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Abstract

1 Introduction
Alzheimer’s Disease (AD) is an infamous neurodegenerative
disorder affecting over 55 million people worldwide [1]. De-
spite decades of research its exact causes remain unknown.

A critical challenge in AD research is its striking hetero-
geneity - AD presents on a spectrum with varied clinical man-
ifestations, progression rates, and underlying pathologies.
Unravelling this complexity by identifying and analysing AD
subgroups could prove a crucial step in understanding, pre-
venting, and treating the varied pathologies of AD.

1.1 Background
Alzheimer’s Disease is characterized by the abnormal accu-
mulation of amyloid-beta Aβ plaque and tau protein neu-
rofibrillary tangles in the brain. These proteins interfere with
neuron communication, cause inflammation, and contribute
to atrophy of brain regions responsible for memory. AD is
confirmed posthumously or with neuroimaging by measuring
αβ-plaque and tau levels.

Gene expression is the process by which information from
a gene is used to produce functional products like proteins.
Your cells are genetically identical, but function differently
due to variations in gene expression.

Transcriptomics measure messenger RNA (mRNA) lev-
els in tissue samples. mRNA carries instructions from the
genome to the ribosome where it is used to make proteins; its
abundance directly reflects gene expression levels. Transcrip-
tomics can be applied at either the bulk (large piece of tissue
measured and mRNA counts averaged) or single cell level.

Single Cell RNA sequencing (scRNA-seq) measures gene
expression across thousands of single cells. It gives us a snap-
shot of the individual cell states of complex biological sys-
tems. scRNA-seq data is very high dimensional and sparse,
it is also noisy, with high dropout rates and technical artifacts
that can obscure biological signals.

Foundation models learn meaningful representations from
complex high dimensional data through pretraining on mas-
sive unlabeled datasets with self supervised learning objec-
tives such as masked token prediction.

Differential Gene Expression (DGE), Over Representa-
tion Analysis, & GSEA are statistical methods that can be
used to find significant transcriptomic differences between
groups. DGE finds genes who’s expression differs signifi-
cantly between groups. ORA and GSEA are both used to test
whether specific gene sets or biological pathways are signif-
icantly enriched between groups. ORA uses a list of signifi-
cant Differentially Expressed Genes (DEGs) to identify over-
represented gene sets while GSEA finds pathway enrichment
directly from the full set of genes.

1.2 Related Work
Characterizing AD using scRNA-seq data requires tackling
a twofold dimensionality reduction problem. The data ma-
trix X (ncells ×ngenes) is high dimensional and noisy. Gene

level complexity must be reduced to create denser cell fea-
tures while accounting for noise. Sample level analysis re-
quires cellular dimensions to be compressed or aggregated to
form meaningful sample representations.

Seminal work by used scRNA-seq to identify disease asso-
ciated subgroups of Microglia and Astrocytes [2] [3]. Graph
based clustering was applied to find cell-subgroups and DGE
& GSEA used to find transcriptional differences. These stud-
ies reveal Disease Associated Microglia (DAM) and Disease
Associated Astrocytes (DAA) along with key enriched genes
and pathways. Further trajectory analysis characterizes the
progression of Astrocyte cell states from GFAP low to GFAP
high to DAA as Alzheimer’s pathology progresses. Later
studies expand on their work and identify or refine further
AD related cell subgroups through scRNA-seq clustering [4]
[5].

Cell subgroups have provided key insights for understand-
ing the development and mechanisms of AD pathology but
do not directly address the challenge of subtyping patients at
the sample level. Samples are composed of thousands of in-
dividual cells and constructing meaningful sample represen-
tations from single cell data with minimal loss of informa-
tion remains an open problem. Various methods to tackle this
problem have been proposed in the literature.

Studies address this through the use of Weighted SNP cor-
relation matrix analysis (WSCNA) [6]. Sample-Sample cor-
relation is used to construct a topological overlap matrix and
then clustering applied to directly find subgroups of samples.
A major drawback of this method is the O(n2

cells) space com-
plexity which hinders analysis of larger datasets.

Another approach clusters scRNA-seq data and uses cell-
subgroup proportions as sample representations for down-
stream trajectory analysis. They model cell state transitions
over pseudo-time to distinguish between three distinct AD
trajectories [7].

More recently, foundational transformer models, like
Geneformer, have emerged as powerful tools for learning
meaningful representations from complex high-dimensional
single-cell data [8]. Geneformer, pretrained on millions of
scRNA-seq transcriptomes, captures intricate gene network
dynamics and generates context-aware cell embeddings. Cell
representations learned by geneformer demonstrate SOTA
performance on various downstream tasks, including cell type
annotation, batch integration, in silico perturbation analysis,
and disease classification, even in zero-shot or limited fine-
tuning scenarios.

A promising new approach explores the use of graph based
neural networks and attention pooling to generate sample em-
beddings directly. They train a Graph Neural Network to gen-
erate cell embeddings, a sample pooling mechanism, and a
sample level AD classifier simultaneously to learn a latent
space with an ordering corresponding to disease severity [9].
Similar methods could be applied with self-supervised objec-
tives but the lack of available GNN foundation model weights
would necessitate pretraining from scratch.

1.3 Research Question & Hypotheses
Transcriptomic Foundation models have been shown to learn
powerful representations for various downstream tasks but



the investigation of their usage for AD subgroup discovery
remains underexplored. To address this knowledge gap we
pose our central research question:

”To what extent do the latent representations learned by self
supervised scRNA-seq foundation models enable the dis-
crimination and characterization of AD subtypes?”

We split our investigation into two parts and develop concrete
hypotheses to test.
Cell subgroup identification with clustering
H1.1 - “Clustering on self-supervised cell embeddings will
yield at least one cluster significantly enriched for cells de-
rived from Alzheimer’s Disease samples (adjusted p ¡ 0.05,
Fisher’s exact test with Benjamini-Hochberg correction)”
H1.10 - “Clustering on self-supervised cell embeddings will
not yield any cluster significantly enriched for cells derived
from Alzheimer’s Disease samples (adjusted p ¡ 0.05, Fisher’s
exact test with Benjamini-Hochberg correction)”
Motivation - Clusters significantly enriched for AD con-
firm the foundation model’s latent space separates disease-
specific transcriptional patterns from healthy controls and
other sources of cognitive decline.
H1.2 - “Clustering finds Astrocyte subgroups with DEG’s
corresponding to key markers from DAA, GFAP low, and
GFAP high”
H1.20 - “DGE on Astrocyte subgroups does not find sig-
nificant markers associated with DAA, GFAP low, or GFAP
high at any ’resolution’ or finds some partial set missing key
genes”
Motivation - Revealing known AD associated astrocyte sub-
groups characterized by DAA, GFAP-low, and GFAP-high
markers confirms the clustering procedures ability to identify
known disease relevant astrocyte phenotypes from cell em-
beddings.

Sample level analysis of cell-subgroup proportions
H2.1 - ”Clustering on sample proportions of cell subgroups
will identify at least one cluster significantly enriched for
Alzheimer’s Disease samples (adjusted p ¡ 0.05, Fisher’s ex-
act test with Benjamini-Hochberg correction)”
H2.10 - “Clustering on sample proportions of cell sub-
groups will not yield any cluster significantly enriched for
Alzheimer’s Disease samples (adjusted p ¡ 0.05, Fisher’s ex-
act test with Benjamini-Hochberg correction)”
Motivation - Clusters enriched for AD samples based on cell
subgroup proportions confirm that proportions discriminate
between AD and healthy controls or other sources of cogni-
tive decline.
After finding no AD enriched clusters on the whole propor-
tion matrix we attempt subtype analysis with only AD sam-
ples.
H2.2 - ”Clustering on only Alzheimer’s Disease sample pro-
portions will identify AD subgroups, whose differential gene
expression (DGE) and over-representation analysis (ORA)
will reveal transcriptional differences and enriched pathways
known to be associated with Alzheimer’s Disease pathophys-
iology (adjusted p ¡ 0.05)”
H2.20 - “Clustering on only Alzheimer’s Disease sample

proportions will not identify distinct AD subgroups whose
DGE and ORA reveal transcriptional differences or enriched
pathways known to be associated with Alzheimer’s Disease
pathophysiology (adjusted p ¡ 0.05)”
Motivation - Finding distinct AD subgroups from cell pro-
portions with AD associated transcriptional differences im-
plies that subtypes identified by clustering are biologically
meaningfull

2 Results
We leverage self-supervised learning to generate rich em-
beddings from scRNA-seq data with Geneformer [ref].
ROSMAP data is split by cell type into Astrocytes, Immune
Cells, Oligodendrocytes, OPCs, Excitatory neurons, and In-
hibitiroy neurons. Clustering is applied to cell embeddings
and clusters are tested for AD enrichment. DEG and ORA
is applied to astrocyte clusters to test enrichment for a set of
known DAA markers. Finally we represent each sample as a
distribution of its cell-cluster counts and attempt to identify
subtypes of samples.

2.1 Cell subgroup evaluation with clustering
Comparison of silhouette scores and cluster balance for dif-
ferent clustering methods reveals agglomerative ward clus-
tering as the best overall performer. Inspecting other spatial
metrics and cluster size balance confirms this further ??.

Significantly AD enriched clusters for GF embeddings are
identified at each tested resolution for every cell type. This
indicates some separation between AD and non AD cells but
low fold enrichment values of 1.1-1.3 suggest a weak associ-
ation and require further investigation.

2.2 Identification of known Astrocyte AD
subgroups

After clustering on Astrocytes we select a set of configura-
tions with increasing n clusters. DGE is performed on each
configuration to test for enrichment of a set of known DAA
marker genes. We especially look for upregulation of CD44,
GFAP ,SPP1, LCN2, C3, & CLU and downregulation of
SLC1A2, & ALDH1L1 as a strong indication of a DAA can-
didate cluster.

GF embedding configurations yield clusters enriched for 3
key DAA markers at n clusters (13, 22, 39, 52) - GFAP, CLU,
& CD44 - SLC1A2 & ALDH1l1 are enriched but upregu-
lated . Higher configurations do not yield clusters enriched
for more of our target set or with larger subsets of our targets
enriched per cluster; higher n clusters seem to split existing
clusters (and keep the same markers) rather than identifying
new ones. Clustering GF embeddings does not yield clusters
corresponding to DAA.

PCA embedding clusters provide more promising DGE re-
sults but still only find a subset of our targets. Clusters are
again enriched for key genes GFAP, CLU, & CD44 but none
are upregulated for SPP1, LCN2, & C3. Clusters upregu-
lated for GFAP, CLU, & CD44 are also generally enriched
for a subset of other DAA supporting genes. ALDH1L1 &
SLC1A2 are downregulated for multiple clusters. PCA with
35 clusters has some weak DAA candidates (14, 15, 17, 21,



32) but lacks key targets. PCA with 65 clusters shows even
weaker candidates with less enrichment for supporting genes
(22, 26, 35, 44, 48). Neither has clusters that can be confi-
dently identified as DAAs.

AD enriched clusters are highlighted in red. Only one en-
riched clusters was identified as a DAA candidate and they
were generally not enriched for more than one of our targets.

Clustering GF and PCA embeddings does not yield clusters
strongly corresponding to DAAs based on analysis of marker
genes. PCA outperforms GF and identifies clusters enriched
for a larger subset of DAA targets.

We construct sample representations by using the propor-
tions of their cells in each subgroup to get a proportion ma-
trix P (nsamples × ncell−subgroups). A baseline compari-
son is established using cell-subgroups already present in the
ROSMAP dataset. Clustering is applied to this matrix and
clusters tested for AD enrichment. No clusters are found to
be AD enriched suggesting low separation between AD and
non AD samples in the proportion space. Umap plots confirm
this low seperation for GF and baseline.

After finding no enriched clusters we filter P to include
only AD samples and apply clustering to find AD subtypes.
DGE and ORA are applied vs other AD subtypes and we
test for enrichment for a known set of AD related path-
ways and marker genes. We especially look for enrichment
for pathways from ’KEGG ALZHEIMERS’, ’Alzheimer’s
disease’, ’GO NEUROGENESIS’, and ’Alzheimer’s disease
(WP5124)’.

DGE results show significant transcriptional differences
between groups. GF subtypes are enriched for a subset of
our targets with high log2FC scores and distinct seperation
between enriched targets for each cluster. GF subgroup pro-
portions outperform our baseline and show better transcrip-
tional distinction between groups.

Enriched pathways do not indicate strong AD related path-
way differences between subgroups ??.

3 Discussion
3.1 Cell clustering
Clustering on geneformer embeddings yielded enriched clus-
ters but enrichment levels around 1.1-1.3 mean these clus-
ters are only 10-30% more likely to contain AD samples. GF
clustering does not seperate AD and non AD samples, this
suggests the latent space learned by geneformer is not well
seperated between AD and non AD clusters.

Similar results for clustering on the pca baseline suggests
that while geneformer embeddings are not well seperated,
they are not worse than the baseline.

These results indicate that a simple clustering procedure is
not sufficient to distinguish between healthy and AD cells.

3.2 Known AD associated Astrocytes subgroups
Astrocyte GF clusters do not identify clusters that are en-
riched for key DAA markers. Partial enrichment for some
targets but a lack of key genes (SPP1, LCN2, C3) and weak
seperation between cluster markers suggests our clusters are

not associated with DAAs markers. This implies transcrip-
tional differences between Astrocyte clusters are largely not
associated with AD.

While PCA results are better, and may present some DAA
candidates, they can not be said to identify DAAs.

These results indicate that the latent space learned by gene-
former does not distinguish between AD associated astrocyte
subgroups and healthy controls. In fact they seem to separate
healthy and DA Astrocytes worse than a simple pca proce-
dure.

3.3 Sample Proportion Subgroups
Raw sample proportions do not show any separation between
AD and non AD samples and the lack of any enriched clus-
ters for the baseline and GF shows they can not be used to
distinguish between AD subtypes.

Filtering on AD samples only we see a significant subset
of our target genes are enriched and that subgroups have good
seperation between enriched sets of genes (i.e. two subgroups
are generally not enriched for the same gene). Geneformer
subgroups outperform the ROSMAP subgroup baseline de-
spite weak performance in the identification of DAAs.

Pathway enrichement results do not show major enrich-
ment for AD related pathways between subgroups. Since we
only perform DGE on a subset of cell types this could be ex-
plained.

These results are conflicting but show some promise. Clus-
tering on AD sample cell subgroup proportions does yield
clusters with DEGs associated with AD and indicates a dis-
covery of meaningful transcriptomic differences but further
research and analysis is requried.

4 Conclusions, Limitations, and Future Work
4.1 Conclusion
This study investigated the extent to which latent representa-
tion learned by scRNA-seq Foundation Models could be used
to identify AD subtypes. Our analysis of geneformer embed-
dings on ROSMAP data reveals mixed results that challenge
assumptions on foundation model superiority.

Geneformer embeddings show superior cell type sepera-
tion than PCA, but this advantages does not translate to bet-
ter identification of AD enriched clusters with both methods
acheiving similar numbers of enriched clusters weak enrich-
ment levels.

Neither geneformer nor PCA identifies clusters with mark-
ers corresponding to a known Disease Associated Astrocytes
profile.

Analysis using cell subgroup proportions fails to identify
AD-enriched sample clusters, indicating that this approach
may not be sufficient for patient-level classification. When
clustering only AD samples, both methods revealed AD asso-
ciated transcriptional differences between subgroups and this
method may be promising for further subtype analysis.

In conclusion, our research demonstrates that extracting
AD subtype information from the latent space learned from
foundation models requires careful consideration and poten-
tially disease specific adaptations. The mixed results ob-
served suggest that the path from general-purpose models to



(a) 1.A Spatial metrics for Immune Cells (b) 1.B Cluster balance

Figure 1: Cluster balance and Silhouette scores for Immune Cells

disease-specific insights may be more complex than initially
anticipated and that the latent space learned by geneformer
cannot be easily used for AD subtyping.

4.2 Limitations
Analysis was limited to the ROSMAP cohort, which primar-
ily consists of white female participants, potentially limiting
generalizability. DGE for sample proportions was only per-
formed for a subset of cell types and this may explain weak
AD pathway enrichment results.

Our choice of clustering parameters and specific resolution
parameters may have influenced subgroup identification

The DAA marker set used may not be universally applica-
ble across all AD samples or stages. The full set of AD target
genes and pathways is not exhaustive.

Our analysis cannot capture disease progression dynamics.
Practical DAIC jobs are limited to 1TB of RAM, this made

the analysis of larger datasets (i.e. entire ROSMAP cohort)
infeasible.

4.3 Future Work
Disease-specific fine-tuning: Investigate whether fine-
tuning foundation models on AD-specific datasets improves
disease-relevant pattern recognition

Sample level clustering approaches: Use sample level
clustering to find subgroups of samples directly.

Multi-omic integration: Combine transcriptomic with
other omics modalities for more comprehensive analysis

Further embedding space exploration: Embeddings for
other cell types could be clustered to analyze discovery of
other known AD related cell subgroups

Direct Sample Embeddings: The procedure from [9]
could be combined a contrastive attention pooling goal to
learn sample embeddings directly.
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(a) GF Astrocyte DGE results 39 clusters

(b) GF Astrocyte DGE results 52 clusters

(c) PCA Astrocyte DGE results 39 clusters

(d) Subfigure D

Figure 2: PCA Astrocyte DGE results 39 clusters

(a) DEGs GF AD subtypes - 4

(b) DEGs GF AD subtypes - 4

(c) DEGs ROSMAP state AD subtypes - 4

(d) DEGs ROSMAP state AD subtypes - 6

Figure 3: DGE results for AD subtypes
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5 Materials And Methods
5.1 Data Sources and Preprocessing
We utilized data from the Religious Orders Study and Mem-
ory and Aging Project (ROSMAP) [?; ?], accessed through
the AD Knowledge Portal on Synapse [10]. ROSMAP rep-
resents one of the largest longitudinal cohort studies of aging
and dementia, encompassing clinical assessments, cognitive
evaluations, and comprehensive neuropathological character-
ization of participants. The multi-omic datasets include ge-
nomics, transcriptomics, and epigenomics data generated pri-
marily from postmortem dorsolateral prefrontal cortex tissue
samples.

Single-cell RNA sequencing data were obtained from 426
individuals, including both cognitively normal controls and
individuals with varying degrees of cognitive impairment. All
data access and usage adhered to the appropriate data use
agreements established through the AD Knowledge Portal
(https://adknowledgeportal.synapse.org).

5.2 Cell Embedding Generation
To generate our cell embeddings we employed two methods,
a transformer based self-supervised approach and a principal
component analysis (PCA) baseline. scRNA-seq data is em-
bedded in a 512 dimensional space and SS and PCA embed-
dings are then compared in later steps of our analysis pipeline.
The PCA baseline comparison allows us to assess whether
self-supervised embeddings improve upon capture of latent
AD subtypes compared to traditional linear dimensionality
reduction.

Self-Supervised Learning Approach
Cell embeddings were generated using Geneformer [11], a
transformer-based foundation model pre-trained on a diverse
atlas of 95 million human cells. Geneformer employs a
BERT-like architecture [12] with a masked token prediction
self-supervised learning objective, allowing it to learn rich
cellular representations from unlabeled scRNA-seq data.

We utilized the 12-layer Geneformer model (95M parame-
ters) available through Hugging Face [13]. Input preprocess-
ing followed the recommended protocol: expressed genes
were converted to ensembl ID’s and raw RNA expression
counts fed into a tokenizer that generated rank value encod-
ings by ranking genes by their relative expression and normal-
izing by their expression across the entire pre-training atlas.

PCA Baseline Comparison
Alternative cell embeddings were generated using PCA.
scRNA-seq data was preprocessed by filtering out cells with
less than 200 genes and genes expressed in less than 3 cells. It
was then normalized, log1p transformed, and the 5000 most
highly variable genes selected. Finally we reduce dimension-
ality to 512 with PCA.

All preprocessing and PCA was performed using scanpy
[14].

5.3 Hierarchical Cell Embedding Clustering
Cell embeddings were Hierarchically clustered using the ag-
glomerative clustering implementation from scipy. Various
configurations were tested:

• Linkage Methods - Ward, Weighted, Average, Single

• Distance Metrics - Euclidean, Cosine

Clustering was performed with n clusters 4 to 64.
When this was infeasible due to the size of the dataset, we

applied leiden clustering with n neighbours=15 and resolu-
tions [0.1-5] with 40 steps.

Spatial Metrics
Clustering quality was evaluated using 3 spatial metrics:

• Silhouette Score [15]: Measures the similarity of cells
to their assigned cluster relative to other clusters, with
values ranging from -1 to 1.

• Calinski-Harabasz Index [16]: Calculates the ratio of
between-cluster to within-cluster dispersion, with higher
values indicating better-separated clusters.

• Davies-Bouldin Index [17]: Quantifies clustering qual-
ity using the average ratio of within-cluster scatter to
between-cluster separation, where lower values (closer
to 0) indicate better cluster distinctiveness

Cell Type Stratification
Clustering was performed separately for each major cell
type (astrocytes, OPCs, oligodendrocytes, immune cells, in-
hibitory neurons and excitatory neurons). This was done as
the embedding space is largely dominated by cell type and
would start by clustering by cell type. It was also done for
memory and time complexity constraints as agglomerative
clustering is O(n2) for both.

AD enrichment testing
Throughout the clustering procedure, we tracked cogni-
tive diagnostic status for each cell based on the individual
donor’s clinical assessment. Cognitive status was catego-
rized according to the ROSMAP ”cogdx” variable: cogni-
tively normal controls (CT), other cognitive decline (OCD),
and Alzheimer’s disease (AD) [18].

https://adknowledgeportal.synapse.org


For each identified cluster, we computed the distribution of
cells across diagnostic categories and assessed statistical sig-
nificance using Fisher’s exact test, with false discovery rate
(FDR) correction for multiple testing. Clusters showing sig-
nificant enrichment (adjusted p-value ¡ 0.05) for AD diag-
nosis were designated as AD-enriched clusters. Enrichment
level was quantified by taking the cluster AD proportion over
the background AD proportion.

Selecting n clusters
In order to select n clusters for each cell type we analyze
spatial metrics and enrichment results ordered by silhouette
score.

Scores will generally be decreasing as n clusters increases.
We look for a ”corner” value where silhouette score either

increases on a larger n or where scores decrease sharply after
staying relatively stable. Other metrics are also taken into
account as tiebreakers.

Choice was then verified by visually inspecting UMAP
plots of cell embeddings.

5.4 Differential Gene Expression & ORA
Differential gene expression was performed using scanpy.
Comparisons are vs every other cluster unless otherwise spec-
ified. ORA was performed using enrichr to test for enriched
pathways.

5.5 Sample proportion analysis
Sample proportion matricies were constructed from cell sub-
group assignements and clustered with k means clustering.
Fishers exact test is applied like above to test for enriched
clusters

5.6 Computational Resources
All analyses were performed on a the Delft AI Cluster us-
ing NVIDIA A100 GPUs. Geneformer inference required ap-
proximately 1 hour per 20,000 cells. Hierarchical clustering
and differential expression analyses were parallelized across
multiple CPU cores to optimize computational efficiency.

Statistical analyses were conducted using Python 3.9 with
the scanpy, pandas, and scipy libraries. Visualization uti-
lized matplotlib, seaborn, and plotly packages. All ran-
dom number generators were seeded to ensure reproducible
results.

6 Responsible Research
6.1 Code and Data Availibility
Our analysis code, pre-processing pipelines, and documen-
tation are publically available at our GitHub repository.
ROSMAP data can be accessed publicly through the AD
Knowledge Portal on Synapse, with access being granted af-
ter approval via standard data use agreements. Data prepro-
cessing scripts, which are specific to our computational envi-
ronement, can be found at our processing repository. Com-
putational Requirements: Geneformer embedding generation
needs GPU support with CUDA compatability and roughly
12GB of GPU memory. We provide detailed hardware specs
and software dependencies in our repo.

6.2 Reproducibility and Replicability
Our pipeline was designed with reproducibility in mind. Our
GitHub repository contains extensive documentation, step by
step instructions, bash scripts for every step of the analysis,
and a containerized Apptainer environment to ensure com-
putational reproducibility. Data pre-processing, tokenization,
embedding generation, and clustering analyses can all be ex-
ecuted following our documented protocols. Replication on
other datasets should be feasable given Geneformer’s training
on diverse human cell atlases. We’ve included recommenda-
tions for adapting our preprocessing pipeline to other single-
cell datasets, although validation on independent cohorts will
be necessary to establish generalizability.

6.3 Ethical Considerations
Ethics remains an open problem in computer science and
there are several implications that need careful consideration
in this high-stakes medical research context.

Clinical Translation: Our computational findings repre-
sent research hypotheses at an early stage and require rig-
orous validation prior to any clinical translation. Prema-
ture translation of subtyping results could potentially mislead
therapeutic development efforts, so responsible reporting and
clear communication of limitations is essential.

Representation and Bias: The ROSMAP data consists
primarily of white female participants, which may limit how
generalizable our identified subtypes are to diverse popula-
tions. AD pathology and disease progression can vary across
demographic groups, and our findings might not fully cap-
ture this important heterogeniety. Validation in diverse pop-
ulations will be needed to ensure equitable medical advance-
ment.

Data Privacy: Although ROSMAP contains de-identified
data from deceased participants, we recognize the sensitive
nature of genomic and health data. Our aggregate analysis ap-
proach helps minimize re-identification risks, but we strictly
follow data use agreements and privacy protocols. Possi-
ble Misuse: Outside of research applications, our subtyp-
ing method could potentially be misapplied for healthcare ra-
tioning or insurance discrimination purposes. While we can’t
control all downstream applications, we want to emphasize
that our methods are intended solely for advancing disease
understanding and therapeutic development. We’re commit-
ted to openly disclosing uncertainties, limitations, and the ex-
ploratory nature of our findings, stressing that results should
be treated as research hypotheses rather than clinical tools.

6.4 Use of Large Language Models
Large language models were used when writing this report,
specifically we employed claude 4 sonnet and opus.

LLMs were used to:

• Generate summaries of relevant topics for reference

• Generating rough drafts and ideas referenced while writ-
ing.

• Explaining/finding biological and ML terminology and
concepts



Table 1: Top 15 Pathway Enrichment Results for ROSMAP proportions - 4 clusters

Gene Set Term Overlap P-value Adj. P-value Odds Ratio Cluster
Reactome 2022 HSF1 Activation R-HSA-

3371511
13/29 2.33×10−16 4.61×10−14 51.20 3

Reactome 2022 Attenuation Phase R-HSA-
3371568

12/26 2.18×10−15 3.60×10−13 53.84 3

GO Biological Process 2021positive regulation of tau-
protein kinase activity

4/6 1.00×10−6 1.30×10−4 122.57 3

Reactome 2022 Formation of the cornified
envelope R-HSA-6809371

8/14 3.11×10−10 1.53×10−8 65.14 3

Reactome 2022 Keratinization R-HSA-
6805567

8/14 3.11×10−10 1.53×10−8 65.14 3

GO Biological Process 2021keratinocyte differentiation 8/22 1.78×10−8 1.54×10−6 41.51 3
GO Biological Process 2021skin development 9/29 3.64×10−8 2.84×10−6 35.40 3
GO Biological Process 2021epidermis development 9/30 4.51×10−8 3.26×10−6 34.23 3
Reactome 2022 HSF1-dependent transacti-

vation R-HSA-3371497
6/11 5.59×10−8 3.72×10−6 62.21 3

GO Cellular Component 2021cornified envelope 6/11 5.59×10−8 1.67×10−6 62.21 3
GO Biological Process 2021cornification 6/11 5.59×10−8 3.72×10−6 62.21 3
GO Biological Process 2021epidermal cell differentia-

tion
8/25 5.70×10−8 3.72×10−6 36.51 3

Reactome 2022 Cellular response to heat
stress R-HSA-3371556

11/47 1.58×10−7 9.14×10−6 26.70 3

GO Biological Process 2021cellular response to un-
folded protein

7/20 1.86×10−7 1.03×10−5 39.93 3

GO Biological Process 2021cellular response to topolog-
ically incorrect protein

7/20 1.86×10−7 1.03×10−5 39.93 3



Table 2: Top 15 Pathway Enrichment Results for GF proportions - 4 clusters

Gene Set Term Overlap P-value Adj. P-value Odds Ratio Cluster
WikiPathway 2021 HumanWnt Signaling WP428 14/35 5.09×10−14 1.27×10−11 30.40 1
Reactome 2022 Signaling by WNT R-HSA-

195721
17/61 6.82×10−12 8.47×10−10 21.17 1

GO Biological Process 2021canonical Wnt signaling
pathway

12/32 2.25×10−11 1.87×10−9 28.50 1

Reactome 2022 TCF dependent signaling R-
HSA-201681

11/26 3.04×10−11 1.89×10−9 32.13 1

GO Molecular Function 2021transcriptional activator ac-
tivity

15/54 4.44×10−11 2.77×10−9 21.10 1

Reactome 2022 Beta-catenin independent
WNT signaling R-HSA-
3858494

9/18 4.82×10−11 2.00×10−9 38.00 1

GO Biological Process 2021Wnt signaling pathway 14/45 8.44×10−11 3.52×10−9 23.62 1
GO Biological Process 2021positive regulation of tran-

scription
22/125 1.19×10−10 3.71×10−9 13.37 1

Reactome 2022 PCP/CE pathway R-HSA-
4086398

8/15 1.56×10−10 4.33×10−9 40.53 1

Reactome 2022 Noncanonical activation of
NOTCH3 R-HSA-9013695

8/15 1.56×10−10 4.33×10−9 40.53 1

GO Biological Process 2021positive regulation of gene
expression

20/109 2.05×10−10 4.64×10−9 13.94 1

GO Biological Process 2021planar cell polarity pathway 8/16 2.64×10−10 5.48×10−9 38.00 1
GO Molecular Function 2021DNA-binding transcription

activator activity
14/48 2.92×10−10 5.59×10−9 22.17 1

Reactome 2022 Signaling by NOTCH3 R-
HSA-9013507

8/16 2.64×10−10 6.18×10−9 38.00 1

GO Biological Process 2021positive regulation of RNA
polymerase II transcription

19/104 3.51×10−10 6.32×10−9 13.88 1



Table 3: Top 15 Pathway enrichment Results for ROSMAP subgroups - 6 clusters

Gene Set Term Overlap P-value Adj. P-value Odds Ratio Cluster
Reactome 2022 HSF1 Activation R-HSA-

3371511
12/29 8.99×10−14 1.78×10−11 35.73 3

Reactome 2022 Attenuation Phase R-HSA-
3371568

11/26 1.33×10−12 1.31×10−10 36.54 3

GO Biological Process 2021positive regulation of tau-
protein kinase activity

4/6 8.85×10−7 1.15×10−4 100.80 3

Reactome 2022 Formation of the cornified
envelope R-HSA-6809371

7/14 1.70×10−8 8.34×10−7 43.20 3

Reactome 2022 Keratinization R-HSA-
6805567

7/14 1.70×10−8 8.34×10−7 43.20 3

GO Biological Process 2021keratinocyte differentiation 7/22 1.12×10−7 4.88×10−6 27.50 3
GO Biological Process 2021skin development 8/29 1.47×10−7 5.75×10−6 23.86 3
GO Biological Process 2021epidermis development 8/30 1.81×10−7 6.58×10−6 23.04 3
Reactome 2022 HSF1-dependent transacti-

vation R-HSA-3371497
5/11 3.66×10−7 1.22×10−5 39.27 3

GO Cellular Component 2021cornified envelope 5/11 3.66×10−7 5.49×10−6 39.27 3
GO Biological Process 2021cornification 5/11 3.66×10−7 1.22×10−5 39.27 3
GO Biological Process 2021epidermal cell differentia-

tion
7/25 3.96×10−7 1.30×10−5 24.19 3

Reactome 2022 Cellular response to heat
stress R-HSA-3371556

10/47 5.71×10−7 1.66×10−5 18.39 3

GO Biological Process 2021cellular response to un-
folded protein

6/20 1.11×10−6 3.06×10−5 25.92 3

GO Biological Process 2021cellular response to topolog-
ically incorrect protein

6/20 1.11×10−6 3.06×10−5 25.92 3



Table 4: Top 15 Gene Enrichment Results for GF proportions - 6 clusters

Gene Set Term Overlap P-value Adj. P-value Odds Ratio Cluster
WikiPathway 2021 HumanWnt Signaling WP428 14/35 5.09×10−14 1.27×10−11 30.40 1
Reactome 2022 Signaling by WNT R-HSA-

195721
17/61 6.82×10−12 8.47×10−10 21.17 1

GO Biological Process 2021canonical Wnt signaling
pathway

12/32 2.25×10−11 1.87×10−9 28.50 1

Reactome 2022 TCF dependent signaling R-
HSA-201681

11/26 3.04×10−11 1.89×10−9 32.13 1

GO Molecular Function 2021transcriptional activator ac-
tivity

15/54 4.44×10−11 2.77×10−9 21.10 1

Reactome 2022 Beta-catenin independent
WNT signaling R-HSA-
3858494

9/18 4.82×10−11 2.00×10−9 38.00 1

GO Biological Process 2021Wnt signaling pathway 14/45 8.44×10−11 3.52×10−9 23.62 1
GO Biological Process 2021positive regulation of tran-

scription
22/125 1.19×10−10 3.71×10−9 13.37 1

Reactome 2022 PCP/CE pathway R-HSA-
4086398

8/15 1.56×10−10 4.33×10−9 40.53 1

Reactome 2022 Noncanonical activation of
NOTCH3 R-HSA-9013695

8/15 1.56×10−10 4.33×10−9 40.53 1

GO Biological Process 2021positive regulation of gene
expression

20/109 2.05×10−10 4.64×10−9 13.94 1

GO Biological Process 2021planar cell polarity pathway 8/16 2.64×10−10 5.48×10−9 38.00 1
GO Molecular Function 2021DNA-binding transcription

activator activity
14/48 2.92×10−10 5.59×10−9 22.17 1

Reactome 2022 Signaling by NOTCH3 R-
HSA-9013507

8/16 2.64×10−10 6.18×10−9 38.00 1

GO Biological Process 2021positive regulation of RNA
polymerase II transcription

19/104 3.51×10−10 6.32×10−9 13.88 1
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