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Abstract
Amsterdam Airport Schiphol has 5 runways, each of which can be used for take-off or landing of aero-
planes. The weather heavily influences which runway configuration air traffic control might pick. Airport
Forecasting Service (AFOS) predicts which configuration of runways works most efficiently given a set
of expected weather conditions and the standard deviations of wind components. These standard
deviations give the system an indication of the accuracy of the weather forecasts.

Currently, the KNMI (Royal Netherlands Meteorological Institute) is the only meteorological institute
that provides these standard deviations along with the weather forecast. This raises the main research
question of this report: Is it possible to make accurate enough estimations of the standard deviation of
wind direction and wind speed using historical data and future weather expectations? Estimating these
standard deviations has been researched with two different approaches: a statistical method approach
and a machine learning approach.

Statistical methods Four fittingmethods have been researched in search of the best statistical model
to estimate the standard deviation of wind direction and speed: the Maximum Likelihood Method (MLM)
and three Least SquareMethod implementations of aWeibull, MinimumWeibull andDoubleWeibull dis-
tribution. The performance of aggregates on the outcome of these four methods was also researched.
One case takes the minimum standard deviation of the four, the other takes the mean.

MLM not only performs the best but also performs most consistently of the four fitting methods.
Taking into account aggregates, MLM is more consistent than the minimum method but the minimum
method outperforms it. Neither of these methods managed to meet the success criteria.

Machine Learning In regards to machine learning, the problem of estimating the standard deviations
of wind direction and wind speed is a regression problem. The following machine learning models have
been researched for Estimatic: MLPN, LSTM RNN, ERNN and RBFN.

LSTM RNNs outperform MLPNs, RBFNs and ERNNs for both wind direction and speed standard
deviation estimation. LSTM RNN performance did not meet the success criteria.

The research concludes that it is not possible to make accurate enough estimations of the standard
deviation of wind components using the historical data and future weather expectations available for
Amsterdam Airport Schiphol.
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1
Introduction

Amsterdam Airport Schiphol has 5 runways, each of which can be used for take-off or landing of aero-
planes, and these aeroplanes can land and take off in both directions of the runway. Choosing which
configuration of runways to use is an essential part of the job for air traffic control. The weather heavily
influences which runway configuration air traffic control might pick. Generally, aeroplanes want to land
and take off facing into the wind.

To help air traffic control decide which configuration works best, aviation consultant To70 has cre-
ated a support system called AFOS (Airport Forecasting Service). AFOS predicts which configuration
of runways works most efficiently given a set of expected weather conditions. As input, AFOS requires
weather predictions for up to 31 hours into the future. Furthermore, to provide the system with infor-
mation on the accuracy of the wind direction and wind speed estimations, the standard deviations of
these components are provided as well.

KNMI (Royal Netherlands Meteorological Institute) is one of the few meteorological institute that
provides these standard deviations along with the weather expectations. To70 wants to be able to sell
AFOS to airports outside of the Netherlands. These airports have access to the weather forecasts for
their location as well as historical measurements, but not the aforementioned standard deviations. This
leads to the main research question of this study: Is it possible to make accurate enough estimations of
the standard deviation of wind direction and wind speed using historical data and future weather expec-
tations?. This historical data for Schiphol is provided by KNMI databases. Estimating these standard
deviations has been done with two different approaches: statistical method approach and a machine
learning model approach. The outcome of the research of these approaches has resulted in the prod-
uct called Estimatic.

This bachelor end project was commissioned by AerLabs, an aviation software company, in collab-
oration with To70.

The structure of the rest of this report will be as follows: In chapter 2 related works will be discussed.
In chapter 3 the problem and available data is analysed, and the methodology is presented in chapter 4.
In chapter 5 the found results are listed, and discussed in chapter 6. Chapter 7 presents the conclusion
to the research question, after which recommendations for future studies and for To70 are made. The
lessons learned during this project are in chapter 8.
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2
Related Works

There have not been any studies as of yet that research estimating the standard deviations of wind
speed and wind direction (these are hereafter called wind components) based on historical data. How-
ever, there have been studies on estimating the weather using machine learning, as well as studies
using statistical methods that calculate standard deviations based on measurements.

2.1. Weather forecasting with machine learning
A study by Maqsood et al. [9] researched how well different machine learning models performed when
forecast weather. To forecast weather, they made use of temperature, wind speed and relative humidity
data for forecast 24 hours ahead. The data consisted of hourly measurements, starting from Decem-
ber 1st, 2000, up to November 9th, 2001. The data was split into seasons. In this study, they used
ensembles of four different models: multilayer perceptron networks (MLPN), radial basis function net-
work (RBFN), Elman recurrent neural networks (ERNN) and Hopfield models (HFM). They found that
RBFNs perform best, both in terms of accuracy and training time. Compared to the other networks,
RBFNs correlate better. After RBFNs, ERNNs performed best in terms of accuracy. The dynamic
behaviour of the weather was better captured by ERNNs than MLPNs. ERNNs, a type of recurrent
neural networks, can show temporal dynamic behaviour. They stated: ”The ERNN model, compared
to MLPN, could efficiently capture the dynamic behaviour of the weather, resulting in a more compact
and natural representation of the temporal information contained in the weather profile.” MLPNs per-
formed second worst both in terms of accuracy and training speed. HFMs performed worst in terms of
accuracy, but performed best in terms of training speed, taking only a few seconds where ERNNs and
MLPNs needed up to 30 minutes.

In addition to ensembles of single models, Maqsood et al. created ensembles of combinations of
aforementioned models. These combination ensembles were created with two approaches, winner
takes-all (WTA) and weighted average (WA). The WTA and WA ensembles were compared with the
single model ensembles, and both were found to predict the weather more accurately. In terms of error,
the WTA ensemble method performed the best in predicting weather.

2.2. Time series analysis
A study by Kourentzes et al. [7] researched the performance of a neural network ensemble for time
series forecasting. They propose a neural network mode operator ensemble and compare its perfor-
mance with existing fundamental operators; mean and median. They empirically evaluated the perfor-
mance of the ensemble and the operators using two datasets containing monthly time series. From
both datasets, samples that contained 108 or more observations (9 years) were chosen. On choosing
the samples, they stated: ”Long time series were preferred to allow for adequate training, validation
and test sets.” The results indicated that the neural network ensemble can accurately forecast time se-
ries. They propose a number of applications that can benefit from neural networks ensemble forecasts,
such as climate modelling.
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4 2. Related Works

2.3. Statistical models for predicting standard deviations
Several methods for calculating the standard deviation of wind speed and direction have been studied
in the past. Most of them calculate the standard deviation based on the minutely measurements taken
during the previous hour.

2.3.1. Mardia (1972)
In the book ”Statistics of Directional Data” Mardia (cited in Mori [10]) discusses a single-pass method to
calculate the standard deviation of wind direction. Mori [10] concludes that Mardia’s method is one of
the best single-pass estimators of 𝜎፝ in practical application. So does Weber [13] in his study in which
Mardia’s method has an RMSE of only 2.9 degrees.

2.3.2. Yamartino (1984)
Yamartino[15] has researched his single-pass method extensively, comparing its results to the clas-
sically used two-pass method to determine standard deviation of wind direction. In his research he
arrives at three different estimators for the standard deviation. The first two estimators were not suf-
ficient in handling standard deviations larger than 90°. However, the third one was able to accurately
estimate a standard deviation with a degree of ± 2% (compared with the classical two-pass method).

Even though this method has not been tested on field data it does solve issues presented by Ack-
ermann [1] and Verrall and Williams [12]. Where the former over predicts for values above 40°and the
latter under predicts. Yamartino’s method does not have these issues.

Weber [13] shows the Yamartino method to have an RMSE of only 1.9 degrees. Turner [2] confirms
Yamartino’s method as the best method when compared with Verrall and Williams [12] and Ackermann
[1].

2.3.3. Linear standard deviation
Multiple papers start off with remarks regarding the usual linear estimation of the standard deviation
of an estimate. Turner [2] explains that due to the circular function of wind direction (360°and 0°are
the same) this standard statistical method cannot be used. Ackermann [1], Weber [13] and Mori [10]
all confirm that this discontinuity means this method will not be of use for determining the standard
deviation of wind direction.

Regarding wind speed, however, using this method to determine standard deviation could be of
some use. Although this model does not handle real-world phenomena it could be of use for giving a
general estimation.

2.3.4. Weibull distribution
Multiple studies have shown that a Weibull Distribution often correctly describes the wind speed dis-
tribution [3] [4] [5]. This two-parameter distribution takes a parameter 𝑘 and 𝐶, with 𝑘 > 0 being the
so-called shape-parameter and 𝐶 > 0 being the scale parameter.

All three of the above studies have determined different methods to determine parameters 𝑘 and
𝐶. In a study conducted by Kaoga et al. [5] the Maximum Likelihood Method (MLM), which uses time
series to estimate the values of 𝑘 and 𝐶 and the Energy Pattern Factor method (EPF), which relates to
the average data of wind speed were researched. These are most relevant to the dataset. EPF was
one of the worse performing parameter estimators, but MLM was recommended by Kaoga et al. as
an alternative. With an error of 30.10% when estimating standard deviations, it was the second best
performing method in the study conducted by Kaoga et al. [5].

2.4. Other related works
Further studies were conducted on the subjects above. A more comprehensive review of multiple
studies can be found in the research report in Appendix C. In said report a deeper analysis on the
paragraphs lined out above can be found, as well as the formulas necessary to execute thesemethods.



3
Problem Analysis

Is it possible to estimate the standard deviations of wind speed and wind direction given historical
weather measurements and future weather forecasts? Questions that arise are: What is an accurate
prediction? What kind of historical data can be expected? The following chapter sheds light on these
questions by analysing the problem further.

3.1. Current situation
One of Amsterdam Airport Schiphol’s air traffic control’s tasks is to choose a runway configuration
based on future weather conditions. AFOS (Airport Forecasting Service) is a support system for air
traffic control at Amsterdam Airport Schiphol. As input, AFOS requires weather predictions for up to 31
hours into the future. Along with the weather predictions, the standard deviations of the wind direction
and speed are provided as well. These parameters are essential to AFOS, as they give the system an
indication of the accuracy of the weather forecasts. As output, it suggests air traffic control configura-
tions based on their probability of being able to manage the estimated flight capacity.

According to To70, most meteorological institutes do not offer the standard deviations of the wind
direction and speed along with their weather forecasts. The KNMI does offer this information in their
weather forecast. The KNMI has a model called EPS (Ensemble Prediction System), which does
offer these standard deviations. In the so-called expert-plume in figure 3.1 can be seen how the model
creates 52 individual runs. By analysing the spread of these individual runs, the KNMI has an indication
of the certainty of their weather forecast1.

The specifics of the model, as well as the inputs of the different runs, are not known. What is known
is that all 52 runs make use of a single model but modify the input slightly. Finally, it is known that the
KNMI does not take this model as final truth. A meteorologist analyses the results of the model, and
makes adjustments where necessary, based on his or her expertise.

In figure 3.2 the so-called 50% and 90% band in which 50% and 90% of the total runs fall in to can
be seen. Based on these plumes the meteorologist will assign a value to the standard deviation of the
wind direction or wind speed. These values of the standard deviation are then used as input for AFOS,
as accuracy metrics for the weather forecasts.

In contrast to the KNMI plume, the weather forecasts made by other meteorological institutes lack
a standard deviation. In figure 3.3 a wind forecast made by the KMI (Royal Meteorological Institute) of
Belgium can be found. The wind forecast is the only thing presented in their figure, and no plume-like
structure is offered.

1Source: https://www.knmi.nl/kennis-en-datacentrum/achtergrond/over-de-weer-en-klimaatpluim-en-expertpluim

5



6 3. Problem Analysis

Figure 3.1: Expert plume for wind speed
Source: www.knmi.nl

Figure 3.2: Standard plume for wind speed
Source: www.knmi.nl
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Figure 3.3: Plume for wind speed and direction offered by the Belgium Royal Meteorological Institute
Source: www.meteo.be

Overview of information in the SKV dataset

Wind direction [°clockwise from north] Dew point temperature [°C]
Wind direction standard deviation [°] Prob. regarding visibility conditions
Wind speed [kt] Prob. regarding cumulonimbus clouds and snow
Wind speed standard deviation [kt] Prob. regarding thunderstorms and freezing rain
Gusts [kt] Issue time
Temperature [°C] Time of prediction

Table 3.1: Overview of information contained in the SKV dataset

3.2. Data
SKV With the output of EPS, the KNMI offers a weather forecast along with the aforementioned
standard deviations, called SKV (Schiphol Probability Estimation). To70 has offered historical SKV
data to train and validate Estimatic. This dataset contains hourly historical weather forecasts up to
31 hours into the future from a given point in time, specifically for Schiphol. Every hour, 15 fore-
casts are made up to 31 hours into the future, where for each forecast 𝑡፱, the time difference 𝑥 ∈
{1, 2, 3, 4, 5, 6, 7, 10, 13, 16, 19, 22, 25, 28, 31}. The dataset ranges from 2010 to 2017. A detailed overview
of all the information contained within the SKV dataset can be found in table 3.1.

KNMI Besides having the historical weather forecasts offered by the SKV dataset, there are multi-
ple databases which offer historical measurements of weather i.e. the actual weather conditions on a
given time and place. Most country specific meteorological institutes offer such databases. Examples
of the meteorological institutes are the National Oceanic and Atmospheric Administration (NOAA) of
the United States of America2, the Meteorological Administration of China3 and the Royal Netherlands
Meteorological Institute (KNMI)4. Such climatic agencies often offer open-to-public datasets containing
e.g. land-based weather station data. These stations often report on the temperature, wind speed, wind
direction, humidity and other weather components. Measurements are often available on a monthly,
daily, hourly or even minute by minute basis.

The SKV dataset contains hourly weather forecasts between 2010 and 2017 for Schiphol. A
dataset matching the same time range and location ofmeasured weather conditions is required. The
2https://www.ncdc.noaa.gov/
3http://www.cma.gov.cn/
4https://data.knmi.nl/datasets

https://www.ncdc.noaa.gov/
http://www.cma.gov.cn/
https://data.knmi.nl/datasets


8 3. Problem Analysis

Meaning Units

Temperature 0.1° C
Highest gust measured in the last hour 0.1 m/s
Average wind direction over the last 10 minutes ° clockwise from north
Average wind speed over the last hour 0.1 m/s
Current dew point temperature at 1.50m 0.1° C
Average wind speed over the last 10 minutes 0.1 m/s
Current air pressure reduced to sea level 0.1 hPa
Total solar irradiance over the last hour J/cmኼ

Cloudiness Expressed in range 1-8
Mist in the last hour 1 if mist occurred, 0 otherwise
Sum of rain in the last hour in 0.1 mm

Table 3.2: Explanation of the KNMI data labels

KNMI Data Centre offers such a dataset5. This dataset contains hourly averaged weather information
for Schiphol. An overview of the relevant information and explanation of the abbreviations contained
within the KNMI dataset can be found in table 3.2.

3.3. Research questions
The main research question is: Is it possible to make accurate enough estimations of the standard
deviation of wind direction and wind speed using historical data and future weather expectations?
A detailed explanation of ”accurate enough” is defined in section 4.3.

In section 2 it was found that statistical methods and machine learning are able to estimate standard
deviations of the wind components. These two approaches are used to answer the main research
question. Researching how to make the most accurate estimations lead to the formulation of research
questions for each topic:

Statistical methods The following sub research questions will aid in the research to find if statistical
methods can offer accurate enough estimations of the standard deviation of wind speed. In section
2 no statistical method was found to predict the standard deviation of wind direction. Therefore, this
possibility is left outside of the scope of this project.

RQኻ: What fitting methods work best in the statistical method?

RQኼ: Which set of inputs work best in the statistical method?

Machine Learning The following sub research questions will aid in the research to find if machine
learning can offer accurate enough estimations of the standard deviation of wind direction and wind
speed.

RQኽ: Which machine learning model performs best at estimating the standard deviations of wind com-
ponents?

RQኾ: Which data features work best as input for the machine learning models?

RQ: How does increasing the amount of lagged observations as input influence the accuracy?

RQዀ: What happens with the accuracy as an estimation is made further into the future?

Data limitations Another question arose regarding Estimatic and its implementation for To70. In
order to find out how much data To70 would need to train Estimatic, the research question below was
formulated. As the statistical methods do not train on the data, this question is only relevant for the
machine learning approach.

RQ: What is the influence of the amount of years of training data on the accuracy of predictions made?
5https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens

https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens
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The definition of the best model is the model with the lowest mean absolute error. This is further
explained in section 4.3.

3.4. Hypotheses
The following hypotheses are proposed for each research questions:

H1 Using a Maximum Likelihood Method (MLM) to fit a Weibull distribution to wind speed data results
in the lowest mean absolute error. Kaoga et al. [5] have found that the MLM method outperformed
other methods Estimatic could implement.

H2 Meteorologists from the KNMI were contacted for their expertise on filtering input data. Marco van
den Berge and Adri Huiskamp suggested sets of inputs, these sets can be found in table 4.1. As Marco
van den Berge’s set of inputs contains more features, it is possible the filter is more strict than that of
Adri. Therefore, Marco van den Berge’s set is believed to work best.

H3 Recurrent neural network models work best, because they work especially well on time series
data, which fits the data perfectly.

H4 Meteorologists from the KNMI were contacted for their expertise on filtering input data. As Marco
van den Berge’s set of inputs contains more features, it is possible for the machine learning models to
learn more patterns in the data. Therefore, Marco van den Berge’s set is believed to work best.

H5 Increasing the amount of lagged observations leading up to a prediction increases the accuracy,
up to a sensible amount. After this, there will no longer be a correlation between all measurements and
the estimation.

H6 The accuracy of estimations decreases as they are made further into the future, as the weather
forecast used as input becomes more uncertain the further it is made into the future. This uncertainty
will affect the accuracy.

H7 More years of training data increases the accuracy of predictions, as having more data allows
models to learn patterns that happen over a greater period of time. Some years can have events that
did not happen in other years, such as heatwaves. Therefore, more data will increase the accuracy.





4
Methodology

The following section will explain which method is used to implement the statistical and machine learn-
ing approaches. This chapter has been written instead of a ”design and implementation” chapter as
the main implementation of the research was decided here.

4.1. Statistical methods
Weibull In section 2.3.4 multiple sources [3] [4] [5] confirm that a Weibull distribution represents the
distribution of wind speed best. Fitting a distribution to the entire historical data will result in only
one calculated standard deviation, regardless of the weather forecast. Filtering on similar weather
conditions of the weather forecast provides better insight into the wind speed distributions of those
conditions.

Figure 4.1 shows the method taken to make a prediction using the Weibull method. First, the filter
takes historic data and filters it on a window around the weather forecast. The next step fits a Weibull
distribution on that data. With the Weibull distribution the standard deviation is calculated. An example
illustrates this process:

Example The dataset consists of 8 years of hourly measured weather data. Estimatic wants to know
what standard deviation it can expect for the current weather forecast. That weather forecast contains
the following: a wind direction of 270 degrees, a wind speed of 7 knots and a temperature of 20 degrees
Celsius. It takes all historic data points and filters them on similar measured values. So it takes all
historic data which had a wind direction between 260 and 280 degrees, as well as 17 and 23 degrees
Celsius. Fitting a Weibull distribution to the filtered data it then calculates the standard deviation of said
distribution.

Figure 4.1: Methodology to make a prediction using Weibull

11



12 4. Methodology

Marco van den Berge Adri Huiskamp

Wind direction Wind direction
Avg. wind speed (hourly) Avg. wind speed (hourly)
Avg. wind speed (last 10 minutes) Avg. wind speed (last 10 minutes)
Temperature Difference temp. at 150 cm and 10 cm
Solar irradiation Solar irradiation
Air pressure Cloudiness
Cloudiness Ratio between gusts and avg. wind speed
Mist

Table 4.1: Set of inputs as suggested by KNMI meteorologists

The research questions regarding statistical models concern the decisions of the example above.
RQኻ researches multiple fitting methods. RQኼ researches different methods of filtering data. Below is
the methodology of the approach taken to answer these individual research questions.

Fitting In section 2.3.4 it has been found that two different methods to fit a Weibull distribution to a
dataset could be used: Maximum LikelihoodMethod (MLM) and Energy Pattern Factor (EPF). Estimatic
implements the MLM method because Kaoga et. al [5] did not find that EPF improved their results and
suggested MLM as a better alternative.

SciPy1 is a scientific Python library. SciPy offers three different implementations of a Weibull distri-
bution: Weibull, Double Weibull and Minimum Weibull. SciPy implements a Least Square Method to fit
these distributions to the data. These fitting methods are used besides the MLM method to research
the performance of the Weibull method. Finally the research explores the performance of aggregates
on the outcome of these four methods. One case takes the minimum standard deviation of the four,
the other takes the mean.

The best performing methods have been selected to conduct further research on the input space.
The mean absolute error between the standard deviation returned by the fitting method and the actual
standard deviation has been used to approach the best fitting method.

Filtering Choosing the right parameters to filter on, as well as the window to filter on, is something
that requires expert knowledge. This expertise was not available in-house, so meteorologists were
contacted to give insight regarding these filtering options. Table 4.1 shows the two methods. The
Weibull method uses all parameters but wind speed itself as input to filter on. The exact window sizes
can be found in appendix E.

The wind speed is not used to filter the data as that would always skew the distribution to the size
of the window it was filtered on.

The mean absolute error is used as an indicator of performance of the various configurations of
methods.

4.2. Machine Learning
The problem of estimating the standard deviations of wind direction and wind speed is a regression
problem and can therefore also be approached as a machine learning task. In regression problems
one tries to approximate the function 𝐹(𝑥) = 𝑌, where x is the input and Y the required output. With
respect to Estimatic, Y is the standard deviation of either the wind direction or wind speed. As the
regression model is trained using historical weather data the problem is a supervised learning task,
and therefore Y is the label to be trained on.

There are different machine learning frameworks available that suit the needs of Estimatic. There
are also possibilities to create custom made frameworks using environments like MATLAB or Python.
In the research report (see appendix C) the use of Keras in combination with the popular Tensorflow
framework was discussed. This abstracts most of the complexity of creating and trainingmachine learn-
ing models. This allows for fast and easy prototyping and model creation. However, as Keras did not

1https://www.scipy.org/

https://www.scipy.org/
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Parameter Value

Epochs 50
K-Fold splits 5
Learning rate 0.001
Optimiser Adam
Regularisation term (L1) 0.001
Loss function mean absolute error

Table 4.2: Constant values for machine learning models

have all the models available that Estimatic implements, it was decided to also use MATLAB together
with its built-in machine learning toolbox, thus making comparisons of these frameworks possible.

Models Machine learning models come in varying shapes and sizes, each with their own advan-
tages and disadvantages. As can be found in section 2, Maqsood et al. [9] used four different machine
learning models in order to forecast weather in southern Canada, namely multilayered perceptron net-
work (MLPN), Elman recurrent neural network (ERNN), radial basis function network (RBFN) and Hop-
field model (HFM). Inspired by their results and findings, the following machine learning models have
been researched for Estimatic: MLPN, long short-term memory recurrent neural network (LSTM RNN),
ERNN and RBFN. Below is a brief discussion of the characteristics of these models:

• MLPNs are one of the basic neural networks and they are easy to implement. This makes them
a good base case to compare other models with. They are flexible and lend themselves well to
learn the mapping between an input and an output.

• ERNNs are thin networks, having only one hidden layer in addition to context units. ERNNs
are also known as simple RNNs, capable of time series prediction. Their input is in the form of
sequences, which they can process because of their internal state (memory).

• LSTM RNNs are a more complex type of recurrent neural network, capable of dealing with the
vanishing gradient problem2. Like ERNNs, they are known to work well with time series data.

• RBFNs are also thin networks as they have only one hidden layer. Their hidden neurons use
radial basis functions3 as activation function, and each hidden neuron stores its own ’prototype’
of the dataset. For every new input, each neuron compares that input to its own prototype, and
the closer its resemblance, the higher the output value. RBFNs have many uses, among which
are function approximation and time series prediction.

For all models, the learning rate, regularisation term, amount of splits for K-Fold cross validation,
number of epochs and optimiser were kept constant. For all models except ERNNs, the loss function
was also kept constant. ERNNs had mean squared error as loss function, as MATLAB did not offer
mean absolute error as an option. Keras also provided the results as expressed in mean squared error,
allowing for comparison between all models. These values are listed in table 4.2.

These parameters were kept constant to not increase the search space of the hyperparameter
optimisation. The optimiser was kept constant at its value because ”the method is straightforward to
implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling
of the gradients, and is well suited for problems that are large in terms of data and/or parameters” [6].
The learning rate was kept constant at its value because it was the default value for the optimiser. The
regularisation term was kept at 0.001 because it worked better than the tried values of 0.01 and 0.0001.
In order to be able to compare results of models, the number of epochs and K-Fold splits were kept
constant. The loss function was set to mean absolute error because of the success criteria mentioned
in section 4.3.

2https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
3https://towardsdatascience.com/radial-basis-functions-neural-networks-all-we-need-to-know-9a88cc053448

https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/radial-basis-functions-neural-networks-all-we-need-to-know-9a88cc053448
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Figure 4.2: Visualisation of the input

Input data and parameters Each machine learning model is trained on a set of input features. The
weather consists of different components, allowing for models to be trained on different sets of weather
components. Each set possibly yields different results. Furthermore, the input data consists of time
series data. Parameters such as how many lagged observations of the time series to take into account
may also affect the accuracy. Estimating the standard deviation of wind components further into the
future could also have a negative effect on the accuracy. Finally, there are also training parameters
such as the learning rate, number of hidden neurons and number of epochs. This then, is a parameter
optimisation problem.

In order for the machine learning models to train on the available data, it must first be processed
into the correct format. For example, to create an estimation of the standard deviation of a weather
forecast 𝑛 hours into the future, the model is fed the past 𝑥 hours of actual weather conditions (lagged
observations) and the future weather forecasts up to 𝑛 hours into the future. Figure 4.2 elaborates
on how this affects the size of the input of these models. As the input size differs depending on the
amount of hours into the future the estimation is made, a separate model to estimate for each hour into
the future has been created. Furthermore, as the lagged hours and the future forecasts are in different
units, for example 𝑚/𝑠 for the KNMI data and knots for the SKV data, the former has been converted
to the latter.

Preprocessing the data is reliant on the amount of lagged observations leading up to now, as well
as the time difference of the estimation and now. These factors can increase the size of the input data,
which leads to longer training times. However, the additional data can also help the models better
recognise patterns in the temporal data. Regardless of the size of the input data, it is usual for the
data to be normalised before being offered to the models [14] after all data preprocessing has been
completed.

Representing the wind direction in a way that makes sense to the machine learning model is an
important challenge when preprocessing the data. Represented in degrees, the difference between
359° and 1° is very small, but a machine learning model has no concept of degrees, so it will see the
difference as 358 rather than 2. As per advice of To70, the wind direction is represented as its sine and
cosine components. This does mean that the original one-dimensional value is now represented with
two dimensions. However, the dimensionality of the input can remain the same by removing the wind
speed as a separate input and multiplying each of the direction components by the wind speed.

Optimisation The accuracy of a model is reliant on the type of parameters it uses, for example the
amount of lagged observations to take into account or the number of neurons, during model training.
Optimising these parameters is not an easy task. For the inputs, meteorologists were contacted for
their expertise, as mentioned in table 4.1. Their suggestions formed the basis for an exhaustive grid
search algorithm. In other words, different sets of parameters were tried on a trial-and-error basis,
fine-tuning the search space as certain combinations proved to yield better results.

To validate a model, k-fold cross validation was used. K-fold cross validation splits the dataset in
𝑘 sections, this allows for an ensemble of 𝑘 models to be trained, where each section will be used as
validation set, and the rest of the sections as training set. Figure 4.3 shows a visualisation where 𝑘 = 5.
The mean of the 𝑘 performances is taken as the final accuracy of this ensemble. For all models except
Elman recurrent neural networks (ERNN), the performance is measured by it mean absolute error. For
ERNNs, it is measured by its mean squared error.

The total search space for each parameter that was not kept constant is listed in table 4.3.
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Parameter Search space

Number of hidden neurons 10 to 100, in steps of 10
Number of hidden layers 1 to 6, in steps of 1
Number of lagged observations 1 to 12, in steps of 1
Inputs The set of inputs as suggested by Marco van den Berge,

random subsets of that suggestion and continuing with variations
of the subsets that showed promise.

Table 4.3: Search space for machine learning parameters

Figure 4.3: K-fold cross validation with k = 5
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Size of the dataset The available SKV (Schiphol Probability Estimation) data ranges from 2010 to
2017. The effect of smaller datasets on the accuracy of Estimatic was researched for To70 to analyse
how much data they would need to acquire from other countries’ meteorological institutes in order to
train Estimatic. With the parameters that were found to be performing best after the optimisation phase,
the effect of the following datasets were researched:

• 2 years of data, ranging from 2011-2012

• 4 years of data, ranging from 2011-2014

• 8 years of data, ranging from 2010-2017

The smaller datasets do not start from 2010 because the data in 2010 starts in February, meaning there
is one month of data missing. In order to capture two whole years of weather data in the datasets, they
start in January of 2011.

4.3. Success criteria
The success criteria of Estimatic differ between predicting the standard deviations of wind direction
and wind speed. These criteria have been established by To70 to outline how accurate the estimations
must be and are listed below.

• Wind direction standard deviation: The mean absolute error of estimations must be lower than 5°
for all the time differences listed in section 3.2.

• Wind speed standard deviation: The mean absolute error of estimations must be lower than 0.28
knots for all the time differences listed in section 3.2.

Amsterdam Airport Schiphol has 5 runways with varying orientations. Whether or not an aeroplane
can take off depends on the direction and speed of the wind. To70 stated that because of this, it is un-
likely for air traffic control to choose a different runway configuration when the wind direction changes
up to 15° with respect to the runway’s orientation. Three standard deviations from the mean cover
99.73% of a distribution, which led to a one standard deviation error of 5°. Standard limits are a maxi-
mum tailwind of 7 knots, and a maximum crosswind of 25 knots. To70 stated that a 1 knot error for the
tailwind can influence the decision, but a 1 knot error for the crosswind does not. Therefore, the mean
absolute error has been established at 

ኼ = 0.28 knots.

4.4. Software
To support the research as described in this chapter, the following Python project and programming
environments was created. The predictions made with Estimatic were made available through an API.
The Flask4 framework was used for this purpose. To create all but one of the machine learning models,
the python deep learning library Keras5 was used, in combination with Google’s machine learning library
Tensorflow6. For ERNN models, MATLAB with the Deep Learning toolbox 7 was used. A MySQL
database was setup to store the historical SKV data, the corresponding KNMI measurements and
results and metadata of the trained models. To facilitate a connection with this database, SqlAlchemy8,
a Python SQL toolkit and ORM was used. The Python visualisation library Matplotlib9 was used for
visualising results and parameters of models. Finally, Gitlab10 was used for code version control and
continuous integration.

4https://www.palletsprojects.com/p/flask/
5https://keras.io/
6https://www.tensorflow.org/
7https://nl.mathworks.com/products/deep-learning.html
8https://www.sqlalchemy.org/
9https://matplotlib.org/
10https://gitlab.com/gitlab-org/gitlab-ce/

https://www.palletsprojects.com/p/flask/
https://keras.io/
https://www.tensorflow.org/
https://nl.mathworks.com/products/deep-learning.html
https://www.sqlalchemy.org/
https://matplotlib.org/
https://gitlab.com/gitlab-org/gitlab-ce/
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4.4.1. Quality control and testing
To ensure the quality of the code written, general coding practices were enforced. No code changes
could be pushed to the master branch directly. Instead, merge requests had to be created which had
to be reviewed before being allowed to merge with the master branch. During these reviews, apart
from functionality checks, it was made sure the code adhered to the PEP811 guidelines and if clear and
concise documentation was written for it. To make sure the code functioned as expected, tests were
written for the different modules. These tests were written with the pytest12 framework. A continuous
integration pipeline was setup to run these tests. All tests had to succeed for a new addition to the
project to be allowed to merge with the master branch.

4.4.2. Model training
Trainingmachine learningmodels was not feasible on the personal laptops that were used to write code.
Instead, Amazon Elastic Compute Cloud (Amazon EC2) was used to host virtual private servers (VPS).
Different tasks, such as creating models with varying amounts of training data, were setup before hand
and distributed to the different VPSs. This significantly sped up the training process.

4.4.3. SIG
Halfway through the project, the software improvement group (SIG)13 reviewed and commented on the
project. The project got 3.3 out of 5 stars on the maintainability scale. This means the project is market
average maintainable. Things to improve upon were Unit Interfacing and Unit Size. Unit Interfacing
relates to functions written with a lot of input parameters. This could indicate a lack of abstraction.
Furthermore, calling methods with a lot of input parameters can be confusing. To solve this problem,
related parameters were grouped together in parameter classes and dictionaries. It was made sure no
method took more than four input parameters. Unit Size is related to pieces of code that are longer than
average. Most often, this is because a method contains too much functionality. Resolving this issue
was done by creating separate methods to abstract functionality. Finally, it was deemed promising that
test were written. The amount was something to be worked on. As such, more tests were written. The
full feedback by SIG (in Dutch) can be found in appendix F.

11https://www.python.org/dev/peps/pep-0008/
12https://docs.pytest.org/en/latest/
13https://www.softwareimprovementgroup.com/

https://www.python.org/dev/peps/pep-0008/
https://docs.pytest.org/en/latest/
https://www.softwareimprovementgroup.com/




5
Results

In this chapter, the results are presented. Interpretation of the results is done in chapter 6.

5.1. Statistical methods
This section will discuss the results of using the Weibull method to estimate the standard deviation
of wind speed. Figure 5.1 shows an example of the four different probability density functions of the
four different fitting methods used. Each prediction Estimatic makes using the Weibull method creates
such a graph. The figure also contains the histogram of the filtered data and the calculated standard
deviations of the different fitting methods. The visualisation made use of Marco van den Berge’s input
on a weather forecast of the 11th of February 2016.

RQኻ: What fitting methods work best in the statistical method? Four different methods to fit a Weibull
distribution to the eventual dataset were used. Weibull Least Squares Method (LSM), Maximum Like-
lihood Method, Minimum Weibull LSM and a Double Weibull LSM. All other parameters were kept
constant, so as to test the difference between these fitting methods. The set of inputs as suggested by
Marco van den Berge was used. The performance of the fitting methods on fifteen different validation
sets can be seen in figure 5.2.

Table 5.1 shows the results of a subset of one of the validation sets. All methods estimate a standard
deviation above the actual standard deviation. As a result, choosing the minimum of the four fitting
methods seemed fitting. A different combination of these four fitting methods is taking the average of
the four methods. Figure 5.3 shows these results beside the results of the initial fitting methods.

A boxplot with only the two best performing methods is shown in figure 5.4. This makes the com-
parison between the two methods clearer.

RQኼ: Which set of inputs work best in the statistical method? Two different sets of inputs as to filter
the data were suggested by Marco van den Berge and Adri Huiskamp respectively. Using the two best
performing fitting methods, Maximum Likelihood Method and the minimum method, these two sets of
inputs as were compared with one and other in figure 5.5.

19
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Figure 5.1: Visualisation of the probability density functions of the different fitting methods

Figure 5.2: Boxplot of the performance of different fitting methods
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Predicted values
Weibull [3.75, 7.55, 6.2, 4.18, 4.58, 4.13, 12.06, 3.64, 5.58, 6.26]
MLM [3.22, 2.94, 6.17, 3.53, 5.14, 3.97, 3.81, 2.44, 5.52, 6.18]
Minimum Weibull [3.65, 5.13, 6.18, 5.04, 6.00, 5.32, 5.32, 4.70, 11.1, 6.31]
Double Weibull [3.63, 5.19, 6.22, 4.88, 6.11, 5.98, 4.24, 3.11, 5.74, 6.36]
Minimum of the four [3.22, 2.94, 6.17, 3.53, 4.58, 3.97, 3.81, 2.44, 5.52, 6.18]
Mean of the four [3.56, 5.20, 6.19, 4.40, 5.45, 4.85, 6.35, 3.47, 6.98, 6.27]
Actual values: [1.00, 2.00, 2.00, 2.00, 2.00, 2.00, 1.00, 1.00, 2.00, 3.00]

Difference between prediction and actual Mean Absolute Error
Weibull [2.75, 5.55, 4.2, 2.18, 2.58, 2.13, 11.06, 2.64, 3.58, 3.26] 3.993
MLM [2.22, 0.94, 4.17, 1.53, 3.14, 1.97, 2.81, 1.44, 3.52, 3.18] 2.492
Minimum Weibull [1.65, 3.13, 4.18, 3.04, 4.00, 3.32, 4.32, 3.70, 9.10, 3.31] 4.075
Double Weibull [2.63, 3.19, 4.22, 2.88, 4.11, 3.98, 3.24, 2.11, 3.74, 3.36] 3.346
Minimum of the four [2.22, 0.94, 4.17, 1.53, 2.58, 1.97, 2.81, 1.44, 3.52, 3.18] 2.436
Mean of the four [2.56, 3.20, 4.19, 2.40, 3.45, 2.85, 5.35, 2.47, 4.98, 3.27] 3.4765

Table 5.1: Representation of predicted, estimated and error values

Figure 5.3: Boxplot of the performance of combining different fitting methods
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Figure 5.4: Boxplot of the performance of the two best performing methods

Figure 5.5: Boxplot of the performance of the two different sets of inputs
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Model Predicts no. of layers no. neurons per layer

Multilayered Perceptron Networks (MLPN) Direction 2 10
Speed 2 20

Radial Basis Function Networks (RBFN) Direction 1 20
Speed 1 20

Long short-term memory Direction 1 30
Recurrent Neural Networks (LSTM RNN) Speed 1 30
Elman Recurrent Neural Networks (ERNN) Direction 2 20

Speed 2 20
Table 5.2: Best found hyperparameters per model

Abbreviation Meaning Units

T Temperature 0.1° C
FX Highest gust measured in the last hour 0.1 m/s
DD Average wind direction over the last 10 minutes ° clockwise from north
FH Average wind speed over the last hour 0.1 m/s
TD Current dew point temperature at 1.50m 0.1° C
FF Average wind speed over the last 10 minutes 0.1 m/s
P Current air pressure reduced to sea level 0.1 hPa
Q Total solar irradiance over the last hour J/cmኼ

N Cloudiness Expressed in range 1-8
M Mist in the last hour 1 if mist occured, 0 otherwise
RH Sum of rain in the last hour in 0.1 mm

Table 5.3: Explanation of the KNMI data labels

5.2. Machine Learning
The results of each machine learning research questions mentioned in section 3.3 are listed below and
in appendix D for readability. For each model, the learning rate, regularisation parameter and number
of training epochs were kept constant, as explained in table 4.2. However, as each machine learning
model can contain different numbers of hidden layers and neurons per layer, the (sub) optimal set of
these parameters first needed to be found. Table 5.2 provides an overview of the best recorded sets
of parameters for each machine learning model. These parameters have been kept constant when
answering the research questions below, to not grow the search space further.

While the success criteria stated in section 4.3 refer to the mean absolute error, the visualisation
of the results in figures 5.6 and 5.7 is done using the mean squared error. This is because the ERNN
models were created in MATLAB, and did not provide the model’s mean absolute error. The relative
performance of a model does not change, a lower mean squared error means the model also had a
lower mean absolute error. Due to the difference in loss metric for ERNNs and the other models, and to
make visualisation with regards to the success criteria possible, the remaining results for LSTM RNNs,
MLPNs and RBFNs will be visualised using mean absolute error, and will not regard ERNNs. The
ERNN results can be found in appendix D

RQኽ: Which machine learning model performs best at estimating the standard deviations of wind
components? The machine learning models used while researching were multilayered perceptron
networks (MLPN), radial basis function networks (RBFN), long short-term memory recurrent neural
networks (LSTM RNN) and Elman recurrent neural networks (ERNN). Figure 5.6 and 5.7 visualise
the performance of the models when estimating the standard deviations of wind direction and speed,
respectively.

RQኾ: Which data features work best as input for the machine learning models? The sets of inputs
as suggested by the meteorologists in table 4.1 in section 4.2 were used as a starting point to find the
best working set of input parameters for the machine learning models. Their suggestions defined the
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Figure 5.6: Wind direction stdev performance per machine learning model

Figure 5.7: Wind speed stdev performance per machine learning model
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Figure 5.8: Wind direction stdev performance with regards to inputs, for LSTM RNNs, MLPNs and RBFNs

search space, which was then explored via the exhaustive grid search algorithm mentioned in section
4.2. The sets of inputs as defined in table 4.1 could only be tested for estimations made one hour
into the future. This is because the SKV estimations did not have all the features suggested by the
meteorologists. To70 explained that a one hour time difference is small enough that an estimation is
very close to its true measurement, which allowed for the measurement one hour into the future to be
used as a ’forecast’. The set of inputs suggested by Adri Huiskamp could not be used for machine
learning, as some values for the temperature at 10cm were missing. The inputs for machine learning
models required several hours of lagged observations, which resulted in many unusable sequences
because of the missing values. thus leaving too few data to train the models on. For example, using
the last 5 hours of lagged observations, half the usual amount of the data was unusable. There were
no missing values for the features in Marco van den Berge’s set of inputs. The abbreviations of the
inputs are explained in table 5.3. Figure 5.8 and 5.9 show the input performance of wind direction and
wind speed respectively for LSTM RNNs, MLPNs and RBFNs models. The figures for ERNNs can be
found in appendix D, figure D.1 and D.2.

RQ: How does increasing the amount of lagged observations as input influence the accuracy? Each
model’s performance was tested using a different amount of lagged observations as input, that is, tak-
ing additional past observations into account when training the models. The results for LTSM RNNs,
MLPNs and RBFNs have been visualised in figure 5.10 and 5.11 for wind direction and speed respec-
tively. The remaining figures for ERNNs can be found in appendix D, figure D.3 to D.4.

RQዀ: What happens with the accuracy as an estimation is made further into the future? Each model
was first trained to estimate the standard deviations of the wind components one hour into the future.
To find out what the effect is on the accuracy of an estimation when predicting the standard deviation of
the wind components further into the future, multiple models were trained and evaluated accordingly.
Only LSTM RNN models were created due to limited time and computing power, and because of their
performance displayed in figure 5.6 and 5.7. The results can be found in figure 5.12 and 5.13 for wind
direction and speed respectively.

Best performing parameters After creating many different machine learning models, using exhaus-
tive grid search on the parameters listed in 4.3, the best parameters per model type were found. These
result are listed in tables 5.4 and 5.5 for wind direction and speed standard deviation estimation, re-
spectively.
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Figure 5.9: Wind spd stdev performance with regards to inputs, for LSTM RNNs, MLPNs and RBFNs

Figure 5.10: Wind direction stdev performance with regards to lagged observations, for LSTM RNNs, MLPNs and RBFNs

Parameter number of number of number of inputs
hidden neurons hidden layers lagged observations

LSTM RNN 35 1 8 DD, FH, FX, T TD
MLPN 10 2 1 DD, FH
RBFN 20 1 6 DD, FH, FX
ERNN 20 2 1 DD, FH, FX

Table 5.4: Best performing parameters for wind direction stdev estimation, per model



5.2. Machine Learning 27

Figure 5.11: Wind speed stdev performance with regards to lagged observations, for LSTM RNNs, MLPNs and RBFNs

Parameter number of number of number of inputs
hidden neurons hidden layers lagged observations

LSTM RNN 35 1 2 DD, FH, FX, T, TD
MLPN 20 1 1 DD, FH, FX, TD, RH, N, T, P
RBFN 20 1 9 DD, FH, FX
ERNN 20 2 1 DD, FH, T, P

Table 5.5: Best performing parameters for wind speed stdev estimation, per model

Figure 5.12: LSTM RNNs wind direction stdev performance with regards to delta time estimation



28 5. Results

Figure 5.13: LSTM RNNs wind speed stdev performance with regards to delta time estimation

5.3. Data limitations
RQ: What is the influence of the amount of years of training data on the accuracy of predictions
made? With the smaller dataset sizes as mentioned in 4.2, the performance of the machine learning
models was compared when the dataset became smaller. Only LSTM RNN models were created due
to limited time and computing power, and because of their performance displayed in figure 5.6 and 5.7.
The results for wind direction and speed standard deviation estimation can be found in figures 5.14 and
5.15 respectively.
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Figure 5.14: LSTM RNN performance with regard to dataset size

Figure 5.15: LSTM RNN performance with regard to dataset size





6
Discussion

In this chapter, the results per research question will be interpreted and discussed. At the end of this
chapter the ethical implications of Estimatic will be discussed.

6.1. Statistical methods
There are two method features that have been researched regarding the implementation of the Weibull
method to estimate standard deviations of wind speed, fitting methods and sets of inputs. Figure 4.1
shows how Estimatic uses historical measurements to create a prediction. Fitting and choosing a set
of inputs are the two most prominent method features in this methodology and the research questions
offer an overview on the performance of using the Weibull distribution to predict the standard deviation
of wind speed.

RQኻ: What fitting methods work best in the statistical method? The four methods initially used to fit a
Weibull distribution to the filtered data wereWeibull Least Squares Method (LSM), Maximum Likelihood
Method (MLM), Minimum Weibull LSM and a Double Weibull LSM. Figure 5.2 shows a boxplot of the
performance of these different models. After measuring performance with the mean absolute error it is
clear that MLM not only performs the best but also performs most consistently of the four methods.

The biggest inconsistencies are seen with the Double Weibull LSM. Although the median is lower
than other methods, its outliers are what makes this method of fitting unreliable. Minimum Weibull
LSM and Weibull LSM do not approach the performance of the MLM method. Although the Maximum
Likelihood Method performs best, its mean absolute error is larger than 2. A mean absolute error of 2
is too large for predicting wind speed as the success criteria of To70 state the prediction of wind speed
must have only a mean absolute error of 0.28 knots as per section 4.3.

Figure 5.3 shows the performance of the mean and minimum aggregates of the initial four fitting
methods. The method that takes the mean of the four estimated values performs the worst of any
method previously seen. The high value of some outliers skew that data to very high values. The
minimum of the four fitting methods does seem promising. Figure 5.4 shows the difference between
MLM and the minimum method. MLM is more consistent than the minimum method but the minimum
method does outperform it. Both of the methods do not come close to the success criteria.

No Weibull method managed to approach the success criteria discussed in section 4.3. The even-
tual decision of the best performing method is a choice between consistency and best possible per-
formance but neither is deemed good enough to offer to To70 for use in Estimatic. In the hypothesis
it was stated that the Maximum Likelihood Method (MLM) would work best. The fact that MLM out-
performed all other fitting methods beside an aggregate is positive for this case. But this method is
sometimes outperformed by the minimum method. The inconsistency of that method suggests there
could be some underlying issues with the chosen methodology, these are discussed in section 6.1.1.
The findings support H1.
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RQኼ: Which set of inputs work best in the statistical method? The results in figure 5.5 show that
the set of inputs as suggested by Adri Huiskamp work best. Both the MLM method and minimum
method outperform the set of inputs of Marco van den Berge. Although the Adri Huiskamp set of inputs
outperforms the set of inputs of Marco van den Berge, there is a difference in consistency between the
two. The MLM method on Marco van den Berge’s set of inputs performs significantly more consistent
than all other methods. The same MLM method on Adri Huiskamp’s set of inputs is less consistent
than the minimum method.

The inconsistency in the search of the best and most consistent method raises an suspicion: the
MLM method has a worse fit to a smaller dataset. This would explain why MLM loses consistency on
the more strict data of the Adri set of inputs. Another reason to think this is given by Kaoga et al. [5].
”MLM is a mathematical expression known as a likelihood function of the wind speed data in time series
format.” The time series that MLM uses could be negatively influenced by the stricter data of the Adri
set of inputs. Finally, the issues discussed in section 6.1.1 could still explain why the Adri set of inputs
outperform the Marco set of inputs even though the MLM fitting method loses consistency.

No Weibull method managed to approach the success criteria discussed in section 4.3. The even-
tual decision of the best performing method is a choice between consistency and best possible perfor-
mance but neither is deemed good enough to offer to To70 for use in AFOS. The hypothesis stated
that the Marco van den Berge input would perform best. But it was outperformed by the Adri Huiskamp
filtering method. Adri Huiskamp’s set of inputs is more strict than that of Marco van den Berge. That
results in distributions that are closer together and this correlates with smaller calculated standard de-
viations. A distribution closer together results in smaller standard deviations. As can be seen in table
5.1 the smaller Weibull calculates them better. This conclusion suggests some underlying issues with
the chosen methodology, these are discussed in section 6.1.1. These findings fail to support H2.

6.1.1. Issues with the Weibull method
Figure 5.1 shows the histogram of wind speed after the filter presented by Marco van den Berge. The
histogram after the filter of Adri Huiskamp is similar and both show a looming issue with the Weibull
method. Intuitively, filtering on similar weather conditions could show that a specific wind speed is to
be expected. A range between 3 and 5 knots, for instance, or maybe very high speeds between 7 and
10 knots. The histograms show otherwise, the histograms suggest that many weather conditions still
offer a wide distribution of wind speed data, generally ranging from 0 to 25.

Due to this wide distribution, the standard deviations calculated by the fitting methods are large. The
fact that these are larger than the SKV show that SKV takes extra steps to make the standard deviation
smaller. This could be the meteorologist that checks the calculated standard deviation afterwards, but
could also be a stricter filter for the KNMImodel. Constructing an even stricter set of inputs is statistically
irresponsible, as filtering even more strictly would result in a distribution built on too few measurements.

6.2. Machine Learning
RQ3: Which machine learning model performs best at estimating the standard deviations of wind
components? As can be seen in figures 5.6 and 5.7, long short-term memory recurrent neural net-
works (LSTM RNN) outperform multilayered perceptron networks (MLPN), radial basis function net-
works (RBFN) and Elman recurrent neural networks (ERNN) for both wind direction and speed stan-
dard deviation estimation. The performance of LSTM RNNs support H3, however it can also be seen
that ERNNs perform the worst out of all models. This could be because ERNNs are simple recurrent
neural networks, and could not handle the complexity of the data as well as LSTM RNNs can, and even
MLPNs and RBFNs. Overall, these findings fail to support H3.

RQኾ: Which data features work best as input for the machine learning models? As can be seen
in figure 5.8, the set of inputs suggested by Marco van den Berge (the set of inputs at the bottom)
performed second best for LSTM RNNs and MLPNs, and second worst for RBFNs when estimating
the wind direction standard deviaton. For ERNNs, it can be seen in D.1 that the set performed sixth
best. For wind speed standard deviations, it performed best for MLPNs and fourth best for LSTM RNNs
and RBFNs. Figure D.2 shows that for ERNNs, the set performed sixth worst. The abbreviations of
the inputs are explained in table 5.3. The best performing inputs per machine learning model are
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Machine learning model wind direction stdev inputs wind speed stdev inputs

MLPN DD, FH DD, FH, FX, N, P, RH, T, TD
RBFN DD, FH, FX DD, FH, FX, N, P, RH, T, TD
ERNN DD, FH, FX, T, TD DD, FH
LSTM RNN DD, FH, FX, T, TD DD, FH, FX, N, P, RH, T, TD

Table 6.1: Best performing list of inputs per machine learning model type

listed in table 6.1. As can be seen, the suggested set of inputs never resulted in the lowest mean
absolute/squared error, thus failing to supportH4. A reason for this can be that in general, the suggested
set performs well for any location, while the found best sets work especially well for the last 8 years
of weather data for Schiphol. Further research would be required to conclude if the found sets are
generalisable to other locations.

RQ: How does increasing the amount of lagged observations as input influence the accuracy? Fig-
ure 5.10 and 5.11 show the effect of increasing the amount of lagged observations on themean absolute
error, for LSTM RNNs, MLPNs and RBFNs. The results for ERNNs are listed in D.3 and D.4. As can be
seen in these figures, varying the amount of lagged observations has an impact on the mean absolute
error of the predicted standard deviations.

For wind direction, MLPNs overall performed worse the more lagged observations were used.
RBFNs slightly improved as more observations were used, but like MLPNs, they converged after 4
hours of lagged observations. LSTM RNNs and ERNNS show odd oscillating behaviour, unlike MLPNs
and RBFNs. The overall trend for LSTM RNNs was downwards up to its lowest value at 8 lagged ob-
servations, after which the trend changed upwards, the models did not show convergence like MLPNs
and RBFNs. ERNNs failed to improve the performance of 1 lagged observation. It can be seen that the
best performance is by LSTM RNNs, with 8 hours of lagged observations. Their better performance
with regard to the other models could be because LSTM RNNs can handle time series data better than
MLPNs, RBFNs and ERNNs. While ERNNs are also capable at handling time series data, they could
be too simple recurrent neural networks and be unable to handle the complexity of the weather data.

For wind speed, both MLPNs and LSTMRNNs perform best at 2 hours of lagged observations. Both
models’ performance drops after 2 hours, showing an upward trend. RBFNs show some improvement
for 3 and 4 hours, but can not outperform LSTM RNNs. ERNNs show the same behaviour as before,
performing best at 1 lagged observation. It can be seen that the best performance is by LSTM RNNs,
closely followed by MLPNs at 2 hours of lagged observations. The difference in the number of lagged
observations for wind direction and speed standard deviation estimation might indicate that wind speed
is less predictable over time, as only 2 lagged observations perform best for estimating its standard
deviation. The results fail to support H5. Increasing the amount of lagged hours doesn’t necessarily
increase the accuracy of a prediction. The mean absolute error goes both up and down for a larger
amount of lagged hours. However, there is an optimal amount of lagged hours, after which the mean
absolute error continues to grow.

RQዀ: What happens with the accuracy as an estimation is made further into the future? As stated in
the results for RQዀ in 5.2, the effect on the accuracy of an estimation when it is made further into the
future was only researched for LSTM RNNs,due to limited time and computing power. Figures 5.12 and
5.13 show that overall for both wind direction and speed standard deviation estimation, the accuracy
drops as estimations are made further into the future. However, regarding wind direction, estimating
standard deviations two hours ahead has a small improvement in accuracy. This also happens when
estimating the standard deviation of wind speed two and five hours ahead. These improvements might
be because of the models recognising trends in those parts of the data, or because of the randomness
in their initialisation. Further research would be needed to understand these events. Overall, the results
are inconclusive with regards to H6.
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Figure 6.1: Estimatic’s wind direction stdev estimations versus real values

6.3. Data limitations
RQ: What is the influence of the amount of years of training data on the accuracy of predictions
made? As stated in the results for RQ in 5.2, the effect on the accuracy of an estimation when the
available dataset is smaller was only researched for LSTM RNNs, due to limited time and computing
power. Figures 5.14 and 5.15 show that, for both wind direction and speed standard deviation estima-
tion, the mean absolute error decreases as the size of the dataset increases. The performance of the
models is proportional to the size of the dataset. These findings support H7.

6.4. Estimatic
The methods discussed above result from the research focused on making the best estimation of the
standard deviation of wind direction and wind speed. Statistical methods did not offer solutions for wind
direction and the performance of Weibull to estimate the standard deviation of wind speed was poor.
The machine learning approach offered better results, with LSTM RNNs performing the best. Although
the LSTMRNNs near the success criteria as stated in 4.3, they fail to consistently achieve them. Figures
6.1 and 6.2 show the performance of the best LSTM RNN models. These figures visualise the large
outliers Estimatic still offers. The effect of these outliers is discussed in the next section.

6.5. Ethical implications
It is important for any research to consider the ethical implications of its result. What would happen if
Estimatic produces a completely wrong prediction of the wind components? After all, these predictions
are used as an indication of the accuracy of a given weather forecast. AFOS (Airport Forecasting
Service) might suggest terrible runway configurations. However, AFOS is a decision-making support
tool. At the end of the day, human interaction is needed to choose a runway configuration. The people
operating it are able to recognise strange behaviour and choose to discard a suggested configuration.
Furthermore, there are no ethical implications of having an accuracy metric of wind components, even
if it is wrong, as long as this information is accompanied by information on the accuracy and flaws of
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Figure 6.2: Estimatic’s wind speed stdev estimations versus real values

the system predicting it. It is up to the end user to correctly interpret the provided information.





7
Conclusion & Recommendations

7.1. Conclusion
Using the Maximum Likelihood Method (MLM) to fit the Weibull distribution not only performs the best
but also performs most consistently of the initial four methods. Introducing aggregates, the method
that takes the mean of the four estimated values performs the worst of any method previously seen.
Although MLM is more consistent than the minimum method, the minimum method does outperform it.
The eventual decision of the best performing fitting method is a choice between consistency and best
possible performance but neither is deemed good enough to offer to To70 for use in AFOS.

Adri Huiskamp’s suggested set of inputs outperforms that of Marco van den Berge, yet there is a
difference in consistency between the two. The MLM method on Marco van den Berge input performs
significantly more consistent than all other methods. This being said, no Weibull method managed to
near the success criteria discussed in section 4.3. Therefore neither is deemed accurate enough for
use in Estimatic.

The long short-term memory recurrent neural networks (LSTM RNNs) outperformed the other ma-
chine learning models. For the standard deviation of the wind direction, the lowest mean absolute error
of 4.99° was achieved when estimating five hours into the future, taking the last eight hours of weather
measurements into account. For the wind speed, the lowest mean absolute error of 0.27 knots was
achieved when estimating two hours into the future, taking the last two hours of weather measurements
into account.

The success criteria as stated in section 4.3 have not been achieved for all estimation times as listed
in section 3.2. Therefore, it is concluded that it is not possible to make accurate enough estimations of
the standard deviation of wind components using the historical data and future weather expectations
available for Amsterdam Airport Schiphol.

7.2. Recommendations
7.2.1. Future studies
Other locations Within the scope of this study, the standard deviations for wind speed and direction
were estimated for Amsterdam Airport Schiphol. While the results did not meet the success criteria
stated in section 4.3, these findings cannot be generalised to other airports. Further research must be
done using the weather data for different airports in order to find out if Estimatic can be applied there.

Different machine learning models The machine learning models for Estimatic, namely multilay-
ered perceptron networks (MLPN), long short-term memory recurrent neural networks (LSTM RNN),
Elman recurrent neural networks (ERNN) and radial basis function network (RBFN), have been tried for
estimating the wind component standard deviations. The study by Maqsood et al. [9] showed promis-
ing results with Hopfield models, a different type of RNN. In their paper on state-of-the-art techniques
for time series pattern recognition, Lin et al. [8] listed several model construction techniques, such as
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Bayesion Networks and Support Vector Machines, in addition to neural networks. The use of such
techniques could pose interesting for future studies.

Classification problem As stated in section 4.2, the problem of estimating the wind component stan-
dard deviations is a regression problem. However, the limited variation in the data labels could mean
that this problem can be stated as a classification problem. For wind speed standard deviation esti-
mation, there would be 10 classes, ranging from 0 to 9 knots in steps of 1 knot. For wind direction
standard deviation, there would be 25 classes, ranging from 0 to 125 degrees in steps of 5 degrees.
This only applies for the data available for this study, and is not necessarily generalisable. A study by
Salman and Kecman [11] showed promise when stating a regression problem as a classification one.
While outperformed by Support Vector Machines in 3 out of 5 regression problems, the results shows
promise for this approach.

7.2.2. Recommendations for To70
Frequency of the data The available hourly SKV data did not make it possible to estimate the wind
component standard deviations with some of the statistical methods described in section 4.2 of the
research report in appendix C. If To70 is able to obtain SKV data that is more frequent than hourly, it
could be possible to use those statistical methods to research their accuracy.

Impact of the errors The highest mean absolute errors for wind direction and speed direction stan-
dard deviation estimation were obtained when estimating 31 hours into the future, as can be seen in
figure 5.12 and 5.13 respectively. These mean absolute errors were the highest among all time differ-
ences for estimations listed in section 3.2. This means that the mean absolute error of Estimatic on
the validation data is upper bounded by 7.24° and 0.45 knots. However, as can be seen in figure 6.1 ,
some estimation have errors up to 30° for wind direction standard deviation estimation. It is not known
what impact such an error would have on AFOS’ performance, and would require further looking into if
Estimatic is to be implemented in the future.



8
Lessons Learned

One of the main lessons we have learnt this project is to prepare questions for the client to the last
detail. Although we went into the first meeting with the client well prepared there were many questions
we forgot or did not know we should have asked. Questions as: What are the exact success criteria?
Or, how do we find the exact data? These were questions we only asked our client two or three weeks
into the project. These questions should have been clear from week one and would have made some
early issues clear to us.

The initial research we did on ways to estimate the standard deviation of wind direction and speed
were not as effective as they could have been. It was good we did not focus on our data and imple-
mentation specifically, as that keeps the research open to new possibilities. But some analysis and
more focus would have come in handy in deciding our approach.

For example, simple analysis on the SKV data in week 1 could have offered insights that we could
have taken into account. Information as the high number of occurrences of 2 as wind speed standard
deviation could have resulted in research regarding training machine learning with fewer outliers or dif-
ferences. The analysis on how time in the future does not matter as much as initially thought could’ve
resulted in only a single model. Issues with the data, as duplicates and incorrect measurements were
also only filtered out in week 3 or 4. With good analysis before starting research these issues could
have also been avoided, or handled earlier.

For machine learning we quickly discovered that finding the correct data is quite challenging. Even
if you find a suitable dataset, it is most likely not in the required format and would still need to process
or validate it before it can be used. This is exactly what happened with the used dataset from the
KNMI and the SKV dataset. The SKV dataset was delivered in different file formats, namely: text, html,
docx and pdf, which is not ideal as each format requires its own parser. Furthermore, KNMI dataset
contained NULL values for needed features, which then could not be used to train on. Another problem
was that the units of both datasets were not similar and had to be converted. Finally, different machine
learning models require different input dimensions. For example, multilayer perceptron models require
a flattened input whilst recurrent neural network models require a multidimensional array as input,
simulating timesteps in time-series data.

Another lesson learned with respect to the parameter grid search algorithm used for machine learn-
ing, is that a small mistake in the dataset or code invalidates all previously tried combinations of pa-
rameters. For example, as mentioned in the previous paragraph, small mistakes in data validation like
NULL values for needed features causes the machine learning models to be trained on corrupt data,
automatically invalidating the trained models. It is also important to systematically work through all
parameters and store the results accordingly, which we did in a MySQL database.

Finally, we learned that an exhaustive search algorithm for machine learning problems can become
computationally expensive very fast. For our use case, it was still a viable option, even though training
certain models could take up to 5 hours. It therefore does not seem like the right choice for parameter
optimisation if the dataset would be larger. Instead, other hyper-parameter optimisation approaches
could be explored, like Bayesian or gradient based optimisation.
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A
Glossary

Term Definition

API Application Programming Interface

AFOS Airport Forecasting Service
A product from aviation consultancy company To70, which supports decision making for Schiphol.

EPF Energy Pattern Factor - used to estimate Weibull parameters

EPS Ensemble Prediction System - predictions based on a combination of models

Keras A Python machine learning framework

KNMI Koninklijk Nederlands Meteorologisch Instituut or Royal Netherlands Meteorological Institute

MATLAB Mathematical computing environment

MLM Maximum Likelihood Method - used to estimate Weibull parameters

ORM Object Relational Mapper - used to convert data into usable format

RBFN Radial Basis Function Network

RNN Recurrent Neural Network

SKV Schiphol Kans Verwachting or Schiphol Probability Estimation
Weather forecast with standard deviation, provided by the KNMI for Amsterdam Airport Schiphol.

SQL Structured Query Language

VPS Virtual Private Server
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B
Task Division

Tasks

Jaap de Boer Keras machine learning
Data preprocessing
Visualisations

Dieuwer Hondelink Data preprocessing
API
Statistical models
DevOps
VPS management

Jip Rietveld Weibull statistical models
MATLAB machine learning
Visualisations

Rolf de Vries Keras machine learning
Data preprocessing
MySQL database
VPS management
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1 Introduction

Weather affects our lives on a daily basis. Transport, agriculture, choosing which clothes to
wear, all these things are affected by the expected weather. Meteorological institutes work hard
to estimate the upcoming weather as accurately as possible, but as Abhishek et al. state: ”the
chaotic nature of the atmosphere, the massive computational power required to solve the equations
that describe the atmosphere, error involved in measuring the initial conditions, and an incomplete
understanding of atmospheric processes mean that forecasts become less accurate as the difference
in current time and the time for which the forecast is being made increases” [1]. The KNMI
(Royal Netherlands Meteorological Institute) seems to be the only meteorological institute that,
along with a core weather estimation, also provides the standard deviation of weather components,
such as wind speed and direction.

The standard deviation of these weather components allows tools and mathematical models
to be implemented. Currently this data is not available in every country. That is why we aim to
find a solution to estimate the standard deviation based on a core expectation. In the following
report we research various methods on how to estimate the standard deviation of wind speed and
direction. Both classical statistical methods and machine learning models have been researched.

2 The Problem

2.1 Introduction to the problem

AFOS (Airport Forecasting Service) is a tool by aviation consultancy company To70. It supports
air traffic control at Schiphol airport. Given the current weather conditions AFOS estimates which
runway configuration works best. Schiphol has 108 different combinations, each with up- and
downsides depending on the weather. AFOS relies on the core weather forecast, along with the
standard deviations of wind speed and wind direction. The KNMI provides this data in a Schiphol
Probability Estimation (SKV).

2.2 Definition of the problem

AFOS uses weather estimates and their standard deviations to create a runway capacity forecast
and its probability. This information is offered by the KNMI. It turns out, however, that this
is a unique situation. By default, other international meteorological institutes only offer a core
estimation of the weather, rather than a core estimation and standard deviation. This means
that AFOS cannot be implemented at airports outside of The Netherlands without significant
investment. To70 wants us to come up with a tool that can estimate the standard deviations of
wind speed and wind direction, given a core weather expectation.

The core expectation of the weather should be accompanied with its standard
deviations.

3 Input & Output

3.1 Input

As input for the models, we will receive the following parameters:
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• Temperature T [°C]

• Wind speed V [kt]

• Wind direction θ [°]

This climate data comes from country specific meteorological institutes such as the National
Oceanic and Atmospheric Administration1 (NOAA) of the United States of America or the Meteo-
rological Administration2 of China. The European Meteorological Society3 provides an overview of
these meteorological services on a per country basis. Such climatic agencies often include an open-
to-public database containing e.g. land-based weather station data. These stations often report
on the temperature, wind speed, wind direction, humidity and other core weather components.
They usually do this on a monthly, daily, hourly or even on a minute by minute basis.

Furthermore, for training and validation purposes, we have the SKV data. The SKV data
contains the parameters named above, but also contains the output defined below. In section 3.3
we clarify this data.

3.2 Output

The output of Estimatic will need to be usable as the input data of AFOS. The only data missing
from the current input offered by international meteorological institutes are the standard deviation
of wind direction and wind speed.

• Standard deviation of the wind speed σs [kt]

• Standard deviation of the wind direction σd [°]

The output of Estimatic should be validated to ensure that the system provides accurate estima-
tions of the standard deviation. This can be done in a number of ways. The easiest way to validate
the output is by using weather forecasts from countries that provide the standard deviation by
default, such as the SKV forecast.

An alternative method is to estimate the standard deviation of a forecast, followed by after-
wards comparing the estimated distribution with the actual weather to check if the real value lies
within the bounds estimated. Especially the second method can be performed in a lot of countries,
allowing us to validate our model in different environments across the world.

3.3 SKV data

To train and validate Estimatic To70 has offered SKV data. Not all data in the SKV is of use for
Estimatic. Below you will find all useful parameters.

• Wind direction [°clockwise from north]

• Wind direction standard deviation [°] (seems to be rounded to nearest quintet)

• Wind speed [kt]

• Wind speed standard deviation [kt]

1https://www.ncdc.noaa.gov/
2http://www.cma.gov.cn/
3https://www.emetsoc.org/
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• Gusts [kt]

• Temperature [°C]

• Probabilities regarding visibility conditions (further classification is confidential)

SKV data is created based on models of various meteorological institutes. Institutes on bor-
dering locations consult each other regarding their predictions.

How we will use this data to validate and train Estimatic can be found in section 5.

4 Research Questions

To help us structure our search process, we formulated two research questions. The first is re-
garding potential machine learning models. To70’s initial thoughts were to use machine learning
models to estimate the standard deviation of wind speed and direction. But because companies of-
ten enjoy using buzzwords, we thought it would be wise to also research more classical approaches
to making these estimations.

RQ1: How are machine learning models used for weather prediction?

RQ2: How are mathematical models used for the estimation of standard deviation of weather?

To answer RQ1 we proposed the following sub questions:

• Which machine learning models are used for weather prediction?

• Which machine learning models work well for weather prediction?

And to answer RQ2 we proposed the following sub question:

• What are standard statistical methods?

After answering these questions, we will make a decision regarding the models or methods we
will implement for Estimatic.

4.1 How are machine learning models used for weather prediction?

4.1.1 Which machine learning models are used for weather prediction?

To determine how and which machine learning models are used for weather forecasting, we have
researched several papers to establish which methods or models have been used. An overview of
these findings can be found in table 1. Models used by papers [6] and [5] were not specifically used
for weather prediction, but application of the models showed that they can be used to predict
weather.

The input space for the machine learning models listed in table 1 is quite large, and not all
components are needed in order to estimate the weather. Mohandes et al. [4] only used wind speed
data in order to predict wind speed. Maqsood et al. [3] used multiple inputs, i.e. temperature,
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Machine Learning Model Paper

Elman Recurrent Neural Network (ERNN) [2] [3]
Hopfield Recurrent Neural Network (HRNN) [3]
Multilayer Feed-Forward Neural Network [1] [4]
Radial Basis Function Network [3]
Multilayer Perceptron Network (MLP) [3] [5] [6]
Fuzzy time series model [7]
Ensemble of Neural Networks [3] [5]

Table 1: Overview of Machine Learning Models used in previous studies

Input Paper

Oscillation index [2]
Sea surface temp. [2]
Outgoing long wave radiation [2]
Temperature [1] [7] [3]
Cloudiness [7]
Wind [1] [2]
Wind speed [1] [3] [4]
Humidity [1] [3]
Not specific [5] [6]

Table 2: Machine learning model inputs

Predicts Paper

Temperature [1] [2] [7] [3]
Wind speed [3] [4]
Humidity [3]
Other [5] [6]

Table 3: Machine learning model predictions

Name Function Paper

Mean squared error MSE = 1
n

∑n
i=1(Xi − X̂i)

2 [1] [5]

Root mean squared error RMSE =
√
MSE [3] [4]

Mean absolute percentage error MAPE = 100%
n

∑n
i=1 |

Xi−X̂i

Xi
| [3]

Median absolute deviation MAD = median(| Xi −median(X) |) [3]

Correlation coefficient ρ = Cov(X,Y )
σxσy

[3]

Table 4: Error measurements
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wind speed and humidity, but they also predicted these weather components. However, this does
not imply a one-to-one relation between the input and output of machine learning models, as Chen
and Hwang [7] used both temperature and cloudiness to only predict temperature. The inputs
used by the studies is given in table 2, and their predicted outputs in table 3.

4.1.2 Which machine learning models work well for weather prediction?

Different error measurements can be used to determine the performance of machine learning
models. Table 4 contains an overview of such error measurements linked to the specific papers
that use them. Most papers use a single metric for evaluation, but Maqsood et al.[3] use a
combination of different metrics to determine the performance of their model. Overall it seems
like a good idea to use different metrics to evaluate the accuracy of the output of a machine
learning model.

The study by Maqsood et al. [3] used compared ensembles of four different neural networks to
forecast weather. In this study, RBFN showed the best results, both in terms of accuracy as well
as training time. After RBFN, MLP and ERNN showed similar results in accuracy and training
time, but it was stated that: ”The ERNN model, compared to MLP, could efficiently capture the
dynamic behaviour of the weather, resulting in a more compact and natural representation of the
temporal information contained in the weather profile.” HFM performed the worst of the four
models, in terms of accuracy. However, in terms of training speed, it was the second best. In
addition to ensembles of single models, Maqsood et al. also created ensembles of combinations of
aforementioned models. These combination ensembles were created with two approaches, winner-
takes-all (WTA) and weighted average (WA). The WTA and WA ensembles were compared with
the single model ensembles, and both were found to predict the weather more accurately. It is
worth noting that the WTA ensemble method performed the best in predicting weather, in terms
of error.

In their study, Magdon-Ismail and Atiya [6] tried to approximate the probability density func-
tion of a random variable using machine learning methods. It is similar to kernel density estimation
(KDE) but uses a neural network for its prediction. Compared with KDE, the method used in the
paper performs faster estimations but lacks details on the accuracy of the methods. Furthermore,
the method is still highly experimental and not much research has been done into approximating
probability density functions using neural networks.

4.1.3 Conclusion

The researched studies listed in table 1 have shown that it is possible to accurately predict weather
with machine learning models. From the results we have found, we conclude that a Radial Basis
Function Network is the best choice for a single model weather estimator, in terms of accuracy and
training time. Maqsood et al. [3] have shown that it outperforms MLP, ERNN and HFM in either
accuracy or training time, or both. Though the numbers regarding performance seem sufficient,
we will try out different models to see which works best, this is further discussed in section 5.

While the study by Magdon-Ismail and Atiya [6] shows promise with regards to estimation
time, the lack of details on the accuracy of the methods are discouraging. Therefore, we are
probably better of using traditional methods to approximate the probability density function if
needed.

Inspired by the findings of Maqsood et al. [3], we will apply a similar approach for Estimatic,
where we create ensembles of single model networks to compare. After comparing these single
model ensembles, we will create combined model ensembles as well, with a winner-takes-all and
weighted average approach.
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The performance of all ensembles will then be compared, to provide an overview of their
accuracy. Multiple error measurements (e.g. RMSE, MAD) will be used for the error measurement,
as inspired by Maqsood et al. [3]. Regarding the inputs we will use for the machine learning models,
we can not yet give a definite decision. We believe that the best approach is to try sensible subsets
of the input space, to see which components are relevant in estimating wind speed and direction.
In doing so, we believe this will find our best machine learning method to estimate the standard
deviation of wind speed and direction.

4.2 How are mathematical models used for the estimation of standard
deviation of weather?

Part of our research focused on current methods used to calculate the standard deviation of wind
speed and wind direction. The KNMI currently calculates these with their model. We will also
explore classic statistical options for these estimations. For these different methods we will offer
an overview of how the method works, as well as the specific input it might need. Eventually
we will choose the methods we will implement for Estimatic, where we hope to compare these
different methods to find the best method (or combination of methods) suited for our needs.

During our research we encountered many papers discussing multi-pass or single-pass methods
to calculate the standard deviation of wind speed or direction. These papers date back all the
way to the 1960s, where computational power might not have been so strong as it is now. Besides
that, the main disadvantage of a multi-pass method is that it cannot be computed as soon as
a measurement is made by an instrument. But because we are calculating standard deviation
afterwards, that is a non-issue. Therefore, we do not believe choosing between a single or multi-
pass method is relevant for us.

4.2.1 Input

We have found common input parameters for the methods used. Below we will list them and
briefly explain where they come from and what they consist of.

Wind speed and wind direction are represented with different symbols. For this paper we will
use θ to represent wind direction, and V to represent wind speed. When subscript is used to
further define a certain variable, d represents wind direction and s represent wind speed.

σ will be used to represent the standard deviation we are going to calculate. As stated above
σs represent the standard deviation of wind speed and σd represent the standard deviation of wind
direction.

Other subscript annotations are a and i. a stands for average and i stands for a individual
data point. For example, θa will be the average wind direction.

Besides θa some methods use sa and ca. These are defined as follows: n−1
∑n
i sin(θi) = sa.

Idem for cosine to define ca.

Given average wind direction θa then n−1
∑n
i sin(θi) = sa 6= sin(θa). The same holds for the

cosine. Because Estimatic is only offered the core expectation of the wind direction (see section
3.1), θa, we are unable to reverse engineer the values of sa and ca and cannot use methods that
utilise these variables.
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Symbol Description

θ Wind direction [°]
V Wind speed [kt]
σ Standard Deviation

d Wind direction

s Wind speed

a Average

i Individual data point
sa Average of individual sines of direction
ca Average of individual cosines of direction

Table 5: Often used symbols in classical methods

4.2.2 Mardia (1972)

In the book ”Statistics of Directional Data” Mardia discusses a single-pass method to calculate the
standard deviation of wind direction. Even though access to the book was restricted, the paper
by Mori [8] did offer enough information for us to be able to discuss the method.

The method offered is as follows:

σd = (−2 ln(R))1/2 (1)

with R defined as follows: R = (s2a + c2a)1/2.

Mori [8] concludes that Mardia’s method is one of the best single-pass estimators of σd in
practical application. So does Weber [9] in his study in which Mardia’s method has an RMSE
of only 2.9 degrees. However Estimatic will not be able to use it due to the input restrictions
described in Section 4.2.1.

4.2.3 Yamartino (1984)

Yamartino[10] has researched his single-pass method extensively, comparing its results to the
classically used two-pass method to determine standard deviation of wind direction. In his research
he arrives at three different estimators for the standard deviation. The first two estimators were
not sufficient in handling standard deviations larger than 90°. However, the third one was able
to accurately estimate a standard deviation with a degree of ± 2% (compared with the classical
two-pass method).

The method is as follows:
σd = sin−1(ε)[1.0 + bε3] (2)

Given: b = (2/
√

3)− 1 = 0.1547 and ε2 = 1− (s2a + s2a)

Even though this method has not been tested on field data it does solve issues presented by
Ackermann [11] and Verrall and Williams [12]. Where the former over predicts for values above
40°and the latter under predicts. Yamartinos method does not have these issues.

Weber [9] shows the Yamartino method to have an RMSE of only 1.9 degrees. Turner [13]
confirms Yamartino’s method as the best method when compared with Verrall and Williams [12]
and Ackermann [11]. But unfortunately because sa and ca are needed we cannot use the method
described by Yamartino in Estimatic (Section 4.2.1).
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4.2.4 Linear standard deviation

Understanding standard deviation calculations regarding wind direction and speed should start off
by understanding the core concept of standard deviation. The usual method to calculate standard
deviation is as follows:

σ2 = E(X2)− E(X)2 (3)

With E being a function returning the expected value of variable X.

Multiple papers start off with remarks regarding this usual linear estimation of the standard
deviation of an estimate. Turner [13] explains that due to the circular function of wind direction,
e.g. 360°and 0°, are the same, that this standard statistical method cannot be used. Ackermann
[11], Weber [9] and Mori [8] all confirm that this discontinuity means this method will not be of
use for determining the standard deviation of wind direction.

Regarding wind speed however, using this method to determine standard deviation could be
of some use. Although this model does not handle real-world phenomena it could be of use for
giving a general estimation. So although we do not expect this method to be used in the final
version of Estimatic, we will implement and compare it to the other models.

4.2.5 Weibull Distribution

Multiple studies have shown that a Weibull Distribution often correctly describes the wind speed
distribution [14] [15] [16]. This two-parameter distribution takes a parameter k and C, with k > 0
being the so-called shape-parameter and C > 0 being the scale parameter.

All three of the above studies have determined different methods to determine parameters k
and C. Below you will find an overview of these methods that are most relevant to our data set.
Once these parameters are known, the standard deviation can be determined by the following
equation.

σs = C2

[
Γ
(

1 +
2

k

)
−
(

Γ
(

1 +
1

k

))2]
(4)

With Γ defined as the gamma function.

Maximum likelihood method (Kaoga 2014[14])
The Maximum Likelihood Estimation method (MLM) uses time series to estimate the values of
parameters k and C. The shape factor k and scale factor C are estimated as follows.

k =

[(∑n
i=1 V

k
i ln(Vi)

)
(∑n

i=1 V
k
i

) −

(∑n
i=1 ln(Vi)

)
n

]−1

(5)

C =

(
1

n

n∑
i=1

V ki

)1/k

(6)

Where:
n = number of none zero data values

10



i = measurement interval
Vi = wind speed measured at the interval i[m/s]

Energy pattern factor method (Kaoga 2014[14])
The energy pattern factor (EPF) method is related to the averaged data of wind speed. It defines
shape factor k and scale factor C as follows:

k = 1 +
3.69

(Epf )2
(7)

C =

(
1

n

n∑
i

= 1~V ki

)1/k

(8)

With Epf defined as the energy pattern factor. Epf = ~V 3/~V 3 =

(
1
n

∑n

i=1
~Vi

3

)
(

1
n

∑n

i=1
~Vi

)3

Both of the above methods were tested on the same data sets by Kaoga et. al. Even though
EPF is one of the worse performing parameter estimators it is one of the few we can use with
the available data set. MLM however is recommended by Kaoga as an alternative to the EPF
method. Luckily our data set does offer the necessary data to estimate Weibull distribution
parameters using the MLM method. However the other methods described by Kaoga et. al [14]
cannot be applied to the available data set.

4.2.6 Kernel Density Estimation

In statistics, kernel density estimation (KDE) is a non-parametric method for estimating the
probability density function of a random variable. Non-parametric methods do not require the
data to follow a normal distribution and hence do not rely on data such as the mean and variance.

A kernel density estimation requires two predefined parameters, namely a chosen kernel func-
tion and the smoothing parameter, also called the bandwidth. Kernel functions are basically
alternative versions of probability density function. Different kernels produce different estimates.
The smoothing parameter determines the shape of the kernel. Examples of kernel functions are:

• Epanechnikov

• Uniform

• Triangular

• Gaussian

KDE, also called the Parzen–Rosenblatt method, works as follows. First we generate a sample
of the data. Then, around each data point of the sample, we create a kernel using the chosen kernel
function. Finally, we combine the different kernel functions to a single density function. After
normalisation, the resulting function is the estimation of the probability distribution function.

The mathematical description of kernel density estimation is as follows:

f(x) =
1

n

n∑
n=1

K(
x− xi
h

) (9)

Here, K is the kernel function and h is the smoothing parameter.
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4.2.7 Conclusion

The methods described by Mardia (4.2.2) and Yamartino (4.2.3) cannot be used by Estimatic.
Both of those methods require inputs sa and ca and as described in section 4.2.1 these are not
available to us.

Even though sa and ca cannot be calculated we can try and approach these methods anyway
with our given input. With the given θa of the previous hours we could calculate sa and ca by
taking the sine of the direction angle (instead of the average of individual sines), and then try and
calculate a standard deviation anyway.

We want to try and make these methods work because Turner [13] is content with the results
offered by these methods. Also Weber [9] has concluded that Yamartino’s method performed best
compared to other methods.

We realise an incomplete implementation of these methods is far from optimal. But because
the implementation is relatively trivial, we hope to still be able conclude something from these
implementations.

In addition to these weather methods, we will also implement a number of different statistical
methods. The Weibull Distribution as well as the Kernel Density Estimation are both used by
multiple papers to determine an estimation of the standard deviation. Because these distributions
can be built with the entire data set or only seasonal data, we hope to be able to find the most
optimal estimation of the standard deviation of wind speed and direction. For example, Abhishek
et al.[1] describes using a 0, 2 or 4 season approach and Wieringa and Rijkoort[17] discuss seasonal-
average data. Therefore we will also try out different configurations of the data.

Other methods described by Ackermann [11] and Verrall and Williams [12] were discarded
because the data used to execute the methods is not available to us.

5 Technical Decisions

For the machine learning aspect of Estimatic we compared different machine learning frameworks,
based on their popularity, namely:

• TensorFlow 4

• Keras 5

• PyTorch 6

• Caffe 7

• Deeplearning4j 8

TensorFlow, Keras and PyTorch are all Python 9 frameworks. Tensorflow is the most popular
machine learning framework and is developed by Google. It has a large community and is well
documented, but has a steep learning curve. Keras is a high-level API on top of frameworks such as
TensorFlow. It allows users to quickly setup both basic and complex neural networks. Therefore,

4https://www.tensorflow.org/
5https://keras.io/
6https://pytorch.org/
7https://caffe.berkeleyvision.org/
8https://deeplearning4j.org/
9https://www.python.org/

12



Keras offers most of the functionality of Tensorflow, but is easier to use for newer users. PyTorch
is a different Python machine learning framework, developed by Facebook. It is more intuitive to
use than Tensorflow. Caffe is a C++ framework, which works well with image data. However,
as the data we will be working with is not image data, we believe this is not the framework we
should go with.

Taking all this into account, we choose to use Keras as machine learning framework, as we are
new to machine learning and it seems that new users should start with Keras because of its ease of
use 10. As a result of choosing Keras, we will be using Python, as that is the language for Keras.

For traditional methods, the choice of programming language is trivial, as they can be im-
plemented in any language. If computation speed proves to be an issue, we might have to try
different languages.

6 Conclusion and Approach

Even though the required data to execute the classic statistical methods is not available in most
cases, we wish to implement them experimentally. The implementation of these methods are quite
trivial, so we do not expect to lose much when implementing them. Even though this is far from
optimal we still hope to be able to make some findings based on their results. Besides that, we
believe having these methods implemented in Estimatic paves the way to be able to easily use
these methods if the data does ever allow it.

The classic statistical methods of which we do have the necessary data will be implemented
and compared to the other models or methods we implement. By comparing these results to the
machine learning models we hope to prove or disprove either method as being the most effective
in estimating the standard deviation of wind speed and direction.

Hopefully machine learning will be able to offer the estimations. We do not believe there exists
a set path for the machine learning approach that we can already decide on. Instead, we will
explore the large space of possibilities, in order to find which model, inputs, and other parameters
will best fit our problem. Here, we will quickly review our envisioned approach.

We will use the Python machine learning framework Keras, as we are new to machine learning,
and Keras is stated to be easy to use and learn. As a result of choosing Keras, Python will be
the programming language for the machine learning approach. As for the details of the machine
learning, this is where the exploratory part comes in. In order to accurately estimate the standard
deviations of wind speed and direction, we will have to experiment with:

• The choice of machine learning model

• The design of the model (no. of hidden layers, no. of neurons/layer)

• Parameters of the model (e.g. learning rate)

• Whether we use ensembles of the model (or multiple models)

• Which inputs are best for our estimations

10”Start with Keras if you are new to deep learning.” https://towardsdatascience.com/

deep-learning-framework-power-scores-2018-23607ddf297a
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7 Appendix

7.1 Glossary

Term Definition

KNMI Koninklijk Nederlands Meteorologisch Instituut or Royal Netherlands Meteorological Institute

AFOS
Airport Forecasting Service
A product from aviation consultancy company To70, which supports decision making for Schiphol.

SKV
Schiphol Kans Verwachting or Schiphol Probability Estimation
Weather forecast with standard deviation, provided by the KNMI for Amsterdam Airport Schiphol.
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62 D. Machine Learning Results

Figure D.1: ERNNs wind direction stdev performance with regards to inputs

Figure D.2: ERNNs wind speed stdev performance with regards to inputs
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Figure D.3: ERNNs wind direction stdev performance with regards to lagged observations

Figure D.4: ERNNs wind speed stdev performance with regards to lagged observations





E
Specification of Sets of Input

Marco van den Berge

Input Window size
Wind direction 20 [°]
Temperature 10 [° C]
Solar irradiation 75 [𝐽/cmኼ]
Air pressure 200 [0.1 hPa]
Cloudiness 5 [coverage rate of the sky in eighths]
Mist 0 [0 or 1]

Adri Huiskamp

Input Window size
Wind direction 20 [°]
Difference temp. at 150 cm and 10 cm 5 [° C]
Solar irradiation 75 [𝐽/cmኼ]
Cloudiness 5 [coverage rate of the sky in eighths]
Ratio between gusts and avg. wind speed 15%
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From: Dennis Bijlsma d.bijlsma@sig.eu
Subject: Code-evaluatie bachelorproject groep dieuwer

Date: 11 June 2019 at 09:08
To: d.a.hondelink@student.tudelft.nl
Cc: o.w.visser@tudelft.nl

Beste,

Hierbij ontvang je onze evaluatie van de door jou opgestuurde code. De evaluatie bevat een aantal aanbevelingen die 
meegenomen kunnen worden tijdens het vervolg van het project. Bij de evaluatie van de tweede upload kijken we in hoeverre de 
onderhoudbaarheid is verbeterd, en of de feedback is geaddresseerd. Deze evaluatie heeft als doel om studenten bewuster te 
maken van de onderhoudbaarheid van hun code, en dient niet gebruikt te worden voor andere doeleinden. 

Let tijdens het bekijken van de feedback op het volgende:
- Het is belangrijk om de feedback in de context van de huidige onderhoudbaarheid te zien. Als een project al relatief hoog scoort 
zijn de genoemde punten niet 'fout', maar aankopingspunten om een nog hogere score te behalen. In veel gevallen zullen dit 
marginale verbeteringen zijn, grote verbeteringen zijn immers moeilijk te behalen als de code al goed onderhoudbaar is.
- Voor de herkenning van testcode maken we gebruik van geautomatiseerde detectie. Dit werkt voor de gangbare technologieën 
en frameworks, maar het zou kunnen dat we jullie testcode hebben gemist. Laat het in dat geval vooral weten, maar we vragen 
hier ook om begrip dat het voor ons niet te doen is om voor elk groepje handmatig te kijken of er nog ergens testcode zit.
- Hetzelfde geldt voor libraries: als er voldaan wordt aan gangbare conventies worden die automatisch niet meegenomen tijdens 
de analyse, maar ook hier is het mogelijk dat we iets gemist hebben.

Mochten er nog vragen of opmerkingen zijn dan horen we dat graag.

Met vriendelijke groet,
Dennis Bijlsma

[Feedback]

De code van het systeem scoort 3.3 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code marktgemiddeld 
onderhoudbaar is. We zien Unit Interfacing en Unit Size vanwege de lagere deelscores als mogelijke verbeterpunten.

Voor Unit Interfacing wordt er gekeken naar het percentage code in units met een bovengemiddeld aantal parameters. 
Doorgaans duidt een bovengemiddeld aantal parameters op een gebrek aan abstractie. Daarnaast leidt een groot aantal 
parameters nogal eens tot verwarring in het aanroepen van de methode en in de meeste gevallen ook tot langere en complexere 
methoden. Dit kan worden opgelost door parameter-objecten te introduceren, waarbij een aantal logischerwijs bij elkaar horende 
parameters in een nieuw object wordt ondergebracht. Dit geldt ook voor constructors met een groot aantal parameters, dit kan 
een reden zijn om de datastructuur op te splitsen in een aantal datastructuren. Als een constructor bijvoorbeeld acht parameters 
heeft die logischerwijs in twee groepen van vier parameters bestaan, is het logisch om twee nieuwe objecten te introduceren.

Voorbeelden in jullie project:
- DarkSkySqlAlchemyModel.__init__(...)
- MLVisualiser._plot_minimum_loss(predicts,axis_y,axis_x,to_plot,model,max_y,max_x)
- CoreExpectation.__init__(wind_dir,wind_spd,temp,dt,issue_dt)

Bij Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Dit kan verschillende redenen hebben, 
maar de meest voorkomende is dat een methode te veel functionaliteit bevat. Vaak was de methode oorspronkelijk kleiner, maar 
is deze in de loop van tijd steeds verder uitgebreid. De aanwezigheid van commentaar die stukken code van elkaar scheiden is 
meestal een indicator dat de methode meerdere verantwoordelijkheden bevat. Het opsplitsen van dit soort methodes zorgt er 
voor dat elke methode een duidelijke en specifieke functionele scope heeft. Daarnaast wordt de functionaliteit op deze manier 
vanzelf gedocumenteerd via methodenamen.

Voorbeelden in jullie project:
- mlp.py:main()
- rbfn.py:main()
- DarkSkySqlAlchemyModel.hourly_forecast_to_sql_alchemy_model(hourly_forecast)
- data_helper.py:get_data(columns_to_select,prediction_time_difference,max_hours_back)

De aanwezigheid van testcode is in ieder geval veelbelovend. De hoeveelheid tests blijft nog wel wat achter bij de hoeveelheid 
productiecode, hopelijk lukt het nog om dat tijdens het vervolg van het project te laten stijgen. Op lange termijn maakt de 
aanwezigheid van unit tests je code flexibeler, omdat aanpassingen kunnen worden doorgevoerd zonder de stabiliteit in gevaar 
te brengen.

Over het algemeen is er dus nog wat verbetering mogelijk, hopelijk lukt het om dit tijdens de rest van de ontwikkelfase te 
realiseren. 

Dennis Bijlsma | Senior Consultant
+31 6 45 172 816 | d.bijlsma@sig.eu 

Software Improvement Group | www.sig.eu
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70 G. Project Info Sheet

General information:
Title of the project: Estimatic
Name of the client organisation: AerLabs
Date of the final presentation: 03-07-2019 10:00
Final Report: Delft University of Technology

Description:
This project was created to estimate the standard deviations of wind direction and wind speed, based
on the historical weather and forecast data for Amsterdam Airport Schiphol. AerLabs commissioned
this project in collaboration with To70 to explore the possibility of using AFOS (Airport Forecasting
Service) at international airports.

The main challenge of this research was that there have not been any studies as of yet that research
estimating the standard deviations of wind speed and wind direction based on historical data.

Our research offered two possible solutions to estimate the standard deviation of wind direction and
wind speed: a statistical method approach and a machine learning model approach. The outcome of
the research of these approaches has resulted in the product called Estimatic.

Multiple approaches and optimisations were outlined and implemented. These results were recorded
and discussed in the research.

Estimatic will take a weather forecast and accompany it with the standard deviation of wind direction
and wind speed. The mean absolute error between the estimated value and actual value was taken to
measure the performance of Estimatic.

Eventually it was concluded that it is not possible to make accurate enough estimations of the stan-
dard deviation of wind components using the historical data and future weather expectations available
for Amsterdam Airport Schiphol.

If To70 is able to obtain SKV data that is more frequent than hourly, it could be possible to use new
statistical methods to research their accuracy. Besides that, if Estimatic is to be implemented in the
future, To70 should research what impact an outlier would have on AFOS’ performance.

Members of the project team:
Name: Jaap de Boer
Interests: Machine Learning, Data Science, Back-end development
Contribution and role: Keras machine learning, data preprocessing and visualisations
Name: Dieuwer Hondelink
Interests: DevOps, Machine Learning, Back-end development
Contribution and role: Data prepocessing, API, DevOps and VPS management
Name: Jip Rietveld
Interests: Algorithm Design, Data Science, Design Patterns
Contribution and role: Weibull statistical model, MATLAB machine learning, presentation and visuali-
sations
Name: Rolf de Vries
Interests: Machine Learning, Data Science, Back-end development
Contribution and role: Keras machine learning, data prepocessing, MySQL, presentation and VPS
management
All team members contributed to the final report.

Client:
AerLabs BV, aviation software company, in collaboration with aviation consultancy company To70.

Coach:
Alessandro Bozzon, department of software technology of faculty of EEMCS, web information systems
group.

Contact:
Rolf de Vries: rolf_d_v@hotmail.com.

The final report for this project can be found at: https://repository.tudelft.nl/

https://repository.tudelft.nl/
https://repository.tudelft.nl/


Bibliography
[1] GR Ackermann. Means and standard deviations of horizontal wind components. Journal of Cli-

mate and Applied Meteorology, 22(5):959–961, 1983.

[2] D Bruce Turner. Comparison of three methods for calculating the standard deviation of the wind
direction. Journal of climate and applied meteorology, 25(5):703–707, 1986.

[3] A Garcia, JL Torres, E Prieto, and A De Francisco. Fitting wind speed distributions: a case study.
Solar energy, 62(2):139–144, 1998.

[4] CG Justus, WR Hargraves, Amir Mikhail, and Denise Graber. Methods for estimating wind speed
frequency distributions. Journal of applied meteorology, 17(3):350–353, 1978.

[5] Dieudonné Kidmo Kaoga, Serge Doka Yamigno, Danwe Raidandi, and Noël Djongyang. Perfor-
mance analysis of weibull methods for estimation of wind speed distributions in the adamaoua
region of cameroon. International Journal of Basic and Applied Sciences, 3(3):298, 2014.

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[7] Nikolaos Kourentzes, Devon K Barrow, and Sven F Crone. Neural network ensemble operators
for time series forecasting. Expert Systems with Applications, 41(9):4235–4244, 2014.

[8] Jessica Lin, Sheri Williamson, Kirk Borne, and David DeBarr. Pattern recognition in time series.
Advances in Machine Learning and Data Mining for Astronomy, 1:617–645, 2012.

[9] Imran Maqsood, Muhammad Riaz Khan, and Ajith Abraham. An ensemble of neural networks for
weather forecasting. Neural Computing & Applications, 13(2):112–122, 2004.

[10] Yukihiro Mori. Evaluation of several “single-pass” estimators of the mean and the standard devi-
ation of wind direction. Journal of climate and applied meteorology, 25(10):1387–1397, 1986.

[11] Raied Salman and Vojislav Kecman. Regression as classification. In 2012 Proceedings of IEEE
Southeastcon, pages 1–6. IEEE, 2012.

[12] KA Verrall and RL Williams. A method for estimating the standard deviation of wind directions.
Journal of Applied Meteorology, 21(12):1922–1925, 1982.

[13] Rudolf O Weber. Estimators for the standard deviation of horizontal wind direction. Journal of
Applied Meteorology, 36(10):1403–1415, 1997.

[14] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining: Practical machine
learning tools and techniques, page 135. Morgan Kaufmann, 2016.

[15] Robert J Yamartino. A comparison of several “single-pass” estimators of the standard deviation
of wind direction. Journal of Climate and Applied Meteorology, 23(9):1362–1366, 1984.

71


	Introduction
	Related Works
	Weather forecasting with machine learning
	Time series analysis
	Statistical models for predicting standard deviations
	Mardia (1972)
	Yamartino (1984)
	Linear standard deviation
	Weibull distribution

	Other related works

	Problem Analysis
	Current situation
	Data
	Research questions
	Hypotheses

	Methodology
	Statistical methods
	Machine Learning
	Success criteria
	Software
	Quality control and testing
	Model training
	SIG


	Results
	Statistical methods
	Machine Learning
	Data limitations

	Discussion
	Statistical methods
	Issues with the Weibull method

	Machine Learning
	Data limitations
	Estimatic
	Ethical implications

	Conclusion & Recommendations
	Conclusion
	Recommendations
	Future studies
	Recommendations for To70


	Lessons Learned
	Glossary
	Task Division
	Research Report
	Machine Learning Results
	Specification of Sets of Input
	SIG Feedback
	Project Info Sheet
	Bibliography

