
Exploring Speed/Quality Trade-offs in Dimensionality of Attention Mechanism
Optimization with Grouped Query Attention and Diverse Key-Query-Value Dimensionalities

Khalit Gulamov

Supervisor(s): Prof.dr. Arie van Deursen, Prof.dr. Maliheh Izadi, Aral de Moor

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Khalit Gulamov
Final project course: CSE3000 Research Project
Thesis committee: Prof.dr. Thomas Abeel, Prof.dr. Arie van Deursen, Prof.dr. Maliheh Izadi, Aral de Moor

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

The advent of transformer architectures revolutionized nat-
ural language processing, particularly with the popularity
of decoder-only transformers for text generation tasks like
GPT models. However, the autoregressive nature of these
models challenges their inference speed, crucial for real-
time applications and resource-constrained environments.
Memory bandwidth is a significant bottleneck, especially
in autoregressive decoding, where constant loading of large
key and value tensors dominates. The Multi-Query Atten-
tion (MQA) architecture was proposed to reduce memory
access by shrinking the key-value cache, enhancing infer-
ence speed at the cost of generation quality. Grouped-
Query Attention (GQA) was introduced to mitigate this
quality decline, serving as an interpolation between Multi-
Head Attention (MHA) and MQA. We explore the trade-
offs between inference speed and quality in decoder-only
models by experimenting with various proportions of query
groups relative to attention heads during pre-training. Ad-
ditionally, we investigate the impact of reducing the size
of key and value vectors compared to GQA and explore a
hybrid method combining GQA with shortened key-value
vectors. This study aims to expand the list of possible trade-
offs and help select an optimal architecture based on spe-
cific needs.

1 Introduction
The invention of the transformer architecture by Vaswani et
al. [11] led to the rise of various language models. Decoder-
only transformers, used for text generation, are exceptionally
popular (as a notable example - GPT models [3] used in Chat-
GPT1). One challenge researchers have faced with such mod-
els is the speed of the inference (output generation), which is
influenced by their auto-regressive nature. Solving this bot-
tleneck is essential, whether aiming to provide a good user
experience in real-time applications, saving on computational
costs when running the model, or allowing the model to run
in an environment with limited computational and memory
resources.

In particular, memory bandwidth is a significant limita-
tion in modern highly parallelizable hardware [9, 10, 17]. In
auto-regressive (incremental) decoding, as each token in a se-
quence is generated one at a time and depends on all of the
previous ones, most bandwidth is consumed by the constant
loading of large key and value tensors in the attention mech-
anism (KV cache) [9, 10]. To address this issue, Multi-Query
Attention (MQA) architecture was proposed with the goal of
reducing the amount of memory access by making the KV
cache smaller [10] by sharing keys and values across all the
heads. It was shown to increase the inference speed signifi-
cantly though the generation quality was slightly diminished
[10].

However, Ainslie et al. [1] argue that MQA quality de-
clines as the number of parameters and attention heads in-
creases due to significant capacity reduction. To address this,

1https://chatgpt.com/

Grouped-Query Attention (GQA) was introduced as an inter-
polation between standard Multi-Head Attention (MHA) and
MQA. This architecture maintains a consistent cut propor-
tion (the ratio of groups to attention heads) across differently-
sized models. In our paper, we extend the work of Ainslie
et al. [1] by examining previously unexplored properties of
GQA through pre-training models with GQA to better under-
stand its impact on performance. We assess both inference
speed and quality across different numbers of groups and at-
tention heads to explore the trade-offs, enabling more effec-
tive future applications of GQA. Unlike the original paper,
we conduct our assessment on increasingly popular decoder-
only models, as the encoder component of encoder-decoder
models gains minimal benefit from GQA due to the absence
of autoregression [10].

Furthermore, in the original transformer architecture, the
dimensionality of key, query, and value vectors (further re-
ferred to as kqv vectors) was assumed to be equivalent to the
embedding size (dk = dq = dv = dmodel) [11]. Shazeer [10]
proposed an orthogonal approach to speeding up inference
and reducing the KV cache by decreasing the dimensional-
ity of kqv vectors (such models will further be referred to
as KQV-models). While its performance was tested against
MQA, it is unclear whether it will yield similar results com-
pared to GQA models, as the reduction of kqv vectors will
be less to match GQA. Additionally, we explore combining
GQA with reduced kqv vectors to determine if this hybrid
approach offers more advantages than either method alone.

This research aims to understand potential trade-offs bet-
ter and help select an optimal architecture based on specific
needs. Our main contributions are as follows:

• Introduced an approach for GQA that allows for more
possible group configurations;

• Examined relationships between speed and quality
changes in GQA;

• Compared the performance of KQV models with GQA
models across various group configurations;

• Introduced a combined approach to further expand the
trade-off search space;

• A replication package2 for reproducing our findings, and
our models3 published on HuggingFace.

2 Background and Related Work
2.1 Preliminaries
Our study explores different speed/quality trade-offs for
methods affecting the attention’s mechanism dimensionality.
This section covers the background information necessary to
understand the upcoming sections.

Multi-Head Attention (MHA)
Conceptually, each attention head independently applies
learnable projection matrices (Whi

k , Whi
q , Whi

v ) to transform
token embeddings into key, query, and value representations.

2https://github.com/AISE-TUDelft/tiny-transformers
3https://huggingface.co/collections/AISE-TUDelft/brp-tiny-

transformers-666c352b3b570f44d7d2a519

1



These transformations are computed separately for each at-
tention head (hi), which then computes its own attention out-
put using all previous keys and values. The outputs from all
heads are concatenated and further transformed using the out-
put projection matrix WO.

In practice, matrices Whi

k , Whi
q , Whi

v from each head are
concatenated into single matrices Wk, Wq , Wv for compu-
tational efficiency. This consolidation allows each token to
be initially transformed into larger key/query vectors of size
dk and value vectors of size dv . These larger projected vec-
tors are then partitioned into smaller subspaces specific to
each attention head. Each partitioned vector has dimensions
dhk = dk

num heads for keys and queries, and dhv = dv

num heads
for values (where h denotes the vector belongs to a particular
attention head’s subspace).

Figure 1: Obtaining a key from an embedding vector (for one
sequence) in a model with 4 attention heads. dmodel is the

embedding dimension of each token (dimension of the vector x);
dk is the dimensionality of a key, which in this figure is equal to
dmodel; dk

4
= dhk ; letters i, j, k, a, b, c are random letters used for

illustrating weights.

Next, after calculating and distributing key and value vec-
tors among attention heads, they are added to the KV cache
for reuse in computing subsequent attention outputs. This al-
lows each subsequent token to attend to all previous tokens
within the context window size, ensuring efficient memory
usage while maintaining context for generating coherent out-
puts.

Once the attention outputs are calculated for each head, the
results are concatenated alongside the head dimension before
being passed to be transformed by the output projection ma-
trix, which is the final step in the mechanism. The exact for-
mulas were omitted for conciseness but can be found in the
paper by Vaswani et al. [11].

Inference Bottlenecks in Multi-Head Attention
The KV cache stores previous keys and values for all past
tokens, which can consume significant memory, especially
with multiple attention heads and parallel input processing. In
incremental (autoregressive) decoding, the attention mecha-
nism is called repeatedly for token generation, requiring con-
stant fetching of the KV cache to compute attention outputs.
This frequent memory access is a primary bottleneck causing
inference slowdowns [9, 10, 17]. According to Shazeer [10],
reducing memory usage, particularly from the KV cache,
while increasing computations helps to get rid of this bot-
tleneck [10]. Another strategy for speedup involves decreas-

ing memory and computational demands while maintaining
a balanced ratio. To improve inference speed per token,
Shazeer recommends increasing parallel processing of input
sequences and reducing the KV cache [10]. This reduction
can be achieved by selectively omitting stored keys and val-
ues for specific attention heads using techniques like Multi-
Query Attention (MQA) or Grouped-Query Attention (GQA)
(described in Subsections 2.1 and ?? respectively); removing
some heads entirely; or reducing the dimensionality of key
and value vectors.

Group and Multi Query Attentions (GQA and MQA)
Multi-Query Attention was introduced by Shazeer [10] and
was an initial step to optimizing the inference speed by dis-
missing keys and values for certain attention heads. Namely,
in this approach, keys and values in all heads but one are omit-
ted such that queries from all heads attend to keys and values
from only one head. That means that W k and W v are re-
duced to just W k

h1
and W v

h1
respectively (Figure 2). At the

same time, W q remains the same as depicted in Figure 1 ex-
cept that the matrix is for query projections.

Figure 2: Obtaining a key OR value from an embedding vector (for
one sequence) in MQA with an arbitrary number of attention heads.

dmodel stands for an embedding dimension (dimension of the
vector x); dk is a dimensionality of key vectors, dv - of value

vectors; i,j,k are random letters to illustrate the weights.

As a result, each query vector from each query head attends
to key vectors from a single key head multiplied by vectors
belonging to a single value head (Figure 3). This is equivalent
to shrinking the KV cache size by a factor equal to the total
number of heads num heads.

MQA has shown a significant inference speedup when hav-
ing a large batch size. However, it led to some quality degra-
dation [10]. Moreover, MQA might cause a too-aggressive
cut when having bigger models with a large number of atten-
tion heads as the proportion 1

num heads is too small [1]. To
address this issue, Grouped-Query Attention was introduced
by Ainslie et al. [1]. GQA is a generalization over MQA
(interpolation between MHA and MQA, including both) that
instead of omitting all the key-value heads one omits an ar-
bitrary number of them. The ratio of this exact number to
the total number of heads will be referred to as group pro-
portion. This ability to select the number of key-value heads
allows for flexibility in balancing the trade-off between the
model’s speed and quality. Figure 3 depicts differences be-
tween MHA, MQA, and GQA.

2



Figure 3: MHA, MQA, and GQA comparison. Taken from Ainslie
et al. [1]

2.2 Small Language Models
Transformer models have scaled enormously, reaching hun-
dreds of billions of parameters to enhance performance.
However, this scaling has increased computational demands,
making training and operation more costly and less sus-
tainable. Eldan and Li [5] highlight that smaller language
models (SLMs) with fewer than 10 million parameters can
match or exceed the language understanding of larger mod-
els like GPT-2 (125 million parameters) when trained on
well-curated datasets. Their TinyStories dataset, composed
of bedtime stories for young children, illustrates this point by
demonstrating models’ coherent and diverse language gen-
eration and even showing some reasoning abilities [5]. The
dataset’s cohesiveness within a restricted domain (reduced
breadth) allows small models to achieve comparable perfor-
mance at a significantly reduced training cost.

Furthermore, Eldan and Li suggest that TinyStories and
small models can be ideal for exploring and testing archi-
tectural decisions, as insights often carry over to larger-scale
models [5]. In our experiments, we utilized GPT-NEO4 mod-
els configured with approximately 8 million parameters and
trained them on the TinyStories dataset.

2.3 Orthogonal Existing Approaches
There are a few other approaches that can be adapted to opti-
mize the inference speed:
Attention Head Pruning: Removing attention heads is a vi-
able approach to reduce the Key-Value (KV) cache size [10].
Furthermore, this reduction in attention heads also decreases
computational consumption. Michel et al. [8] propose a
method to prune attention heads selectively, targeting those
less utilized by the model. This pruning strategy improves
inference speed while maintaining model quality effectively.
Model Quantization: Model quantization is a method that
reduces the precision of numerical values representing a neu-
ral network’s parameters (e.g., using 8 bits instead of 32),
which has been demonstrated to improve inference speed by
reducing memory usage [4].
Model Distillation: Model distillation, as introduced by Hin-
ton [6], transfers knowledge from large models to smaller
ones, ensuring preserved quality. When applied to transform-
ers, deploying the smaller model for inference can signifi-
cantly increase the speed.
Model Partitioning: Another way to enhance inference effi-
ciency involves optimizing hardware utilization. Pope et al.

4https://github.com/EleutherAI/gpt-neo

[9] propose partitioning models across multiple accelerator
chips to mitigate memory limitations.

While other strategies exist for optimizing inference, this
paper specifically explores methods that reduce attention di-
mensionality, such as Grouped Query Attention (GQA) and
dimensionality reduction of kqv vectors.

3 Approach
3.1 Reducing Key and Value Dimensions
To reduce the dimensions of key and value vectors, the linear
transformation matrices Wk, Wq , and Wv (Figure 1) were
to have fewer rows. After downsizing, the matrices yield
smaller vectors that are still split by the number of heads,
resulting in smaller split vectors leading to smaller KV cache
size. The multiplicative factor (lying in between (0, 1]) by
which we reduce the matrices will be referred to as KQV pro-
portion. Next, the standard Multi-Head Attention (Subsection
2.1) was utilized to compute the attention outputs. The output
projection is adjusted accordingly for new smaller vectors to
return them back to an embedding dimension.

3.2 GQA at the Pre-training
To better assess the impact of GQA on the models’ quality,
we adapt it during pre-training. Similarly to the approach de-
scribed in Subsection 3.1, the key and value projection dimen-
sions were reduced by a multiplicative factor called group
proportion. The only difference at this stage is that the query
projection matrix remains the same.

In GQA, a notable distinction from KQV models is that the
size of split vectors among heads remains consistent with that
of an MHA model, resulting in fewer vectors of size equal to
those of the standard attention mechanism.

The original study assumed that the number of queries
(or in other words, the number of newly obtained key-value
heads) in each group should be equivalent. Then, the total
number of attention heads should be divisible by the number
of groups to be able to construct them. We omit this restric-
tion, and instead, the queries were grouped so that the size
difference among the groups was at most 1 query-head (Fig-
ure 6). This approach allows the experiment on a larger num-
ber of group factors while having a relatively small number
of attention heads.

Figure 6: Odd-sized GQA to Adapt for Small Model Sizes.
Inspired by Ainslie et al. [1]

3



3.3 Widening the FFN
Both applying GQA and reducing the size of key and value
vectors (as described in Subsections 3.2 and 3.1 respectively)
results in fewer rows in transformation matrices (e.g., Figure
2). Effectively, this reduces the number of the model’s learn-
able parameters. To maintain consistency in parameter com-
parison across models and focus solely on the impact of these
methods on memory consumption of the KV cache, this pa-
rameter reduction needs to be compensated for. As proposed
by Shazeer [10], we widen the FFN to achieve this. Below
are the derived formulas (omitting the derivation for brevity);
the first is for GQA, and the second is for KQV models:

widthgqa new = (widthold + (dk − (dk · g p))

widthkqv new = (widthold + 2 · dmodel · (1− k p))

where g p and k p are Group and KQV proportions, respec-
tively.

3.4 Ensuring Memory Bottleneck
Given the small size of the models, the KV cache size could
potentially be less of a bottleneck given naturally smaller con-
text window lengths and sizes of keys and values that the
cache grows proportionally with. This could prevent the op-
timization techniques from increasing the inference speed as
intended. To compensate for this, the memory usage was arti-
ficially inflated by processing many inputs in parallel (larger
batch size) during the inference speed tests. In Section 5 we
present findings for both large and small batch sizes to eval-
uate their impact on token generation time and the speed en-
hancements achieved by the optimization techniques.

4 Experimental Setup
We conduct experiments on smaller variations of GPT-NEO
[2], pre-trained on the TinyStories dataset [5] as motivated in
2.2. We assess model quality in terms of natural language
understanding via the BabyLM [14] pipeline. This evaluation
pipeline consists of performance metrics such as GLUE [13],
SuperGLUE [12], and BLiMP [16]. The speed of inference
was assessed in separate experiments using the ‘time’ module
available in Python.

This section introduces the research questions and lists all
the details about the experimental setup used to answer them,
including the dataset, models’ configuration, and evaluation
metrics. In addition, the results of the experiments are pre-
sented.

4.1 Research Questions
This section presents the research questions of our study.
RQ1 addresses the gaps in the paper presented by Ainslie et
al.; RQ2 examines how the approach of reducing kqv sizes
compares to GQA (while Shazeer [10] only compared it to
MQA); RQ3 proposes the combination of both methods to
explore how it performs against using each method individu-
ally.

The independent variables are the hyperparameters af-
fecting the dimensionality of the attention mechanism (e.g.,
group proportions - ratios of key-value heads to total heads in
GQA; or KQV proportions - reduction factors for kqv sizes),

while the dependent variables are quality (natural language
understanding) and speed measured as described in Subsec-
tion 4.5.

Below we present the questions:

RQ1 How do the total number of attention heads and the ra-
tio of key-value heads to total (query) heads affect the
performance of GQA models? Specifically:

RQ1.1 Does model quality decrease proportionally to
the inference speedup gained from reducing the
ratio of key-value heads to query heads (GQA),
while keeping the total number of attention
heads fixed?
Even though Ainslie et al. [1] have discovered
that the inference speed increments monotonically
along with reducing the ratio of key-value heads to
query heads (group proportion), it has not been in-
vestigated how the quality is affected. This knowl-
edge is essential for selecting a group proportion.
To address this, we conduct experiments with sev-
eral such ratios for a fixed number of total heads
and measure the quality and speed changes relative
to the baseline.

RQ1.2 How does the total number of attention heads
affect the quality deterioration in GQA models
when the ratio of key-value heads to query heads
is fixed?
Another gap that has not been addressed by Ainslie
et al.[1] is whether keeping the same group pro-
portion (ratio) among the models with a different
number of attention heads results in similar qual-
ity declines. Investigating this would help better
understand which proportion to choose when pre-
training a model, given a certain number of heads.
To explore this, we select one group proportion for
GQA models with 3 configurations for attention
heads and measure the quality decline relative to
their corresponding baselines.

RQ2 How do models with reduced kqv sizes compare to
corresponding GQA models that lead to an equiva-
lent KV-cache reduction in terms of quality and in-
ference speed?
Shazeer [10] demonstrated that reducing KQV by a fac-
tor equivalent to the KV cache reduction in MQA leads
to worse quality than MQA. However, it’s unclear if this
holds for various group proportions of GQA. For this,
for each GQA model from RQ1, we trained a corre-
sponding model with reduced kqv sizes and compared
their quality and speedups.

RQ3 How does a hybrid approach combining GQA and
reduced kqv sizes perform in terms of quality and in-
ference speed?
Depending on the models’ usage and environment, ap-
plying one approach (GQA) or another (reduced kqv
sizes) can be more desirable. To unlock more flexibil-
ity, we propose combining these approaches to widen
the spectrum of possible trade-offs. To achieve this, we
select one model with both GQA applied and kqv sizes

4



reduced and see how the speedup and quality compare
to the corresponding (leading to the same KV-cache cut)
models using either just GQA or smaller kqv vectors.

All the exact model configurations used to answer each of
these research questions are presented in detail in Subsection
4.4, while hyperparameters that are common across all mod-
els can be found in Subsection 4.3.

4.2 Dataset5

The TinyStories dataset is a dataset of short, grammatically
correct bedtime stories for children, with a total of 2.1 mil-
lion samples and an average of 175.4 words per story. The
dataset is generated by GPT-3.5 and GPT-4 [5]. As the dataset
does not require models to learn much of domain knowledge,
smaller models trained on it can perform as well as, or even
better than, much larger counterparts (e.g., the 125-million
parameter GPT-2 model) on the natural language understand-
ing tasks described in Subsection 4.5. The tokenizer used for
the dataset tokenization had a vocabulary size of 10,000. Its
full configuration can be found in our replication package3.

4.3 Models’ Common Configuration
All the models trained to answer the research questions pre-
sented in Subsection 4.1 are based on GPT-NEO architecture
implemented in the Hugging Face ‘transformers’ library. We
change the hyperparameters and the architecture (to imple-
ment GQA and reduce kqv sizes) for each research question
to match the RQ’s goal. All of the models (for all the RQs)
have constant vocab size = 10000 (number of tokens in
vocabulary), max position embeddings = 512 (maximum
sequence length), window size = 256 (for local attention).
Moreover, all the models have 3 transformer blocks with al-
ternating attention types starting from global (i.e., our mod-
els have the types set to [”global,” ”local,” ”global”]). In ad-
dition, all the models were set to have a hidden size = 384
and a total number of parameters of ∼ 8 million.

All of the models are pre-trained for 1 epoch with a learn-
ing rate of 0.001, training batch size of 16, and 16 gradient
accumulation steps.

4.4 Research Question-Specific Configurations
To answer RQ1.1, we train 5 models with 8 attention heads
such that the ratio of key-value heads to total heads (group
proportion) equals 1.0 (MHA, baseline), 0.75, 0.5, 0.25, and
0.125 (MQA). That leads to having 8, 6, 4, 2, and 1 key-value
heads, respectively.

For RQ1.2, we select a group proportion of 0.75 and train
two additional models—with 4 heads and 16 heads—and sep-
arate baselines with 4 and 16 heads for each of these, respec-
tively. In addition to these 4 models, from RQ1.1, we take
the model with a 0.75 group proportion and 8 heads and its
corresponding baseline. Thus, we obtain performance results
for a total of 6 models.

5Our research group (partially) shares the experimental setup. It
was provided by the supervisor and extended by each member to
work with their custom models; as such, parts of writing are also
shared among the group members.

Addressing RQ2, for each group proportion selected for
RQ1.1 (except the baseline), we train 4 corresponding (lead-
ing to the same KV cache cut) models with 8 attention heads
with reduced kqv sizes. This means that if the group propor-
tion equals 0.5, the KQV proportion will also be 0.5 since, as
explained in Section 3, it leads to the same KV-cache cut.

For RQ3, we train one additional model with 8 attention
heads, combining GQA and reduced kqv sizes. For easier
comparison to the models trained for RQ1.1 and RQ2 (that
use either GQA or reduced kqv sizes but not both), we select
a group proportion and kqv proportion both equal to 0.5. This
way, the model’s performance can be compared to the GQA
model with a 0.25 group proportion and KQV model with a
0.25 KQV proportion.

The baselines (for models with any number of attention
heads) are always trained with an intermediate (FFN) size of
1024. Each GQA and KQV model adjusts this number as
described in Subsection 3.3 to keep the number of parameters
the same (at around ∼ 8 mil.) to have KV-cache size as the
only contributor to the memory consumption.

4.5 Evaluation Setting Metrics5

Quality Assessment
In our study, the term “quality” refers to a model’s profi-
ciency in understanding natural language. We employed the
BabyLM pipeline [14] to evaluate this aspect, which com-
prises three main components: BLiMP, GLUE, and Super-
GLUE.

The BLiMP (Benchmark of Linguistic Minimal Pairs)
[16, 15] evaluates models’ ability to differentiate between
grammatically correct and incorrect sentences across various
linguistic domains. It features pairs of minimally different
sentences, with one sentence containing a grammatical error.
Model performance is assessed based on its accuracy in iden-
tifying the grammatically correct sentence.

GLUE (General Language Understanding Evaluation) [13]
and SuperGLUE [12] are benchmarks designed to evalu-
ate language models’ performance in tasks such as single-
sentence classification, similarity and paraphrase detection,
and natural language inference, emphasizing text comprehen-
sion and reasoning. The BabyLM pipeline integrates selected
tasks from both GLUE and SuperGLUE.

Speed Assessment
We train and evaluate quality and speed for all the models on
the same hardware. Namely, an NVIDIA GeForce RTX 3080
GPU with 10 GB of VRAM is utilized. To measure speed
for each model, we generate inputs for batch sizes of 16 and
512 to see how they affect the speedup induced by the applied
techniques. Each input sequence in each batch has a length
of 32 tokens and an output length of 256 tokens.

Before running the batches used for evaluation, we run
generation on 50 warm-up batches to ensure the GPU is in
the same state for all the consequent generations. We run a
total of 150 batches to find an average generation time per
one token which is achieved by dividing the overall time by
the number and size of batches. This method ensures consis-
tency among the runs without encountering any outliers.

5



The time is tracked ‘time.time()’ function from the Python
module ‘time’ and does not include tokenizer operations such
as decoding outputs to human-readable strings. To calculate
the speedup, we use the Formula 1 that calculates by how
many percent the baseline model (tnew) is slower than the
new one (told).

∆v = (
told
tnew

− 1) ∗ 100 (1)

5 Results
RQ1.1
Figure 7 shows how GQA models’ quality and speedup vary
with different group proportions relative to MHA models
with batch sizes of 16 and 512. The speedup consistently
increases as the group proportion decreases, as depicted.
Conversely, the average of BLiMP and GLUE/SuperGLUE
scores decreases steadily, indicating an inverse relationship
between quality and speed. For a proportional relationship,
the middle gray curve should align closely with a straight line,
observed more clearly with the larger batch size. However,
when examining individual quality scores rather than aver-
ages, the relationship between speed and quality is neither
strictly inverse nor proportional.
RQ1.2
Table 1 presents the evaluated quality of GQA models with a
group factor of 0.75, using 4, 8, and 16 attention heads, along-
side corresponding baseline results. The decline in quality is
visualized in Figure 8. While individual quality scores show
no distinct trend, the average indicates that models with more
attention heads experience less deterioration in quality for the
same group proportion.
RQ2
Table 2 compares GQA and KQV models, ensuring an equiv-
alent KV-cache cut by matching group proportions in GQA
to KQV proportions. Bold highlights the best results in each
pair. KQV models consistently excel in speed, while GQA
models generally achieve higher quality. However, Figure 9
illustrates that as proportion values increase, the quality gap
narrows. For proportions of 0.75 and 0.5, KQV models per-
form nearly as well as GQA models and sometimes even sur-
pass them in specific metrics while maintaining significantly
faster speeds.
RQ3:
Table 3 compares the combined approach, setting both group
and KQV proportions to 0.5 (resulting in a 4x KV cache re-
duction), against individual approaches with group and KQV
proportions set to 0.25 separately, achieving the same cut.
The quality of the combined approach, both in individual met-
rics and on average, falls between that of GQA and KQV
models (highlighted in bold). Similarly, the speed for large
batch sizes also falls between the GQA and KQV approaches
(highlighted in bold). However, the combined approach ex-
hibits the slowest performance for small batch sizes.

6 Discussion
6.1 Implications
First, from Figure 7, we can imply that the relationship be-
tween speed and quality in GQA models is inversely related

Figure 7: Speed changes and quality for various GQA group
proportions (indicated with ‘g’ at the bottom). Negative speedup on
the left is for a batch size of 16 (relative to the baseline with batch
size 16), and on the right is for a batch size of 512 (relative to the

baseline with batch size 512).

Figure 8: GQA quality deterioration for different numbers of
attention heads with a fixed group proportion of 0.75.

Figure 9: Quality differences between GQA models and
corresponding KQV models (with KQV proportion equal to group

proportions) for various proportions. The negative difference means
a KQV model performs better on the given metrics.

6



Table 1: Comparison of quality of GQA models to MHA (vanilla
GPT-Neo) baselines with different numbers of attention heads. The

group proportion is kept fixed for all GQA models at 0.75.

Attention Type MHA GQA MHA GQA MHA GQA

Attention
Heads 4 4 8 8 16 16

FFN width 1024 1120 1024 1120 1024 1120

BLiMP 58.1% 56.8% 57.5 % 55.8% 54.1% 53.4%

GLUE/
SuperGLUE 61.2% 59.1% 61.6% 60.9% 59.5% 58.8%

Average of
BLiMP and GLUE/

SuperGLUE
59.65% 57.95% 59.55% 58.35% 56.8% 56.1%

(lower group proportion leads to higher speed but lower av-
erage quality) for both batch sizes. Additionally, the relation-
ship appears proportional for larger batch sizes, where mem-
ory becomes more of a bottleneck than computation. This
proportionality is not observed in smaller batch sizes, likely
due to the additional computational overhead introduced by
the approach described in Subsection 3.2, which affects the
speedup differently based on group proportions and dimin-
ishes in larger batches. Therefore, the speedup results for
smaller batch sizes are less reliable. To this end, we recom-
mend using the modified GQA approach, which accommo-
dates any arbitrary number of key-value heads solely for as-
sessing GQA’s quality-related properties. For real-world ap-
plications and speed measurements, using the standard ver-
sion of GQA is advisable to avoid computational overhead.

Next, Figure 8 indicates that increasing the number of at-
tention heads reduces the quality decline for the same group
proportion. However, notably, the baseline quality with 16
heads is substantially lower (Table 1), indicating that more at-
tention heads do not always improve performance and should
be balanced with the overall model size. This observation
suggests that the reduced quality difference might be due to
GQA effectively removing unnecessary heads. Nevertheless,
the quality difference between the baselines with 4 and 8
heads is insignificant, yet, the application of GQA still de-
creases the quality gap. This implies that even with similar
baseline quality, models with more heads can afford a lower
group proportion with GQA, effectively allowing for more
head reduction.

Besides, Table 2 highlights that KQV models consistently
achieve faster speeds than GQA models with equivalent KV-
cache reductions. The main factor contributing to GQA’s
slower performance is its computational overhead, which re-
sults in negative speedups initially but transitions to posi-
tive in larger batches due to memory constraints outweighing
computations. Additionally, reducing the size of kqv vec-
tors reduces floating-point operations, unlike GQA, which
primarily cuts memory usage but may introduce computa-
tional overhead. The variance in quality with different KQV
proportions underscores the need for careful selection, as ex-

cessive reduction can significantly degrade quality, unlike
GQA. However, smaller KQV proportions often provide bet-
ter speedups with comparable quality, making them a poten-
tially preferable choice over GQA in certain scenarios.

Finally, as the combined approach’s quality and speed fall
between the pure GQA and KQV models’ results (Table 3), it
can be viewed as a valid way to expand the range of options
available for choosing the desired trade-offs for transformer
inference.

6.2 Threats to Validity
Internal validity assesses whether the observed results are
genuinely caused by the independent variables rather than
other influences. External validity addresses how well the
study’s findings can be applied to different contexts beyond
the study itself. Construct validity evaluates whether the mea-
surement tools accurately capture the intended concepts for
the study.
Internal Validity
There are three main threats to our internal validity. First,
widening the FFN width to match parameter counts intro-
duces a new variable that might affect results. Second, mod-
ifying the GQA approach to allow more group proportions
adds overhead that slows inference. Lastly, due to time and
resource constraints, we train each model for only one epoch,
likely preventing convergence and affecting quality metrics.
External Validity
The small size of the selected models raises questions about
scalability with more parameters. The models required larger
batch sizes to show significant effects from GQA and reduced
kqv sizes. Additionally, the synthetic TinyStories [5] dataset
generated by GPT-3.5 and GPT-4 may not reflect the quality
of real-world datasets. Finally, our modified GQA approach,
intended only for quality evaluation with various proportions,
may not yield speed results applicable to standard GQA ex-
periments.
Construct Validity
To ensure the validity of our speed measurements, we evalu-
ated all models on a single GPU with no background tasks,
warmed up the GPU before measurement, and averaged re-
sults over many batches. This way, we address potential
construct validity threats related to measurement consistency.
However, using GLUE/SuperGLUE to evaluate decoder-only
models remains a construct validity concern, as the models
were fine-tuned for classification tasks of these benchmarks
from scratch.
6.3 Future Work
Addressing the threats to validity (Subsection 6.2), future in-
vestigations should include extended epochs of model train-
ing to ensure result consistency. Additionally, evaluating
speedups for unmodified GQA models (adjusting attention
logic without retraining) could yield improved outcomes
without added computational overhead. Experimentation
with larger models would also provide valuable insights into
scalability.

Variable GQA6 presents an intriguing area where group
6https://deci.ai/blog/decilm-15-times-faster-than-llama2-nas-

generated-llm-with-variable-gqa/

7



Table 2: GPT-Neo models’ performance for different GQA group proportions against KQV models with equivalent KQV proportions. The
models’ metrics are compared pair-wise, and the better results out of the two are highlighted in bold. Each model has 8 attention heads and
fixed sizes of dk and dv equal to 384. The FFN is adjusted to keep the number of parameters the same across all the models. The speedup

results are presented for the batch sizes 16 and 512 relative to the baseline.
The baseline is a vanilla GPT-Neo with 8 heads and standard Multi-Head Attention.

Attention Type Baseline GQA KQV GQA KQV GQA KQV GQA KQV

Group Proportion – 0.75 – 0.5 – 0.25 – 0.125 –

KQV Proportion – – 0.75 – 0.5 – 0.25 – 0.125

FFN Width 1024 1120 1216 1216 1408 1312 1600 1360 1696

BLiMP 57.5% 55.8% 55.9% 56.7% 53.5% 55.4% 53.9% 56.0% 50.3%

GLUE/
SuperGLUE 61.6% 60.9% 60.4% 59.1% 60.5% 60.1% 56.6% 58.7% 56.1%

Average of BLiMP
and GLUE/
SuperGLUE

59.55% 58.35% 58.15 % 57.9% 57.0% 57.75% 55.25% 57.35% 53.2%

Average Time
per Token

Generation (µs)

b = 16 136.67 225.66 135.19 212.16 133.51 176.69 134.44 158.22 134.15

b = 512 17.31 14.32 11.82 11.90 7.48 10.42 6.47 9.31 5.99
Speedup Over
the GPT-Neo

Baseline

b = 16 – −39.44% 1.09% −35.58% 2.36% −22.65% 1.66% −13.62% 1.87%

b = 512 – 20.92% 46.50% 45.54% 131.36% 66.23% 167.54% 85.96% 188.84%

Table 3: Comparison of speed and quality between the combined
approach and the GQA and KQV models, resulting in an equivalent

KV-cache reduction. Metrics that fall between those of the
individual approach models are highlighted in bold.

Attention Type GQA COMBINED KQV

Group Proportion 0.25 0.5 –

KQV Proportion – 0.5 0.25

FFN width 1312 1504 1600

BLiMP 55.4% 54.5% 53.9%

GLUE/
SuperGLUE 60.1% 58.5% 56.6%

Average of BLiMP
and GLUE/SuperGLUE 57.75% 56.5% 55.25%

Time per Token (µs)
(b = 16) 176.69 207.79 134.44

Time per Token (µs)
(b = 512) 10.42 9.01 6.47

Speedup (b = 16) −22.65% -34.23% 1.66%

Speedup (b = 512) 66.23% 92.12% 167.54%

proportions vary among transformer blocks, unlike standard
GQA where they remain uniform. Utilizing this approach
post-pre-training (via uptraining [1]) and integrating with
importance scores for attention head pruning [8] could op-
timize layer-wise head reduction, minimizing quality loss

while achieving significant speedups. Furthermore, combin-
ing GQA and KQV techniques with other compression meth-
ods offers opportunities to explore additional trade-offs.

7 Conclusion

This study aimed to investigate trade-offs in transformer mod-
els between inference speed and natural language understand-
ing, particularly focusing on techniques that reduce the di-
mensionality of the attention mechanism. Specifically, we ex-
amined the properties of Group-Query Attention (GQA), ex-
plored an orthogonal approach involving dimensionality re-
duction of keys and values, and investigated their combined
effects.

Our findings showed an inverse relationship between qual-
ity decline and speedup in Grouped-Query Attention: higher
group counts improve quality but worsen speedup. This ef-
fect becomes more pronounced in scenarios with substantial
memory consumption, approaching a proportional relation-
ship. Furthermore, increasing the number of attention heads
in the model suggests a reduced optimal ratio of groups in
GQA to maintain comparable quality levels.

Furthermore, we observed that in certain configurations,
models employing reduced key and value vectors closely ap-
proximate those using GQA, yet exhibit superior speedup.
Nevertheless, reducing these vectors too much may lead to a
significant decline in quality compared to GQA-based mod-
els.

Finally, combining GQA with reduced key and value vec-
tors demonstrates intermediary results between individual ap-
proaches, expanding the range of trade-off options available
for optimization.

8



8 Responsible Research
To address the current issue of reproducibility in machine
learning research, we provide a replication package for re-
producing our findings and models. Additionally, Section 4
details all model configurations and hardware used. All mod-
els were pre-trained and evaluated with fixed seeds to ensure
consistency.

To prevent test set contamination, we pre-trained our mod-
els on datasets separate from those used for evaluation. This
strict separation between training and evaluation datasets pre-
serves the integrity of our findings and enhances the reliabil-
ity of our research.

We adhered to principles of scientific integrity by ensuring
accurate reporting and proper citations, avoiding fabrication
and plagiarism. Guided by the Netherlands Code of Con-
duct for Research Integrity, we incorporated honesty, trans-
parency, and responsibility into our research practices. By
following the educational and normative framework outlined
in chapters 2 and 3 of the Code, we emphasized good research
practices that foster a responsible research environment [7].

References
[1] Joshua Ainslie, James Lee-Thorp, Michiel de Jong,

Yury Zemlyanskiy, Federico Lebrón, and Sumit Sang-
hai. GQA: Training Generalized Multi-Query Trans-
former Models from Multi-Head Checkpoints, Decem-
ber 2023. arXiv:2305.13245 [cs].

[2] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Biderman. GPT-Neo: Large Scale Autoregres-
sive Language Modeling with Mesh-Tensorflow, March
2021.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language Models
are Few-Shot Learners, 2020. Version Number: 4.

[4] Tim Dettmers, Mike Lewis, Younes Belkada, and
Luke Zettlemoyer. LLM.int8(): 8-bit Matrix Multi-
plication for Transformers at Scale, November 2022.
arXiv:2208.07339 [cs].

[5] Ronen Eldan and Yuanzhi Li. TinyStories: How Small
Can Language Models Be and Still Speak Coherent En-
glish?, May 2023. arXiv:2305.07759 [cs].

[6] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the Knowledge in a Neural Network, March 2015.
arXiv:1503.02531 [cs, stat].

[7] KNAW, NFU, NWO, TO2-Federatie, Vereniging
Hogescholen, and VSNU. Nederlandse gedragscode
wetenschappelijke integriteit, 2018.

[8] Paul Michel, Omer Levy, and Graham Neubig. Are Six-
teen Heads Really Better than One?, November 2019.
arXiv:1905.10650 [cs].

[9] Reiner Pope, Sholto Douglas, Aakanksha Chowdh-
ery, Jacob Devlin, James Bradbury, Anselm Levskaya,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and
Jeff Dean. Efficiently Scaling Transformer Inference,
November 2022. arXiv:2211.05102 [cs].

[10] Noam Shazeer. Fast Transformer Decoding: One
Write-Head is All You Need, November 2019.
arXiv:1911.02150 [cs].

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need,
December 2017. arXiv:1706.03762 [cs].

[12] Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. SuperGLUE: A Stickier
Benchmark for General-Purpose Language Understand-
ing Systems, February 2020. arXiv:1905.00537 [cs].

[13] Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A Multi-Task Benchmark and Analysis Plat-
form for Natural Language Understanding, February
2019. arXiv:1804.07461 [cs].

[14] Alex Warstadt, Leshem Choshen, Aaron Mueller, Adina
Williams, Ethan Wilcox, and Chengxu Zhuang. Call for
Papers – The BabyLM Challenge: Sample-efficient pre-
training on a developmentally plausible corpus, January
2023. arXiv:2301.11796 [cs].

[15] Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan
Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mosquera,
Bhargavi Paranjabe, Adina Williams, Tal Linzen, and
Ryan Cotterell. Findings of the BabyLM Challenge:
Sample-Efficient Pretraining on Developmentally Plau-
sible Corpora. In Proceedings of the BabyLM Challenge
at the 27th Conference on Computational Natural Lan-
guage Learning, pages 1–6, Singapore, 2023. Associa-
tion for Computational Linguistics.

[16] Alex Warstadt, Alicia Parrish, Haokun Liu, An-
had Mohananey, Wei Peng, Sheng-Fu Wang, and
Samuel R. Bowman. BLiMP: The Benchmark of
Linguistic Minimal Pairs for English, February 2023.
arXiv:1912.00582 [cs].

[17] Samuel Williams, Andrew Waterman, and David Patter-
son. Roofline: an insightful visual performance model
for multicore architectures. Communications of the
ACM, 52(4):65–76, April 2009.

9


