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Abstract

The plastic pollution of aquatic environment is undoubtedly an emerging environmen-
tal risk, as it negatively affects ecosystems globally to a great extent. To prevent the
plastic soup from growing even further, a Delft-based start-up Noria has developed
plastic collectors, to remove plastic from rivers and canals before it reaches the ocean.
In order for these devices to give maximum positive effect, they need to be installed
in areas where plastic is more likely to accumulate - the plastic hotspots. Taking into
consideration various natural attributes that affect the movement of the plastic waste
in the water, such as wind direction, water flow, canal geometry, vegetation and man
made structures in waterways; potential hotspots can be predicted in a model which
would allow more efficient coordination of the cleaning process. Thus, this project aims
to locate plastic accumulation zones in the city of Delft in a (semi-) automated manner
using open spatial data analysed in GIS and a network simulation model.

The methodology developed in this project results in the visualisation of potential plas-
tic hotspots where Noria’s collectors could be placed in order to remove and recycle the
plastic. The potential hotspots suggested by the model were compared with ground
truth data collected. The final result yielded only 20% accuracy and therefore did not
meet the initial expectation. An evaluation of the shortcomings was made with sugges-
tions for future research.
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1 | Introduction

1.1 Context

The accumulation of plastic waste in water resources is threatening the ecosystem, bio-
diversity and human health globally. It has been estimated that over 5 trillion pieces
of plastics that weight more than a quarter million tons floats in the ocean around the
world (Eriksen et al. 2014). The majority of plastics originate from inland and are trans-
ported to the sea by rivers, which act as conveyor belts collecting more and more plas-
tics as they move downstream (Parker 2019). When plastic is not removed from the
environment, it decomposes into small particles and stays in the environment as micro-
plastic, making it almost impossible to collect and dispose. The abundant micro-plastics
in the oceans has proven to interact with the ecosystem, thus disrupting biogenic flora
and fauna (Kandasubramanian and Issac 2021). New innovative solution for plastic
removal from the water network has been developed by Delft-based start-up Noria.
Their plastic collectors can remove up to 95% of the plastic floating past the device. In
order to get the maximum benefit of such plastic collectors, they need to be installed
in plastic accumulation zones, called the plastic hotspots. While thus far such hotspots
have been detected by field work which is time consuming, more efficient automated
way is needed for hotspot prediction. Such automated model, however, requires a good
understanding of plastic transport in Dutch urban environment.

Currently research on plastic hotspots has dominantly been conducted for oceans as the
highest plastic concentration in surface waters is considered to be in subtropical gyres
(Eriksen et al. 2014). However, as it is suggested that 4.8 to 12.7 mega tons of plastic
enters the oceans each year largely through rivers (Jambeck et al. 2015), the new branch
of research on riverine plastic debris transport is considered as relatively young science
(Emmerik and Schwarz 2020). The main research topics in this field have concentrated
on quantifying riverine plastic flow or general modelling of total plastic transported by
rivers. Common research method for quantifying plastic transport in smaller study area
are labor intense, involving field work for counting plastics in freshwater environment
either by mapping (Tasseron et al. 2020), by collecting surface plastic (Gasperi et al.
2014) or collecting subsurface plastic with nets (Morritt et al. 2014). Such methods are
time-consuming, expensive and spatially limited. A quicker, cost-effective and semi-
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automatic analysis that would improve our understanding on plastic transport and ac-
cumulation in the environment is needed. However, several studies have highlighted
the knowledge gap in understanding of the riverine plastics.

This report aims to contribute to the understanding of the plastic transport in fresh-
water environment as well as provide an experimental method for automated tool that
predicts plastic hotspots and builds on factors affecting plastic transport described by
research done so far. A workflow is presented, incorporating a spatial data analysis us-
ing Geographic Information System (GIS) and agent-based network model for simulat-
ing plastic transport and hotspot generation in Dutch urban environment. This model
can be used by Noria for getting a better overview of plastic transport in the urban en-
vironment and find areas where plastic collection would have the most positive effect,
without having to conduct time-consuming and labor-intense field work.

1.2 Problem definition and scope of this project

For automatic plastic hotspot detection, one of the approach used in ocean environment
has been pixel-based image analysis from airborne or spaceborne images. Examples of
such are hotspot maps of marine plastic debris in Hawaii (Moy et al. 2018) and usage
of SWIR spectral signatures of plastics in the ocean (Shungudzemwoyo P Garaba et
al. 2018). Considering freshwater environment, Jakovljevi et al. (2019) developed an
experimental algorithm for detecting floating plastic in river environment using remote
sensing data. However, it was concluded, that due to the nature of freshwater bodies,
with mud, turbidity, suspended solids and phytoplankton - the algorithm did not work
as well as it would in the open ocean (Jakovljević, Govedarica, and Taboada 2019). This
leaves a gap for quick detection and modelling of plastics in fluvial environment as the
methods used in ocean environment cannot be used. Concerning this issue, this report
proposes a new experimental method aiming to create a simulation of plastic transport
and accumulation in freshwater network, building on findings from previous research
on parameters affecting plastic transport in inland waterbodies.

There is strong evidence from around the world for the correlation between high quan-
tities of plastic waste in freshwater systems and high population density (Best 2019).
Tasseron et al. (2020) studied the hotspots in Dutch cities of Leiden and Wageningen
by counting and categorising the number of plastics in water. The difference in the dis-
tribution of the plastic hotspots in the two Dutch cities was suggested to be due to the
concentration of potential sources and proximity of the canals to the city center. Plastic
accumulation was noticed around locations where water flow was obstructed, such as
dead ends, houseboats, quay walls, bridges and in vegetation. Lastly, it was noted, that
in both of the cities most of the plastic was of Multilayer and PO-soft type, associated
with food wrappings and plastic bags, making the fast food restaurants, market places
and shops as one of the key plasticc sources (Tasseron et al. 2020). Indeed, similar trend

3



was found in River Seine, France, where significant proportion of plastics collected by a
network of floating debris-retention booms consisted of food wrappers and containers
and plastic cutlery (Gasperi et al. 2014). Using this knowledge, the plastic sources and
potential accumulation zones could be mapped and analysed in the urban environment,
forming the basis of the assumptions for our GIS spatial analysis.

In the present project we seek to implement a semi-automatic method that would illus-
trate the plastic movement in Dutch urban water network and identify locations where
plastics would potentially accumulate. The study focuses on the city of Delft in the
province of South Holland in the Netherlands. The method is uses spatial data analysis
for parameters accounting for plastic movement and accumulation, and network analy-
sis for simulating plastic transport in water network in Delft. In more detail, taking into
account the wider problem of plastic accumulation and its extent, in order to develop a
strategy for their detection in water resources (rivers/ channels) of the study area, we
considered three key aspects of plastic transport:

• The sources from where plastic gets into the water;

• Plastic movement according to the dominant wind and flow direction;

• Plastic accumulation in hotspots;

Based on these three aspects, we aim to answer the main research question: How can
potential plastic hotpots be identified in a (semi-) automatic way in freshwater bodies in the
city of Delft? To create algorithms for an automatic or a semi-automatic model that will
present the potential locations, it is necessary to use relevant spatial data (see Chapter
2.1). Specifically, the main objective is to combine the spatial information and charac-
teristics from different data sets (layers), with the ultimate goal to develop a procedure
that will return automatically the locations where plastics are accumulated.

Due to the lack of previous research with similar aim, our process is divided into two
phases, evolving from testing the effectiveness of different parameters and datasets
separately to a more comprehensive network model combining different parameters
in agent-based network model (see Chapter 2.3 and 2.4).

The main steps taken for that purposes are shown in flowchart below:

4



Figure 1.1: Flowchart of the research approach
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1.3 Stakeholders

It is clear that in order to solve a global problem, collective efforts are needed to address
it and Noria actively contributes to this effort. The company, located in the city of Delft
in the Netherlands, seeks a method to identify and remove plastics from the water us-
ing their smart solutions, addressing the problem with innovation. In more details, by
using GIS data and field work for estimating where more plastic may be found, Noria is
placing their specially designed plastic collectors in order to remove the floating plastics
from the water. The way the company operates is based on three steps:

• The analysis of the problem in the perspective study area. In this stage the extent
of the problem is analysed in the working region by trying to answer questions
like: "How much plastic flows in your water?", "What are the most ideal locations to
collect plastic?" and "Which parties must be jointly involved in the solution?"

• The deposition of plastics. In this part, the company places, monitors and main-
tains their system at strategic locations that autonomously filters the floating plas-
tic from the water.

• The re-use of the collected plastics. By re-using the collected plastic, it is possi-
ble to make new high-quality products, therefore saving resources while raising
awareness of the issue. Noria has already produced several products, like waste
grabbers, from the plastic collected from the water.

Our connection with Noria is made through the Technical University of Delft and as our
client, the company commissioned us to devise the project with the theme " Finding the
plastic hotspots with (GIS) data". The implementation of the project is done under the
help and guidance of our two supervisors, Dr. Giorgio Agugiaro and Dr. Ken Arroyo
Ohori, members of the 3D Geoinformation Group. They contributed actively to both
the understanding of the problem and the techniques developed for its completion.
Ultimately, our team is responsible for implementing the theory that characterizes the
problem of detecting plastics at points of potential accumulation.

1.4 Results

The method developed in this project creates a model which performs network analysis
connecting the plastic sources, parameters affecting plastic transport and the potential
plastic accumulation zones. For plastic sources, the locations of restaurants and markets
derived from the Google Maps as well as population data were included. The plastic
transport was modelled along the water line features which made up the network in
our network model. In addition, simplified parameters of wind with constant velocity
and direction as well as water flow with constant velocity are affecting the movement
of plastic objects in the model. Lastly, the model considers canal geometry and dead
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ends of canals where flow is obstructed in relation to wind direction to determine if the
plastic may start to accumulate in such areas or not.

Utilising the information provided in combination with the available tools and soft-
wares, we developed a simulation model which identifies the potential places where
plastics tend to accumulate in the water bodies of the study area. After implementing
our approach, we came to the conclusion that the model is not sufficiently representing
the complexity of the urban environment, given the fairly large set of assumptions taken
into account. The accuracy of our simulation reaches 20 %, which shows the inability
of the model to approach reality. However, lessons learned from this project with rec-
ommendations for future studies may lead the way for improving the outcome of such
automatic modelling of plastic hotspots.

1.5 Reading guide

The report is structured as follows: Chapter Two provides the experimental methods
and methodology followed, as well the information regarding the data used in this
project. In Chapter Three the results are presented that are derived from the developed
methods and algorithms, accompanied by their limitations. The evaluation of the devel-
oped approaches are illustrated in Chapter Four, while in Chapter Five the conclusions
are provided with recommendations for future work.
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2 | Methods

2.1 Datasets

For the purpose of developing any form of models and algorithms using GIS data, it is
of vital importance to have a good knowledge of the data as well as of the correspond-
ing content (metadata, attributes). Especially in cases of complex problems (i.e. the
present project), where a combination of different datasets must be used, their quality
and completeness (metadata and attributes information) are determinant factors that
directly affect the final result.

In order to end up with the most appropriate, dataset to use for each case, the user has
to consider many factors that directly affect the models and algorithms that are under
construction, as well as the final outcome. The importance of the data quality and its
completeness, in our case, was clear during Phase A (2.3), both during the algorithms’
construction as well as in the final results, the derived models showed to be affected di-
rectly from the input datasets. When talking about datasets, we do not solely focus on
the information presented on the map, but on their attributes as well. Having the knowl-
edge of the attributes and their corresponding meaning, the user will gain knowledge
of the importance of investing in information technology. This is something that can
be explained with the DIKAR (Data, Information, Knowledge, Action, Results) model
(2.2), in which the direct connection and interaction between information, knowledge
and the final users action, in order to solve a problem is presented (Ward J. 2016). The
theory behind the model and each intermediate part is that the main problem is divided
into smaller ones (named as gaps) and the solution of them leads to the solution of the
initial problem. Having a good (and/or complete) knowledge about the used data and
their attributes will positively influence both the decision-making ability and the qual-
ity of the final results (since the user is able to judge what information is useful or not,
the user will take the action critically) (Murray 2002). In our approach, we followed the
steps shown in the DIKAR diagram, starting with the data provided to us, continuing
to decode the data into the corresponding information that can be derived from them,
as well as their most in-depth knowledge, so that we can act accordingly, through the
development of our models, to reach the final result regarding the detection of plastic
accumulation.
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Figure 2.1: DIKAR model

For the chosen approach, our project needed datasets for a water network, the flow
direction of the channels in this network, plastic sources such as restaurants and pop-
ulation data, locations of physical structures in the water that may obstruct the water
flow and for vegetation. Therefore, before starting the implementation of our approach,
it was necessary to first collect the datasets relevant for our problem. The main sources
used for datasets collection are shown in Figure 2.2. It should be noted that all datasets
used are of vector type.

Figure 2.2: Data sources
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When conducting a GIS analysis, the quality and integrity of data has major impact on
the final results. It is important to note, that not all the datasets shown in Figure 2.2 were
available for us from the start of the project and extra time was put into finding and re-
quiring the needed datasets from the data owners, such as the Waterboard of Delftland.
From the start of the project, only the initial datasets shown in Figure 2.2 were avail-
able for us. Due to the need for more accurate data, particularly for the water network,
Open Street Map (OSM) data was taken into use. Finally, by the time we had already
reached Phase B in our development, we received more detailed data from Waterboard
Delftland, also incorporating water flow direction as well as physical structures.

In order to later assess our model and validate our results, ground truth data to test our
model was needed. For this, field work was conducted as we separated the study area
into smaller regions of interest based on the distribution of water network and our first
results extracted from our models in Phase A (2.3). The duration of the field work was
four days during which the weather was mostly windy with the wind blowing from
South and South-West, which is the dominant wind direction for the Netherlands. In
this procedure, we took into account the number of plastics found in the visited places
as well as the factors that may lead to plastic accumulation in the specific location. The
covered ground truth area is shown in Figure 2.3.
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Figure 2.3: Ground truth area

Based on the studies that relate higher plastic pollution to higher population density
and number of fast food restaurants (Best 2019; Tasseron et al. 2020; Gasperi et al. 2014),
a dataset on population density in Delft was included. To account for fast food restau-
rants, additionally to the layer showing all the McDonald’s fast food restaurants in the
study area provided by our client Noria, another dataset was created to include more
comprehensive potential plastic sources. It was assumed that other important plas-
tic sources in Delft city center exist, such as the markets, restaurants and other fast
food chains. A layer was created about the HORECA (leaving out the hotels) using the
Google Maps tool My-Map. All the available restaurants, bars, cafes and markets in the
study area were included in the dataset, as well as the main squares in the city center of
the city of Delft (Figure 2.4).
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Figure 2.4: Horeca information

Throughout the development of the model for plastic hotspot detection, it became in-
creasingly more clear what was needed from the input data for the automatic analysis
to work. In the following section, we bring out some of the key requirements identified
for the input data. All the datasets presented in Figure 2.2 were tested and analysed
during this project. However, only the ones shown in Table 2.1 were used in our final
approach. The following section gives insights of how the choice was made and which
data inconsistencies were encountered.

2.1.1 Requirements for data
As mentioned above, the basis in our proposed method is the data of the water network.
This dataset connects all the parameters used the model and missing data can have a
negative impact on the final result, because our model assumes that the water network
is the same as in reality. Some examples of the inconsistencies that were apparent in our
initial datasets are shown in Figures 2.5a, 2.5b and 2.6.
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(a) Wrongly representation of water surfaces (b) Redundant information

Figure 2.6: Topological inconsistencies

Ιn the first case, two connections of water surfaces (through water line segments) emerge,
which should not exist. The two water surfaces are likely to be connected underground,
but for our approaches these connections create problems, as the branches (Figure 2.5a
blue lines) cannot be traversed by plastics. On the contrary, the information that is
needed is missing. This concerns the water body itself (i.e. should be presented with a
line segment in the middle of the surface), as it is likely for the plastics to be accumu-
lated on the surface of the water .

In the second example (Figure 2.5b), the yellow arrow illustrates the location of the
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node (red) and where the node should be (green node). The green node represents
the converge point where all the water line segments should end up. That undesirable
detail creates redundancies, which are not beneficial for our approach. The potential
plastic hotspots that we are looking for are based on the location of the vertices related
to the water line segments. Having redundant information can lead then, to wrongly
identifications. Moreover, in the same figure, it can be noticed the existence of a more
complex representation of the water line segments (sharp angles), could be avoided
(simplify line segments, reducing the wrongly provided information).

Finally, in the last case (Figure 2.6), a topological inconsistency can be observed. Al-
though the water surface ends at a specific place (wall), the line representing it continues
until it reaches a corner on the opposite side. It is noted that there may be underground
flow, but for the analysis of the network and its further utilization for our work, under-
ground flow is not considered, because underground water features are not reachable
for plastics in most cases.

To conclude, it is crucial that the dataset of the water networks is an accurate represen-
tation of the reality and is free of redundancies. After trial and error with conducting
preliminary analysis on the datasets available for us, for the implementation of our ap-
proach, we decided to include only the datasets shown in Table 2.1. It should be noted
that data on water network by OSM was used in Phase A, whereas improved data from
Delft waterboard was used in Phase B.

Table 2.1: Used data

DATA ATTRIBUTES

P
H
A
S
E

B

P
H
A
S
E

A

Ground truth

The layer includes information about the (checked) plastic hotspots
detected in the study area (city of Delft). This information is
accompanied with details concerning the wider population in the
area found, the wind direction the day we detected them and their
distance from the nearest plastic sources (next layer).

HORECA
The layer contains information about markets, bars, cafés,
restaurants, bakeries and other relevant sources that produce
plastics (apart from hotels).

Population The layer includes the population density (per m2) in the
study area for the year 2020.

Water surfaces (OSM)
These surfaces are polygons that represent the available water
information for the study area (South Holland). However, it is not
a complete dataset, while insufficient.

Waterways (OSM)
This layer represents the main water network of the study area,
but also in this case, there was missing, misleading or
wrongly depicted information.

Water surfaces (Waterboard) More complete dataset, providing information about the water
surfaces in the form of polygons.

Waterways (Waterboard) This is also a more detailed vector layer that provides information
about the water network existing in the study area.
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2.1.2 Data preparation

In order to achieve more accurate results, further modifications were applied on the
datasets used. These modifications concern mainly spatial operations that helped us to
fix the topology and/or geometry of the datasets. However, in the next step and given
the available time, in Phase B 2.4 we used the new datasets supplied by the Waterboard,
as they are more complete. A different processing procedure was followed, based on the
network analysis approach. Specifically, we enforced some modifications to the water-
ways and water surfaces layers, in order to clean them from useless and/or redundant
information.

The main objective of the data cleaning for the network approach was to extract the cor-
responding water-line segments from the water-representing polygons. Although the
datasets from the waterboard were more complete, there were cases in which the pro-
vided information was unnecessary and/or irrelevant. Our goal was to maintain those
line segments that are traversable by plastic (i.e. disregard line segments containing
information about steel grids). To do so, we implemented a series of spatial operations
during which several assumptions had to be made, in order to deal with inconsistencies
of the data. In more details, some examples of the main problems that were faced and
needed to be solved were:

[1]: Illustration of pipes-dangling branches: In the waterways dataset, apart from the
depiction of the water element, there were several cases where pipes were presented
that connect the different river or canal branches with each other (Figure 2.7). Given
that for network analysis we wanted to maintain only the information about the line
segments derived from the intersection of water surfaces and waterways, we had to ex-
tract that pipes, as well the remaining branches (if any) that had been artificially added
to the line feature dataset for connecting the pipe with the centreline of the water. The
inclusion of pipes in the dataset would induce two issues. First, the model could pre-
dict a plastic hotspot inside a pipe, where the cleanup would not be possible. Second,
in most cases the plastic is not able to flow through the pipes as the pipe openings are
covered with grid stopping larger objects entering the pipe.
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Figure 2.7: Example of pipe connecting two waterways. In orange is presented the pipe
line, while in the yellow circle is shown the remaining branch

[2]: Gaps: In the water surfaces dataset, there were some gaps between continuous
waterbodies, which lead to incorrect information about the waterway continuity (Figure
2.8). This discontinuity hampered the data correction process and spatial operations (i.e.
snapping) required.

Figure 2.8: Example of disconnected polygons

[3]: Simplification: The above mentioned procedures were followed by simplification
techniques in order to improve/fix the topology of the dataset and to avoid redundant
information (Figure 2.9a and 2.9b). After trial and error in the simplification methods,
we achieved to reduce the number of the waterline vertices from 236348 to 83601, pre-
serving the topology of the waterline network. In the end, the attribute table of the
final dataset, consists only the relevant information of the waterlines (i.e. length, depth,
width).
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(a) Example of non-simplified waterlines (b) Example of simplified waterlines

It should be mentioned that during the procedure we tried to clean and fix the topol-
ogy of the provided data as much as possible. However, not all inconsistencies were
repaired since there were special cases, where a general approach cannot cover. More-
over, given that we worked on a common database, during cleaning procedure, spatial
indexes were used, in order to reduce queries’ execution time and make the procedure
more efficient.

2.1.3 Softwares and tools

In our analysis we used two open softwares, QGIS and Visual Studio Code as well as the
free open source relational Database Managent System PostgreSQL/PostGIS. Specifi-
cally, for the first one, in order to both process the data as well as to implement our
algorithms, the use of QGIS plugins was necessary. As plugin is defined an extension to
QGIS which provides additional functionality that is not included in the core package,
it can run within the QGIS environment and allows the interaction with QGIS interface.
In our case, from the plugins directory we used Database Manager to integrate and
manage our spatial database (PostgreSQL/PostGIS). The advantage of using database
connection within QGIS is that we can store all layers with their own style and share the
final project online without sending files (shapefiles) for each new layer created during
the process. We also used a core plugin for spatial data processing framework (Pro-
cessing). From Processing Toolbox were selected the appropriate algorithms (Providers)
fitted in our needs such as the vector analysis, vector general, vector overlay and vector
selection. Then, from the above mentioned algorithms specific functions were selected
(i.e intersection, buffer) and executed within QGIS. Finally, the graphical modeler was
especially helpful as it allowed us to create complex models using a simple interface.

The programming was done in Visual Studio Code using Python programming lan-
guage. The agent-based network analysis was done by using NetworkX - a free, open
source Phyton library for network science, distributed under Modified BSD Licence.
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Other Phython libraries used include math, random, matplotlib and numpy.

2.2 Synthetic Procedures - Methodology

Due to lack of existing similar research on detecting plastic hotspots in fluvial environ-
ment in semiautomatic way, our first approach was to look separately at several possible
factors that may predict where plastic in Dutch rivers and canals accumulates. These
factors were based on the field experience of Noria as well as analysis of our ground
truth data points from Delft. The first assumptions were the following:

• Plastic accumulates in the dead ends of canals where there is no water outflow
(Tasseron et al. 2020);

• Plastic carried in a water stream gets stuck in vegetation in water, therefore accu-
mulates in vegetated banks;

• Plastic is pushed by wind, therefore moves downwind and accumulates in bends
and closed areas;

• Plastic is moved by water flow;

• More plastic gets into the water around restaurants, markets and densely popu-
lated areas (Best 2019; Gasperi et al. 2014).

Initially, each of the above cases were looked at separately in order to detect automati-
cally places where conditions are met for plastic accumulation. We call this phase in our
project Phase A where datasets were analysed separately. The outcomes of this were
used in Phase B when more comprehensive network analysis was developed.

2.2.1 Algorithm assumptions
Starting with the more detailed analysis of the problem and its subdivision into smaller
tasks, we faced several obstacles, which directly concern the behavior of plastics in the
water, as well as the factors lead them to into the water bodies. In particular, these
barriers concern:

1. Plastic sources: About plastic sources, we took into account possible sources pro-
ducing plastics, focused mainly on restaurants, cafés, bars and markets. We fo-
cused on that sources considering that they are the most effective plastic produc-
ers. Here, it should be mentioned that for all sources we assumed an one-to-one
approach, which means that each source produce exactly one plastic. Moreover,
in our sources are absent other possible individual sources like humans. A human
being could also be considered a source of plastic, although not a direct producer,
it is a means of transporting plastics. More specifically, a person can hold a plas-
tic and deposit it away from a source that we have already took into account (i.e.
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restaurant, cafeteria). This movement of deposition, can be considered as a habit
mainly in cases of specific routes that are regularly followed by people (paths, fre-
quent routes to and from work, pedestrian traffic). Additionally, waste receptacle
(bins) were not included in our approach, neither as a source of plastic nor as a
means of its transportation. Although we looked for (possible) available datasets,
this information where also absent.

2. Natural phenomenon: Regarding the main physical parameters that affect plastic
behavior, we had to converge at a point, for the variables concerning the natural
flow (if any) of the canals, as well as the direction of the wind that may lead them
to a specific location. Given the complexity of natural phenomenon, it is obvious
that it is difficult to take into account and model all the different parameters that
determine both themselves as well as the influence they exert on plastics and their
transport. Specifically, regarding the direction of the wind, it is noted that we
considered it constant, with direction South-West (SW), which is the predominant
direction of the wind in the study area ((Windfinder n.d.)). We also considered
that the wind is evenly distributed in the space and is not affected by obstacles
such as buildings, the height difference of the wall (surrounding the channels)
and the water level. On the other hand, regarding flow direction, it is noted that it
is considered constant in one direction, without taking into account tides, possible
turbulent flow, underground pumping stations and other physical (or not) factors
that may affect the natural flow of the canal.

3. Plastic hotspots: As far as the potential places where plastics tend to accumulate
are concerned, it is mentioned that we assumed them to be the dead ends of the
canals. In particular, we took under consideration both man-made ends (i.e. brick
walls Figure 2.10a) as well as natural ends (corners with vegetation Figure 2.10b).

It is mentioned that after our field work, we observed that couple of our hypotheses
were negated. For example, while in the first in-situ research our assumptions seemed
to be verified (algorithms’ outcome), in a subsequent check the points that initially
turned out to be hotspots, no longer corresponded to our allegations.These assump-
tions affect directly the outcomes of our methods and algorithms (see Chapter 3 and
4).
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(a) Example of man-made canal dead end (b) Example of natural canal dead end

2.3 Phase A – Layer-based approach

While there is research about the accumulation and detection of plastic hotspots in the
oceans and marine environment, examples of models for plastic hotspots in complex
urban canal network as is in the Netherlands, are rare. Due to the original and complex
nature of the study, the development plan was divided into two phases. In the first part
of the development work, each of the datasets were looked at separately to see their
potential for semi-automatic plastic hotspot detection. In this report, we call this the
Phase A where the key objectives were to understand the nature of plastic accumulation,
test the quality of the datasets and assess the assumptions made about the factors that
cause plastics to accumulate. Once a method exists for each of the parameters to be
analysed (semi-) automatically, the project moved on to Phase B where the selected
parameters were added into one comprehensive model.

2.3.1 Dead ends and junctions detection

We consider waterway junctions as an irregularity in the water flow that might cause
plastic accumulation along the junction’s riverbank. On the other hand, we take into
account dead ends as places with a high probability to be plastic hotspots due to their
closing geometry which obstructs the water flow (Tasseron et al. 2020). Our basic as-
sumption was that plastic gets constantly pushed to the very end of dead ends where it
eventually accumulates. Although plastic hotspots exist at the very end of dead ends,
we observed that dead ends are rather stagnant than moving waters. Therefore, we had
to regard another driving force for the plastic movement, that reasons the existence or
non-existence of hotspots in dead ends. For example, a favourable wind direction that
pushes the water as well as the plastics on the water surface into the dead end. That pro-
cedure of pushing and pulling wind forces is explained in more detail in the subchapter
of dominant wind direction (see Chapter 2.3.3). For the purpose of incorporating all rel-
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evant waterway obstacles in Phase B, the objective of this algorithm was the detection
and classifications of all dead ends and junctions in the waterway network.

The detection of dead ends is solely based on the geometry of the waterways. Although
the quality of the algorithm’s output strongly depends on the data input’s quality, the
workflow of detecting dead ends in the given network does not need to be modified
for different datasets, which makes it adaptable for other waterways with different at-
tributes. The implementation roughly divided to two main steps and is applicable on
single-line strings as well as on multi-line strings, where each river/canal segment is
represented by its own (multi-) linestring. In the first step, the start and end nodes
of each (multi-) linestring are extracted from the waterline network. Then, only those
nodes are identified as dead ends that do not share a position with a start or end node
of another (multi-) linestring. By doing this the algorithm makes sure that the selected
start and end nodes of (multi-) lines are not connected to further line segments and are
truly dead ends.

In order to detect junctions, the same approach as for dead ends is carried out. First,
start and end nodes are detected. Then, the junctions are detected by the number of
(multi-) linestrings intersecting with their start and end nodes at the same position. In
this implementation, junctions are classified as nodes in which start or ends nodes of
at least three or more line segments overlap. This constraint makes the algorithm only
working for strongly segmented waterlines where three line segments cross although
they represent only two waterways, as shown in Figure 2.11a. This is the case for our
data, due to the cleaning process. For a bigger junction where at least three different
waterlines cross, a junction is detected with both datasets, OSM and our cleaned data
(Figure 2.12a & 2.12b).
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(a) No junction with two OSM waterline
segments

(b) Junction in red based on three waterline
segments

Figure 2.11: Algorithm not applicable for junctions with less than three crossing line
segments

(a) Big OSM junction in red (b) Big junction in red

Figure 2.12: Algorithm is applicable for junction with three or more crossing line
segments

The final output of dead ends and junction in the city centre of Delft is shown in the
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following Figure 2.13b in comparison with the output based on OSM data in Figure
2.13a.

(a) Output based on OSM data (b) Output based on cleaned data

Figure 2.13: Comparison of dead ends (yellow) & junctions (red) based on different
datasets

2.3.2 Canal geometry

By looking for further irregularities in waterlines the focus can also be set on the bend-
ing of canals. This is done by considering the intermediate nodes of a waterline be-
tween start and end node. While dead ends and junctions detection works with (multi-)
linestrings, this approach only works with multilinestrings, since it calculates the rela-
tive angle of a node based on its own coordinates as well as with the previous and fol-
lowing nodes’ coordinates. Therefore, at least two line segments in one multilinestring
are needed to calculate a relative angle. To extract only those angles that actually rep-
resent a bending, only nodes with an angle smaller than 165° or greater than 195° are
extracted from the waterline (Figure 2.14). These steps were executed by a python script
that was integrated in the QGIS Graphical Modeler. Further steps are needed to provide
a more comprehensive output of waterway angles. For example, the entirety of a curve
in the multilinestring could be detected by analysing the number of nodes on the string
with the corresponding angles. Furthermore, sharp angles representing turnings in the
waterways can be detected by only considering smaller and greater angles (< 90°, >
270°). Nevertheless, for including the entirety of curve in Phase B, it would be rather
beneficial to know the orientation of the bending. Thus, a differentiation between cut
bank and point bar could be made, which is crucial for simulating the impact of wa-
ter flow and wind direction on natural river curves. Since this differentiation and the
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curve’s orientation could not be incorporated in the algorithm due to lack of existing
studies on accumulation phenomena in canal’s curves and due to the time scope of this
project, the output of this algorithm is not passed to Phase B.

Figure 2.14: OSM waterlines; Nodes (in orange) with angles < 165° or > 195°

2.3.3 Dominant wind direction

Together with the flow of the water, wind plays a key role in the transport of plastic in
water. The movement of plastics in water, as well as on land, is affected by both the
speed and the direction of the wind. Regarding the study area and the Netherlands
more broadly, it is noted that the combination of strong winds and the predominantly
flat landscape allows to assume a strong influence of the wind parameter on the trans-
port of plastic.

Taking into account the influence of wind to the plastics’ behavior, we aimed to develop
an algorithm that would detect the potential location where plastics tend to accumulate
(hotspots), based on the wind agent. Specifically, it is mentioned that we considered
that the wind direction dominates in the study area in order to reduce the complexity of
the specific factor and the corresponding affects. In more detail, after research (yearly
weather data measurements: (Services n.d.)) as well as feedback from our clients, we
considered that the wind direction in our case study is stable and its direction is from
South-West (SW).

For the wind model we used multiline datasets acquired from Open Street Map and
Delfland Waterboard GIS department. The datasets, while similar in features and ge-
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ometry, were of different quality resulting in the need of cleaning operations. Addition-
ally, differences in the attributes of the two datasets required different implementation
of the model that needed to be changed manually. Such differences can be located in
the attribute table of the layers concerning mainly the name and nature of ID. In OSM
there was a different definition of unique objects (waterlines) than the Waterboards data.
While we can assume that waterboards’ datasets can be considered as the most accurate
one, it was found out that the model worked better with the OSM dataset. This remark
can be accounted to the fact that in the model’s case, high level of detail causes conflicts
with the notion of reality that it tries to represent. An example of this is going to be
thoroughly explained after the model’s description (Figure 2.18).

In a few words, the physical phenomenon that the model tries to represent is the push-
ing of floating objects (plastics on water) due to the wind’s influence. The most simple
observed case is when the wind pushes the object towards its direction. However, this
simple observation starts to become more complicated considering that in most cases,
the wind direction intersects with canals’ geometry. The result of this intersection is
that the plastics are being pushed to the banks or sides of the water bodies based on
the relation between the wind direction and the waterbody’s geometry. So, the current
wind model tries to represent this behaviour using the following operations. First of all
we are interested in waterlines that have specific boundaries starting from a node and
ending to another regardless of any other intermediate nodes. Next, we consider the
wind direction to be 45 degrees (SW direction) based on the dominant wind direction in
the Netherlands. Moreover, we took an assumption, that any object that is being pushed
against the sides of a water body can slide forward or backwards depending on a theo-
retical inclination that the wind forms with the edge of that side. The approach checks
consecutive water line segments to determine if plastics are being pulled towards the
starting node of the edge or pushed towards the finishing node of it.

Figure 2.15: Plastic behavior based on relative angle of edge and wind direction.
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In the above figure the waterline edge is placed on the gray lines with the starting node
placed in the middle and ending node placed on the circle to represent the direction.
Additionally, based on the SW wind direction, all edges that lie in the green semi-circle
push the plastics that they contain to their finishing node. On the other hand, edges
that lie in the red semi-circle, pull all of their plastic to the edge’s starting node. Having
this in mind, we can determine where all plastics can accumulate in a unique water line
system. Note, however, that there is also a special case of a perpendicular intersection
of the wind and the waterline edge. In reality, this situation can have different outcomes
that all depend on the various factor like the wind velocity, the surface material, plastic’s
shape and size, surface off-water geometry and others. The different outcomes could
be that plastic are pushed exactly against the wall so they either stay put or some move
towards a specific direction and others to the opposite direction. Due to the randomness
and the rareness of this phenomenon we chose to assume that in these situations the
plastics move forward.

Figure 2.16: Practical example of the wind model functionality.

The above example illustrate the way that the wind model works in practice. Starting
from the first waterline segment of a unique system, the model calculates the clock-wise
angle from the North, its starting node and its finishing node. This angle is being com-
pared against the notion derived from Figure 2.15 in order to determine the direction
of the moving plastics. On the first segment, the angle of 97 degrees falls in the green
semi-circle so the plastics move to the head of the arrow. In the next edge, the angle
is 78 degrees falling again to the green semi-circle which means that all plastics move
again to the head of the arrow (this includes plastics from the previous segment). Lastly,
the angle of the last edge is 180 degrees falling in the red semi-circle which means that
all plastics move to the tail of the arrow. So in the end all plastics accumulate the point
marked with the orange ’X’.
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Figure 2.17: Example from dataset

The above figure illustrates the result of the wind model for a waterline segment. The
red points are identified as positions where plastic could accumulate (assuming that the
wind is the only factor affecting them).

Figure 2.18: Example from dataset were the model fails.

The above figure illustrates many cases were the wind model fails due to data configu-
ration. As already mentioned above, the water bodies dataset provided by the Delfland
Waterboard a high level of detail that posed a hindrance for our approach. To elaborate,
a unique water line system could contain many unique identifications for different seg-
ments of it. The issue arose due to the fact that the model recognizes unique systems
based on their unique IDs. As a result, a unique system with many different IDs is being
recognized as n number of different unique systems where n is the number of unique
ID inside the system. In the figure, a continues line is being presented, however each
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line segment has its own unique ID which makes the model to consider them as their
own different systems.

2.3.4 Water flow direction
Water in rivers, streams and canals can have flow, which can for example be caused by
difference in elevation or influences of pumping stations. The direction of the water
flow can greatly influence the direction in which floating and submerged pieces of plas-
tic go. For this reason it is important to incorporate the flow direction parameter into
the model. The first information that was gathered about the flow direction of inland
waters in Delft originated from Rijkswaterstaat. They stated that only the big rivers
have a clear flow direction, which is also influenced by the tides near the sea. Because
Rijkswaterstaat did not have a dataset available that contained the flow direction, the
Open Street Map Waterways dataset was used. In order to avoid doing too much man-
ual work, two big generalisations were made: there is only flow in features classified as
"river" and all rivers float from East to West. The line features classified as river in the
OSM dataset can be seen in 2.19 in blue for the whole of South-Holland.

Figure 2.19: Lines classified as river in the OSM waterways layer (in blue). Examples of
areas where the assumption that water flows westwards does not hold true are circled

in red.

Using the canal geometry, the West side of each line feature in a river could be identified.
This was done using a QGIS model, which could also be exported as Python-file. The
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goal was to combine this model with the other hot-spot identification models to identify
which hot-spots were also in line with the flow direction. However, as could be seen
in figure 2.19, the assumption that all rivers flow westwards does not hold true in all
cases. Because of the great influence of flow direction on the movement of plastics, it
was decided that more accurate assumptions about flow direction were needed. Firstly,
the line geometry of the OSM Waterways dataset was investigated. The direction of the
lines are displayed in 2.20. However, the direction of the lines were not found to be
corresponding with reality. Moreover, as can also be seen in 2.20 not all channels are
included in the dataset and a lot of them are disconnected. Because the quality of the
data can greatly influence the results of all models, we approached the GIS-department
of the Waterboard Delfland to ask if they could provide more accurate data.

Figure 2.20: The Open Street Map waterways features displayed in blue. The direction
of the geometry is displayed in black.

The waterboard provided a very detailed line dataset covering all the water in their
jurisdiction. It can be seen in 2.21. It is clear that this dataset is more accurate than the
OSM dataset the was previously used, more features are included and these datasets
are all connected.
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Figure 2.21: Waterline dataset provided by Waterboard Delfland displayed in blue.

The waterboard also provided us with a line dataset where the direction of flow is stored
in the geometry of the line (water flows from the first to the last node). It can be seen in
2.22. Because the waterline and flow direction datasets were provided while the project
was in Phase B, they were mostly used as input for the simulation and network analysis.
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Figure 2.22: Flow direction dataset provided by the Waterboard Delfland. Lines are
displayed in blue, flow direction is displayed in black.

2.3.5 Land use

As stated above, one of the assumptions of our methodology which was taken from
field experience by our client Noria was that plastic tends to gets stuck in places where
there is vegetation in water. If the canal has hard shores of concrete wall then the plastics
do not easily get stuck and instead follow the water flow or are carried on by the wind
(Figure 2.23a). On the other hand, if vegetation like bushes or reeds is present in the
canal/river and the shore is not man-made, there is higher probability for plastics to
accumulate (Figure 2.23b).

Provided by the client, we had polygon feature dataset on the land use, classifying
the land into 13 categories, including built (bebouwd), wet natural terrain (nat natu-
urlijk terrein), recreation (recreatie), semi-built (semi bebouwd) and water. This layer
was used in order to find the vegetated areas in the cities which are surrounded by the
built environment, marking the place where man-made channel shore turns into natural
bank. A python script was made for faster processing and testing the method in QGIS
environment using the Python console. The script lets the user to select which categories
from the land use polygon layer would be considered as vegetated areas, as water and
as built environment. The script would first do a validation test for the polygon fea-
tures, which proved to be necessary for the land use dataset. It would then select the
vegetated areas which are by the water and also in a built environment through series
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of intersection test. The model was tested, first only selecting the wet natural terrain,
built and water categories for the model. Thereafter adding semi-built land use category
for the built environment and recreational land use category for the vegetated areas to
compare the outcome.

(a) Example of hard shore (in yellow) is
highlighted the exampled area-

Delfshaven

(b) Example of vegetation in water (in
yellow-Lageveld) is highlighted the exampled

area

The outcome of the above mentioned procedure did not meet our expectations. The
vegetated areas detected were mainly only outside the urban areas (Figure 2.24 and
2.25) and were intersecting with the built environment feature mainly due to the large
size of the polygons. Furthermore, it was noted, that the land use dataset does not
show small patches of canal sides that are vegetated which were identified during field
work and using Google Street View. Additionally, much of the green areas in the cities
are classified as recreational rather than wet natural terrain. However, under the recre-
ational land use are channel shores which are both natural or man-made, causing a lot
of noise and false identifications in the model. It was therefore concluded that the land
use dataset is not suitable for finding vegetated shores in urban environments.
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Figure 2.24: Examined area (presented with the red solid line)- study area (presented
with the red dashed line). In purple are presented the vegetation polygons

Figure 2.25: Example of shoreline plants located away from the urban fabric (in yellow)
is highlighted the exampled area)
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2.3.6 Plastic sources
For understanding how plastic moves and accumulates in water network, it is impor-
tant to consider where the plastic gets into the water. Study by Tasseron et al. (2020)
showed that more plastic hotspots were found in Dutch canals near markets, shops and
parking lots, with the majority of plastic deriving from food wrappings and plastic bags.
Data of such places were retrieved from Google Maps, where the location of restaurants,
markets and bars in the city of Delft were extracted as point layer using Make Map func-
tion. As the layer was imported to QGIS, the aim was to select the points that are close
enough to water for the plastic to get into the channels. As plastic on land travels mostly
due to wind, the aim was for the model to consider that plastic can travel further down
wind.

The model was built in QGIS graphical modeller, where two buffers are created around
each point of plastic source. The first buffer is surrounding the point 360 degrees, the
second buffer is only covering a 90 degree angle towards azimuth direction set by the
user. The aim is to give the user an option to set the buffer further down wind. The tool
then checks which buffers intersect with water layer and adds a point to the intersection
between the polygon buffer and the water line features. By this method the assumption
that more plastics will get into the water near restaurants and market places is entered
into the model.

Figure 2.26: Example illustrating the double buffer approach, giving the user an option
to enforce plastic transport from plastic sources to the water network down the wind
whereas plastic will travel less in other directions. In this example, the wind is set to

northeast.
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In addition to these plastic producers, we also took into consideration the population
density of the area. To implement this we used the dataset of 500m2 population den-
sity of 2019 derived from CBS (Figure 2.27) and an assumption that 1 plastic is being
randomly littered for every 2000 people. In the end, the plastics produced from the
abovementioned locations were enhanced by adding the plastic produced from the pop-
ulation density.

Figure 2.27: Ground truth overlayed by 500m2 population density

35



2.3.7 Conclusions for layer-based approach
The layer-based approach allowed us to explore the parameters which help to detect
potential plastic hotspots with GIS analysis as well as to understand the requirements
for the input data. The considerable effect of the quality and completeness of input data
to the results was evident in all the parameters investigated. Methods were developed
to analyse the canal geometry and detect in a semi-automatic way the dead ends of
water networks and places where plastic can accumulate due to wind given that the
input water line features have consistent feature IDs. It was concluded that the land
use dataset is not suitable for determining where plastics may accumulate in vegetation
due to the simplification of the land use categories and low spatial resolution of the
classified areas. Lastly, a model was developed to determine where on the input water
line features plastic may get into the water, considering the surrounding population,
restaurants and markets.

Each of the separate models outputs a number of potential hotspots - places where plas-
tic may accumulate based solely on the single phenomena analysed. However, a more
sophisticated approach is needed to determine which of all those potential hotspots are
real. This is addressed in more comprehensive model in Phase B, where the dead end
detection, canal geometry analysis, flow direction data, location of plastic sources and
the assumption of wind direction is used in network analysis. However, no working
model for vegetation detection of satisfactory outcome was found and excluding vege-
tation is a limitation for our approach. It is important to highlight that the model also
is oversimplifying the wind direction parameter. Specifically, we assume that the wind
has a constant direction (dominant wind direction) from South-West (SW), for the whole
study area. However, in dense urban areas, the complexity of the built environment cre-
ates complex wind directories which could be recovered in 3D model analysis, which is
however out of scope for this project.

2.4 Phase B – Network analysis and simulation

Network science dates back to the graph theory originated from 18th century Swiss
mathematician Leonhard Euler, who solved the Königsber bridge problem. Nowadays,
network analysis is used in different fields from social research to engineering to analyse
connections between different phenomena. As an effective tool for analysing spatial
connections, it was chosen as the approach for modelling the plastic movement in urban
environment from the sources to the accumulation zones in water. Simply put, in our
network analysis the network is the water network in which plastic objects move as
agents under the influence of external parameters.
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2.4.1 Data Input
The data used in the simulation can be considered as the inputs and separated into two
distinct categories. The first category is the edges of the network and the second is
the nodes. These are the most important concepts that we are considering for the net-
work analysis operation and the simulation. For the edge dataset, we use the waterlines
dataset derived from Delfland Waterboard (GIS department) after the cleaning process
(Chapter 2.1.2). Note that this dataset was extensively modified in order to include the
attribute of flow direction. As such, we replaced all intersecting features from the wa-
terline dataset that had the flow direction embedded to their geometry. However, in
order to be able to distinguish between geometries that were digitised based on flow
direction and those based on the random choice of the GIS technician drawing them,
we included a boolean field (Figures 2.28a and 2.28b). Additionally, manual editing was
conducted in cases of disconnected network (snapping geometries) that the automatic
cleaning process introduced or could not capture.

(a) Waterline feature that its geometry does not
relate to real water flow

(b) Water feature that its geometry does relate
to real water flow

It is important to note that while we are only interested in the edges of the waterline
dataset there actually exists a node network defined by the boundaries of the lines.
These nodes are being used by the simulation but are considered as irrelevant nodes, as
they only exist for feature geometry purposes and hold no other meaningful informa-
tion.

The node dataset that the simulation uses, consists of relevant nodes that we pick from
all those irrelevant nodes based on some attributes that they possess. In more detail,
we consider as relevant nodes, those vertices that were deemed as dead ends (based
on dead-end model’s output) and junctions. Dead ends, as mentioned in Chapter 2.3.1,
describe vertices connected to only one edge and represent the starting or ending point
of a water line. Junctions are vertices that are connected to three or more edges. These
nodes are important to the simulation as they signal that plastic could move to differ-
ent directions based on different attributes happening at the node. Additionally, these
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relevant nodes pose as gateways where plastic is being inserted to the simulation as ex-
plained below in the simulation procedure. This field was based on proximity to water
explained at Chapter 2.3.6.

Figure 2.29: Visual representation of the network in the city center of Delft. Relevant
nodes, Irrelevant nodes, Edges

Moreover the simulation gives the option for user-defined wind direction input in de-
grees. Note also, that in the wind direction parameter an additional 15 degrees are
added corresponding to the leeway drift that is observed on floating objects (Hackett,
Breivik, and Wettre 2006). In the simulation description, when referring to wind direc-
tion, the leeway drift is accounted for. We choose to allow only for that parameter as
is the most important one, which influences the results of the simulation. Addition-
ally, some other other important technical assumptions made is that the wind velocity
is constant at 10.5m/min and the flow speed at 4m/min. The wind velocity was cal-
culated using the basic rule of thumb from (ibid.) that roughly 3% of the wind’s speed
is translated to movement of small floating objects and that the average annual wind
velocity in the Netherlands varies around 21km/h. For the flow speed, the assumption
was made based on average measurements of published sensors (available online at:
https://www.rijkswaterstaat.nl/) scattered throughout the South-Holland province.
More information about the results are going to be provided in Chapter 3.

2.4.2 Algorithm procedure and basic steps
The algorithm aims to model the movement of plastic objects using an agent-based ap-
proach with Object-Orientated programming in Python. However, due to the fact that
we are modelling inanimate objects without clear interactivity between them, we as-
sume that the agents are isolated from each other and are being affected individually
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only by their environment. To further elaborate, the agents are plastic units with at-
tributes for their unique ID, for flow velocity parameter, wind velocity parameter and
the time passed in simulation. The wind and flow velocity attributes relate to the plas-
tics’ translated velocity based on those forces. There are additional attributes which are
more relevant to the inner computational functions of the simulation rather than to the
practical comprehension of the simulation.

The initialisation of the simulation happens at the stage where all plastic objects are
being inserted to the system. It was decided, that plastics are inserted to the relevant
nodes, and the amount of objects depends on the corresponding field value derived
from the Plastic sources model (Chapter 2.3.6).

Figure 2.30: Visual representation of the network’s initial state

After the initial stage, all plastics that are inside nodes make a movement decision based
on the attributes of the node that they lie inside and their neighboring nodes (if any).
For every passing time unit of the plastic, neighbor checking happens to assess the prob-
ability of the plastic to move towards them. The decision is made based on probabilities
that we manually define and are hard-coded into the simulation. The most important
attribute is the plastic’s directional velocity, involving the flow and wind parameters,
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against the direction of the water line. Having knowledge about that relative angle be-
tween the combined forces and the water line, we can determine the probability of the
plastic to move towards the neighboring node. A simple demonstration is that a rela-
tive angle of 180 degrees is not going to move the plastic to that neighboring node as
its velocity is opposite of that particular direction. However, all of the nodes are go-
ing to be checked for possible routes before determining that the plastic stays put. The
other attribute that the algorithm considers is the category of the node. If the plastic
has reached a dead-end then it already reached a terminal point and is removed from
the simulation and stored. Note, here that in the case where a dead-end is the plastic’s
initial node, the simulation forces the plastic to pass through the previous procedure of
neighbor checking.
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(a) Definition of the combined vectorial forces
that affect the plastic in middle node.

(b) Determining the probability of the plastic
moving towards the first neighbor upper right.

(c) Determining the probability of the plastic
moving towards the second neighbor lower

right.
(d) Determining the probability of the plastic

moving towards the third neighbor upper left.

The above figure, illustrate in a practical example how the decision of plastic movement
is defined based on the natural forces wind and flow direction. Note that in the cases
the data for flow direction is absent, the combined forces vector only includes the wind
element.

The order of the ’neighboring node checking’ is based on a first come first served decision,
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meaning that regardless the different probability values of all the nodes, the plastic
moves towards the first one to pass the test without giving the option for the rest to
try. Additionally, it is important to note that the process of the plastics checking all
of the neighboring nodes and the decision making are all happening in the same time
instance.

After a plastic leaves the node based on the made decision, it moves with velocity de-
rived from the magnitude of the combined forces. All measurements are based on me-
ters per minutes and the time instances pass for each minute. This helps the simulation
determine the traveling distance of the plastic in each instance and figure out the time
of arrival to the designated neighboring node. After the arrival to that node, the proce-
dure repeats and a new decision has to be made to determine the next location where
the object is going to move (if any).

Lastly, when all plastic objects are removed from the system, the simulation terminates.
There is no particular output of the simulation itself, however the object-orientated code
implementation has objects of nodes and plastics with interconnected relations to each
other. This in practice means that we are able to find into which node each plastic ended
up, measure the absolute amount of plastics in a node and even find the exact time
instance of when the plastic was removed from the system ("got stuck in a potential hot-
spot"). The code implementation illustrates the meaningful outcome that is relevant to
the customer in a figure containing the initial stage and finishing stage of the simulation.
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Figure 2.32: Visual representation of the network’s finishing stage

The code implementation exports the nodes containing plastics in .shp format. The
fields included are the IDs of the nodes, the amount of plastic that each contains and the
class of the node (Figure 2.33).
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Figure 2.33: Visual representation of potential hot-spots derived from the simulation

2.4.3 Simulation testing approach

As the simulation follows a non-deterministic approach based on probabilities, it is ex-
pected to present different output each time. Consequently, in order to come to a stable
assessment conclusion about the potential hotspot and the robustness of the simulation,
we conducted a series of tests using slightly different parameters each time. Two dif-
ferent configurations were tested, each five times with each of the seven different wind
directions chosen, producing 70 test runs in total. The number of tests for each param-
eter change was chosen on one hand due to time limitation and on the other hand due
to the small deviation presented in the outputs.

Tests that aim to include wind direction deviations from the absolute South-West using
the first probability configuration (Table 2.2).

• 5 tests for wind direction of 30 degrees
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• 5 tests for wind direction of 35 degrees

• 5 tests for wind direction of 40 degrees

• 5 tests for wind direction of 45 degrees

• 5 tests for wind direction of 50 degrees

• 5 tests for wind direction of 55 degrees

• 5 tests for wind direction of 60 degrees

Tests that aim to include wind direction deviations from the absolute South-West using
the second probability configuration (Table 2.3).

• 5 tests for wind direction of 30 degrees

• 5 tests for wind direction of 35 degrees

• 5 tests for wind direction of 40 degrees

• 5 tests for wind direction of 45 degrees

• 5 tests for wind direction of 50 degrees

• 5 tests for wind direction of 55 degrees

• 5 tests for wind direction of 60 degrees

Relative angle (forces 6 edge) Probability to move
0 <= angle <= 10 100%
10 <angle <= 20 95%
20 <angle <= 45 60%
45 <angle <= 80 45%
80 <angle <= 90 20%
90 < angle 0%

Table 2.2: Relative angle (in degrees) probabilities - 1st configuration

Relative angle (forces 6 edge) Probability to move
0 <= angle <= 10 95%
10 <angle <= 20 80%
20 <angle <= 45 50%
45 <angle <= 80 20%
80 <angle <= 90 5%
90 < angle 0%

Table 2.3: Relative angle (in degrees) probabilities - 2nd configuration
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From the above tests, we end up with 70 datasets containing potential hotspots. The
frequency of each node’s appearance in these datasets is calculated. Nodes with low fre-
quency of presence are discarded from the final output while the others are considered
as potential hotspots to be validated against ground truth data (Chapter 3). Sufficient
ground truth data could be used to optimize the probability parameters as in this stage
they are defined only by personal assumptions.

Figure 2.34: Visualisation of all hotspot tests output. Simulation extents
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3 | Validation and results

3.1 Simulation Assessment

To assess the simulation approach we made use of the tests that were mentioned in
Chapter 2.4.3. The assessment was made against the ground truth dataset that was
derived from our field work (Figure 3.1). Note, however, that due to the difference
between the simulation extent and the ground truth area, we only took into account
those predicted hotspots that could be found inside the ground truth area. In few words,
the assessment followed two approaches, a more general ground truth approach for
overview and the test approach for specifically assessing the accuracy of our method. In
the first case, the objective is to find out the proportional amount of times that a ground
truth hotspot was present in the tests while simultaneously exposing other semantic
information. In the second one, the objective is to determine the percentage of correctly
identified hotspots in the most frequently present nodes from the test.
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Figure 3.1: Predicted Hotspots from the 70 tests in Simulation extent and Ground truth
area

3.1.1 Ground truth approach

For this approach, a simple model was developed that calculates the amount of test
nodes that fall within each of the ground truth hotspots. The percentile of this value of
the total number of tests, is the final output and is presented in the figure below. (Figure
3.2)
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Figure 3.2: Ground truth approach results. Simulation Extent, Ground truth area,
Ground truth hotspots

In this figure, white hotspots presented a 0% accuracy which means in practice that no
layer (out of 70 tests) was able to identify them.

49



Ground truth Percentage Plastic Amount Node classes

Identified (100%) 13 31% 99 Dead-end. Irrelevant

Identified (99% - 80%) 4 10% 7 Dead-end, Irrelevant

Identified (79% - 60%) 2 5% 4 Dead-end, Irrelevant

Identified (59% - 40%) 1 2% 2 Irrelevant

Identified (39% - 20%) 1 2% 6 Dead-end

Identified (19% - >0%) 3 7% 7 Dead-end, Irrelevant

SUM 24 57% 125 Dead-end, Irrelevant

DIFF (0%) 18 43% - Junction

OVERALL 42 100% - Dead-end, Irrelevant, Junction

Table 3.1: Results from Ground truth assessment approach.

3.1.2 Tests approach

This approach can be considered the opposite of the previous one (Chapter 3.1.1) but
is different to its core. We chose to include it as it shows very different and interesting
results representing more the final assessment of the simulation. The hotspots gathered
from the test were found to be much more in quantity than the actual hotspots located
from the field work. This means that there is also another accuracy measure that we
need to take into account. This measure is the number of correctly predicted hotspots
validated from the ground truth dataset. It is also important to note that the combined
tests passed through a filter that discarded outliers corresponding to nodes with low
frequency (nodes with <10% presence).
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Figure 3.3: Predicted hotspots from tests (frequency adjusted using red scale) and
correctly identified hotspots from ground truth (in yellow)

The final result of this approach is that 24 out of 168 predicted were correctly identified,
giving an accuracy of 14.2%. However, in order to make the assessment better represen-
tative to the reality, we made some adjustments to the predicted hotspots. To elaborate
more, a filter was put to discard nodes with less than 4 plastics in them, as their size
cannot justify the "hotspot" definition.

The result of this cleaning process can be seen in the below figure. (Figure 3.4)
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Figure 3.4: Predicted (and specifically defined) hotspots from tests (frequency adjusted
using red scale) and correctly identified hotspots from ground truth (in yellow)

From the above figure we finally determine that 5 out of 24 predicted hotspots were
correctly identified, giving an overall accuracy of 20.8%.
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4 | Evaluation and discussions

The results obtained from both the individual models as well as the network analysis
are reasonable and acceptable, taking into account the assumptions made during their
development and entailing the simplification necessary for modelling the natural envi-
ronment. As a consequence of the assumptions made at the beginning of the analysis,
various constraints have been created, which oblige the model to operate under ideal-
ized conditions and data. More specifically, these limitations are due to the fact that we
were not fully aware about them a-priori and therefore it would not possible to include
them in our approach. These limitations concern eight aspects discussed below:

The way in which the urban fabric is structured. This means that the buildings and/or
other man-made structures pose obstacles both in the movement of plastics before they
reach and/or fall into the water as well as an obstacle that does not allow wind to
move them when in water (Figures 4.1a and 4.1b). In both cases, the location of the
plastics would be different from the one our simulation detects, since the proximity to
water parameters is not constant and reliable. This could be solved if a 3D model of
the city was available in combination with a more sophisticated algorithm and thus the
proximity could be more representative to reality.

(a) Multi-storey building blocks the wind (b) Brick wall where plastics are obstructed

Figure 4.1: Cases where man-made objects pose obstacles for plastics before reaching
the water
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Partly enclosed canals We took into account the possible concentration of the plastics,
considering that they could be transported into the water, as well as that the water level
is at the same height as the ground level. Therefore, cases of protection railings, brick
walls raised around the perimeters of the canals or other types of mechanical structures
that can be placed above the inlet to catch any debris that may become en-trained (Sheng
1990), which prevents access and contact with humans and therefore plastic were omit-
ted (Figures 4.2a and 4.2b). Based on the above, it can be understood that a plastic may
never reach the water resource that our algorithm identifies as a possible hotspot.

(a) (b)

Figure 4.2: Examples of human intervention for canals protection from debris

The weather conditions. It is noted that depending on the season, the places where
plastics tend to accumulate differ (Emmerik, Strady, et al. 2019). A typical example for
the study area is the vegetation (lily pond) within the canals that grows during the sum-
mer months (Figures 4.3a and 4.3b). This vegetation is an intermediate obstacle to which
the plastics clung and therefore never reach the point identified by our simulation. In
addition, in these months when there is greater mobility of people, the production of
plastics increases following exponential rates and their transfer to different places is
done randomly without relying solely on the sources we took into account when cre-
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ating our models. In contrast, in the winter months, when precipitation is prevalent,
plastics do not necessarily adhere to the dead ends, as due to the increase in water level,
they are likely to be swept away by the flow and settle in other places. In more extreme
weather conditions where ice is also apparent, the movement and accumulation of the
plastics is not possible to be detected since other physical phenomenon like sliding oc-
curs.

(a) Vegetation into the canal. Date: 14-06-2021 (b) Lily pods overgrowth Date: 14-06-2021

Figure 4.3: Examples of vegetation into the water during summer month

The limited data available One of the most important parameters that affect our results
is the available information and its degree of completeness. Specifically, in addition to
the obvious data (water resources network, population data, provincial borders), rele-
vant data such as the location of waste bins, metal bars on the dead ends, the existence of
underground pipes, land use related to vegetation in canals/ rivers and how it changes
based on the time they were not available so it was not possible to include them in our
approach. In addition, there were cases where the data did not correspond to reality,
given the change in the natural environment due to human intervention, and the char-
acteristics of the data were not updated.

The knowledge of the study area. It is noted that in our case, given the size of the

55



area, we focused on further analysis, the on site control of the current situation was
possible. Nevertheless, there were changes in our observations regarding the removal
of plastics from the positions identified as hotspots, as it can be seen in Figures 4.4, 4.5
and 4.6). From the figures it is clear that plastic accumulation is not a stable condition,
since even during 24 hours their location is changed or the spot is cleaned. This makes
the modeling more complicated since even in reality there is not a certain place where
we can assure plastics attendance. It is noted that due to the knowledge of the study
area, several modifications could be made to the data in order to correspond to reality
and to avoid limiting the performance of the simulation to more general cases and net-
works. However, this requires extensive knowledge of the study area and field work
that contradicts the automatic nature of our approach.

Figure 4.4: Identified
hotspot; ground truth.

Date: 21-05-2021

Figure 4.5: Cleaned water
corner (hotspot). Date:

13-06-2021

Figure 4.6: Plastic
appearance. Date:

14-06-2021

Figure 4.7: Example of changed conditions

The reliability of the ground truth data. As mentioned in the above section, the plastic
accumulation that was found as part of the ground truth dataset is not a stable con-
dition. Because the plastic objects do not stay at the locations that they were found,
they must either be removed from the water or moved to another location in the water.
Because tracking the individual pieces of plastics through the system was not possible
during the timespan of this project, we investigated if plastics get taken out of the water
by cleaning activities. To find out the areas and frequency of the cleaning activities in
the waters of our fieldwork area, we had a meeting with the area manager of munici-
pality of Delft. He stated that the canals in the city centre are cleaned up with nets from
the sides by an external contractor on Mondays, Wednesdays and Fridays. The area
covered can be seen in Figure 4.8. The canals in the city centre are also being cleaned
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on Tuesdays and Thursdays by the Stunt foundation with electric boats. The remaining
waters outside of the city centre are cleaned around six times a year. He also stated that
the flow speed in the city centre is not very high, so plastics do not have much time to
move through the canals. This brings us to the conclusion that the hotspots found in the
field might not be accumulation areas, but areas where a lot of plastic enters the water.
Because the flow speed is not very high in the city centre of Delft and the plastics are
removed quickly, they do not have much time to move around in the system to reach
such an accumulation area. In order to create a more representative fieldwork dataset
in the future, ideally all cleaning activities in the area would need to stop. In this way
the plastic that is in the water system has the time to move around and reach a hotspot
where it accumulates.

Figure 4.8: Map of the Municipality of Delft displaying where the external contractor
cleans the water (displayed in red).

The effectiveness of the method outside the study area. The scope of this project only
focused on modelling plastic transport in Delft city center. Due to the time limitation,
no further tests were done in evaluating the model in other places as new set of ground
truth data would be needed. It is assumed that the conditions in other Dutch cities are
similar to the water network in Delft. However, the model is possible not work in places
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where the transport by water flow dominates over transport by wind. The Netherlands
has a unique water network made of canals and rivers whereas in most countries canals
are not that common. It is therefore assumed that the developed method would not
give satisfactory results if tested in study areas outside of the Netherlands.

The oversimplification of the problem, based on several assumptions (Chapter 2.2.1).
Given the complex nature of the problem and the fact that plastics’ behavior is affected
by various parameters (natural or not) we had to make several assumptions in order to
simplify the problem and adapt it to more reliable results. Specifically, since it was not
possible to capture the complexity of the topic we took under consideration the major
factors that affect plastic behavior in the water, omitting the ones mentioned above.
Although these considerations contributed to the improvement of the technical part of
our approach (simulation), they cost its accuracy and the possibility that it could be
used in more general cases.

From all the above it is concluded that in order for the already existing model to become
more efficient and reliable (reflect reality), all the above parameters should be taken into
account and included in the corresponding simulation. In this way, the problem is more
defined while arbitrariness in the results are avoided.
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5 | Conclusions and Future Work

5.1 Conclusions

This project aimed to create a semi-automatic model simulating the transport and accu-
mulation of plastic debris in Dutch urban water networks. The purpose of this model
was to aid the prediction of plastic accumulation zones in order to find where it would
be the most efficient to install plastic collectors by our client Noria. Although there is
a knowledge gap in research on plastic transport in the freshwater environment, pa-
rameters affecting plastic transport cited in literature and noted from the experience of
our client were included in a method incorporating a GIS analysis and network simu-
lation. First, a GIS analysis is done where locations of potential plastic sources, dead
ends and canal geometry where water flow is obstructed are detected. Using the ac-
quired knowledge and data from this analysis, the network simulation identifies places
with the highest probability of plastic accumulation based on our assumptions. The re-
sults, however, showed large over-simplification of the problem. Out of the 24 hotspots
predicted by the model, 5 ’true’ hotspots are found in reality.

The complexity of the environment which was being modelled was evaluated. Many
simplifications of the real world were introduced for the sake of decreasing the com-
plexity of the model and due to the time available for the project. Such simplifications
include constant velocity of water flow, constant wind direction and no attribution to
changing of the environment, vegetation cover and weather conditions were given. It
was also noted that the model is highly dependent on the quality and completeness
of the input data. Limitations were introduced by data not being available, such as de-
tailed data on vegetation in the water network, location of trash bins in the city and civil
structures in the canals. Finally, the water in reality was assessed against the ground
truth collected during field work. However, it was discovered only at the end of the
project that the canals in the study area are cleaned several times a week, creating a pos-
sible negative impact on the assessment, because potentially some accumulation areas
were not mapped as they had been cleaned.

Overall it is believed that the model can assist our client in choosing the most efficient
location for their trash collector. As the model does not produce a high accuracy, field
research is still needed to determine the ’real’ hotspots out of all that are predicted by the

59



model. However, added value comes from pre-selection of areas where field research is
needed, removing the need of mapping the plastic in the entire area of interest.

5.2 Future work

The project was implemented during a period of two months and the short time avail-
able caused several limitations to our final results. For further analysis to improve the
already existing results, it would be advisable to use machine learning in order to clas-
sify the plastics detected into different categories according to their type, based on the
identification given from the Society of plastics industry (SPI) (Products 2015), or size.
This could be achieved by building classification algorithms that uses training data in
order to predict the probability that one object belongs to one of predetermined cate-
gories. In our case the plastics detected fall into one of the seven categories mentioned
above.

Another possible approach for the detection of potential locations where plastics tend to
accumulate is to use real time data, collected through monitoring procedures. In more
details, for our study case, bridge-mounted cameras could be used in order to spot not
only the places where plastics are gathered but the quantity of them as well, skipping
visual counting. More analytically, with the use of video camera technologies, images
from different time periods can be produced, consisting the input data in a deep learn-
ing analysis. Then, with the use of deep learning object-recognition algorithms, plastics’
type can be characterized, making their recognition from the images easier. As in any
method, also in this case it is necessary to make certain assumptions and determine
parameters that affect the operation of the algorithm that is going to be followed. For
example, the location of the camera in relation to the study area (distance from plastic,
possible obstacles in front of the lens, quality of the lens etc.) can play an important role
in the detection (Lieshout et al. 2020).

In literature, there have already been proposed methods for monitoring plastic move-
ments using UAVs or spaceborn remote sensing for multispectral images (Emmerik and
Schwarz 2020). Using satellites for this purpose involves addressing problems related
to the distribution, types, quantities and sources of plastics (Knaeps 2020). In this case,
the aim is to extract information about plastics, using spectral measurements. However,
as mentioned in the introduction, it is not effective to use this method for smaller size
water bodies (canals/rivers), so we could benefit from this approach by acquiring in-
formation about the vegetation existed into the water bodies, which is an information
missing from our approach. To do so, first it should be selected a trained area as well
as some target materials, which in our case will be the vegetation. Then, image classi-
fication process can be implemented in order to categorize and label groups of image’s
pixels, into one of several land cover classes, that would follow user defined rules (rel-
evant to the target materials) (Topouzelis, Papakonstantinou, and Shungudzemwoyo
P. Garaba 2019). With image classification it is aimed the identification and depiction
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of the features occurring in the image used, in terms of the specified target materials
existed on the ground.

Using an image processing software, it is possible to develop a statistic characterization
of the reflection for each information class (vegetation) on each spectral band, using in-
dicators such as normalized difference vegetation index (NDVI). Once this is achieved,
the user is able to examine the reflectance for each pixel and decide about which of the
signatures presented it resembles the most. Taking into account the reflectance of the
basic ground elements that is known, the vegetation can be detected as the objects that
their signature would differ significantly from the one corresponds to water (Science
Chulalongkorn University n.d.). In this case, it is noted that in order to obtain satisfac-
tory results, high geospatial resolution images are required, in which it will be possible
to distinguish the various vegetation patches that exist in the study area. Even more
attention should be paid to the date that the aerial photograph was taken, as physical
factors (i.e. atmospheric condition, clouds, river condition-water flow) directly affect
the results of the process mentioned.
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A1 | Appendix

A1.1 User Manual

In this section the user manual of the final product is given. The process is visualised
in A1.2. It consists of three main steps: data preparation, data generation with QGIS
models and running the simulation. The user is expected to have possession over a
computer or laptop were at least QGIS 3.10 and Python 3.7 can be installed. The de-
vice also needs sufficient storage capacity to store the necessary datasets. The product
should be able to run on any operating system.

A1.1.1 Data preparation

Because the quality of the input data can greatly influence the accuracy of the results, it
is important to check if the input data is up to standard.

To be able to run the models and simulation the following datasets are needed:

• The water features as a line dataset. The dataset should be available as a shape-
file for it to be usable in both QGIS and the simulation. The features should be
as connected as possible for the water network in the simulation to work. The
features should also be very close to reality to ensure that the output is as accurate
as possible.

• The water features as a polygon dataset. The dataset should be available as a
shape-file and should overlap the line water features dataset.

• The water flow direction as a line dataset. The dataset should be available as
shape-file and the direction of the flow should be stored in the geometry of the
lines. This means that the water flows from the first node to the last node of the
specific line feature. Naturally the flow direction of this dataset should be the
same as in reality.

• The sources of plastic as a point dataset. This should also be available as shape-
file.

• The population density as a polygon dataset.
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All datasets should only cover the study area to prevent unnecessary computing.

A1.1.2 QGIS models
The next step is to run the QGIS models. In order to do this the user needs to have QGIS
3.10 or higher installed. We assume that the user has some basic knowledge about GIS-
systems and knows how to load in the shape-file layers.

The following QGIS models need to be downloaded:

• The data cleaning model

• The relevant nodes model

• The plastic insertion model

Once this is done, the models can be run in QGIS.

1. The first step is open a new QGIS project and load in all the necessary layers.

2. The first model that must be used is the data cleaning model.

(a) The user can open models in QGIS by clicking on the toolbox in the attributes
toolbar, followed by clicking on the models icon. The user needs to select
"Open Existing Model" or "Add Model to Toolbox". Another way to open a
model in QGIS is to drag the model file into the QGIS window.

(b) In the data cleaning model window the user should select the water polygon
feature layer as the Water bodies parameter

(c) The user should select the water line feature layer as the Water line parameter

(d) The output of the model is a cleaned water line features layer.

3. Then we use the relevant nodes model.

(a) Open this model the same way as before.

(b) Select the cleaned water line feature layer (output from data cleaning model)
as the Waterlines Network parameter.

(c) The output of the model is a point layer containing the relevant nodes for the
water network.

4. Finally, we use the plastic insertion model

(a) Open this model the same way as explained in 2(a).

(b) Select the plastic sources point layer as the Point layer of plastic sources param-
eter.

(c) Give the radius of the 360 degree buffer in metres. See figure A1.1
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(d) Give the radius of the wind buffer in metres.

(e) Select the ID column from the relevant nodes layer (output from relevant nodes
model).

(f) Select the cleaned water line feature layer (output of data cleaning model) as
the Water lines parameter.

(g) Give the Width of the wind buffer in degrees.

(h) Give the Wind direction in degrees.

(i) Select the population density layer as the Population density parameter

(j) Select the relevant nodes layer (output from relevant nodes model) as the
nodes for the networkx graph parameter.

(k) Three layers are outputted. The two buffer layers are not needed and can be
discarded. The final nodes layer should be kept and stored.

5. To be able to use the layers created by the models, they need to be stored as a
shape-file on the device.

Figure A1.1: Explanation of values inserted into the plastic insertion model

A1.1.3 Simulation
The simulation is developed using the programming language ’Python’. The version on
which it was developed is 3.8.5. Additionally, the code uses some 3rd party packages
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that need to be installed that may also require extra dependencies:

• NetworkX (https://pypi.org/project/networkx/)

• Numpy (https://pypi.org/project/numpy/)

• Matplotlib (https://pypi.org/project/matplotlib/)

The code is segmented into 3 python files:

• main.py (Core and Plots)

• classes.py (Classes,methods and functions)

• simulation.py (Algorithm)

The code requires to include a ’Data’ directory into its own directory containing a
shape-file of edges and one of nodes that are the inputs of the simulation. The exact
name of the shapefiles is currently hardcoded into a relative path. Users that want to
use other datasets than the one provided by us, must change the relative path from
within the code itself (in main.py). The shape-file of the edges is the output shape-file
of the cleaned data model, processed according to the steps in 2.4.1 to improve the data
and to include the flow direction. The nodes are in the output shape-file of the plastic
insertion model. It is important for the node dataset to contain fields of ID, class, and
plastic amount (pls_amount) as this information is crucial to the code’s functions. The
steps to run the simulation are described below:

1. Install all the dependencies mentioned above and download the simulation folder.

2. Add the line and node shape-files to the Data directory (currently contains the
datasets used in this project).

3. To execute the code, the file main.py needs to be run either from the terminal or
from an IDE.

4. After that, the user is asked to insert the input in the terminal that defines the wind
direction (CW from North in degrees).

5. Before the code finishes its execution, a figure pops up presenting the initial and
final stage of the simulation as shown in Figures 2.30 and 2.32. Closing the figure’s
window will result to the termination of the execution.

6. Finally, the code writes the resulting nodes as a shape-file into the "./Data/Plastics"
directory.
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A1.1.4 User manual flowchart

Figure A1.2: Flowchart of user manual
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A1.2 Simulation pseudo-code

Algorithm 1 Plastic Movement Simulation

Input Waterlines, Relevant_nodes, WindDirection (default: 45)
Output Potential_Hotspots (Point Shapefile)
IrrelevantNodes←Waterlines.nodes
N ← Relevant_nodes ∪ Irrelevant_nodes
W ←Wind Direction + Leeway_Drift(default: 15 degrees)
A ← Relevant_nodes[’plastic_amount’] {’A’ is a list containing all plastic objects that
are active}
for all A do

A← Updated active plastic list
if plastic in N then

Neigh← neighboring nodes of node
for all Neigh do

Relativeangle← ~Neigh 6 ~Forces {W + Flow}
P← Probability of plastic to move to Neigh node {Relativeangle}
if P then

Plastic moves
Remove plastic from node
plastic.velocity← ‖Forces‖

else
Plastic stays put

end if
Deactivate plastic {Plastic exits the system from node}

end for
else

if plastic.distancetonode <= 0 then
Insert plastic in node {plastics has reached the node}

else
plastic.distancetonode − = plastic.velocity

end if
end if

end for
return Write (in shapefile) the nodes from N that have plastics in them
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