
D
el

ft
U

ni
ve

rs
ity

of
Te

ch
no

lo
gy

Control of Flexible
Floating Islands
Theoretical Framework for the Control of Flexible
Floating Structures

Master of Science

Kareem El Sayed



Control of Flexible
Floating Islands

Theoretical Framework for the Control of
Flexible Floating Structures

by

Kareem El Sayed

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Tuesday November 12, 2024 at 02:00 PM.

Student number: 5110777
Project duration: February 12, 2024 – November 12, 2024
Thesis committee: Dr. O. Colomès, TU Delft, supervisor & examiner

Dr. S. Agarwal, TU Delft, supervisor
Dr. E. Lourens, TU Delft, examiner

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Preface

This work is the culmination of over a year of ideas on implementing control in offshore structures.
What began as a challenging suggestion from my supervisor, Oriol, during a lecture ultimately
led me to take a control course and successfully apply these concepts. I am proud to present
this work, where I met the challenge within a year starting with zero knowledge.

I would like to extend my gratitude to Oriol and Shagun, with whom I worked closely throughout
this project. During my research internship at the start of my second year, they were incred-
ibly supportive and accessible, enabling me to extend my research into a publishable paper
alongside this thesis. Though it was a time-intensive challenge to manage two researches, their
assistance and encouragement kept me motivated. I am also grateful to Eliz-Mari for her valu-
able feedback and her time as a member of my thesis committee. I would also like to thank
my friends who were working on their theses at the same time. The feedback and support we
shared were invaluable throughout this journey.

Finally, I would like to thank my family for their support and care.

Kareem El Sayed
Delft, November 2024

i



Summary

In this study, we establish a foundational framework for controlling flexible floating structures
by integrating state-of-the-art Model Predictive Control (MPC) with a high-fidelity Finite Element
model representing these structures. Our specific objective is to enhance the stability of floating
structures in offshore engineering applications. We commence with a comprehensive literature
review to identify potential challenges, which informs the development of a well-structured re-
search plan that addresses these challenges comprehensively.

From the insights gained during the literature review, we formulate a theoretical framework
that serves as the basis for our methodology. We subsequently examine two distinct control
scenarios—regular and irregular wave conditions—serving as a Proof of Concept, and we dis-
cuss the significant observations derived from these experiments. In conclusion, we summarize
our findings and provide recommendations for future research directions.

We utilize a two-way monolithic Finite Element formulation of the flexible floating structure as a
representation of the real-world system we aim to control. For our control strategy, we implement
Model Predictive Control, which facilitates the incorporation of advanced functionalities, includ-
ing the application of constraints. To enhance computational efficiency, we employ a Reduced
Order Model (ROM) through Dynamic Mode Decomposition with Control (DMDc), trained using
open-loop data derived from the Finite Element model. Additionally, we implement a Kalman
filter to reconstruct the system’s state from sparse and noisy measurements obtained from the
floating structure.

We design two Reduced Order Models specifically for controlling the floating structure under the
aforementioned conditions. Prior to executing the control strategies in these distinct scenarios,
we conduct an in-depth investigation of DMDc, exploring its relationship with Koopman theory.
We generate open-loop data free from pollution using the Finite Element model, which is sub-
sequently utilized to derive the Reduced Order Model. A convergence study is performed by
analyzing the eigenvalues and amplitudes of the DMDc, following methodologies established
in prior research. We validate the DMDc models against validation datasets, allowing us to se-
lect the model exhibiting the smallest validation error. Furthermore, we ensure that the training
datasets inherently encompass the wet modes by employing Proper Orthogonal Decomposition.

Our initial control scenario involves managing the floating structure under regular wave condi-
tions. This case is pivotal for acquiring fundamental insights into the control mechanisms. We
observe that the frequency of the control input aligns precisely with the excitation frequency.
Subsequently, we extend our study to encompass the control of the floating structure in irregular
wave conditions, characterized by a sea state defined by the JONSWAP spectrum. Consistent
with our findings from the regular wave scenario, we discover that the control mechanism exploits
the natural frequencies of the floating structure, which closely correspond to the energy-dense
region of the sea state’s spectrum. This is achieved by amplifying the reflected wave, thereby
counteracting the incoming wave and reducing energy input into the system.

In conclusion, we advocate for further research to bolster the proposed method by examining
various structural properties and wave environments, thereby providing robust evidence to vali-
date the approach presented in this study. Our findings indicate that the integration of advanced
control strategies, such as MPC and DMDc, holds significant promise for optimizing the perfor-
mance and stability of flexible floating structures in dynamic offshore conditions.
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Nomenclature

Abbreviations

Abbreviation Definition

MPC Model Predictive Control
ROM Reduced Order Model
FEM Finite Element Method
WEC Wave Energy Converter
POD Proper Orthogonal Decomposition
DMD Dynamic Mode Decomposition
DMDc Dynamic Mode Decomposition with Control
RNN Recurrent Neural Network
CFD-FEA Coupled model with Computational Fluid Dynamics

and Finite Element Analysis
FSI Fluid-Structure Interaction
DoF(s) Degree(s) of Freedom
SINDy Sparse Identification of Nonlinear Dynamics
MLP Multilayer Perceptron
LMPC Linear Model Predictive Control
NMPC Non-linear Model Predictive Control
QP Quadratic Programming problem
SVD Singular Value Decomposition

Symbols

Symbol Explanation

Θ Total DoFs of the two-way monolithic FEM.

η DoFs of the structure deformation of the monolithic
FEM model.

ϕ DoFs of the linear velocity potential of the monolithic
FEM model.

κ DoFs of the free surface elevation of the monolithic
FEM model.

X Snapshot matrix containing the measured η from the
FEM model along the timespan of the simulation.

X ′ Shifted snapshot matrix by one time-instant.

Υ Snapshot matrix containing the applied open-loop
control signal on the FEM model.

x Full order representation of the structure deforma-
tion, i.e. the considered true state of the system
x = η.
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Symbol Explanation

x̂ Full order representation of the structure deforma-
tion within the controller, i.e. the estimated state of
the system.

u Control-input.

A System matrix of the DMDc model.

B System matrix of the DMDc model capturing the in-
fluence of the control-input on the state of the sys-
tem.

x̃ Reduced order representation of the structure defor-
mation η in the DMDc model, i.e. the estimated re-
duced order state of the system within the controller.

Ã System matrix of the Reduced Order DMDc model.

B̃ System matrix of the Reduced Order DMDc model
capturing the influence of the control-input on the re-
duced order state of the system.

y Noisy sparse measurements from the systemwe opt
to control.

ŷ Reconstructed sparse measurements estimated by
the controller.

v Process white-noise found in the system we opt to
control.

w Measurement white-noise found in the system we
opt to control.

D Selection matrix such that ŷ = Dx̂

p̂ The full-order signal that is intended to follow a spec-
ified reference trajectory.

p̃ The reduced-order signal that is intended to follow a
specified reference trajectory.

r The full-order representation of the reference trajec-
tory.

r̃ The reduced-order representation of the reference
trajectory.

C Selection matrix such that p̂ = Cx̂.

G Augmented system matrices such that G ≜ [AB].
Ω Found in two contexts. Context 1: Ω represents the

2d fluid-domain of the FEM model. Context 2: Ω
is the augmented matrix containing the data of the
state measurements and the induced control inputs
such that Ω = [X Υ]

⊤.

Û State-transformation matrix to go from full-order
space to reduced order-space, such that x ≈ Û x̃.

r̃ Truncation level of the SVD for the augmented input
data Ω.

r Truncation level of the SVD for the output snapshot
matrix X ′.
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Symbol Explanation

Λ Eigenvalues of the system matrix A.
Φ Dynamic modes of the DMD(c).

b Amplitudes of the dynamic modes of the DMD(c).

Ns Number of snapshots considered in the DMDc train-
ing data.

Q Process noise covariance matrix.

R Measurement noise covariance matrix.

Kk Adaptive Kalman filter gain.

P Error covariance matrix of the difference between
the true state and estimated state of the system.

F Controller gain.

Nc The control horizon in the MPC is used to forecast
the system’s behavior over a specified future period.

Q Weight to the emphasize the tracking performance
of the controller, i.e. prioritizing alignment of the sig-
nal p̂ with the reference trajectory r.

R1 Weight to fine-tune the smoothness of the control sig-
nal by penalizing the changes in the control signal.

R2 Weight to penalize the magnitude of applied the con-
trol input.

M Forecasting matrix used to project the current esti-
mated reduced-order state, x̃k, into the predefined
control horizon.

C Forecasting matrix used to project the control-input,
uk, into the predefined control horizon.

J Cost/Objective function of the MPC.
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1
Introduction

This chapter introduces the thesis by discussing the context of the research. There we will pro-
vide general information needed before preceding. We then present the background information
regarding the study itself followed by the objectives we opt to fulfill. At the end of the introduction
we present the structure of the thesis.

1.1. Research context

In the world of offshore engineering there is a high urgency for constructing floating structures.
Floating structures are, as the name says. structures that exist fully on the surface of the water.
Often times these structures are moored to the sea-ground to ensure there steady place. As
there is less space for nature and humans on land this can provide numerous opportunities in
the nearby future. Moreover, floating offshore structures enable us to deploy renewable sources
with huge potential. This can assist in the transition from fossil energy to green energy.

An example is the deployment of so-called floating photovoltaic structures, or simply said, float-
ing solar panels. Multiple feasibility studies have been carried out and are still being carried
out [14, 15] which emphasize the big interest in such structures. A new innovative type of off-
shore structure is currently being studied by multiple research institutes and start-ups and that
is the so-called Wave Energy Converter (WEC). Wave Energy Converters are usually floating
structures that are able to harvest the wave energy from offshore waters from the mechanical
excitation induced in the structure. These WECs come in different shapes and size but often
they are designed as point absorbers. Point absorbers are often designed as floating buoys
with a generator, often fixed to the sea bottom, that capture the oscillating wave energy using
a mooring connection between the buoy and the generator. To be able to capture a large span
of wave energy one would have to deploy an array of multiple point absorbers [20]. These type
of WECs are considered relatively easy to model and have been tested extensively. A visual
representation of the various forms of floating structures can be seen in Fig. 1.1.

A more convenient way to capture wave energy is by deploying so-called floating visco-elastic
membranes that are made of dielectric or piezoelectric material, enabling to transform mechan-
ical energy into electrical energy [5]. This type of WEC has been modelled using the Finite
Element Method [3] and shows big potential when optimizing the membrane’s properties to max-
imize its energy output [12].

However, this in contrast to point-absorbers, has not been tested in a large scale environment.
A second challenge that arises in these kind of structures is the two-way interaction between
structure and fluid [32], often difficult to model using analytical models. A third challenge which
may occur in practice is the fact that the mooring of these floating structures can be subject to

1



1.2. Research background 2

high thrust forces induced by the incoming waves. However, we can say to a certain extent that
floating structures have big potential in various forms if the challenges can be dealt with.

Figure 1.1: A depiction of the various forms of floating structures. All the floating structures in this figure have
approximately the same order of magnitude regarding the length but vary strongly in the order of magnitude regarding
the height. This shows to a great extent the broad range of flexibility found in floating structures. a) A floating landing

strip (height ∼ 100 m) [38] ; b) Floating Photovoltaic Structures (height ∼ 10−1 m) [44] ; c) Floating viscoelastic
membrane as breakwater (height ∼ 10−2 m) [3]

1.2. Research background

Civil engineers often tend to design structures that are passively controlled. Examples are float-
ing wind turbines that are moored to the seabed. Passive control means that we do not apply
any kind of (active) input to the structure, instead we design the structure such that, if it is safely
designed, always go back to a stable position. The problem in this is approach is that offshore
floating structures tend to deviate relatively more with respect to this stable position in compar-
ison with onshore structures. In this study we opt to design an active control strategy to deal
with the numerous challenges described earlier. Active control is the technique where we use
measurements from the environment and structure such that we can then find a control input to
manipulate the behaviour of the structure to our liking. Active control is widely used in all-day
dynamical systems, from the optimization of financial portfolio’s to autonomous driving vehicles.
The concept boils down to the following: perform an online optimization of an objective function
to find the current control input subject to constraints.

Multiple studies have been done studying the active control of floating structures using differ-
ent types of control input. In the general context of floating beam structures we find literature



1.3. Research objectives 3

investigating boundary control, that is the control input acts on boundaries of the floating struc-
ture, to minimize the vertical vibration of the floating structure [49]. In a different study, not related
to floating structures, we find modal-based control of multibody very flexible structures [27]. In
this study they investigated the control of flexible beam like structures that are connected with
hinges. It is shown that flexible structures containing hinges have highly nonlinear dynamics. A
closely related study to a control strategy in the context of floating structures has shown great
potential by implementing stiffness-adjustable hinges in the floating structure [47].

However, in these studies we do not find the controllers to be implemented in a multi-physical
context, that is taking the two-way interaction between the fluid and structure into account. It
is common practice to use classical control theory as long as that is possible. However, to be
able to use classical control theory a deep understanding of the model is required. Classical
control theory often requires state-space models that are formulated in continuous time-domain.
A commonly used control strategy known for its robustness is the so-called Model Predictive
Control (MPC). Model Predictive Control is considered to be state-of-the-art technique that al-
low us to design a controller for multi physical problems. We will thereby implement the MPC
in combination with a Finite Element Model such that we can present a reliable control strategy
for a coupled problem taking the fluid-structure interaction into account. Different studies have
proven the effectiveness of control in combination with Finite Element Models [11, 7]. This raises
multiple challenges including computational demands that may not be feasible for online control.

In the world of control we often make use of so-called Reduced Order Models, most commonly
denoted as ROM. ROMs are accurate representations of the full-order model using as few de-
grees of freedom by reducing the full-order dimensionality, hence its name. A wide range of
techniques, spanning from the mathematically well-understood Proper Orthogonality Decompo-
sition (POD) [50] to data-driven methods like employing Machine Learning through a reduced-
order Recurrent Neural Network-Model Predictive Control (RNN-MPC) [45], can achieve this
objective.

1.3. Research objectives

Floating structures encapsulate a wide range, each with their own specific characteristics. How-
ever, in this study we opt to use a general formulation applicable for the described structures
earlier. We will consider the floating structures as floating beams. In the context of the wide
range of functionalities accompanied with floating structures we find multiple objectives that can
be reached with control. However, in this study we limit the scope by testing our control frame-
work for the following objective:

1. To enhance serviceability conditions and minimize the wear of structural elements, the
dynamic response of the floating structure should be reduced.

By defining new objective functions and introducing new kind of control inputs we can consider
different cases. Hence, we define our primary aim as follows

Primary Aim

The aim of this study is to develop a framework and evaluate a control strategy for flexi-
ble floating structures by integrating Model-Predictive Control (MPC) with a Finite Element
Model (FEM), with the goal of optimizing the performance and stability of flexible floating
structures in offshore engineering applications.
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To be able to achieve this aim we first have to find answers to the following research questions

1. Exploring Existing Studies and Methodologies

(a) What are the existing methodologies employed in controlling flexible floating struc-
tures, especially regarding the excitation of the structure with the free surface eleva-
tion?

(b) What insights can be derived from previous studies utilizing MPC and discrete time-
integration scheme in the context of large-scale structures and dynamical systems?

(c) How does the use of MPC in controlling boundaries or stiffness-adjustable hinges
impact the performance and stability of flexible floating structures?

2. Practical Implementation and Feasibility:

(a) What are the practical implications and challenges of implementing MPC within the
context of controlling flexible floating structures?

(b) How feasible is the integration of MPC within a general framework for flexible floating
structures, considering the complexity of different structural characteristics?

3. Optimization and Control Objectives for Floating Structures:

(a) How can MPC be adapted/implemented to achieve different control objectives, such
as reducing the dynamic responses?

(b) How can Reduced Order Models (ROMs) be implemented to enhance the efficiency
and effectiveness of online control systems in dynamic environments?

With this approach we would like to fill the research gap regarding the fact that no literature
has been found that implemented MPC to control flexible floating structures in a multi-physical
context. The multi-physical formulation is able to mimic the reality more accurately since we
consider more aspects of the entire model. In case of successful implementation of MPC to
the multi-physical formulated problem we hope to show the big potential of controlling flexible
floating structures.

1.4. Structure of the thesis

This thesis is structured as follows: in chapter 2 we present a comprehensive review of the
considered theory found in existing literature on Model Predictive Controlled (flexible) floating
structures and the integration of MPC with Finite Element Modelling. Moreover, we explore liter-
ature about the use of reduced order modelling in the case of online optimization. We will then
precede to chapter 3 where we discuss the relevant factors influencing the research including
a detailed explanation of the independent, dependent and confounding variables. We will then
combine all the required components into one framework depicting the inter-dependencies be-
tween the separate components. There we assess each component and discuss the limitations
of the components and the effects of the found inter-dependencies. In chapter 4 we describe
the used (mathematical) framework to describe the implementation of the online MPC. In 5 we
present the obtained results and findings and we discuss these results and findings. We finally
wrap up the thesis in chapter 6 where we conclude the research and give insights and recom-
mendations for future work related to this study.
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Figure 1.2: Comparison of a flexible floating structure with and without actuation at the joint. a) The floating structure without an actuator at the joint shows passive response to the incoming
wave. b) The floating structure with an actuator at the joint demonstrates active control, allowing for adjustment in response to the incoming wave. The actuator enables more precise control of

the structure’s motion, potentially improving energy absorption or reducing unwanted motion in wave conditions.



2
Literature Review

In this chapter we present a brief overview of the theory found in the literature regarding the
essential topics that are part of this study. In the first section 2.1 we discuss the variety of
floating structure models found in literature. We then continue to section 2.2 to discuss the
control strategies of floating structures and how these are effectively deployed to achieve the
control objectives. In section 2.3 we discuss the opportunities and challenges when combining
a control strategy within a Finite Element Model. Subsequently, we explore the opportunities of
reduced order modeling in section 2.4 to achieve feasible control strategies. In section 2.5 we
introduce the control theory we opt to implement to reach maximum performance. Finally, we
discuss optimization techniques in section 2.6 to determine which optimization algorithms are
the most suitable for this study.

2.1. Modeling of (flexible) floating structures

Before diving into the control of (flexible) floating structures we need to understand how these
structures are modelled in the literature. Floating structures are a hot topic for years and there-
fore a broad range of studies have been carried out exploring the modeling techniques of these
relatively complex structures. In the literature we find three main modeling methods, each with
their advantages and disadvantages.

2.1.1. CFD-FEA method
In the broad context of floating structures we should consider floating structures that have com-
plicated components. An example are the so-called Large multi-body-floating offshore structure
[31] usually found in the design of offshore ports [31]. Although the structure may seem to be
very large and rigid, they are mainly modelled as extremely flat and flexible due to their extreme
lengths and relatively small heights. As can be seen in Fig. 2.1 these multi-body floating struc-
tures consist of multiple substructures (partially) submerged under the waterline separated by
equally distanced spacing. Because of the relatively small size of the floating substructures
compared to the entire structure we find strongly nonlinear phenomena [31].

A possible approach to model these type of floating structures is by coupling a Computational
Fluid Dynamics model with a Finite-Element Model [31]. This proposed method uses commer-
cial software to model and calculate fluid quantities, such as pressure and shear forces in the
fluid domain, using the finite volume method. Subsequently, these quantities are applied to the
floating structure in a finite-element model using again a different commercial software. These
quantities will therefore influence the velocities and acceleration of the nodes in the structural
Finite-Element Model. Having obtained the deformations of the structure this will then be re-
turned to the CFD software to update the pressure field and the velocity field used in the next
time-step. Similarly, the FEM now has the velocities and accelerations of the nodes that are

6
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Figure 2.1: A possible cross-section of a multi-body floating structures. [31]

used to compute the next time-step dynamics. A clarifying scheme can be found in Fig. 2.2.
According to the conducted study that proposed this method, they were able to fully consider
the non-linear two-way interaction between the elastic structure and fluid. They were even able
to capture phenomena such as wave overtopping [31]. Although this method is able to capture
complex nonlinear behaviours, one should realize that in the context of control we usually want
to use a model that is as simple as possible, yet complex enough to be used in practice. One
could therefore consider this implementation of this method as a realistic ”plant” that is controlled
by the use of a simpler model. In this study we will mainly focus on obtaining the simpler model
we can use to control floating structures.

Figure 2.2: Proposed CFD-FEA framework to model complex nonlinear behaviour of VLFS. [31]

2.1.2. Two-way decoupled FSI analysis
A different approach for modeling floating structures is by decoupling the fluid-structure interac-
tion problem into two problems: a hydrodynamic problem used for the modeling of the fluid and
a mechanical problem used for the modeling of the structure [9]. Similarly to subsection 2.1.1
we consider the small ratio of height to horizontal dimensions, forcing us to model the floating
structures as (large) flexible structures taking the hydro-elastic behaviour into account. How-
ever, contrary to subsection 2.1.1 this method uses the linear hydro-elastic theory of floating
structures, introducing the following assumptions [9]:

Assumption 1 The flow within the fluid-domain Ω is considered to be incompressible, inviscid
and irrotational. This corresponds to the Linear Potential Flow Theory.

Assumption 2 The floating structure is considered to be homogeneous and shows linear be-
haviour.

Assumption 3 The transverse displacement of the structure and steepness of the incident wave
are considered small, and there is no significant surge displacement.

In the proposed method they used the modal expansion method to decouple the fluid-structure



2.1. Modeling of (flexible) floating structures 8

Figure 2.3: The problem setting: bottom figure is the side view showing the fluid domain with an incident wave
heading to a floating beam; the upper figure shows an incident wave with defined by an attack angle heading to a

rectangle plate floating on the fluid domain. [9]

interaction. However, the structural analysis of the floating structure has been done using the
dry-modal functions of the structure. It has been shown that this can lead to incorrect model-
ing of the fluid-structure interaction [3], since the added mass can highly influence the natural
frequencies of the flexible floating structures. Hence, this method offers simplicity but neglects
the essential added-mass contribution to the fluid-structure interaction, which may be crucial in
controlling floating structure. Furthermore, the authors propose a new wave-generation model,
which they call NewWave model [9]. This model is used to generate focused wave groups such
that realistic extreme sea states can be simulated.

2.1.3. Two-way monolithic FSI analysis
The following approach may be considered as the compromising method between the two previ-
ously mentioned methods. In this method the two-way interaction between the floating structure
and fluid is modelled using a monolithic formulation [33]. This monolithic formulation enables
us to model the considered problem as a mixed-dimensional problem and to solve this mixed-
dimensional problem without the use of an iterative algorithm or using a partitioned scheme, as
has been done in the methods described in 2.1.1 & 2.1.2. This approach therefore inherently
takes the wet-modal response of the floating structure into account, which is a major advantage
compared to the method described in section 2.1.2. Similarly, this method uses the same as-
sumptions made in section 2.1.2 which makes it therefore unable to capture complex nonlinear
wave behaviour. However, in the context of control this method is relatively simple but yet able
to capture the wet-modal behaviour of the structure. Furthermore, because of the monolithic
formulation it is computationally convenient to use in combination with optimization techniques.
The used problem setting can be found in Fig. 2.4.

Figure 2.4: The proposed problem setting depicting a floating structure with a rotational spring floating on the surface
of the fluid domain Ω with an incident wave causing the excitation of the floating structure due to the boundary and

interface conditions of the monolithic mixed-dimensional formulation of the problem. [33]
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2.2. Control strategies

Floating structures are complex structures that deserve special treatment when studying a con-
trol strategy. First, we investigate the literature found which implements MPC for the control of
dynamical systems that have a large number of degrees of freedom. This is necessary to obtain
valuable insights such that we can anticipate on possible challenges. We will then mainly look
into two things: possible control inputs, and their performances in the literature, and measure-
ment strategies used in the control scheme.

2.2.1. Control of high-dimensional dynamical systems
Different studies have implemented control for high-dimensional dynamical systems, demon-
strating the possibility to successfully control such systems.

A similar study to ours, although a different system, is the control of soft-robots. The modeling
of soft-robots often require the use of Finite Element Models because of the high non-linear be-
haviour and complex geometries encountered in such systems. Therefore, one will deal with the
Degrees of Freedom of the FEM as the states of the system. In a previous study they managed
to control soft-robots, described by 9768 DoFs as its states, by implementing a Reduced Order
Model Predictive Controller [41].

Since in this study we will be considering the control of flexible floating structures, we find a
good amount of inspiration from such studies. Therefore, later on in the literature study, we
will be presenting possible techniques to find such Reduced Order Models of high-dimensionsal
systems.

2.2.2. Control inputs
In the literature we find three interesting types of control inputs: boundary control using actuators,
the use of stiffness-adjustable springs and the control of the mooring stiffness.

Boundary control

A possible and effective way of controlling floating structures is by actively controlling its bound-
aries. This can be done by the use of (pneumatic) actuators. It has been shown that the active
control of the boundaries of a floating structure, those are the upstream and downstream ends of
the structure, resulted in significant reduction of the hydro-elastic response [49]. This enhanced
the serviceability of the structure. However, this active control technique was mainly effective
at suppressing the floating structure’s motion at the ends and severe vibrations could still be
observed in the middle of the structure. This could however be solved with the use of passive
control. Energy dissipation device where installed between the ends of the floating structure to
absorb the energy from the incident waves [49].

Stiffness-adjustable springs

Floating structures are often designed as multiple modules, each can be modelled as a beam
structure, connected by hinges. As depicted in Fig. 2.4 these hinges can be modelled as rota-
tional springs with linear rotational stiffnesses. The idea is to control the structure by imposing
control forces delivered by an actuator that is hydraulically driven [47]. This is proven to be ef-
fective and has the benefit of having small output requirements compared to thrust generation
forces as control input [47].

Mooring control

An approach that has not been studied closely as the previous two control-input strategies is the
control of the mooring line. The control mooring lines in the context of floating structures can
be challenging due to the fact that mooring lines in reality exhibit highly non-linear behaviour.
Only when the mooring is deployed as a taut cable we can often observe linear behaviour which
can then be modelled as a spring with translational stiffness. We find inspiration for this type of
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control in the control of mesh reflector antennas [48]. Mesh reflector antennas are membrane
like structures often installed in satellites. The surface of these membranes have to be controlled
to exhibit desirable electromagnetic behaviour. In these cases we find that the membrane can
be controlled by active cables consisting of piezoelectric actuators. These type of cable can
therefore in a sense be compared to taut mooring that can be specifically deployed in cases of
very thin floating structures, such as visco-elastic membranes [3]. Unfortunately, no literature
has been found implementing this type of control in the context of flexible floating structures. It
is therefore difficult to draw conclusions on the performance of this type of control.

Figure 2.5: An illustration of possible control-inputs. a) Boundary control using (penumatic) actuator at the boundaries
of the VLFS. [49] b) Stiffness-adjustable actuators connecting separate modules of the VLFS. [47] c) Inspiration for the

control of linear mooring systems. [48]

2.2.3. Measurement strategies
An important aspect in control are measurements we conduct to gather information from the
surrounding environment. The driving force of floating structures is primarily from the incident
waves. In the context of control of WECs we find that the upstream measurements are often
limited in size by deploying a small number of probes in the spatial domain [40]. However, in
this study we opt to control the floating structure using a small number of probes only located
on the floating structure. We hypothesize that to control the structure, especially if the structure
has large inertia, it is sufficient to know its deformation. This hypothesis will be justified later in
the report.

Figure 2.6: Top-view of the problem setup used in a competition to control a point-WEC. The yellow colored circle
represents the point-WEC where a total of four wave-probes, denoted as WP in the figure, are used to gather

upstream and even parallel wave measurements for the control strategy. [40]
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2.3. Optimal control with Finite Element Models

To efficiently and accurately control floating structures we need a good model taking the fluid-
structure interaction into account. These models are often difficult to formulate using analytical
solutions or even semi-analytical solutions, let alone control using these type of formulations.
A more convenient method in this case is to implement control in combination with a Finite
Element Model system. In this section we explore the opportunities and difficulties arising in the
implementation of this approach.

2.3.1. Time-stepping in Finite Element Method
In order to understand the main method let us define a general mathematical framework for the
problemwe are dealing with. As described abovewewill be dealing with amulti-physical problem
where we are concerned with the deformation of the structure, the linear velocity potential and the
free surface elevation, denoted as η(x, t), ϕ(x, t) and κ(x, t) respectively. Let us now combine
all these quantities of interest into one vector θ.

θ =

η(x, t)ϕ(x, t)
κ(x, t)

 (2.1)

In control problems we are mostly dealing with the behaviour of the system in the time-domain.
In the continuous case we can write a generalized PDE that when solved describes the coupled
behaviour of our quantities of interest.

f(θ̈, θ̇,θ) = fext (2.2)

In such a case, we are dealing with a system of coupled non-linear PDEs having a source term
on the right hand-side. To be able to solve this PDE we first will need to solve this PDE in space
using the Finite Element Method where we approximate our quantities of interest in Eq.2.1 using
the Finite Element functions such that η(x, t) ≈ ηh(η(t), u(x)), κ(x, t) ≈ κh(κ(t), v(x)) and
ϕ(x, t) ≈ ϕh(ϕ(t), w(x)). In simple terms, we approximate our unknown quantities in Eq.2.1
using a discretized mesh of the domain where we solve a system of equations obtained from
the governing equations such that we find the degrees of freedom associated to each discretized
cell. Now using the basis functions [w, v, u] we can interpolate between each cell to form the
approximated fields of our unknowns. However, note that in Finite Elements we are mainly
solving for the degrees of freedom since the basis functions are predefined. For full derivation
see ??. To solve the problem in time we can then ”march” our quantities of interest through the
discretized time-domain using the initial conditions. Now let us consider the following vector that
describes the discretized quantities of interest in space such that

Θ =

ηϕ
κ

 (2.3)

That is we have a vector containing the stacked DoFs of interest. Using the governing equation
we construct a second-order dynamic equation such that

MΘ̈k+1 + CΘ̇k+1 +KΘk+1 = fextk+1 (2.4)

Such systems can be solved in time using a time-integration scheme such as the Newmark-β
scheme [33, 7]. We can then rewrite the system of Eq. 2.4 in a first-order state equation such
that we can impose a control-input uk on the system.

Θk+1 = f(Θk,Θk−1, Θ̇k−1, Θ̈k−1,uk) (2.5)

In this notation we have our subsequent solution Θk+1 that can be computed using the current
solution Θk and the previous solution Θk−1, accompanied with its time derivatives up to the
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second order, and the control input uk. Now to compute this control input we will be making
use of a Model Predictive Controller since the coupling between the quantities of interest can be
difficult to comprehend. We find that a Model Predictive Controller is robust and often effective
in such cases. However, we first need to find a simpler representation of the FE model which
we can use in our MPC.

2.4. Reduced Order Modeling (ROM)

Model Predictive Control, or control in general, prefers low-dimensional systems for feasibility
and computational-efficiency reasons. Therefore, using a full Finite Element Model in the con-
troller can be very disadvantageous for these obvious reasons. Implementing Eq. 2.5 directly
as our model in the controller will reduce the computational speed significantly, especially if the
used Finite Element Model has a high resolution for convergence reasons. Instead, we opt for
a so-called Reduced Order Model, commonly known as ROM. A Reduced Order Model (ROM)
captures the most dominant behaviour of a dynamical system using less degrees of freedom
found in the state-description. In this chapter we discuss which techniques are found in the
literature to obtain a ROM from high-dimensional systems.

2.4.1. RNN-MPC
Artifical Intelligence is currently being used in various cases. Hence, we find multiple studies
where Neural Networks in the form of auto-encoders are used tomap high-dimensional problems
onto a latent-space resulting in a ROM. In the study done by [45] they developed an auto-encoder
mapping the states of a non-linear problem onto a latent-space. This is using data obtained from
an open-loop simulation where a control-action was induced on the system. By doing this one
can obtain data to feed to an auto-encoder to learn this simpler latent-space describing the
highly non-linear process. Additionally, they used a so-called Recurrent Neural Network (RNN)
to capture the temporal dynamics of the system.

Figure 2.7: An auto-encoder Multi-Layer Perceptron (MLP) coupled to a RNN to learn the dynamics of
high-dimensional system. [45]

In order to make use of the RNN-MPC we need to have data of our states and the corresponding
control inputs. The ROM in Fig. 2.7 is built such that we feed the MLP the full-state to encode it
using a non-linear encoder function such that

xr = fe(x) (2.6)

where xr is the latent-space of the state. In the RNN we add the corresponding control input
such that RNN learns that the current state and its corresponding open-loop control input result
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in the latent future states x̃r. Having trained the RNN to successfully predict the future states
in time we can then decode this latent future state to the full-dimensional future state y using a
non-linear decoder such that

y = fd(xr) (2.7)

Neural Networks are known for their robustness and can capture highly non-linear behaviour
by only using data. This is because Neural Networks in theory can map any input to any out-
put by training any function, this is in accordance with the universal approximation theorem.
However, this results in the main disadvantages of Neural Networks. The complexity of Neural
Networks often lead to black-box models. Neural Networks are dependent on various hyper-
parameters, such as the activation functions and the depth of the network. Each different set of
hyper-parameters will result in a different model. This makes it often difficult to find any physical
meaning in the ROM.

2.4.2. SINDy auto-encoder with control
A similar to RNN-MPC but more interpretable approach would be the implementation of a SINDy
auto-encoder with control. SINDy stands for Sparse Identification of Nonlinear Dynamics. This
method, as it name says, opts to discover the governing equations of the data using the fewest
terms as possible [22]. The SINDy auto-encoder uses aMLP to obtain a latent-space z as can be
seen in Fig.2.8. We can thenmake a so-called library of terms that we construct using knowledge
about the considered problem. By constructing a loss function that takes the reconstruction error
of the auto-encoder and the SINDy loss we can find interpretable governing equations depicting
the relation between the dynamical system and the control input. These governing equations
can be considered as the ROM and could be directly implemented in the MPC.

Figure 2.8: A) The auto-encoder mapping the high-dimensional input x to a latent-space z. B) A SINDy model where
the matrix ΞT is learned such that the fewest terms in the matrix Θ(Z,U), where U is the control input from the data,

can construct a ROM in the form of Ordinary Differential Equations. [22, 21]

SINDy is a strong method that is proven to be able to model highly non-linear dynamics. How-
ever, SINDy is highly influenced by the library containing the candidate terms and thus depends
on the knowledge of the system. Moreover, the implementation of SINDy can be error prone
because it requires a tedious workflow.

2.4.3. DMD with control (DMDc)
In both previously mentioned methods the use of Neural Networks was inevitable. This reduces
the ability to work with a ROM that can be expressed as in Eq.2.9 and Eq.2.10. Because we
are dealing with a problem containing fluid-structure interaction it is less convenient to consider
the dry-modes of the floating structure. In multiple structural analysis cases where FEM is been
used one would often compute the modes using the Modal Expansion Method. This would then
allow us to formulate a ROM using the orthogonality principle of the dry-modes. However, be-
cause we are opting for a formulation using the wet-modes, since they capture the behaviour
involving the fluid-structure interaction due to the added mass and added stiffness, this will not
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be possible. This is due to the fact that wet-modes are not orthogonal to each other, which is a
prerequisite in the Modal Expansion Method. However, it is still possible to obtain a ROM by the
use of the so-called Dynamic Mode Decomposition (DMD) method. This is a data-driven method
relying on snapshots obtained from, in this case, numerical simulations [18]. This method allow
us to obtain a ROM expressed in the dynamic modes instead of the high-dimensional full model
as described in Eq.2.5. Contrary to the Modal Expansion Method we now obtain dynamic modes
that may not be orthogonal to each other. Additionally, the DMD returns temporal information
depciting the growth and decay rate of the modes in the system.
Since we are dealing with control we have to consider the closely related method which is Dy-
namic Mode Decomposition with control [23]. By defining a control input we can obtain data from
the full FE-model. We then split this data into three parts: the ”current” state xk, the applied con-
trol input uk and the ”future” state xk+1. Mind that the ”future” state is simply the ”current” state
shifted by one time instant. As can be seen in Fig. 2.9 these measurements are then assembled
into three matrices:X, X ′ and Υ.

Figure 2.9: The principle of DMDc is applicable for different experiments. In this study the data will be obtained from a
numerical model, namely the FE-model. [18]

There are two main uses of DMDc. The first use is system identification. This is primarily used
when the underlying model is highly non-linear or the underlying model is completely unknown.
Using DMDc we are able to find a state-space model of the form found in eq. 2.9. The second
use, which is more interesting for this study, is the construction of a ROM. The underlying model
in this study is known through our FE-model and the governing equations. However, we would
like to find a ROM expressed in its dynamic modes such that we have the following ROM

x̃k+1 ≈ Ãx̃k + B̃uk (2.8)

where the state x̃ is the reduced-order state. A similar study has applied this method to a 3D
FE-model controlling the temperature of a 3-dimensional domain using thermal actuators [10].
A full FE-model of the heat equation is used to produce open-loop simulations. In this study they
succeeded to obtain a ROM for the controller that was described using 28 states instead of the
original 98997 states of the FE-model.

2.5. Model Predictive Control

In Model Predictive Control (MPC) the control strategy involves calculating the current input to
the system by finding a optimum of a user-defined objective function at every sampling moment.
This process begins with the current system state as the starting point. By optimizing a defined
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performance index, an optimal sequence of control actions is determined. From this sequence,
the first control action is selected and implemented on the system [7].

Figure 2.10: A general visualization depicting the concept of a Model Predictive Controller. [26]

As described before we will be making use of a simpler representation of the system in our MPC
controller. In this study, we use system identification, which is a widely used technique in control
to capture the relation between the states of the system we want to control and the control input
imposed on the system. This can be done by experiments of the system or using data generated
from detailed simulations, in our case from the FEmodel. Specifically, we collect time-series data
of the system’s states and the corresponding open-loop control inputs. As depicted in Fig. 2.10
we have the actual true system we want to control and the MPC controller which contains a
model of the true system. It is important to understand that the actual exact dynamics of the
true system are unknown and that the model in the MPC controller is an approximation of reality
which we find using the identified reduced order system from the data.

2.5.1. True system
The true system in this study may be confusing and therefore we need to distinguish two type
of ”true systems”.

There is the actual true system, which in practice would be a real-life floating structure. For
obvious reasons we replace this real-life floating structure with a Finite Element model which
takes asmuch of the actual dynamics into account. In other words, the Finite Element model acts
as a very high-fidelity model of a real-life flexible floating structure. For this study we consider
the Finite Element model flawless, taking most of the complex dynamics of a real-life floating
structure into account.

Then there is our (data-driven) model which should describe the dynamics of this true system,
read Finite Element model, as much as possible. Moreover, since we are only interested in the
control of the floating structure we limit our state-space description by the consideration of only
the structure deformation. Hence, the state we consider from the true system, which is the FE
model as described before, can be assembled as x = η. We assume that the dynamics of the
floating structure behave in the following canoncial form

xk+1 ≈ Axk +Buk + vk (2.9)

yk = Dxk +wk (2.10)

where x(k) ∈ Rn, u(k) ∈ Rq and y(k) ∈ Rp represent the state, control action and the measured
outputs respectively [16]. The state-space matrices A and B will be obtained by the use of
system identification as mentioned before. Since it is practically impossible to know the exact
system’s behaviour, we add the process noise vk ∈ Rn to Eq. 2.10. We assume this process
noise to be white noise with a zero mean and a covariance matrix Qn×n [6]. The matrix D in Eq.
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2.10 resembles a selection matrix such that our measurements are a subset of the entire state
of the system. Moreover, for completeness, we assume that our measurements obtained from
the probes may be noisy. Therefore, we define the so-called measurement noise as wk ∈ Rp,
which again is assumed to be white noise with zero mean and a covariance matrix Rp×p [6]. In
control we often deal with limited measurements which are a function of the true state of the
system. It is important to realize that the Eqs. 2.9 and 2.10 are the assumed dynamics of the
system as depicted in Fig.2.10. Let us therefore derive the model in the MPC controller which
will be used for the computation for the control input that will act on the true system.

2.5.2. Observation (MPC) model
As mentioned before we do not have knowledge about the true state of the system we opt to
control. In other words, we have only access to sparse measurements obtained from the true
system from which we need to compute a control input, as depicted in Fig. 2.10. Hence, we
base our control input on an estimated state which is the state of the system according to the
controller.

In the field of control this is often called the observation model. We define this estimated state
by x̂. Moreover, having this estimated state we can then compute the estimated measurements
denoted by ŷ using the relation in Eq. 2.12. Let us now define the used model in the MPC
controller:

x̂k+1 ≈ Ax̂k +Buk +Kk(yk − ŷk) (2.11)
ŷk = Dx̂k (2.12)
p̂k = Cx̂k (2.13)

Note that we added a so-called observer gainKk which serves as an adaptive matrix that tries to
minimize the difference between the actual measurement yk and the estimated measurements
ŷk. The idea behind this is that by minimizing the error between the actual measurement and
the estimated measurements there should be convergence of the estimated state x̂ to the actual
state x. The derivation of the observer gain is dependent on the covariance matrices Q and R.
Moreover, we expand our system with the control variable p̂k, which is the signal we want to
follow a reference trajectory r. This will be derived later in the thesis.

2.6. Optimization techniques

One of the key-elements in Model Predictive Control is the optimization technique to find the
optimum control that maximizes the objective function. The type of optimization is essential in
determining the speed of the controller. However, the optimization procedure heavily relies on
the type of the model. There are two type of MPC methods that should be considered: linear
and non-linear MPC. Each type requires different optimization techniques.

2.6.1. Linear Model Predictive Control (LMPC)
We speak of a system that can be solved using a Linear Model Predictive Controller when we
have a linear model of the system without any inequality constraints and has a quadratic perfor-
mance index of the following form [6]

J(u, k) =

N−1∑
j=0

ẑT (k + j|k)Γ(j)ẑ(k + j|k) (2.14)

where the vector ẑ(k + j|k) denotes the prediction of z(k + j), which is a signal we want to
minimize, at time-instant k. The matrix Γ is a selection matrix that distinguishes the predicted
tracking error and predicted control effort terms found in standard performance indices, such as
theGeneralized Performance Index (GPC) and Linear Quadratic Performance Index (LQPC) [6].
In unconstrained or equality-constrained cases we can often find a closed-form solution without



2.6. Optimization techniques 17

iteratively conducting an optimization problem. This is favourable due to the fact that we can
instantaneously return a control input by finding a control law [6]. In such cases, we speak of a
LMPC. However, this is in most cases not possible since complex systems are almost always
constrained by inequality conditions, such as physical ones. Moreover, this approach is limited
to quadratic performance indices limiting us to these type of objective functions.

2.6.2. Non-linear Model Predictive Control (NMPC)
Non-linear Model Predictive Control is more common in practice but requires more sophisti-
cated optimization algorithms that are non-linear, i.e. we are not able to formulate a closed-form
control law that return the optimum control input without iterating. Non-linear Model Predictive
Controllers are required when one of the following is not satisfied [6]:

1. The optimization problem is convex, hence guarantying a unique solution.
2. In case of constraints, they should be solely equality constraints.

The biggest disadvantage that arises for these kind of optimization problems is the time-consuming
procedure while solving. This can be a major problem, especially if the considered system re-
quires high-frequency control. Since the optimization has to be carried out on-line this can be
a condition that is hard to satisfy. Let us consider two non-linear cases: inequality constrained
quadratic programming (QP) problems and general inequality constrained problems.

Inequality Constrained QP Problem

The quadratic programming problem can be defined as follows [6]

min
θ

J(θ) =
1

2
θTHθ + θT f + c (2.15)

s.t. Aθ ≤ b

which can be solved by the use of convex optimization algorithms such as [6]

1. The modified simplex method
2. The interior point method

General Inequality Constrained Problems

A general inequality constrained problem is where the objective function is any user-defined
function not necessarily of the quadratic form as described in Eq. 2.15. Hence, this general
problem can be defined as follows

min
θ

J(θ) (2.16)

s.t. Aθ ≤ b

which can be solved by the use of so-called non-linear programming (NLP) algorithms. For
NLP we find two types that are dominantly distinguished between in literature. The first type
are the so-called gradient-based optimization algorithms, where the gradient of the objective
function with respect to the control input should be analytically or numerically defined. In case
the gradient is numerically defined these algorithms tend to be relatively slow. The second type
of algorithms are the so-called (meta)-heuristic optimization algorithms, also known as gradient-
free optimization algorithms. These algorithms as the name indicates do not require gradient
information unlike the gradient-based algorithms.

One of the main draw backs of NLP algorithms are their iterative nature which makes on-line
controlling a challenge. However, because in MPC we predict future outcomes in each opti-
mization step we can make use of a smart trick to reduce the computational time significantly.
By setting a time-constraint to our optimization algorithm we initially will not find our optimum
control-input in the first few steps of control. However, we can still implement the best control
input so far and use this control input as initialization for the next optimization. This is what is
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called warm-start in the literature [17]. This trick is built around the assumption that the objective
function at k+1 is in most cases very similar to the objective function at time-instant k. This will
eventually require more time for the system to converge to the reference-trajectory but enables
on-line optimization at relatively high speeds.

Key takeaway

To ensure a successful study we considered and investigated the following five key topics
from the literature:

1. Modeling of flexible floating structures:

• CFD-FEA: Combines CFD and FEA to capture detailed nonlinear fluid-structure
interactions. Computationally demanding, making it suitable for high-fidelity ”plant”
models.

• Two-way decoupled FSI: Simplifies modeling by decoupling fluid and structural
interactions, using linear hydro-elastic theory. Efficient but lacks added-mass
effects.

• Two-way monolithic FSI: Balances complexity and efficiency, capturing wet-
mode dynamics without complex nonlinear wave behavior.

2. Control strategies for high-dimensional systems:

• Inspiration from high-dimensional systems like soft robots, where ROMsmanage
large DoFs.

• Key control inputs:

– Boundary control: Actuators reduce edge vibrations, with passive damping
needed for central stability.

– Stiffness-adjustable springs: Controls structure with low power by adjust-
ing hinge stiffness.

– Mooring control: Underexplored due to nonlinearity in real mooring behav-
ior, with limited data on performance.

3. Reduced Order Modeling (ROM) techniques:

• RNN-MPC: Uses neural networks to reduce model complexity but can lack inter-
pretability.

• SINDy auto-encoder: Identifies sparse governing equations for interpretable
ROMs.

• DMDc: Extracts dynamic modes for efficient reduced-order modeling of fluid-
structure interactions.

4. Model Predictive Control (MPC):

• MPC optimizes control inputs based on current state predictions, with a ROM to
approximate real system dynamics.

• System identification approximates complex system behavior from simulation or
measurement data.

5. Optimization techniques in MPC:

• Linear MPC (LMPC): Solves efficiently for linear, unconstrained systems using
closed-form solutions.

• Non-linear MPC (NMPC): Handles complex constraints via iterative methods,
with warm-start initialization for faster computation.



3
Theoretical Framework

In this chapter, we present the theoretical framework for the control system designed to manage
flexible floating structures. First, we introduce the control system framework, highlighting its main
components and their interactions. We will briefly explain the role of each component and how
they contribute to the overall system. Following this, we will discuss each component in more
detail, addressing the assumptions, limitations, and dependencies on other elements within the
framework. It is important to note that this chapter is written as generally as possible to provide
a flexible control framework applicable to various objectives and types of floating structures. In
the methodology chapter we will present a possible implementation for a considered case.

3.1. Control system framework

The control framework is depicted in Fig. 3.1 where we have two main components: the MPC
and the true system which we want to control. The MPC is our workhorse where most of the
control takes place. The true system is, in general, any given dynamical system we can control
or stabilize to our desire by the use of our MPC. Let us recall the concept of MPC: MPC operates
by continuously predicting the future behaviour of the true system within a predefined horizon
and adjusting the control inputs based on these predictions. The primary objective is to ensure
that the system follows a desired reference trajectory while satisfying system constraints and
mitigating the effects of disturbances. Below we discuss these two main components along with
the feedback mechanism that allows communication between these two components.

3.1.1. True system
The true system in this framework represents the flexible floating structure modeled using the
Finite Element model. This high-fidelity model simulates the dynamic behaviour of the struc-
ture in response to the control signal uk generated by the optimization block. One of the main
challenges we encounter is the external forcing due to the incoming wave found in offshore
conditions. This forcing is much more significant and cannot be considered as an external dis-
turbance, i.e. process noise, since it determines to a great extent the dynamics of the system.
In the context of floating structure we can deal with this challenge using the diffraction theory,
which will be discussed later on in the report.
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Figure 3.1: General depiction of the MPC in combination with the true system. [43]
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3.1.2. MPC framework for floating structures
The MPC can be broken down into two components: the so-called Kalman filter and the opti-
mization block.

Kalman filter

The Kalman filter is the first component in the MPC that interacts with the true system while
controlling.

For control we need to know the current state of the true system to find a control input. One
can imagine that at the moment we start to control we first obtain measurements from the true
system. In practice we take sparse measurements using sensors from the true system. As
mentioned before, these measurements are polluted with measurement noise wk.

Along with themeasurements, we can also run a parallel simulation of the true system to estimate
the current state. We can do this using the previous state and previous control input such that

x̂k|k−1 ≈ Ax̂k−1|k−1 +Buk−1. (3.1)

We call this estimation of the state the prior state estimate. However, even by doing this we will
not be able to know the actual true state of the system because we do not know the amount of
process noise vk.

That’s when the Kalman filter comes into play by combining the sparse measurements obtained
directly from the true system with the prior estimate of the state.

Figure 3.2: The Kalman Filter is a method used to improve estimates of a system’s state (like the position of a car) by
combining predictions and measurements. First, it predicts the current state based on the previous estimate and
information from the car’s movement (using a model). Then, it corrects this prediction by using new measurements
from sensors (like GPS or Lidar). Since both the prediction and the measurements have some uncertainty or ”noise,”

the Kalman Filter combines them to get a better, more accurate estimate of the car’s current position. [1]

Because of the process and measurement noise defined in the description of our model we find
ourself working with stochastic variables and hence Probability Density Functions (PDFs). In Fig.
3.2 we see how the Kalman filter predicts the current state using the previous state and then
corrects this prior estimate with the measurements from the true system to obtain a posterior
state estimate that is even more accurate.

This filtering process minimizes the effect of measurement errors and uncertainties, providing
more accurate information about the system’s current state. This posterior state estimate is then
used by the optimization block to find the control action applied to the true system. Note that in
Fig. 3.1 we feed x̃ to the optimization block, which is the posterior state estimate but in reduced
space for computational efficiency reasons. This will be clearly explained later on in the report.
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Optimization block

The optimization block represent the core of the control system. At each time step, it computes
the optimal control input, uk, by solving an optimization problem that balances the system’s per-
formance with its physical constraints. The control input is determined based on a reference
trajectory r, which defines the desired outcome (e.g., the optimal movement or position of the
floating structure). The optimization also takes into account a predefined cost function that mea-
sures the performance of the system, ensuring that the control actions lead to the best possible
outcome while respecting the system’s physical limitations.

Figure 3.3: This figure illustrates the concept of Model Predictive Control (MPC), a control strategy that involves
predicting the future behavior of a system and making decisions at the present moment to influence future outcomes.

It shows how, at the current time step k, MPC uses a model to predict future outputs (control variable p) over a
prediction horizon, and determines the optimal control actions (control action u) to apply over a control horizon, such

that the control variable p follows a desired path (reference r). [29]

3.1.3. Feedback loop
The MPC framework operates as a continuous feedback loop. The control signal uk generated
by the optimization block is applied to the true system, which responds by producing a measur-
able output yk. Due to environmental factors and noise, this measurement is often noisy. The
Kalman filter processes this measurement, filtering out noise to estimate the system’s true state.
This estimated reduced order state x̃k is then fed back into the optimization block, where the
next control signal is calculated. This loop enables the system to dynamically adjust its actions
in real-time, responding to both the desired trajectory and the changing environment.

Key takeaway

We presented a general depiction of the considered framework such that:

1. Control framework:

• The framework consists of an MPC and a high-fidelity model (true system), with
MPC predicting system behavior and adjusting control inputs over a set horizon.

2. True system:

• A Finite Element model of a flexible floating structure, with external wave forces
and Fluid-Structure Interaction.

3. MPC components:

• Kalman filter: Refines noisy measurements and prior estimates for accurate
state feedback.

• Optimization block: Computes control inputs to follow a reference trajectory
while respecting constraints.

4. Feedback loop:

• Real-time adjustments via continuous feedback, enabling dynamic response to
changing conditions and goals.
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3.2. Problem setting

In this section we lay the foundation for the problem setting. The problem setting describes the
considered physics in detail to describe a flexible floating structure in offshore conditions. From
the derived PDE-problem including the proper boundary conditions we will formulate a Finite El-
ement Model in order to solve this problem using a numerical approach, which will be presented
in detail later on in the methodology chapter. Important to note that this Finite Element Model
will act as the ”plant”, i.e. the real-world equivalent of the system, we opt to control.

In this section we will zoom in on the true system block depicted in Fig. 3.4. In order to
reach a control framework that is as general as possible we decide to only be concerned with
the structure deformation as our observable state, that is we take x = η. Hence, we assume
we do not have any direct knowledge about the (incident) excitation wave. This approach can
be justified from the diffraction theory, where the total wave field around the structure can be
decomposed into an incident, and transmitted, wave and an reflected wave.

Because of the complex dynamics which lead to high-fidelity of the considered model in compari-
son to real-world data, there is no analytical solution which returns the deformation of the floating
structure in a two-way interaction with the surrounding fluid. Usually, when there is an analytical
solution to the considered PDE-description of the model, one is able to directly implement the
analytical solution in the MPC for optimization and forecasting purposes to find a control signal.
However, the implementation of a numerical model requires expensive computations and there-
fore lead to infeasible control frequency, which in practice should be as high as possible to keep
up with the dynamics of the system.

In order to control the floating structure we need to find a simpler representation of the Finite
Element Model which we can directly implement in the MPC to use for optimization and forecast-
ing computations. As depicted in Fig. 3.4 we assume our true system to behave according to
a linear system where the state of the system at time-instant k + 1, xk+1, is linearly dependent
on the state of the system at k, xk, and the acted control input at time-instant k, uk. We will
use the DMDc to find the system matrices A and B which explain the dynamics of the system
in full-space. However, DMDc additionally is able to return a ROM by finding Ã and B̃. Be-
cause of its data-driven nature, we will discuss the convergence of these system matrices and
investigate their generalizing ability for different sea states. Moreover, we take the presence of
process noise vk, which is a zero-mean Gaussian noise. Finally, we measure the response of
the system by taking sparse measurements along the span of the floating structure, denoted as
yk, which is fed to the MPC.

Figure 3.4: Zoomed-in block of the true system depicted in Fig. 3.1. The true system is represented by the
high-fidelity FEM polluted with process noise to mimic a realistic scenario. However, the true system is assumed to

behave according to a data-driven simple, linear model capturing only the deformation of the structure. The difference
between the FEM and the data-driven model is a model-mismatch.
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3.2.1. Physics background
In this study we use the same setting of a thin floating structure with internal joints as proposed by
[33]. Here we take the external moments on the joints as our control variables, where we denote
the joints by Λj . We model this problem by considering a fluid domain Ω which has the following
four boundaries: the inlet boundary Γin, the free-surface of the fluid Γfs, the outlet boundary Γout

and the bottom surface Γb. On the free surface of the fluid domain we find the floating structure
which has two upper and lower ends denoted by Γfs,str. Since we are considering the monolithic
formulation of a floating structures proposed by [33] we will be dealing with linear potential flow
theory and linear beam theory. Hence the following assumptions should be made:

Assumption 1 The flow within the fluid-domain Ω is considered to be incompressible, inviscid
and irrotational. This corresponds to the Linear Potential Flow Theory.

Assumption 2 The VLFS is considered to be homogeneous and shows linear behaviour.

Assumption 3 The transverse displacement of the structure and steepness of the incident
waves are considered small (Airy wave theory), and there is no air gap between structure and
fluid.

Figure 3.5: The problem setup with stiffness-adjustable joints connecting the modules of the floating structure. [33]

As we can see from figure Fig. 3.5 there are two main components we have to deal with because
of the fluid-structure interaction. The first component is the fluid behaviour. The second compo-
nent is the structure behaviour. By finding the corresponding boundary and interface conditions
we can consider the FS-interaction. Let us therefore divide the problem into two sections: Linear
potential flow theory and Euler-Bernoulli beam theory.

3.2.2. Linear potential flow theory
The first assumption we made states that the fluid is incompressible, inviscid and irrotational.
Let us define the fluid velocity as u, which is a vector containing the velocity components in the
space of the fluid domain, that is Ω→ Rd, where d = 2 in this study. Because of incompressibility
we know that

∇ · u = 0 in Ω (3.2)

Now let us define a scalar potential field, say ϕ : Ω → R. One can prove that if we take the
following definition

u = ∇ϕ in Ω (3.3)

this will satisfy the assumption that the fluid flow is inviscid and irrotational. Hence, we can now
obtain our governing equation that describes the linear potential flow in Ω. Let us combine Eq.
3.2 and Eq. 3.3 such that

∆ϕ = 0 in Ω (3.4)

Given this governing equation we need appropriate boundary conditions on the domain bound-
aries. We define the vector n as an outward pointing vector normal to the boundaries of the
domain Ω, as depicted in Fig. 3.5. Furthermore, let us distinguish two quantities on the top
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boundary: the surface elevation, κ, and the structure deformation η. For convenience, we use
the notations (·)t and (·)tt denoting the first and second time derivatives respectively. We can
now present the following kinematic boundary conditions

n · ∇ϕ = 0 on Γb (3.5)
n · ∇ϕ = uin on Γin (3.6)
n · ∇ϕ = uout on Γout (3.7)
n · ∇ϕ = κt on Γfs (3.8)
n · ∇ϕ = ηt on Γstr (3.9)

Eq. 3.5 simply arises due to the modeling choice we make where we say that the flow cannot
penetrate the boundary. Since we want to model a floating structure in offshore conditions it is
not convenient, or even possible for computational reasons, to take the domain as large as the
offshore environment. Hence, we use a domain limited in size where we impose a prescribed
inlet and outlet normal velocities, mimicking the offshore environment as can be read from Eq.3.6
and Eq.3.7. Eqs. 3.8 and 3.9 arise due to our assumption that the steepness of the incident
waves are considered small on the free surface and on the boundary between the fluid and
structure. Therefore, the velocity of the fluid normal to the free surface can be well approximated
by the vertical velocity of the free surface elevation, κt.
Lastly, let us consider the dynamic boundary condition where we describe the pressure at the free
surface. We are allowed to state that the pressure at the free surface is equal to the atmospheric
pressure. Hence, using the linearized Bernoulli equation

p ≃ −ρwϕt − ρwgκ on Γfs (3.10)

we obtain the following dynamic boundary condition where ρw and g are the fluid density and
gravitational acceleration respectively.

ρwϕt + ρwgκ = 0 on Γfs (3.11)

3.2.3. Euler-Bernoulli beam theory
In this study we will use the Euler-Bernoulli beam theory to model our floating structure. We
model this Euler-Bernoulli beam as a 1-dimensional Euler-Bernoulli beam floating on the free
surface of the 2-dimensional fluid domain, as can be seen in Fig.3.5. Under assumption 3, we
are allowed to consider the free surface elevation and the structure deformation as a single
quantity whose behavior changes depending on the region, whether that is Γfs or Γstr. This has
similarly been done in some of the formulations found in [33]. However, as described before,
we consider the structure deformation η as a separate quantity from the free surface elevation
κ. Now let us recall the well-known Euler-Bernoulli beam equation.

ρbhbηtt +D∆2η = p on Γstr (3.12)

Eq. 3.12 relates the structure deformation η to the external pressure p applied on the beam.
Furthermore, we have that ρb represents the beam’s density, hb represents the structure height
andD is the-so called structural rigidity given asD def

= Eh3
b/12 [33]. The assumption that there is

no air gap between the free surface and the floating structure means that the surface elevation
κ under the structure has to be equal to the structure deformation η. Hence, from Eq. 3.10, the
pressure between the floating structure and the free surface can be written as follows:

p |Γstr= −ρwϕt − ρwgη (3.13)

Let us now equate Eq. 3.12 with Eq. 3.13 to obtain the following coupling boundary condition
between the fluid and structure

ρbhb

ρw
ηtt +

D

ρw
∆2η + ϕt + gη = 0 on Γstr (3.14)
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Lastly, we have to define the boundary conditions acting on the ends of the structure and the
interface conditions that arise due to the internal joints. We consider the floating structure to
have free ends. Hence, the moment, M , and shear force, V , acting on the ends are zero.

M
def
= D∆η = 0 on Λfs,str (3.15)

V
def
= ∇(D∆η) · nΛ = 0 on Λfs,str (3.16)

We consider three interface conditions for each internal joint. However, since these internal
joints will be connecting separate modules, discontinuities in the rotation between the modules
will arise. Therefore, we introduce two important operators to make sure that the interface con-
ditions stay continuous between the modules. The jump operator, ∥·∥, takes the difference be-
tween two discontinuous quantities at a given interface. The mean operator, ⟨·⟩, take the mean
between two discontinuous quantities at a given interface [33].

The first interface condition is by simply relating the relative rotation between the modules of
the Euler-Bernoulli beam to the mean moment at that joint. This moment arises due to the linear
rotational spring that has a spring constant kφ,j , where j denotes the individual springs. Addi-
tionally, we introduce our control input acting on the joint, which is an external moment. The
second and third interface condition state that since there are no external shear forces or mo-
ments acting on the joints we must have continuous shear forces and moments at these joints.

⟨D∆η⟩ = −kφ,j∥∇η · nΛ∥+Mext on Λj (3.17)
∥D∆ηnΛ∥ = 0 on Λj (3.18)

∥∇(D∆η) · nΛ∥ = 0 on Λj (3.19)

3.2.4. Damping zone
Amodeling problem that arises using the current formulation is the accumulation of energy close
to the inlet and outlet boundaries. In offshore conditions reflected and transmitted waves radiate
away from the structure until their energy gets dissipated. Hence, we need to mimic this dissi-
pation of energy by introducing so-called damping zones as can be seen in Fig. 3.5. Because
we are considering the Airy wave theory we are allowed to decompose the velocity potential ϕ
and the free surface elevation κ as follows

ϕ = ϕI + ϕR + ϕT (3.20)
κ = κI + κR + κT (3.21)

where the I stand for incident, R stands for reflected and T stands for transmitted. The velocity
potential and the free surface elevation as the entities of these three parts together is an unknown
we need to solve for. That is because the reflected quantities are dependent on the interaction
of the fluid with the structure. However, the incident velocity potential ϕI and the incident free
surface elevation κI is something we do know since we induce these quantities on the system
to mimic incoming waves. From linear wave theory we can solve Eq. 3.4 assuming no structure.
We then find the solution ϕ = ϕI and κ = κI as [33]

ϕI((x, z), t) =
κ0ω

kλ

cosh(kλz)

sinh(kλH)
sin(kλx− ωt) (3.22)

κI(x, t) = κ0 cos(kλx− ωt) (3.23)

where κ0 is the induced free surface elevation at Γin, ω is the wave frequency, κλ is the wave
number and H is the depth of the fluid domain Ω. Let us know recall Eq. 3.6 and 3.7 where we
define our inlet and outlet velocities using Eq. 3.22

n · ∇ϕ = −κ0ω
cosh(kλz)

sinh(kλH)
cos(kλx− ωt) on Γin (3.24)

n · ∇ϕ = 0 on Γout (3.25)
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Hence, we have an prescribed inlet velocity at Γin and zero outlet velocity on Γout. As mentioned
before, we are still dealing with the energy accumulation due to the reflected and transmitted
waves near the inlet and outlet boundaries. Hence, we want to damp the following quantities
near Γin and Γout

ϕR + ϕT = ϕ− ϕI (3.26)
κR + κT = κ− κI (3.27)

Let us now adjust Eq. 3.8 and 3.11 where we implement the damping terms as proposed by [30]
and validated by [33]

n · ∇ϕ = κt + µ2(κ− κI) on Γfs (3.28)
ϕt + gκ+ µ1(n · ∇(ϕ− ϕI)) = 0 on Γfs (3.29)

with

µ1(x) =


µ0

[
1− sin

(
πx

2Ld1

)]
if x < Ld1,

µ0

[
1− cos

(
π(x−xd)
2Ld2

)]
if x > LΩ − Ld2,

0 otherwise,

µ2(x) = kλµ1(x).

Key takeaway

We explained the considered model and introduced briefly our strategy to find a Reduced
Order Model which we implement in the controller. We discussed the following four main
points:

1. Problem setting overview:

• Wemodel a flexible floating structure in offshore conditions, focusing on structure
deformation as the observable state.

• The derived Finite Element Model (FEM) serves as the high-fidelity ”plant” for
control, representing real-world dynamics.

2. Simplified control model:

• Due to the FEM’s complexity, a simpler model is needed for the controller. Using
DMDc, we approximate the system’s dynamics for efficient use in MPC.

• The DMDc method will provide system matrices for a (reduced-order) linear
model. These system matrices will be examined using model convergence.

3. Physics background:

• The model follows assumptions based on Linear Potential Flow Theory and Lin-
ear Beam Theory, ensuring computational feasibility.

• External moments at joints serve as control inputs, allowing for flexibility in man-
aging structure dynamics.

4. Fluid-Structure Interaction (FSI) components:

• Fluid dynamics: Assumed incompressible, inviscid, and irrotational fluid, gov-
erned by linear potential flow theory.

• Structure dynamics: Modeled as an Euler-Bernoulli beam interacting with fluid
forces and joint moments.

• Boundary and interface conditions ensure realistic FSI, with damping zones near
boundaries to manage energy buildup.
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3.3. DMD with control (DMDc)

In this section we explain one of the most important tools to reach our research objective: the
Dynamic Mode Decomposition with control. As explained before we have to find a simple linear
representation of the FE model by using FE model data to extract the important dynamics. This
will be done using DMDc. This powerful method requires extensive investigation to understand
its strengths and weaknesses. This will aid us in finding the system matrices A and B such that
we in the first place obtain good control performances and in the second place it should enable
us to control the floating structure in various sea states.

Furthermore, we will explain the Koopman theory which is the backbone of the DMD(c). There
we show how the DMDc and the found system matrices are directly linked to the linear Koopman
operator. This will emphasize the power of DMDc and its ability to capture complex nonlinear
dynamics through data.

We then precede to discussing the sensitivity of the DMDc to the data and how we can assess
the convergence of the obtained system matrices that describe our simplified model.

Finally, we introduce the implementation of DMDc for two cases: regular waves and sea states.
Each case requires a different approach. Most importantly, we want to obtain a DMDc model
that is as general as possible for all sea states.

3.3.1. Mathematical background of DMDc
As mentioned before we only consider the structure deformation in our state-space formulation.
We assume that state-space can be described by the canonical discrete linear dynamical system
[23].

xk+1 ≈ Axk +Buk (3.30)

where we take x = η, such that xk ∈ Rn, uk ∈ Rq, A ∈ Rn×n and B ∈ Rn×q. n≫ 1 is the total
number of Degrees of Freedom associated to the FE function ηh and q is the number of control
inputs. Important to realize is that we haven’t reached any reduced order model yet by doing
this assumption. Similarly to DMD without control we opt to find best-fit approximations for A
and B from open-loop simulations using a wide range of control inputs to capture the behaviour
more accurate. We can then store the state snapshot measurements in a matrix X and the
corresponding control inputs in a matrix Υ as can be seen from Fig. 2.9. We can therefore
expand Eq. 3.30 as

X ′ ≈ AX +BΥ (3.31)

where X ′ is the one time-step shifted equivalent of X. Let us rewrite Eq. 3.31 into a more
compact form

X ′ ≈ [AB]

[
X
Υ

]
= GΩ (3.32)

where G
△
= [AB] ∈ Rn×(n+q) is the augmented matrix containing the operators we opt to find

and Ω is the augmented matrix containing the data of the state measurements and the induced
control inputs [23]. Our goal is to find the best-fit solution of the operator G by minimizing the
so-called Frobenius norm [23]

min
G
∥X ′ −GΩ∥F (3.33)

This can be done by conducting a Singular Value Decomposition, SVD, on the augmented data
matrix such that Ω = Ũ Σ̃Ṽ ∗. Let us rewrite Eq. 3.32 into

G ≈ X ′ Ṽ Σ̃−1Ũ∗︸ ︷︷ ︸
=Ω†

(3.34)

where we can split the matrix Ũ consisting of the left singular vectors into two separate matrices
Ũ∗
1 and Ũ∗

2 such that [23]
[A, B] ≈

[
Ṽ Σ̃−1Ũ∗

1 , Ṽ Σ̃−1Ũ∗
2

]
(3.35)
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where Ũ1 ∈ Rn×r̃ and Ũ2 ∈ Rq×r̃. The truncation order of the SVD is denoted as r̃. In other
words, we only consider r̃ singular vectors that capture the largest variance found in our input
data Ω, given a certain threshold [23]. Note that we still have not reached a reduced order model.
To do so, we perform a second SVD on X ′ such that X ′

= Û Σ̂V̂ ∗ where again we only consider
r singular vectors capturing the largest variance in our output data, given a certain threshold.
We find that Û ∈ Rn×r, Σ̂ ∈ Rr×r and V̂ ∗ ∈ Rr×m−1, where m is the total number of snapshots
[23]. Finally, using the state transformation x ≈ Û x̃ we find the reduced-order approximations
of A and B as

Ã = Û∗X ′Ṽ Σ̃−1Ũ∗
1 Û (3.36)

B̃ = Û∗X ′Ṽ Σ̃−1Ũ∗
2 (3.37)

We can now obtain the ROM having Ã ∈ Rr×r and B̃ ∈ Rr×q where r ≤ r̃ ≪ n

x̃k+1 ≈ Ãx̃k + B̃uk. (3.38)

where now we consider the reduced states which are represented by the dynamic modes of Ã,
instead of the high-dimensional DoFs of the floating structure.

The dynamic modes of A can be determined by solving the eigenvalue problem for the matrix
Ã, where the decomposition is expressed as:

ÃW = WΛ (3.39)

where the matrix Λ contains the eigenvalues of the system matrix A along its diagonal and the
matrix W contain the dynamic modes of the operator Ã. Note that the dynamic modes of Ã are
the modes of the reduced system which we will use for the actual control. However, often for
visualization reasons we want to visualize these reduced modes in the full-order space.

We can compute thematrixΦwhich contains the full-space representation of the dynamic modes
along its columns by

Φ = X ′Ṽ Σ̃−1Ũ∗
1 ÛW̃ . (3.40)

Finally, if we want to project any original state x of the floating structure on the dynamic modes
of the operator A, we can compute the corresponding amplitudes of each dynamic mode repre-
sented in that state by

b = Φ†x (3.41)

where the entries of the vector b contain the amplitudes of the dynamic modes.

Key takeaway

• The DMDcmodel estimatesA andBmatrices, which govern the dynamics of structure
deformation in response to control inputs.

• Singular Value Decomposition (SVD) is applied to observed data, optimizing the aug-
mented matrix G = [AB], capturing key dynamics.

• The state transformation matrix Û reduces the high-dimensional state x to a manage-
able reduced-order state x̃. Note that all quantities related to the controller which are
denoted with a tilde (̃·) are in the reduced-order space.

• The ROM uses reduced matrices Ã and B̃, describing system behavior in lower di-
mensions while retaining essential dynamics for efficient control.

• r and r̃ are truncation levels for capturing the largest variances; r is used for the
system outputs in X ′, and r̃ for the augmented input data in Ω.
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3.3.2. Koopman operator theory and DMDc
After having presented the DMDc, it is essential to introduce the Koopman operator theory,
which serves as the mathematical foundation for DMD(c). Understanding the concepts behind
Koopman theory will help us to appreciate the strengths and limitations of DMDc. Will explain
the Koopman theory for the full order formulation of the system, hence not the reduced order.
Nevertheless, the main concept will become clear down the line. The theory below can be found
in [35] which gives a complete description.

The Koopman theory is highly effective for complex nonlinear systems because it transforms the
nonlinear dynamics into a linear framework by focusing on measurements denoted by g(x,u)
of the system rather than the state itself. Instead of working directly with the nonlinear system,
Koopman theory considers how these measurements evolve linearly over time under the action
of a linear operator, the Koopman linear operator to be exact. This linear evolution, despite
the system’s nonlinear internal dynamics, allows us to use linear techniques for prediction and
control, making it much more practical to handle complex, real-world systems.

This concept is depicted in Fig. 3.6 where we consider our system as an unknown complex
system which evolves in a nonlinear fashion. We only assume that the state of the system is
dependent on a previously applied control input and the previous state. We then search for
a linear Koopman operator such that if we measure some quantity which is a function of the
state and the control input, we can find the subsequent measurement of that quantity by simply
applying this linear Koopman operator on the previous measurements.

Figure 3.6: The figure illustrates the motivation behind developing Koopman operator theory with inputs and control.
The first row depicts a complex system evolving over time with unknown underlying dynamics. The second row
highlights the primary objective of Koopman operator theory: to identify an operator capable of advancing a set of

measurements forward in time for prediction and control, even in the absence of an explicit model of the system. [35]

Hence, the Koopman operator theory provides a powerful framework for analyzing nonlinear
dynamical systems by ”lifting” the system into an infinite-dimensional space of measurement
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functions g, where the dynamics become linear. Consider a dynamical system of the form:

xk+1 = Ft(xk,uk), (3.42)

where xk ∈ Rn is the state of the system at time instant k, uk ∈ Rq is the control input at time
instant k and Ft is a (potentially nonlinear) function that governs the system’s evolution. In our
case Ft is the representation of the complex Finite Element Model of the flexible floating struc-
ture. Instead of using a scalar-valued measurement function g, we will consider a vector-valued
measurement function g for our purpose. This will become evident later on in the explanation.
The Koopman operator K acts on each component of the vector-valued measurement function
g : Rn × Rq → Cm as follows:

Kg(xk,uk) = g(Ft(xk,uk),uk+1) =


g1(Ft((xk,uk),uk+1))
g2(Ft((xk,uk),uk+1))

...
gm(Ft((xk,uk),uk+1))

 = g(xk+1,uk+1). (3.43)

This linear operator governs the evolution of the measurement g over time, even though the
original system dynamics are nonlinear.

DMDc can be viewed as a practical, data-driven approximation of the Koopman operator. Given
a set of snapshot pairs of the state X = [x1,x2, . . . ,xNs−1], X ′ = [x2,x3, . . . ,xNs ], and snap-
shots of an open-loop control signal Υ = [u1,u2, . . . ,uNs−1], DMDc aims to find a best-fit linear
operator of A and B that approximates the dynamics:

X ′ ≈ AX +BΥ. (3.44)

The Koopman operator theory applies to all measurement functions. Let us consider the vector-
valued measurement function g is equal to the state which is an allowed operation since the
Koopman theory allows for any measurement function g

g(xk,uk) =


g1(xk,uk)
g2(xk,uk)

...
gm(xk,uk)

 =

[
xk

uk

]
. (3.45)

Applying the Koopman operator to g(xk,uk) yields:

Kg(xk,uk) = K
[
xk

uk

]
=

[
xk+1

uk+1

]
. (3.46)

If we look closely to the linear Koopman operator in Eq. 3.46 one may notice how we can
subdivide the Koopman operator into four blocks such that

[
K11 K12

K21 K22

] [
xk

uk

]
=

[
xk+1

uk+1

]
. (3.47)

which shows that the Koopman operator can model any nonlinear dynamical system as a in-
finitely large linear operator acting on the states and control input. Because we are not interested
in the control input uk+1 we take K21 = 0 and K22 = 0 such that we obtain

[
K11 K12

]︸ ︷︷ ︸
K

[
xk

uk

]
= xk+1. (3.48)
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Since the Koopman operator is infinite-dimensional, practical implementations rely on finite-
dimensional approximations, such as DMDc. Note the high similarity between Eq. 3.48 and
Eq. 3.32. The matrices A and B which we compute from the DMDc approach, approximates
the Koopman operators K11 and K12 respectively, providing a finite-dimensional representation.

We now consider the linear Koopman operator K where its eigenvalue problem reads as

Kbi = λibi, (3.49)

where bi(x,u) are the Koopman eigenfunctions. These eigenfunctions form a coordinate system
that map the state and control input as a sum of Koopman modes ϕi. The system’s state can
be expanded as:

g(x) =

∞∑
i=1

bi(xk,uk)ϕi. (3.50)

Finally, the dynamics evolve linearly via the Koopman operator:

xk+1 =

∞∑
i=1

λibi(xk,uk)ϕi, (3.51)

where λi are the Koopman eigenvalues describing the evolution of the Koopman modes. In
practice, DMDc approximates this infinite sum with a finite number of modes r.

xk+1 ≈
r∑

i=1

λibi(xk)ϕi. (3.52)

Note how we can express the evolution of our dynamical system without control using a finite
linear superposition and the computed quantities in Eqs. 3.39, 3.40 and 3.41. Hence, we map
the considered current state xk on the dynamic modes Φ, using the corresponding amplitudes
computed in b and the corresponding time dynamics represented by the eigenvalues of Λ.

Very important to note that in Eq. 3.52 we only look at the evolution of our state as a function
of the current state xk and hence without a control input at time-instant k. That is because the
considered modes are the dynamic modes of the matrix A solely and not the dynamic modes
of the concatenated matrix [A B], which is the case in the Koopman theory as depicted in Eq.
3.48.

Key takeaway

• The Koopman operator theory allow us to transform nonlinear dynamics into a lin-
ear framework by operating on measurement functions g(x,u) rather than states, en-
abling linear control of complex systems.

• DMDc provides a practical, finite-dimensional approximation of the Koopman operator,
using matrices A and B to capture system dynamics and control inputs.

• System evolution is expressed as a linear superposition of Koopman eigenfunctions
and eigenvalues, allowing simplified dynamic predictions without direct control inputs.

• DMDc enables effective control of nonlinear systems by representing them through
Koopman eigenvalues (λ) and modes (ϕ) with a finite set of modes.
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3.3.3. Sensitivity and convergence study
From the Koopman theory we understand the power of the DMDc due to its ability to potentially
capture complex nonlinear dynamics. However, it is limited due to the finite-size of the system
matrices compared to the infinitely large linear Koopman operator.

From the Koopman theory we learn that the obtained system matrices A and B have a direct
relationship with the Koopman linear operator. However, the matrices A and B are highly de-
pendent on the quality of the data: that is how discretized is the data in space and how many
snapshots do we need such that the most important dynamics are captured and which specific
underlying dynamics should be present in the data such that we can use the obtained system
matrices for generalization purposes. The Koopman linear operator is infinitely large, whereas
the system matrices A and B are finitely large and hence the finite information they contain is
depend on the data.

In this study, we will discuss the convergence of the system matrices as a function of Ns, which
is the number of snapshots in the data. From Eq. 3.32 we can see that the obtained system
matrices from the DMDc is not unique, since each different dataset Ω will return a different
augmented matrix G

△
= [AB]. Hence, the system matrices A and B are not unique.

However, it is still possible to obtain the actual underlying dynamical modes from the data by
considering the eigenvalue problem of the reduced order system matrix Ã, expressed in Eq.
3.36, as done in [23]. It is shown that the DMDc is able to reconstruct the underlying dynamic
modes, even when the data is polluted with an (open-loop) control signal. Assuming that there
is no introduction of energy into our system, except through the control signal which we do not
consider for the convergence analysis since we only consider Ã, we know that the relevant
modes should stay the same [46]. We study the convergence of the DMDc modes by studying
the convergence of the corresponding eigenvalues and amplitudes.

We will also elaborate how we obtained the system matrices from one specific dataset to control
floating structures in various sea states, which we discuss in 3.3.4. The choice of the simulated
data will be elaborated and the underlying dynamics we inherently hope to include in the data
will be searched by using the theoretical wet-modes.

Key takeaway

• DMDc’s system matrices A and B approximate the infinite Koopman operator, so
capturing essential dynamics depends on data quality.

• High spatial and temporal resolution and sufficient snapshots (Ns) are crucial for en-
suring accurate convergence of dynamic modes.

• We analyze eigenvalues and amplitudes of Ã as Ns increases, aiming to determine
the minimum samples needed to capture all relevant dynamics.

3.3.4. DMDc control performance: matching vs. mismatched source func-
tions

One of the challenges of DMDc is its inability to generalize outside its training data if the source
function in the PDE describing the system changes. If we consider the dynamics of the system
to act according to Eq. 3.42 we know in our case that the function Ft(·) is dependent on the
incoming excitation wave. However, using diffraction theory for offshore structures we may be
able to control floating structures in various sea states. The reasoning behind this can be found
below.

System matrices for regular wave conditions

In the case of regular wave conditions, the source term driving the system remains constant.
The source function used for the actual control of the Finite Element Model is identical to the
source function used during the data collection phase. As a result, the system matrices A and B
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closely approximate the behavior of the Finite Element model that represents the original system
dynamics.

Key takeaway

• The system matrices are obtained by collecting time-series data of the FE-model of
the floating structure in regular wave condition.

• The DMDc method is then applied to this data, decomposing the dynamic system into
modes and estimating the matrices Ã and B̃, which represent the system’s dynamics
and control input influence, respectively in the reduced order space.

• We use the obtained system matrices to control a floating structure in the exact same
conditions as for the conditions used to obtain the data for the DMDc.

Since the source term remains unchanged, the system approximation retains high accuracy in
predicting the dynamics of the floating structure, and the DMDc system matrices are effective at
representing the system’s behavior under these conditions.

System matrices for sea state conditions

In the case of sea state conditions, the source term is no longer consistent, and the wave char-
acteristics vary over time. This introduces a mismatch between the source function used for
collecting data and the source function encountered during control. As a result, the DMDc sys-
tem matrices A and B face challenges in generalizing to these new conditions.

Despite this mismatch, short-term forecasting using the DMDc model remains accurate, particu-
larly when the control horizon is short. This is because the hydrodynamic forcing on the structure
is primarily influenced by the structural properties of the floating object, rather than the specific
source term over longer time scales.

Key takeaway

• The diffraction theory suggests that the interaction between the structure and the in-
coming wave primarily determines the forcing on the structure. As a result, the short-
term response can be predicted accurately by DMDc even under mismatched source
conditions.

• When the forecast horizon is kept short, the DMDc model continues to track the sys-
tem’s behavior with reasonable accuracy, because the long-term effects of the varying
source function only manifest over extended time periods.

Thus, while the system matrices are less accurate at representing the long-term dynamics under
varying source conditions, their short-term performance remains reliable, making DMDc a feasi-
ble tool for control applications in sea state conditions when the forecast horizon is not too long.
It is therefore essential to determine the length of the control horizon by finding this short-term
time-frame where the hydrodynamic force is dominating the dynamics of the system rather than
the incoming excitation wave which is the mismatched source term.

3.3.5. DMD(c) against POD
DMDc and Proper Orthogonal Decomposition (POD) are two popular data-driven techniques for
analyzing system dynamics. While both methods decompose the system into modes, they have
key differences that make DMDc more suitable for controlled dynamic systems.

POD is designed to extract the most energetic modes of a system and rank it accordingly from
highest energy content to lowest energy content [46], but it does not capture the temporal dy-
namics of the system. This makes POD useful for dimensionality reduction but less applicable
to control applications where time evolution is critical. In contrast, DMDc captures the system’s
dynamic modes and accounts for control inputs through the system matrices A and B. More-
over, because the DMDc eigenvalues are complex-valued, we find that the temporal dynamics
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contain information about the oscillation rate and the growth/decay rate.

In floating structures, the wet modes—modes influenced by fluid-structure interactions—are es-
sential for capturing the system’s hydrodynamic behavior. In that case, POD can still play a
valuable role in ensuring data quality. By applying POD to the dataset, we can verify that the
most energetic modes of the floating structure, which should be the wet-modes, are present.
This helps us ensure that the DMDc model has access to the relevant dynamics, allowing it to
generalize to different sea states.

By combining POD’s ability to assess data quality with DMDc’s strength in dynamic modeling,
we can build robust models that generalize well to varying sea conditions, improving the accu-
racy of short-term forecasting and control performance.

Key takeaway

• POD captures dominant energy modes but lacks temporal dynamics, limiting its use
in control. DMDc, with system matrices A and B, captures both dynamic modes and
control inputs, making it better suited for controlled systems.

• In floating structures, wet modes are essential for hydrodynamic behavior. POD helps
verify these high-energy modes, ensuring relevant dynamics for DMDc.

• Using POD for data quality with DMDc for dynamic modeling enhances robustness,
enabling better forecasting and control under varying sea conditions.
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3.4. Design of MPC

In this section we derive the control law and the adaptive observer gain in case we are dealing
with an unconstrained LMPC and we briefly introduce a possible implementation of a constrained
NMPC. First, we present the MPC in a scheme. From there, we discuss the necessary analysis
that should be performed to ensure the ability of control and stability of the MPC to prevent
abnormal behaviour due to abnormal control signals.

3.4.1. MPC block
The first component which acts first in the MPC during an operation at a time instant k, is the
Kalman filter. The Kalman filter is, as explained before, the component that reconstructs the en-
tire (reduced order) state from sparse measurements. The Kalman filter is highly dependent on
both process noise and measurement noise, which are modeled as uncertainties in the system.
These uncertainties are captured in the process noise covariance matrix Q and the measure-
ment noise covariance matrix R. The Kalman filter updates its estimates based on the noisy
measurements and the system dynamics, balancing trust between the model’s prediction and
the observed measurements. By adjusting Q and R, the filter can be tuned to be more sensitive
to either the measurements or the model’s predictions, thus handling noise and uncertainties
effectively. A more intuitive way to look at the Kalman filter is by considering it as a parallel simu-
lation of the true system which keeps a register of the previous state to reconstruct an prediction
of the current state and then refines this prediction with the current measurements to obtain a
better estimate of the state of the true system.

This reconstructed (reduced order) state is then passed down to the second component, which
is the optimizer. The optimizer minimizes an objective function, which is designed to forecast
the system’s behavior Nc steps ahead based on the current state and the system matrices. The
objective function typically combines terms for minimizing control effort and ensuring the system
tracks a desired reference trajectory, often expressed as a quadratic cost function involving the
state and control variables. This quadratic cost function can be tuned using weights such that
we enforce a hard type of control or a more smooth type of control, depending on the stability of
the optimizer and the user’s preference. Using the system’s dynamics and the predicted future
states, the optimizer computes an optimized control action sequence. However, only the first
control input from this optimized forecast is applied to the true system at each time step. After
applying this control input, the system takes new measurements, and the cycle repeats, starting
with an updated state estimate from the Kalman filter and proceeding to a new optimization. In
the case of an unconstrained NMPC, we use an iterative optimization method which requires
a recursive workflow by feeding the control action sequence back to the MPC model until an
optimized control action sequence is found.

As one may notice, the MPC contains a number of inter-dependencies which leads to the follow-
ing points we should take into account when designing the MPC:

MPC as a general block

1. Observability and stabilizability conditions: The observability and stabilizability condi-
tions are conditions that ensure the ability to uniquely reconstruct the system’s state from
the set of sparse measurements and the ability to stabilize the floating structure respec-
tively. By ensuring these two conditions we have certainty that the MPC will be able to
successfully reach its objective or at least reach its objective to obtain satisfactory results.

Kalman filter

1. Influence of the covariance matrices of the noise on the Kalman filter: one way to
investigate this is by examining the poles of the (steady) Kalman filter gain as a function
of different Q and R.

2. Stability of the Kalman filter: do the picked covariance matrices lead to a stable Kalman
filter and hence a stable MPC?
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Optimizer

1. Design of the objective function: how is the objective function designed and how does
each part of this quadratic cost function contribute to the objective function? How are the
weights chosen to fine-tune the optimizer?

2. The length of the control horizon Nc: the length of the control horizon Nc highly influ-
ences the stability of the MPC. Because of the large model mismatch that will be present
when controlling the flexible floating structure in sea state, we need to find the Nc where
the system matrices A and B mostly describe the region where the hydrodynamic forcing
is the most dominant. A big Nc may lead to big model mismatch because of the mismatch
between the incoming wave used in the training data and the actual control case with a
random sea state.

Figure 3.7: The block diagram illustrates the MPC framework. The Kalman filter reconstructs the reduced-order state
x̃k from noisy, sparse measurements yk. This estimated state is passed to the optimizer, which minimizes an objective
function to compute the optimal control sequence uk over a prediction horizon Nc. Only the first control input uk is
applied to the true system, depicted in Fig.3.4, and the process repeats with updated measurements. The optimizer

considers both the cost function and constraints during each cycle to ensure stability and desired system performance.

3.4.2. Unconstrained Linear MPC
In this subsection we will derive the control law for an unconstrained LMPC. As described in 2.6
this is applicable when dealing with Linear Model Predictive Control (LMPC). In this study we
will prescribe the LMPC in the reduced space to achieve high performances for on-line control.

Let us consider the Finite Element model to be approximated by a full order representation as
described in Eq. 3.30. We assume that at time instant k we can measure a part of the full
state of the system such that yk = Dxk + wk. In our case, this means we only have sparse
measurements of the deformation of the floating structure and these measurements may contain
the noise wk due to imperfect sensors, which is common in real-life practical applications.

In the context of control we expand this by adding a signal p̂k ∈ (Rw ⊂ Rn), that is p̂ is a
subset of the full order estimated state variable x̂, which we opt to control. An example would
be the control of the some part of the floating structure, in that case the signal p̂ describes the
deformation of that specific part we want to control or stabilize, such as the rear part located
after a joint.

We can now write our state-space system according to the controller as

x̂k+1 = Ax̂k +Buk +Kk(yk − ŷk) (3.53)
ŷk = Dx̂k (3.54)
p̂k = Cx̂k. (3.55)
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It is very important to realize that the state-space system described above is the description of
the system in the MPC. We denote this fact using the ·̂ as superscript. This means that within the
MPC we keep a register of the estimated state of the system since the control does not have the
ability to know the true state of the system. The Kalman filter corrects this error by minimizing
the difference between the true measurements yk and the reconstructed ”measurements” ŷk.
The idea is that if the actual measurements lie close to the reconstructed ”measurements” then
the state of the system according to the controller will lie close to the actual state of the true
system. A stable and correct design of the Kalman filter is therefore very important to ensure
that the optimized control signal suits the true state of the system and affects it accordingly.

However, one challenge we still deal with is the high-dimensionality of the state due to the De-
grees of Freedom that describe the deformation of the floating structure. Therefore, we perform
a state-transformation to map our problem onto a reduced-space which allow on-line optimiza-
tion for high-frequency control without loss of performance.

Let us now transform our state-space representation to the estimated reduced space using our
transformation matrix Û such that we can rewrite 3.53, 3.54 and 3.55 into

x̃k+1 = Ãx̃k + B̃uk + K̃k(yk − ŷk) (3.56)

ŷk = DÛ x̃k = D̃x̃k (3.57)
p̃k = C̃x̃k (3.58)

Hence, we now denote our reduced and estimated signals described in Eqs.3.53, 3.54 and
3.55 using the ·̃ as superscript.

Moreover, the matrices Ã and B̃ are found by the use of the DMDc from the data obtained from
the FEM. As for the matrix C̃ we first need to determine what subset in the state vector x we
want to control. By first constructing the selection matrix C we can then find our matrix C̃ from
deriving that

x̃ = Û−1x̂ (3.59)

p̃ = Û−1
subp̂ (3.60)

p̃ = Û−1
subCx̂ = Û−1

subCÛ︸ ︷︷ ︸
C̃

x̃ (3.61)

where we can interpret the matrix Û−1
sub as the transformation matrix to obtain the reduced order

signal we want to control, since the signal p̂ is a set of the state variables. This matrix can
be computed using the DMDc by simply considering only the set of state variables we want to
control when feeding the data to the DMDc.

Finally, it is noteworthy to emphasize that the Eqs.3.56 and 3.57 are primarily important for the
design of the Kalman filter, whereas the signal we opt to control, p̃k, is primarily important for
the design of the optimizer.

3.4.3. Hautus Lemma's
Before designing the actual control mechanism we need to ensure that the system is observable
and stabilizable. These are inherent properties of the dynamic system which will prove their
importance as discussed below. Observability and stabilizability are both dependent on the
used system matrices of the model found in the MPC. Therefore, after obtaining the system
matrices from the DMDc we always check for these conditions first.

Observability

A system is said to be observable if given a finite number of N measurements (y0, ...,yN−1)
we can uniquely distinguish the initial state x0 [36]. If this condition is satisfied we are able to
accurately reconstruct the system’s state from the sparsemeasurements given that the designed
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observer is stable. To check if the system is observable we make use of the following Lemma
Lemma 1 (Hautus Lemma for observability). A system is said to be observable if and only if

rank
[
λI − Ã

D̃

]
= n for all λ ∈ eig(A)

Stabilizability

Stabilizability is the condition that, if met, allows us to drive the state of a dynamical system
within a finite amount of time to approach any stable state. It is important to understand that we
do not check for controllability, which is a stronger condition than stabilizability. That is because
we are dealing with incoming waves which are practically impossible to dampen out completely.
Controllability means that we can drive the state of the dynamical system exactly to the reference
trajectory. Therefore, in stabilizability, we only require the state of the system to approach any
stable state. It is true that if a system is controllable, then it is also stabilizable, but the reverse
is not necessarily true. This means that if some modes are not controllable, they can at least be
stabilized to a steady-state [36].

Lemma 2 (Hautus lemma for stabilizability). A system is said to be stabilizable if and only if

rank
[
λI − Ã B̃

]
= n for all |λ| ≥ 1 where λ ∈ eig(A)

Hence, we check that all the uncontrollable modes, where the corresponding absolute value of
the eigenvalue is greater than 1, can be stabilized by the introduction of the control matrix B.

Observer gain - the Kalman filter approach

There are various methods to design the observer gain for a system. One common method is
to derive a Luenberger observer, which utilizes a constant observer gain determined by solving
the discrete Riccati equation, given the covariance matrices Q and R, as discussed in similar
works like [10]. The primary advantage of this approach is its simplicity: the constant gain only
needs to be computed once by solving the discrete Riccati equation.

However, because in reality our system may have uncertainties arising from model mismatches
between the actual system and the assumed model, as mentioned in [42], we prefer an adaptive
approach using the Kalman filter. The Kalman filter’s strength lies in its adaptive nature, which
allows it to continuously update and refine the state estimates in response to newmeasurements.
This adaptive feature is crucial in dealing with unknown model mismatches that we assume are
present in our study. The adaptive part is introduced by the use of the so-called error covariance
matrix

Pk = E
[(

(Û−1xk)− x̃k

)(
(Û−1xk)− x̃k

)T
]

(3.62)

where we treat the difference between the reduced true state of the system, denoted as Û−1xk

and the estimated reduced state of the system, denoted as x̃k, as a stochastic variable. This
is due to the stochastic nature of the measurements y from which we reconstruct the estimated
state of the system, this will be elaborated more down below.

Therefore, the goal of the Kalman filter is to minimize the variance of this stochastic variable,
which is as mentioned earlier the difference between the true state of the system and the es-
timated state. Eventually when we minimize this variance, we are allowed to assume that the
estimated state of the system should be very close to the actual true state of the system.

This covariance matrix comes in two forms, the prior covariance matrix Pk|k−1 and the posterior
covariance matrix Pk|k. The prior covariance matrix Pk|k−1 denotes the variance between the
actual reduced state Û−1xk and prior estimated reduced state x̃k|k−1, whereas the posterior
covariance matrix Pk|k denotes the variance between the actual reduced state Û−1xk and the
posterior estimated reduced state x̃k|k. We find that in the Kalman approach the prior covariance
matrix is used to obtain the Kalman gain before the measurement is observed and gets updated
to the posterior covariance matrix after the posterior state estimate is computed [24].
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The Kalman filter works by generating a posterior prediction of the state x̃k|k by correcting a prior
estimate x̃k|k−1 with the current measurement yk [42]. The process can be summarized in the
following steps:

1. Initialize k = 0 and start with an initial guess of the system’s state x̃0|0, the initial control
input u0|0, and the initial error covariance matrix P0|0.

2. Predict the system’s state using

x̃k+1|k = Ãx̃k|k + B̃uk|k

where x̃k+1|k is the current prior estimate of the subsequent state.
3. Compute the predicted error covariance matrix

Pk+1|k = ÃPk|kÃ
T +Q

4. Calculate the Kalman gain

K̃k+1 = Pk+1|kD̃
T (D̃Pk+1|kD̃

T +R)−1

5. Wait for the true system to response and update the time-instant such that k + 1 → k.
Hence, all the ”subsequent” quantities are now the current quantities.

6. Obtain the system response and measure yk.
7. Update the prior current state estimate to the posterior current state estimate by incorpo-

rating the measurement

x̃k|k = x̃k|k−1 + K̃k(yk − D̃Û x̃k|k−1)

8. Update the error covariance matrix to obtain the posterior covariance matrix

Pk|k = (I − K̃kD̃Û)Pk|k−1

9. Feed x̃k|k to the optimizer to determine the optimal control input uk|k.
10. Repeat from step 2.

Optimizer

Before diving into the objective function let us recall that in MPCwe solve an optimization problem
at each time-instant k by forecasting the evolution of the system dynamicsNc time-instant ahead
and compute an optimized control signal sequence uk at time-instant k where eventually we
only implement the very first element uk|k as control input on the true system.

The objective function we will derive is a quadratic cost function. In this quadratic cost function
we want to ensure that we include the following:

• the forecasted reduced order signal p̃ should follow a reduced order desired reference
trajectory r̃,

• the user should be able to fine-tune the smoothness of the control signal as it advances in
time by penalizing the forecasted control increments ∆u

• and lastly the user should be able to penalize the magnitude of the control signal that will
act on the true system by penalizing the very first element uk|kof the optimized, forecasted
control signal.

J(z̃k,uk) =

Nc∑
i=1

(
z̃⊤k+i|kQz̃k+i|k

)
+

Nc−1∑
i=1

(
∆u⊤

k+i|kR1∆uk+i|k

)
+ u⊤

k|kR2uk|k (3.63)

In the literature we often find this type of objective function, formulated in Eq. 3.63, which is
known as the Generalized Predictive Control (GPC) performance index [28, 6]. We penalize
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each term by using Q, R1 and R2 as penalty weights respectively. A concise way to write this
objective function is as follows:

J(z̃k,uk) =

Nc∑
i=1

(
∥z̃k+i|k∥2Q

)
+

Nc−1∑
i=1

(
∥∆uk+i|k∥2R1

)
+ ∥uk|k∥2R2

, (3.64)

where z̃ = p̃− r̃, and r̃ is the reference we want our signal to follow, such that it goes

z̃k+1|k = C̃Ãx̃k|k + C̃B̃uk|k − r̃k+1|k (3.65)
z̃k+2|k = C̃Ã2x̃k|k + C̃ÃB̃uk|k + C̃B̃uk+1|k − r̃k+2|k (3.66)

...
z̃k+Nc|k = C̃ÃNc x̃k|k + C̃ÃNcB̃uk|k + ...+ C̃B̃uk+Nc−1|k − r̃k+Nc|k (3.67)

which we can rewrite in a more compact form such that

z̃k =Mx̃k + Cuk − r̃k (3.68)

uk =

 uk|k
...

uk+Nc−1|k

 , r̃k =

 r̃k+1|k
...

r̃k+Nc|k

 (3.69)

M =


C̃Ã

C̃Ã2

...
C̃ÃNc

 , C =


C̃B̃ 0 · · · 0

C̃ÃB̃ C̃B̃ · · · 0
...

...
. . .

...
C̃ÃNcB̃ C̃ÃNc−1B̃ · · · C̃B̃

 (3.70)

which allow us to write our objective function in matrix-form notation

J = z̃⊤k Qz̃k + u⊤
kR1uk + u⊤

kR2uk. (3.71)

Eventually, having defined the objective function, our goal is to find the optimized control signal
sequence u⋆

k:
u⋆
k = argmin

uk

(
J = z̃⊤k Qz̃k + u⊤

kR1uk + u⊤
kR2uk

)
. (3.72)

In the case our quadratic cost function is unconstrained, which is the case we consider, we are
able to find a closed-form solution.

For the unconstrained case, we want to find the closed form solution by setting

∂J

∂uk

= 0. (3.73)

The weight matrices Q, R1, and R2 in the objective function enable fine-tuning of the controller
by adjusting the impact of different terms in the cost function:

• Tracking Performance: Q controls the weight on z̃k+i|k, which measures the deviation
from the reference trajectory r̃. Increasing Q emphasizes accurate tracking, prioritizing
alignment with the reference path over control effort.

• Smoothness of Control: R1 penalizes changes in the control signal ∆u, influencing the
smoothness of control actions over time. A higherR1 discourages abrupt control changes,
resulting in smoother adjustments.

• Control Effort: R2 penalizes the magnitude of the applied control input uk|k, balancing ag-
gressive control actions with energy efficiency. Larger values ofR2 help reduce excessive
control input, which is useful in systems where energy efficiency or actuator limitations are
important.
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By adjusting these weights, the controller can be tailored for various objectives, achieving a
balance between tracking precision, control smoothness, and energy efficiency according to
specific requirements.

Solving Eq. 3.73 leads to the optimized control signal sequence over the control horizon

u⋆
k = H−1S⊤r̃−H−1F x̃k (3.74)

Definitions

G =M⊤QM (3.75)

F = C⊤QM (3.76)

W = QM (3.77)

H = C⊤QC +R1 +R2 (3.78)

S = QC (3.79)

For the full derivation of this result we refer to App. B.

Note how this optimized control signal sequence over the control horizon is dependent on the
forecasting matricesM and C and therefore makes the control signal sequence dependent on
the length of the control horizon. Moreover, note how this optimized control signal sequence is
dependent on the weight matrices Q, R1 and R2, which directly means that the choice of these
weights will affect the stability of the controller. This will be discussed later on in this chapter.

3.4.4. Constrained MPC
In practice we often deal with control actuators which are limited to a certain extent. For instance,
in this study we control the floating structure by applying an external moment acting on the joint
coupling two sub-components of the floating structure. This actuator can in general apply an
external moment up to a certain upper and lower bound, where the upper bound represents the
maximum absolute moment possible in the positive direction and the lower bound represents
the maximum absolute possible moment possible in the negative direction.

For objective functions where we have to deal with these kind of constraints we are not able
to find a closed-form solution as described in the previous section. 3rd party packages like
JuMP [25] are used for objective functions expressed in any form similar to Eq.2.16. In this
study we consider an objective function of the same form as expressed in Eq.3.71 expanded by
constraints putting upper and lower bounds for the control input. Hence, we have

min
u

J s.t. umin ≤ u ≤ umax (3.80)

Note that in this thesis, we will not implement the constrained MPC. However, it is important to
note that adding the constrained MPC, as described above, requires only a few lines of code and
is relatively straightforward. One of the big advantages of MPC is that we control our floating
structure by solving an optimization problem and hence allowing for constraints, this is often not
possible in classic control, such as a LQR controllers or PID controllers. This framework allows
MPC to handle complex systems, such as flexible floating structures, with high adaptability and
efficiency, providing robust control and stability in dynamic environments.
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3.4.5. Closed-loop stability
The introduction of the Kalman filter in combination with the optimization algorithm is what com-
bined gives us the MPC. In the world of control we often need to prove stability of the controller.
There are two types of stability we need to ensure: stability of the observer gain and the stability
of the controller gain.

The stability we consider is only dependent on the true state of the actual system we control and
the estimated state of the system according to our controller. From Eq. 3.74 we find that the
control input can be found by considering only the first control input along the control horizon
from the optimization such that if we consider a zero reference-trajectory we get

uk|k = −F x̃k (3.81)

where the controller gain is defined as

F =
[
I 0 · · · 0

]
H−1F x̃k (3.82)

By augmenting the Eqs. 2.9, 2.10, 2.11 and 2.12 by the use of substitution and neglecting the
process and measurement noise we find our closed-loop system in the reduced order space to
be defined as [

x̃truek+1

x̃k+1

]
=

[
Ã −B̃F

K̃kD̃ Ã− B̃F − K̃kD̃

]
︸ ︷︷ ︸

Acl

[
x̃truek

x̃k

]
(3.83)

For stability, we want to ensure that the true reduced state of the system x̃truek is bounded as we
progress through time. We also want to make sure that the error of the estimated reduced state
and true reduced state stays bounded. That is ẽk = x̃k − x̃truek . Let us introduce these two new
states by the use of the transformation matrix [6][

x̃truek

x̃k − x̃truek

]
=

[
I 0
−I I

] [
x̃truek

x̃k

]
, T−1 =

[
I 0
I I

]
(3.84)

Our new system matrix Ãcl is now
Ãcl = TAclT

−1 (3.85)

such that [
x̃truek+1

ẽk+1

]
=

[
Ã− B̃F −B̃F

0 Ã− K̃kD̃

] [
x̃truek

ẽk

]
(3.86)

where the closed-loop stability is guaranteed when the eigenvalues of the matrices Ã− B̃F and
Ã − K̃kD̃ lie within the unit circle. The Kalman filter gain K̃k is an adaptive observer gain. In
case these eigenvalues would lie outside the unit circle, we would observe an unbounded grow
of the prescribed quantities.

Hence, to ensure the observer gain stability we make sure that the poles of the matrix Ã− K̃ssD̃
lie within the unit circle where the steady-state Kalman filter gain is denoted by K̃ss. The steady-
state Kalman filter gain is reached when the error covariance matrix reaches its steady-state
such that

Pk|k = Pk|k−1 = Pss (3.87)

where it has been shown that the steady-state error covariance matrix Pss satisfies the steady-
state discrete Riccati equation [4]

Pss = Q+ Ã
(
P−1
ss + D̃TR−1D̃

)−1

+ ÃT (3.88)

where by solving the discrete Riccati equation in eq.3.88 we can subsequently find K̃ss

K̃ss = PssD̃
T
(
D̃PssD̃

T +R
)−1

(3.89)
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It is important to realize that the weight matrices, i.e. Q, R1 and R2, directly influence the
stability of the controller. Since the controller gain in Eq. 3.82 is directly related to H in Eq. 3.78.
Moreover, the stability of the state estimator, i.e. the Kalman filter, is directly influenced by the
chosen covariance matrices of the process and measurement noise as can be read from Eq.
3.89. How we choose the weight matrices and covariance matrices will be explained later on in
the report when discussing the actual results of the control.

Model mismatch

Since in this study we opt for a simple, linear representation of the true system using data-
driven DMDc, a challenge arises due to model mismatch. Model mismatch occurs when the
actual dynamics of the true system do not match the dynamics of the data-driven model used
in the MPC. It is important to note that model mismatch is distinct from process noise; model
mismatch can often be more critical and misleading when assessing the stability of the controller.
We define model mismatch as the difference between the data-driven model and the true system,
as expressed by the following equation:

model mismatch = |Axk +Buk︸ ︷︷ ︸
DMDc

−Ft(Θk,uk)︸ ︷︷ ︸
FEM

|. (3.90)

where we recall that x = η and Θ = [η,ϕ,κ]. Due to this model mismatch, the closed-loop
stability of the MPC can only serve as an indicator of the overall stability of the controller and
should not be taken as a definitive measure.

Key takeaway

• Model Predictive Control (MPC) uses a prediction horizon, Nc, to forecast system
behavior and optimize control inputs based on state estimates. At each time step,
only the first control input from the optimized sequence is applied to the system. This
rolling approach enables adaptive control by recalculating future actions at each time
instant based on the updated state.

• The Kalman filter reconstructs the full state of the system from sparse measurements,
handling measurement noise and process noise through covariance matrices Q and
R. These matrices determine the filter’s sensitivity, adjusting the balance between
trusting model predictions and noisy measurements. Thus, the filter corrects esti-
mated states by refining them with real-time data, providing an accurate input for the
control optimization.

• The optimizer minimizes a quadratic objective function, which includes terms for track-
ing the desired reference trajectory, smoothing control actions, and regulating control
input magnitudes. Weight matrices Q, R1, and R2 enable fine-tuning:

– Q: Enhances tracking performance by penalizing deviation from the reference
trajectory.

– R1: Controls the smoothness of control inputs, discouraging abrupt changes.
– R2: Limits the magnitude of the applied control action, balancing aggressive
corrections with energy efficiency.

• For MPC to function effectively, it must satisfy observability and stabilizability. These
ensure the system’s state can be reconstructed accurately and that the MPC can
stabilize the floating structure against external disturbances. Stability is achieved by
verifying the eigenvalues of the closed-loop system matrices, which need to fall within
the unit circle.

• To handle high-dimensional states efficiently, the model reduces them to core dynamic
modes via a transformation matrix, preserving key dynamics in a lower-dimensional
space. This approach enables fast computation, critical for real-time applications,
without significant loss of performance.
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• The adaptive observer gain in the Kalman filter allows the system to adjust to uncer-
tainties due to noise. The stability of this filter is monitored through the steady-state
gain, ensuring that the closed-loop control remains stable across varying conditions.



4
Methodology

4.1. DMDc

In this section, we will analyze the behavior of our floating structure in two distinct wave environ-
ment. The first scenario involves a single regular incoming wave acting on the structure. We
generate various datasets using different open-loop control signals to construct our ROM using
the DMDc as previously described. The ROM obtained is tailored to control a FE plant operating
in the same regular wave environment. We will also investigate the control of a floating structure
in sea state conditions. This will be done by creating a new DMDc model using an irregular wave
profile. This will be justified later in the report.

In both cases we first represent the conditions used to obtain the training data. Along with that
we explain the choice for the design of the open-loop control signal to capture the distinct effect
of the control input on the states of the system. We will then discuss the convergence of the
DMDc reduced model as a function of the length of the data. Let us recall the convergence study
that we shall carry out:

• given one training data along with its control signal, how do the eigenvalues and amplitudes
of the dynamic modes converge as a function of the length of the data?

Lastly, we compute an error metric that determines which obtained reduced model is able to
generalize the best by validating it against the other data.

4.1.1. Regular wave profile
We start by simulating data from the Finite Element Model using four different control signals that
do not have any physical meaning. The goal is to find the relation between the control input and
the states of the system by using this simulated data. The used parameters for the data can be
found in table 4.1. In Figure 4.1, we present the four control signals under consideration. Each
control signal incorporates the transient aspect of the FEM model by starting with a zero value
to avoid any instabilities during the transient phase. The initiation of the actual control action
occurs in the steady-state portion of the FEM, under the assumption that control operations will
be executed in stationary conditions in real scenarios. Below we discuss the distinct features of
the open-loop control signals and the motivation behind the different patterns.

Control signal: 1 & 2

Since the plant we opt to control in regular wave conditions is excited by a single incoming wave,
it is justifiable to expect that the applied control signal during the actual control to be sinuoisdal.
Because of this we designed the first two control signals to be sinusoidals. These first two
control signals are similar, differing only in their amplitudes. Each of these signals includes

46



4.1. DMDc 47

Parameter Symbol Value Unit

Total length of the structure Lstr 12.5 m

Parameter relative locations of the joints βj 0.2 −

mass structure per water density ρbhb

ρw
8.36 m3

Rigidity of the structure modules (EI1, EI2) (47100, 47100) N m

Water depth H 1.1 m

Gravitational constant g 9.81 m s−2

Water density ρw 1025 kg m−3

Joint stiffness per unit length kφ 0.0 · EI
Lstr

kg N m−3

Incoming wave length λwave 0.249 · Lstr m

Wave amplitude κ0 0.1 m

Wave frequency ω 4.40 rad s−1

Table 4.1: Parameters used to obtain the data for the regular wave case.

four oscillatory components that correspond to the excitation frequency ω: the first component
oscillates at 0.25 ω, the second at 0.50 ω, the third at 0.75 ω, and the fourth at 1.0 ω.

Control signal: 3 & 4

The third and fourth control signals are designed to capture a diverse array of control actions,
hence the incorporation of oscillatory segments interspersed with step controls. In the third
control signal we again start with a zero value before entering the steady-state portion of the
FEM. As soon as we enter this steady-state portion we apply an open-loop control signal which
is sinusoidal and decays in time. The frequency of this first decaying sinusoidal signal is 0.25 ω.
After some time we start applying different linear functions following each other. We then again
apply a decaying sinousidal signal with 0.50 ω as frequency. Finally, we apply again different
linear functions.

As for the fourth control signal we consider three main regions. Again, we start with the zero
value signal and then we apply a sinusoidal signal with 0.08 ω as frequency. Note that we also
applied an upper bound for this sinusoidal signal, such that it gets flattened as soon it reaches
this upper bound. After a while we apply an increasing step signal that varies over time and
finally we apply again a sinusoidal signal with 0.03ω as frequency where we have a lower bound
that flattens the signal when it tries to dip below this lower bound.

The third and fourth control signals are designed to capture a diverse range of control actions,
incorporating oscillatory segments alongside step controls. In the third control signal, we begin
with a zero value before transitioning to the steady-state phase of the FEM. Once we enter this
steady-state phase, we apply an open-loop control signal that is sinusoidal and decays over
time. The frequency of this first decaying sinusoidal signal is 0.25 ω. After a period of time,
we introduce a series of linear functions, one after the other. Following this, another decaying
sinusoidal signal is applied, this time with a frequency of 0.50ω. Finally, we conclude with another
set of linear functions.

In the fourth control signal, we divide the input into three main regions. As with the third signal,
we start with a zero value and then apply a sinusoidal signal with a frequency of 0.80ω. An upper
bound is applied to this sinusoidal signal, flattening it as soon as it reaches the threshold. After
some time, we apply an increasing step signal that evolves over time, and lastly, we introduce a
sinusoidal signal with a frequency of 0.03 ω. For this final sinusoidal signal, we impose a lower
bound, which flattens the signal when it attempts to drop below this limit.
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Figure 4.1: The four considered control signals are an applied external moment at the joint of the floating structure.

Justification of open-loop control signals

From the description of the open-loop control signals, it is evident that we incorporated as many
patterns as possible. The signal used to obtain our DMDc model does not need to be specifically
tailored to the actual control setting. Even if we know nothing about the model, designing a rich
open-loop control signal with different patterns should be sufficient to distinguish the A matrix,
which represents the system dynamics, and the B matrix, which reflects the effect of the control
input on the system. According to [23], a white-noise signal could even be applied to capture the
B matrix. Nevertheless, we choose for the above described control signals since they contain
sinusoidal patterns with different frequencies, linear piece-wise functions, step function and cut-
off signals using lower-bounds and upper-bounds, which may represent the effect of constraints.

Obtaining the DMDc model

Let us again recall the theory discussed in section 3.3 where we discussed how using a dataset,
in this case we obtain the dataset from the FEM, we can find a data-driven representation of the
dynamics. The evolution of the dynamics in full-order space is then expressed as

xk+1 ≈ Axk +Buk (4.1)

where the matrices A and B approximate the dynamics of the FEM in full-space. However, for
control we need a reduced representation where we utilize the DMDc dynamic modes found in
the data such that the evolution of the dynamics in reduced order space can be expressed as

x̃k+1 ≈ Ãx̃k + B̃uk. (4.2)

where the reduced order state is now represented by the dynamic modes of obtained from the
DMDc. By doing a convergence study we are able to determine how many r dynamic modes
we should consider in the reduced model to capture the total dynamics sufficiently. This conver-
gence study will be explained in detail later on in this chapter.

Eventually, we will validate each obtained DMDc model against the other datasets. This ap-
proach will tell us which DMDc model for a specific dataset along with its open-loop control
signal is able to generalize the best. This will also prove the strength of the DMDc to generalize
for different patterns of control signals, even if the training dataset didn’t capture these patterns.

Convergence of the DMDc model

For this study we take r to be equal to r̃, that is we we take the same number of components
that explain the largest variance in the input data as the number of components that explain
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the variance in the output data. Using control signal 1 we perform the DMDc as explained in
3.3 to compute the matrix Σ̃ which contains the singular values along its diagonal. Each entry
in this matrix resembles the portion variance the corresponding DMDc mode explains from the
total considered DMDc components r, as can be seen from Fig.4.2. If we consider the first 100
DMDcmodes of the data we find that the first 40 modes capture more than 99.9% of the variance
of the data. Therefore, we consider only the first 40 modes for our ROM.

Figure 4.2: The explained variance is a metric that explains the captured variance in the data for the considered
dynamical modes of the DMDc.

The used training data has a sampling lengthNs which is equal to 12500. To ensure that the ob-

Figure 4.3: The figure illustrates the pole-zero map and its corresponding time-domain responses for different types of
system dynamics. The left column shows pole locations, i.e. eigenvalues, in the complex plane, while the right column

shows the corresponding output response for each case. [37]
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tained DMDc model is converged using this length we compute the eigenvalues and amplitudes
of the DMDc modes. Important to realize that the eigenvalues of the DMDc modes carry infor-
mation about the oscillatory behaviour of its corresponding DMDc mode. Since the eigenvalues,
often called poles, are complex, it is important to study their placement in the z-plane. There-
fore, let us first study the z-plane and how the placement of the poles represent the oscillatory
behaviour.

From Fig.4.4 we see five main locations of the poles on the z-plane and how each location repre-
sents a different oscillatory signal. Poles that are outside the unit circle are considered unstable
and depicts unstable dynamics. In our case, we may assume that the dominant dynamics which
are present in the steady-state are (highly) un-damped. The placement of the poles correspond-
ing to such dynamics is near the boundary of the unit-circle as depicted in the third signal in Fig.
4.4.

Therefore, let us zoom in on the poles of the four considered training data near this ”un-damped”
region of the z-plane. For each dataset we consider different sampling length where we simply
expand the length of the data we feed to the DMDc. Finally, we consider the length we actually
use for the obtained DMDc model, which is 12500. From there we compare how the poles
converge as the data increases in size as similarly done by [46]. From Fig. 4.4 we can clearly

Figure 4.4: Convergence of 15 DMDc poles for different datasets as the number of samples (Ns) increases. For each
dataset, four different sample sizes are considered: 8000, 9000, 10000, and 12500. As the sample size increases, the
poles converge, particularly for the largest sample size of Ns = 12500. This demonstrates the impact of increasing

data length on the stability and accuracy of the DMDc model across all datasets.

see how increasing the size of the dataset eventually leads to a converged model in all the
considered datasets. Along with the convergence of the poles we also need to make sure that
the corresponding amplitudes converge. For this we plot the relative amplitude, as depicted in
Fig. 4.5. From Fig. 4.5 we can indeed confirm that the used sampling length of 12500 returns a
converged model since the corresponding amplitudes of the poles also converge.

Figure 4.5: Convergence of 15 DMDc mode amplitudes for different datasets as the number of samples (Ns)
increases. The relative amplitude |bj/

∑
bj | for each mode is plotted for four different sample sizes: 8000, 9000,

10000, and 12500. From the figure, it is evident that increasing the sample size leads to convergence of the mode
amplitudes, particularly for Ns = 12500, which indicates a stable and converged model across all datasets.
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Validation of the DMDc model

We can validate the DMDc models of each dataset by cross-validating the obtained DMDc mod-
els against the other datasets. Note that the description below of this procedure is something
that is largely already done, it simply describes in detail how we obtain the snapshot data en
eventually validate the DMDc models against each other.

We validate our DMDc by applying a predefined training open-loop control signal, ΥTRN, to our
FEM. This yields the system’s response in a matrix, XFEM,TRN, whose columns correspond to
spatial degrees of freedom and whose rows represent discrete moments in time. Utilizing this
data, we perform DMDc to derive the matrices A and B as presented earlier in Eq.A.8. It is
important to note that these matrices are not analogous to those of the ROM; rather, they ap-
proximate the full-order dynamics of the FEM as specified earlier in Eq. A.1 and repeated again
in Eq. 4.1. In a similar manner, we introduce the predefined validation control signal ΥVAL to
the FEM to capture the system’s response in XFEM,VAL, paralleling the procedure used for the
training phase. We then use this validation dataset to create approximated validation data by
implementing Eq.A.1, starting with the first column of XFEM,VAL as the initial state, together with
the validation control signal. This process results in the approximated matrix XDMDc. To quantify
the accuracy, we calculate the element-wise absolute differences between the actual and ap-
proximated matrices, resulting in matrix E, which contains the absolute errors for each degree
of freedom over time. This concept is depicted in Fig.4.6.

Figure 4.6: Flowchart of the training and validation process. Training involves generating training data with FEM and
deriving system matrices using DMDc. Validation uses these matrices to reconstruct state data, comparing it to actual

validation data to compute error E = |XDMDc −XFEM,VAL|.

To ensure that the selected dataset yields the most robust DMDc model across various types
of control signals, we systematically validate each trained model against the other considered
datasets. Ultimately, we select the optimal DMDc model based on the error metric EM, as out-
lined in Eq.4.3. This error metric involves initially calculating the mean error across the spatial
domain, where n denotes the number of spatial degrees of freedom. Subsequently, we compute
the mean error over time, with m representing the total number of discretized time instants in
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the dataset.

EM =
1

m

m∑
i=1

 1

n

n∑
j=1

Eij

 (4.3)

From Table.4.2 we find that the DMDc model resulted from control signal 2 is the most robust
when validated against all the other data.

Validation
1 2 3 4 Σ(EM)

1 0.0164 0.0241 0.0206 0.0166 0.0893
2 0.0154 0.0171 0.0214 0.0166 0.0705
3 0.1710 0.3346 0.0194 0.0173 0.5423Tr

ai
ni
ng

4 0.4647 0.9178 0.0250 0.0184 1.426

Table 4.2: Error metric for the considered datasets.

Key takeaway

• We obtained a ROM data-driven model for the control of the floating structure in reg-
ular wave conditions.

• The actual control of the true system will happen in the same conditions as the training
data is obtained from.

• We investigated the convergence of the used training datasets by studying the poles
and amplitudes of the DMDc dynamic modes.

• Finally, we cross-validated the datasets against each other to get the best data-driven
ROM for the actual control.

4.1.2. Irregular wave profile
In this section, we present how we developed a data-driven DMDc model to control a floating
structure under irregular wave conditions. Since DMDc assumes that control is applied under
the same conditions as those used to generate the training data—meaning the source function
remains unchanged—we must address this limitation with a novel approach.

First, we explain how, by using a specific type of simulation for the training datasets, we can
capture the dominant dynamics of the floating structure. This enables us to apply control across
various sea states. This approach is primarily guided by diffraction theory, which we will detail in
this section. Additionally, we will study the wet modes of the floating structure, which will become
crucial, as will be evident through diffraction theory.

As with the case under regular wave conditions, we will perform a convergence study to ensure
that the datasets used provide converged DMDc models. Furthermore, we will verify that the
training data inherently captures the wet modes. By applying Proper Orthogonal Decomposition
(POD), as demonstrated in previous studies, we will show that these wet modes are indeed
present in our data.

Lastly, we will validate the training data using the process outlined in Fig. 4.6. Additionally, we
will investigate the control horizon length to ensure that within this horizon, the data-driven model
is primarily influenced by hydrodynamic forces rather than by incoming waves.

Limitations of DMDc: mismatched source function

It is important to mention the limitations of DMD(c). DMD, and hence DMDc, lacks the ability to
generalize outside the training dataset. As can be seen in Fig.4.7, the data is generated from,
assumingly, an unknown potentially nonlinear function. In our case we know that this function
is directly dependent on the incoming wave that excites the structure. As mentioned before we
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will be controlling the floating structure by only considering the dynamics of the floating structure
in the DMDc, that is x = η. We will justify this approach using the diffraction theory.

Figure 4.7: The concept of DMD where it is shown how the DMD is an equation-free method. Hence, the DMD
inherently does not know the physics behind the data, rather it captures the dynamics solely from the given data [23].

Velocity potential and the wet-modes

In the considered problem we solve for the velocity potential ϕ which, according to the linear
potential flow theory, can be decomposed in an incident, transmitted and reflected components
denoted by ϕI , ϕT and ϕR respectively. Let us investigate how these separate components
influence the response of the system and their relation to their wet-modes.

The incident velocity potential, ϕI , is directly correlated to the incoming wave that excites the
structure. Hence, this component can not be influenced by the structure and is independent of
the FSI. From Eq. 4.5 we see that this indeed is the case since the wet-modes of the structure
are independent of the excitation term. The transmitted velocity potential, ϕT , can be seen as
the component that passes by the floating structure if one would consider the structure to be
fixed and, somehow, not to interact with the fluid. Both the incident and transmitted velocity
potential are due to environmental and excitation loads [8].
The reflected velocity potential ϕR is the component that arises due to the interaction of the struc-
ture with the fluid, but also due to the added mass and added damping. Here we can see how
the coupling between the structure and fluid arises: the incoming wave not only applies a load
on the structure but gives also rise to deformation of the structure, which consecutively leads to
reflected waves.

This phenomena is depicted in Fig. 4.8. Hence, as stated earlier, the goal of the control is
not to tame the incoming wave that excites the structure, but to control the dynamics of the
floating structure. Assuming that the incoming wave that excites the structure is an unknown
and difficult to predict, we should then mainly focus on the dynamics and forces that arise due
to the reflected wave. From the wet-mode analysis we know that our wet-modes capture the
added mass and added damping, which have large influence on the reflected velocity potential.
It is therefore more likely that a floating structure with large dimensions and high inertia can be
controlled more easily than floating structure with relatively small inertia, since the dynamics of
small inertia structures will be mainly dominated by incoming waves.
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Figure 4.8: Illustration of velocity potential components for a floating structure: ϕI represents the incident wave
potential, ϕT , denotes the transmitted wave potential, and ϕR indicates the reflected wave potential around the

structure [2].

Since our focus is on floating structures in offshore environments, we will primarily have to deal
with various sea states. Our main objective is to control floating structures affected by waves
with irregular patterns. Therefore, as outlined in section 4.1, we need to generate data that
generalizes effectively to ensure that the ROM can be applied to different sea states. For this
purpose we will try to incorporate the wet modes of the floating structure in our training dataset.
A flat load spectrum is employed to excite the floating structure. We justify this approach which
has been used in an earlier study where a flat load spectrum has been applied on a ship-like
structure to obtain the wet-modes using POD [39].

Despite the fact that the actual wet modes are non-orthogonal due to their interdependencies
caused by FSI, we can still identify these non-orthogonal modes using POD, which returns or-
thogonal modes. This may sound contradictory, but since POD is data-driven, it tries to find the
modes that capture the most energy in the system. The implemented POD provides a functional
basis that captures more energy than any other orthogonal basis. In this way, even though POD
returns orthonormal modes, these modes are the most effective in approximating the energy-
dominant wet modes present in the system [39].

By ensuring that the wet modes are inherently present in the training data of the DMDc, we
hypothesize that the DMDc will perform well, especially when the length of the control horizon is
chosen such that the predictions in the MPC are mostly dominated by the hydrodynamic forces.
This concept may seem confusing, so let’s clarify some key aspects of MPC.

MPC uses the current state of the floating structure, xk, to predict the dynamics over the control
horizon Nc. Based on this prediction, it calculates a control input, uk, to influence the system
at the next state, xk+1, in a way that meets the specified objectives. It is crucial that the model
used by MPC for prediction closely matches the actual dynamics of the system.

However, since the sea state is variable, the DMDc model may result in significant mismatches
due to changes in the source function. MPC addresses this challenge by selecting a control
horizon where the system dynamics are primarily dominated by hydrodynamic forces, which are
closely related to the wet modes of the structure. If the control horizon is too long, incoming
waves will begin to influence the dynamics of the floating structure, leading to incorrect control
inputs and poor performance.

By setting an appropriate control horizon, MPC can compute a control input that accurately
reflects the actual system dynamics. The system then reacts, and the subsequent state is mea-
sured, allowing us to ”correct” the model mismatch in each cycle by using real-time data from
the true system.

The Fig. 4.9 shows the dynamics of a floating structure under variable sea state conditions.
The upper row represents the MPC model forecast, while the lower row shows the true system
evolution. The control horizon, Nc, is defined such that the predictions made by the MPC (upper
row) are dominated by hydrodynamic forces, which are closely related to the wet modes of the
structure. The green areas in the forecast represent regions where the dynamics are influenced
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Figure 4.9: Comparison between MPC model forecast and true system evolution for different time steps within and
beyond the control horizon.

by the DMDc source function, and the blue areas show where hydrodynamic forces dominate.
The true system, however, is influenced by the actual sea state (indicated in red) beyond k = Nc.
When the control horizon is too long (for k > Nc), the incoming waves begin to penetrate the
dynamics of the floating structure, leading to a significant mismatch between the predicted and
true system states. This mismatch is visually represented by the increasing presence of red
regions in the true system row beyond the control horizon. As MPC operates, it corrects the
model mismatch by incorporating real-time measurements of the system’s state, though this is
not explicitly shown in the figure.

The imposed excitation frequencies are uniformly distributed over a range from 0.5 rad/s to 5.0
rad/s, with each frequency step incremented by 0.01 rad/s. We assign the same amplitude to
all the frequencies and assign an uniformly distributed random phase shift to each frequency.
Below you can find the used setup for obtaining the training data.

Wet-modes

We need to find the actual wet-modes of the floating structure such that eventually we can
compare these theoretical wet-modes with the POD modes of the training data, to ensure the
validity of the used approach with the flat load spectrum.

We consider the weak form as defined in Eq.A.30 in the frequency-domain by making use of
the separation of variables where we assume that our unknown quantities to solve for have the
form ϕ(x, z, t) = ϕ(x, z)e−iωt, η(x, t) = η(x)e−iωt and κ(x, t) = κ(x)e−iωt, where the space-
dependent quantities are complex-valued [12]. Furthermore, we consider the steady-state, that
is t→∞ , and substitute the assumed quantities in similar fashion as the weak form defined in
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Parameter Symbol Value Unit

Total length of the structure Lstr 12.5 m

Parameter relative locations of the joints βj 0.2 −

mass structure per water density ρbhb

ρw
8.36 m3

Rigidity of the structure modules (EI1, EI2) (47100, 47100) N m

Water depth H 10.0 m

Gravitational constant g 9.81 m s−2

Water density ρw 1025 kg m−3

Joint stiffness per unit length kφ 0.0 · EI
Lstr

kg N m−3

Wave amplitude (one for all frequencies) κ 0.001 m

Sea state − Flat spectrum −

Table 4.3: Parameters used to obtain the data for the irregular wave case.

Eq.A.30, to obtain the following matrix-vector we need to solve for−ω2M11 +Kd
11 +Kw

11 −iωC12 0

iωC21 K22 C23

0 C32 K33

ηP

ϕP

κP

 =

Fη

Fϕ

Fκ
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)
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+

(
kφ,j

ρw
∥∇η · nΛ∥, |∇u · nΛ∥

)
Λj

Kw
11 = (gη, u)Γstr

K22 = (∇ϕ,∇w)Ω − (ikϕ, w)Γin,Γout

K33 = (gκ, v)Γfs
+ (gκ, v)Γstr

C12 = (ϕ, u)Γstr

C21 = (η, w)Γstr

C23 = (iκω,w)Γfs
+ (iκω,w)

Γd1,Γd2

C32 = (iϕω, v)Γfs
− (iϕω, v)Γd1,Γd2

where ηP , ϕP and κP are the steady-state degrees of freedom. Furthermore, we know that the
wet-modes are intrinsic properties of the system and hence independent of the excitation term.
Therefore, we assign a zero right-hand side to perform the wet mode analysis. Note that we
added radiation boundary conditions along Γin and Γout in the K22 term to damp the reflected
and transmitted waves, as similarly was done in the transient formulation of the problem. By the
use of elimination of variables we can express the system expressed in Eq.4.4 in terms of the
structure deformation ηP

(−ω2(M11 +A) +Kd
11 +Kw

11)ηP = 0 (4.5)

where A = C12M
−1
ϕ C21, Mϕ = K22 −C23K

−1
33 C32
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which leads to a nonlinear eigenvalue problem because of the frequency dependency found in
the added mass A. Note that the fluid also introduces the added stiffness Kw

11 to the system.
Finding the actual wet-modes and the modal shapes of the structure along with their wet natural
frequencies require a recursive workflow as demonstrated in [3].

Figure 4.10: Recursive algorithm to find the wet-modal shapes and corresponding wet natural frequencies of the
floating structure as demonstrated in [3].

Figure 4.11: The wet-modes of the floating structure with the first four wet natural frequencies
{ωw

1 , ω
w
2 , ω

w
3 , ω

w
4 , ω

w
5 } ≈ {1.11, 1.95, 2.67, 3.29, 5.24} rad/s.

In Fig.4.11 we see the wet-modal shapes accompanied with their wet natural frequencies of the
floating structure, given the setup described in Table 4.3.

The next step is to perform the POD on an uncontrolled dataset to see if we can identify the
theoretical modes of the floating structure in the data. Note that we conduct the POD without
any influence of control on the structure, such that we obtain the POD modes of the structure
solely due to the interaction with the fluid.

POD modes

A different technique often used to capture a data-driven underlying model of dynamical systems
is Proper Orthogonal Decomposition (POD). POD is based on finding a orthonormal coordinate
system that explains the largest spatial variance in the data. This coordinate system we call
Proper Orthogonal Coordinates (POC) where the dimensions are components of this coordi-
nate system are the so-called POD-modes ΨPOD. Along with these POD-modes we obtain the
temporal dynamics such that for a considered i − th POD-mode Ψi we have the temporal co-
efficient ai = {ai(t1), ..., ai(tNs

)}. In other words, for each POD-mode we have a signal that
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describes how strongly this considered mode is present along the considered timespan from t1
up to tNs

. Finally, this allow us to express the dynamics found in the data using the POD-modes
and the corresponding temporal coefficient such that [39]

X(t) =

∞∑
i=1

ai(t)Ψi. (4.6)

To perform the POD, the uncontrolled data matrix X, representing the system’s snapshots over
time, is first used to compute the covariance matrix C = 1

Ns−1X
⊤X, where Ns is the number

of time samples. Eigenvalue decomposition of C yields the eigenvalues and eigenvectors, from
which the POD modes are reconstructed as ΨPOD = XV , where V are the eigenvectors [39].

The temporal coefficients are obtained by projecting the data onto the sorted PODmodes, that is
we sort the POD modes from biggest to smallest eigenvalue, such that the temporal coefficients
are stored in the APOD = Ψ⊤

PODX. This matrix APOD consists of rows which are of the length
Ns, each row is a signal which describes the evolution of the corresponding mode throughout
data. The corresponding dominant frequencies of the POD modes are computed by performing
a Fast Fourier Transform on each mode’s temporal coefficient and identifying the frequency
with the maximum power in the power spectrum, excluding the zero-frequency component. The
computed frequencies are then converted to angular frequencies ωPOD = 2πfPOD, where fPOD
is the frequency in Hz [39].

Figure 4.12: This figure displays the sorted eigenvalues obtained from the POD analysis. The eigenvalues represent
the energy contribution of each POD mode, with higher eigenvalues indicating modes that capture more of the

system’s total variance. The rapid decay of the eigenvalues suggests that the dominant dynamics of the system are
well-represented by the first few POD modes, while subsequent modes contribute minimally to the overall energy.

From Fig. 4.12 we decide to focus on the five most dominant POD-modes. These are the POD-
modes which we are going to compare with the theoretical wet-modes to ensure our approach
with the flat load spectrum.

Figure 4.13: The POD-modes of the floating structure with their corresponding five frequencies
{ωPOD

1 , ωPOD
2 , ωPOD

3 , ωPOD
4 , ωPOD

5 } ≈ {1.04, 2.00, 2.42, 3.04, 4.76} rad/s

To evaluate the similarity between the POD-modes and the actual wet-modes of the system, we
use the Modal Assurance Criterion (MAC). The MAC is a statistical measure commonly used
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to compare theoretical modes ΨA, such as the wet-modes of the floating structure, with experi-
mentally derived modes ΨX , like the POD modes of the structure [34].

MAC(r, q) =

∣∣∣{ΨT
A

}
r
{Ψ∗

X}q
∣∣∣2({

ΨT
A

}
r
{Ψ∗

A}r
) ({

ΨT
X

}
q
{Ψ∗

X}q
) . (4.7)

In Eq. 4.7, we use notation that allows us to consider the MAC index between the r-th theoretical
mode and the q-th experimental mode. The MAC index lies between 0 and 1, where values near
zero indicate low resemblence between the modes and values near 1 indicate high resemblence
between the modes. Moreover, it should be clearly noted that the MAC index only takes the
shape of the modes into account and hence one should additionally compare the frequencies of
the modes.

ΨX,q

1 2 3 4 5
1 0.90 - - - -
2 - 0.96 - - -
3 - - 0.81 - -Ψ

A
,r

4 - - - 0.65 -
1 - - - - 0.86

Table 4.4: MAC index between POD modes and wet-modes of the floating structure.

The excitation of the floating structure with a flat load spectrum indeed seems to activate the
wet-modes in the data, which can be validated by the MAC-indices of the most dominant 5
POD-modes in table 4.4. The first two POD-modes correspond the most with the theoretical wet-
modes in shape and in frequency. This indicate to a great extent that our data inherently contains
the dynamics induced by the hydrodynamic force, which is as mentioned earlier essential to
control the floating structure in various sea states.

After having validated the flat-load spectrum using POD, we can now continue to generating
training data using the flat-load spectrum approach along with open-loop control signals.

Similar to the regular case we need to construct open-loop control signals to obtain a DMDc
model. Let us therefore present the used open-loop control signals.

Control signal: 1

Since we are now dealing with a floating structure in irregular wave conditions it is more likely
that the control signal during the actual control will be correlated with the natural frequencies of
the floating structure. Therefore, similar to the regular wave condition case, we construct the
first control signals using 5 regions with an oscillation. These 5 oscillating regions correspond
to the natural frequency ωw

n in ascending order from the start of the open-loop control signal
towards its end.

Control signal: 2

Finally, we construct the second control signal using the same reasoning as for the regular wave
condition. In the third control signal we again start with a zero value before entering the steady-
state portion of the FEM. As soon as we enter this steady-state portion we apply an open-loop
control signal which is sinusoidal and decays in time. The frequency of this first decaying sinu-
soidal signal is 0.125 rad/s. After some time we start applying different linear functions following
each other. We then again apply a decaying sinousidal signal with 0.25 rad/s as frequency.
Finally, we apply again different linear functions. Note that for this third control signal we use rel-
atively small frequencies to ensure generalization for calm sea states, which most likely require
a control signal with a low-frequency.
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Figure 4.14: The two open-loop control signals used along with a flat-load spectrum to obtain training data for the
DMDc. a) An open-loop control signal consists out of 5 regions oscillating at the first 5 natural frequencies of the

wet-modes in ascending order. b) An open-loop control signal with random patterns such as low-frequency decaying
oscillations and step functions.

Convergence of the DMDc model

Similar to the regular wave case, we first need to determine the number of components, read the
DMDc modes, required to adequately capture the dynamics present in the training data using
the ROM obtained from DMDc. Again, we take r to be equal to r̃. For this case, we choose to
consider 20 DMDc modes, as Fig. 4.15 shows that these 20 modes capture most of the variance
in the data. It’s important to note that the resulting ROM will eventually be applied to a different
sea state, so overfitting would not improve the results.

Figure 4.15: This plot shows the cumulative explained variance of the DMDc modes as a function of the mode number
for the irregular wave dataset. The red vertical line at mode 20 marks the cutoff, beyond which additional modes

contribute minimally to the explained variance.

Having found that 20 DMDc modes explain most of the variance found in the data, we now
continue to check if the DMDc model converged given the number of snapshots used in the
data. Similarly to the regular wave case we check for the convergence of the eigenvalues and
the amplitudes of the eigenvalues. For the convergence of the eigenvalues wemainly investigate
the eigenvalues near the boundary of the unit circle, as depicted in Fig. 4.16, since these are
the eigenvalues that have little damping and will most likely dominate the undamped dynamics
of the system. Finally, we check for the convergence of the first 15 DMDc modes with the largest
amplitudes.
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Figure 4.16: Distribution of DMDc eigenvalues obtained from the flat-load spectrum training datasets. DMDc
eigenvalues in the complex plane for datasets 1 and 2, with sample sizes Ns ranging from 8000 to 12500.

Figure 4.17: This figure shows the normalized amplitudes |bj |/
∑

j |bj | for each DMDc mode in two datasets with
varying sample sizes Ns (8000, 9000, 10000, and 12500). The similarity in mode amplitudes across different sample

sizes suggests consistency in the dominant modes captured in each dataset.

It is evident from Figs. 4.16 and 4.17 that the first dataset doesn’t seem to have converged. This
already indicates that the used open-loop control signal didn’t capture all of the dynamics in the
dataset. However, if we look at the second dataset we see a much better convergence of the
eigenvalues and amplitudes of the DMDc modes. In that case this should indicate that the used
open-loop control signal did manage to capture most of the relevant dynamics of the true system
and the relation between the control signal and the states.

Now to ensure that the second dataset indeed manages to return a DMDc model that captures
the dynamics of the flat-load excited structure, we will have to validate the returned DMDc model
using datasets obtained in a sea state condition. This is necessary to ensure that our DMDc
model in various sea states will manage to return satisfactory results.

Validation of the DMDc model

This case requires a different approach to validate the DMDc model since it should be capable
of generalizing for various sea states. Therefore, we consider the validation as follows: validate
the converged DMDc model against a complete different dataset with a different source function.
Hence, our validation dataset is obtained from a FE simulation where the floating structure is
excited using a JONSWAP spectrum sea state.

The described validation will be carried out in the following steps:

1. Given different ”initial” states from the validation dataset we forecast the prediction using
the DMDc model. These ”initial” states represent the current state xk which is obtained
from the true system in the actual control.
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2. We compute the error between the forecast of the DMDc model and the actual validation
dataset.

3. We determine the length of Nc which returns satisfactory forecasting results such that the
model-plant mismatch in the actual MPC is kept minimum.

Hence, we ask ourselves the question: given the current state xk of the true system, how long
should Nc be such that the hydrodynamic forcing is still present? This will make sure that the
obtained DMDc model, in theory, can be used for the control of flexible floating structures in
various sea states.

We consider four validation datasets obtained from a FE simulation in different sea states. Along
with each dataset we obviously have a control signal which is a part of the validation. We evalu-
ate the performance of our DMDcmodel at three different time-instants in the validation datasets.
We then reconstruct the sea state dataset along a horizon of 50 steps long and compute the fol-
lowing relative error

Relative Error = |Xsea −XDMDc|
∥Xsea∥∞

(4.8)

where Xsea represents the validation datasets and XDMDc represent the constructed dataset
using the DMDc model. This relative error is a matrix containing the relative error in space and
time. Using a simple heatmap we can investigate how longNc should be such that the dynamics
of the DMDc model, obtained from the flat-load excited structure, doesn’t deviate too much from
a sea state excited floating structure. Again, this assumption is based on the diffraction theory
where we try to find Nc where the hydrodynamic forces are the most dominant.

The used validation control-signals can be found in Fig.4.18.

Figure 4.18: This figure shows the validation control signals for four datasets with different peak wave periods:
Tp = 4.0 s, Tp = 8.0 s, Tp = 10.0 s, and Tp = 12.0 s for plots 1 to 4, respectively.

Note how in Fig. 4.19 we indeed observe that the error for all validation datasets is nearly zero
close to the ”initial” state we consider at those time-instants. Especially up to 5 steps ahead
there is nearly any error. This corresponds to the theory shown in Fig. 4.8. Because Nc is a
bit too short for control, we decide to have a control horizon Nc = 10, which should still give
satisfactory results according to Fig. 4.19.

Note how after 10 steps of prediction the relative error increases significantly and propagates
along the length of the floating structure. This clearly shows that a long control horizon will lead
to bad forecasting in the MPC, leading to incorrect control.
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Figure 4.19: Relative error heatmaps between DMDc model predictions and FE simulation datasets with peak periods
Tp = {4.0, 8.0, 10.0, 12.0} s and wave height Hs = 0.1m. Columns correspond to time instants

t0 = 35.00 s, 61.25 s, 87.50 s, while the x-axis shows horizon length Nc over 50 steps. These heatmaps indicate the
optimal Nc for maintaining hydrodynamic force dominance and minimizing model-plant mismatch across sea states.

Key takeaway

• We built a DMDc model for controlling a floating structure in irregular wave conditions.
This involved designing simulations that capture the structure’s dominant dynamics.

• Through diffraction theory and Proper Orthogonal Decomposition (POD), we con-
firmed the presence of wet-modes in our data, ensuring the training dataset captures
key dynamics.

• We verified model convergence by examining eigenvalues and mode amplitudes, se-
lecting 20 DMDc modes as sufficient to represent the system’s variance.

• Validated the model against different sea states to find an optimal control horizon, Nc,
ensuring predictions stay dominated by hydrodynamic forces, improving generaliza-
tion across sea states.
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4.2. Cost function

In this study we will present the case where we opt to control the rear part of the floating structure
as illustrated in Fig. 4.20. By control we mean reducing the motion of the rear part as much as
possible, i.e. stabilizing the rear part of the structure. We opt to show that by using the front part
as a flapping foil we can reflect some of the energy due to the incoming wave and stabilize the
rear part. Let us first define the reference trajectory in the full order space at one time instant k
as follows

rrear = 01×nrear (4.9)

Hence, our reference trajectory in the full space is a vector filled with zeros that has the length
nrear which is the number of degrees of freedom associated to the rear part of the structure.
Since the control will be happening in the reduced space we need to express the reference
trajectory in Eq. 4.9 in the reduced space as well. Let us recall Eq. 3.60 where we showed how
for any subset of the full state we can use the transformation matrix Ûsub to obtain the reduced
order substate. Hence, for the rear part we can compute the transformation matrix of this subset,
which we call Ûrear. From here it follows that the reduced order signal we want to control, which
is the rear part of the floating structure, is formulated as

p̃rear = Û−1
rearprear (4.10)

Finally, we can compute the signal trajectory along our control horizon by using our prediction
matrixM as derived previously

p̃rear =Mp̃rear (4.11)

Moreover, it should again be clearly stated that we are able to reconstruct the full state measure-
ments by using the Kalman filter. Hence, in order to compute the actual reference trajectory of
our plant in the reduced space from the full state measurements we follow Eq.3.61 such that

p̃rear = Û−1
rearCÛ︸ ︷︷ ︸

C̃

x̃ (4.12)

Having derived these quantities for the rear part we can follow what is derived in 3.4.

Figure 4.20: The considered signal we opt to control is associated to the degrees of freedom of the approximated FE
solution ηh such that ηrear ∈ η. We find ηrear by the use of a selection matrix C operating on the full-state x of the

plant such that prear = Cx.
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4.3. Control algorithm

In Algorithm 1 we find the pseudocode for the implementation of the MPC to control the FEM
plant. We implement the ROM in the MPC to obtain our control signal. The control signal is
found by solving an unconstrained or constrained optimization problem.

Algorithm 1 MPC for controlling FEM plant using the ROM
1: procedure MPC-FEM(U, V,∆t, γt, βt)
2: Define weak formulations: m(t, ·), c(t, ·), a(t, ·), b(t, u, ·)
3: Setup Gridap Newmark solver: ode_solver = Gridap.Newmark(LUSolver(), ∆t, γt, βt)
4: Initialize:
5: k = 1
6: Choose uk−1 = 0
7: op_init = Gridap.TransientAffineFEOperator(m, c, a, b(uk−1), U , V )
8: xk−1, vk−1, ak−1 at tk−1 = 0
9: xk ← Gridap.solve(ode_solver, op_init, (xk−1, vk−1, ak−1), tk−1,∆t )
10: tk ← tk−1 +∆t
11: Store xk, xk−1, vk−1, ak−1

12: repeat
13: Compute current state’s velocity and acceleration:
14: vk = γt

βt∆t (xk − xk−1) +
(
1− γt

βt

)
vk−1 +∆t

(
1− γt

2βt

)
ak−1

15: ak = 1
βt∆t2 (xk − xk−1)− 1

βt∆tvk−1 − 1−2βt

2βt
ak−1

16: Optimize to find control input uk:
17: x̂k ← KalmanFilter(yk)
18: Transform full-order estimated state x̂k to reduced order estimated state x̃k

19: Find u
20: uk = u(k)
21: Apply control input uk to plant (FEM) to obtain new state xk+1

22: op_n = Gridap.TransientAffineFEOperator(m, c, a, b(uk), U , V )
23: xk+1 ← Gridap.solve(ode_solver, op_k, (xk, vk, ak), tk,∆t)
24: Update state and prediction horizon:
25: Store xk+1, xk, vk, ak
26: tk ← tk +∆t
27: k ← k + 1
28: until end condition is met
29: return final state and control trajectory
30: end procedure

The algorithm begins by defining the weak formulations for the problem, including the mass
matrix m, damping matrix c, stiffness matrix a, and the source vector b which is a function of
the control input u. Next, the Gridap Newmark solver is set up with the appropriate parameters.
Initialization follows, where the initial control input uk−1 is set to zero, and the initial transient
affine finite element operator is created by passing the governing matrices and the trial and test
FE spaces U and V respectively. The state variables xk−1, vk−1, and ak−1 are initialized at time
tk−1 = 0. The initial state xk is then computed, and the time step is updated.

The iterative process begins with the computation of the current state’s velocity and acceleration
using the Newmark integration formulas. The control input uk is found by transforming the full-
order estimated state x̂k to a reduced order state x̃k, finding the optimal control signal along
the control hoirzon û, and setting uk to the corresponding value. This control input is applied
to the FEM plant to obtain the new true state xk+1. The transient affine finite element operator
is updated with the new control input uk, and the new state xk+1 is computed using the Gridap
solver. The state variables and the current time are updated, and the time step is incremented.
This process repeats until the end condition is met, at which point the final state and control
trajectory are returned.



5
Results & Discussion

In this section, we present the results of stabilizing the rear part of a floating structure, as outlined
in section 4.2. The results serve as a Proof of Concept for the proposed control framework of
flexible floating structures. We consider the control of the floating structure in regular wave
condition and in sea state. We first will present the controller’s stability and explain the tuning
parameters that are used for the design of the controller. We will then precede by presenting the
effectiveness of the Kalman filter. Lastly, we present the actual controlled case and show how
the Finite Element model was stabilized successfully by presenting a FE defined cost function.

5.1. Control strategy

For the considered actual control we do not perform any sensitivity analysis regarding the MPC
parameters since this requires extensive simulations for different MPC parameters to assess
the performance of the FEM model in combination with the control. Instead, we use the stability
analysis as explained in section 3.4.5, which serves as an indicator of the overall stability and
not a definitive measure due to the possible model mismatch between the DMDc model and the
actual plant, i.e. FEM model. Nevertheless, the MPC parameters can still be chosen such that
our control strategy is satisfied. We define this control strategy as follows

• We prioritize the control performance by not limiting the used actuator for the flapping
motion as long it stays within the boundary of stability, i.e. we want a maximum control
signal and the rate of change in the control signal is not constrained.

1. Maximize the entries of Q as long as it respects the stability.
2. Minimize the entries of R1 as long as it respects the stability.
3. Minimize the entries of R2 as long as it respects the stability.

• We mimic a real scenario by polluting our measurements from the FEM model such that
we prove that our Kalman filter is robust.

5.2. Regular wave

In this section we consider the control of the flexible floating structure in regular wave conditions
where we use the exact same setup used to obtain the DMDc model for this considered case.
We first explain the MPC parameters used. We then explain the ramping function which is an
intermediate function to smoothly introduce the control input to the system. We then present the
performance of the Kalman filter and compare the estimated states with the true states. Finally,
we present the results of the control on the actual true system.

66
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5.2.1. MPC parameters

Figure 5.1: Distribution of the poles for the controller and observer within the unit circle, illustrating the stability of the
system under the implemented MPC strategy.

We control the true system by exciting our floating platform using the FEM model where we use
the exact same parameters as expressed in Table 2.9. Since the used reduced model in the
MPC arises from a similar FEM we expect that the model mismatch between the true system
and the MPC model to be small.

Moreover, we take the process noise to have a covariance matrix Q = 100 I and the measure-
ment noise to have a covariance matrix R = 10 I. The choice for these covariance values are
not investigated but are chosen such that the observer is stable. We assume that there are
no physical constraints on the actuator that applies the external moment as our control input.
Hence, for the controller gain we have chosen for an aggressive kind of control. As advised by
[6], ζ should be taken as 0 if that does not lead to stability problems. Therefore, we assign ζ = 0.
That means that we do not penalize the increments between the control input along the horizon.
However, we do penalize the first control input, which will be the actual control input we apply to
the system. Therefore, we have taken ζ0 = 10. Finally, we have chosen Q̃ = 50 to emphasize
the tracking accuracy, that is we want our reference to be reached quite fast.

Moreover, we have taken the control horizon and prediction horizon to have the same length of
10 steps. As mentioned before, the system cannot be fully controlled since we are dealing with
some uncontrollable modes. Therefore, we know that if we would take the control horizon to be
smaller than the prediction horizon, the system would eventually return to the uncontrolled state.
Furthermore, the length of 10 steps has shown to effectively control the system and satisfies the
stability of the controller. As explained before we are able to assess the stability of our controller
by checking the poles as can be seen in Fig. 5.1.

5.2.2. Ramping function
To prevent shocks in the FE model, which is unpleasant since it can lead to instabilities, we
introduce a ramping function. This ramping function will make sure that the applied control input
is gradually introduced to the system in the initial phase of the control. This ramping function
used to saturate the control input in the finite element model (FEM) is defined as follows

r(i) =
tanh

(
4 ·

(
i

nsteps−1 − 0.5
))

+ 1

2
, for i = 0, 1, 2, . . . , nsteps − 1 (5.1)

where nsteps is the number of steps in the control sequence, and r(i) calculates the value of the
ramp function at step i to smoothly transition the control efforts and avoid shocks. The ramping
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Table 5.1: Summary of Control Parameters for the MPC Controller

Parameter Value
Process noise covariance matrix, Q 100I

Measurement noise covariance matrix, R 10I

Physical constraints on actuator None
Penalization on control increments, ζ (related to R1) 0
Penalization on initial control input, ζ0 (related to R2) 10

Tracking accuracy weight, Q̃ (related to Q) 50
Control horizon length 10 steps

Prediction horizon length 10 steps
Stability assessment Fig. 5.1

function is visualised in Fig.5.2.

Figure 5.2: Visualization of the ramping function used to smoothly transition control inputs and prevent shocks in the
finite element model (FEM), ensuring system stability over the initial phase of control application.

5.2.3. Performance of the Kalman filter
We can assess the performance of the used Kalman filter by the use of a heat map. It is im-
portant that our Kalman filter reconstructs the full states of the system from the relatively sparse
measurements. We have chosen for 50 probes that are placed evenly along the length of the
floating structure. Note that the full state of the system has a length of 1000. From Fig. 5.3
we can see how the reconstructed full state resembles quite accurately the actual full state of
the floating structure. The Kalman filter performs well, especially in the region between the joint
and downstream end of the structure. The error found in the upstream front part of the structure
could be due to the discontinuity introduced by the joint and the relatively small length of the
front part, which makes it difficult for the Kalman filter to fit a continuous approximation of the
deformation profile to the true discontinuous profile. Nevertheless, the Kalman filter performs
well in general.
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Figure 5.3: Comparison of observed and true deformations of the floating structure using a Kalman filter. The top plot
shows the deformation estimated by the Kalman filter, the middle plot shows the true deformation, and the bottom plot

presents the absolute difference, highlighting the accuracy of the filter.

5.2.4. FE cost function
To assess the effectiveness of the control framework, we analyse a Finite Element defined cost
function. Since we are able to compute the actual deformation of the true system we opt to
control from the FEM simulation, it is more convenient to analyse this deformation field of the
actual plant. The FE cost function is defined as

JFE =

∫
η2hdΓstr,2 (5.2)

that is we integrate the squared deformation field of the rear part of the floating structure at
each time-step of the simulation. Fig.5.4 depicts the evaluation of the FE cost function. In the
initial stage of the simulation we find our system to be in the transient part. In this part we
excite the structure gradually by introducing the incoming sinusoidal wave as defined in Eq.3.23.
Subsequently, our floating structure reaches the stationary phase where the FE cost function
follows a sinusoidal-like pattern. We then start the control as can be seen in Fig.5.4 where
we ramp up the control gradually using the ramping function. The FE cost function shows this
gradual decrease in magnitude due to this ramping. Eventually, we reach the full control potential
of our MPC. We can see a quite significant decrease in magnitude of the FE cost function in the
uncontrolled and controlled part of the simulation. Furthermore, we see that in our controlled
part, there is still some oscillation observed, proving our assumption that our system is not fully
controllable but stabilizable because of the energy continuously introduced in the system.



5.2. Regular wave 70

Figure 5.4: Evaluation of the FE cost function under regular wave excitation. The plot illustrates the transient phase,
where the structure is excited by an incoming sinusoidal wave, followed by the control phase where the ramping
function is applied. The decrease in the FE cost function magnitude during the controlled part of the simulation

demonstrates the effectiveness of the control framework, despite the presence of some residual oscillations, indicating
that the system is stabilizable even though it is not fully controllable.

As for the control input, which can be seen in Fig. 5.5, we first do not impose any control on the
floating structure as explained before. Similar to the cost function, we observe the ramping part
when we start the control. We find that for an incoming wave with an amplitude κ0 = 0.10m the
maximum absolute external moment of the control input signal is Mext ≈ 320 Nm. Eventually,
we reach a stationary control input showing a sinusoidal pattern.

Figure 5.5: Control input under regular wave excitation. The plot shows the control input applied to the system, with
the initiation of control marked by the red dashed line and the ramping period highlighted. The control input stabilizes
after the ramping phase, demonstrating the effectiveness of the applied control strategy in managing the external wave

excitation.

By looking at Fig.5.5 we assume that there is a correlation between the frequency found in the
control input signal and the frequency of the incoming wave. We can confirm this by carrying out
a Fourier transformation on the stationary part of the control input signal. We indeed find that
the frequency of the incoming wave is directly correlated to the most dominant frequency found
in the stationary control input signal. From the assumptions of the model we know that there is
no air gap between the structure and fluid. Hence, to stabilize the rear part of the structure, it is
evident that we should reduce the transmitted wave such that the fluid passing under the rear
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part is minimal and subsequently the deformation of the rear part. Since the used wave theory
assumes conservation of mass we find that the reflected wave will increase in amplitude when
controlling. In other words, the control in essence will try to generate an outgoing wave from the
structure emigrating in the negative direction from the structure towards the inlet boundary such
that the energy in the transmitted wave gets minimized. These statements can be confirmed
from Fig.5.7. This result corresponds to the discussed diffraction theory in 4.1.2: the controller
does not opt to tame the incoming wave, rather the controller emits the energy from the wet-
modes by generating a reflected wave.

Figure 5.6: Frequency spectrum of the control input. The plot shows the magnitude of the control input across
different frequencies, with a significant peak at the excitation frequency frw , indicating the control system’s response

to the primary excitation frequency.

From dynamics, we know that if a structure is subjected to an external force that is sinusoidal
and consists of a single frequency, it primarily excites the mode of the structure whose natural
frequency is close to the excitation frequency. This is evident in Figure C.5, where the time dy-
namics of the most dominant mode show oscillations at a frequency that matches the excitation
frequency exactly. Naturally, the controller aims to dampen this mode using a control input at the
same frequency. This finding helps us better understand the relationship between the control
input and the wet-modes of the structure.
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Figure 5.7: Comparison of the structure’s deformation without control (a) and with control (b). In the controlled scenario, the control input is tuned to minimize the transmitted wave under the
structure, resulting in a decrease in rear deformation by generating a reflected wave that propagates in the opposite direction. The plots demonstrate the effectiveness of the control strategy,
where the reduction in transmitted wave energy correlates with the stabilization of the rear part of the floating structure, as evidenced by the diminished deformation in the controlled case.
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5.3. Sea state

In this section, we focus on controlling a flexible floating structure under sea state conditions.
Unlike the scenario where we dealt with regular wave conditions, this setup differs from the
one used to derive the DMDc model implemented in the MPC controller. The key difference is
that instead of using a flat-load spectrum to excite the structure, we use an actual sea state,
represented by the JONSWAP spectrum. Additionally, we opted for relatively small dimensions
for the structure to demonstrate that, even in a worst-case scenario—where the structure has
low inertia—we can still achieve effective control. The results are presented in a manner similar
to the previously discussed case.

5.3.1. MPC parameters

Figure 5.8: Distribution of the poles for the controller and observer with the unit circle (flat load obtained DMDc model).

Finally, we reach the case where we opt to control the floating structure in a sea state. For this
case we implement the DMDc model obtained from the flat load spectrum in our MPC controller.
We choose a relatively high peak period to be equal to 2.5 seconds and we choose a significant
wave height to be equal to 0.1 meters. These are not entirely random chosen parameters, rather
we choose the sea state to contain high frequency waves since our structure have natural fre-
quencies which are relatively high because of the small dimensions our structure. Moreover, we
choose a significant wave height of 0.1 meters again because of the relatively small dimensions
of the floating structure. It is obvious that if the sea state has a high significant wave height it
would be more difficult for a relatively small structure to be controlled. In conclusion, we choose
an appropriate sea state for this considered floating structure to demonstrate the ability of con-
trol. Moreover, we assess the stability of the used model as can be seen in Fig.5.8. Similar to
the case where we controlled the floating structure in a regular wave environment, we use the
same ramping function for the same reasons.
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Table 5.2: Summary of (Control) Parameters for the MPC Controller (Sea-state)

Parameter Value
Process noise covariance matrix, Q 100I

Measurement noise covariance matrix, R 10I

Physical constraints on actuator None
Penalization on control increments, ζ 0
Penalization on initial control input, ζ0

√
10

Tracking accuracy weight, Q̃ 200
Control horizon length 10 steps

Prediction horizon length 10 steps
Stability assessment Fig.5.8
Peak period, Tp 2.5 s

Significant wave height, Hs 0.1 m

5.3.2. Performance of the Kalman filter
For this considered case we use the exact same Kalman filter as in the case of the regular wave.
We again assess the error between the observed deformation and the true deformation using
the heat map found in Fig.5.9. From the heat map we see that the Kalman filter manages to
observe quite accurately the true deformation of the structure from the sparse measurements.

Figure 5.9: Comparison of observed and true deformations of the floating structure using a Kalman filter in a sea state
environment. The top plot shows the deformation estimated by the Kalman filter, the middle plot shows the true

deformation, and the bottom plot presents the absolute difference, highlighting the accuracy of the filter.
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5.3.3. FE cost function

Figure 5.10: Comparison of the FE-defined objective functions of the rear part of the structure between the controlled
and uncontrolled cases. This figure illustrates the differences in deformation when control is applied to manage wave

interaction.

We use the same Finite Element defined cost function as described in Eq.5.2 to assess the ef-
fectiveness of the control framework in a sea state environment. However, in this case we plot
the controlled FE defined cost function against the uncontrolled FE defined cost function. In
the uncontrolled case we use the exact same setup, except that we do not control the floating.
Hence, we can closely examine the effect of control on the cost function in comparison with the
uncontrolled case.

In Fig.5.10, both cases initially start without control, which is why the two cost functions overlap
during this period. Once the control is activated, we can clearly see that the controlled FE cost
function reaches lower values compared to the uncontrolled FE cost function. However, there
are instances where the control does not yield satisfactory results. This is because controlling
the rear part of the structure requires the front part to generate a flapping motion to reflect the
incoming waves. Since the rear part is connected to the front part, the initial section of the rear
part is inevitably influenced by the movement of the front part.

To prove that this is indeed the case, let us present two new figures. Let us recall the cost
function defined in 4.2. In the first figure, we plot the summed deformation of the rear part of the
controlled and uncontrolled case against each other. In the second figure we plot the same but
now we shift the beginning of the rear part further away from the joint. Hence, for the first figure
we showcase the following quantity

Jrear,1 =

nrear∑
i=1

p2rear,i (5.3)

and for the second figure we showcase the following quantity

Jrear,2 =

nrear∑
i=200

p2rear,i. (5.4)

Note that the rear part of the floating structure has a total of 800 DoFs. Thus we shift our analysis
by neglecting the first 200 DoFs since these are highly influenced by the flapping motion of the
front part.

Note how Fig.5.11 has the exact same shape as the FE cost function, except that the values
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are different because in the FE defined cost function we integrate the deformation whereas in
Fig.5.11 we sum the deformations of the DoFs.

Figure 5.11: Comparison of the summed deformation of the rear part of the structure between the controlled and
uncontrolled cases. This figure illustrates the differences in deformation when control is applied to manage wave

interaction.

The observation we stated earlier, that is the rear part is greatly influenced by the motion of
the front part, can be confirmed from the Fig.5.11 and Fig.5.12. From Fig.5.12 we can clearly
see how the control successfully reduced the motion of the rear part against the uncontrolled
case. We can quantify this reduction by studying the ratio of the objective functions between the
controlled and uncontrolled scenario. This ratio is depicted in Fig. 5.11 where we can clearly see
significant reduction in the objective function. Hence, this shows how important the dimensions
of the structure are to control the structure. For next cases we should take the length of the rear
part into account. However, this requires an entire new DMDc model and is therefore out of the
scope of this study.

Finally, we perform a frequency spectrum analysis on the control input. To carry out this analysis,
we must compare the natural frequencies of the floating structure and the JONSWAP spectrum
with the frequency spectrum of the control input.

In Fig. 5.13, it is evident that our control input is primarily dominated by lower frequencies.
Additionally, we observe that the JONSWAP spectrum for the specified sea state aligns with the
control spectrum. This aligns with our findings from the previous scenario, where we analyzed
a regular wave condition, and found that the control spectrum peaked at the excitation wave’s
frequency. This is expected, as the modes of the floating structure with the highest energy
are those with greater inertia, resulting in lower natural frequencies. Consequently, the control
strategy focuses on these low-frequency modes.

Concerning the structure’s natural frequencies, we see that the second, third and fourth natural
frequencies also exhibit peaks with the control spectrum. Given that these natural frequencies
hold the most energy and their associated modes are excited since their natural frequencies
fall within the energy-dense part of the sea state’s spectrum, we observe that controlling these
modes result in effective stabilization of the structure.

In summary, the control mechanism works by stabilizing the modes whose natural frequencies
align with the energy-dense frequencies of the sea state. If the natural frequencies of the float-
ing structure’s most dominant modes do not fall within this energy-rich portion of the sea state
spectrum, the controller cannot effectively leverage these modes to resist the incoming wave.

Observe in Fig.5.14 that the reflected wave has a larger envelope in the controlled case com-
pared to the uncontrolled case. As anticipated, and in accordance with diffraction theory, the
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Figure 5.12: Comparison of the summed deformation of the rear part of the structure, with the beginning of the rear
part shifted further away from the joint. This figure demonstrates how adjusting the position of the rear part affects the
deformation in both controlled and uncontrolled scenarios. The ratio of the objective functions in the controlled and

uncontrolled scenario shows how the objective function is reduced at certain points during control.

Figure 5.13: Frequency spectrum of the control input under sea state conditions, illustrating the distribution of control
efforts across different frequencies. Peaks in the spectrum indicate the dominant frequencies at which the control

system is actively managing the structure’s response to sea state disturbances.



5.3. Sea state 78

transmitted wave exhibits a smaller envelope in the controlled case than in the uncontrolled case.
In the discussed results from the regular wave condition we observed the same phenomenon,
which seems to play an important role in the control of floating structures.
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Figure 5.14: Comparison of the structure’s deformation without control (a) and with control (b). Note how in the controlled scenario the reflected wave is bigger than in the uncontrolled case.
Similarly, the transmitted wave in the controlled case is smaller than in the uncontrolled case.
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5.4. Interpretation of the results

In both considered cases for control we observed that the controller in essence tries to generate
a reflected wave by making a flapping move using the front part of the floating structure. In
order to interpret the motivation behind this strategy we should investigate the forces acting on
the floating structure which the controller takes into account. Hence, as discussed before, we
assume that the controller has no knowledge of the exciting forces due to the incoming wave.

5.4.1. Hydromechanical loads
For simplicity, we consider our floating structure as a mass-spring system. Moreover, since the
system under consideration is linear, we know that our structure is influenced by two types of
loads, which we can superimpose [19].

1. Incoming wave-induced forces are the forces acting on the restrained structure due to
the incoming offshore waves.

2. Hydromechanical forces are the forces produced by the oscillations of the floating body
in still water conditions.

Let us recall the undamped mass-spring system, which we used to find the wet-modes of the
structure:

(−ω2(M11 +A) +Kd
11 +Kw

11)ηP = 0 (5.5)

We know from the wet-mode analysis that the wet-modes are independent of any external forces.
Therefore, in Eq.5.5 we do not consider any external forces such as the incoming wave-induced
forces. This equation is, in essence, Newton’s second law in the frequency domain. It is im-
portant to note that our system does not contain any damping; that is, energy in the structure
does not dissipate when the structure is excited. The hydromechanical forces can be found by
moving the spring-term in Eq.5.5 to the right-hand side, which gives us:

ω2(M11 +A)ηP = (Kd
11 +Kw

11)ηP (5.6)

Here, the added mass A depends on ω. Assuming we have carried out the wet-mode analysis
and found the natural frequencies of the wet-modes, we can establish the relationship between
themass of the structure and the hydromechanical force. Note that a structure with large inertia—
meaning that the matrices M11 and A have significant contributions to the system—leads to a
large hydromechanical force. The water particles near the structure are thus heavily influenced
by the inertia of the structure, leading to a standing wave, which is the reflected component of the
total velocity potential [19]. As a result, we observe a reflected wave generated by the structure.
One way to interpret this is by considering the floating structure as a separate wave generator,
emitting waves away from the structure.

In the case of no control, these reflected waves due to the hydromechanical force do not con-
tribute to any dissipation of energy. In the current formulation of Eq.5.5, we consider no (added)
damping. However, we know that if damping is present, the floating structure would generate
waves that propagate away from the structure [19]. Note that in these reflected waves, energy is
dissipated from the structure. If we recognize that our controller aims to stabilize the rear part of
the floating structure, this essentially involves dissipating energy from this rear part. Therefore,
our controller functions as a ”damper”. The consequence of is therefore the generation of these
reflected waves that dissipate energy from the rear part.

It is essential to note that this does not imply that the floating structure can be controlled equally
well across all types of sea states, as the wet modes are not dependent on the excitation force.
Instead, due to Fluid-Structure Interaction, the energy-dense frequencies of the sea state spec-
trum will primarily excite those modes of the floating structure whose natural frequencies are
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close to these energy-dense frequencies. Therefore, the controller will be primarily effective
when the dominant natural frequencies of the floating structure are aligned with the energy-
dense frequencies of the sea state. This will allow the controller to leverage the reflected wave
as a resisting force to withstand the incoming wave. If the low-energy modes are excited due
to a sea state which its energy-dense frequencies do not align with the most dominant natural
frequencies of the structure, the controller will most likely still try to leverage these low-energy
modes but not as effective as for the dominant modes.

This is achieved by amplifying the reflected wave due to the spring-term through the flapping
movement of the front part. Because of the conservation of mass, this directly results in a
smaller transmitted wave under the structure and, consequently, a lower input value of energy
introduced into the structure. Moreover, to amplify this reflected wave, the controller should apply
the control input with a frequency that lies close or is exactly the same as the natural frequency
related to that reflected wave. Therefore, in Fig.5.6 we observed how the control input has the
exact same frequency as the frequency of the incoming wave. Since the structure is excited by
one single frequency, we know that the most dominant mode acting in that case has a natural
frequency which lies close to the excitation frequency.

Note that this analysis is not limited to flexible floating structures. This analysis is in general
applicable for any offshore structure. Note that structures with larger inertia will lead to a larger
hydromechanic force which in turn will allow the controller to amplify this hydromechanic force
evenmore to counteract the incoming wave-induced force. This means that even the low-energy
modes could be leveraged to resist the incoming wave. However, this will require also larger
machinery to be able to cope with the dimensions of the system.

An important aspect that should not be left out consideration is the correct implementation of
the wet-modes in the model of the MPC. In this study we showed how POD can be used to
incorporate the wet-modes of the structure into the DMDc model by comparing the similarities
between the POD modes and the actual wet-modes. However, this approach relies heavily on
data and may not be scientifically accurate. Nevertheless, if the PODmodes and the wet-modes
show relatively large similarities, the suggested approach seems to return valuable results and
insights.

Key takeaway

• The controller amplifies the structure by generating reflected waves through a flapping
motion, redirecting energy away from the structure without relying on wave force data.

• Control performance is highest when the structure’s natural frequencies align with the
energy-dense frequencies of the sea state, enhancing energy dissipation.

• Hydromechanical forces from the structure’s inertia generate reflected waves, dissi-
pating energy when matched with the controller’s input frequency. This amplifies the
reflected wave and hence dissipating more energy away from the structure.



6
Conclusion & Recommendations

6.1. Conclusion

In this study, we aimed to develop a framework and evaluate a control strategy for flexible float-
ing structures by integrating Model Predictive Control with a Finite Element Model. Our goal
was to optimize the performance and stability of flexible floating offshore structures for offshore
engineering applications. To achieve this, we began with a literature review to explore exist-
ing studies and methodologies. The review revealed a notable gap: no existing studies had
implemented a control strategy for flexible floating structures with fully coupled fluid-structure
interaction, leaving the fundamental FSI component unaddressed.

A primary challenge in this context is the high dimensionality involved in modeling flexible floating
structures. Analytically, the deformation field theoretically includes an infinite number of degrees
of freedom that we aim to control. Numerically, this challenge can be approached by discretiza-
tion, resulting in a high but finite number of degrees of freedom. Furthermore, control of these
systems often relies on sparse measurements of the structure’s deformation, necessitating a
state observer capable of reconstructing the structure’s state from limited, noisy data.

After a thorough investigation, we decided to implement Model Predictive Control, a state-of-the-
art control strategy, in combination with a Reduced Order Model to mitigate the risks of infeasible
control due to hardware limitations. These limitations make it challenging to directly implement
a high-fidelity model within the MPC framework. MPC was selected because it enables the
incorporation of arbitrary objective functions alongside constraints, which are commonly required
in real-world applications.

Among ROM techniques, Dynamic Mode Decomposition with Control emerged as the most in-
terpretable and data-driven method for generating a ROM suitable for MPC. Unlike neural net-
works, DMDc produces a simple linear system that includes dynamic modes derived from the
data, allowing direct integration within conventional MPC theory.

We began by designing a general framework, integrating MPC with the Finite Element model
of the floating structure, which serves as the plant to be controlled. This framework comprises
two main components: the MPC and the true system. The true system is represented by the FE
model of the floating structure, with added noise to simulate realistic conditions. Sparse, noisy
measurements from the true system are then provided to a state observer within the MPC. The
purpose of this state observer is to reconstruct the true state of the system as accurately as
possible by estimating it based on limited measurements.

For the state observer, we used an adaptive Kalman filter, chosen for its robustness and adapt-
ability through the incorporation of prior knowledge. Finally, the estimated state of the system
is fed into an optimization block, which solves an optimization problem to generate a control
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input that aligns with the control objectives. The results demonstrated the effectiveness of this
framework in controlling flexible floating structures, even under challenging sea state conditions.

We based the formulation of the floating structure on the approach presented in [33] and ex-
tended it by incorporating an actuator within the joint to apply an external moment. The FE
model of the floating structure served two primary purposes: first, to generate open-loop con-
trolled data used to develop the ROM and second, to provide a high-fidelity representation of an
actual floating structure for control purposes.

For the first purpose, we found that the choice of the open-loop control signal significantly im-
pacts the quality of the ROM. Therefore, it is crucial to design an open-loop control signal that
captures the most essential dynamics of the system. For optimal performance, we recommend
the following iterative approach: begin with an open-loop control signal informed by theoretical
knowledge and intuition, then apply it in an actual case. If the control results are initially unsat-
isfactory but show partial success at certain points in the simulation, use this data to refine the
ROM. This iterative process can continue until the model produces satisfactory results. Addition-
ally, the quality of the ROM as a function of data length can be assessed through a convergence
study.

In this study, we designed various open-loop control signals. However, due to time constraints,
we were unable to refine the ROM using the iterative approach described earlier. Ideally, the
open-loop control signal should be as versatile as possible to capture a broad range of dynamics.
Furthermore, the quality of the ROM could be further evaluated by validating it against additional
data. For effective ROM design to control the floating structure in sea states, we found that in-
cluding wet-modes in the data is crucial. According to diffraction theory, incoming waves excite
these wet-modes, which have natural frequencies that align with the energy-dense frequencies
typical of sea states. We determined that exciting the floating structure using a flat-load spec-
trum is the most effective approach for capturing these wet-modes in the ROM through DMDc.
The presence of wet modes in the data was confirmed using Proper Orthogonal Decomposition
(POD), as outlined in [39].

The results demonstrate the effectiveness of the proposed control framework in stabilizing flex-
ible floating structures under both regular wave and sea state conditions. By implementing an
MPC strategy that prioritizes control stability and robustness, the framework successfully mini-
mizes structural deformation, as evidenced by the reduced FE cost function values in controlled
cases. The Kalman filter also performed well, accurately reconstructing the system’s full state
from sparse measurements, confirming its robustness in noisy environments.

The controller’s approach to stabilization relies on generating reflected waves through a flapping
motion, redirecting energy away from the structure without relying on precise wave force data.
This approach is particularly effective when the natural frequencies of the structure’s modes
align with the energy-dense frequencies of the sea state, allowing for enhanced energy dissi-
pation. The frequency spectrum analysis further supports this, showing that the control input’s
frequency aligns with dominant excitation frequencies, enabling targeted damping of the most
active structural modes.

In sea state conditions, the framework continues to perform effectively, even for a structure with
low inertia, proving its versatility and adaptability to different wave environments. The analysis
highlights the critical role of hydromechanical forces generated by the structure’s inertia, which
the control strategy amplifies to enhance energy dissipation. Additionally, the integration of
wet modes into the DMDc model via POD has shown promise, though further validation of this
approach would strengthen its applicability.

In summary, this study provides a proof of concept for a versatile control strategy applicable to
flexible floating structures, with potential for broader application to various offshore structures.
Future work could further optimize the approach by testing it with larger structures and varied
sea states, potentially expanding the method’s effectiveness in harsh offshore conditions.
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6.2. Recommendations

Nevertheless, there is plenty of room for improvement of this method. As described in 4.1.2
we expect that larger offshore structures will be easier to control in harsh offshore conditions.
The theory discussed in 4.1.2 showcases how inertia of the floating structure can be of great
influence on the control strategy, especially when using only the structure deformation as the
observed model. Hence, in the context of this study, one should do a parameter analysis to
prove the relation between the dimensions of the flexible floating and the control strategy. More-
over, it is essential to test for multiple cases with different sea states to prove the effectiveness
of the proposed control strategy in different scenarios.

Furthermore, we motivate other researchers in the field of offshore structure to find simpler repre-
sentation of the Finite Element Model that are physically more sound than the DMDc. The DMDc
has proved itself in this study to be a reliable method to control offshore floating structures, but
due to its high dependency on the quality of data it is difficult to prove that the method is sound
regarding the physical interpretation of the DMDc modes. We therefore suggest a combination
of Neural Networks and DMDc to fine-tune the system matrices obtained by the DMDc. This
will make it possible to generalize the obtained DMDc model for different conditions. Moreover,
in this study we used only one control input to control the structure. However, the proposed
method allows Multiple Inputs, Multiple Outputs (MIMO), which could be implemented for more
advanced cases, such as the control using multiple mooring lines to reach more than one objec-
tive.

Finally, we should underscore the importance of the floating structure’s properties, such as its
flexibility, length, and mass. The results indicate that the structure’s natural frequencies play a
critical role in effective control. Deploying an offshore flexible floating structure in a sea state that
does not align with the structure’s dominant natural frequencies can make control less effective.
Based on the findings, it is recommended to test control strategies on larger inertia structures,
as their increased hydromechanical forces, resulting from added mass, can enhance control-
lability. This, as we concluded earlier, makes it possible to leverage the reflected wave as a
resisting wave to the incoming wave. In comparison to low-inertia structures, these larger sys-
tems are likely to respond more effectively to control inputs, even at low-energy modes. Testing
with higher inertia structures could provide valuable insights into optimizing control performance
under varied sea states and may further validate the effectiveness of the proposed control frame-
work for large-scale offshore applications.

In conclusion, although the proposed method shows promising results, there is still room to
proof the effectiveness of the control strategy using hard evidence and more simulations using
different dimensions of the structure and environmental conditions.
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A
Finite Element Model - weak form

In this section we will solve the governing equations found in chapter 3 by the use of a Finite
Element Model. This model will be used to generate data for the DMDc and will be used as the
plant that we opt to control.

A.1. Weak form

First, we need to derive the so-called weak formulation of the considered problem in order to be
able to solve the problem. Let us define a function space V such that V def

= L2(0, T ;H2(Ω)). In
other words, we have a set of functions, from a Sobolev space H2,living in our fluid domain Ω
that vary in time from 0 to T and are square-integrable up to their second-order derivative [33].
Furthermore, we define the trace spaces of V, which are Sobolev spaces associated with the
boundaries of the domain Ω. These trace spaces consist of the restrictions of functions from
the Sobolev space to the boundary, representing the collections of function values and, where
appropriate, the values of certain derivatives that ’live’ on the boundary Γ. Let us therefore define
the trace spaces VΓfs and VΓstr [33]. Having defined these spaces we want to find our unknown
quantities ϕ, κ and η such that they are part of these function spaces. Hence, we need to solve
the following problem by finding [ϕ, κ, η] ∈ V × VΓfs × VΓstr .

B([ϕ, κ, η], [w, v, u]) = L([w, v, u]) ∀[w, v, u] ∈ V × VΓfs × VΓstr (A.1)

which boils down to a bi-linear term B on the left-hand side and the linear term L on the right-
hand side. For simplicity, let us consider it as a system with the quantities we want to solve
encapsulated in the bi-linear term B where the linear term L represents the source. By multiply-
ing Eq. 3.4 with the so-called test function w and integrating it over the full domain we find the
weak form ∫

∇2ϕ w dΩ = 0 (A.2)

Now let us integrate Eq.3.4 by parts and use the product rule of differentation to obtain the
following ∫

∇2ϕ w dΩ =

∫
Ω

∇ϕ∇w dΩ−
∫
Γ

(n · ∇ϕ) w dΓ︸ ︷︷ ︸
boundary term

(A.3)

Note how integration by parts naturally resulted in a boundary term that looks similar to the
boundary conditions defined in Eq.3.5 up to Eq.3.9. Let us now use the following notation such
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that the upcoming derivation stays clear [33]

(u, v)Ω
def
=

∫
Ω

u(x) v(x) dΩ (A.4)

(u, v)Γ
def
=

∫
Γ

u(x) v(x) dΓ (A.5)

Hence, it is more convenient to split this boundary term in Eq.A.3 into smaller chunks such that
we can write the weak form as

(∇ϕ,∇w)Ω − ((n · ϕ), w)Γb − ((n · ϕ), w)Γout − ((n · ϕ), w)Γfs − ((n · ϕ), w)Γstr︸ ︷︷ ︸
boundary terms

= ((n · ϕ), w)Γin︸ ︷︷ ︸
source term

(A.6)
Note that we moved the inlet boundary condition to the right-hand side as a source term. Having
now decomposed the weak form we can consider each boundary separate to derive its part of
the weak form.

A.2. Free surface - Γfs

The free surface can be decomposed into three parts: the first and second damping zones Γd1

and Γd2 near the inlet and outlet boundary and an actual free surface part where there is no
damping Γfs′ , such that

Γfs = Γd1 ∪ Γfs′ ∪ Γd2 (A.7)
where

((n · ϕ), w)Γfs = ((n · ϕ), w)Γd1 + ((n · ϕ), w)Γfs’ + ((n · ϕ), w)Γd2 (A.8)

A.2.1. Free surface (no damping)
Let us recall the kinematic boundary condition from Eq. 3.28 and the dynamic boundary from
Eq. 3.29 condition where we find for Γfs′

Kinematic B.C. : n · ∇ϕ = κt on Γfs′ (A.9)
Dynamic B.C. : ϕt + gκ = 0 on Γfs′ (A.10)

Now we can compute the weak form as previously done by multiplying the kinematic boundary
condition with the test function w and integrate over Γfs′ . For stability reasons as described by
[33] we have to multiply the dynamic boundary condition by a modified test function αfw + v,
integrate over Γfs′ and finally weighting it by β. Since Eq. A.10 is equal to zero we can subtract
it from the left-hand side of Eq. A.9.

((n · ϕ), w)Γfs’ = (κt, w)Γfs’ − β(ϕt + gκ, αfw + v)Γfs’ (A.11)

where according to [33]
αf =

−iω
βg

(1− β) ; β = 0.5

A.2.2. Damping zone 1
Again using the kinematic boundary condition from Eq.3.28 and the dynamic boundary condition
from Eq. 3.29 we find for Γd1

Kinematic B.C. : n · ∇ϕ = κt + µ2,in(κ− κI) on Γd1 (A.12)
Dynamic B.C. : ϕt + gκ+ µ1,in(n · ∇(ϕ− ϕI)) = 0 on Γd1 (A.13)

where we take

µ1,in = µ1(x) if x < Ld1

µ2,in = kλµ1(x)
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Following the same procedure as for the un-damped free surface where we multiply the kine-
matic boundary condition by w and the dynamic boundary condition by the modified test function
we obtain

(n · ∇ϕ,w)Γd1 = (κt, w)Γd1 + (µ2,inκ,w)Γd1

− β(ϕt + gκ, αfw + v)Γd1

− (µ1,inn · ∇ϕ, αfw + v)Γd1

+ (µ1,inn · ϕI , αfw + v)Γd1 − (µ2,inκI , w)Γd1︸ ︷︷ ︸
source terms

= 0 (A.14)

A.2.3. Damping zone 2
The second damping zone is very similar to the first damping zone except that the incident terms
found in Eq.3.26 and Eq. 3.27 are now zero. Hence for Γd2 we find

Kinematic B.C. : n · ∇ϕ = κt + µ2,outκ on Γd2 (A.15)
Dynamic B.C. : ϕt + gκ+ µ1,outn · ∇ϕ = 0 on Γd2 (A.16)

where we take

µ1,out = µ1(x) if x > LΩ − Ld2

µ2,out = kλµ1(x)

Self-evidently, we find

(n · ∇ϕ,w)Γd2 = (κt, w)Γd2 + (µ2,outκ,w)Γd2

− β(ϕt + gκ, αfw + v)Γd2

− (µ1,outn · ∇ϕ, αfw + v)Γd2 = 0 (A.17)

A.3. Structure - Γstr

Before deriving the weak form of the governing equations found on the structural domain we
need to introduce a set of interior points Λb, as can be seen in Fig. A.1. These interior points
can be considered as interface boundaries we place in between the discretized elements of the
structure where we can apply jump conditions that will arise while deriving the weak form of the
Euler-Bernoulli equation [13]. However, since we apply rotational joints in between the elements
we have to take these into account by defining them as the interior points Λj . Hence, we can
treat these joints similarly to the interior points Λb, except that for the joints we simply apply the
interface conditions defined in Eqs. 3.17, 3.18 and 3.19. Let us recall the governing Eq. 3.14.

ρbhb

ρw
ηtt +

D

ρw
∆2η + ϕt + gη = 0 on Γstr (A.18)

Figure A.1: Schematic representation of a discretized structural domain showing the placement of interior points Λb

as interface boundaries between elements Γbm. Additionally, rotational joints denoted by Λj are introduced to account
for specific interface conditions according to Eqs. 3.17, 3.18, and 3.19. At the ends of the structure we find the exterior

boundaries Λfs,str .
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where we have a fourth-order derivative of the structure deformation η with respect to space. In
this study we derive the weak form of eq. A.18 using the proposed method by [13] and that is
applied by [33]. This method proposes to solve fourth-order elliptic problems using Lagrangian
polynomials. Since Lagrangian polynomials are notC0 continuous, meaning (higher) derivatives
of the polynomial are not continuous across the elements, we will have to penalize or eliminate
jumping terms arising in the weak form by applying some jump conditions at the interior points
Λb. Let us therefore first derive the weak form of the fourth-order derivative and later on we can
consider the other parts in Eq. A.18.
Hence, we multiply this fourth-order derivative with our test function u, integrate over each ele-
ment Γbm and sum all the local contributions as follows∑

Γbm

[∫
Γbm

∆

(
D

ρw
∆η

)
u dΓbm

]
(A.19)

Now integrating once by parts we obtain

∑
Γbm∈Γstr

[
−
∫
Γbm

∇
(

D

ρw
∆η

)
∇u dΓbm +

∑
E∈∂Γbm

∫
E

∇
(

D

ρw
∆η

)
· nΛu dE

]
(A.20)

whereE denotes the boundaries on the ends of the discretized beam elements. For 1D elements
these can be the exterior boundaries Λfs,str, the interior points Λb or the joints Λj . For 1D
elements we find that the integral of the form

∫
E
f(x) dE is simply the function f(x) evaluated at

xb minus the the evaluation at xa. Now because in Eq. A.20 we are summing over all boundary
ends of the discretized elements Γbm we find that for two neighboring elements K and K + 1 a
similar term like the following will arise

jump(f(xb)) = ∥f(xb)∥ = fK+1(xb)− fK(xb) (A.21)

Hence, between elements we find these discontinuous quantities which has to be dealt with. Let
us use the property ∥fg∥ = ∥f∥⟨g⟩+ ⟨f⟩∥g∥ such that we can rewrite Eq. A.20 into∑

Γbm∈Γstr

[
−
∫
Γbm

∇
(

D

ρw
∆η

)
∇u dΓbm

]
+

∑
E∈∂Γbm

[∫
E

∥∥∥∥∇(
D

ρw
∆η

)
· nΛ

∥∥∥∥ ⟨u⟩ +〈
∇

(
D

ρw
∆η

)
· nΛ

〉
∥u∥ dE

] (A.22)

Contrary to Eq.A.20 we now sum once for each joint, interior point or exterior point since we
have applied the jump operator ∥·∥ that takes the jumps between the elements into account.
For both the rotational joints Λj as the interior points Λb we have that the shear force across the
elements should be continuous since there are no point loads applied at these points. Therefore,
the jump in shear force, ∥∇ (D∆η) ·nΛ∥ should be zero. Moreover, because we are working with
Lagrangian polynomials that are C0 continuous we find that the jump in our test function u, ∥u∥,
should also be zero. As for the exterior boundaries, where it goes that the moment and shear
force are zero, we find that these terms will also naturally drop. Hence, eliminating these terms
from Eq. A.22 we obtain ∑

Γbm∈Γstr

[
−
∫
Γbm

∇
(

D

ρw
∆η

)
∇u dΓbm

]
(A.23)
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which we can again integrate by parts to obtain∑
Γbm∈Γstr

[∫
Γbm

(
D

ρw
∆η

)
∆u dΓbm

]
+

∑
Λb∈∂Γbm

[∫
Λb

−
〈

D

ρw
∆η

〉
∥∇u · nΛ∥ dΛb

]
+

∑
Λj∈∂Γbm


∫
Λj

−
〈

D

ρw
∆η

〉
︸ ︷︷ ︸

=
−kφ,j

ρw
∥∇η·nΛ∥+Mext

ρw

∥∇u · nΛ∥ dΛj


(A.24)

where again in this case the exterior boundary Λfs,str term is eliminated naturally because of
the zero moment and zero shear conditions we imposed. Note how we can now substitute the
interface conditions of the rotational joints from Eq. 3.17 into Eq. A.24. As one can see in Eq.
A.24 we have derivatives of the shape function arising which we want to enforce continuity on.
We do this in a weak sense by adding penalty terms such that we penalize the jump of derivatives
across the elements, ∥∇η · nΛ∥. Let us express the union of all interior points Λb as ΛB . Now
combining all the integrals and adding the penalizing terms we obtain the following∫

Ω

D

ρw
∆η∆u dΓstr

+

∫
ΛB

[
−
〈

D

ρw
∆η

〉
∥∇u · nΛ∥ −

〈
D

ρw
∆u

〉
∥∇η · nΛ∥+

Dγ

h
∥∇η · nΛ∥ ∥∇u · nΛ∥

]
dΛB

+
∑

Λj∈∂Γbm

[∫
Λj

kφ,j

ρw
∥∇η · nΛ∥ ∥∇u · nΛ∥ −

Mext

ρw
∥∇u · nΛ∥ dΛj

] (A.25)

where similar to [33] we take γ = 1. Note how the control input can be moved to the source term
since it is a term independent of the current deformation of the structure.

As mentioned before we can now assemble the entire weak form of Eq. A.18 by multiplying each
term with its corresponding test function and integrating over the corresponding domain. Since
the weak form of Eq. A.18 equals zero we can subtract it from the weak form of Eq.3.9 as we
have similarly been doing for the previous cases. Hence, we obtain

(n · ∇ϕ,w)Γstr = (ηt, w)Γstr −
∫
Ω

D

ρw
∆η∆u dΓstr

−
∫
ΛB

[
−
〈

D

ρw
∆η

〉
∥∇u · nΛ∥ −

〈
D

ρw
∆u

〉
∥∇η · nΛ∥+

Dγ

h
∥∇η · nΛ∥ ∥∇u · nΛ∥

]
dΛB

−
∑

Λj∈∂Γbm

[∫
Λj

kφ,j

ρw
∥∇η · nΛ∥ ∥∇u · nΛ∥ −

Mext

ρw
∥∇u · nΛ∥ dΛj

]

+

(
ρbhb

ρw
ηtt, u

)
Γstr

+ ((ϕt + gη), u)Γstr

(A.26)

A.4. Outlet, inlet and bottom - Γout, Γin, Γb

For the outlet boundary condition we recall Eq.3.25 where for the weak form we find

(n · ∇ϕ,w)Γout = 0 (A.27)

For the inlet boundary condition, which is considered as a source term, we recall Eq. 3.24 where
for the weak form we find

(n · ∇ϕ,w)Γin = (uin, w)Γin (A.28)
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For the bottom boundary condition we recall Eq. 3.5 where for the weak form we find

(n · ∇ϕ,w)Γb = 0 (A.29)

A.5. Bi-linear and linear term

We can now substitute all the terms in Eq. A.6 that we have derived to find the bi-linear term and
the linear term. Since the bi-linear term is a lengthy expression we will express the complete
weak form as follows

B([ϕ, κ, η], [w, v, u]) = (uin, w)Γin + (µ1,inn · ϕI , αfw + v)Γd1 − (µ2,inκI , w)Γd1 +

(
Mext

ρw
, ∥∇u · nΛ∥

)
Λj︸ ︷︷ ︸

L([w,v,u])

(A.30)

A.6. Spatial discretization

Figure A.2: The scheme depicting the discretized entities of the considered problem [33].

Given the fluid domain Ω which we discretize in triangles such that we obtain the triangulation of
the domain denoted as Ωh, as can be seen in Fig.A.2. The triangulation Ωh is done such that the
shapes and angles of our predefined boundaries found in the problem setup are preserved. We
denote our discretized boundaries as a set of facets that lie on the boundary of Ω as Γin,h, Γb,h,
Γout,h, Γfs,h and Γstr,h. Additionally, we will be dealing with Λstr,h which are the edges of the facets
of the floating structure that are not the joints [33]. Let us define the finite-dimensional finite-
element spaces for the velocity potential, free surface elevation and the structure deformation,
Vh,VΓfs,h ,VΓstr,h , respectively, as [33, 3]

Vh =
{
wh ∈ C0(Ω) : wh|K ∈ Pr(K), ∀K ∈ Ωh

}
(A.31)

VΓfs,h = {wh|E : wh ∈ Vh, ∀E ∈ Γfs,h} (A.32)

VΓstr,h = {wh|E : wh ∈ Vh, ∀E ∈ Γstr,h} (A.33)

where Pr(K) denotes the space of Lagrange polynomials of degree r, where r = 4 in this study,
in a discretized elementK and whereE are the facets of the domainΩ. Finally, we can formulate
our discretized problem as follows: Find [ϕh, κh, ηh] ∈ Vh × VΓfs,h × VΓstr,h such that

B([ϕh, κh, ηh], [wh, vh, uh]) = L([wh, vh, uh]) ∀[wh, vh, uh] ∈ Vh × VΓfs,h × VΓstr,h (A.34)

with the bilinear function B and linear function L derived and defined in section A.1.
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A.7. Time discretization

For steady-state analysis it is often sufficient to study the system in frequency-domain. However,
in the context of control steady-state analysis is often not applicable. It is therefore essential to
analyse the system in the time domain because of the transient behaviour that will arise during
the control. Let us recall Eq. 2.4 where as mentioned before these type of systems can be
solved by the Newmark-β scheme. As similarly done by [33] we take γt = 0.5 and βt = 0.25
since it is proven that these parameters results in an unconditionally stable scheme. Using the
notation of Eq. 2.3 it is found that [33]

Θk+1 = Θk +∆tΘk
t +∆t2

[(
1

2
− βt

)
Θk

tt + βtΘ
k+1
tt

]
(A.35)

Θk+1
t = δt(Θ

k+1 −Θk) +
1− γt
βt

Θk
t +∆t

1− γt
2βt

Θk
tt (A.36)

Θk+1
tt = δtt(Θ

k+1 −Θk) +
1− γt
βt∆t

Θk
t +∆t

1− 2βt

2βt
Θk

tt (A.37)

where we take δt =
γt

βt∆t and δtt =
1

βt∆t2 . Furthermore, the notations {·}t and {·}tt denote the
first and second order time-derivatives respectively. Substituting the right-hand side of Eq. A.37
into Eq. A.35 allow us to compute Θk+1 such that Eq. A.36 and Eq. A.37 can be computed
explicitly.



B
LMPC - Full derivation of control law

1. Derivation of z̃⊤k Qz̃k
Let us substitute Eq.3.68 for z̃k such that

(p̃
k
− r̃k)

⊤Q(p̃
k
− r̃k) = (Mx̃k + Cuk − r̃k)

⊤Q(Mx̃k + Cuk − r̃k)

= x̃⊤
kM⊤QMx̃k + x̃⊤

kM⊤QCuk − x̃⊤
kM⊤Qr̃k

+ u⊤
k C⊤QMx̃k + u⊤

k C⊤QCuk − u⊤
k C⊤Qr̃k − r̃⊤k QMx̃k − r̃⊤k QCuk + r̃⊤k Qr̃k

(B.1)
where Q is a weight matrix which we can use to emphasize the tracking accuracy allowing us to
tune our control sensitivity

Q =


Q̄ 0 · · · 0

0 Q̄ · · · 0
...

...
. . .

...
0 0 · · · Q̄

 . (B.2)

For simplicity we consider Q = Q̄ I. However, note that in general we are allowed to penalize
each term in the forecast separately, allowing for finer control. For instance, one may want to
have the signal p̃ follow the desired trajectory r̃ as soon as possible in the control horizon. This
can be done by picking higher penalty terms found in the upper-left corner of this weight matrix
Q.

2. Derivation of u⊤
kR1uk

Now the second part found in the objective function Eq.3.71 is the part where we penalize the
increments between the control inputs along the control horizon such that we can fine-tune the
smoothness of the control signal, as discussed before. We can expand this term such that we
obtain

u⊤
kR1uk = ζ2

(
(uk+1|k − uk|k)

2 + (uk+2|k − uk+1|k)
2 + · · ·+ (uk+Nc−1|k − uk+Nc−2|k)

2
)
(B.3)

where one can see the summation of the different increments with a penalty term ζ2. In order
to obtain this expanded form we need to design the R1 matrix such that it computes the control
signal increments by acting on the vector uk, which is expressed in Eq.3.69. Moreover, we
include the penalty term ζ2 which penalizes these increments to our liking. This can be done by
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constructing the R1 matrix such that:

R1 =


−I I 0 · · · 0

0 −I I · · · 0

0 0 −I · · · 0
...

...
...

. . .
...

0 0 0 −I I



⊤

ζ2


−I I 0 · · · 0

0 −I I · · · 0

0 0 −I · · · 0
...

...
...

. . .
...

0 0 0 −I I


Nc−1×Nc

(B.4)

3. Derivation of u⊤
kR2uk

Finally, we reach the derivation of the third term found in Eq.3.71. Note that this third term only
acts on the first entry of the control signal over the horizon uk.

u⊤
kR2uk = ζ20u

2
k|k (B.5)

Hence, the matrixR2 should only act on this very first entry. Furthermore, we include the penalty
term ζ20 which allow us to penalize the magnitude of this very first entry of uk. Let us again
recall that this first entry will be the actual control input we apply on the true system. Therefore,
this entry is considered separately to allow for even more fine-tuning. This can be done by
constructing the R2 matrix such that

R2 =


I 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 0 0



⊤

ζ20


I 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 0 0


Nc×Nc

(B.6)

4. Derivation control law

Let us now gather all the terms derived above and remove the terms that cancel each other out
such that we reach the following form of J

J = x̃⊤
k Gx̃k + 2x̃kF⊤uk − 2x̃⊤

kW⊤r̃+ u⊤
kHuk − 2uT

k S⊤r̃+ r̃⊤Qr̃ (B.7)

and take the derivative of each component separately

∂(x̃⊤
k Gx̃k)

∂u
= 0 (B.8)

∂(2x̃kF⊤uk)

∂u
= 2F x̃k (B.9)

∂(−2x̃⊤
kW⊤r̃)

∂u
= 0 (B.10)

∂(u⊤
kHuk)

∂u
= 2Huk (B.11)

∂(−2u⊤
k S⊤r̃)

∂u
= −2S⊤r̃ (B.12)

∂(r̃⊤Qr̃)
∂u

= 0 (B.13)

Gathering all the derivatives:
2F x̃k + 2Huk − 2S⊤r̃ = 0 (B.14)



C
DMD modes

The DMD analysis, assuming the dynamics without influence of control, returns a diagonal matrix
Λ where the entries are the corresponding eigenvalues of each DMD mode, denoted as λk [23].
The future dynamics of any considered system x can be projected in the future given an initial
condition using the following convention

x(t) ≈
r∑

k=1

ϕk e
ωkt bk (C.1)

where ϕk represents the DMD modes, bk is the initial amplitude of each mode and ωk is the
continuous complex frequency, with the real part a and imaginary part b, found using [23]

ωk =
lnλk

∆t
. (C.2)

Using Euler’s theorem we find the time-dynamics to be a complex number such that

ωk = eat(cos bt+ i sin bt). (C.3)

Hence, to study the time-dynamics of the DMD modes we distinguish two important parts

Damping: real(ωk) = a (C.4)
Frequency: |imag(ωk)| = b. (C.5)

Below you can find the time-dynamics of the DMD modes we opt to control for the considered
case with a regular wave.
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Figure C.1: Time dynamics for the first 20 DMD modes (regular wave condition).
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Figure C.2: Time dynamics for the last 20 DMD modes (regular wave condition).
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Figure C.3: The first 20 DMD modal-shapes (regular wave condition).
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Figure C.4: The last 20 DMD modal-shapes (regular wave condition).
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Figure C.5: Time dynamics for the first 20 DMD modes where the free-surface elevation is included in the DoFs (regular wave condition).
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Figure C.6: Time dynamics for the last 20 DMD modes where the free-surface elevation is included in the DoFs (regular wave condition).
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Figure C.7: The first 20 DMD modal-shapes where the free-surface elevation is included in the DoFs (regular wave condition).
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Figure C.8: The last 20 DMD modal-shapes where the free-surface elevation is included in the DoFs (regular wave condition).
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