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Abstract

Site characterization is indispensable in the design phase of geotechnical engineering projects.
As a key factor in site characterization, the characterization of soil undrained shear strength (Su)
is always in the spotlight. Various methods, including laboratory and in-situ tests, have been
developed to measure Su. Nevertheless, these measurements are usually sparse at a specific
site due to limited time and budget. To enhance Su characterization, other relevant geotech-
nical investigation data (e.g., cone penetration test data), can be transformed into Su through
empirical correlations (referred to as transformation models) to provide more information on
Su. Considering this process introduces the transformation uncertainty and a developed trans-
formation model may not be fully applicable to a local site, probabilistic transformation models
(PTMs) have been developed to characterize soil parameters in a site-specific way and quantify
the uncertainty to augment engineers’ judgement.

However, few PTMs incorporate the spatial correlation of soil parameters, especially in
the horizontal direction. This limitation hampers the ability to probabilistically characterize
Su in 2D/3D space, which is significant in practice. Moreover, estimating the horizontal spa-
tial correlation from pure geotechnical data is challenging because they are typically sparse.
In light of these circumstances, this thesis first proposes a PTM-based scheme to probabilisti-
cally characterize Su in 2D. Then it is proposed to integrate geophysical data into the scheme.
Compared to typical geotechnical investigations, geophysical surveys provide abundant 2D/3D
measurement data, which are often correlated with geotechnical data. The fusion of these two
data sources benefits characterizing geotechnical data including Su. Particularly the horizontal
spatial correlation of Su 2D domain can be estimated from the abundant geophysical data. To
be specific, a well-established PTM, MUSIC-X, by which measured Su and other relevant soil
parameters can be used to preliminarily characterize Su, is first adopted. In this case, character-
ization specifically refers to simulating 1D vertical profiles of Su. It is then combined with the
intrinsic collocated co-kriging (ICCK) model, by which primary data (i.e., Su) in 2D or theoret-
ically 3D space can be estimated through linearly combining the preliminarily characterized Su
from MUSIC-X modelling and observed secondary data (i.e., geophysical data). The secondary
parameter considered in this study is interval velocity (Vint).

The scheme, to combine the MUSIC-X and ICCK model to estimate Su in 2D space by the
fusion of geotechnical and geophysical data, is applied to a real case study at Hollandse Kust
(west) wind farm zone to demonstrate its effectiveness. The results indicate that such a scheme
can robustly estimate a 2D cross section of Su with quantified uncertainty. A comparative anal-
ysis is conducted between the proposed scheme and two alternatives, one lacking preliminary
Su characterization (i.e., without MUSIC-X modelling) and one lacking geophysical data, con-
firming that the proposed scheme has a relatively high accuracy in the estimated cross section.
The research reveals it is sensible to combine MUSIC-X and ICCK for 2D Su characterization
and brings a new perspective that integrating geotechnical and geophysical data is promising to
characterize soil parameters in higher dimensional space.

i



Acknowledgements

First and foremost, a special acknowledgement is given to the external assistance received dur-
ing this Master’s thesis project. I am grateful to Prof. Jianye Ching <jyching@gmail.com> for
generously providing me with the codes of the MUSIC-X model, which greatly facilitated my
understanding of this complex model. In addition, I would like to thank Netherlands enterprise
agency (RVO) for offering free access to the site investigation data at Hollandse Kust (west)
Wind Farm Zone, and thank Fugro for providing supplementary geophysical data at this site.

Moreover, I would like to express my deepest gratitude to my thesis supervisor, Prof. Dr.
M.A. (Michael) Hicks, who inspired me to undertake such an interesting research project, got
time to have weekly discussions with me, guided me with the correct way to go and offered me
an opportunity to have an additional thesis project. It is also a must to thank the rest members
in my thesis committee. Many thanks to Dr. ir. A.P. (Bram) van den Eijnden who was always
passionate and patient to answer my questions no matter in this project or the courses he taught.
Many thanks to Dr. G. (Guillaume) Rongier who has provided me with valuable suggestions
and revised my thesis conscientiously, which can be proved by the 120 comments he gave me.
And thanks to Dr. D. (Divya) Varkey. Although she was not involved in the project directly, she
used to enthusiastically guide me in the additional thesis project.

Lastly I would like to make genuine acknowledgements to all my friends and family for ac-
companying and supporting me in the last two years. Special thanks to my parents and Dudu Liu
for comforting me during times of stress and anxiety, which is important as TU Delft students
can easily get caught up in these two emotions before an exam.

ii



Contents

Abstract i

Acknowledgements ii

Acronyms viii

Symbols x

1. Introduction 1
1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Research questions and objectives . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Literature review 5
2.1. Conventional methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Triaxial test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2. Cone penetration test . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3. Transformation models . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Probabilistic transformation models . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1. Univariate probabilistic transformation models . . . . . . . . . . . . . 8
2.2.2. Multivariate probabilistic transformation models . . . . . . . . . . . . 9
2.2.3. Non-stationary probabilistic transformation models . . . . . . . . . . . 11
2.2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3. Machine learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1. Basic ML methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2. More advanced ML methods . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. Fusion of geotechnical and geophysical data . . . . . . . . . . . . . . . . . . . 15

3. Methodology 18
3.1. MUSIC-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1. Theoretical basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2. Practical construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3. Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2. ICCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1. Development of kriging . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2. ICCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4. Case study 33
4.1. Basic information of the database . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1. Geophysical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



Contents iv

4.1.2. Geotechnical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2. Estimation of cross correlation between Su and Vint . . . . . . . . . . . . . . . 48
4.3. Estimation of spatial correlation . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1. Vertical spatial correlation . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2. Horizontal spatial correlation . . . . . . . . . . . . . . . . . . . . . . . 50

4.4. MUSIC-X implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1. Input setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.2. Validation and comparison strategy . . . . . . . . . . . . . . . . . . . 52

4.5. ICCK implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.1. Input setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.2. Validation and comparison strategy . . . . . . . . . . . . . . . . . . . 55

5. Results and discussion 56
5.1. MUSIC-X modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2. ICCK modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6. Conclusions 68
6.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A. Full conditional PDFs in MUSIC-X 73
A.1. Conditional PDF P(µs | X,Cs,a) . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2. Conditional PDF P(Cs | X,µs,a) . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.3. Conditional PDF P(ai | X,µs,Cs,a\i) . . . . . . . . . . . . . . . . . . . . . . . 73
A.4. Conditional PDF P(Xu | Xo,µs,Cs,a) . . . . . . . . . . . . . . . . . . . . . . 74
A.5. Complete multivariate PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

References 75



List of Figures

2.1. Schematic diagram of triaxial test apparatus (Omar & Sadrekarimi, 2014). . . . 6
2.2. Validation of the probability distribution for undrained Young’s modulus esti-

mated from equivalent samples (Wang & Cao, 2013). . . . . . . . . . . . . . . 8
2.3. Hybridization effect: (a) sparse site-specific data; and (b) abundant site-specific

data (Ching & Phoon, 2019a). . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4. Performance of MARS and LSSVM for (a) training dataset; and (b) testing

dataset (Samui & Kurup, 2012). . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5. Predicted IC values for Zeeland following the data fusion method based on RF

(Zuada Coelho & Karaoulis, 2022). . . . . . . . . . . . . . . . . . . . . . . . 16
2.6. Cross validation result comparison between the ICCK and OK model (Xie et

al., 2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7. Comparison between the original and interpreted Su from MS-BCS and BCS

(Xu et al., 2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1. Flow chart of constructing the MUSIC-X model. . . . . . . . . . . . . . . . . 20
3.2. Flow chart of JD transformation. . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3. Flow chart of GS inference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4. Schematic diagram of ICCK (Samson & Deutsch, 2020). . . . . . . . . . . . . 28

4.1. Satellite map of Dutch coast wind farm zone. The investigation area of the
Hollandse Kust (west) Wind Farm Zone is highlighted by the red line. . . . . . 34

4.2. Relative positions of considered CPT-BH clusters. Note at each BH position,
there is a CPT conducted, which is not shown explicitly. . . . . . . . . . . . . 35

4.3. UHR-MCS reflection survey gird in the considered area. . . . . . . . . . . . . 35
4.4. Schematic diagram of UHR-MCS survey (“Schematic diagram of UHR-MCS.”,

n.d.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5. Flow chart of processing UHR-MCS measurements to derive Vint. . . . . . . . 37
4.6. Vint cross section along UHR-MCS survey line 2X596. The original latitude/-

longitude in the UTM Zone 31N (EPSG 25831) projection is transformed into
the y/x coordinate in the easting-northing coordinate system. . . . . . . . . . . 39

4.7. Vint profile at #97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.8. Distances between original #97/#104 and their projected positions in survey

line 2X596. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.9. Coordinate system transformation: X-Y is original; X′′-Y′′ is eventually used. . 41
4.10. MSEs of potential alignment positions for #97. . . . . . . . . . . . . . . . . . 42
4.11. MSEs of potential alignment positions for #104. . . . . . . . . . . . . . . . . . 42
4.12. Relevance of laboratory shear tests to modes of shear on a surface of sliding in

the field (Terzaghi et al., 1996). . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.13. Correlation behaviors between Su(PP) and Su measured by other laboratory

tests including UC (Budak et al., 2022). λm is the mean, σ is the standard
deviation and COV is the coefficient of variance. . . . . . . . . . . . . . . . . 46

v



List of Figures vi

4.14. Cross correlation between Su and Vint data. . . . . . . . . . . . . . . . . . . . 49
4.15. Curve fitting for the correlograms in the vertical direction. . . . . . . . . . . . 50
4.16. Curve fitting for the variograms in the vertical direction. . . . . . . . . . . . . 51
4.17. Curve fitting for the variograms in the horizontal direction. . . . . . . . . . . . 51
4.18. 2D measurement of Vint used in the ICCK model. . . . . . . . . . . . . . . . . 54

5.1. MUSIC-X simulation results of Su profiles for both the Vint integrated and not
integrated scenario at (a) #97; (b) #98; and (c) #104. . . . . . . . . . . . . . . . 57

5.2. Measured qt profile at #98. The yellowish rectangle indicates an embedded sand
layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3. Curve fitting for vertical correlograms at #97 based on its individual qt profile. . 58
5.4. MUSIC-X simulation results of Su profiles for both the Vint integrated and not

integrated scenario using inaccurate spatial correlation at (a) #97; (b) #98; and
(c) #104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5. COV of simulated Su from MUSIC-X along the depth for Vint integrated/not
integrated scenario and for accurate/inaccurate spatial correlation scenario at
(a) #97; and (b) #104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6. Cross validation result of the median Su profile for both the Vint integrated and
not integrated scenario at (a) #97; (b) #98; and (c) #104. For the integrated
scenario, error bars are given to show the 95% CI. . . . . . . . . . . . . . . . . 63

5.7. Input for ICCK with (a) simulated Su profiles from MUSIC-X modelling as
primary data and (b) measured Vint cross section as secondary data. . . . . . . 64

5.8. Result of the Su cross section estimated by ICCK. . . . . . . . . . . . . . . . . 64
5.9. Estimation variance of the Su cross section from ICCK modelling. . . . . . . . 64
5.10. Cross validation result for the ICCK estimation. Values refer to normalized Su. 65
5.11. Comparison between the three schemes in terms of estimation variance. The

variance at each horizontal position is the average variance over the depth of
this position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.12. Comparison between the three schemes in terms of cross validation result. Val-
ues refer to normalized Su. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.13. Effect of reducing the correlation coefficient between Su and Vint on the cross
validation result of the original scheme. . . . . . . . . . . . . . . . . . . . . . 67

6.1. Cross plot between the intercept and slope of the 1D linear trend. Their random
samples are drawn from the posterior distribution in the Bayesian model. The
marginal distribution of the slope and intercept are given in subplots. . . . . . . 70

6.2. Posterior predictive trends for the qt profile based on qt profiles at #97, #98 and
#104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



List of Tables

2.1. Site investigation for a silty clay layer at a Taipei, Taiwan, site (Ou & Liao, 1987). 10
2.2. Summary of the prediction performance of SVM over 200 random simulations

for the training and testing datasets (Ly & Pham, 2020). . . . . . . . . . . . . . 13
2.3. Comparisons among model predictive modeling results (W. Zhang et al., 2021). 14

4.1. Available geotechnical data at #97 . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2. Developed transformations models to estimate Su(mob) (Ching & Phoon, 2014b). 45
4.3. Available geotechnical and geophysical data at #97 . . . . . . . . . . . . . . . 53

5.1. Average of COV over the depth for Vint integrated/not integrated scenario and
for accurate/inaccurate spatial correlation scenario at #97 and #104. The reduc-
tion of COVave after integrating Vint is shown in the last column. . . . . . . . . 61

5.2. RMSE of the median Su profile during cross validation for both the Vint inte-
grated and not integrated scenario. . . . . . . . . . . . . . . . . . . . . . . . . 62

vii



Acronyms

ACF auto correlation function.

ANN artificial neural network.

BCS Bayesian compressive sampling.

BH borehole.

C characterization.

CART classification and regression tree.

CDF cumulative distribution function.

CDP common depth point.

CI confidence interval.

COV coefficient of variance.

CPT cone penetration test.

CPTU cone penetration test with pore water pressure measurement.

GANFIS genetic algorithm - adaptive network based Fuzzy inference system.

GS Gibbs sampler.

ICCK intrinsic collocated cokriging.

JD Johnson distribution.

KL Karhunen–Loève.
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1. Introduction

1.1. Background

Site characterization (i.e., soil stratification, discontinuities, anomalies, physical/mechanical
properties and groundwater flow; Phoon et al., 2022) is essential in geotechnical designs and
analysis. In this study, the characterization of soil undrained shear strength (Su) is primar-
ily considered, which is an important design parameter in slope stabilization (Hicks & Samy,
2002), deep excavation (Nguyen & Likitlersuang, 2021), and foundation design (Li et al., 2015).
Conventionally sampling and laboratory tests are usually required to measure such a design pa-
rameter. However, they are sophisticated and expensive (Ching & Phoon, 2019a). At a specific
site, because of time and budget constraints, Su measurement data are typically sparse. For ex-
ample, there may be only one borehole (BH) per 300 m2 to sample soils to a depth of 20 meters
and only 10 samples from the BH are applied to laboratory tests (i.e., 10 Su data points). Actu-
ally the sparsity is one of the characteristics of almost all geotechnical data (according to Phoon
(2018), the characteristics of geotechnical data can be summarized as MUSIC: multivariate, un-
certain and unique, sparse and incomplete). To better characterize Su, other available geotech-
nical investigation data are proposed to be transformed into Su through empirical correlations
(referred to as transformation models). These data may be sourced from more cost-effective
in-situ tests, such as the cone penetration test (CPT) data, as well as from other accessible lab-
oratory tests such as soil liquid limit (LL). Nevertheless, this transformation process contains a
significant amount of transformation uncertainty (Phoon & Kulhawy, 1999). Additionally, the
transformation models have the inherent limitation that when applied to a certain site, the soil
properties, soil behaviors, and site geology of this site may differ from the data source from
where the transformation models are calibrated, directly leading to biases with respect to the
actual Su value (D’Ignazio et al., 2016).

Considering the limitations of the conventional methods, probabilistic transformation mod-
els (PTMs) have emerged and gained traction in the field of soil parameter characterization.
PTMs can characterize a target soil parameter based on site-specific sparse data. This ability
exactly fits analyzing geotechnical data and mitigates the inherent biases that may arise when
employing transformations developed from different sites. In addition, PTMs can quantify the
transformation uncertainty (e.g., 95% confidence interval) and thus augment existing physics-
based methods and engineers’ judgement (Ching & Phoon, 2019a; Phoon, 2018). At the early
stage, the PTMs remained at a univariate level (i.e., a single prediction output), solely concern-
ing the pairwise empirical correlation (Feng & Jimenez, 2015; Ng et al., 2015; Wang & Cao,
2013; Yan et al., 2009). However, it has been generally found that a soil parameter is always
correlated to more than one soil parameter. Conceptually, the transformation uncertainty can be
reduced to the maximum extent by combining multiple input information. Thus an ideal PTM
can allow multivariate inputs and predict multivariate outputs (Ching & Phoon, 2019a) and re-
cent studies of PTMs indeed show a trend to be multivariate (Ching & Phoon, 2019a, 2020;
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CHAPTER 1. INTRODUCTION 2

Wang & Akeju, 2016; L. Zhang et al., 2018). Following this trend, the departure point of this
study is to characterize Su based on multivariate PTMs.

1.2. Research questions and objectives

While existing multivariate PTMs mainly focus on utilizing the cross correlation between mul-
tiple soil parameters, few of them consider the spatial correlation of soil parameters, especially
in the horizontal direction. The incorporation of spatial correlation in vertical and horizontal
direction can reduce transformation uncertainty (Ching & Phoon, 2020) and more importantly,
endow the models with a more practical significance: probabilistically simulating 2D or even 3D
cross sections of a certain soil parameter. Furthermore, even though Ching, Phoon, et al. (2022)
investigated incorporating the spatial correlation in 3D space, the estimation of the horizontal
scale of fluctuation (SOF), an important parameter reflecting the horizontal spatial correlation,
was based on limited CPT profiles in the horizontal direction, which is challenging (Ching et al.,
2018). Therefore two research questions are summarized and will be solved in this thesis:

• How can a 2D cross section of Su be developed by a multivariate PTM based scheme?

• How can the horizontal spatial correlation be inferred for the scheme effectively?

The solution to the first question suggests combining the MUSIC-X model (Ching & Phoon,
2020) with the intrinsic collocated cokriging (ICCK) model (Babak & Deutsch, 2009b). MUSIC-
X is a multivariate PTM which can simulate 1D profiles of a geotechnical parameter (e.g. Su)
using the cross correlation between geotechnical parameters and vertical spatial correlation.
Specifically, the MUSIC-X model estimates Su at an unobserved depth conditioned on other
geotechnical data (e.g., liquid limit and CPT tip resistance) observed at the same depth and at
approximately the same position through the cross correlation between Su and these geotechni-
cal parameters. Meanwhile, the estimation is also conditioned on Su observed at nearby depths
at the same position through the vertical spatial correlation if it is applicable. Furthermore, it is
also conditioned on the other geotechnical data observed at nearby depths at the same position
through both the cross correlation and vertical spatial correlation. The vertical spatial correla-
tion can be easily estimated from geotechnical data such as CPT data. For an Su 1D profile at
a BH position at a given resolution, Su at all unobserved depths can be estimated in the same
manner. Thus the Su 1D profile at this BH position can be simulated. This is the preliminary
characterization of Su. Then the simulated Su 1D profiles are applied to the ICCK model as the
primary data to develop a 2D cross section of Su. ICCK is a special instance of kriging meth-
ods, which can estimate a primary parameter at unknown locations (in 2D or theoretically 3D
space) with the assistance of abundant secondary data. Specifically, observed primary data and
secondary data are combined linearly with different weights, which are determined through the
spatial correlation in both vertical and horizontal direction and the cross correlation between
these two parameters, to estimate the primary parameter at target locations. More details of
these two models will be discussed in Chapter 3. Note it is not proposed to directly integrate the
horizontal spatial correlation to the MUSIC-X model (i.e., an upgraded multivariate PTM) for
2D characterization. Instead it is an alternative approach by combining with the ICCK model.
Additionally, note although the ICCK model can be directly adopted to develop the 2D charac-
terization of Su without the preliminary characterization (i.e., no MUSIC-X modelling, based
on measured Su), it is not recommended. This is because the ICCK model cannot utilize other
measured geotechnical data (Su related) to further inform Su through their cross correlation. As
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mentioned earlier, in a real project, the direct measurement of Su is sparse. Using the same
example, there are only 10 measured Su data points along a 20 m deep BH. By utilizing other
measured geotechnical data near this BH, MUSIC-X may simulate 100 Su data points (including
the measured 10 points). It should be admitted that these simulated data contain uncertainties
but 90 uncertain Su data points are better than 90 unknowns. By inputting better-informed Su
data in the ICCK model, the estimated 2D cross section of Su is more accurate.

The solution to the second question suggests utilizing geophysical data as the secondary
data in the ICCK model to estimate the horizontal spatial correlation. In a typical geotechni-
cal project, measured geotechnical parameters (Su related) are not abundant enough to be the
secondary parameter in ICCK estimation for the horizontal spatial correlation. Under such cir-
cumstances, geophysical data are considered. Geophysical surveys always provide abundant
2D/3D measurement data. Moreover, geotechnical and geophysical parameters have been usu-
ally found to be correlated with each other (e.g., permeability-electrical resistivity, moisture
content-electrical resistivity, SPT-electrical resistivity, SPT data-shear wave velocity, CPT data-
shear wave velocity, geohydrologic data-electrical conductivity, undrained shear strength-shear
wave velocity; Crawford et al., 2018; Hegazy & Mayne, 2006; Hussien & Karray, 2016; Rezaei
et al., 2018; Trafford & Long, 2020), so it is reasonable to assume the horizontal spatial cor-
relation of geotechnical data is similar to that of geophysical data. Specifically in this case, it
is proposed to use interval velocity (Vint) as the secondary parameter. Vint refers to the speed
at which seismic waves travel through a particular layer, or generally depth interval of rocks or
soils in the Earth’s subsurface. It is a commonly used geophysical parameter in offshore engi-
neering for site characterization, gas exploration and geohazard assessment. Compared to other
alternatives, such as shear wave velocity, the measurement of Vint is less technically demanding
and more cost-effective, which is attractive given that the offshore geotechnical investigation
usually covers a wide scale. Although there are few studies on the correlation between Su and
Vint, the seismic wave velocity (including shear and compressional wave velocity) are found
to be highly correlated with Su (Duan et al., 2019). Vint, the average of seismic wave velocity
within a depth interval, can be reasonably assumed to be also correlated with Su.

Considering the effect of Vint on the characterization of Su has not been verified by any
study, one additional research question arises and serves as an exploratory investigation in the
effect of integrating geotechnical and geophysical data:

• What is the effect of utilizing Vint to characterize Su?

This question can be directly addressed through the analysis of results from ICCK modeling.
Additionally, integrating Vint into the MUSIC-X model and evaluating the impact on the uncer-
tainty of simulated Su can provide further insights. Actually besides answering the question,
this supplementary investigation may offer an extra benefit that the potential uncertainty reduc-
tion in simulated Su profiles from MUSIC-X modelling can make the final Su cross section more
accurate. Therefore it is worthwhile to conduct this investigation.

In summary, the motivation of this thesis is to combine the MUSIC-X model with the
ICCK model and utilize geophysical data Vint additionally in the combined model to solve the
aforementioned research questions. In order to fulfill this motivation, detailed objectives are as
follows:

• Integrate Vint into the MUSIC-X model.

• Simulate 1D Su profiles by MUSIC-X and validate the reliability/uncertainty of the simu-
lated profiles for both the Vint integrated and not integrated scenario (the original model).
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• Compare the simulation performance of the two scenarios and choose a better one as the
input of the ICCK model.

• Develop a 2D cross section of Su by ICCK based on 1D Su profiles from the MUSIC-
X model and Vint data and validate the reliability/uncertainty of the estimated Su cross
section.

• Compare the reliability/uncertainty of the estimated 2D Su cross sections from the scheme
proposed in this study (MUSIC-X + ICCK) and the ICCK model and investigate in the
computational cost of the scheme.

• Conclude the effect of using Vint to characterize Su.

1.3. Thesis outline

In this thesis, in total 6 chapters are structured in a logical order aiming to answer the research
questions clearly.

Chapter 1 comprehensively introduces this study, starting with the importance of charac-
terizing Su in geotechnical engineering, followed by an overview of mainstream methods to
characterize Su. By analyzing the characteristics of each method and soil parameters, multi-
variate PTMs are mainly concerned and put forward. Lastly the research questions found in the
models are presented, followed by the proposed solutions.

Chapter 2 shows a literature review related to Su characterization, including conventional
methods such as lab tests and in-situ tests and more advanced methods such as PTMs and
machine learning. Finally the method to integrate geotechnical and geophysical data is intro-
duced.

Chapter 3 detailly describes the techniques of the MUSIC-X and ICCK model, which
are used to solve the research questions. The complicated conditional PDFs derived under a
Bayesian framework in MUSIC-X model are provided in Appendix A.

Chapter 4 presents a case study that serves to illustrate the proposed scheme. It begins
by providing the basic information about the database under consideration then specifies the
data that will be utilized in the study. Subsequently the data are well processed and applied to
estimating necessary parameters for the MUSIC-X and ICCK model. Finally, it elaborates the
implementation of these models, encompassing the input setting as well as the devised strategy
for validating and comparing the output.

Chapter 5 displays the results from both MUSIC-X modelling and ICCK modelling in the
case study. Each part is followed by a discussion based on the corresponding validation and
comparison strategy.

Chapter 6 summarizes the final conclusions and has an outlook on what can be done in the
future to improve the study.



2. Literature review

This chapter first provides an overview of conventional methods (i.e., laboratory and in-situ
tests) to estimate soil undrained shear strength (Su). A more detailed introduction to triaxial
tests and cone penetration tests (CPTs), which are the representatives of laboratory and in-situ
tests, is presented. Moreover, the broader idea behind using typical in-situ tests to estimate Su
is actually transformation models, so a review on transformation models is given as well. Then
a thorough review of applying probabilistic transformation models (PTMs) to soil parameter
characterization is provided, including univariate, multivariate, and non-stationary probabilis-
tic methods. Subsequently, considering the trend to apply machine learning (ML) methods to
soil parameter prediction and characterization, to make the literature review more comprehen-
sive, ML also has been reviewed. Finally, recent developments to integrate geotechnical and
geophysical data to characterize soil parameters are reviewed.

2.1. Conventional methods

Conventionally, Su is estimated by laboratory and in-situ tests. Among laboratory tests, tri-
axial tests, simple shear tests, and direct shear tests have been typically used (Mayne, 1985).
Generally, laboratory tests can give precise and reliable measurements of Su, however, they are
relatively time-consuming and expensive. Among in-situ tests, cone penetration tests with and
without pore pressure measurements (CPTU/CPT), field vane tests, dilatometer tests, fall cone
tests, and uniaxial and plane strain tests have been typically used (Mayne, 1985). In-situ tests
are more efficient and cost-effective, however, Su is usually not directly measured but trans-
formed from in-situ data through empirical correlations (i.e., transformation models), which
leads to unknown transformation uncertainty. In the following sections, a more detailed review
will be given to triaxial tests and CPTs, the most representative tests in laboratory and in situ to
measure Su, followed by the elaboration of transformation models.

2.1.1. Triaxial test

The most reliable laboratory method to assess Su is the triaxial test (Thakur et al., 2016), which
can be categorized as unconsolidated undrained (UU), consolidated drained (CD), and consol-
idated undrained (CU) compression or extension. The advantages of a triaxial test over other
simpler lab tests, such as direct shear, include the ability to control specimen drainage and take
measurements of pore water pressure. The schematic diagram of the triaxial test apparatus can
be viewed in Fig. 2.1. The descriptions of the apparatus are as follows (Lacasse & Berre, 1988;
Nakase & Kamei, 1983): soil samples are enclosed in a rubber membrane and loaded by the
piston at the top of the cell; there are valves to control the drainage of the cell, and the cell
pressure and pore pressure can be measured; electrical transducers are used for automatic data

5
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Fig. 2.1. Schematic diagram of triaxial test apparatus (Omar & Sadrekarimi, 2014).

logging. Detailed procedures for conducting a triaxial test were proposed by Berre (1982). The
performance and reliability of triaxial tests are influenced by the testing configuration, typically
like the slenderness of the soil specimen and the roughness of the platens (Peri et al., 2019).

2.1.2. Cone penetration test

The CPT has been used to estimate Su for a few decades. It is cost-effective and convenient
compared to laboratory tests because CPTs can be conducted quickly in field and no sampling
is needed. Moreover they can offer continuous measurements (i.e., 1D vertical profiles) instead
of point measurements. There are several empirical correlations between CPT data and Su, and
in an actual project, the correlation to apply is decided on a case-by-case basis. Rémai (2013)
summarized four forms of empirical correlations to derive Su, which use different empirical
cone factors (i.e., the N terms in the following equations, with different subscripts to distinguish
different forms). The first form is the most typical, derived from many theoretical studies:
Su = (qc − σv0)/Nk, where qc is the cone resistance, σv0 is the total overburden stress; the
second form is similar to the first one but cone resistance is replaced with tip resistance, which
is the corrected value by pore pressure: Su = (qt −σv0)/Nkt , where qt is the tip resistance; the
third form is to utilize effective cone resistance: Su = qE/Nke = (qt −u2)/Nke, where qE is the
effective cone resistance, u2 is the measured pore pressure behind the cone tip; the fourth form
is developed for soft clays based on excess pore water pressure: Su = ∆u/N∆u = (u2−u0)/N∆u,
where u0 is the in-situ pore water pressure.

Based on the aforementioned four forms of empirical correlations, it can be observed that
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the accuracy of transformed Su relies on the determination of cone factors (i.e., Nk, Nkt, Nke,
and N∆u), which vary from different sites, soil types, and soil characteristics (i.e., unsaturated
or saturated, normally consolidated or overconsolidated). Previous studies have proposed to use
site-specific soil parameters such as plastic index, pore water pressure ratio, and over consolida-
tion ratio to determine the cone factor value (or the range of the value), contributing to a more
reliable empirical correlation. Otoko et al. (2016) estimated the correlations between Su and
CPT data of soils from the Sombreiro-Warri deltaic plain of Niger Delta, Nigeria. They found
the cone factor Nk was proportional to the plastic index and the best Nk was proposed to be 50.
Zein (2017) found that Nk seemed to depend on the moisture condition and degree of stiffness
based on the Sudanese fine-grained soils, and the value of Nk was found to be in the range of
37.5 to 44.1. Hong et al. (2010) conducted a more comprehensive analysis for Nkt, Nke and
N∆u of Busan clay, and it was found that Nkt and Nke were reversely proportional to the pore
water pressure ratio and N∆u increased as the plasticity index increased. The values of Nkt, Nke,
and N∆u were respectively in the range of 7-20, 3-18, and 4-9. It is evident that there is always
a relatively extensive range for those cone factors. Using empirical correlations to derive Su
exists a large amount of uncertainty.

2.1.3. Transformation models

In geotechnical engineering projects, there is a common condition that it is not always feasible
to measure a relevant target parameter (e.g., Su) directly, so estimates of such a parameter will
have to be made from other available data, such as the results of laboratory tests and in-situ tests
(Kulhawy & Mayne, 1990). So a model used to transform the test measurements to an appro-
priate design parameter (target parameter) is called a transformation model (Phoon & Kulhawy,
2001). The development of such a model is based on empirical or semi-empirical relations
between the target data and other data obtained by regression fitting to a calibration dataset.
Typically for Su, several transformation models have been developed in the last several decades
(Hansbo, 1957; JAMIOLKOWSKI et al., 1985; Karlsrud & Hernandez-Martinez, 2013; Ladd
& Foott, 1974; Mesri, 1975). Of course, the aforementioned empirical correlations between
CPT data and Su are also transformation models. However, such models have some severe
limitations. The first limitation is that when applied to a certain site, the soil properties, soil
behaviors, and site geology of this site may differ from the data source from where the transfor-
mation models are calibrated, directly leading to bias with respect to the actual Su (D’Ignazio
et al., 2016). One improvement scheme is to calibrate the models with a greater number of data
to make it “global” (Ching & Phoon, 2012, 2014a; D’Ignazio et al., 2016). Benefitting from
regression fitting to a larger dataset covering several different sites and soil types, the global
transformation models can be less biased. However, there is a consequent drawback: the global
transformation models generate a significant amount of uncertainty when applied to a specific
site as it accommodates a wide range of soil types and site conditions. The second limitation is
that the transformation uncertainty remains overlooked instead of being able to be quantified.
Experienced engineers may estimate error bounds based on their expertise but this is not a gen-
eral situation. So it is preferable for a transformation model to quantify the uncertainty (e.g.,
95% confidence interval), which can augment existing physics-based methods and engineer’s
judgment (Ching & Phoon, 2019a; Phoon, 2018).
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2.2. Probabilistic transformation models

Considering the limitations in conventional methods, PTMs have been widely adopted to char-
acterize Su, or any other soil parameter in a broad sense, in the last two decades. PTMs can be
constructed in a site-specific (or quasi-site-specific) way, in the absence of big data and quantify
the uncertainty. In this section, a thorough review on univariate, multivariate, and non-stationary
PTMs is presented.

2.2.1. Univariate probabilistic transformation models

At the early stage, PTMs were univariate (i.e., a single prediction output). Wang and Cao
(2013) proposed a PTM based on the Bayesian framework which integrated the prior knowl-
edge (i.e., maps and surveys, local experience, engineering judgment, visual observations, and
published reports and studies) and site-specific sparse data to characterize undrained Young’s
modulus (Eu) using standard penetration test (SPT) N values. The uncertainty of the model is
first considered, and two sources are involved: Eu inherent variability and transformation model
uncertainty. Then by using the theorem of total probability and Bayes’ theorem, the posterior
probability distribution function (PDF) of Eu can be derived based on prior knowledge (min-
imal and maximal values of mean and standard deviation of Eu; assumption on joint uniform
distribution of mean and standard deviation of Eu, non-informative) and site-specific data (i.e.,
SPT-N values). Due to the complexity of the derived PDF of Eu, it is challenging to be analyt-
ically or explicitly expressed. So Markov chain Monte Carlo (MCMC) simulation method is
adopted to generate samples based on the PDF. After enough Eu samples are collected based on
MCMC, conventional statistical methods (e.g., mean and standard deviation) are used to char-
acterize Eu. As these samples are distributed under the PDF, containing equivalent information
to the original PDF, this approach is referred to as the equivalent sample approach in this study.
The proposed model was applied to probabilistically characterize Eu using only 5 SPT-N values
obtained from the clay site of the NGES at Texas A&M University. The cumulative distribution
function (CDF) of Eu at this site is shown in Fig. 2.2 to show the quantified uncertainty.

Fig. 2.2. Validation of the probability distribution for undrained Young’s modulus estimated
from equivalent samples (Wang & Cao, 2013).
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Yan et al. (2009) proposed to predict the compression index based on a Bayesian probabilis-
tic approach. Similar to Su, there are also many transformation models for compression index
with uncertain reliability and predictability. The Bayesian probabilistic approach is used for
model selection, by which the model with good fitting performance can be found. Notice in this
study, the model is also selected by criteria that it should offer an acceptable degree of robust-
ness to measurement noise and modelling error in order to avoid an unnecessarily complicated
transformation model. Prior PDFs of model parameters are assumed to be uniform distribution
(non-informative) with prior knowledge of minimal and maximal values, and site-specific data
(not sparse in this case) are also used.

Univariate PTM studies have also been developed to predict Su of soils (Cao & Wang,
2014), uniaxial compressive strength of rocks (Ng et al., 2015), and deformation modulus of
rocks (Feng & Jimenez, 2015).

2.2.2. Multivariate probabilistic transformation models

The univariate PTMs have been subsequently developed into multivariate probabilistic models
as multivariate can exploit the cross-correlations between soil parameters. Wang and Akeju
(2016) extended to probabilistically modelling two cross-correlated parameters, effective cohe-
sion (c′) and effective friction angle (φ ′). c′ and φ ′ are first assumed to be a bivariate normal
distribution. The prior knowledge (i.e., possible ranges of µc′ , σc′ , µφ ′ , σφ ′ , ρ and assumption
on joint uniform distribution of these parameters; ρ is the correlation coefficient between c′ and
φ ′) as well as the site-specific data (c′ and φ ′) are both used in this study. Then based on the
theorem of total probability and Bayes’ theorem, the posterior joint PDF of c′ and φ ′ can be
calculated. Subsequently, MCMC simulation is employed to generate sample pairs of c′ and
φ ′ based on the joint PDF, and conventional statistical methods are finally applied to charac-
terize these two parameters. The proposed model is tested by different numbers of data pairs
(5, 10, 20, 30) measured from alluvial fine-grained soils at the Paglia River alluvial plain in
Central Italy and as a result, not only the marginal CDF of c′ and φ ′ but also their probabilistic
correlation coefficients are obtained.

L. Zhang et al. (2018) utilized the copula approach to model the posterior joint probability
distribution of c′ and φ ′. A copula function refers to a function that couples a multivariate dis-
tribution to its one-dimensional marginal distribution. Simply speaking, it functions to connect
multiple marginal distributions to a multivariate distribution. There are two main steps in this
study: 1) identification of the best-fit marginal distribution (the distribution of c′ and φ ′ are not
deterministically assumed to be normal; four candidate distributions: normal, lognormal, Gum-
bel and Gamma) and copula (four bivariate copula candidates: Gaussian, Plackett, Frank and
No.16); 2) estimation of distribution parameters of the best-fit marginal distributions (i.e., mean
and standard deviation) and copula parameter of the best-fit copula (i.e., Kendall rank correla-
tion coefficient tau). In the first step, there are 4 (marginal distributions for c′) × 4 (marginal
distributions for φ ′) × 4 (copulas) = 64 bivariate distribution models. Based on a Bayesian
framework, the occurrence probabilities of each model are calculated and the most probable
model is selected. After determining the most probable model, it is adopted to characterize
the joint PDF of c′ and φ ′ under a Bayesian framework. Similar to Wang and Akeju (2016),
MCMC is adopted to sample from the PDF. And finally conventional statistical methods are
adopted to analyze the generated samples. The proposed method is tested using 64 data pairs
measured from clays in the core wall of Xiaolangdi rockfill dam in China and as a result, the
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marginal distribution of c′ and φ ′ are obtained and their correlation coefficient can be calculated
probabilistically.

Ching and Phoon (2019a) constructed a site-specific multivariate PTM based on a novel
Bayesian framework. Unlike the normal Bayesian framework shown above, which calculates
the multivariate PDF integrally (i.e., all components in the PDF are calculated as a combina-
tion), the novel Bayesian framework separately calculates each parameter of the multivariate
distribution (in this study, mean vector, covariance matrix, hyperparameter, and multivariate).
Each parameter is conditioned on the rest of them and after being sampled by Gibbs sampler, a
special instance of MCMC, based on its conditional PDF, it is updated and becomes the condi-
tion for the rest of the parameters. Such a process goes through all the parameters and iterates
until enough samples are collected to carry on traditional statistical analysis. Based on such a
framework, the model makes the exact sampling more efficient. More importantly, this model
outperforms other multivariate models in that it can accommodate incomplete site-specific data
and it can switch to depending on site-specific data when they are “abundant” or depending on
generic databases when site-specific data are extremely sparse. For the former advantage, to
elaborate incomplete data better, an exemplary input dataset for this model is shown in Table
2.1. It can be evidently seen that some soil parameters are not available at some depths (denoted

Table 2.1. Site investigation for a silty clay layer at a Taipei, Taiwan, site (Ou & Liao, 1987).

Depth (m) Su (kPa) Su(mob) (kPa)
Test results (training data)

LL (Y1) PI (Y2) LI (Y3) σ ′
v/Pa (Y4) σ ′

p/Pa (Y5) Su(mob)/σ ′
v (Y6) qt1 (Y9)

12.8 UU 55.2 46.9 30.1 9.1 1.2 1.26 1.71 0.37 5.17
14.8 VST 50.7 52.9 32.8 12.8 1.43 1.43 N/A 0.36 4.22
16.1 UU 61.9 51.7 36.4 14.5 1.24 1.54 N/A 0.33 4.12
17.8 UU 54.2 42.8 41.9 18.9 0.9 1.68 1.79 0.25 4.03
18.3 VST 59.5 59.3 N/A N/A N/A 1.72 N/A 0.34 5.27
20.2 UU 73.1 60.5 38.1 17.3 0.7 1.88 N/A 0.32 4.53
22.7 VST 63.3 64.4 37 16 0.58 2.08 N/A 0.31 4.76
24 UU 82.2 67.5 38 16.2 0.75 2.19 2.19 0.3 5.12

26.6 UU 98.1 82.1 34.8 13.8 0.8 2.41 N/A 0.34 5.32

as N/A). Incomplete geotechnical data are always met in actual projects, so this ability is quite
attractive. For the latter advantage, in case the site-specific data are too sparse leading to sig-
nificant statistical uncertainty, a scheme to hybridize site-specific data and generic data, which
can offer prior knowledge is further proposed in the study. The hybridization is straightforward
as the hybrid multivariate PDF is proportional to the product between generic and site-specific
multivariate PDFs as:

f (xnew|hb) ∝ f (xnew|µg,Cg) · f (xnew|Xo) (2.1)

where xnew is a vector for multivariate soil parameters at a new (predicted) depth; µg and Cg
are the mean vector and covariance matrix (prior knowledge) obtained from generic databases
like CLAY/10/7490; Xo is the site-specific dataset. Fig. 2.3 explains how it works: when Xo

is sparse (a), f (xnew|hb) ∝ f (xnew|µg,Cg)× (a relatively flat PDF) ≈ f (xnew|µg,Cg); whereas
when Xo is abundant (b), f (xnew|hb) ∝ (a relatively flat PDF)× f (xnew|Xo)≈ f (xnew|Xo).

Ching and Phoon (2020) further incorporated the spatial correlation of soil parameters (1D)
into the model proposed by Ching and Phoon (2019a). This is to say the model proposed by
Ching and Phoon (2020) considers not only the cross-correlation but also spatial correlation,
contributing to simulating 1D profiles of soil parameters. More details of this model can be
found in Section 3.1. More recently, Ching, Phoon, et al. (2022) extended to 3D multivariate
probabilistic characterization based on the work done by Ching and Phoon (2019a, 2020).
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Fig. 2.3. Hybridization effect: (a) sparse site-specific data; and (b) abundant site-specific data
(Ching & Phoon, 2019a).

2.2.3. Non-stationary probabilistic transformation models

Wang and Zhao (2017) and Wang and Zhao (2016) offered a different scheme to characterize
a target soil parameter. The prior knowledge, which is important in the aforementioned PTMs
(reflected by the engineering judgments or generic databases), is not necessarily needed in this
scheme. Moreover, it can be seen that in PTMs, the distribution of a soil parameter follows
a normal distribution with stationary mean and standard deviation at most times, whereas in
such a scheme the distribution of a soil parameter is no longer stationary and Gaussian but non-
stationary non-Gaussian. It is based on the Bayesian compressive sampling (BCS) method, and
the theory behind is compressive sampling which asserts that a signal can be reconstructed from
a few measurements of the signal itself, utilizing the fact that many natural signals are compress-
ible (i.e., they can be represented by a weighted summation of only several pre-specified basis
functions). The BCS model is able to provide the profile of the target soil parameter directly
from the sparse measurements and quantify the statistical uncertainty. Wang et al. (2018) ex-
tended BCS further by combing it with a random field generator, Karhunen–Loève (KL) expan-
sion, to BCS-KL which can generate random field samples. It successfully bypassed estimation
on random field parameters such as mean, standard deviation, and correlation functions. Zhao
and Wang (2018) utilized BCS-KL to generate cross-correlated random field samples, which
considered not only the spatial auto-correlation but also the cross-correlation between two cor-
related parameters (i.e., two random fields). Hu and Wang (2020) extended the BCS-KL model
to 2D and utilized it for soil stratification.
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2.2.4. Conclusion

Through the literature review of PTMs, it can be found that in most cases, site-specific sparse
geotechnical data are acceptable to characterize soil parameters. In addition, the uncertainty of
the simulated results can be explicitly quantified. However, every coin has two sides. The com-
putational efficiency of PTMs is generally low because exact sampling is always needed. This
will become a problem when a lot more variables are simulated (e.g., extension of probabilistic
methods to higher dimensional site characterization).

2.3. Machine learning methods

Besides PTMs, ML is another improved method to better predict and characterize soil param-
eters. It has been increasing popular because it has demonstrated superior predictive ability
compared to traditional methods (Shahin, 2013). Simply speaking, a higher accuracy can be
expected from ML compared to transformation models. This section summarizes the studies on
applying basic and more advanced ML models to soil shear strength predictions.

2.3.1. Basic ML methods

Basic ML technics were utilized in geotechnical engineering initially, such as artificial neural
network (ANN), support vector machine (SVM), classification and regression tree (CART), and
multivariate adaptive regression spline (MARS) (Das et al., 2011; Kanungo et al., 2014; Ly &
Pham, 2020; Samui & Kurup, 2012). At this stage, the procedures were relatively simple and
direct: selecting learning sets including possible soil parameters as input and shear strength
as output and splitting them into training datasets, validation datasets, and testing datasets; se-
lecting a single machine learning model; learning and evaluating the accuracy. To give some
examples, Samui and Kurup (2012) used corrected cone resistance, vertical total stress, hydro-
static pore pressure, pore pressure at the cone tip, pore pressure just above the cone base as the
input and Su as the output, which were measured from massive clay samples in several countries
around the world through laboratory tests and in-situ tests. MARS and least square SVM were
respectively utilized. The coefficient of correlation (R) was used to evaluate the accuracy of
those two machine learning models. The results obtained in this study are shown in Fig. 2.4.
Similarly, Ly and Pham (2020) used moisture content, clay content, void ratio, plastic limit, liq-
uid limit, and specific gravity as input and shear strength as output, which were measured from
538 soil samples collected from Long Phu 1 power plant project, Vietnam through laboratory
tests. Then a single machine learning model, SVM, was utilized. Finally, various statistical in-
dicators, including R, root mean squared error (RMSE), and mean absolute error (MAE), were
used to evaluate the performance of the model. The results obtained in this study are shown in
Table 2.2.

2.3.2. More advanced ML methods

With the development of computer science and artificial intelligence, more advanced machine
learning schemes are applied to the prediction of soil shear strength in order to improve ac-
curacy. The first scheme is to hybridize the model with optimization algorithms (Pham et al.,
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(a) Performance of training dataset

(b) Performance of testing dataset

Fig. 2.4. Performance of MARS and LSSVM for (a) training dataset; and (b) testing dataset
(Samui & Kurup, 2012).

Table 2.2. Summary of the prediction performance of SVM over 200 random simulations for
the training and testing datasets (Ly & Pham, 2020).

Part Values RMSE MAE R Error Std

Train dataset Average 0.0988 0.058 0.8824 0.0989
- Min 0.0707 0.0494 0.5088 0.0708
- Max 0.305 0.0764 0.9399 0.3051

Test dataset Average 0.082 0.0555 0.9164 0.0818
- Min 0.0616 0.0451 0.722 0.0615
- Max 0.1788 0.079 0.9537 0.178
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2020; Pham et al., 2018). In machine learning models, there are hyper-parameters which should
be set before the learning process. Those hyper-parameters have a significant influence on the
performance of the predictive model. Therefore, combining optimization algorithms, which can
tune and optimize the hyper-parameters, is essential. For example, Pham et al. (2018) respec-
tively utilized particle swarm optimization - adaptive network based Fuzzy inference system
(PANFIS), genetic algorithm - adaptive network based Fuzzy inference system (GANFIS), sup-
port vector regression (SVR), and ANN to predict soil shear strength with plastic index, liquid
limit, moisture content, and clay content as input, which were measured from 188 plastic clay
soil samples collected in Nhat Tan and Cua Dai bridges, Vietnam. The former two models
were combined with two meta-heuristic optimization algorithms: particle swarm optimization
(PSO) and genetic algorithm (GA). The performances were evaluated by RMSE and R. As a
result, PANFIS showed the highest prediction accuracy (RMSE = 0.038 and R = 0.601), then
GANFIS (RMSE = 0.04 and R = 0.569), followed by two baseline models without optimization
algorithms, SVR (RMSE = 0.044 and R = 0.549) and ANN (RMSE = 0.047 and R = 0.49). The
benefits from hybridizing the optimization algorithms can be demonstrated.

The second scheme is to ensemble multiple machine learning algorithms (Mbarak et al.,
2020; W. Zhang et al., 2021). Given the fact that the datasets used to train ML models usually
contain soil parameters measured from soil samples collected from different sites, with different
types and characteristics, ensemble methods for ML in geotechnical engineering are necessary
since the ensemble learning can process different hypotheses to form a better hypothesis, con-
tributing to a better prediction performance (Nascimento et al., 2014). Ensemble methods can
be broadly categorized into two methods according to their structures (W. Zhang et al., 2021):
bagging and boosting. The bagging ensemble method combines different algorithms indepen-
dently. This is to say those learning algorithms do not interact with each other, and their results
are combined to make the final result. The boosting ensemble method builds up a learning al-
gorithm based on the predecessor algorithm to reduce the error from the predecessor algorithm.
This means that different learning algorithms in the boosting ensemble framework interact with
each other. W. Zhang et al. (2021) utilized two ensemble learning methods: random forest
(RF) and extreme gradient boosting (XGBoost), respectively corresponding to the bagging and
boosting category of ensemble methods to predict Su. Three baseline machine learning models
(SVM, MARS, and multilayer perceptron) were adopted to compare with the former two. Pre-
consolidation stress, vertical effective stress, liquid limit, plastic limit, and natural water content
were used as input. The learning data were from a TC304 database. RMSE, coefficient of de-
termination (R2), bias factor (b), and mean absolute percentage error (MAPE) were employed
to evaluate the performance of those models. The results in Table 2.3 indicated XGBoost and
RF methods outperformed the other three baseline models.

Table 2.3. Comparisons among model predictive modeling results (W. Zhang et al., 2021).

Evaluation index
RMSE (kPa) R2 MAPE (%) Bias

Training Testing Training Testing Training Testing Training Testing

XGBoost 2.38 4.4 0.92 0.73 10.85 19.23 0.99 1.01
RF 2.51 4.6 0.91 0.7 10.93 19.63 0.99 1
SVR 3.6 4.82 0.82 0.67 13.69 20.56 1.02 1.04
MLPR 4.19 4.91 0.75 0.66 19.41 21.38 1 1.02
MARS 4.42 4.89 0.73 0.66 20.23 22.43 1.01 1.04
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2.3.3. Conclusion

The ML models reviewed in this section exhibit precise predictive outcomes but they require
relatively large datasets for training purposes. It can be seen that usually hundreds of data pairs
(input-output) are needed. While meeting this requirement may be possible in some real projects
only in terms of volume, geotechnical data possess another “ugly” property that they are incom-
plete, which will make it pretty challenging to obtain a satisfactory dataset from a project. For
example, a ML model is constructed to predict soil parameter A based on (B, C, D). In princi-
ple (A, B, C, D) data at the same depth and reasonably close locations are needed. However,
it is very rare that such complete multivariate data points are available during a common site
investigation program (Ching & Phoon, 2019a). This problem may impede the practical uti-
lization of ML in geotechnical engineering. In addition, even if an ML model is trained well
based on a generic dataset containing relatively abundant geotechnical data (e.g., those offered
by TC304 ISSMGE), when applied to a specific site, the accuracy will undoubtedly decrease
(Yu, 2022).

2.4. Fusion of geotechnical and geophysical data

Some progress has been made recently to take advantage of the fusion of geotechnical data
and geophysical data in site characterization, as these two data sources are complementary
and highly likely to correlate with each other. Complementary refers to that geotechnical data
are accurate but sparse while geophysical data are inaccurate (back analysis is needed) but
abundant. Even though it is still at an early stage (Phoon et al., 2022), such a scheme seems
promising to extend site characterization to multidimensional space and is able to provide more
realistic and reliable ground models (Xie et al., 2022). This section presents different fusion
methods based on ML and PTMs.

Zuada Coelho and Karaoulis (2022) utilized the fusion of multi-source data (geotechnical
data, geophysical data as well as geological data) in order to make 3D subsoil schematizations
based on machine learning methods (neural network and RF). The input is the position (co-
ordinates), geophysical data (electrical resistivity), and geological data (geological formation
entity), and the output is the soil behavior type index (IC), which is estimated by CPTs and can
be used to classify soils (Robertson, 2010). In this case, RF outperforms neural network and
it is applied to perform the regional subsoil schematization of a part of Zeeland, Netherlands,
which can be seen in Fig. 2.5.

Xie et al. (2022) combined the shear wave velocity (Vs, geophysical data) obtained from
multichannel analysis of surface waves (MASW) and cone resistance (qc) obtained from CPTs
to develop a 2D synthetic field for qc. Compared to the method proposed by Huang et al.
(2018), which also intended to combine Vs and qc, the method by Xie et al. (2022) requires less
computational effort and the empirical transformation models between those two data are not
needed. There are two aspects of the development of the 2D field assisted by the geophysical
data in this study: 1) the estimation of the horizontal scale of fluctuation (SOF); 2) the estimation
of qc at unobserved locations. For the first aspect, the horizontal SOF, which is difficult to
estimate from sparse CPT data, is estimated from Vs 2D measurements. This horizontal SOF is
directly used as the horizontal SOF of qc as they are highly correlated. For the second aspect,
the intrinsic collocated co-kriging (ICCK) method is adopted to estimate qc in the 2D field by
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Fig. 2.5. Predicted IC values for Zeeland following the data fusion method based on RF (Zuada
Coelho & Karaoulis, 2022).

linearly combining observed Vs and qc, which avoids the tedious modelling of cross-covariance
relations between these two sources of data compared to traditional cokriging. The proposed
method is applied to a case study in the Christchurch area, New Zealand, where there are 4
observed qc profiles and a 2D measurement of Vs, and cross validation is adopted to assess the
accuracy of the estimated result. Cross validation in this case refers to removing one observed
qc profile to estimate and calculating the mean square error (MSE) between this observed profile
and the estimated profile. By comparing the cross validation result of ICCK (MSE = 4.17) with
that of ordinary kriging (OK) (MSE = 5.82), which only uses qc itself to estimate the 2D field,
the improvement of combining the geophysical data is demonstrated. The comparison can be
viewed in Fig. 2.6. More details of ICCK can be found in Section 3.2.

Xu et al. (2022) proposed a multi-source BCS (MS-BCS) method to combine the geotech-
nical data with Vs obtained from MASW to characterize the site in a 2D field. The method does
not require an empirical equation between these two types of data nor the prior information
on the geotechnical data. In the original 2D BCS method, which does not consider geophysi-
cal data, the determination of mean vector and covariance matrix for the weights and selection
of nontrivial basis functions can be achieved by estimating a hyperparameter αt based on the
Bayesian framework (weights and basis functions are two significant components in BCS).
However, if the site-specific measurements are too sparse, it is hard to achieve this process. So
geophysical data are incorporated in this study and specifically contribute to two aspects: 1)
offering the nontrivial basis functions (the final nontrivial functions are the union of nontrivial
functions from geotechnical data and geophysical data); 2) helping to estimate the hyperpa-
rameter αt . The effect of combining geophysical and geotechnical data is demonstrated by
comparing the simulation result from MS-BCS and BCS in one numerical example. This exam-
ple provides a synthetic Su and Vs 2D domain. Sparse Su data points are selected from the 2D
domain as measurements. The comparison is shown in Fig. 2.7. It can be seen that MS-BCS,
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Fig. 2.6. Cross validation result comparison between the ICCK and OK model (Xie et al.,
2022).

which combines geophysical data, performs better to reproduce the original Su 2D domain.

Fig. 2.7. Comparison between the original and interpreted Su from MS-BCS and BCS (Xu et
al., 2022).



3. Methodology

This chapter starts with elucidating MUSIC-X (Ching & Phoon, 2020), the multivariate PTM
adopted in this study to preliminarily characterize Su (i.e., simulating 1D Su profiles). The
theoretical basis of this model is introduced, followed by practical procedures to construct it and
finally, modifications on the model to make it fit with this study are shown. Subsequently, the
intrinsic collocated cokriging (ICCK) model (Babak & Deutsch, 2009b) is presented, by which
the simulated Su profiles (primary data) and auxiliary 2D measurements of Vint (secondary
data) are combined linearly with different kriging weights to estimate a 2D cross section of Su.
The weights are determined by the spatial (cross) correlation of these two parameters, which is
specifically elaborated.

3.1. MUSIC-X

3.1.1. Theoretical basis

Most PTMs, including MUSIC-X, are based on a Bayesian framework. The Bayesian theorem
describes a generalized concept to update probabilities of prior events when given new evidence.
When applying a Bayesian framework to the soil parameter characterization in geotechnical
engineering, it is a powerful tool to improve the prior probability distribution of the character-
ization parameters for a soil parameter, based on the new measurements from the geotechnical
investigation at this specific site, to the posterior probability distribution of the characterization
parameters, which can more accurately characterize the soil parameter at this site. To better
understand, the mathematical formula is explicitly expressed as:

P(C | Data) =
P(Data |C)P(C)

P(Data)
(3.1)

P(C | Data) is the posterior/conditional probability distribution function (PDF) of the charac-
terization parameters (including the mean µ and standard deviation σ ) of a soil parameter (X)
given the observed data. The characterization parameters can be used to characterize the dis-
tribution of X (i.e., to calculate P(X |C,Data), or simply denoted as P(X |C)). P(Data |C) is
the likelihood function to reflect how the characterization parameters fit with the observed data.
P(C) is the prior PDF of the characterization parameters. P(Data) is the prior PDF of produc-
ing the observed data. The likelihood function can be determined once the distribution type of
Data are determined (e.g., normal distribution). P(Data) is hard to calculate on its own. Instead
it is regarded as a normalizing constant which makes the total probability (i.e., the integral of
the area under P(C | Data)) equal to one. The prior distribution information is from engineers’
judgement, available site characterization materials from nearby projects, and generic geotech-
nical databases which contain the information about a soil parameter from site investigations

18
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all over the world. Usually, the derived posterior distribution P(X | C) is too complicated to
be analytically solved especially when it upgrades to multivariate. Therefore, some statistical
methods such as Markov chain Monte Carlo (MCMC) are applied to sampling from the poste-
rior PDF. These samples are distributed following the PDF and can be applied to reflecting the
uncertainty and probabilistic characterization.

The MUSIC-X model follows the basic Bayesian theorem but utilizes it in a novel way.
Firstly it is a multivariate model. As mentioned earlier, an ideal PTM can make multivariate in-
puts and outputs, which is basically achieved in this model. So in this case, X initially becomes
x = (X1, X2, . . . , Xn, n is the number of different geotechnical parameters used in the model),
Data contains observed data for n geotechnical parameters, and the characterization parameters
become the mean vector (µs) and covariance matrix (Cs). The subscript s means the charac-
terization parameters are derived in a site-specific way. Moreover, due to the fact that the size
of a typical database in geotechnical engineering is small, a multivariate PDF (i.e., P(x | C))
cannot be constructed based on such limited information unless it is a multivariate normal PDF.
Therefore the core assumption of the MUSIC-X model is that P(x |C) is multivariate normal.

Secondly, the vertical spatial correlation is integrated in the model. x further becomes X =
(x1, x2, . . . , xm, m is the number of depths involved in the model) and Data changes accordingly.
X and Data now can be imaged as an excel sheet with n columns (multivariate geotechnical pa-
rameters) and m rows (depths). The Data sheet definitely involves NaN cells which means
that a certain parameter is not observed at this depth because the geotechnical measurements
are always sparse and incomplete. The way to deal with this incompleteness can be found in
Section 3.1.2. Moreover, as for how to integrate the spatial correlation, the characterization
parameter Cs becomes Cs⊗R, where R is the autocorrelation matrix which can inform the spa-
tial correlation; ⊗ is the Kronecker product. R can be calculated by autocorrelation functions
(ACFs) and Whittle-Matern ACF is specifically adopted in this case. Based on such an integra-
tion, 1D profiles of a target soil parameter can be directly simulated by taking the corresponding
column in the X samples drawn from P(X | C) and this simulation utilizes not only the cross
correlation (from Cs), but also the spatial correlation (from R), contributing to a high accuracy
simulation. From X to x to X, the development of the MUSIC-X model can be learned.

Thirdly, it takes the non-informative priors (i.e., P(C) is non-informative). The non-infor-
mative setting in the Bayesian model always requires a lager computational power but it avoids
prior preference and bias and it is more friendly to non-professionals. Typically people can
adopt uniform distributions with a specific range to make the prior distribution non-informative
(flat). However, the uniform prior distribution is not conjugate to the multivariate normal model,
leading to inefficiency in the later exact sampling. The conjugacy means the prior distribution
and posterior distribution (i.e., P(C) and P(C | Data)) should have a same type. Consider-
ing this problem, the MUSIC-X model takes conjugate prior distributions of µs and Cs to the
multivariate normal model and tune their parameters to make them non-informative. How to
find the conjugate prior distributions, how to demonstrate the conjugacy and how to tune to be
non-informative are illustrated by Ching and Phoon (2019a).

Finally, the Gibbs sampler (GS), which is a special instance of MCMC is used to sample
from the PDFs. GS can decompose random parameters into groups and sequentially draw
samples for each group from its full conditional PDF (i.e., posterior distribution). Such a PDF
is conditioned on the remaining groups. Taking the characterization parameters (µs and Cs) for
example, these two parameters are not sampled from P(C | Data) integrally. Instead, it draws a
µs sample from P(µs | Data,Cs) first. Then it draws a Cs sample from P(Cs | Data,µs). The µs
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in P(Cs | Data,µs) is the µs sample drawn in the first step. The conditional PDF of µs will be
updated in the same manner. This process will continue for several times and the samples are
asymptotically distributed as the desired distribution. Compared to MCMC simulation, GS has
a higher efficiency. The detailed GS scheme can be seen in Section 3.1.2.

3.1.2. Practical construction

According to the theory mentioned above, Fig. 3.1 presents the procedures to construct the
MUSIC-X model in practice. Each step will be elaborated afterwards and the step with * is
associated with an additional flow chart.

Load site-specific data

Utilize Johnson
distribution

transformation* 

Gibbs sampler inference*

Simulated results

Multivariate normal PDF

Convert site-specific data
to standard normal

variables

Fig. 3.1. Flow chart of constructing the MUSIC-X model.
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Johnson distribution members SU SB SL

Johnson distribution parameters γ, η, ε, λ γ, η, ε

A generic database

γ, η, ε, λ

Soil parameter Y to
standard normal variable X

Fig. 3.2. Flow chart of JD transformation.

First of all, the essence of the MUSIC-X model is a multivariate normal PDF. In order
to construct the PDF, Data (i.e., site-specific X1, X2, . . . , Xn) should be multivariate normal
and the marginal distribution of a single parameter (e.g., the distribution of X1) must follow a
standard normal distribution. However, a soil parameter is typically non-normal, which requires
to be converted into a standard normal random variable at first. The Johnson distribution (JD)
is adopted. JD is a family of probability distribution that can be used to transform a non-
normal variable into a standard normal variable. So the first step in the MUSIC-X model is to
utilize JD transformation to convert non-normal soil parameters into marginally standard normal
variables. How to implement JD transformation is shown in Fig. 3.2. Firstly, a generic database
is needed to find which member a certain soil parameter belongs to. There are three members
(or types) in JD, respectively SU (unbounded system), SB (bounded system) and SL (lognormal
system). Basically some percentiles of the values of this parameter are calculated based on the
generic database and can be used to estimate which member it should be categorized to. After
determining the type of this soil parameter, the JD parameters (for SU and SB, γ , η , ε and
λ ; for SL, only the former three), can be determined also based on the generic database. For
different JD members, the mathematical formulas to calculate JD parameters are different. The
way to find which JD member a soil parameter belongs to and the formulas to calculate JD
parameters for different JD members are explicitly shown in Ching and Phoon (2014a). Once
the JD parameters are determined, the mathematical function of JD can be applied to convert an
non-normal soil parameter Yi to a standard normal variable Xi. These transformation functions
are all in closed form so they are easy to use. In the MUSIC-X model, CLAY/10/7490 database
is used to derive the JD transformation for 11 geotechnical parameters1 (i.e., the MUSIC-X

1In Ching and Phoon (2020), the MUSIC-X model involves 10 geotechnical parameters. It is updated by Prof.
Ching <jyching@gmail.com> and Prof. Phoon <kkphoon@sutd.edu.sg>.
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model is 11 dimensional):
Y1 = ln(LL)
Y2 = ln(PI)
Y3 = LI

Y4 = ln
(
σ
′
v/Pa

)
Y5 = ln

(
σ
′
p/Pa

)
Y6 = ln

(
Su/σ

′
v
)

Y7 = Bq

Y8 = ln
[
(qt −σv)/σ

′
v
]
= ln(qt1)

Y9 = ln(Cc)

Y10 = ln(Cs)

Y11 = ln
(
N60/(σ

′
v/Pa)

)

(3.2)

where LL = liquid limit; PI = plasticity index; LI = liquidity index; σ ′
v = vertical effective stress;

σ ′
p = preconsolidation stress; Su = mobilized undrained shear strength; Bq = pore pressure ratio;

qt = (corrected) cone tip resistance; Cc = compression index; Cs = swelling index; N60 = SPT N
values; Pa = atmospheric pressure. Note except LI and Bq, which can be potentially negative,
the rest of them are logarithm transformed. Their corresponding JD transformation functions
are expressed as:

X1 +2.647
3.684

= sinh−1
(

Y1 −3.002
1.259

)
X2 −0.117

2.128
= sinh−1

(
Y2 −3.399

1.245

)
X3 +0.817

1.539
= sinh−1

(
Y3 −0.293

0.819

)
X4 −0.396

2.530
= sinh−1

(
Y4 −0.380

2.294

)
X5 +1.054

3.197
= sinh−1

(
Y5 +0.531

3.011

)
X6 +0.833

1.732
= sinh−1

(
Y6 +1.730

1.046

)
X7 −62.681

4.381
= ln

(
Y7 +0.791

2063399.889−Y7

)
X8 +1.143

1.591
= sinh−1

(
Y8 −1.215

0.729

)
X9 −0.082

4.041
= sinh−1

(
Y9 +0.756

3.720

)
X10 −0.170

2.107
= sinh−1

(
Y10 +2.710

1.525

)
X11 +0.270

1.776
= ln

(
Y11 +2.311
6.082−Y11

)

(3.3)

where sinh−1(x) = ln
[
x+
(
1+ x2)0.5

]
is the inverse hyperbolic sine function.

Returning to Fig. 3.1, after figuring out how to transform soil parameters Yi to standard
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normal variables Xi, site-specific data are loaded and transformed based on JD functions. Sub-
sequently µs and Cs should be derived from the transformed data to construct the multivariate
normal PDF. Due to the sparsity of the site-specific data, direct inference of µs and Cs contains
significant amount of statistical uncertainty. So the Bayesian inference based on GS is adopted
to derive µs and Cs. In this case, the random parameters are (µs, Cs, a), which will be de-
composed and sampled sequentially by GS. The former two are the characterization parameters
while a is a hyperparameter to make the conjugate prior distribution of Cs non-informative. It
will also be continuously updated in the sampling process as Cs keeps updating. Since it is
associated with Cs, it can be regarded a characterization parameter as well. After completing
the sampling process once, the multivariate normal PDF for X can be sampled subsequently.
So it attaches to the last step of GS inference and actually the random parameters are (µs, Cs,
a, X). Moreover, X actually consists of Xu (unobserved data) and Xo (observed data, i.e., Data
in Section 3.1.1). Xu is extracted out of X because Xo is not required to simulate. Finally the
random parameters in the GS inference are (µs, Cs, a, Xu). The exemplary table shown in Table
2.1 can give an intuitional impression of X, Xo and Xu. The whole table refers to X. Xu is NaN
cells while Xo is cells with values. As for the way to derive the conditional PDFs for µs, Cs
and a, they have the same distribution formats as their prior distribution formats due to the con-
jugacy. For example, the conjugate prior distribution for µs (i.e., P(µs)) is multivariate normal
thus its conditional distribution P(µs | Cs,a,X) is also multivariate normal. For the conditional
PDF of Xu, it is multivariate normal as mentioned so it can be also derived. Moreover, it is
worth noting that the auto-correlation matrix R (shown in Eq. (3.4)) is also integrated in the
conditional PDFs to reflect the vertical spatial correlation.

R =


1 ρ12 ρ13 · · · ρ1m

1 ρ23 · · · ρ2m
1

. . . ...
SY M. 1

 (3.4)

where ρi j (i, j = 1, 2, ..., m, m is the number of depths involved in the model) is the spatial
correlation coefficient between data at the ith and jth depth separated by a lag distance hij. The
spatial correlation can be determined by a prescribed auto-correlation model Whittle–Matérn
(W-M), expressed as:

ρ(h) =
2

Γ(ν)
·
(√

π ·Γ(ν +0.5) · |h|
Γ(ν) ·δ

)ν

×Kν

(
2
√

π ·Γ(ν +0.5) · |h|
Γ(ν) ·δ

)
(3.5)

where ν is the smoothness parameter, Γ(·) is the gamma function, Kν (·) is the modified Bessel
function of the second kind with order ν , δ is the vertical scale of fluctuation. The parameters
in Eq. (3.5) can be identified by the site-specific CPT data and the identified autocorrelation
structure is assumed to be the same for all soil parameters in the MUSIC-X model. Actually R
is only integrated to Cs (Cs⊗R), but since Cs is the condition for all the rest random parameters,
it is involved in the derivation of conditional PDFs for all random parameters. The specific
derivation of these conditional PDFs can be found in the appendix of Ching and Phoon (2020)
and the specific conditional PDFs can be seen in Appendix A in this thesis. Finally the scheme
to run GS is shown in Fig. 3.3. The first step in GS inference is to initialize these random
variables at arbitrary values. After initialization, there are no NaN values in X. This is how the
MUSIC-X model solves the incompleteness problem. For example µs vector is set to be a zero
vector. Then samples of (µs, Cs, a, Xu) are drawn from their corresponding conditional PDFs
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Initialize (μs, Cs, a, Xu) at arbitrary values 

Draw μs sample from P(μs|Cs, a, X)

Draw Cs sample from P(Cs|μs, a, X)

Draw a sample from P(a|μs, Cs, X)

Draw Xu sample from P(Xu|μs, Cs, Xo, a)

Cycle T times

T (μs, Cs, a, Xu) samples

Fig. 3.3. Flow chart of GS inference.
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sequentially. The sampling process cycles for T times and finally T (µs, Cs, a, Xu) samples
are obtained. Just notice these T samples cannot be applied to probabilistic analysis directly
because at the initial period of the modelling, sampling is not stable. The period is called burn-
in period (tburn-in) and it should be removed from the samples. This is to say, finally (T – tburn-in)
samples are used.

3.1.3. Modification

The MUSIC-X model is modified in some aspects to be more applicable to this study. Firstly,
since it is proposed to integrate Vint into the MUSIC-X model to test whether the model can be
improved, X is extended from 11 dimensional to 12 dimensional. Basically the GS inference
part does not have to be modified but the JD transformation for Vint has to be derived. The
process to construct the JD transformation functions for Vint is the same as Fig. 3.2, only
that one extra generic database for Vint should be added. In this study, Vint is exhaustively
sampled and are abundant to make such a database, which will be shown later in Section 4.1.1.
Therefore this modification can be achieved. The second modification is to change the ACF.
The ACF originally used is W-M model, which is shown in Eq. (3.5). Two parameters should
be derived to construct the model, namely SOF (δ ) and smoothness (ν). SOF is key to infer
the soil properties considering the spatial variability (Xie et al., 2022). It describes the distance
over which the parameters of a soil or rock are similar or correlated (Cami et al., 2020). It is
the main parameter to reflect the spatial correlation in this study. The smoothness controls the
type of ACF. For example, when ν = 0.5, the ACF is the single exponential function. Ching
and Phoon (2017) combined the W-M model with sparse Bayesian learning, which makes it
possible to find the best structure of the ACF for the site-specific data. It is more accurate than
what people usually do: predefining an ACF. However, in this study, this point is not the main
concern, so the issue is simplified to compare a few simpler candidate ACFs and use the best-
fitted one for the site-specific data. Specifically, the ACFs under consideration are: the single
exponential (SExp), second order Markov (SMK) and squared exponential (QExp) ACF, which
express the spatial correlation between two data points separated by a lag distance h as (Ching
& Phoon, 2019b):

ρ(h) = exp(−2×|h|/δ ) SExp (3.6)

ρ(h) = (1+4|h|/δ )× exp(−4|h|/δ ) SMK (3.7)

ρ(h) = exp
(
−π ×h2/δ

2) QExp (3.8)

The W-M model can be converted to these three ACFs by respectively by setting ν in Eq.
(3.5) equal to 0.5, 1.5 and infinity. It can be seen that among these ACFs, only the SOF is
needed, which can be estimated by curve fitting between theoretical ACFs and the experimental
estimator for ACFs. Specifically, the experimental estimator can be calculated by:

ρ(h) =
1

n(h)

n(h)

∑
i

U (zi)U (zi +h) (3.9)

where U is standard normal data to estimate the spatial correlation (e.g., detrended and normal-
ized qt from CPTs); U(zi) and U(zi + h) refer to the data pairs with a lag distance h; n(h) is
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the total number of data pairs at a certain lag distance. The theoretical ACFs are fitted with the
experimental curve and the best-fitted SOF is chosen as the “true” SOF. Meanwhile, the ACF
best fits with the experimental curve is chosen to use.

3.2. ICCK

Given that ICCK is an advancement in fundamental kriging methods, directly delving into it
may pose challenges in understanding. Thus this section starts from some basic kriging methods
and traces their progression towards ICCK, followed by details on ICCK.

3.2.1. Development of kriging

Kriging is a spatial interpolation method that can give a prediction of unknown values of a
parameter at unobserved locations based on the weighted linear combinations of the observed
values of such a parameter (van Beers & Kleijnen, 2003), which is widely accepted in geo-
statistics. Initially, simple kriging (SK) and ordinary kriging (OK) are developed and their
corresponding formulas can be view in Eq. (3.10) and Eq. (3.11):

[Z ∗ (u0)−m] =
n

∑
α=1

λZ,α [Z (uα)−m] (3.10)

Z ∗ (u0) =
n

∑
α=1

λZ,αZ (uα) (3.11)

where Z ∗ (u0) is the estimation of the parameter of interest Z at a target location u0, Z(uα) is
a known value of the parameter at a location surrounding the target location uα , α = 1, ..., n, n
is the number of observed data surrounding the target location, λZ,α is the kriging weight for
the αth observed data, m is the global mean of the parameter over the considered domain. Both
of them assume a constant global covariance (i.e., the covariance between two data points in
space remains constant). The difference is that SK assumes the global mean is a constant and
known (as m is explicitly shown in Eq. (3.10)) while OK assumes the global mean is unknown.
Therefore, SK assumes a second-order stationarity and OK assumes a quasi-stationarity. Since
satisfying the second-order stationarity is difficult in a realistic domain, OK is more commonly
used. The kriging weights in OK can be calculated by the following equation:

n

∑
α=1

λZ,αCz
(
uα −uβ

)
+λL =Cz

(
uβ −u0

)
β = 1, ...,n (3.12)

or 
CZ,11 · · · CZ,1n 1

... . . . ...
...

CZ,n1 · · · CZ,nn 1
1 · · · 1 0

 ·


λZ,1
...

λZ,n
λL

=


CZ,10

...
CZ,n0

1

 (3.13)

where Cz(uα −uβ ) and Cz(uβ −u0) are the covariances between data at uα , uβ and u0, separated
by the lag distance hαβ and hβ0 (i.e., (uα −uβ ) and (uβ −u0) represent the lag distance), uα and
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uβ are locations surrounding the target location u0, α , β = 1, ..., n, λL is the Lagrange multiplier.
The variance at the estimated location of OK can be calculated by the following equation:

σ
2
OK (u0) = σ

2 −
n

∑
α=1

λZ,αCz (uα −u0) (3.14)

where σ2 is the variance of the data.

Later, considering in a real project, the database usually contains measurement data of other
soil parameters, which may provide additional information to benefit the estimation of the pa-
rameter of interest, the kriging method has been extended to cokriging to deal with multivariate
geological problems. The formula of cokriging is expressed as:

Z ∗ (u0) =
n

∑
α=1

λZ,αZ (uα)+
ny

∑
α=1

λY,αY (uα) (3.15)

where Z is still the parameter of interest (primary parameter) and Y is the auxiliary parameter to
estimate Z (secondary parameter). Basically it is similar to Eq. (3.11), just that one additional
term for secondary parameter Y is added. Cokriging is useful but it could be tedious to run,
which mainly results from the covariance matrix. The covariance matrix shown in Eq. (3.13)
only needs the covariance between the primary data, while cokriging with two parameters needs
three types of covariance: the covariance for the primary and secondary data, as well as the cross
covariance between the primary and secondary data. This leads to burdensome work especially
when inferring the cross covariance. Considering this problem, collocated cokriging has been
developed. Collocated cokriging utilizes the Markov model (Almeida & Journel, 1994), which
will be shown later in Section 3.2.2, to simplify the estimation of covariance. Typically simple
collocated cokriging is used, expressed as:

Z ∗ (u0) =
n

∑
α=1

λZ,αZ (uα)+λY,0Y (u0) (3.16)

where Y (u0) is a known value of the secondary parameter at the target location and λY,0 is
its kriging weight. This model is popular because it is simple (Babak & Deutsch, 2009a),
however, it may lead to a problem called variance inflation. To be specific, under a Markov
model, simple collocated cokriging holds an assumption that weighting the datum collocated
with location being estimated is sufficient (Babak & Deutsch, 2009a). In other words, secondary
data surrounding the target location are deemed to bring no additional information and only the
secondary data collocated in the target location is applied, which can be clearly seen in Eq.
(3.16). This feature results in that the kriging variance may be slightly too high. Moreover, as
each additional simulation point is added along the sequential path (i.e., with more observed
primary data added during modelling), the variance in the estimation increases, which refers to
variance inflation. As a result, it leads to a biased estimation. To solve this problem, intrinsic
collocated cokriging (ICCK) is proposed (Babak & Deutsch, 2009a, 2009b). ICCK uses an
intrinsic model of coregionalization to reduce variance inflation. Instead of only considering
the secondary data at target location for cokriging, ICCK employs full simple cokriging based
on the intrinsic model. This means that secondary data at all primary data locations are used
(i.e., extending the concept of “collocated”), and the intrinsic coregionalization model is used
to calculate local distributions (Babak & Deutsch, 2009a). By doing so, ICCK ensures that
the correlation between primary and secondary data is accurately reproduced, and variance
inflation is eliminate. In this study, ICCK is adopted to estimate the primary parameter Su with
the assistance of the secondary parameter Vint.
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Fig. 3.4. Schematic diagram of ICCK (Samson & Deutsch, 2020).

3.2.2. ICCK

The formula of ICCK (Samson & Deutsch, 2020) is expressed as:

Z ∗ (u0) =
n

∑
α=1

λZ,αZ(uα)+
n

∑
α=1

λY,αY (uα)+λY,0Y (u0) (3.17)

Z ∗(u0) is the estimation of the primary parameter at a target location, which is unknown; Z(uα)
is a known value of the primary parameter at a location surrounding the target location; Y (uα)
is a known value of the secondary parameter at a location surrounding the target location; Y (u0)
is a known value of the secondary parameter at the target location. λZ,α is the kriging weight for
the αth primary data; λY,α is the kriging weight for the αth secondary data, α = 1, . . . , n, n is the
number of observed primary/secondary data surrounding the target location; λY,0 is the kriging
weight for the secondary data at the target location. A schematic diagram is shown in Fig.
3.4 to better understand the formula. The green circle is the ICCK estimation for the primary
parameter, which is based on the open circles (surrounding observed primary data), red squares
(surrounding observed secondary data) and a blue square (secondary data observed at the target
location). It can be seen that these primary data and secondary data are paired to use, which
is called collocated. The arrow refers to the lag distance. Basically, if the kriging weights are
determined, the ICCK estimation can be calculated. As for how to obtain the kriging weights,
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they can be calculated based on the following system of equations:
∑

n
α=1 λz,αρz

(
uα −uβ

)
+∑

n
α=1 λY,αρyz

(
uα −uβ

)
+λY,0ρyz

(
uβ −u0

)
= ρz

(
uβ −u0

)
β = 1, ...,n

∑
n
α=1 λz,αρyz

(
uα −uβ

)
+∑

n
α=1 λY,αρy

(
uα −uβ

)
+λY,0ρy

(
uβ −u0

)
= ρyz

(
uβ −u0

)
β = 1, ...,n

∑
n
α=1 λz,αρyz (uα −u0)+∑

n
α=1 λY,αρy (uα −u0)+λY,0 = ρyz(0)

(3.18)
where ρz(uα −uβ ) and ρz(uβ −u0), α , β = 1, . . . , n, are the spatial correlation between primary
data; ρy(uα −uβ ), ρy(uα −u0), ρy(uβ −u0) are the spatial correlation between secondary data;
ρyz(uα −uβ ), ρyz(uβ −u0) are the spatial cross correlation between primary data and secondary
data; ρyz(0) is the cross correlation coefficient between the primary and secondary parameter
(as lag distance is 0). Among these ρ terms, (uα − uβ ) refers to the lag distance hαβ between
data surrounding the target location, while (uα −u0) and (uβ −u0) refer to the lag distance hα0
and hβ0 between the surrounding data and the data at the target location. The spatial correlation
essentially corresponds to the covariance, merely with an additional normalization step involv-
ing the variance of the data (see Eq. (3.21)). It can be seen that the key to solve this system
is to accurately calculate the spatial (cross) correlation terms, which will be elaborated in the
following sections.

Estimation of spatial correlation

The spatial correlation ρz and ρy can be measured by three commonly used methods: vari-
ograms, covariograms and correlograms (a.k.a., ACFs used in Section 3.1). The former two
do not directly inform the spatial correlation coefficient (e.g., covariograms measure the co-
variance) but they three are interchangeable and basically they contain equivalent information.
In general, variograms measure the dissimilarity while covariograms and correlograms mea-
sure the similarity between the data pair separated by a lag distance in space. In this study,
variograms are applied to estimating the spatial correlation for the ICCK model. A variogram
can be converted into a correlogram, which directly informs the spatial correlation needed in
Eq. (3.18), through the process shown below. Firstly, taking primary data Z for example, the
relationship between the variogram and covariogram is shown in Eq. (3.19):

γz(h) =Cz(0)−Cz(h) (3.19)

where γz(h) is the variogram, Cz(h) is the covariogram, Cz(0) is equal to the variance. All
the primary data and secondary data should be detrended and normalized to standard normal
variables (mean = 0, standard deviation = 1) before ICCK interpolation so Eq. (3.19) can be
written as:

Cz(h) = 1− γz(h) (3.20)

On the other hand, the relationship between the covariogram and correlogram is shown in Eq.
(3.21).

ρz(h) =
Cz(h)
var(z)

(3.21)

Also due to the standardization of data, Eq. (3.21) is can be expressed as:

ρz(h) =Cz(h) (3.22)
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So based on Eq. (3.20) and Eq. (3.22), the relationship between the variogram and correlogram
is expressed as:

ρz(h) = 1− γz(h) (3.23)

It can be used to convert a variogram to a correlogram to estimate the spatial correlation.

The way to use variograms is similar to correlograms that three commonly used variograms
are adopted to find the best-fitted one for the site-specific data. Note the theoretical functions are
different for the variograms. Specifically in this study, the spherical, exponential and Gaussian
variogram are adopted, which are expressed as:

γ (h) =

{
b+C0 ·

(
1.5 · h

a −0.5 · h3

a

)
, if 0 ≤ h ≤ SOF

b+C0 , if h > SOF
spherical (3.24)

γ (h) = b+C0 ·
(

1− e−
h
a

)
exponential (3.25)

γ (h) = b+C0 ·
(

1− e−
h2

a2

)
Gaussian (3.26)

where b is the nugget, C0 is the sill and a is the range parameter. It should be noted that a is
related to SOF but not necessarily equal to SOF. For the spherical variogram, SOF = a, for the
exponential variogram, SOF = 3a and for the Gaussian variogram, SOF =

√
3a. The explanation

will be given in Section 3.2.2. The variogram parameters (i.e., b, C0 and a) can be similarly
estimated by curving fitting between theoretical and experimental variograms and SOF can be
estimated based on a. The experimental estimator for the variograms2 is expressed as:

γ(h) =
1

2×n(h)

n(h)

∑
i=1

(U (zi)−U (zi +h))2 (3.27)

where these notations have the same meaning as they have in Eq. (3.9).

Estimation of spatial cross correlation

As for how to calculate the spatial cross correlation ρyz, similar to the spatial correlation, the-
oretically people can also use the experimental variogram to fit with the theoretical variogram
model to measure the spatial cross correlation. However, there is an additional condition that
any linear combination of the variables is itself a regionalized variable, and its variance must
be positive or zero (Xie et al., 2022). Simply speaking, in a regionalized setting, primary data
and secondary data are combined linearly with different weights to get the estimation (i.e., Eq.
(3.17)). Those estimated variables inherit the original properties from their corresponding re-
gions and their variance must be non-negative. Usually a linear model of coregionalization
(LMC) is adopted to ensure the resulting kriging matrix, which contains the spatial correlation
terms on the left side of the system of equations, is positive definite and thus to fulfill the con-
dition. However, in practice, fitting the variograms required for an LMC is tedious, especially
given the fact that primary data are under sampled and secondary data are exhaustively sam-
pled. Considering this problem, Markov model I is adopted to simplify the estimation of cross

2Actually it is for semivariograms, indicated by 1/2. But the term variogram is more commonly used.
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correlation (Almeida & Journel, 1994). The Markov model I expresses the cross correlogram
as:

ρyz(h) = ρyz(0)ρz(h) (3.28)

where ρyz(0) is the Pearson correlation coefficient between the primary parameter and the sec-
ondary parameter. Furthermore, in this model, it assumes that the correlogram of the secondary
parameter is equal to that of the primary parameter, shown as:

ρy(h) = ρz(h) (3.29)

Fenton and Griffiths (2003) and Fenton et al. (2005) agreed to use the identical soil auto-
correlation structure for different soil parameters by arguing that the spatial correlation of a
soil is governed largely by the spatial variability in, for example, its source materials, weather-
ing patterns, stress, and formation history, so that one would expect that all the soil properties
would vary similarly within an interval. So this assumption is reasonable. With the help of
Markov model I, the spatial (cross) correlation is much easier to estimate and thus the system
of equations can be easily constructed to solve for the kriging weights.

Anisotropy modelling

In a realistic geotechnical setting, the spatial correlation is different in the horizontal and ver-
tical direction. In this study, geometric anisotropy is adopted to model the anisotropy in the
spatial correlation, following the method in Xie et al. (2022). An example is given here to
elaborate how to implement geometric anisotropy specifically. Firstly assuming the exponential
variogram is adopted, which is already shown in Eq. (3.25). b, C0 and a can be regarded as
constants. It should be noted that a is the range parameter, which is NOT SOF. SOF means a
distance beyond which there is almost no correlation. In other words, out of this distance the
variance (reflected by the variogram) reaches the plateau. It can be found that in Eq. (3.25),
when h = 3a, the equation inside the bracket becomes 1− e−3 = 0.95 ≈ 1, which means when
h > 3a, the variogram will reach a plateau. So SOF is equal to 3a instead of a. For the spherical
and Gaussian variogram, the relationship between a and SOF is derived in the same manner. By
substituting SOF = 3a back to the original equation, it can be written as:

γ(h) = b+C0

[
1− exp(−3

h
SOF

)

]
(3.30)

The dimensionless term h
SOF is denoted as h′, which is the distance scalar in one dimension:

h′ =
h

SOF
(1D) (3.31)

So finally Eq. (3.30) can be written as:

γ(h) = b+C0
[
1− exp(−3h′)

]
(3.32)

Now considering the anisotropy in two dimension, the lag distance h = [∆x,∆z] is actually
a vector. It is proposed to standardize the anisotropic distance h to the dimensionless scalar
distance h′ by SOFs in the horizontal and vertical direction, which is expressed as:

h′ =

√(
∆x

SOFh

)2

+

(
∆z

SOFv

)2

(2D) (3.33)
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This distance scalar contains the anisotropy and by substituting this h′ back to Eq. (3.32), the
calculated variogram is also anisotropic. This is the geometric anisotropy method. In this study,
the vertical SOF of Su is estimated from CPT data while the horizontal SOF of Su is proposed to
estimate from Vint data under the assumption that correlated soil parameters share similarities
in the spatial correlation.



4. Case study

The scheme proposed in this study will be demonstrated by a case study in this chapter. It
starts with the introduction of the database to use, including basic information, specific data
and how to process the data. Then the processed data are further applied to estimating impor-
tant information required for the MUSIC-X and ICCK model, including the cross correlation
between Su and Vint and spatial correlation. Finally the implementation of the MUSIC-X and
ICCK model are elucidated by summarizing the input data and presenting the validation and
comparison strategy regarding the simulation results.

4.1. Basic information of the database

The database proposed in this study is from the site investigation (including geotechnical and
geophysical surveys) of Hollandse Kust (west) Wind Farm Zone. This wind farm zone is
located approximately 51 km off the west coast of Netherlands, covering an area of around
175 km2. Netherlands enterprise agency (RVO) offers free access to the site investigation
data, which can be found at https://offshorewind.rvo.nl/cms/view/f4f39d87-68f8-4925-97c4-
c49f6a07a001/soll-hollandse-kust-west. The site investigation area highlighted by the red line
can be viewed in the Fig. 4.1.

In this area, in total there are 118 CPT locations and 46 BH locations, from where geotech-
nical parameters can be measured. Meanwhile, there are several ultra-high resolution multi-
channel seismic (UHR-MCS) reflection survey lines covering this area, from where the geo-
physical parameters can be measured. For geotechnical data, this site investigation enjoys an
advantage that there is always a CPT conducted adjacent to a BH. In order words, CPT-BH
clusters are always available, which exactly meets the needs of the MUSIC-X model to com-
bine multisource geotechnical data. For ICCK modelling, the horizontal range of the estimated
2D domain should not be too large in order to avoid extremely large estimation uncertainties.
Therefore, the CPT-BH clusters, which are used to simulate 1D Su profiles in MUSIC-X mod-
elling, should be relatively close to each other (i.e., the simulated profiles should be close to
each other) because the simulated Su profiles are the input of the ICCK model. Considering this
point, after looking over the layout of the geotechnical investigations, four clusters at position
97 (#97), position 98 (#98), position 104 (#104) and position 107 (#107) are considered. The
relative positions of these clusters can be viewed in Fig. 4.2. Furthermore, since there are fewer
lab tests conducted in the samples from BH 107, preliminarily geotechnical data at #97, #98
and #104 are proposed to use. As for geophysical data, the layout of the survey lines in the
three-cluster area is shown in Fig. 4.3. Survey line 2X596, 2X595, 2X594 are just through
#97, #98 and #104 respectively, which can provide geophysical data at these three positions. So
finally the geotechnical and geophysical data at #97, #98 and #104 are all available and will be
used in this study.
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Fig. 4.1. Satellite map of Dutch coast wind farm zone. The investigation area of the Hollandse
Kust (west) Wind Farm Zone is highlighted by the red line.
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Fig. 4.2. Relative positions of considered CPT-BH clusters. Note at each BH position, there is
a CPT conducted, which is not shown explicitly.

Fig. 4.3. UHR-MCS reflection survey gird in the considered area.
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Fig. 4.4. Schematic diagram of UHR-MCS survey (“Schematic diagram of UHR-MCS.”, n.d.).

In the following data processing part, geophysical data will be processed prior to geotechni-
cal data because geophysical data usually have a lower resolution. In this study, since integration
of these two data sources is met in both MUSIC-X and ICCK part, upscaling of geotechnical
data is needed. Therefore geophysical data are initially processed to inform to which extent
geotechnical data should be upscaled.

4.1.1. Geophysical data

In this study, the geophysical parameter to use is Vint and it is needed in both MUSIC-X mod-
elling and ICCK modelling. It should be noted that Vint is not directly measured by UHR-MCS
reflection survey lines but interpreted from raw seismic data measured by UHR-MCS reflection
survey lines. A schematic diagram is shown in Fig. 4.4 to enlighten how seismic data are mea-
sured. As can be seen, a vessel with sound sources and a floating multichannel streamer travels
along a prescribed track. During the travel, seismic waves are generated from the sources,
passing through soil or rock layers, which are the reflectors, and finally bouncing back to the
receivers (geophones) in the streamer. During this process, seismic data along the survey line
are collected.

Afterwards, seismic attributes such as Vint considered in this study are interpreted based
on these directly measured raw data including the amplitude and seismic reflection data. A
flowchart shown in Fig. 4.5 illustrates this process. Firstly by analyzing the amplitude of
seismic reflections, people can identify the presence and positions of horizons and by analyzing
seismic reflection data, the root mean square velocity (Vrms) can be interpreted based on the
common depth point (CDP) method. Vrms refers to a speed at which seismic waves travel
though subsurface layers of different Vint along a specific ray path. It can be understood as
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UHR-MCS measurements
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section
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Fig. 4.5. Flow chart of processing UHR-MCS measurements to derive Vint.
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the weighted average of Vint (the weight is the depth). The CDP method is used to stack data
to enhance the signal-to-noise ratio of the seismic data and improve the accuracy. Specifically
some sets of seismic reflection data, which are from different source-receiver pairs, are sorted
into a common depth point (or a gather). The data in the gather is then stacked to find the
stacking velocity. The stacking velocities are directly equal to the RMS velocities if soil/rock
layers are horizontal or gently dipping, while some correction methods are needed to derive
RMS velocities from the stacking velocities if there is a large variation laterally because under
the circumstances they may differ substantially. After Vrms is interpreted, its profiles are picked
at specified analysis locations along the survey line and intersected with the time horizon to
derive a horizon-consistent Vrms cross section. Subsequently the Dix equation is employed to
convert the Vrms cross section to Vint cross section. To be specific, based on the seismic wave
travel time to the first layer (t1) and to the second layer (t2), as well as Vrms to the first layer
(Vrms1) and to the second layer (Vrms2), Vint within the layer can be calculated. Such a cross
section is based on time series. In other words the y axis of this cross section is the reflection
time instead of depth. Therefore, the final step is to conduct a time-to-depth conversion to
obtain the Vint cross section. The depth is easy to calculate by multiplying Vint and a half of the
reflection time (two way travel). This is the general process to interpret Vint. It will be further
processed to satisfy the MUSIC-X and ICCK model. It should be noted that during this process,
inversion uncertainties exist, which is still a challenging problem. This source of uncertainty is
not considered in this study.

MUSIC-X

In the MUSIC-X part, Vint 1D profiles adjacent to #97, #98 and #104 are needed to integrate
with geotechnical data profiles. Taking #97 for example, the Vint cross section along line 2X596,
which exactly goes through #97 can be viewed in Fig. 4.6. The x axis is the x coordinates (in
easting-northing coordinate system) of CDPs along the survey line and the y axis is the depth.
Different colors stand for different values of Vint with a unit of m/s. Based on x-coordinates,
the Vint 1D profile at #97 is extracted and shown in Fig. 4.7 and some processing is done on it
subsequently. Firstly this profile will be truncated to a segment covering the depth in consistent
with the depth of geotechnical profiles used at #97. It should be noted that the upper part of the
profile has a constant value around 1500m/s, indicating that is the water layer. When picking up
a depth segment to analyze, this layer should be removed. Secondly, since the geotechnical data
in MUSIC-X model are all dimensionless, for consistency, Vint is nondimensionalized as well.
It is divided by 1500 m/s, the Vint of water. Furthermore, the resolution of this Vint profile (i.e.,
vertical resolution) is interpolated to 0.1m. The original resolution is 0.111m, which makes
it hard to integrate with geotechnical data. Thus, a Python script is written to derive the 1D
interpolation function from the original depths and Vint by interp1d. Then this function is
applied to the new depths with a resolution of 0.1m and obtain the Vint corresponding to the
new depths. The interpolation does not impact much because Vint varies slightly when the
depth interval is not very large. For example at depth z = 44.4m, Vint = 1685.95m/s, at z =
44.511m, Vint = 1686.32m/s. Vint interpolated at z = 44.5m is 1686.283m/s. Even though there
is difference between the interpolated and “true” value at z = 44.5m, the difference is pretty
small.

In addition, as mentioned earlier, a generic database of Vint is needed to derive its Johnson
distribution parameters in the MUSIC-X model. Just Fig. 4.6 contains more than 30 million
data points, which are definitely enough to derive the Johnson distribution. Of course not that



CHAPTER 4. CASE STUDY 39

Fig. 4.6. Vint cross section along UHR-MCS survey line 2X596. The original latitude/longitude
in the UTM Zone 31N (EPSG 25831) projection is transformed into the y/x coordinate in the
easting-northing coordinate system.

Fig. 4.7. Vint profile at #97.
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Fig. 4.8. Distances between original #97/#104 and their projected positions in survey line
2X596.

many data points are used, only thousands of Vint points from cross sections along survey line
2X596, 2X595, 2X594 are chosen to construct the database.

ICCK

In the ICCK part, a cross section of Vint is needed to estimate the cross section of Su. Based on
the layout shown in Fig. 4.3, it can be seen that there is no Vint cross section exactly through
these three positions (actually they three are not in a line), so it is proposed to align #97 and
#104 to survey line 2X595 and use a segment of 2X595 which covers aligned #97, #98 and
aligned #104. As for how to realize the alignment, usually direct projection is used. However in
this case, the distance between the original position and projected position is very large, around
400 meters, which can be seen in Fig. 4.8. So it is not very accurate to directly make such a
projection. Instead, since the Vint profiles are known at #97 and #104, these two profiles are
compared with the Vint profiles near their corresponding projected positions and the position
with the most similar Vint profile to the original profile is chosen as the alignment location. As
for how to compare to find the most similar Vint profile, all interval velocities are normalized
first by min-max normalization:

V ′
int =

Vint −min(Vint)

max(Vint)−min(Vint)
(4.1)

Then the mean square error (MSE) between the original Vint profile and Vint profiles at possible
alignment positions are calculated. The position with the minimal MSE has a Vint profile which
is the most similar to the Vint profile at the original position and this position is the aligned
position.

Furthermore, considering in the original coordinate system (easting-northing, shown in Fig.
4.9), it is hard to find the projected location and calculate the distance, the coordinate system is
rotated clockwise (i.e., X′-Y′ in Fig. 4.9) to make these survey lines exactly along the x axis.
The coordinates are transformed by the following equation:[

x′

y′

]
=

[
cos(α) −sin(α)
sin(α) cos(α)

][
x
y

]
(4.2)
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Fig. 4.9. Coordinate system transformation: X-Y is original; X′′-Y′′ is eventually used.

where x and y are the original coordinates while x′ and y′ are the transformed coordinates. α is
the rotation angle, which is 11 degrees in this case. Then this rotated coordinate system moves
to the left side of the line 2X595 (i.e., X′′-Y′′ in Fig. 4.9), so in the position alignment process,
only x′′-coordinates are focused because all y′′-coordinates are zero along this line.

After rotating the coordinate system, #97 is taken as an example to elaborate how to find
the aligned position. The directly projected position is at x′′ = 5m. Then the most similar Vint
profile is searched within 5m on the both side (i.e., x′′ ∈ (0,10)). The resolution of the Vint in
the horizontal direction is 1m so there are ten possible aligned locations and their corresponding
MSEs can be viewed in Fig. 4.10. It can be found that the projected location does not have a
minimum MSE instead at x′′ = 1m, the MSE is the minimum. That is the aligned location for
#97. Similarly for #104, the aligned location is at x′′ = 775m, shown in Fig, 4.11. For #98, it
does not need to be moved and it is at x′′ = 1969m.

So based on the above processing, the Vint cross section along 2X595 starting from x′′

= 0m to x′′ = 1969m is extracted for the ICCK model. Its vertical resolution is 0.1m while
the horizontal resolution is 1m. One more process, to truncate the cross section to a segment
covering the depth in consistent with the depth of simulated Su profiles, will be done after
determining the depth of simulated Su profiles.

4.1.2. Geotechnical data

MUSIC-X

In the MUSIC-X part, taking #97 for example, the available geotechnical data measured by BH
and CPT, are organized and can be viewed in Table 4.1. These 11 soil parameters are exactly
in accordance with the parameters used in the MUSIC-X model. With regards to this table,
there are five points to mention. The first point is the explanation for why such a segment is
chosen. Firstly by browsing the geotechnical data at #97, it is found that most lab test data are
concentrated from 20m to 40m depth. Secondly, according to the investigation report, the soils
in the investigation area have been categorized as 9 units: A, B1, B2, C1, C2, D, E, F, G. The
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Fig. 4.10. MSEs of potential alignment positions for #97.

Fig. 4.11. MSEs of potential alignment positions for #104.
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Fig. 4.12. Relevance of laboratory shear tests to modes of shear on a surface of sliding in the
field (Terzaghi et al., 1996).

simulation is better to conduct in the same soil unit. At #97, from 11.5m to 31.5m depth, all
soils belong to unit F. So comprehensively considering these two factors, the segment to use at
#97 is from 21.6m to 29.4m depth.

The second is that, in order to integrate with Vint profiles, which have a resolution of 0.1m
in the vertical direction, only geotechnical parameters observed at depths with one decimal
place are used and complied in the table. It should be admitted that it leads to the loss of
information.

The third is that, as can be seen in the table, there are many missing cells, but this is not a
problem because MUSIC-X model can accommodate incomplete input.

The fourth is that actually from 21.6m to 29.4m depth, the σ ′
v/Pa, Bq and qt1 profiles are

continuously measured with a resolution of 0.1m (the original resolution is 0.02m but upscaled
to 0.1m). For simplicity, in the table only a part of them at depths where other parameters (e.g.
LL, PI and LI) are observed, are shown. The table to input in the model is actually augmented
by rows and after being augmented, it has (29.4-21.6)/0.1 +1 = 79 rows. For σ ′

v/Pa, Bq and qt1,
they are known in the augmented rows while for the other soil parameter, they are unknown at
the augmented rows.

The last point, which is the most important is that Su compiled in the table is mobilized
Su (Su(mob)), which is required for the MUSIC-X model but Su available in this study is Su
measured by pocket penetrometer tests (Su(PP)). There is a transformation between Su(PP)
and Su(mob). Su(mob) means the shear strength mobilized in a full-scale undrained failure in
the field instead of Su directly measured by any kind of lab tests. Specifically in the MUSIC-X
model, Su measured from different tests are all converted to Su(mob) for an embankment failure.
The Su(mob) in the embankment failure is illustrated by Fig. 4.12. According to the failure
mechanism of an embankment, a triaxial compression, triaxial extension and direct simple shear
test are recommended to simulate the shear of an embankment, therefore the mobilized Su for an
embankment failure can be expressed as the following equation, which is basically the average
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of these three tests:

Su(mob) =
Su (CK0UC)+Su(DSS)+Su (CK0UE)

3
·µt (4.3)

where Su(CK0UC) is Su measured from K0 consolidated undrained compression test, Su(DSS)
is Su measured from direct simple shear test and Su(CK0UE) is Su measured from K0 consoli-
dated undrained extension test; µt is the stain rate. Since these three lab tests are nonroutine in a
realistic project, several studies have been done to develop transformation equations to convert
Su measured by a certain lab test to mobilized Su, which can be seen in Table 4.2 (Ching &
Phoon, 2014b).

Table 4.2. Developed transformations models to estimate Su(mob) (Ching & Phoon, 2014b).

Available Su info Transformation model

FV Su(mob)≈ Su(field)≈ [Su(FV)]µ
UC Su(mob)≈ Su(UC)
UU Su(mob)/σ ′

v ≈ Su(UC)/σ ′
v ≈−0.073+1.018Su(UU)/σ ′

v
CIUC Su(mob)/σ ′

v ≈ Su(UC)/σ ′
v ≈−0.278+1.172Su(CIUC)/σ ′

v
CK0UC, DSS, CK0UE Su(mob)≈ {[Su (CK0UC)+Su(DSS)+ [Su (CK0UE)]/3}µt
CK0UC, CK0UE Su(mob)≈ {[Su (CK0UC)+Su (CK0UE)]/2}µ∗

t
DSS Su(mob)≈ [Su(DSS)]µ∗

t
CK0UC Su(mob)≈ [Su(DSS)]µt ≈ [Su (CK0UC)] [0.67µt]
CK0UE Su(mob)≈ [Su(DSS)]µt ≈ [Su (CK0UE)]

[
1.53† (µt)

]
Note: FV is field vane test; UC is unconfined compression test; UU is unconsolidated undrained
compression test; CIUC is isotropically consolidated undrained compression test.

However, so far there is no transformation model developed for PP tests. Such a model
is specially constructed in this study. Firstly PP tests are found to be similar to unconfined
compression (UC) tests. Their working principle is the same: compressing a sample from the
top unconfinedly. Additionally there are some studies to correlate Su measured by PP tests and
UC tests. On the other hand, some studies have been done to investigate in the correlation
between Su(UC) and Su(mob), such as the deterministic equation shown in Table 4.2. So it is
proposed to transform Su(PP) to Su(UC) first then transform Su(UC) to Su(mob). Here comes
a problem that in these two stages, unavoidably there are transformation uncertainties. It is
better if they can be quantified. Eventually, it is proposed to integrate the Su(PP)-Su(UC) and
Su(UC)-Su(mob) transformation model in a probabilistic way. The specific procedures are as
follows.

In Su(PP)-Su(UC) part, Budak et al. (2022) have found the correlation between the Su(PP)
and Su(UC) based on 293 remodeled clay samples from 10 different sites in Turkey and the
results are shown in Fig. 4.13. The mean of (Su(PP) / Su(UC)) is equal to 1.54 and the standard
deviation of (Su(PP) / Su(UC)) is equal to 0.36. Based on some mathematical calculations, the
mean and standard deviation of ln(Su(PP)/Su(UC)) are found to be 0.405 and 0.231. Assum-
ing Su(PP) and Su(UC) are lognormal variables, which is typical for soil parameters, Su(PP) /
Su(UC) is also assumed to be lognormal. Then ln(Su(PP)/Su(UC)) can be expressed as:

ln
[

Su(PP)
Su(UC)

]
= µ +σZ = 0.405+0.231Z1 (4.4)
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Fig. 4.13. Correlation behaviors between Su(PP) and Su measured by other laboratory tests
including UC (Budak et al., 2022). λm is the mean, σ is the standard deviation and COV is the
coefficient of variance.

where Z1 is a standard normal variable. So the probabilistic transformation between Su(PP) and
Su(UC) is expressed as:

ln[Su(UC)] = ln[Su(PP)]−0.405−0.231Z1 (4.5)

In the Su(UC)-Su(mob) part, although there is a deterministic transformation equation, it
should not be used as the transformation uncertainty cannot be quantified. Instead, a probabilis-
tic transformation equation to convert Su(UC) to Su(mob) proposed by Ching and Phoon (2015)
is employed. The development of this transformation model is based on a generic database
CLAY/7/6310. It is expressed as:

ln
[

Su(mob)
σv′

]
=−1.047+0.263ln

[
Su(UC)

σv′

]
+0.531ln(OCR)+0.081ln(

PI
20

)+ ln(µt)︸ ︷︷ ︸
mean

+0.21Z0︸ ︷︷ ︸
std

(4.6)

where µt is the strain rate factor, equal to 1+0.1× log10 r, r is the strain rate in field, which is
recommended to be 60 for UC tests (Ching et al., 2013). Z0 is a standard normal variable.

By substituting Su (UC) in Eq. (4.6) with the expression of Su(UC) in Eq. (4.5), a proba-
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bilistic transformation between Su(PP) and Su(mob) can be developed and expressed as:

ln
[

Su(mob)
σv′

]
=−1.154+0.263ln

[
Su(PP)

σv′

]
+0.531ln(OCR)+0.081ln(

PI
20

)+ ln(µt)︸ ︷︷ ︸
mean

+0.21Z0 −0.061Z1

(4.7)

In Eq. (4.7), both 0.21Z0 and -0.061Z1 are normal variables, so these two terms can be com-

bined to a variable with a standard deviation of std(Z′) =
√

0.212 +(−0.0612) = 0.219. Thus
Eq. (4.7) can be simplified to:

ln
[

Su(mob)
σv′

]
=−1.154+0.263ln

[
Su(PP)

σv′

]
+0.531ln(OCR)+0.081ln(

PI
20

)+ ln(µt)︸ ︷︷ ︸
mean

+0.219︸ ︷︷ ︸
std

Z′
(4.8)

where Z′ is a standard normal variable. With Eq. (4.8), the mean of Su(mob)/σ ′
v can be calcu-

lated by the following equation:

mean of Su(mob)/σ
′
v = exp

(
µ
′
U +σ

′2
U /2

)
(4.9)

where µ ′
U and σ ′

U are the mean and std of ln(Su(mob)/σ ′
v). Finally the mean of Su(mob) can

be calculated. The mean value of Su(mob) is used as a representative value. If necessary, it is
also possible to calculate Su(mob) at lower 5% quantile to follow Eurocode 7. Different from
the deterministic transformation, the probability of transformed Su(mob) is known.

Additionally, it can be found that OCR and PI are needed in Eq. (4.8). In case there are
no OCR and/or PI values measured together with Su(PP), these two terms can be replaced with
probabilistic equations. Specifically, ln(OCR) and ln(PI/20) can be regarded as two normal
variables, which can be expressed as:

ln(OCR) =
ln(OCRL)+ ln(OCRU)

2
+

ln(OCRU)− ln(OCRL)

2×1.96
ZOCR (4.10)

ln(PI/20) =
ln(PIL/20)+ ln(PIU/20)

2
+

ln(PIU/20)− ln(PIL/20)
2×1.96

ZPI (4.11)

Subscripts U and L respectively stand for upper bound and lower bound, Zocr and ZPI are two
standard normal variables. In this site investigation, OCR is found to be between 2.6 and 5.7
and PI is found to be between 7 and 34. By substituting the bound values into Eq. (4.10) and
Eq. (4.11) then substituting ln(OCR) and ln(PI/20) in Eq. (4.8) with Eq. (4.10) and Eq. (4.11),
the probabilistic transformation between Su(PP) and Su(mob) in the case that PI and OCR are
both unknown can be expressed as:

ln
[

Su(mob)
σv′

]
=−0.459+0.263ln

[
Su(PP)

σv′

]
+ ln(µt)︸ ︷︷ ︸

mean

+0.245︸ ︷︷ ︸
std

Z′ (4.12)

where Z′ is a standard normal variable. In similar fashion, the probabilistic transformation
between Su(PP) and Su(mob) in the case that PI is unknown can be expressed as:

ln
[

Su(mob)
σv′

]
=−1.175+0.263ln

[
Su(PP)

σv′

]
+0.531ln(OCR)+ ln(µt)︸ ︷︷ ︸

mean

+0.221︸ ︷︷ ︸
std

Z′ (4.13)
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The probabilistic transformation between Su(PP) and Su(mob) in the case that OCR is unknown
can be expressed as:

ln
[

Su(mob)
σv′

]
=−0.438+0.263ln

[
Su(PP)

σv′

]
+0.081ln(

PI
20

)+ ln(µt)︸ ︷︷ ︸
mean

+0.243︸ ︷︷ ︸
std

Z′ (4.14)

In conclusion, the Su(mob) shown in Table 4.1 is transformed from Su(PP) using Eq. (4.8), Eq.
(4.12), Eq. (4.13) and Eq. (4.14).

ICCK

In the ICCK part, for geotechnical parameters, only Su is needed but Su data are not the site-
specific data such as Su shown in Table 4.1. Instead simulated Su profiles at #97, #98 and
#104, the output of the MUSIC-X model, are used. They will be shown after MUSIC-X imple-
mentation. These simulated profiles are not in a common cross section, so they are aligned to a
common cross section where Vint is measured because the ICCK model uses data in a collocated
way. The alignment positions have been shown in Section 4.1.1.

4.2. Estimation of cross correlation between Su and Vint

Having processed the geotechnical data and geophysical data, the cross correlation between Su
and Vint should be estimated from Su-Vint data pairs at #97, #98 and #104. This information
helps to preliminarily judge whether it is meaningful to integrate Vint into the MUSIC-X model
to enhance Su simulation performance and whether it is reasonable to use the spatial correlation
of Vint as that of Su. In addition, the correlation coefficient is necessary in the ICCK model. The
linear regression fitted from the data pairs is shown in Fig. 4.14. It shows a moderate positive
correlation and the correlation coefficient is 0.63.

4.3. Estimation of spatial correlation

The spatial correlation is necessary to be estimated from the processed geotechnical and geo-
physical data as well, for both the MUSIC-X and ICCK model. In the MUSIC-X model, correl-
ograms (a.k.a., ACFs) are adopted to estimate the spatial correlation while in the ICCK model,
variograms are adopted. As mentioned earlier, in the considered correlograms, SOF is only
needed while in the considered variograms, b, C0 and SOF (a) are needed. In this study, the
estimation of the spatial correlation is basically the estimation of these parameters and search
for the best-fitted correlogram/variogram in the candidates. The vertical spatial correlation can
be estimated from qt data, for the correlograms considered in the MUSIC-X model and for the
variograms considered in the ICCK model. The horizontal spatial correlation can be estimated
from Vint data as Su has been found to be correlated with Vint in Section 4.2, only for the vari-
ograms in the ICCK model. The following subsections show the results of parameters estimated
by curve fitting of correlograms or variograms and the best-fitted correlogram or variogram in
these two models.
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Fig. 4.14. Cross correlation between Su and Vint data.

4.3.1. Vertical spatial correlation

MUSIC-X

For the correlograms in the MUSIC-X model, qt profiles at #97, #98 and #104 are combined
to estimate the vertical SOF (SOFv). Specifically, these three profiles are combined to derive
a common trend based on the 1D linear regression. Then this trend is applied to detrending
these three qt profiles. Subsequently the profiles are normalized by dividing the common stan-
dard deviation. Finally the normalized profiles are used to estimate the vertical SOF based on
correlogram curve fitting. It should be noted that detrending by a deterministic trend function
(e.g., linear or quadratic regression) involves additional uncertainties and it is better to conduct
probabilistic modelling of the spatial trend. There will be a trial to probabilistically model the
trend in Section 6.2, but basically it is beyond the scope of this study and all the spatial trends
used in this study are still deterministic.

The curve fitting results for the SExp, QExp and SMK correlogram are shown in Fig. 4.15.
It is hard to compare the fitting performance based on visual judgement so the coefficient of
determination (R2) is adopted to quantify it. In this case, QExp fits as well as SMK, both having
a R2 equal to 0.91, followed by SExp with a R2 equal to 0.86. Finally the SMK is chosen as the
correlogram used in the MUSIC-X model. The best-fitted SOFv for SMK is 1.83m.

ICCK

For the variograms in the ICCK model, qt profiles are also combined to estimate the parameters
(b, C0, SOFv) as what is done for correlograms in the MUSIC-X model. The only difference
is that the trend is derived from the 2D linear regression instead of 1D linear regression. In the
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Fig. 4.15. Curve fitting for the correlograms in the vertical direction.

ICCK modelling stage, since these three profiles are all aligned to survey line 2X595 (location
alignment can be found in Section 4.1.1), they can be regarded as a 2D domain and in this case it
is found 2D linear regression works better than 1D. The GSTool (Müller et al., 2021) is applied
to variogram curve fitting.

The curve fitting results for the Gaussian, exponential and spherical variogram are shown
in Fig. 4.16. The best fitted variogram is the spherical variogram (R2 = 0.995), followed by
Gaussian (R2 = 0.986) and exponential (R2 = 0.982). The best fitted SOFv of the spherical
variogram is 2.63m with b ≈ 0 and C0 = 1.01.

4.3.2. Horizontal spatial correlation

The Vint horizontal profiles along survey line 2X595 are also combined (i.e., the cross Vint cross
section) to estimate the (b, C0, horizontal SOF (SOFh)) for the variograms in the ICCK model.
Notice it is not a full cross section but the segment mentioned in Section 4.1.1. This cross
section consists of several horizontal profiles along the depth and each profile is 1969m long
with a resolution of 1m. Vint data are also detrended based on the 2D linear regression, then
normalized by dividing the standard deviation and finally applied to the curve fitting. The curve
fitting results are shown in Fig. 4.17.

The best-fitted variogram is Gaussain with R2 equal to 0.998 followed by the spherical
variogram (R2 = 0.986) and exponential variogram (R2 = 0.963). The best-fitted SOFh of the
Gaussian variogram is 407m with b = 0.026 and C0 = 1.27.
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Fig. 4.16. Curve fitting for the variograms in the vertical direction.

Fig. 4.17. Curve fitting for the variograms in the horizontal direction.
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4.4. MUSIC-X implementation

4.4.1. Input setting

Based on the processed data and derived information, the input for the Vint integrated MUSIC-X
model is summarized here. The geotechnical data at #97, #98 and #104 are integrated respec-
tively with Vint data at these three positions. Taking #97 for example, the final input is shown
in Table 4.3. The additional database of Vint is added to derive the JD transformation for Vint.
The correlogram used in the model is the SMK correlogram with a SOFv equal to 1.83m. This
is commonly applied to the simulation at #97, #98 and #104. Finally the model will run for
25000 times and the first 5000 times are regarded as the burn-in period. In other words, 20000
Su profile samples will be obtained for probabilistic analysis.

In the case that the original MUSIC-X is implemented to check whether the simulation
performance of Su is enhanced, the input differs as only geotechnical parameters are used (just
like using Table 4.1 instead of Table 4.3) and the generic database of Vint is not added.

4.4.2. Validation and comparison strategy

After the implementation of the MUSIC-X model, the results at #97, #98 and #104 will be
validated first. Specifically, based on the 20000 simulated Su profiles, the 95% confidence
interval (CI) of the simulated Su can be found. The range of 95% CI can reflect the simulation
uncertainty. In addition, the coefficient of variance (COV, equal to std/mean) of simulated Su at
every depth will be calculated and the average of COV (COVave) at all depths along the profile
is used as an index to quantify the uncertainty of the whole profile. Furthermore, the simulated
median Su profiles at these three positions are chosen to be the input for ICCK implementation.
The median profile at each position will be cross validated by each time removing a measured
Su data point to simulate and finally calculating the root mean square error (RMSE) between
the simulated results and measured results. The RMSE is calculated for Su/σ ′

v instead of Su
because the dimensionless term is what the model directly simulates.

Additionally, in order to test whether the simulation performance of Su will be enhanced
after integrating Vint data, the simulation results from the Vint integrated and not integrated
scenario at these three positions are compared. The aspects to compare are in accordance with
the validation scheme. For example, at #97, the range of 95% CI of simulated Su profiles, the
COVave and the RMSE for both scenarios will be compared. The scenario with a narrower 95%
CI, a lower COVave and a lower RMSE is considered to have a lower uncertainty and better
simulation performance.

4.5. ICCK implementation

4.5.1. Input setting

Based on the processed data and derived information, the input for the ICCK model is summa-
rized here. As for the “observed” primary data, they are simulated median Su 1D profiles at
#97, #98 and #104 from the MUSIC-X modelling, which are available after the implementation



CHAPTER 4. CASE STUDY 53

Ta
bl

e
4.

3.
A

va
ila

bl
e

ge
ot

ec
hn

ic
al

an
d

ge
op

hy
si

ca
ld

at
a

at
#9

7

D
ep

th
(m

)
L

L
PI

L
I

σ
′ v/

P a
σ
′ p/

P a
S u
/σ

′ v
B

q
q t

1
C

c
C

s
N

60
/(

σ
′ v/

P a
)

V
in

t/V
in

t,w
at

er

Y
1=

ln
(L

L
)

Y
2=

ln
(P

I)
Y

3=
L

I
Y

4=
ln
(σ

′ v/
P a
)

Y
5=

ln
(σ

′ p/
P a
)

Y
6=

ln
(S

u/
σ
′ v)

Y
7=

B
q

Y
8=

ln
(q

t1
)

Y
9=

ln
(C

c)
Y

10
=l

n(
C

s)
Y

11
=l

n(
N

60
/
(σ

′ v/
P a
))

Y
12

=l
n(

V
in

t/V
in

t,w
at

er
)

21
.6

-
-

-
2.

10
4

-
0.

65
5

0.
09

7
19

.1
88

-
-

-
1.

12
55

6
23

.2
-

-
-

2.
25

9
-

0.
61

7
-0

.1
24

9.
50

9
-

-
-

1.
12

76
6

23
.6

59
.0

00
32

.0
00

-0
.4

19
2.

29
8

-
-

-0
.0

31
12

.4
36

-
-

-
1.

12
81

3
24

.2
33

.0
00

8.
00

0
4.

10
0

2.
34

6
-

-
-0

.0
17

41
.6

49
-

-
-

1.
12

87
3

24
.8

-
-

-
2.

38
5

-
0.

76
7

0.
21

4
13

.7
87

-
-

-
1.

12
92

7
25

36
.0

00
21

.0
00

0.
10

0
2.

40
0

-
-

0.
01

5
12

.4
67

-
-

-
1.

12
94

4
25

.4
-

-
-

2.
44

3
-

0.
71

7
0.

12
2

9.
82

2
-

-
-

1.
12

94
5

28
.8

-
-

-
2.

76
1

-
0.

59
1

0.
41

5
8.

10
6

-
-

-
1.

12
85

9
29

.4
-

-
-

2.
81

7
-

0.
67

0
0.

33
6

11
.0

07
-

-
-

1.
12

82
8



CHAPTER 4. CASE STUDY 54

Fig. 4.18. 2D measurement of Vint used in the ICCK model.

of the MUSIC-X model. As for which model (the Vint integrated MUSIC-X or the original
MUSIC-X model) the median profiles are from, it depends on the validation results of these
two profiles. The median profile with a lower RMSE will be adopted. In addition, the depth
segments of simulated Su profiles at these three positions are different based on the segment
selection scheme shown in Section 4.1.2. They are respectively from 21.6m to 29.4m depth,
23.8m to 29.1m depth and 20.3m to 27.7m depth. These three simulated profiles are truncated
to a common depth segment, from 23.8m to 27.7m depth when being applied to the ICCK model
as the primary data. As for the observed secondary data, they are a segment of Vint cross sec-
tion along survey line 2X595. The full cross section is truncated to a segment covering aligned
#97, #98 and aligned #104 in the horizontal direction and covering 23.8m to 27.7m depth in
the vertical direction, which can be viewed in Fig. 4.18. It should be noted that both Su and
Vint have to be detrended and normalized to standard normal variables before being applied to
ICCK implementation. For the cross correlation between Su and Vint, the correlation coefficient
is found to be 0.63. Finally for the spatial correlation, there is a small change since the best-
fitted variograms are not the same in the vertical direction and horizontal direction, which can
be seen in the Section 4.3. Considering the horizontal spatial correlation is more important in
this case because the horizontal distance is very large and the major direction of the variance is
horizontal, it is proposed to use the Gaussian variogram, which estimates the horizontal spatial
correlation better, to estimate the spatial correlation in the ICCK model. Therefore, the best-
fitted horizontal variogram and its associated parameters remain unchanged (SOFh = 407m, b
= 0.026, C0 = 1.27) while the variogram used to reflect the vertical spatial correlation has been
changed from the best-fitted spherical variogram to Gaussian variogram. The parameters fitted
for the Gaussian variogram in the vertical direction are: SOFv = 1.89m, b = 0.103 and C0 =
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0.905.

4.5.2. Validation and comparison strategy

After developing a cross section of Su based on ICCK modelling, the estimation result will be
validated in two aspects. The first is that the ICCK estimation variance will be calculated based
on the following equation (Xie et al., 2022):

σ
2

ICCK(u0) = 1−

(
n

∑
α=1

λz,αρz(uα −u0)+
n

∑
α=1

λY,αρyz(uα −u0)+λY,0ρyz(0)

)
(4.15)

By calculating the variance at all estimated positions, a variance map will be constructed, which
helps to analyze the uncertainty of the cross section. The second is that the estimation result
will be cross validated by removing the “observed” Su profile at #98 to estimate and calculating
the RMSE between the “observed” profile and the estimated profile. The RMSE can be also
used to judge the uncertainty of the estimation result.

In addition, two additional schemes are tested and compared with the scheme proposed
in this study to investigate in it further. The first scheme is to eliminate Vint and only use the
simulated Su profiles from the MUSIC-X model to estimate the cross section of Su. The ordinary
kriging (OK) method will be applied because it returns to a univariate estimation. In this way,
the effect of utilizing the geophysical parameter Vint to characterize Su can be analyzed. The
second scheme is to directly use measured Su data points and Vint data to estimate the cross
section of Su. This is to say, the result from the MUSIC-X model is not utilized. Vint data are
still involved so ICCK will be applied. In this way, the effectiveness of combining the MUSIC-
X with ICCK can be analyzed. The additional schemes will be validated in the two aspects
mentioned above as well and the comparison between these three schemes will be done with
regards to the validation results.



5. Results and discussion

5.1. MUSIC-X modelling

Fig. 5.1 reveals the MUSIC-X simulation results for both the Vint integrated and not integrated
scenario at #97, #98 and #104. In each subplot, red dashed lines show the 95% CI for the sce-
nario to integrate Vint while black dashed lines show the 95% CI for the scenario not to integrate
Vint. Additionally, the red solid line and black solid line respectively show the median profile
for the integrated and not integrated scenario. The measured Su data points are highlighted by
blue dots. They can be regarded as conditions in a conditional 1D random field. So it can be
seen that at these measured positions, all profiles converge to a single point. The simulation at
each position for a single scenario takes around 15 minutes.

It is found that at #104, the 95% CI is narrower for the integrated scenario, which indicates
that the integration of Vint reduces the uncertainty of simulated Su profiles. However, at #97 and
#98, the 95% CI becomes a little bit wider after integrating Vint into the model. It is deemed to
be caused by the intrinsic property of Vint. Vint is not exactly the compressional wave velocity
or the shear wave velocity which are properties of the soils/rocks. Instead it is the average
value within a certain depth interval, which more generally reflects the spatial trend. Therefore,
although there is a moderate correlation shown between Vint and Su, due to the averaging effect,
Vint may not accurately match the underlying distribution of Su and it cannot guide the model
to generate an accurate distribution of Su as a CPT profile or shear wave velocity profile does.
Especially, sudden changes appear in the qt profile at #98, which is shown in Fig. 5.2. As qt
is highly correlated with Su, in general Su is highly possible to have such sudden changes as
well. Due to the averaging effect in Vint, it cannot accurately capture such a change, leading
to a worse simulation result. In a word, what these results indicate is that the additional cross
correlation between Su and Vint is not effective to improve the simulation performance of Su in
a multivariate PTM (i.e., MUSIC-X).

On the other hand, although the cross correlation between Su and Vint may not benefit, the
abundance of Vint data along the depth may reflect the general spatial trend. Thus potentially,
when simulating Su through correlating Vint to Su (i.e., integrating Vint to the MUSIC-X model),
Vint can serve as a supplement to reflect the vertical spatial correlation. In other words, the
spatial correlation can be more accurately incorporated in the model to simulate Su, finally
contributing to more accurate simulations. So it is motivated to investigate in whether the
spatial correlation information inside Vint can benefit simulating Su. In order to conduct the
test, the spatial correlation estimated from combined qt profiles in the MUSIC-X model will
be modified to be less accurate, making the effect of the spatial correlation information from
Vint more discernible. Specifically, the spatial correlation for #97, #98 and #104 will be re-
estimated based on their individual qt profiles, which should be less accurate as there are less
data points. Taking #97 for example, the correlogram curve fitting result solely based on the qt
profile at #97 is shown in Fig. 5.3. The best-fitted correlogram is SMK with R2 equal to 0.54,

56



CHAPTER 5. RESULTS AND DISCUSSION 57

100 150 200 250 300

22

24

26

28

30

D
e

pt
h 

(m
)

Su (kN/m2)

 95% CI (integrated)
 
 Median (integrated)
 95% CI (not integrated)
 
 Median (not integrated)
 Measured data

100 150 200 250 300

24

26

28

30

D
e

pt
h 

(m
)

(a)

(b)

(c)

100 150 200 250 300
20

22

24

26

28

D
e

pt
h 

(m
)

Fig. 5.1. MUSIC-X simulation results of Su profiles for both the Vint integrated and not inte-
grated scenario at (a) #97; (b) #98; and (c) #104.
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Fig. 5.2. Measured qt profile at #98. The yellowish rectangle indicates an embedded sand layer.

Fig. 5.3. Curve fitting for vertical correlograms at #97 based on its individual qt profile.
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which is relatively low compared to the R2 resulted from combined qt profiles in Section 4.3.1
and indicates inaccurate spatial correlation. For #98 and #104, their spatial correlation will be
re-estimated in similar fashion. Finally the Su profiles at these positions will be re-simulated
by MUSIC-X based on the inaccurate spatial correlation. In this way, it is able to investigate
in whether the integration of Vint can supply accurate spatial correlation to Su and reduce the
uncertainty of simulated Su. The results are shown in Fig. 5.4. The format of Fig. 5.4 is
the same as Fig. 5.1. It can be seen that after integrating Vint, at #97, the 95% CI for the
integrated scenario becomes narrower than that of the not integrated scenario and at #104, the
95% CI for the integrated scenario is more noticeably narrower. #98 is excluded from analysis
as the thin embedded soil layer is hard to capture by Vint and unavoidably it is more uncertain.
These results basically demonstrate the conjecture that the integration of Vint can reduce the
uncertainty of simulated Su through supplying the spatial correlation information.



CHAPTER 5. RESULTS AND DISCUSSION 60

100 150 200 250 300 350

22

24

26

28

30

D
e

pt
h 

(m
)

Su (kN/m2)

 95% CI (integrated)
 
 Median (integrated)
 95% CI (not integrated)
 
 Median (not integrated)
 Measured data

100 125 150 175 200 225 250

24

26

28

30

D
e

pt
h 

(m
)

100 150 200 250 300 350
20

22

24

26

28

D
e

pt
h 

(m
)

(a)

(b)

(c)

Fig. 5.4. MUSIC-X simulation results of Su profiles for both the Vint integrated and not inte-
grated scenario using inaccurate spatial correlation at (a) #97; (b) #98; and (c) #104.

In order to quantify the change in the uncertainty of simulated Su at #97 and #104, the COVs
along the depth are calculated and shown in Fig. 5.5. The COVave over the depth are calculated
and shown in Table 5.1. Note in the figure and table, the accurate spatial correlation estimated
from combined qt profiles is relative to the inaccurate spatial correlation estimated from the
individual qt profiles. The high R2 can only tell that there is a good fitting result between the
experimental and theoretical correlograms, not necessarily revealing that the spatial correlation
is accurately estimated in a strict sense. In Table 5.1, it can be explicitly seen that when the
spatial correlation is accurately estimated, after integrating Vint to the MUSIC-X model the
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(a) COV along the depth at #97.

(b) COV along the depth at #104.

Fig. 5.5. COV of simulated Su from MUSIC-X along the depth for Vint integrated/not integrated
scenario and for accurate/inaccurate spatial correlation scenario at (a) #97; and (b) #104.

Table 5.1. Average of COV over the depth for Vint integrated/not integrated scenario and for
accurate/inaccurate spatial correlation scenario at #97 and #104. The reduction of COVave after
integrating Vint is shown in the last column.

Position COVave (not integrated) COVave (integrated) Reduction ratio (%)

Accurate spatial correlation
#97 0.100 0.108 -7.751

#104 0.119 0.107 10.206

Inaccurate spatial correlation
#97 0.174 0.138 20.934
#104 0.134 0.109 18.593
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simulated Su may be more uncertain. When the spatial correlation is inaccurately estimated, the
integration of Vint reduces the uncertainty of simulated Su by around 20%.

Moreover, the simulated Su profiles in this stage are further needed in later the ICCK stage
as input (primary data). Preliminarily the median profiles of simulated Su (based on accurate
spatial correlation; the inaccurate spatial correlation modelling is just for investigation in the
effect of Vint) at #97, #98 and #104 are proposed to use. The cross validation of the median
Su profiles for both scenarios can be visualized in Fig. 5.6. In each subplot, the red squares
stand for the measured Su data to test the simulation performance. Open circles show the cross
validation results for the integrated scenario. They are companied with error bars to show the
95% CI of the integrated scenario. It can be seen that the simulated values on 95% CI are either
too optimistic and pessimistic so median data are better to use. Black circles show the cross
validation results for the not integrated scenario. The cross validation results of the integrated
and not integrated scenario are explicitly compared in Table 5.2 by RMSE. It can be seen that

Table 5.2. RMSE of the median Su profile during cross validation for both the Vint integrated
and not integrated scenario.

#97 #98 #104

Integrated 0.07 0.06 0.13
Not integrated 0.07 0.06 0.14

these two scenarios perform similarly and actually Fig. 5.1 shows the median profiles for both
scenarios at these positions do not differ significantly. Finally the median Su profiles from the
Vint integrated MUSIC-X model are chosen as the input for the ICCK model. Due to the RMSEs
of the median profiles are relatively small, in spite of existent uncertainties, these profiles are
regarded as the “observed” profiles in the ICCK modelling.

5.2. ICCK modelling

Prior to presenting the ICCK estimation result, the input primary data (i.e., the simulated me-
dian Su profiles from the Vint integrated MUSIC-X model) and secondary data (i.e., Vint cross
section) is firstly shown in Fig. 5.7. They will be detrended and normalized into standard
normal variables when inputting.

Fig. 5.8 shows the estimation result of the Su cross section from the ICCK model. The
x axis shows the x′′-coordinate in the X′′-Y′′ coordinate system and the y axis is the depth.
Different colors standard for different values of Su. The positions where Su profiles are known
are marked by the dashed lines. The estimation takes around 10 minutes.

Subsequently the validation results with regards to this cross section are shown. Firstly the
variance map can be viewed in Fig. 5.9. It can be seen that the variance is zero at positions
where there are known Su profiles. In addition, there is an increase in variance when the distance
from the Su known positions increases, so the largest variance is in the middle part between two
Su known positions. The largest variance is around 0.47 in this ICCK modelling. Secondly
the cross validation result is shown in Fig. 5.10. The x axis is the predicted (estimated) values
and the y axis is the true (“observed”) values at #98. The dashed line indicates where predicted
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Fig. 5.6. Cross validation result of the median Su profile for both the Vint integrated and not
integrated scenario at (a) #97; (b) #98; and (c) #104. For the integrated scenario, error bars are
given to show the 95% CI.
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(a) Primary data (b) Secondary data

Fig. 5.7. Input for ICCK with (a) simulated Su profiles from MUSIC-X modelling as primary
data and (b) measured Vint cross section as secondary data.

Fig. 5.8. Result of the Su cross section estimated by ICCK.

Fig. 5.9. Estimation variance of the Su cross section from ICCK modelling.



CHAPTER 5. RESULTS AND DISCUSSION 65

Fig. 5.10. Cross validation result for the ICCK estimation. Values refer to normalized Su.

values are exactly the same as the true values. The RMSE between the ICCK estimation and
the “observed” Su profiles at #98 is 1.04.

Finally the comparison between the original scheme (i.e., combing MUSIC-X with ICCK)
and two additional schemes in terms of the validation results are presented. For the estima-
tion variance, since the variance mainly depends on the horizontal direction (as Fig. 5.9), the
variance map can be simplified to a plot with average variance over the depth as y axis and
the horizontal position as the x axis. The estimation variance comparison between these three
schemes in such a figure can be viewed in Fig. 5.11. The blue line stands for the estimation
variance in the scheme proposed in this study. It is evident that this scheme has the least vari-
ance along the horizontal direction, followed by the ICCK model without MUSIC-X modelling
and OK model (no Vint data).

For the cross validation, the comparison is shown in Fig. 5.12. The blue dots, red squares
and the green stars respectively stand for the cross validation results from the ICCK model
with MUSIC-X modelling, the ICCK model without MUSIC-X modelling and OK model. The
results in this figure are divided into two parts to discuss. The first part is the comparison
between the ICCK model with MUSIC-X modelling and the OK model. As both of them
use the result from MUSIC-X modelling, when discussing them, the reminder of MUSIC-X
modelling is omitted. The RMSE for the ICCK and OK model is respectively 1.04 and 0.94. It
should be noted that this does not indicate that it is better to use OK rather than ICCK and not
to integrate geophysical data because firstly the horizontal spatial correlation used in the OK
model is still from Vint data and secondly as shown in Fig. 5.11 the estimation variance of the
OK model is pretty high. What this result indicates is actually that the cross correlation between
Vint and Su is not beneficial for the estimation of Su. Since the spatial correlation is the same in
these two models, the main difference lies in that the ICCK model utilizes the cross correlation
between Vint and Su while the OK does not use it. Further investigation has been conducted to
demonstrate it. The correlation coefficient between Su and Vint, which was 0.63 (as Fig. 4.14),
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Fig. 5.11. Comparison between the three schemes in terms of estimation variance. The variance
at each horizontal position is the average variance over the depth of this position.

Fig. 5.12. Comparison between the three schemes in terms of cross validation result. Values
refer to normalized Su.
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Fig. 5.13. Effect of reducing the correlation coefficient between Su and Vint on the cross vali-
dation result of the original scheme.

is set to be smaller values. In this way, the estimation of Su in the ICCK model depends less
on Vint. The resultant RMSEs of the ICCK model with smaller correlation coefficients can be
viewed in Fig. 5.13. It can be seen that as the ICCK estimation of Su depends less on Vint,
RMSE decreases and finally approaches to 0.94, when there is almost no correlation between
Su and Vint (as OK). This result accords with the founding in the MUSIC-X part that the cross
correlation between Su and Vint is not beneficial to reducing the uncertainty of simulated Su but
may enlarge it. The second part is the comparison between the ICCK model with MUSIC-X
modelling and the ICCK model without MUSIC-X modelling. For the ICCK model without
MUSIC-X modelling, there are only four observed data points at #98, so the cross validation
can only be conducted based on these four data points. The cross validation result of the ICCK
model with MUSIC-X modelling corresponding to these four data points are highlighted by
larger size blue dots in Fig. 5.12. The RMSE for the ICCK model without MUSIC-X modelling
is 2.87 which is relatively high. The RMSE for the ICCK model with MUSIC-X modelling with
regards to these four points is only 0.88. This indicates the contribution of combining MUSIC-X
with ICCK.



6. Conclusions

6.1. Conclusions

In this thesis a multivariate PTM, MUSIC-X, is combined with a kriging method, ICCK, to
probabilistically characterize Su in 2D space based on the fusion of geotechnical and geophysi-
cal data. It utilizes the cross correlation between Su and other relevant geotechnical parameters
and the geophysical parameter Vint. Meanwhile, it utilizes the spatial correlation in both vertical
and horizontal direction, which are respectively estimated from qt and Vint data. The perfor-
mance of this scheme is demonstrated by a real case study, which shows the applicability of
applying such a scheme to an offshore site characterization and how it contributes to a realistic
and accurate characterization of Su. The effectiveness of this scheme proves the soundness to
combine MUSIC-X and ICCK for 2D Su characterization and introduces a new perspective,
focusing on the fusion of geotechnical and geophysical data, to characterize soil parameters in
a higher dimensional spatial context. In practice, the developed Su cross section and its quan-
tified uncertainty can help people to better characterize Su at the specific site thus design more
efficiently and reliably. One additional contribution of this study is that a probabilistic model to
transform Su measured by PP tests to mobilized Su has been developed.

After the investigation in the proposed scheme, the answers to the research questions in this
study have been concluded:

• How can a 2D cross section of Su be developed by a multivariate PTM based scheme?

Firstly a well-established multivariate PTM, MUSIC-X, is utilized. Vint is integrated to the
original MUSIC-X model additionally to reduce the uncertainty of simulation results. Based
on the cross correlation between Su and other 10 geotechnical parameters and Vint, as well as
the vertical spatial correlation estimated from qt profiles, the MUSIC-X model can simulate 1D
profiles of Su. Among the simulation results, since the median profile of Su has been found to
involve low uncertainty by cross validation, it is regarded as an “observed” profile at a certain
position. Subsequently a few nearby simulated “observed” profiles of Su from MUSIC-X mod-
elling are aligned to a common cross section where there are abundant 2D measurements of Vint
data. Finally these 1D profiles of Su and the 2D cross section of Vint are input into the ICCK
model, respectively as the primary data and secondary data. The ICCK model can estimate the
primary data at unknown positions in 2D space with the assistance of secondary data through
the cross correlation between these two parameters and the spatial correlation in both vertical
and horizontal direction. The vertical spatial correlation is estimated from qt profiles as well
while the horizontal spatial correlation is estimated from the Vint cross section. As a result, the
2D cross section of Su can be developed. In brief, the MUSIC-X model is utilized together with
the ICCK model to simulate a 2D cross section of Su.

To complete the answer further, the performance of the scheme is concluded as well. The
combination of the MUSIC-X and ICCK model is a sensible choice and indeed contributes given
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that the estimated Su cross section of this scheme has a significantly higher accuracy compared
to that of the scheme without the MUSIC-X model. In addition, this scheme requires relatively
low computational cost. If the horizontal spatial correlation is somehow directly integrated to
the MUSIC-X model to simulate 2D Su cross sections, the computational cost will increase
dramatically. For example, when being applied to the same case study, it has to simulate around
2000 soundings in the horizontal direction and 40 soundings in the vertical direction for 12 soil
parameters. Then there are in total 2000×40×12 = 960000 variables of interest. The GS will
unavoidably become infeasible.

• How can the horizontal spatial correlation be inferred for the scheme effectively?

The horizontal SOF, which is the key to reflecting the horizontal spatial correlation, can be
estimated from the geophysical data Vint. The Vint data in the horizontal direction are abundant
enough to conduct curve fitting between experimental and theoretical variograms and find the
horizontal SOF. The estimated horizontal SOF has a good fitting performance so the horizontal
spatial correlation can be generally accurately reflected. Additionally, Vint and Su have been
found to be correlated with each other at the specific site in case study so it is reasonable
to assume Su share the same horizontal SOF with Vint in this study. In brief, the horizontal
spatial correlation estimated from Vint is accurate and effectively adopted by the ICCK model
to estimate the cross section of Su.

• What is the effect of utilizing Vint to characterize Su?

The effect of Vint can be divided into two aspects to conclude. On the one hand, the cross
correlation between Vint and Su is not beneficial for the characterization of Su no matter in 1D
or 2D space based on the results from MUSIC-X and ICCK modelling. Although there is a
moderate positive correlation between Su and Vint found in the database, due to the averaging
effect of Vint, it cannot accurately reflect the distribution of Su especially at places where there
is a sudden change in material property. Therefore, the utilization of cross correlation between
Su and Vint may result in the increase of uncertainty of simulated Su.

On the other hand, the spatial correlation information inside Vint is valuable for Su char-
acterization. Vint can reflect the general spatial trend in the vertical direction and become a
supplement to integrate the spatial correlation into the simulation of Su when the spatial cor-
relation is not accurately estimated. In other words, it is recommended to cross correlate Su
with Vint to reduce the uncertainty from the vertical spatial correlation. In addition, estimating
the horizontal spatial correlation for Su from Vint can be a good alternative when geotechnical
testing data in the horizontal direction are limited.

6.2. Future work

The scheme proposed in this thesis succeeds in the development of 2D characterization of Su.
However there are still some limitations and more investigations can be conducted to improve
the scheme in the future:

• Probabilistic trend

When estimating the spatial correlation in this study, a deterministic trend derived from
linear regression is always applied to detrending. This is a commonly used method, however,
recent studies (Ching & Phoon, 2017; Ching, Yoshida, et al., 2022) have found that the spatial
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Fig. 6.1. Cross plot between the intercept and slope of the 1D linear trend. Their random sam-
ples are drawn from the posterior distribution in the Bayesian model. The marginal distribution
of the slope and intercept are given in subplots.

trend also varies and detrending in a deterministic way actually involves additional uncertain-
ties. Using probabilistic models for the trend functions is recommended for future research. A
preliminary trial is shown here to give an insight into the probabilistic trend. Taking the 1D lin-
ear regression for example, it is determined by two parameters, namely the slope and intercept.
A simple Bayesian model is constructed in Python based on PyMC3 package, which is able to
conduct Bayesian modelling and random sampling, to simulate these two parameters and finally
develop the probabilistic trends. The process is straightforward. Firstly the prior distribution of
the slope and intercept is set: normal distribution, mean equal to the deterministic slope or inter-
cept, standard deviation equal to a large value (i.e., 10000). Secondly the likelihood function is
constructed as the type of distribution, mean, standard deviation and observed data are known.
The observed data refer to the three CPT profiles at #97, #98 and #104 in this study. Finally the
posterior distribution of the slope and intercept is established and samples can be drawn. The
distribution of random slopes and intercepts can be found in Fig. 6.1. Based on the random
slopes and intercepts, the probabilistic trends can be developed, which are shown in Fig. 6.2.
The “true” trend is inside the range of the trends but not necessarily to be the deterministic
one.
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Fig. 6.2. Posterior predictive trends for the qt profile based on qt profiles at #97, #98 and #104.

However, there are many limitations for such a simple model. The first is that the predefined
1D linear trend may not be applicable to this site, introducing bias that will ultimately propagate
to the design outcomes (Ching & Phoon, 2017). The second is that the prior mean and standard
deviation should be set in a more reasonable way (e.g., non-informative priors). The third is that
large computational power is required for this model. There are only two parameters to model
but it takes more than 4 hours to run. Optimizations are needed to improve the computational
efficiency. Finally, there is not a method proposed in the model to identify which probabilistic
trend to use. For slopes and intercepts, it is irrational to take values at 5% quantile because
they are not like Su, that people can identify it should be big or small. So in this study still
the deterministic trends are utilized. Anyway, this is just a simple probabilistic model, more
advanced models such as Gaussian regression process and sparse Bayesian learning should be
studied for the probabilistic trend in the future.

• Uncertainty integration

During the process to develop the Su cross section, some uncertainties are eliminated man-
ually. When transforming Su(PP) to Su(mob) for the MUSIC-X model, the mean values of
Su(mob) are taken as “true” values due to low uncertainty. In addition, the median of simulated
Su profiles from the MUSIC-X model are taken as “observed” profiles also due to low uncer-
tainty. Obviously the uncertainty of the final Su cross section is underestimated. Therefore it is
recommended to integrate all possible uncertainties together in the scheme and the uncertainty
of the finally developed cross section can be accurately reflected.

One proposal is shown here to enlighten how to integrate the uncertainty. Taking the un-
certainty from the simulated median Su profiles from MUSIC-X modelling for example, this
uncertainty directly makes the observed primary data Z(uα) used in ICCK estimation (see Eq.
(3.17)), not exactly accurate. It can be imaged as the measurement error. This error can be
integrated to the ICCK model by adding an error term εz to Z(uα). εz can be set to be a nor-
mal variable with a zero mean and a variance equal to the value obtained from the MUSIC-X
simulations. In this way, the uncertainty from the simulated Su profiles can be integrated and
ICCK estimation variance at target locations will be relatively larger. It should be noted that,
the kriging matrix to derive the kriging weights will be changed accordingly. The variance of
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measurement will be added to the original variogram of the primary data and thus the spatial
correlation terms in the kriging matrix will be reduced.

• Extension to 3D

The characterization of Su is more desirable if it is 3D and actually the scheme proposed
in this study can be extended to 3D space. The spatial correlation between an observed data
(no matter primary and secondary) and the ICCK estimation of the primary parameter, which
basically reflects how this data contributes to the estimation, depends on the lag distance. The
distance is a scalar, regardless of the space dimensions and the distance between two points in
3D space is still easy to calculate. So if there is an ideal database containing 3D measurements
of Vint and relevant lab tests and CPTs are conducted in the same 3D domain, the effectiveness
of this scheme can be demonstrated in 3D space.

• More suitable geophysical data

It can be seen that a considerable amount of uncertainties in the developed Su cross section
comes from the geophysical parameter Vint. In the future study, other geophysical parameters,
which have been found to be highly correlated with Su and beneficial for Su characterization
such as shear wave velocity, can be applied to Su characterization in the same manner. It is
expected that the superiority in accuracy of the scheme can be more evidently shown through
comparing with the two alternative schemes.



A. Full conditional PDFs in MUSIC-X

This appendix first shows the specific conditional (posterior) PDFs corresponding to the four
random parameters (µs, Cs, a, Xu) in GS sampling in the MUSIC-X model. To make these
parameters clear again, X is an m × n matrix, where m is the number of depths and n is the
multivariate soil parameters considered in the MUSIC-X model. Within this matrix, some en-
tries are observed (denoted as Xo) while some are unobserved (denoted as Xu), which is needed
to simulate. The union of Xo and Xu is the complete matrix X. The characterization parameters
of X is the mean vector µs and covariance matrix Cs. a = (a1, a2, ..., an) is the hyperparameter
to make the prior of Cs non-informative. Then the complete multivariate PDF, by which these
four parameters can be sampled integrally, is shown. This complete PDF is not directly used in
the MUSIC-X model because it is too complicated to sample. The derivation of these PDFs is
contributed by Ching and Phoon (2020).

A.1. Conditional PDF P(µs | X,Cs,a)

P(µµµs | X,Cs,a) = N {µµµs;
[
C−1

0 +
(
1T R−11

)
C−1

s
]−1 [(1T R−1)⊗C−1

s
]

X,[
C−1

0 +
(
1T R−11

)
C−1

s
]−1
} (A.1)

where N means normal distribution; C0 is the prior covariance matrix for µµµs; 1 denotes an (m ×
1) vector containing ones; R is the autocorrelation matrix. C0 is taken to be a diagonal matrix
with very large elements (e.g., 104) to make it non-informative.

A.2. Conditional PDF P(Cs | X,µs,a)

P(Cs | X,µµµs,a) = IW
{

Cs;ΣΣΣ+
[
mat(X)−µµµs1

T]R−1 [mat(X)−µµµs1
T]T ,m+n+1

}
(A.2)

where IW means inverse-Wishart distribution and ΣΣΣ is the scale matrix. ΣΣΣ = 2(νIW −n+1)×
diag(1/a1,1/a2, ...,1/an), where νIW is the degree of freedom and diag(·) denotes a diagonal
matrix. νIW is taken to be n+1 to make it non-informative.

A.3. Conditional PDF P(ai | X,µs,Cs,a\i)

P(ai | X,µs,Cs,a\i) = IG(ai;
n+2

2
,10−4 +2C−1

s,ii) (A.3)

where IG means the inverse-gamma distribution; a\i denotes (a1, ..., ai-1, ai+1, ..., an); C−1
s,ii

denotes the (i, i) entry in the C−1
s matrix.
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A.4. Conditional PDF P(Xu | Xo,µs,Cs,a)

P(Xu | Xo,µs,Cs,a) = N (Xu;E,COV )

E (Xu | Xo,µs,Cs,a) = (1⊗µs)
u +(R⊗Cs)

uo × [(R⊗Cs)
o]−1 [Xo − (1⊗µs)

o]

COV(Xu | Xo,µs,Cs,a) = (R⊗Cs)
u − (R⊗Cs)

uo × [(R⊗Cs)
o]−1 [(R⊗C)uo]T

(A.4)

where (1⊗µs)
o and (R⊗Cs)

o are the mean vector and covariance matrix for Xo; (1⊗µs)
u and

(R⊗Cs)
u are the mean vector and covariance matrix for Xu; and (R⊗Cs)

uo is the covariance
matrix between Xo and Xu. The vectors (1⊗ µs)

o and (1⊗ µs)
u can be found by partitioning

(1⊗µs). The matrices (R⊗Cs)
o, (R⊗Cs)

u, and (R⊗Cs)
uo can also be found by partitioning

(R⊗Cs).

A.5. Complete multivariate PDF

P(X,µµµs,Cs,a) = P(X | µµµs,Cs) ·P(µµµs) ·P(Cs | a) ·P(a)

= P(X | µµµs,Cs) ·N(µµµs; µµµ0,C0) · IW(Cs;ΣΣΣ,νIW) ·

[
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(A.5)
where µ0 is the prior mean vector for µµµs, set to be a zero vector; Γn(·) is the multivariate
gamma function with dimension = n; tr(·) is the matrix trace; α and β are respectively the shape
parameter and scale parameter for the IG distribution of a, set to be 0.5 and 10-4.



References

Almeida, A. S., & Journel, A. G. (1994). Joint simulation of multiple variables with a Markov-
type coregionalization model. Mathematical Geology, 26(5), 565–588. https://doi.org/
10.1007/BF02089242

Babak, O., & Deutsch, C. V. (2009a). An intrinsic model of coregionalization that solves vari-
ance inflation in collocated cokriging. Computers Geosciences, 35(3), 603–614. https:
//doi.org/https://doi.org/10.1016/j.cageo.2008.02.025

Babak, O., & Deutsch, C. V. (2009b). Improved spatial modeling by merging multiple secondary
data for intrinsic collocated cokriging. Journal of Petroleum Science and Engineering,
69(1), 93–99. https://doi.org/10.1016/j.petrol.2009.08.001

Berre, T. (1982). Triaxial Testing at the Norwegian Geotechnical Institute. Geotechnical Testing
Journal, 5(1/2), 3–17. https://doi.org/10.1520/GTJ10794J

Budak, T. O., Gurbuz, A., & Eksioglu, B. (2022). Practical transitions among undrained shear
strengths of remolded samples from pocket penetrometer tests and other laboratory tests.
CATENA, 213, 106148. https://doi.org/10.1016/j.catena.2022.106148

Cami, B., Javankhoshdel, S., Phoon, K.-K., & Ching, J. (2020). Scale of fluctuation for spa-
tially varying soils: Estimation methods and values. ASCE-ASME Journal of Risk and
Uncertainty in Engineering Systems, Part A: Civil Engineering, 6(4), 03120002. https:
//doi.org/10.1061/AJRUA6.0001083

Cao, Z., & Wang, Y. (2014). Bayesian Model Comparison and Characterization of Undrained
Shear Strength. Journal of Geotechnical and Geoenvironmental Engineering, 140(6),
04014018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001108

Ching, J., & Phoon, K.-K. (2012). Establishment of generic transformations for geotechnical
design parameters. Structural Safety, 35, 52–62. https://doi.org/10.1016/j.strusafe.2011.
12.003

Ching, J., & Phoon, K.-K. (2014a). Correlations among some clay parameters — the multivari-
ate distribution. Canadian Geotechnical Journal, 51(6), 686–704. https://doi.org/10.
1139/cgj-2013-0353

Ching, J., & Phoon, K.-K. (2014b). Transformations and correlations among some clay param-
eters — the global database. Canadian Geotechnical Journal, 51(6), 663–685. https :
//doi.org/10.1139/cgj-2013-0262

Ching, J., & Phoon, K.-K. (2015). Reducing the Transformation Uncertainty for the Mobilized
Undrained Shear Strength of Clays. Journal of Geotechnical and Geoenvironmental En-
gineering, 141(2), 04014103. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001236

Ching, J., & Phoon, K.-K. (2017). Characterizing Uncertain Site-Specific Trend Function by
Sparse Bayesian Learning. Journal of Engineering Mechanics, 143(7), 04017028. https:
//doi.org/10.1061/(ASCE)EM.1943-7889.0001240

Ching, J., & Phoon, K.-K. (2019a). Constructing Site-Specific Multivariate Probability Distri-
bution Model Using Bayesian Machine Learning. Journal of Engineering Mechanics,
145(1), 04018126. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001537

75

https://doi.org/10.1007/BF02089242
https://doi.org/10.1007/BF02089242
https://doi.org/https://doi.org/10.1016/j.cageo.2008.02.025
https://doi.org/https://doi.org/10.1016/j.cageo.2008.02.025
https://doi.org/10.1016/j.petrol.2009.08.001
https://doi.org/10.1520/GTJ10794J
https://doi.org/10.1016/j.catena.2022.106148
https://doi.org/10.1061/AJRUA6.0001083
https://doi.org/10.1061/AJRUA6.0001083
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001108
https://doi.org/10.1016/j.strusafe.2011.12.003
https://doi.org/10.1016/j.strusafe.2011.12.003
https://doi.org/10.1139/cgj-2013-0353
https://doi.org/10.1139/cgj-2013-0353
https://doi.org/10.1139/cgj-2013-0262
https://doi.org/10.1139/cgj-2013-0262
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001236
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001240
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001240
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001537


References 76

Ching, J., & Phoon, K.-K. (2019b). Impact of Autocorrelation Function Model on the Probabil-
ity of Failure. Journal of Engineering Mechanics, 145(1), 04018123. https://doi.org/10.
1061/(ASCE)EM.1943-7889.0001549

Ching, J., & Phoon, K.-K. (2020). Constructing a Site-Specific Multivariate Probability Distri-
bution Using Sparse, Incomplete, and Spatially Variable (MUSIC-X) Data. Journal of
Engineering Mechanics, 146(7), 04020061. https://doi.org/10.1061/(ASCE)EM.1943-
7889.0001779

Ching, J., Phoon, K.-K., & Lee, W.-T. (2013). Second-Moment Characterization of Undrained
Shear Strengths from Different Test Procedures, 308–320. https : / /doi .org /10 .1061 /
9780784412763.025

Ching, J., Phoon, K.-K., Yang, Z., & Stuedlein, A. W. (2022). Quasi-site-specific multivariate
probability distribution model for sparse, incomplete, and three-dimensional spatially
varying soil data. Georisk: Assessment and Management of Risk for Engineered Systems
and Geohazards, 16(1), 53–76. https://doi.org/10.1080/17499518.2021.1971256

Ching, J., Wu, T.-J., Stuedlein, A. W., & Bong, T. (2018). Estimating horizontal scale of fluctu-
ation with limited CPT soundings. Geoscience Frontiers, 9(6), 1597–1608. https://doi.
org/10.1016/j.gsf.2017.11.008

Ching, J., Yoshida, I., & Phoon, K.-K. (2022). Comparison of trend models for geotechnical
spatial variability: Sparse Bayesian Learning vs. Gaussian Process Regression. Gond-
wana Research. https://doi.org/10.1016/j.gr.2022.07.011

Crawford, M. M., Bryson, L. S., Woolery, E. W., & Wang, Z. (2018). Using 2-D electrical
resistivity imaging for joint geophysical and geotechnical characterization of shallow
landslides. Journal of Applied Geophysics, 157, 37–46. https : / / doi . org / 10 . 1016 / j .
jappgeo.2018.06.009

Das, S., Samui, P., Khan, S., & Sivakugan, N. (2011). Machine learning techniques applied to
prediction of residual strength of clay. Open Geosciences, 3(4), 449–461. https://doi.
org/10.2478/s13533-011-0043-1
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