N the
decomposition of

visual sets using
| ranstormers

by

Andrea Alfler]

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Monday July 12, 2021 at 2:00 PM.

Student number: 5128315

Project duration: November 1, 2020 — July 12, 2021

Thesis committee: Dr. J.C. van Gemert, TU Delft, supervisor
Dr. S. Pintea, TU Delft
Dr. L. Chen, TU Delft

This thesis is confidential and cannot be made public until December 31, 2021.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft






1 Academic article

2 Attention
2.1 The dot product as a measure of similarity

2.2 The Softmax function. . . . .. ... ... ........
2.3 Self-attention . . . . ... ... ... ... L.
2.4 Masked self-attention. . . . .. ... ... .. L.
2.5 Keys, queries, values and multiple heads. . . . . . . ..
2.6 The Transformer architecture . . . . ... ... ... ..
2.7 Spatial positionalencodings . . . . . ... ... .....
28 Wordembeddings . . ... ... ... ... ... ...,

3 Evaluation metrics

31 oU . ..
3.2 LyandL, pointdistances . ... ... ..........
3.3 True positives, False Negatives . . . . . ... ... ...
34 Metrics . . ... ...

4 Datasets

4.1 Gates and polygons generation . . . . . ... ... ...
4.2 Linesgeneration . . . .. .. ... ... ... .. ...,

4.3 Data augmentation and dataset examples

5 Additional results

5.1 Optimal settings for the Transformer . . . . . . . .. ..

5.2 Additional results on the real gates dataset

Bibliography

Contents

23

.................. 23
.................. 23
.................. 25
.................. 25

29

.................. 29
.................. 29
.................. 31

35

.................. 35
.................. 35

37






Preface

The main contribution of this project has been presented in the form of an academic article. The re-
maining chapters of this report will serve as contextual information that can help the reader understand
the full picture of the work carried out over the period of my thesis project in collaboration with Dr. J.C.
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Transformers can generate predictions auto-regressively by conditioning each sequence ele-
ment on the previous ones, or can produce output sequences in parallel. While research has
mostly explored upon this difference on tasks that are sequential in nature, we study this
contrast on visual set prediction tasks, to analyze the core behaviour of the Transformer
model. Multi-label classification, object detection and polygonal shape prediction are all
visual set prediction tasks. Precisely predicting polygons in images is an important set pre-
diction problem because polygons are representative of numerous types of objects, such as
buildings, people, or obstacles for aerial vehicles. Set prediction is a difficult challenge for
deep learning architectures as sets can have different cardinalities and are permutation in-
variant. We provide evidence on the importance of natural orders for Transformers, analyze
the strengths and weaknesses of different solutions that can solve the set prediction task di-
rectly, and show the benefit of decomposing complex polygons into sets of ordered points
in an auto-regressive manner.

As Transformers are revolutionizing the Computer Vision research, | have tried with this project to bring
my small contribution to the research field that | believe will influence the next decade the most. My
time in Delft and these past months have been strenuous, fun, weird, exciting, challenging and full of
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like to thank Yancong for his help as my daily supervisor and for his kind support within and without
the scope of this project. As we are both approaching the end of an important segment of our lives,
| want to wish you the best of luck for your next steps. | would like to thank Dr. van Gemert for his
support throughout these months, for believing in my capabilities from the beginning of the project, and
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| would like to thank Dr. Pintea and Dr. Chen for their interest in my thesis, evaluation of my work, and
help throughout my Master’s degree and my thesis project.

Andrea Alfieri
Delft, July 2021






1

Academic article



On the decomposition of visual sets using Transformers

Andrea Alfieri
Delft University of Technology

Abstract

Transformers can generate predictions auto-regressively
by conditioning each sequence element on the previous
ones, or can produce output sequences in parallel. While
research has mostly explored upon this difference on tasks
that are sequential in nature, we study this contrast on vi-
sual set prediction tasks, to analyze the core behaviour of
the Transformer model. Multi-label classification, object
detection and polygonal shape prediction are all visual set
prediction tasks. Precisely predicting polygons in images is
an important set prediction problem because polygons are
representative of numerous types of objects, such as build-
ings, people, or obstacles for aerial vehicles. Set prediction
is a difficult challenge for deep learning architectures as
sets can have different cardinalities and are permutation in-
variant. We provide evidence on the importance of natural
orders for Transformers, analyze the strengths and weak-
nesses of different solutions that can solve the set prediction
task directly, and show the benefit of decomposing complex
polygons into sets of ordered points in an auto-regressive
manner.

1. Introduction

Predicting polygonal shapes in images is a high-level
task that can be representative of different problems that the
literature has tried solving with ad-hoc neural network so-
lutions. The main example of this is about the automatic
extraction of buildings from high-resolutions satellite im-
ages [ 1, 20], which can create opportunities for urban plan-
ning and world population monitoring [15]. Similarly, poly-
gon detection can be used by the vision-based flight control
system of unmanned aerial vehicles (UAVs) to recognize
complex shapes in the environment with the use of a sin-
gle camera. The performance of the detection module is
important as it directly affects the precision of the UAV’s
navigation. This is the challenge that motivated the creation
of autonomous drone racing events, where UAVs navigate
through obstacles without any help from pilots [16].

In this work, we look at the polygonal shape prediction

task as a set prediction task: many kinds of data can be
naturally represented using sets and many machine learn-
ing tasks can be viewed as a set prediction problem, such
as predicting the set of points of a polygon [41], detecting
objects in an image [4, 40], estimating the pose of humans
by detecting a set of key-points [3, 33], or predicting multi-
ple labels for the same sample [29]. The difficulty in such
problems arises for two main reasons: because the cardi-
nality (i.e. the number of elements) of the sets is unknown
and can vary among different samples, and because sets are
naturally permutation-invariant, since the order of the el-
ements does not matter. Both of these are properties that
many canonical deep learning models are not able to work
with.

Transformers [34] have achieved interesting results on
the set prediction task [4, 19], because of their ability to
perform the global computation required by this problem
through the attention module [ 1], a solution capable of ag-
gregating information from the entire set while also satisfy-
ing the permutation invariance property.

Despite being first presented as an auto-regressive
sequence-to-sequence model [34] that could generate out-
put tokens one by one, different works [5, 10, 13] have
tried to introduce Transformer models capable of producing
the output tokens in parallel, to reduce latency during infer-
ence. In fact, thanks to the use of masked self-attention [34],
the auto-regressive approach can be parallelized at training
time, when the target samples are known, but this cannot
happen at test time as the model needs to actually gener-
ate a token to condition the following one on it. However,
the vast majority of these works focused on tasks that are
sequential in nature such as machine translation [10, 13] or
speech recognition [5], and could not outperform their auto-
regressive state-of-the-art counterpart. On the other hand,
parallel Transformers have successfully been used to solve
the set prediction task directly [4, 23], but required addi-
tional computationally intensive solutions such as oversam-
pling or the use of heavy matching algorithms. In this work,
we study upon the difference between these models on set
prediction tasks, which are not sequential in nature, to high-
light their strengths and weaknesses.



(b) Real gate dataset. The two leftmost images are examples of the two scenes from the training set where light sources are internal and
external. The others are from the test set where light only comes from sources inside the room.

Figure 1: Examples from all five datasets.

The difference between parallel and auto-regressive
Transformers is fundamental. Let’s consider an image con-
taining three objects which we are trying to detect and three
random variables A, B and C' representing the positions of
the objects in the image. When asking a parallel Trans-
former to learn this task, we are actually asking the model
to learn the joint probability of these three variables, condi-
tioned on the model parameters ©, namely:

P(A,B,C'[©) (D

In contrast, when the auto-regressive approach is presented
with the same task, what it needs to learn is the chain of
conditional probability distributions defined by:

P(A|©)-P(B|A,©)-P(C|AB®O) (2

In the second case, the Transformer is asked to produce one
element of the set at a time, by exploiting information about
the previous predictions. This is similar to machine trans-
lation, in which the Transformer outputs one word, condi-
tioned on the previously generated sentence. Equations 1
and 2 are equal by definition of the general product rule
of probability, and Transformers are the first general archi-
tecture that is capable of modelling both. However, using
equation 2 with Transformers imposes an order even when

there is no natural one in the task we are facing, both on the
predictions

P(A)-P(B|A) vs P(B)-P(A|B) 3)
and the conditions
P(A|B,C) vs P(A|C,B) 4

We show that the conditional decomposition of the set can
be beneficial for Transformers when there is an explicit or-
der in the prediction of the elements of the set, such as when
predicting the set of points in a line. Moreover, we try to
provide more insights regarding the importance of the pre-
diction orderings and the order of the conditional variables.

We implement different auto-regressive and parallel
models and test them on four set prediction datasets and one
sequential dataset to provide the reader with a full picture of
the advantages and disadvantages of both approaches in this
novel scenario.

2. Related work

Similarly to how generating random numbers is compli-
cated for deterministic computing machines, generating sets
of arbitrary order and cardinality can be arduous for neural
networks working with vectors of pre-determined shape. A
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Figure 3: Embeddings for the point and gate classes.
The first 2n elements (in blue) of the vector represent the
(z, y) coordinates of the n vertices/points, normalized by
the image width and height. The following elements (in
red) represent the class label in one-hot format. The vector
is padded with zeros to reach the required dimensionality of
256.

ploy commonly used to solve this problem is to predict more
elements than necessary and then discard the excess. This
is the case for common object detectors [21, 27] that imple-
ment postprocessing strategies like non-maximal suppres-
sion on a great number of anchor boxes, but also for novel
Transformer-based architectures like DETR [4], which pre-
dicts n so-called object queries and then requires the model
to classify most of them into the no-object class, therefore
setting an inductive bias towards the maximal cardinality n
of the output set. In this case, having such an inductive bias
directly affects the model speed since the complexity of the
attention layer is O(n?) with respect to the sequence length.

Moreover, the target labels are matched optimally to the
DETR output using the Hungarian algorithm [18], which
is also O(n?) in the worst case scenario. Auto-regressive
Transformers are missing both of these components and can
be trained in much less time [17].

The majority of set prediction architectures has built
upon works that studied the mathematical properties of deep
learning architectures capable of working with input and
outputsets [19, 35, 36, 39]. Zaheer et al. “Deep Sets” model
[39] has proven that transforming the elements of the input
set into some latent representation and then combining them
through a permutation invariant function is a universal ap-
proximator of any set function. With some limitations, the
attention layer of Transformers can also be viewed as a gen-
eralization of the sum operation of Deep Sets and is there-
fore also a universal approximator of set functions [36].
Moreover, Lee et al. [19] demonstrated that some informa-
tion about the interaction of the set elements needs to be
discarded during the set pooling operation, which does not
happen when using the self-attention mechanism to aggre-
gate features, and showed how using attention can prevent
from under-fitting for problems with stronger interactions
among the set elements.

Transformers were originally introduced by [34] as novel
auto-regressive, sequence-to-sequence models, and gained
popularity thanks to their ability to dispense entirely with
recurrence and support parallel processing of sequences.
Their stunning results on machine translation and other lan-
guage tasks [2, 7, 22, 26] have recently shed a light on these
architectures from the computer vision community, which
has successfully designed Transformer-based architectures
for image recognition [8], object detection [4], segmenta-
tion [38] and other visual tasks [0, 12, 32, 37].



Parallel decoding for Transformers is a solution that was
previously applied also in the machine translation domain,
but required strong inductive biases such as an iterative re-
finement of the output [10] or the use of fertilities [13] to
reach competitive results. However, auto-regressive solu-
tions still remain the state-of-the-art in this field. Strong
baselines of this kind have also been hard to outperform in
the domain of speech recognition by parallel models [5]. In
our work, we show once and for all that conditioning each
prediction on the previous ones serves as a strong inductive
bias for tasks that present a natural order in their sequences
such as machine translation and speech recognition.

3. Method

This section describes the datasets and the models used
to study auto-regressive and parallel Transformers on set
prediction tasks of diverse complexities.

3.1. Datasets

Examples from all of the datasets used for our experi-
ments are shown in figure 1. We use 4 toy setting datasets
and 1 dataset of realistic synthetic images. The toy setting
images are manually generated during training and if not
specified otherwise, we generate 3 million images for train-
ing and 10.000 images for testing.

The points toy setting dataset contains images with n
white points randomly distributed over the image space.
Each point’s size is uniformly sampled from three possi-
ble sizes. The task is to predict the x, y coordinates of all
points in any order. This dataset is an instance of a pure
set prediction problem, with points representing the set ele-
ments.

The line toy setting dataset contains images picturing a
single white line composed by 7 segments. A green point
of fixed size is placed on top of each end of a segment. The
line is generated by first drawing a straight line going from
the bottom left corner of the image to the top right corner,
and then randomly shifting 8 equally distributed points per-
pendicularly to the line direction by r € [—15%, 15%)] with
respect to the image size. The task is to predict the x, y
coordinates of the 8 points following the line order, start-
ing from the end on the bottom left of the image. The set
elements are represented in this case by the green points,
and this dataset is an example of a set prediction task where
there exist an explicit order in which we need to predict its
elements.

The gates toy setting dataset contains images with n
polygons of 4 corners, called gates. Each gate is gener-
ated by defining 4 equally spaced points on a circumference
of random radius r € [5%, 40%] with respect to the image
size. Each point is then shifted randomly in the direction of
the radius and the four points are finally connected to de-
fine the gate. All four edges of the gates are of the same

thickness, uniformly sampled out of 3 possible choices.

The real gates dataset [9] contains realistic synthetic im-
ages generated with a graphical engine, which simulate the
flight of a drone in different environments containing empty
wire frame objects (EWFOs or gates). This dataset is a sim-
ulation of the images that a UAV would face in the IROS
2018 Autonomous Drone Race [16]. The train set contains
26.000 images from two different scenes, with light com-
ing from outside and inside the rooms. The test set contains
3.000 images from two additional scenes with light coming
only from artificial sources placed inside the rooms. For
all scenes, different walls and pavement textures are used,
as well as different artificial shapes and light intensities for
internal lamps. All images contain 1 to 4 gates. For this
dataset and for the gate dataset, the task is to predict the po-
sition in the image of the four corners of each gate. These
two datasets represent a set prediction scenario closer to
real-life problems, where the complexity of the single set
element prediction (the gate) is greater than a simple point
prediction. The real gates dataset stresses this complexity
even further by picturing gates with different backgrounds
and different lighting situations and allows us to investigate
upon the models’ behaviours on limited amounts of data.

Finally, the polygons toy setting dataset contains images
with n polygons of m € [3,7] corners, generated using the
same technique as the gates toy setting dataset. As multiple
non-convex polygons can be represented by the same set of
points, the task is to predict the m corners of a polygon in
clockwise order. Any starting point is accepted, and distinct
polygons can be predicted in any order. This dataset repre-
sents the hardest set prediction task in which we require our
models to predict a set of ordered sets.

For all datasets, n is an adjustable parameter that can be
customized for different experimental settings. All toy set-
ting samples consist of images of dimension 256x256 with
3 color channels, while images from the real gates dataset
have shape of 400x400. The positional coordinates of the
target labels are represented by vectors with values € [0, 1]
as height/width relative to the image size.

3.2. Models

All of the models that we implemented and tested are
derived from DETR [4], an end-to-end Transformer which
achieves competitive results against Faster R-CNN [28].
It takes advantage of a CNN backbone and a parallel
encoding-decoding strategy to solve object detection as a set
prediction task. In short, DETR is composed of four mod-
ules: a CNN backbone, a Transformer Encoder, a Trans-
former Decoder, and a feed-forward network (FFN). An ex-
ample of one of our models is shown in figure 2. It pictures
the auto-regressive version used for the polygon toy setting
dataset.

DETR takes as input an RGB image and extracts a high-



level feature map of shape d x (H x W), where d is the size
of number of channels, and H and W are the spatial di-
mensions. The feature map is supplemented with fixed po-
sitional embeddings before the Transformer encoder. The
Transformer encoder is a stack of 6 self-attention mecha-
nisms, each of which consists of a standard self-attention
layer followed by a feed forward network, a residual con-
nection and layer normalization [4]. All of the models we
tested are identical up to this stage of the architecture, but
differ in the subsequent modules.

3.2.1 Parallel models

The design of the Transformer decoder of parallel models
is similar to the one in DETR, which is a stack of 6 multi-
head self-attention mechanisms [4]. The self-attention layer
takes the output of the previous module as queries, and the
output of the Transformer encoder as keys and values. The
decoder takes as input object queries, which are N learned
vectors of dimension 256. The N object queries are con-
verted in parallel into N output embeddings by the decoder,
which are subsequently fed into a simple feed forward net-
work (FFN) for classification and position regression. Each
of the N output embeddings is a prediction and [V is gener-
ally much larger than the actual number of objects. There-
fore, a no-object class label is required to identify slots that
are not responsible for any prediction. During training, the
N predictions are matched to the target labels by the Hun-
garian algorithm [31]. The cost matrix for matching is the
weighted sum of the classification loss and the bounding
box regression loss.

Depending on the task, we modify the dimensionality of
the FFN for position regression accordingly. For example,
on the points and the line datasets, the output is a vector
of size 2 representing the (x, y) coordinates of a point nor-
malized by the image width and height, while the output on
the gate dataset is an 8-element vector indicating the four
vertices of a gate in clock-wise order. The class labels for
all datasets are the same, namely the object class and the
no-object class.

On the polygon dataset, the FFN is replaced by a simple
multi-layer Elman RNN [30], since the output dimension
is also a variable. The RNN model takes as input the em-
beddings from the object class and generates a sequence of
points one by one. The RNN is the smallest possible modifi-
cation we could make to the architecture to work with poly-
gons and have the smallest impact on the model’s properties
and our experiments.

3.2.2 Auto-regressive models

The auto-regressive models diverge from the parallel ones
on all set prediction tasks, because they work with sentences
of tokens that are generated one by one, by conditioning the

next prediction on the previous ones. In particular, each to-
ken is a vector of dimension 256 that represents an element
of the set, or acts as a special representation. Special tokens
can be:

e start or S: This token is at the beginning of all sen-
tences and defines the starts of the computation.

¢ end or E: This token is at the end of all sentences and
terminates the computation.

e end-of-polygon or EOP: This token separates poly-
gons from polygons inside the same image. It acts sim-
ilarly to the period token used in machine translation
to separate words belonging to different sentences.

Depending on the task, object tokens can be:

* point or P: On the point dataset and the line dataset,
each point is a 2-element vector representing the posi-
tion of the (x, y) coordinate normalized by the image
width and height.

e gate or G: On both toy and real gate datasets, a gate
is represented as a vector of size 8 p € [0, 1]®, which
defines the normalized coordinates (x, y) of all 4 ver-
tices.

To batch sequences of different lengths together, we pad
sentences with the end token up to the same length. For ex-
ample, given a batched sequences where the maximal length
is 8, we pad the shorter sequence with 4 visible points only
with two extra E:

S,P,P,P,P.E E E

We use the same Transformer decoder as the parallel
models, but adopt the masking technique for parallel train-
ing, which prevents each token from attending to subse-
quent positions [34]. The token embedding is a fixed length
vector of size 256 as shown in figure 3.

The auto-regressive approach predicts all polygons in a
certain order. If not specified otherwise, we always pre-
dict objects going from left to right in the image, splitting
ties with top-to-bottom order. We sort polygons and gates
accordingly by their centers, computed as the average of
their vertices. Particularly, for the polygon dataset, we also
impose an order on points such that the polygon is clock-
wisely defined by the points, otherwise the same set of the
points may result in several polygons of different shapes.

4. Experiments

First, we validate on the toy line and point datasets that
the auto-regressive approach is preferable when there is an
explicit natural order in the predictions and that the parallel



Results on the line toy setting dataset
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Figure 4: Results on the line dataset. Both networks are
able to predict the green points in the correct order within a
threshold of 0.10, but the auto-regressive one is much more
precise and achieves a perfect AP up to a threshold of 0.02.

solution is better for pure set prediction tasks. We then com-
pare the two strategies on more challenging gate datasets
where the set element is no longer a single point and where
data is scarce. Finally, we explore deeper into the auto-
regressive solution to study upon the importance of the pre-
diction order and the order of the conditional variables.

On toy datasets, we train all models with 3.000.000 im-
ages. On the real gate datasets with 26.000 images, we train
all models for 300 epochs. We apply multiple data augmen-
tation techniques, including horizontal flip, vertical flip, hue
shift, Gaussian noising.

We train all models on a single NVIDIA GeForce RTX
2080 Ti GPU with AdamW [24], and set the Transformer’s
learning rate to 10—, the backbone’s learning rate to 1072,
and the weight decay to 10~%. The learning rate is dropped
by a factor of 10 after 200 epochs, or after 2.000.000 images
for the toy settings. Mask R-CNN [14] is also trained for
300 epochs with learning rate 0.005, which is decreased by
10 after 200 epochs.

4.1. Evaluation

The evaluation metric is mean Average Precision, aver-
aged over different ToU thresholds ([0.50,0.55, . ..,0.95])
for gates and polygons, and over different point-to-point L
distance thresholds ([0.10,0.09, ..., 0.01]) for points, com-
puted directly on the relative coordinates.

4.2. Line and point datasets

With this experiment we show that the conditional de-
composition of sets by auto-regressive Transformers is ben-
eficial in the presence of a natural order in the elements of
the set. Results on the lines toy setting dataset are shown in

Results on the point toy setting dataset
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Figure 5: Results on the points toy setting dataset. The
auto-regressive model shows marginally better performance
than the parallel one on sets of limited cardinality, but its
performance is lacking when the set cardinality grows. OQ
stands for object queries. The models with max points rep-
resent results on images with exactly n points while the ones
without max points indicates that the number of points in an
image varies from 1 to n.

Results on the gates toy setting dataset
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Figure 6: Results on the gates toy setting dataset. Each
point of the plot is an experiment in which the model is
trained and tested on images with 1 to n gates. They show
how oversampling is necessary for the Transformer and how
the conditional model is not strong against larger sets. OQ
stands for objects queries.

figure 4. For this task, a line prediction is considered a false
positive if the sum of all L; point distances is greater than
the given threshold. The experiment shows that in this set-
ting the auto-regressive solution is much more precise than
the parallel counterpart as it is able to achieve perfect AP up



10 Results on generalization to more gates
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Figure 7: Generalization capability of the different mod-
els. The parallel one is able to detect many more gates than
the auto-regressive one when diverging from the training
distribution. We believe oversampling to serve as a strong
inductive bias in this sense as each object query is assigned
to an object at least once during training.

to a threshold of 0.02.

On the other hand, the experiments on the points toy
setting study the behaviour of parallel and auto-regressive
models on a pure set prediction task. The models are now
expected to predict the n points in any order, but the auto-
regressive one is trained by always showing point in left-to-
right order. Results on this dataset are shown in figure 5. In
this experiment, all models are trained on images with 1 ton
points. We present test results on images with 1 to n points,
as well as results on images with exactly n points. Results
show that on set prediction tasks, the auto-regressive ap-
proach is effective when the cardinality is low, but quickly
deteriorates as the cardinality of the set increases.

The two experiments on lines and points prove that the
presence of a natural ordering in the task faced is indeed
an important discriminative factor towards the performance
of the parallel and auto-regressive models in set prediction.
Moreover, we show the advantage of the auto-regressive
approach in low-cardinality set prediction tasks. The par-
allel ones show significant advantage in predicting high-
cardinality sets but at the cost of using redundant object
queries.

4.3. Gates toy setting and real gates

The following experiments verify whether the observa-
tions on the line and point datasets generalize in compli-
cated scenarios where the set element is a gate of four ver-
tices. First, we evaluate the performances of auto-regressive
approach and its parallel counterpart on the toy gate dataset,
as shown in figure 6 where removing oversampling indi-

cates that we use as many object queries as the maximal
number of objects in the images. The parallel model with
oversampling outperforms the one without oversampling
substantially, validating the need for the parallel models to
oversample the set cardinality. Moreover, we show once
more the auto-regressive approach performs comparably to
the parallel one on low-cardinality sets, but suffers from the
growing cardinality.

In figure 7 we provide our findings on the generaliza-
tion capabilities of these models, where the number of gates
in test images is up to twice more than the number during
training. The auto-regressive model struggles at detecting
more gates, while the parallel one only shows minor perfor-
mance decrease and achieves an mAP of 0.8 even on images
with twice the amount of gates. We believe this behavior to
be directly caused by the oversampling strategy of the par-
allel models: each of the 30 object queries is assigned to
at least one gate during training, which implicitly tells the
model that there could be more objects than the ones it sees
in each image.

Finally, we numerically compare the general perfor-
mances of all models on both toy and real gate datasets
with images containing 1 to 6 gates. We choose Mask R-
CNN as the baseline. Table 1 summarizes our findings and
shows parallel Transformer outperforms Mask R-CNN by
5% mAP on the toy setting dataset and by 4% mAP on the
real gate dataset. The auto-regressive approach is not able
to achieve comparable results as there is no natural order
in this task. However, the auto-regressive model requires
less than 2 minutes of training time per 10,000 images as it
does not require Hungarian algorithm or the oversampling
technique.

4.4. Polygons toy setting

Results on the polygon toy setting dataset are shown in
table 2. This experiment explores an hybrid scenario in
which the set elements we are trying to predict are also sets
with an imposed order, because a set of points can repre-
sent multiple polygons if the order of its points is not given.
The auto-regressive approach is the special one described at
the end of section 3.2.2, which predicts polygons as a se-
quence of points followed by the end-of-polygon token, and
it outperforms the parallel model substantially by over 20%
absolute mAP. We show that the auto-regressive solution
can become a viable one when the problem we are facing
can be split into smaller problems. We speculate that this
could be a direct consequence of the conditional decompo-
sition of the joint probability, as imposing the conditional
order on these models can serve as a strong inductive bias
by reducing the search space of the model.



Models Gates toy setting  Training time [min/10k images] ‘ Real gates  Training time [min/10k images]

Mask R-CNN 90.67% 23.6 61.30% 13.85
Parallel 95.45 % 22 65.00% 3.85
Auto-regressive 87.67% 1.5 59.03% 1.85

Table 1: Numerical results on gate datasets. Scores are represented as mAP averaged over 10 IoU thresholds [0.50, 0.55,
..., 0.95]. The parallel model outperforms Mask R-CNN even with limited amounts of data. The auto-regressive model is
much faster to train but does not achieve the same performance as there is no natural order in this task.

Models Polygons toy setting  Training time [min/10k images]
Parallel 53.55% 5.1
Auto-regressive 76.41% 2.15

Table 2: Numerical results on polygon dataset. Scores are represented as mAP averaged over 10 IoU thresholds [0.50,
0.55, ..., 0.95]. The auto-regressive approach outperforms the parallel one by over 20% absolute mAP. We speculate that
this could be a direct consequence of conditional decomposition of the set.

Using positional encodings

—1.90% £+ 1.07%
—7.68% + 4.53%

Not using positional encodings

Order based on polygon position in the image

Order based on polygon area —2.95% + 1.30%

Table 3: Numerical results on the importance of the position encodings and condition orders. This tables shows mAP
difference of adding positional encodings and imposing orders. The top performing model is spatially ordered (left-to-right
and top-to-bottom) and has no positional encoding. Our observations are that: (1) changing the imposed order on auto-
regressive Transformers has a great impact on the performance as shown in the first column; (2) adding position encodings

decreases the performance .

This behaviour might not show up on the previous ex-
periments because gates, points and lines are simple set el-
ements which do not enlarge the search space enough. As
polygon detection is representative of many common com-
puter vision tasks, we leave further exploration of this ap-
proach as future work.

4.5. Orders

We conclude our experiments by providing results on the
importance of orders that are imposed by the conditional de-
composition of a set by the auto-regressive Transformer. In
particular, we study the influence of different artificial or-
derings in permutation-invariant tasks. Moreover, we study
if making the auto-regressive Transformer invariant to the
order of the previous predictions can be beneficial for the
next token prediction. We run all of experiments on the toy
gate dataset, real gates and the polygon datasets multiple
times, by using two different object orderings and by adding
or removing the positional encodings of the attention layer.
Without the positional encodings, the Transformer decoder
is unaware of the index in the sequence of the previous pre-

dictions. When predicting a new point, it only knows which
points were predicted before, but not their orders. The two
orderings are the left-to-right, top-to-bottom order and the
small-to-large order in terms of the area covered by the ob-
jects. Experiment results are shown in table 3, where us-
ing the left-to-right, top-to-bottom order and removing the
positional encodings lead to the best performance in all ex-
periments. We show the mean absolute difference of other
models compared to best one. The result shows that the ar-
tificial order matters for auto-regressive models. Moreover,
we show that fixed positional encodings are not beneficial in
this setting, in contrast to the original Transformer architec-
tures. This is expected as different orders of the same words
in NLP can have different meaning, while this does not mat-
ter in our setting, as knowing the location of a point can
already prevent our model to predict the same point twice.



5. Conclusion

In this work, we have investigated upon the two most im-
portant variants of the Transformer architecture: the parallel
one and the auto-regressive one. We have applied them on
a fundamental task such as the set prediction task and we
have developed different controlled environments to study
their most relevant properties. We showed how the pres-
ence or absence of a natural order in the object predictions
is a strong factor towards the performance of these mod-
els and highlighted some additional properties of the auto-
regressive model, such as its strength on sets of small cardi-
nality or on set prediction problems that can be easily split
into smaller tasks. Finally, we have investigated upon the
different orderings that we are required to fix on the target
labels to train the auto-regressive Transformer.

One limitation of this research is that most experiments
are conducted on toy datasets only, and it is unclear whether
the observations and conclusions on toy datasets general-
ize on challenging real-world datasets. A task that would
be suitable to expand our research could be that of predict-
ing buildings from satellite images. The crowdAl mapping
challenge [25] is an example of a dataset where this could
be done, as it represents a scenario close to our polygons
dataset.

As future work, we find it important to further explore
on the polygon detection task as it is a fundamental prob-
lem that is representative of different computer vision ones.
Testing additional fixed or learned token embeddings and
providing evidence upon their effect on the model perfor-
mance would also be of interest to the community.
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Attention

This chapter will provide an overview on how the attention mechanism works. After reading this, the
reader should be able to comprehend why this mechanism is achieving extraordinary results in different
fields of Deep Learning, ranging from natural language processing to computer vision, and how the key
components of our Transformer architecture work.

2.1. The dot product as a measure of similarity

In general, the dot product is a mathematical operation on vectors. It can be defined as a function
f : (a,b) = c which takes two vectors of equal size a € IR" and b € IR" and returns a single scalar
value ¢ € R. ltis defined as:

n
i=1

a-bzzai-bi 2.1)
but it is in its geometrical representation that it becomes interesting for us:
a-b=|lall bl - cos(a) (2.2)

where «a is the angle between the two vectors. Since a defines how the two vectors are oriented with
respect to each other, the dot product takes its maximal value when the two vectors point in the same
direction and reaches its minimum in case of vectors pointing in opposite directions. This is highlighted
in figure 2.1. As modern deep learning architectures work with high-dimensional feature vectors, the
dot product can be used to measure their pair-wise similarity. The most common application for this
is in Natural Language Processing. If we were to represent words using high-dimensional vectors, we
would want words holding a similar meaning to also be similar in their representation. This is the idea
that drove the attention mechanism first, and its use in the Transformer architecture then.
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Figure 2.1: As the direction of the two vectors diverge, the dot product decreases. This property can be used as a similarity
measure of the two vectors by the attention mechanism.
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Figure 2.2: The softmax function takes any vector v and transforms it into a vector of the same size whose elements are v; € [0, 1]
and they all sumto one: ¥;v; = 1

2.2. The Softmax function
The softmax function is a function ¢ : R™ — IR™ which takes the elements of a vector v and transforms
them into a probability distribution. It is defined as:

Vi

oW = 5o (2.3)
J

The reason why the softmax transforms the vector elements into a probability distribution is because
after its application all elements of the output vector are bounded v; € [0,1] and sum to one }; v; = 1.
Therefore, it is often used as the final layer of a neural network classifier, such that cross entropy loss
can be applied directly on its outputs. This is the same setting that we use in the classification branch
of the FFNs that follow the Transformer decoder. A visualization of the softmax function can be see in
figure 2.2.

2.3. Self-attention

The self-attention module is a simple application of the dot product and the softmax function. Let's
consider a set of n = 4 feature vectors x; of dimension d. The self-attention layer scans through the
list of feature vectors and considers them one by one. This example is shown in figure 2.3, taken from
this blogpost’, which pictures the step of the x, feature vector.

"http://peterbloem.nl/blog/transformers
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Figure 2.3: The self-attention layer. Please notice how each feature vector is used as key, query and value.

The feature vector x, is compared using the dot product to all other vectors x4, .., x, and the results
are stored in a vector o = [o04, .., 0,]. The softmax function is then applied on this vector to transform
it into a set of weights wy, .., w,. The weights are pictured in the image ranging from white to red as
they are closer to 0 or 1. Please notice how the weight w;; will always be one of the most active ones
as x; is identical to itself. After computing the weights, each feature vector x; is multiplied at this step
by its corresponding weights w,; and the resulting vectors are summed together to finally output the
sequence element y,. In short, the output vector y, is computed by taking into consideration only
the most similar vectors to x,, with intensities based on the strength of this similarity. This process is
repeated for all input vectors until the sequence is complete.

Each vector is used in three different roles throughout the entire computation. These roles take the
name of key, query and value. A vector is a value when multiplied against its weight. Itis a query when
it is its turn to be compared against all other vectors, and it is a key when being compared against a
query.

Naturally, this entire process can be expressed in terms of matrix multiplication to allow for a more
efficient GPU computation, but the module still keeps its 0(n?) complexity as each vector needs to be
compared against all others.

2.4. Masked self-attention

The attention layer is a sequence-to-sequence layer which gained popularity thanks to its global com-
putation, meaning that each element of the output sequence is computed by using direct information
from all input elements. This property turns out to be extremely useful to model long-range interac-
tions among input elements, which is often trivial in natural language processing tasks. Let’s take the
following sentence as example:
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The Mona Lisa is a half length portrait painting by Italian artist Leonardo da Vinci. Con-
sidered an archetypal masterpiece of the Italian Renaissance, it has been described as “the
best known, the most visited, the most written about, the most sung about, the most paro-
died work of art in the world”

In this sentence, the word “it” refers to the “Mona Lisa”, although these word are very far apart in the
sentence. Recurrent models such as GRUs [3] or LSTMs [6] would have problems modeling this type
of interaction, which is why attention based architectures such as BERT [4] and GPT-3 [1] have been
achieving incredible results on these tasks.

To work with sequences of words, we would like to keep the parallel computation property of the
attention layer while also avoiding output tokens to be generated using information from “the future”.
For example, we can consider the task of synthetic word generation, in which we would like to feed our
model with an incomplete sentence and ask it to generate new words. This is the scenario in which the
masked self-attention technique can be useful.

Let's consider again the beginning of the previous example sentence. We want to feed our model
the entire sequence x = {x4,..,x,} = “The Mona Lisa is a half length portrait painting” and expect as
output the same sequence shifted by one to the lefty = {y,, .., y,} = “Mona Lisa is a half-length portrait
painting by”. Each word should be generated only by looking at the previous ones.

If we were to solve this task using the self attention layer as described in the previous section, the
token y;, = “portrait” could just look at the input token xg = “portrait” and copy-paste the input to the
output. To avoid tokens from attending to subsequent positions, we can mask-out them by manually
setting the dot product to —co. After running the softmax, this weight will then be calculated as zero and
information from these vectors would not flow to the output. In the example of image 2.3, this would
mean to manually set the products of x, - x3 and x, - x, to —co. The softmax will then compute the
weights and finally output w3 = w,, = 0.

2.5. Keys, queries, values and multiple heads

To be precise, each feature vector is not used as it arrives at the input by the attention layer, but is first
transformed into queries, keys and values by using three learned matrices Q, K and V which allow the
model to move each vector to a different latent representation before these operations.

Also, novel Transformer models often use a technique called multi-head attention. It is identical
to self-attention, but splits each input vector into m vectors of dimension % with h being the number of
heads. The self-attention mechanism is then applied on all heads independently and by using differ-
ent learned matrices. The outputs are finally concatenated back into a single sequence of vectors of
dimension d. This technique expands the module ability to focus on different positions and gives the
attention layer multiple representation subspaces to work with.

Another important detail concerning the dot product is the scaling technique. If we consider two
feature vectors v and u of dimension d;, = 256 whose components are independent random variables
with 0 mean and a variance of 1, computing their dot product v - u = Z?z"l v;u; would give us a vector
whose components have zero mean and variance d,,. For stability during training, we want these values
to have a variance of one. Therefore, we divide by \/d_k before applying the softmax. The final attention
layer is expressed in terms of matrix multiplications by:

T

K
Attention(Q,K,V) = softmax(Q

Jax

N4 (2.4)
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Figure 2.4: The DETR Transformer architecture. Image taken from [2].

Finally, the last detail which is necessary to understand the attention mechanism used by the Trans-
former architecture is the difference between attention and self-attention. Attention simply consist in
using multiple different sentences as input to the attention layer. All sentences must contain tokens of
identical size to allow for the dot product computation, but the sequence length can vary. For exam-
ple, the attention layer of the Transformer decoder of our architecture takes its queries from the output
sequence of the previous self-attention layer, but takes keys and values from the output sequence of
the Transformer encoder. The rest of the computation is identical to the one describe above.

2.6. The Transformer architecture

A visualization of the Transformer architecture can be seen in figure 2.4. It pictures the version defined
by [2], called DETR, from which we derived all of our models. Itis divided into a stack of N = 6 encoders
and M = 6 decoders. The encoders contain a multi-head self-attention module which works exactly
as it was described above, followed by a fully connected feed-forward network. The decoders also
contain a multi-head self-attention layer, a multi-head attention layer with keys and values from the
output of the encoder and queries from the output of the previous layer, and a feed-forward network.
The feed-forward networks of the encoder and the decoder consist of two linear transformations with
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Figure 2.5: The Transformer decoder of our architectures takes a sequence of embeddings as input and outputs the same
sequence shifted by one to the left from two separate branches. One classifies each token into a class, and the other one
outputs the coordinates for the relevant tokens.

a ReLU activation in between:
FFN(x) = max(0,xW; + b))W, + b, (2.5)

In short, they input and output vectors of dimension d, with d = 256 in our case, but upscale them to
dfy = 2048 in the hidden layer. The Transformer also makes use of dropout, residual connections and
layer normalization as described by [15].

In our auto-regressive version of the Transformer, the object queries are swapped with the token
embeddings and the multi-head self-attention layer of the decoder is modified to work with an attention
mask that prevents each token to attend to subsequent positions. In practice, the task we require the
decoder to accomplish is to output the input sentence shifted by one to the left. Please notice how the
input sentence is provided in its embedded version while two sentences are expected as output: one is
provided by the classification branch which tells us about each token class, while the second sentence
comes from the coordinates branch which outputs the point or gate coordinates for the relative tokens,
and 0 for the rest. An example taken from the points toy setting dataset can be seen in figure 2.5.

2.7. Spatial positional encodings

The attention layer as described above is invariant to permutations of the input and does not use
information about the position in the sequence of each token to generate its output. This can be a
problem for scenarios like NLP, in which the order of the words in the sentence matters, but can be
solved using positional encodings: vectors of the same size as the feature vectors, which contain
information about the position in the sequence of the tokens. They can be seen as a representation of
the indices i € [1,d,] of the tokens. To use them, we can simply sum them to the token embedding
before the attention layer.

The positional encodings are defined in the original Transformer paper [15] by a cosine and a sine

function:
pos

PEwoszi) = SIM(300005 7 dmonet

) (2.6)
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Figure 2.6: A visualization of the positional encodings used by us, if vectors were of dimension 512. Each index works with a
sine and a cosine function with frequencies based on the position in the sequence. These functions provide values for each
element of the token embedding, such that they can just be added to it before the attention layer.

pos
100002/ @moaet) 2.7)

In our work we use two slightly different equations and consider i the absolute index of the position,
while [15] works with relative indices.

PE(pos,2i+1) = cos(

, pos ,
PE(pos,i) = Sln(m) 1 E [0, 127] (28)
PEpyen = COS(——b0" ) € [128,255] (2.9)
(pos.i) 100002/ dmodet ’ :

Figure 2.6 shows a visual representation of the positional encodings with an image taken from this
blogpost?.

2.8. Word embeddings

This section slightly diverges from the discussion on attention but is important to understand how the
original Transformer model worked and why we decided to use fixed token embeddings in our work.
It is based on [14]. To solve the machine translation task and allow for parallel training, the original
Transformer architecture [15] used word embeddings. In short, word embeddings are the representa-
tion of a word into a vector of fixed dimension, generally ~ 300. The previous traditional method used
for word representations was the bag of word model [13], in which a huge one-hot encoding vector

2https://jalammar.github.io/illustrated-transformer/
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was used to represent each word, quickly scaling the vector dimension to an intractable space when
using large vocabularies. The most interesting property of word embeddings is that they are built using
unsupervised training techniques and by exploiting context information. They can be trained simply by
looking at a very large corpus of text and they allow for “intuitive” results on common operations, such
that combining them in the vectorial space and then looking at the nearest neighbor of the resulting
vector produces results like:

VKING — VMAN T VWOMAN = V QUEEN

VPARIS — VFRANCE T VITALY = VROME

VBIGGER — VBIG T V coLD = V COLDER

The three most common techniques used to build them are:

+ Singular value decomposition: it works by computing a large matrix X, with k being the size
of the vocabulary, which stores the co-occurrence weights of each word against all others. This
matrix is split into multiple matrices using the single value decomposition technique X = UDVT
[7], which are stored and used when necessary. The problem of this technique it that it also
quickly scales to an intractable dimension when working with large vocabularies and that it does
not consider the order of words in the sentence during its construction.

» word2vec [10]: in short, word2vec generates word embeddings by learning for each word its prob-
ability conditioned of the surrounding words P(w; = "orange” | w;_; = "cold”,w;;; = "juice”)
using unsupervised learning techniques. The surrounding words we choose as conditions can be
sampled using different techniques, such as the surrounding n-gram or randomly sampled words
from a fixed size window. These types of embeddings have become very popular for their perfor-
mance and because pre-trained vectors can just be downloaded and used in any architecture.

» GloVe [12]: Global vectors for word representation is a technique similar to word2vec, which
uses ratios of co-occurrence probabilities, rather than the co-occurrence probabilities themselves.
They are faster to train, scale well to large corpora and achieve good performance even with small
vectors.

On a final note, also word embeddings have some limitations: they are vulnerable to attacks and are
not a robust concept, they can take a very long time to train, and they are not able to work with unseen
words.

In our work, we are using embeddings which are fixed and can be manually built by looking at the
target labels, as described in our paper. Their dimension is 256, but only the first elements contain
information on the labels. We have decided to use this technique because we believed that the label
information we wanted to pass to the architecture could be directly represented using its mathematical
form. A point can be fully represented using its coordinates in the image, for which a vector of dimension
2 is already large enough. However, we believe that testing out learned embeddings could also be
beneficial for our task as the model could incorporate additional information to this vectors to use it at
different stages of the decoder. We leave this analysis for future work.



Evaluation metrics

This chapter is intended as an overview of the evaluation metrics used for our experiments and shows
why they are able to provide, as a single value, a meaningful average between the percentage of correct
predictions and the precision of the predictions.

I will begin this discussion by providing the definition of loU, L, and L, distances, which act as a
threshold to determine if the model prediction is correct based on the spacial dimension. Then, | will
explain how these threshold are incorporated into the final evaluation metric. My code and part of this
explanation takes inspiration from [11].

3.1. 10U

Intersection over Union (loU) is a metric based on the Jaccard similarity index which measures the
precision of a position based prediction A, with respect to the location of the ground truth A,.. A
representation of loU can be seen in figure 3.1. loU is defined by the area between the prediction and
the ground truth divided by the total area covered by both:

area(Ap) Narea(Ay:)

~ area(4,) U area(Ay;) (31)

Using different loU thresholds, we can evaluate upon the precision of the predictions, as shown in figure
3.2.

3.2. L; and L, point distances

The L, distance of two points x and y with x,y € R? is defined as

2
L@y =) %=y (3:2)
i=1
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Prediction Prediction Prediction Prediction
@ @
@ @
Ground truth Ground truth Ground truth Ground truth
Intersection Union

Figure 3.1: Computation of loU given the model predictions of the polygon corners. An loU of 1 indicates a perfect prediction.

Prediction Prediction Prediction
® ®
[ ]
@
@ @ @ @
Ground truth Ground truth Ground truth
loU: 65% loU: 85% loU: 99%

Figure 3.2: A threshold for loU can be used to determine if a prediction is a true positive or a false positive. For example, if the loU
threshold is set to 0.7, the first prediction of this figure would be considered a mistake, while the other two would be considered
correct. Varying the loU threshold and evaluating the model predictions can tell us about the precision of the architecture.

—— L2 distance
—— L1 distance
— L1 distance
& Start

End

Figure 3.3: The difference between the L, and L, distance. The L, distance is also referred to as the city block distance as it
represent the distance one would have to travel to go from point A to point B on a city grid.
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while the L, distance is defined as

L,(xy) = (3.3)

The L, is also knows as the city block distance or Manhattan distance as it also refers to the space that
is necessary to travel to go from x to y on a grid, as shown in figure 3.3. Although both of these metrics
could be used to compare a point prediction to a ground truth, we have decided to use the L; as we
directly compare the relative coordinates of the point prediction. Since x;,y; € [0, 1]Vi, the L, distance
would quickly go to zero as the predictions become more and more accurate, without leaving enough
space for evaluation under different thresholds.

3.3. True positives, False Negatives

Once we have defined a method to determine if a prediction is correct and with which precision, we
can introduce different definitions. They are based on loU, but can be easily defined on point distances
too:

« True positive (TP): A correct detection, a detection with loU greater than the threshold.

 False positive (FP): A wrong detection, a detection with loU smaller than the threshold or a de-
tection of a polygon that was already detected by the same model.

+ False negative (FN): A ground truth object that has not been detected.

» True negative (TN): in general, this represents a correct misdetection. For the object detection
task, this is not used by the metric as it would have to consider all possible prediction that the
model could have made and correctly did not do so.

3.4. Metrics

Using these definitions we can define different evaluation metrics:

* Precision: this metric is defined as the percentage of correct predictions out of all the predictions
that the model attempted to make:

TP B TP
TP +FP ~ all detections

Precision = (3.4)

» Recall: this metric is defined as the percentage of ground truth objects that were found by the

model:
TP TP

Recall = =
eca TP+ FN  all ground truths

(3.5)

* F1 score: this metric is defined as the harmonic mean of precision and recall, and can be used
to provide a single performance value that incorporates information from both metrics:

precision - recall

F1=2 (3.6)

precision + recall
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Figure 3.5: Interpolated Precision x Recall curve at all points

» Precision x Recall curve: to compare different detectors or the performance of a single detector
on different classes, plotting the precision x recall curve can provide interesting information. A
good detector is one whose precision remains high as recall increases, meaning that most of its
predictions are correct and it also finds most of the relevant objects. An example of a precision x

recall curve is shown in figure 3.4.

» Average Precision (AP): AP is based on the Precision x Recall curve and summarizes the per-
formance of the detector in a single numerical metric. It is defined as the area under the curve
(AUC) of the Precision x Recall curve. Since Precision x Recall curves are often zigzag curves
going up and down, thus making it hard to easily compare different curves, AP is in practice cal-
culated by using precision averaged across all recall values between 0 and 1. This can be done
by averaging the precision at 11 equally spaced recall levels [0,0.1,.., 1], which has been the
approach used by the PASCAL VOC challenge [5] until 2010.

Instead of interpolating at 11 points, one could interpolate through all n points such that:

with

Dinterp (1) = max?>rn+1p(77)

Z (rn+1 - rn) Pinterp (rn+1)
n=0

(3.7)

(3.8)

What this means is that AP is now obtained by interpolating the precision at each recall level r
by taking the maximum precision at levels greater than r. Figure 3.5 shows an example of how
the new interpolated curve looks like. The advantage of interpolating at all recall levels is that the
new curve is less sensitive to noise in the predictions as these are equally averaged.
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Mean Average Precision (mAP): this metric is often used by important competitions such as the
Google Open Images Dataset V4 Competition [8] or the COCO object detection challenge [9] as
their primary metric. It is defined as the average of the Average Precision metric over all classes
or over different thresholds. In our work, we evaluate our models using mAP averaged over 10
different loU thresholds [0.5, 0.55, .., 0.95] as we believe this value to be a good approximation of
both the detection performance of our models and the spacial precision of our detections. Figure
3.6 and 3.7 show a comparison of the AP curves at different loU thresholds. These curves show
that Mask R-CNN is able to find more ground truth gates, but is much less precise in its detection,
achieving an AP of only 48.09% when the threshold goes up to 0.85.

Evaluated on 'STD _TEST', 10U 0.50 Evaluated on 'STD_TEST', 10U 0.85
100
095
0.90
5 085
2 nso
075
0.70
—— DETR: AP 74.42 — DETR: AP 63.01
Mask R-CNN: AP 80.06 065 Mask R-CNMN: AP 48.09
00 01 02 03 04 05 06 07 08 0.0 01 02 03 0.4 05 06 07
Recall Recall
3.6: Average Precision at loU threshold of 0.5 Figure 3.7: Average Precision at loU threshold of 0.85






Datasets

This chapter will serve as a description of the datasets used in our experiments and will provide general
guidelines for their reproducibility. First, we discuss how the gates and polygons toy setting images are
generated, followed by the discussion regarding the lines toy setting. Then, we provide examples from
all datasets to show the reader visual clues about the difficulty of these types of predictions.

4.1. Gates and polygons generation

The polygon and gate generation techniques are identical, as gates are generated by fixing the number
of corners to 4 during the process. The most important steps can be seen in figure 4.1. First, a random
point ¢ = (x.,y.) is sampled with x.,y. € U(0.20,0.80) and acts as the center of a circle of radius
r € U(0.05,0.40). All coordinates and lengths are given as percentage with respect to the image size.
Once we have the random circle, we divide its circumference using N € N equally distributed points,
where N = 4 for gates and N € U(3,7) for polygons. All points are equally shifted to the right by a
small a € U(—%, %) to avoid generating polygons that are too similar. Then, each point is shifted in

the direction of its corresponding radius by A € ‘U(—g, g). All points are finally connected to define
the final polygon. The line width is sampled uniformly from three possibles sizes {1, 2, 3} expressed in
pixel size.

4.2. Lines generation

The steps required to generate the images for the line toy setting dataset are shown in figure 4.2. First,
a line going from pg;q+ = (0.10,0.10) to p.nq = (0.90,0.90) is drawn and split by 8 equally distributed
points. Then, each points is randomly shifted in a direction perpendicular to the original line. This is
done by shifting each point horizontally by § € U(—0.15,0.15) and vertically by —§. Finally, all points
are connected to form the final lines as shown in figure 4.5. For our experiments, we draw a single line
of 8 points for each image.

29
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A
v

Figure 4.1: The steps required to generate a polygon. The first image shows the smallest and greatest circle radius that can be
sampled in orange. The orange points are then the results of the splitting and of the random shift in the direction of the radius.
The last image represents the final polygon generated by this example.

Figure 4.3: The data augmentation techniques used to train on the real gates dataset. From the top-left: the original image,
horizontal flip, vertical flip, Gaussian noising, hue shift.
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4.3. Data augmentation and dataset examples
Figure 4.3 shows the data augmentation techniques applied to the real gates dataset during training.
Each type of augmentation is applied on each image with probability p. The techniques we used are:
flipping the image horizontally (p = 40%), flipping the image vertically (p = 40%), shifting the image hue
(p = 10%, factor = 0.25) and adding random Gaussian noise to the image (p = 10%, ¢ =0, o = 0.1).
The main reason for data augmentation is to upscale the dataset size by generating new useful images.
The flips are applied because models should be able to detect gates from all angles. The Hue shift is
a particular data augmentation technique which changes the colors of the image while maintaining its
lightness and saturation. We apply this to prevent our models from overfitting on the yellow color of
the gates. Finally, the Gaussian noise simulates situations of low image quality. Data augmentation is
an important factor to consider when training Transformer based architectures as they are notoriously
data hungry machines.

The following two pages provide examples of images from all the datasets used in this project. First,
the toy settings are pictured, followed by images taken from all three different scenes of the real gates
dataset.
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Figure 4.4: The points toy setting dataset

Figure 4.5: The line toy setting dataset

Figure 4.6: The gates toy setting dataset

Figure 4.7: The polygons toy setting dataset
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Figure 4.8: The real gates dataset, images from the first scene of the training set.

Figure 4.9: The real gates dataset, images from the second scene of the training set.

Figure 4.10: The real gates dataset, images from the test set.






Additional results

This chapter contains additional results that were not of any interest for the scope of our paper, but
which might contain some interesting information for the reader. Section 5.1 shows our experiments
on the optimal setting for the Transformer, and mirror the ones showed by [2] on a different dataset.
Section 5.2 provides additional insights on the real gates dataset results.

5.1. Optimal settings for the Transformer

Table 5.1, 5.2 and 5.3 report the results of our study upon the importance of the most relevant com-
ponents of the Transformer model: the number of encoder-decoder layers, the number of attention
heads and a set of different backbones. The evaluation is based on the gates toy setting dataset with
images containing 1 to 8 gates, with loU threshold at 90%. They reflect the same results of DETR
on the COCO object detection dataset [9]. Table 5.4 reports a comparison of the architecture with the
minimal settings and the standard one used for all the experiments of our paper. The final setup that
we implemented for the experiments discussed in our paper uses 6 encoder layers, 6 decoder layers,
8 attention heads and Resnet-50 as backbone.

5.2. Additional results on the real gates dataset

Table 5.5 shows how the different models improve from 100 to 300 epochs of training time. Table 5.6 is
the result of our study on the performance of both models on different object sizes. The Transformer is
stronger on small object while Mask R-CNN wins on medium and large objects. As medium and large
objects represent the vast minority of the dataset samples, we believe these results to highlight how
Transformers require a lot more data that CNNs, rather than their preference towards certain types of
polygons.
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Backbone Precision Recall F1 score # att. heads Precision Recall F1 score
Resnet-18 84.21% 97.49% 90.37% 1 81.69% 97.30% 88.82%
Resnet-34 88.70% 97.00% 92.67% 2 89.00% 98.10% 93.33%
Resnet-50* 92.44%  98.06% 95.17% 4 92.08% 98.01% 94.95%
Resnet-101  93.59% 97.86% 95.68% 8* 92.44% 98.06% 95.17%

Table 5.1: Comparison of different backbones. Resnet-50 Table 5.2: Comparison of different amounts of attention
achieves the best balance between performance and training  heads. 8 heads achieves the best performance and is there-
time and is therefore the backbone used for the rest of our  fore used in the studied model.

experiments.

# layers Precision Recall F1 score

1 72.94% 98.31% 83.74%
2 84.29% 98.27% 90.74%
3 89.54% 97.72% 93.45%
4 89.17%  98.15% 93.44%

6* 92.44%  98.06% 95.17%

Table 5.3: Influence of the number of encoder and decoder layers on the performance of the Transformer. 6 encoders
and 6 decoder is the setting used for the rest of our experiments.

Backbone # att. heads # enc-declayers Precision Recall F1 Score

Resnet-18 1 1 42.01% 97.63% 58.74%
Resnet-50 8 6 92.44%  98.06% 95.17%

Table 5.4: Comparison of the minimal available architecture against the standard one used for the rest of our experiments

Architecture  Epochs Precision Recall F1 Score AP mAP

Mask R-CNN 100 2.05% 4.00% 2.71% 0.22%  55.24%
Mask R-CNN 300 17.60% 156.59% 16.54% 6.09% 61.30%

Transformer 100 41.73% 34.36% 37.69% 24.55% 60.76%
Transformer 300 54.54% 42.89% 48.02% 29.89% 65.00%

Table 5.5: Samples taken from the learning curve of Mask R-CNN and the Transformer architectures. Precision, recall,
F1 score and AP are based on loU @ 0.95. mAP as average of loU at [0.50, 0.55, ..., 0.95].

Architecture  Object size Precision Recall F1 Score AP mAP

Mask R-CNN s 16.48% 14.59% 15.48% 5.33% 60.77%
Transformer 53.68% 42.42% 47.39% 29.50% 65.05%
Mask R-CNN M 39.32% 37.55% 38.41% 27.40% 79.20%
Transformer 69.95% 57.96% 63.39% 53.34% 77.21%
Mask R-CNN L 19.23% 13.70% 16.00% 12.35% 46.98%
Transformer 70.37% 26.03% 38.00% 24.18% 33.08%

Table 5.6: Comparison of performance of Mask R-CNN and the Transformer architectures against object sizes. Precision,
recall, F1 score and AP are based on loU @ 0.95. mAP as average of loU at [0.50, 0.55, ..., 0.95].
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