforcement Learning
Due to the limitations observed with continuous RL — particularly the high-dimensional action space
and the obscured reward-action mapping — we also design and evaluate a discrete RL formulation.
This reduces the action space dimensionality and gives the policy direct control over task selection, but
does not guarantee feasibility.

7.3.1. Formulation
In addition to the general formulation (Section 7.1.1), the discrete RL variant models the action selection
process as follows (see Fig. 7.3): At each decision point k, every available robot i ∈ {1, . . . , Nfree}
selects one of the M real tasks. In contrast to the IL and continuous RL settings, we omit the explicit
IDLE action (task M + 1) in the discrete formulation. This is because the discrete policy samples
actions independently for each robot from a categorical distribution, allowing robots to select tasks
even if they cannot complete them alone. In the continuous and IL variants, the explicit idle action is
necessary: the bipartite matching step enforces that only valid coalitions capable of completing the task
are scheduled. When such coalitions cannot yet be formed, or when it is strategically advantageous to
delay assignment, robots can instead choose to wait and move toward the most likely future task.

The policy network (same as for the other approaches, omitting the IDLE MLP) fθ : S → RN×(M) first
maps the graph state sk to a matrix Rk:

Rk = fθ(sk) =

R1,1 . . . R1,M
...

...
RN,1 . . . RN,M

 (7.11)

Applying a row-wise (per-robot) soft-max to the matrixRk yields the categorical distributions over tasks
for each robot. The resulting policy πθ defines the probability that robot i selects task j at timestep k:

πθ(ai = j | sk) =
expRk,i,j∑M
l=1 expRk,i,l

, j ∈ {1, . . . ,M} (7.12)
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Fig. 7.3. High-level overview of the discrete Reinforcement Learning pipeline. In contrast to the IL and continuous RL approaches,
bipartite matching is omitted—so feasibility is not enforced by design. Instead, action masking is used to guide the categorical
distributions toward feasible task assignments.

Action masking
Not every entry corresponds to a legal action or makes sense in the broader task assignment context.
To guide the policy towards better/feasible assignments, we apply a binary mask µk,i,j ∈ {0, 1} over
the reward matrix. An entry µk,i,j = 1 is valid if and only if all of the following conditions are met:

(i) task j is ready (predecessors completed) and incomplete,
(ii) robot i has at least one skill that matches task j’s requirements.

Entries not meeting these conditions are masked out by setting their corresponding logit to a large
negative value:

Rk,i,j =

{
Rk,i,j , µk,i,j = 1,

−∞, µk,i,j = 0.

Applying the row-wise (per-robot) soft-max yields a categorical distribution with no probability mass for
the masked-out entries.

Subtractive assignment
To inform the policy which robots are already assigned to a task, we subtract the capabilities of robots
that are already assigned to task j from its skill-requirement vector rtj :

r̃j,k = rtj 	
∨

i∈Rassigned
j

ci,

where Ractive
j is the set of robots currently committed to j and 	 denotes element-wise clipped subtrac-

tion on {0, 1}. ci are the capability vectors of the assigned robots. Only if r̃j,k 6= 0 can another robot
contribute, which tightens the mask µ and hence the action space.

Training on discrete action space
In the discrete setting, the policy outputs logits that define a categorical distribution over tasks for each
robot. During training, PPO samples task selections from these distributions and uses the resulting
rewards to adjust the logits. Gradients flow through the softmax via the log-likelihood of the sampled
actions, allowing the policy to:

(i) increase logits for task choices that consistently lead to high rewards,
(ii) decrease logits for choices that result in poor outcomes,
(iii) and reduce entropy over time as the clipped objective favours more confident, stable selections.

7.3.2. Results
Since the task assignment logic in the discrete RL approach differs from both the IL and continuous
RL variants, we first train the policy on small problem instances. This enables the network to learn
how to decode latent embeddings in a way that is not optimized for input into a bipartite matcher, but
rather for sampling directly from a categorical distribution. As shown in Figure 7.4, the discrete RL
approach initially produces a high number of infeasible episodes, in contrast to the continuous RL
setup (Section 7.2) where feasibility is guaranteed through bipartite matching. This causes a negative
performance gap relative to the greedy baseline during the early training phase. After approximately
500,000 training episodes, the discrete policy reaches parity with the greedy baseline and reduces



7.3. Discrete Reinforcement Learning 29

the infeasibility rate to around 2%. The performance gap eventually stabilizes at roughly 4%, while
the pure IL baseline—trained on these small instance sizes—achieves a significantly better 12% gap
w.r.t. greedy. This highlights that IL remains superior for problem sizes seen during training. However,
the primary motivation for exploring RL lies in its potential to improve scalability to problem sizes, that
we cannot generate optimal solutions for. Therefore, we continue training the best discrete RL model
with varying hyperparameters on medium-sized instances with 20 tasks and 5 robots. The results,
shown in Figure 7.5, indicate that some configurations achieve slight performance improvements, but
the best-observed performance gap is 5.2%—still worse than the IL baseline, which achieves an 8%
gap on the same problem size. For reference, the best continuous RL run on this instance size reached
approximately 7.5% (see Figure 7.2).

Fig. 7.4. Discrete RL training run on instances of 10 tasks and 3 robots. Top: Mean reward as performance gap w.r.t. greedy,
see Section 7.1.1, over finished training steps (episodes). The red horizontal line shows the performance of the pure IL baseline
on this problem size (12%). Bottom: Ratio of infeasible episodes over finished training episodes.

Fig. 7.5. Discrete RL fine-tuning training runs with different hyperparameters. Objective value (mean reward as performance
gap w.r.t. greedy, see Section 7.1.1) over training steps (finished episodes). The previously found model (trained with discrete
RL on 10 tasks, 3 robots) is fine-tuned on problem instances of 20 tasks, 5 robots, 3 skills, and 5 precedence constraints. For
reference: On this problem size, the pure IL approach achieves a value of 0.08
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7.3.3. Discussion
The discrete RL formulation offers several practical advantages but fails to reach or improve the per-
formance of the IL baseline.

Computation Time
Training and inference in the discrete RL setup are faster than in the continuous formulation, primarily
due to the removal of the bipartite matching step. Sampling directly from categorical distributions is
faster than solving the bipartite optimization problem.

Improved Policy–Action Alignment
The discrete formulation provides a more direct connection between the policy output and the final task
assignments. This avoids the black-box behavior introduced by the bipartite matcher in the continuous
setup and the lower-dimensional action space aligns better with typical PPO use cases.

Lack of Feasibility Guarantees
A major downside is the possibility of deadlocks occurring. Unlike the continuous approach, the dis-
crete method does not guarantee that assigned coalitions meet all skill requirements. Although action
masking mitigates infeasibility, it cannot fully prevent it, especially in early training phases.

Performance
Despite better alignment with RL design principles, the discrete RL formulation does not match or
surpass the continuous RL approach or the IL baseline in terms of performance or scalability.

Model Architecture Limitations
The current architecture is not optimized for discrete RL. Specifically, inference is triggered globally for
all robots whenever any robot becomes available, even though only a subset needs new assignments.
This results in redundant computation. A more suitable design would allow per-robot inference, using
inputs relative to the querying robot to generate a single categorical distribution over tasks. This could
enable better performance and more stable training



8
Simulation Environment

In order to compare the baselines and the proposed methods, we develop a light-weight simulation
environment to represent task and robot states and roll out instantaneous task assignment decisions
into full schedules.

8.1. Core Data Structures
This section outlines the core data structures used in the simulation framework, defining the states
of tasks and robots, and schedules at both full-horizon and instantaneous levels. Task precedence
constraints are represented using an adjacency matrix, where each directed edge (i, j) encodes a
dependency between two tasks: ti has to be completed before tj can be started.

Tasks

Attribute Description
task_id Unique integer
location Position in R2

remaining_duration Timesteps remaining to complete the task
requirements Boolean vector indicating required skills
ready Boolean, are all predecessors completed?
assigned Boolean, currently assigned?
incomplete Boolean, True until remaining duration = 0

Robots

Attribute Description
robot_id Unique integer
location Current position in R2

remaining_workload Timesteps left to complete assigned task
capabilities Boolean vector indicating available skills
current_task Task currently assigned to the robot
available Boolean, True if current_task is IDLE or None
speed Movement speed per timestep

31
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Full-Horizon Schedule

Attribute Description
makespan Total time until all robots reach the end location
robot_schedules Map: robot_id 7→ list of (task_id, start_time, end_time) triplets

Instantaneous Assignment

Attribute Description
robot_assignments Map: robot_id 7→ next task_id

8.2. Simulation Logic
Algorithm 1 High-Level Simulation Logic
Require: Problem instance P, Scheduler type s
1: sim← InitializeSimulation(P)
2: S ← create_scheduler(s, sim)
3: while not all_tasks_done(sim) do
4: A ← S.calculate_robot_assignments(sim)
5: sim.assign_tasks_to_robots(A)
6: sim.step_until_next_decision()
7: end while

Algorithm 2 sim.step_until_next_decision()
1: aprev ← −1
2: while true do
3: for all robots r do
4: if r.current_task is not IDLE then
5: r.move_to_task(r.current_task)
6: else if sim.robot_can_still_contribute_to_tasks(r) then
7: r.move_to_task(find_task_to_premove_to(r))
8: else
9: r.move_to_task(EXIT)
10: end if
11: end for
12: sim.update_task_status()
13: sim.update_task_duration()
14: sim.update_robot_status()
15: sim.timestep← sim.timestep + 1
16: a← number of available robots
17: if sim.sim_done or sim.robot_finished_task() or sim.new_task_announced() then
18: break
19: end if
20: if sim.timestep ≥ sim.worst_case_makespan then
21: sim.finish_simulation()
22: sim.makespan← sim.worst_case_makespan
23: break
24: end if
25: aprev ← a
26: end while

In Algorithm 1, the simulation is initialized with a problem instance and a selected scheduler type (e.g.,
greedy, SADCHER, ...). The main loop runs until all tasks are completed. At each iteration, the sched-
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uler generates an instantaneous assignment of robots to tasks based on the current simulation state.
After the assignment is sent to the robots, the control is passed to the inner simulation loop (Algorithm 2),
which advances the system until a new scheduling decision is required. This design ensures that the
scheduler is invoked only when necessary—specifically, when the set of available robots changes due
to task completion or failure.

Algorithm 2 describes the logic that advances the simulation until a new scheduling decision is required
or a deadlock has been detected. In the latter case, the simulation is terminated; in the former case,
control is handed over to the high-level scheduler (Algorithm 1):

1. Move robots (lines 3–10).
For every robot ri exactly one of the following targets is selected and the robot moves toward it:

(a) Assigned task. Robots already allocated to a task tj continue toward its location; if they are
already there, they remain stationary.

(b) Pre-move. A robot that is currently idle (tM+1) heads toward the “best” normal task

tihighest = arg max
1≤j≤M

Ri,j ,

where Ri,j is the individual reward estimate. This speculative motion can shorten the even-
tual start-up delay once suitable coalition partners become free.

(c) Exit. If ri can no longer contribute to any tasks (i.e., none of its capabilities are needed for
any unfinished/unassigned tasks), it moves to the exit/end location.

2. Task status update (lines 12–13).
Each task’s state is refreshed: ready, assigned, or incomplete. If all the required skills are present
in the assigned coalition and all coalition robots are at the task location, the remaining duration
is decremented.

3. Robot status update (line 14).
Robots who have just completed tasks become available and unassigned. Robots that have been
scheduled become unavailable and assigned.

4. Termination check.
After the global clock advances by one step, the loop exits when

(i) a robot has finished a task or a new task is announced, which signals that computing a new
assignment is necessary (lines 17-18), or

(ii) the execution time exceeds a worst-case makespan, defined as the sum of all travel times
and processing times. If a simulation instance runs for more than that, a deadlock has
occured.
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8.3. Example Visualization
For the solution visualized in Fig. 8.1, robot R0 possesses all skills, and after completing task T2, it
focuses on completing the tasks that require multiple skills in the ”lower” area where y ≤ 20. On the
other hand, robots R1 and R2 only possess skills 0 ([1, 0, 0]) and skills 1 and 2 ([0, 1, 1]) respectively.
After completing some tasks, that they can handle individually without a coalition, they form a dynamic
coalition on tasks T3, T6, and T12 to shorten the overall makespan. Without dynamic coalitions, R0
would have required a lot of time to execute all tasks that require multiple skills and R1 and R2 are not
capable of executing by themselves. The gap in the schedule of R1 between T1 and T3 is a waiting
period, in which the robot has strategically pre-moved to later form the coalition on T3. This example
shows how the Sadcher algorithm coordinates heterogeneous teams with coalition formation.

Fig. 8.1. Solution example on randomized problem instance with 12 tasks, 3 robots, and 3 distinct skills in the simulator. Colored
circles represent tasks, where the circle size corresponds to execution time and the color indicates required skills. All robots
are initialized at the start location and have to finish at the end location. Top: Schedule of the 3 robots over time. Black arrows
represent travel times, and the colored boxes represent task execution. Bottom: Corresponding trajectories of the 3 robots in
grey/blue/orange. When two robots move together, the arrow has a mixed color. For example, between tasks T3 and T6, robots
R1 and R2 form a coalition.
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Conclusion

9.1. Summary and Contributions
In this work, we proposed Sadcher - an IL framework to address real-time task assignment for het-
erogeneous multi-robot teams, incorporating dynamic coalition formation and precedence constraints.
The combination of reward prediction and relaxed bipartite matching yields strong performance with
feasibility guarantees. (Sample-)Sadcher outperforms RL-based and heuristic baselines in makespan
across small to medium-sized robot teams and a wide range of task counts. One contributor to this
performance is the model’s emergent understanding of precedence constraints. It learns to assign pre-
decessor tasks early, increasing the availability of successor tasks and enabling more efficient future
assignments. Sadcher scales better with task number than with robot team size. An intuitive explana-
tion is that increasing the number of tasks while keeping the number of robots fixed is similar to solving
multiple smaller subproblems sequentially, where local scheduling rules learned during training remain
effective. In cases with more robots, the increased coordination complexity introduces new dynamics -
larger teams require different local scheduling strategies and decision logic that diverge from the train-
ing distribution. Sadcher can generate assignments in real-time across all tested problem sizes, but
the sampling variant S-Sadcher is only real-time for smaller problems, as the bipartite matching step
introduces computational overhead, particularly for larger problems. Additionally, Sadcher relies on a
large dataset of expert demonstrations for training, which is computationally expensive to generate.

These findings motivated the use of RL to fine-tune our model for improved performance on large-
scale problem instances. Unlike IL, RL does not require ground-truth schedules, which are infeasible
to compute for medium and large problems. Despite extensive experimentation with both continuous
and discrete PPO-based formulations, RL did not yield improvements over the IL baseline. In the
continuous setup, RL preserves feasibility guarantees through bipartite matching, but learning is hin-
dered by a high-dimensional action space and the indirect reward-action relationship, as the bipartite
matching operates as a black-box component of the environment. The policy’s output only influences
assignments indirectly via a reward matrix, making effective gradient updates difficult. In the discrete
formulation, the policy directly controls assignments and is faster to train and infer, but it lacks feasi-
bility guarantees and occasionally produces invalid schedules, particularly in early training. Even after
fine-tuning, performance remains below that of the IL baseline. While RL holds potential - especially
due to its independence from ground-truth labels - realizing this potential might require rethinking the
model architecture and reward structure.

We also detailed how to generate a dataset of small-scale optimally-solved problem instances for this
complex use case and released our dataset of 250,000 of these solutions. The dataset can serve as
expert demonstrations for IL or as an optimal baseline to benchmark against.
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9.2. Future Research
Future work could extend our framework with more real-life constraints to incorporate battery budgets,
deadlines, or time windows. Another improvement could be to replace the current binary capability
modeling and instead incorporate task execution efficiency, where robots vary in how quickly they can
perform certain tasks. This would allow the framework to better reflect heterogeneous skill levels and
enable more nuanced coalition formation.

Our approach, like most related work, requires structured input in the form of predefined robot and task
graphs. Bridging the gap between perception and planning systems through integrated task generation,
decomposition, and scheduling would improve the autonomy of robot teams in real-world environments
by decreasing reliance on manually specifying tasks.

The field would profit from a standardized benchmark dataset. This dataset should cover a wide range
of problem sizes, incorporating both heterogeneous and homogeneous robots, coalition formation sce-
narios, and various temporal constraints. As a first step toward this goal, we released a dataset of
250,000 optimal schedules focused on small-scale, complex MRTA settings. Future research could
build on this foundation by including simpler (e.g., homogeneous robots) scenarios in the same dataset
format, which would allow complex approaches to be benchmarked against simpler, existing techniques
on the use cases the simpler methods can handle. The dataset should also include larger problem sce-
narios (e.g., more tasks/robots) and solutions optimized for different objective functions, as well as
standardized train-test splits.
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