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Summary 

Uncertainty is an unavoidable part of decision making. Decisions always have to be made before 

perfect knowledge on their consequences is known. However, there is no ‘perfect knowledge’ in 

hindsight. To research uncertainty and take actions proactively becomes the challenge to 

scientists and decision makers. In water resources planning and management, uncertainty is 

presenting at all stages of planning, developing and managing a water system (Loucks, Van Beek 

et al. 2005). The water systems are dynamically driven by factors such as climate, environment, 

demographics, socio-economy, technology, policies and regulations, etc. For example, climate 

change will affect hydrological and water conditions such as rainfall, temperature, water 

availability for irrigation; socio-economic development causes the change of water demand. 

However, the variation of these driving forces is unknown and beyond the control of decision 

makers, so as their impact on water systems. To plan and manage water systems without 

addressing uncertainty will invite surprises and potential risk subject to unexpected consequences 

and losses. Therefore, the objective of this thesis is to contribute knowledge to decision making 

under uncertainty for water resources planning and management. 

 

Scenarios have been widely used to explore uncertainty for long-term strategic planning. 

Scenarios are defined as “a coherent and plausible description of possible future states of the 

world” by the IPCC. They are distinguished from the deterministic or most-likely prediction of 

future states. Scenario-based approaches have been applied largely to analyse future water- 

related issues, and support water managers and decision makers to put forward strategies for 

potential problems. Two criteria ‘robustness’ and ‘rationality’ are proposed for decision making 

in face of uncertainty. Unlike traditional decision analysis which makes decisions based on the 

‘most-likely’ futures, robust decisions are those who perform satisfactorily over a wide range of 

plausible future states. Rationality was usually modelled to maximize the expected profits in 

economic terms. Von Neumann and Morgenstern (1947) added the risk attitudes and satisfaction 

of decision makers to economic outcomes, and introduced expected utility theory to model 

rationality as maximizing the expected utility. To apply scenario-based approaches to support 

decision making in a rational and robust way, the crucial task is to develop scenarios that can 

describe and quantify future states under uncertainty. 
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Two research questions are raised in the research: 

(1) How to develop scenarios for future water circumstances to cope with uncertainty? 

(2) How to make robust and rational decisions based on the developed scenarios? 

 

Scenarios are defined as qualitative storylines about the future, however, quantitative projections 

and numerical information should be included to inform decision making. Traditional scenarios 

were quantified according to each storyline, and leaves out possible situations in between them. 

The ignorance of in-between scenarios constrains the explorative characteristic of scenarios. 

Besides, each storyline is assumed to be equally likely without attaching probabilities. Future 

states with equal chance are not realistic, and it forces decision makers to pick up any scenario 

arbitrarily. Conversely, the application of probabilities encourages representing uncertainty and 

explaining assumptions behind scenarios explicitly. It is also more approachable for risk 

quantification, and informs decision makers the different chances of future situations. The thesis 

advances scenario development by combining numerical information and attaching probability 

distributions. 

 

Probability distributions of future states can only be estimated subjectively, and they are highly 

conditional on the assumptions being made. Bayesian probabilities and expert judgement are two 

main techniques to combine subjective probabilities and scenarios. Subjectivity cannot be 

avoided or stopped when talking about uncertainty and the important thing is to make the 

assumptions and expert judgement about scenarios as explicit and transparent as possible. 

Besides, the principle of Maximal entropy can be used to choose probability distributions with 

the largest uncertainty. To estimate climate change impact on water availability in the Yellow 

River Basin (YRB), China in the next 30 years, probabilistic scenarios of water availability were 

generated which are based on the climate scenarios (precipitation and temperature) based on the 

projections of General Circulation Models (GCMs). To investigate socio-economic development 

impact on water demand in the Yellow River Delta (YRD), China, probabilistic scenarios of 

water demand were developed using expert judgement. Four storylines comprising two extremes 

(urbanization speed-up/ agriculture intensive, water-saving/ water consumptive) were constructed 

to describe the future development of the YRD. An existing expert elicitation technique, i.e. the 

SHELF method, is used to elicit prior probabilities of socio-economic driving variables from 

local experts. Probability distributions from individual experts are then aggregated, and 



 

iii 

iii Summary 

correlations between different variables are taken into account by using a multivariate probability 

distribution based on the Gaussian Copula.   

 

The thesis developed the probabilistic scenario-based decision making framework to handle 

uncertainties and support decision making in a systematic, robust and rational manner. The 

framework relies on a full probabilistic distribution of scenarios and outcomes, and ranks 

decision alternatives based on expected utility theory. The framework not only investigated the 

monetary objective, but also further engaged the decision makers by investigating their 

preferences and risk attitudes (risk averse, risk neutral, risk taking) under uncertainty. The risk 

attitudes of decision makers were modelled using a negative exponential utility function. The 

decision making framework was applied for a case study of long-term water resources planning 

and management in the YRD. Evaluation and ranking of candidate strategies was performed 

against the full probability distribution of water supply and demand scenarios. Sensitivity 

analysis was performed to test the robustness of the decisions with respect to uncertain factors 

such as water supply and demand, market prices and the risk attitudes of decision makers.  

 

In summary, the thesis contributes knowledge on uncertainty management and decision making, 

which includes: achieve better understanding of the state-of-the-art in scenario science; advance 

scenario development – from qualitative storylines to quantitative projections, discrete states to 

continuous states, equal- likelihood states to probabilistic states; develop the probabilistic 

scenario-based decision making framework to handle uncertainties and support decision making 

in a systematic, robust and rational manner; taking into account risk from both the engineers’ and 

decision makers’ perspectives; and analyse the influence of decision makers’ risk attitudes on the 

choice of decisions. 
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Samenvatting 

Onzekerheid is een onvermijdelijk onderdeel van besluitvorming. Beslissingen moeten altijd 

worden gemaakt voordat perfecte kennis over de gevolgen daarvan bekend is. Echter, er is geen 

'volmaakte kennis' achteraf. Om de onzekerheid te onderzoeken en proactief maatregelen te 

treffen wordt de uitdaging voor wetenschappers en beleidsmakers. In de planning en beheer van 

watervoorraden is onzekerheid in alle stadia van planning, ontwikkeling en beheer van een 

watersysteem aanwezig (Loucks, Van Beek et al.. 2005). De watersystemen worden dynamisch 

gedreven door factoren zoals het klimaat, milieu, demografie, socio-economie, technologie, 

beleid en regelgeving, etc. Bijvoorbeeld: klimaatverandering zal de hydrologische- en 

wateromstandigheden zoals regenval, temperatuur, de beschikbaarheid van water voor irrigatie 

beïnvloeden; sociaaleconomische ontwikkeling zorgt voor een verandering in de vraag naar 

water. Echter, de variatie van deze drijfveren is onbekend en buiten de controle van 

beleidsmakers, net als hun impact op watersystemen. Het plannen en beheren van watersystemen 

zonder het aanpakken van onzekerheid nodigt uit tot verrassingen en mogelijke risico’s met 

onverwachte gevolgen en verliezen. Het doel van dit proefschrift is daarom kennis bij te dragen 

aan besluitvorming onder onzekerheid voor water resources planning en beheer. 

 

Scenario's zijn op grote schaal gebruikt om de onzekerheid voor strategische planning op lange 

termijn te onderzoeken. Scenario's zijn gedefinieerd als "een samenhangend en aannemelijk 

beschrijving van mogelijke toekomstige toestanden van de wereld" door het IPCC. Ze 

onderscheiden zich van de deterministische of meest waarschijnlijke voorspelling van 

toekomstige toestanden. Op scenario's gebaseerde benaderingen zijn grotendeels gebruikt om 

toekomstige water gerelateerde vraagstukken te analyseren en om waterbeheerders en 

beleidsmakers te ondersteunen om strategieën naar voren te brengen voor mogelijke problemen. 

De twee criteria 'robuustheid' en 'rationaliteit' zijn voorgesteld voor besluitvorming met 

onzekerheid. In tegenstelling tot traditionele beslissingsanalyse die beslissingen maakt op basis 

van de 'meest waarschijnlijke' toekomsten, gedragen robuuste beslissingen zich naar wens over 

een breed scala van plausibele toekomstige staten. Rationaliteit was meestal gemodelleerd om de 

verwachte winsten in economische termen te maximaliseren. Von Neumann en Morgenstern 

(1947) voegde de risico-attitudes en tevredenheid van besluitvormers toe aan economische 

resultaten, en introduceerde verwachte nutstheorie om rationaliteit te modelleren als het 
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maximaliseren van het verwachte nut. Om op scenario's gebaseerde aanpakken toe te passen om 

besluitvorming te ondersteunen in een rationele en robuuste manier, is het cruciaal om scenario’s 

te ontwikkelen die de toekomstige staten kunnen beschrijven en kwantificeren onder 

onzekerheid. 

 

Twee onderzoeksvragen worden gesteld in het onderzoek: 

(1) Hoe kunnen we scenario's voor toekomstige water omstandigheden ontwikkelen om met 

onzekerheid om te gaan? 

(2) Hoe kunnen we robuuste en rationele beslissingen nemen op basis van de ontwikkelde 

scenario's? 

 

Scenario's worden gedefinieerd als kwalitatieve verhaallijnen over de toekomst, maar 

kwantitatieve prognoses en numerieke gegevens moeten worden meegenomen om de 

besluitvorming te informeren. Traditionele scenario's werden gekwantificeerd op basis van elke 

verhaallijn apart, en laat mogelijke situaties weg die tussen hen ligt. De onwetendheid van de 

tussenin scenario's beperkt de exploratieve kenmerk van scenario's. Bovendien wordt 

verondersteld dat elk verhaallijn even waarschijnlijk is zonder daaraan verbonden 

waarschijnlijkheden. Toekomstige toestanden met gelijke kans zijn niet realistisch, en het dwingt 

besluitvormers scenario’s willekeurig uit te kiezen. Omgekeerd moedigt het toepassen van 

waarschijnlijkheden het representeren van onzekerheid aan en het expliciet uitleggen van 

veronderstellingen. Het is ook meer toegankelijk voor het kwantificering van risico, en het 

informeert beleidsmakers over de verschillende waarschijnlijkheden van toekomstige situaties. 

Het proefschrift bevordert scenario-ontwikkeling door het combineren van numerieke gegevens 

en het aanbrengen van kansverdelingen. 

 

In tegenstelling tot frequentists die waarschijnlijkheden schatten aan de hand van enorm veel 

waargenomen data, kunnen de kansverdelingen van toekomstige toestanden alleen geschat 

subjectief worden, en zijn ze zeer afhankelijk van aannames. Bayesiaanse waarschijnlijkheden en 

expert judgement zijn twee belangrijke technieken om subjectieve waarschijnlijkheden en 

scenario's te combineren. Subjectiviteit kan niet worden voorkomen of gestopt wanneer het over 

onzekerheid gaat, en het belangrijkste is om de aannames en expert judgement over scenario’s zo 

expliciet en transparant mogelijk te maken. Daarnaast kan het principe van maximale entropie 

worden toegepast om kansverdelingen te kiezen met een zo groot mogelijke onzekerheid. Om de 
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impact van klimaatverandering in te schatten op de beschikbaarheid van water in de Gele Rivier 

Bekken (GRB) in China voor de komende 30 jaar, werden probabilistische scenario's van de 

beschikbaarheid van water gegenereerd die gebaseerd zijn op de klimaatscenario's (neerslag en 

temperatuur) op basis van de projecties van General Circulation Models (GCM's). Om de invloed 

van sociaaleconomische ontwikkeling op de vraag naar water te onderzoeken in de Gele Rivier 

Delta (GRD) in China, werden probabilistische scenario’s van de vraag naar water ontwikkeld 

met behulp van expert judgement. Vier verhaallijnen bestaande uit twee uitersten (versnelling van 

verstedelijking / landbouw intensief, waterbesparend / water consumptief) werden geconstrueerd 

om de toekomstige ontwikkeling van de GRD te beschrijven. Een bestaande 

expertbevragingtechniek, namelijk de SHELF methode wordt gebruikt om a priori 

waarschijnlijkheden van de sociaaleconomische stuwende variabelen van lokale experts te 

verkrijgen. Kansverdelingen van individuele deskundigen worden vervolgens samengevoegd, en 

correlaties tussen de verschillende variabelen worden verdisconteerd met behulp van een 

multivariate kansverdeling op basis van de Gaussian copula. 

 

Het proefschrift ontwikkelde het kader voor op scenario’s gebaseerd probabilistische 

besluitvorming om met onzekerheden om te gaan en om besluitvorming te ondersteunen in een 

systematische, robuuste en rationele manier. Het kader is gebaseerd op een volledige 

probabilistische verdeling van scenario's en uitkomsten, en rangschikt beslissingsalternatieven op 

basis van verwachte nutstheorie. Het kader heeft niet alleen onderzoek gedaan naar de monetaire 

doelstelling, maar heeft ook de beslissers erbij betrokken door het onderzoeken van hun 

voorkeuren en risicohouding (risico ontwijkend, risico neutraal, risico nemend) onder 

onzekerheid. De risicohoudingen van beslissers werd gemodelleerd met behulp van een negatief 

exponentiële nutsfunctie. Het besluitvormingskader werd toegepast op een case study van 

langetermijnplanning van watervoorraden en management in de GRD. Evaluatie en 

rangschikking van kandidaat-strategieën werd uitgevoerd tegen de volledige kansverdeling van 

vraag en aanbod naar water scenario's. Gevoeligheidsanalyse werd uitgevoerd om de robuustheid 

van de gekozen beslissing te testen ten opzichte van onzekere factoren zoals de vraag en aanbod 

naar water, de marktprijzen en de risicohouding van beleidsmakers. 
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Chapter 1 Introduction 

1.1 Water Resources planning and management  

Water resources planning and management refers to making decisions and taking actions to solve 

water-related problems and obtain benefits from the use of water resources. Water-related 

problems can be caused by too much, too little water, or by water of low quality due to pollution. 

These problems can cause great damage and loss of people’s wealth, health, or even lives, when 

no careful planning and management takes place in a forward looking manner. The task of water 

resources planning and management is to take actions to handle these problems proactively and 

reactively, in order to avoid loss and obtain benefit economically and socially. The scope of water 

resources planning and management involves influencing and improving the interaction and 

integration among three independent and dynamic subsystems: natural resources subsystem, 

socio-economic subsystem, and institutional subsystem (Loucks, Van Beek et al. 2005). 

Integrated water resources management (IWRM) was introduced to systematically consider the 

three subsystems and manage water resources in dimensions of water resources, water users, and 

their temporal and spatial scales (Savenije and Van der Zaag 2000, Savenije and Van der Zaag 

2008), for the sake of equitable, efficient and sustainable development of water, land and other 

environmental resources (Calder 1998, GWP 2000, Loucks, Van Beek et al. 2005). 

 

However, the subsystems are continuously changing, for example, the changing relation between 

anthropological development and water in the Anthropocene has been reviewed by (Savenije, 

Hoekstra et al. 2013). Unsurprisingly, they will continue the changing in the future, thereby 

impacting water resources. The future state of the water system is dynamic and driven by many 

variables from the changing subsystems; e.g. climate, environment, demographics, socio-

economy, technology, policies and regulations, water management infrastructure, etc. For 

instance, climate change and aging infrastructures will impact water supply. Population growth 

and urbanization will impact water demand. The shifts of the social preferences and values will 

also impact water policy. These driving forces are developing in uncertain ways beyond the 

control of scientists and decision makers, and the way they drive the water systems are unknown 

as well (Mahmoud 2008). The challenge for water resources planning and management is that 

both the changing subsystems and their impact on water systems cannot be known or understood 
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completely and accurately in either short or long term. Decisions have to be made for the 

immediate future while considering their long-term impact. 

 

Uncertainty is present in all stages of planning, developing, and managing a water system 

(Loucks, Van Beek et al. 2005). Failure to address uncertainty in decision making activities 

invites potential risk subject to unexpected consequences or losses. This thesis is about decision 

making under uncertain future circumstances for water resources planning and management. 

Decision making under uncertainty refers to the act of choosing one decision among two or more 

decision alternatives when the outcomes of those decision alternatives are uncertain (Schultz, 

Mitchell et al. 2010). This thesis focuses on building an integrated framework for explicitly 

addressing uncertainties and establishing decision rules for ranking decision alternatives in the 

decision making process.  

 

1.2 Decision making under uncertainty in water resources planning and 

management 

Uncertainty has been studied extensively and classified from different perspectives and 

disciplines (e.g.,Kahneman and Tversky 1982, Morgan 1992, van Asselt and Rotmans 2002, 

Ascough Ii, Maier et al. 2008). Generally, three sources of uncertainty have been classified: 

intrinsic variability in the systems or processes under consideration, uncertainty due to limited 

knowledge, and decision making uncertainty (Kahneman and Tversky 1982, van Asselt and 

Rotmans 2002, Ascough Ii, Maier et al. 2008). Variability, known as ‘external uncertainty’, refers 

to the unknowable or unpredictable knowledge due to the variability of natural processes and the 

diversity of social values and human behaviour. The lack of knowledge, known as ‘internal 

uncertainty’, refers to the incomplete or imprecise knowledge state about the systems or 

processes of interest. To take into account decision-making activities, uncertainties occur 

associated with the selection of a particular decision-making approach, for instance, framing 

decision problems, quantifying social objectives (usually in monetary term), proposing decision 

alternatives, assessing decision performance, managing the conflicts and diverse backgrounds of 

stakeholders, and identifying the preference and risk attitudes of decision makers. Strategically, 

two approaches will be adopted in light of uncertainty: to reduce uncertainty by ‘buying 

information’ through integrating existing knowledge and additional research; and to accept 

uncertainty and act consciously through selecting robust decisions, design adaptable decision 
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making framework, and take into account decision maker’s attitudes towards uncertainty and risk 

(Thissen and Agusdinata 2008). 

Uncertainties due to the intrinsic variability are almost irreducible, while uncertainty due to lack 

of knowledge can be reduced by additional data collection and further scientific research. Data 

monitoring and model simulations are the main approaches to gain knowledge and understanding 

about the past and present conditions, and to forecast future conditions. For example, to estimate 

climate change impact on water resources, climate models are applied to understand the climate 

response to social activities and project future hydro-climatic variables. Hydrological models are 

used to understand the hydrological response to climate change and forecast the future hydrologic 

states for planning and managing the water systems. Not surprisingly, the limited data availability 

and the lack of knowledge cause our understanding of the climatic and hydrological behaviour 

and interactions to be incomplete. This leads to uncertainties incorporated in the modelling 

process, for example, uncertainty in model structures due to an attempt to form a simplified and 

approximated expression of a real process, and uncertainty in parameter values and input data due 

to measurement errors and lack of data. These uncertainties are then propagated and accumulate 

in the model outputs. Decision makers rely on the information delivered by these model outputs, 

given these uncertainties, to make decisions in water resource planning and management.  

1.3 Robustness and rationality in decision making under uncertainty 

Robustness is the key criterion for evaluating alternative decisions under uncertainty (Lempert, 

Groves et al. 2006). Robust decisions should perform no worse than other decision alternatives 

over a wide range of plausible future alternatives. The scenario development to describe and 

quantify uncertainty is crucial to decide the robustness of decisions. In traditional decision 

analysis, the outcomes of candidate decisions are generated based on the forecasted ‘most likely’ 

future scenarios. Since no evidence would fully prove the actuality of the forecasted ‘most-likely’ 

futures, decisions based on the ‘most-likely’ future scenarios would be suboptimal, and different 

views of ‘most-likely’ futures are likely to lead to a variety of suboptimal decisions (Kouvelis 

and Yu 1997). Robustness is opposite to suboptimal; trying to find the decision which performs 

satisfactorily over all potential assumptions and scenarios about the future. Practically, it is 

difficult to find a single decision performing no worse than others over all potential scenarios. 

The final decision should be relatively less sensitive to the assumptions used to characterize the 

values and probability distributions of the parameters of the decision models. 



 

4 
 

4 Chapter 1  

Rationality has traditionally been assumed to represent the behaviour and preference of decision 

makers in face of uncertainty, such as Von-Neumann (VNM) rationality (von Neumann and 

Morgenstern 1947). It implicitly suggests that the behaviour of decision makers can be modelled 

in mathematical format, and their preference of future actions can be predicted. Rationality has 

been modelled as maximizing the expected profits in monetary terms. It was challenged by the St. 

Petersburg Paradox in 1713 which found that individuals refused to invest to play a coin-toss 

game with infinite expected payoff, noticing that one’s satisfaction decreases as marginal payoff 

increases, and one becomes more cautious with higher payoff while encountering the risk of 

losing everything. From the engineering perspective, risk is defined as the product of 

consequence of an event multiplied with its probability of occurrence. However, from the 

perspective of decision makers, risk is measured as the amount of money that a decision maker is 

willing to pay to compensate the risk (Levy 1992). For example, some decision makers tend to be 

cautious to invest in a high-return, high-risk event, while some might be more aggressive and 

risk-seeking in the same situation. The attitudes of decision makers towards wealth and risk are 

assumed to influence the decision making result. Von Neumann-Morgenstern modelled 

rationality as maximizing the expected utility that characterizes the decision makers’ satisfaction 

and attitudes on wealth and the corresponding risks (von Neumann and Morgenstern 1947). Two 

dimensions are encoded in the expected utility theory: the value by means of utility, and the 

information by means of probability (North 1968). Rationality in the expected utility framework 

implies that a rational decision maker values the uncertain outcome of a decision as a linear 

function of the probabilities (Weijs 2011).   

1.4 Research Questions  

To establish an integrated decision making framework that explicitly addresses uncertainty, two 

research objectives are identifies: 

 

(1) How to develop scenarios for future water circumstances to cope with uncertainty? 

(2) How to make robust and rational decisions based on the developed scenarios? 

 

Statistics and probability are the traditional tools to deal with uncertainty. Recently, scenario 

analysis has also been widely employed to explore uncertainty. As a future planning tool, 

scenarios can be used to explore and articulate the possible future trajectories of the driving 

forces affecting water resources. Scenarios are defined as plausible and consistent descriptions of 
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future states of the world in face of uncertainty, and each scenario unfolds a possible future 

(http://www.ipcc-data.org/ddc_definitions.html). Water scenarios have been largely developed 

and utilized in describing future changes in water resources globally and regionally, in a 

qualitative and quantitative manner (e.g.,Gallopín and Rijsberman 2000, Rosegrant, Cai et al. 

2002, Flörke and Alcamo 2004, Gleick, Cooley et al. 2005). However, two limitations of 

quantitative scenarios need to be improved: (i) the need for extending discrete scenarios to 

continuous scenarios to more completely cover future conditions, and (ii) the need for 

introducing probabilistic scenarios to explicitly quantify uncertainties. Usually, one trajectory 

was quantified based on each storyline, which omits the possible trajectories between two 

storylines and constrains the explorative characteristics of scenarios. On the other hand, 

probabilistic scenarios encourage representing uncertainty and explaining assumptions behind 

scenarios explicitly (Millett 2008). From a risk analysis perspective, the implementation of 

probability theory is more approachable for risk quantification and more easily interpreted for 

risk management (McIntyre, Lees et al. 2003). The assignment of probabilities is subjective to 

some extent, typically requiring consensus among experts, which can be a difficult and complex 

process. This has been used to challenge the use of probability distributions in scenario 

development (Lempert, Groves et al. 2006, Korteling, Dessai et al. 2013). However, although 

subjective, stochastic approaches provide a transparent and reproducible methodology to 

systematically quantify probabilities from knowledge or belief of scientists and decision makers. 

Examples include formal expert elicitation procedures for identifying prior probability 

distributions (e.g.,Oakley 2010, Low-Choy, James et al. 2012) and Bayesian updating to 

incorporate new knowledge into the distributions (e.g.,Choy, O'Leary et al. 2009, Scholten, 

Scheidegger et al. 2013). Furthermore, subjectivity can be reduced (though not completely 

eliminated) by techniques such as the principle of Maximal Entropy, grounded in information 

theory, which provides a method for identifying  prior probability distributions (e.g. for driving 

forces) with the largest remaining uncertainty consistent with the available information (Jaynes 

1957). Monte Carlo techniques can then be used to propagate uncertainties from the driving 

forces to the variables of interest (Dessai and van der Sluijs 2011). Therefore, the first 

contribution of this work is to address limitations in existing approaches by advancing scenarios 

from discrete to continuous, and from equal-likelihood to probabilistic ensembles to explore 

uncertain futures.  
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The developed scenarios are critical to support decision making under uncertainty. The 

application of the range of continuous and probabilistic scenarios allows the search for robust 

decisions. The second contribution of this work consists of identifying decision alternatives, not 

on the basis of any single or several ‘most-likely’ scenarios, but instead on the basis of the full 

probability distributions of the quantified scenarios. A risk profile is applied to represent the 

outcomes of decision alternatives and the corresponding cumulative probability distributions. The 

full probability distribution view that the risk profile provides is more informative for the 

decision maker in hedging against the risk of poor performance for some scenarios than in the 

expected performance over all potential scenarios (Kouvelis and Yu 1997). The outcomes of 

decision alternatives are represented using monetary terms based on economic models, but also 

utility terms from utility functions to incorporate decision makers with risk averse, risk neutral 

and risk seeking attitudes towards the monetary outcomes. The expected utility theory framework 

is used to support decision-making by maximizing the expected utility of the decision 

alternatives. It provides normative and descriptive methods for rational decision making on the 

basis of explicit probabilistic information to characterize uncertainty. This is in contrast with 

actual human behaviour, which often is not rational and typically violates expected utility theory 

(Shaw and Woodward 2008). Finally, to account for subjective assumptions made in the 

modelling process, a sensitivity analysis was applied to test the sensitivity of decision 

performance when assumptions of probability distributions and values of the decision models 

change. The work thus builds and applies a probabilistic scenario-based decision making 

framework to incorporate uncertainty analysis and support robust and rational decision making in 

a risky context, and extends both the classical decision making framework focusing only on the 

most-likely scenarios and the traditional scenario planning and robust decision making 

frameworks that exclude probabilistic information. 

1.5 Outline of the thesis 

Scenarios are critical to deal with uncertainty for decision making in water resource planning and 

management. Chapter 2 reviews scenario development techniques and studies for a better 

understanding of the knowledge of scenario development. The chapter identifies two major 

limitations of quantitative scenario development studies, and proposes a probabilistic framework 

to advance scenario development. 
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Chapter 3 develops probabilistic climate scenarios (precipitation and temperature) based on the 

projections of GCMs, and applies them as inputs to a conceptual hydrological model to construct 

probabilistic scenarios of water availability in the Yellow River Basin (YRB), China. 

 

Chapter 4 develops probabilistic scenarios of future water demand in the YRD, China. An 

existing expert elicitation technique, i.e. the SHELF method, is used to elicit prior probabilities of 

socio-economic driving variables from local experts. Probability distributions from individual 

experts are then aggregated, and correlations between different variables are accounted for by 

using a multivariate probability distribution based on the Gaussian Copula. 

 

Chapter 5 reviews existing decision making frameworks and decision rules under uncertainty 

applied in water resources planning and management. A probabilistic scenario-based decision 

making framework is proposed to handle uncertainties and support decision making in a 

systematic, robust and rational manner. The framework relies on a full probabilistic range of 

scenarios, and ranks decision alternatives based on expected utility theory.  

 

Chapter 6 applies the developed decision making framework to demonstrate the decision making 

process under uncertainty in the YRD, China. The decision problem focuses on matching water 

supply with water demand using management measures for long-term water planning. Monetary 

and utility-based objective functions are used to evaluate decisions by combining the engineering 

as well as decision makers’ perspectives. Probabilistic scenarios of future water supply and 

demand are analysed, and stochastic utility based decision rules are used to rank decision 

alternatives, taking into account different risk tolerance levels of decision makers. The chapter 

ends with sensitivity analysis to test the robustness of the final decision with respect to various 

assumptions made. 

 

Chapter 7 reports conclusions, and proposes recommendations for further research on decision 

making under uncertainty for water resources planning and management.  



 

This Chapter is based on “Scenario development for water resource planning and management: A 

review”, C. Dong, G. Schoups, N. van de Giesen, Technological Forecasting & Social Change, 2012.  

8 

Chapter 2 Scenario development for water resources 

planning and management 

2.1 Introduction 

Scenarios have been used as an important tool for exploring future uncertainties in a coherent, 

consistent and plausible way, and as such, they have been widely used for strategic planning and 

policy making (Yoe 2004). In addition, scenario-based planning has been adopted as a 

management technology to articulate mental models about the future and to help managers make 

better decisions (Martelli 2001).  

 

Scenarios were first used by strategic planners for the U.S. military to forecast possible 

consequences of a nuclear war after World War II. Herman Kahn, regarded as the ‘Father of 

scenario planning’, introduced scenario planning as a method to think about uncertain futures and 

for generating ideas and strategies in business planning (Kahn 1962). Since then, scenarios have 

been used in a wide range of applications, with subtle differences in how scenarios were defined, 

depending on the context or field of application. For example, Porter (1985) defined a scenario as 

‘an internally consistent view of what the future might turn out to be- not a forecast, but one 

possible future outcome’. Schwartz (1991) interpreted scenarios as ‘a tool for ordering one’s 

perception about alternative future environments in which one’s decisions might be played out’. 

The Intergovernmental Panel on Climate Change (IPCC) described a scenario as ‘a coherent, 

internally consistent and plausible description of a possible future state of the world. It is not a 

forecast; rather, each scenario is one alternative image of how the future can unfold.’ 

(http://www.ipcc-data.org/ddc_definitions.html). The key point in all these definitions is that 

scenarios deal with uncertainty in the future, but that they are different from forecasts or 

predictions. Indeed, the aim of scenario planning is to generate a wide range of possible futures, 

rather than focusing only on the most likely outcome. 

 

Several reviews of scenario planning have appeared in the literature. Chermack et al. (2001) 

reviewed scenario planning literature from a conceptual perspective, describing the status of 

knowledge on scenario planning. Yoe (2004) reviewed literature on scenario planning for 

decision-making under uncertainty, and outlined specific models and techniques to develop 
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scenarios. Wagner et al. (2006) provided a review of the state-of-the-art of scenario development 

and proposed a formal framework for scenario development. Börjeson et al. (2006) categorized 

scenarios into three types, namely predictive, explorative and normative, and discussed 

techniques for scenario development appropriate for each category.  

 

In an extensive overview of scenario development techniques, Bishop et al. (2007) inventoried 

eight categories of techniques, including a total of 23 variations, and discussed their utility, 

strengths and weaknesses. Varum and Melo (2010) provided a systematic overview of scenario 

planning studies published in the last few decades. Recently, Haasnoot and Middelkoop (2012) 

reviewed water policy evolution by using scenarios in the Netherlands, documenting a shift from 

predicting to exploring the future, which has resulted in more robust decision-making.   

 

Previous studies on water resource management have demonstrated that scenarios are also useful 

to account for uncertainties associated with climatic, demographic, economic, social, technical 

and political conditions that affect the performance of water resource systems, including their 

effects on future water availability, water demand and water management strategies 

(e.g.,Gallopín and Rijsberman 2000, Alcamo and Gallopín 2009). Scenario-based approaches 

have been applied to explore and analyze future water-related issues, as well as to support water 

managers and decision-makers to put forward solutions for potential problems (Mahmoud 2008). 

 

Although a number of studies, as outlined above, have focused on reviewing and summarizing 

the philosophy and practice of scenario planning, a review specifically aimed at water resource 

planning and management is missing. Therefore, as the number of studies on scenario-based 

water resource planning and management is booming, the goals of this paper are to review the 

status of knowledge on scenario development for water resource planning and management, to 

highlight the shortcomings in existing methods, and to suggest potential opportunities for 

improving development of water resource scenarios. 

 

The chapter is structured as follows. We start in section 2.2 by formulating typical water 

management goals, and identifying the main uncertainties and driving forces that need to be taken 

into account. Several examples from the literature are given to illustrate the diverse range of 

water planning practice. In section 2.3, we outline a general procedure for scenario development, 

consisting of all the important steps that ideally should be included in water resource scenario 

development. Section 2.4 reviews how these steps have been implemented in existing studies. 
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Section 2.5 highlights aspects of the general procedure that have not been adequately addressed 

in existing literature, leading us to suggest a methodological framework in section 2.6 that can  

potentially address these limitations.  

2.2 Water resources planning and management under uncertainty   

The fundamental goal of  water resource planning and management is to match the demand for 

water  by the socio-economic system with the supply (quantity and quality) of the water system 

through administrative control and management (water regulations/laws and infrastructure), 

without compromising ecosystem sustainability (GWP 2000). Figure 2.1 and Table 2.1 give an 

overview of the variables and interdependent subsystems that need to be taken into account in 

this context. In essence, changes in water resource systems (W) are driven by changes in three 

related subsystems, i.e. the climate system (C), the socio-economic system (SE) and the 

management system (M). Important socio-economic variables include population growth, 

economic development, technological change, and water and land use practices. For example, 

demographic change, economic development, technological innovation and geographical 

conditions directly impact future water consumption patterns, and water demand by different  

users (McCarthy, Canziani et al. 2001). The climate system has a direct impact on water 

availability and water demand via changes in temperature, precipitation and evaporation. Finally, 

management intervention such as water allocation strategies, legislative standards, and political 

intervention stimulates changes in the socio-economic system and hence plays an important role 

in influencing future pathways of water systems. 

 

Uncertainty about the future development of the socio-economic and climate systems is the main 

reason for developing water resource scenarios. For instance, with the growth of population and 

economy, water demand from domestic, industrial and agricultural sectors will increase, resulting 

in more stress on limited, shared water resources. Anthropogenic climate change, caused by 

Greenhouse Gas (GHG) emissions, with higher temperature and altered precipitation patterns, 

directly impact water resource availability and irrigation water demand (McCarthy, Canziani et 

al. 2001, Fischer, Tubiello et al. 2007, Chung, Rodri´Guez-di´az et al. 2010, Falloon and Betts 

2010, Xiong, Holman et al. 2010, Zhu and Ringler 2012), as well as water quality and ecosystem 

stability. Assessing future impacts of climate change is subject to significant uncertainty, due to 

knowledge and data gaps on climate system behavior and its interaction with the water system. 

This is reflected in widely diverging model-based projections of future precipitation and water 
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supply (Gay and Estrada 2009, Buytaert, Vuille et al. 2010, Chung, Rodri´Guez-di´az et al. 2010, 

Falloon and Betts 2010). Consequently, mitigating future potential negative impacts of climate 

change on water resources has become an important challenge to water managers (IPCC 2007).  

 

Figure 2.1 Relationship between three interdependent systems: the climate system (C) and socio-economic 

system (SE) are the main drivers affecting change in water systems (W). Water resources management (M) is 

used to achieve a sustainable balance between water demand (via its influence on SE, e.g. through land and 

water use policies) and water supply (via its effect on W, e.g. by infrastructural investments to distribute water). 

Examples of key variables in each system are listed in Table 2.1. 

 

Table 2.1 Main driving forces and variables from three interdependent systems that impact water systems 

Interdependent systems Main driving forces Variables 

Socio-economic system Demographic change  population, food or lifestyle, migration,… 

 Economic development  GDP level, industry structure… 

 Technological innovation  
pollution control, wastewater treatment, 
improvement in water use efficiency … 

  Geographical conditions  land use, vegetation cover, irrigation area… 

Climate system Climate change 
temperature, precipitation, humidity, wind 
speed,… 

Management system Management measures  water infrastructure investment ,water transfer… 

 Legislative standards  
water-use quota, water allocation, water 
regulations… 

  Political intervention  water policies, water prices … 
 

To cope with these significant uncertainties in water resource planning and management, several 

studies have focused on developing scenarios for water systems. The underlying idea is that 

scenarios that display alternative future states of the water system facilitate water managers to 

make robust decisions and management strategies (Lempert, Popper et al. 2003, Lempert, Groves 

et al. 2006). Scenario development for water resources planning and management help decision 

makers to understand the implications of the uncertainty (Groves 2006) and explore the future 

water availability (surface water, groundwater storage, water quality) (Mimikou, Baltas et al. 

2000, Mahmoud, Gupta et al. 2011, Zhovtonog, Hoffmann et al. 2011) and water demand 

conditions (Flörke and Alcamo 2004, Zhu and Ringler 2012), and as a result, designing and 
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making robust management strategies or policies to achieve planning objectives (alleviating 

water stress, improving water quality, maintaining the ecosystem service, etc.) (Lévite, Sally et 

al. 2003, Muhammetoglu, Muhammetoglu et al. 2005, Groves 2006, Weng, Huang et al. 2010). 

 

Table 2.2 lists several illustrative examples of scenario development for water resources 

management across a range of scales. Projects such as the World Water Vision (WWV) 

(Cosgrove and Rijsberman 2000, Gallopín and Rijsberman 2000) , the Global Water Outlook 

(GWO) (Rosegrant, Cai et al. 2002), and Global Water Futures (GWF) (Alcamo and Gallopín 

2009, Gallopín 2012) focused on assessing water availability and demand at the global scale, 

with subsequent downscaling to continental and national scales to provide a reference for 

regional water resource planning and management. The Millennium Ecosystem Assessment 

(MA) explored four different scenarios for managing ecosystem services in the face of growing 

water demand, considering biodiversity and human-being welfare (Carpenter, Pingali et al. 2005). 

Water footprint scenarios for 2050 analysed global and European consumptive green, blue and 

grey water footprint (Hoekstra, Chapagain et al. 2011) under four storylines (global/regional 

market/sustainability ) (Ercin and Hoekstra 2012). Three water utopias were created from the 

perspectives of hierarchist, egalitarian and individualist (Hoekstra 2000) to assess long-term 

future water situations in Zambezi basin (Hoekstra 1998). At the European scale, the SCENES 

project (Water Scenarios for Europe and for Neighbouring States) developed a set of 

comprehensive scenarios of Europe’s future freshwater resources to address how water resources 

in Europe may develop up to 2050 (e.g.,Iital, Voronova et al. 2011, Zhovtonog, Hoffmann et al. 

2011). The European Outlook on Water Use proposed by the European Environment Agency 

(EEA) presented quantitative scenarios for future water use, water availability and water stress up 

to 2030 in 30 European countries, including recommendations for improving water outlooks in 

Europe (Flörke and Alcamo 2004). Many examples also exist of regional-scale scenario 

development. For example, a study in central Greece considered two climate scenarios causing 

decreases in stream flow and water quality (Mimikou, Baltas et al. 2000),  and other studies e.g. 

in the Verde River Watershed and the San Pedro basin in Arizona (Mahmoud 2008, Mahmoud, 

Gupta et al. 2011), and in California (Groves 2006), have looked at matching water supply and 

demand under a range of future climate, demographic, and economic scenarios. Scenarios for 

driving forces have also been used to evaluate effectiveness of mitigation strategies (Carter, Jones 

et al. 2007). For example, water pricing has been explored to stimulate more efficient water use, 

and redistribution of water from domestic and industrial sectors to irrigation and environment 
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(Rosegrant, Cai et al. 2002). Finally, a set of emission scenarios has been developed by the 

Intergovernmental Panel on Climate Change (IPCC), considering future anthropogenic 

greenhouse gas (GHG) emissions and climate change, as a function of demographic, economic, 

and technological changes, land-use patterns, and various other human activities (Nakicenovic, 

Alcamo et al. 2000). Although the IPCC scenarios are not listed in the table as they are not 

directly water scenarios, they are highly important due to their wide usage in estimating climate 

change impact on water resources (Arnell 2004, Fischer, Tubiello et al. 2007, Charlton and 

Arnell 2011, Zhu and Ringler 2012).  

Table 2.2 Examples of scenario development at global, continental,  

and regional scales for water resources management  

Name of 
study 

Time 
horizon 

Spatial 
scale 

Main variables included in scenarios Story 
-line no. 

Source 
W C SE M 

WWV 2025 Global 
water 
availability 
and demand 

none population, GDP, etc none 3 

(Cosgrove and 
Rijsberman 2000, 
Gallopín and 
Rijsberman 2000) 

GWO 2025 Global 
water 
availability 
and demand 

precipitation, 
temperature 

population, GDP, etc 
infrastructure 
investment 

3 
(Rosegrant, Cai et al. 
2002) 

GWF  2050 Global 
water 
withdraw 

extreme 
climate events 

birth/death rate, GDP, 
water use efficiency, 
etc. 

water transfer 5 (Gallopín 2012) 

MA 
2015/ 
2030/ 
2050 

Global  

water 
availability 
and use, 
aquatic 
biodiversity 

precipitation, 
temperature 

population, GDP, 
water use efficiency, 
land use, etc. 

none 4 
(Carpenter, Pingali et 
al. 2005) 

Water 
footprint 
(WF) 
scenarios 

2050 
Global/
Europe 

water footprint none 

Population, economy, 
production pattern, 
consumption pattern, 
technology 

none 4 
(Ercin and Hoekstra 
2012) 

Three 
water 
utopias 

2050 Zambezi 
water 
supply/deman
d 

none 
Population, economy, 
cropland, hydropower, 
technology 

water trade, 
wastewater 
treatment 

3 (Hoekstra 1998) 

SCENES 2050 Europe 
water 
availability 
and demand 

precipitation, 
temperature 

population, GDP, 
irrigation area, land 
use, etc. 

European /national 
policies and 
legislation 

4 

(Iital, Voronova et al. 
2011, Zhovtonog, 
Hoffmann et al. 
2011) 

European 
Outlook 
on Water 
Use  

2030 Europe  water demand  
precipitation, 
temperature 

population, GDP, 
electricity production, 
irrigated areas, etc. 

none 2 
(Flörke and Alcamo 
2004) 

Pinios 
river basin  

2050 Greece 

water 
availability 
and water 
quality  

precipitation, 
temperature 

contaminant  
concentrations 

none 2 
(Mimikou, Baltas et 
al. 2000) 

Verde 
River 
Watershed  

50 years   USA 

water 
availability 
and water 
demand  

precipitation, 
temperature 

population, GDP, 
irrigation efficiency, 
land use 

water demand 
allocation 

8 
(Mahmoud, Gupta et 
al. 2011) 

SAHRA 
Scenarios 

2030 
/2050  

USA 
water demand, 
groundwater 
level 

precipitation, 
temperature, 
wind speed 
… 

population, water use 
intensity, land use, 
water-saving 
appliances etc. 

water rights, 
legislation 

8 (Mahmoud 2008) 

California 
water 
demand 

50 years USA water demand none 
population, water use 
intensity and 
coefficients, etc. 

none 4 (Groves 2006) 

World 
water and 
food  

2025 Global 
water 
withdrawal 

precipitation, 
temperature 

population, irrigation 
area, water use 
intensity and 
efficiency, etc. 

water price, 
irrigation 
investment 

4 
(Rosegrant, Cai et al. 
2002) 
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2.3 General procedure for water resources scenario development 

As illustrated in the previous section, scenarios have been developed for a wide variety of 

settings, scales, and geographic settings. Despite this variety, most studies follow one or more 

steps of the general iterative procedure outlined in Figure 2.2. The various steps can be 

summarized as follows: 

 

(1) Define focal questions (water-related variables), main driving forces (variables), and identify 

main sources of uncertainty. This step includes understanding the current situation, and finding 

out focal questions and objectives relevant to water managers and stakeholders. It is crucial to 

identify key variables representing the focal question and driving forces (SE, C, and M systems) 

as well as the main uncertainties affecting the stakeholders’ objectives. Additionally, appropriate 

temporal (daily, monthly, seasonal, annual, decadal) and spatial (local, regional, basin, 

continental, global) scales need to be identified in the analysis. 

 

(2) Construct scenario logic and write down stories. Given the key variables and driving forces 

identified in step 1, the goal is to qualitatively describe a small number of scenarios that 

essentially map out the boundaries of what the future may bring. These storylines focus on the 

driving forces impacting the water system and should provide a broad view of future change, in 

response to the situation when the future is driven by forces laying outside the control and 

foresight of decision makers (Gleick, Cooley et al. 2005). To write down the storylines is then to 

fill in the details (especially focusing on the driving forces) of the scenario logic defined. 

 

(3) Quantify future development of driving forces according to the storylines. This step involves 

assigning numerical values and associated probabilities to the driving forces based on their 

development described by the storylines. For example, future changes in population growth rate, 

irrigation area, and temperature are quantified. 

 

(4) Quantify future development of water-related variables of interest. In this step, quantitative 

scenarios for the driving forces are translated into corresponding quantitative scenarios for water-

related variables, typically using computer simulation models.  

 

(5) Refine and update the scenarios. Scenario refinement is an iterative process aimed at 

achieving consistency between quantitative and qualitative results obtained during all the 



 

15 

15 Scenario development for water resources planning and management 

previous steps. An additional layer of revision is provided by updating the scenarios as new 

knowledge and data become available. This step acknowledges that scenario development is not a 

‘once-for-all’ activity, but rather an evolving and continuing learning process. 

 

Figure 2.2 General iterative procedures for water resources scenario development. 

 

We note that the procedure outlined above, and in Figure 2.2, combines qualitative and 

quantitative scenario construction. Although scenarios were originally conceived as qualitative 

stories by Kahn (1962), and Schwartz (1991), modern scenario analysis often relies on computer 

models to quantify future change (Groves 2006, Alcamo 2008). Qualitative scenarios, in most 

cases, describe futures in the form of storylines, which helps the communication and 

understanding between scientists, decision-makers and stakeholders with different knowledge 

levels. However, the lack of numerical information hampers further scientific and decision-

making activities. For example, when a reservoir has to be designed in order to alleviate the 

unevenly distributed water resources, storylines to describe water shortage situations in dry years 

and water abundance in wet years are not sufficient to identify an optimal design for the 

reservoir.  

 

Examples of qualitative-quantitative scenarios have been provided for exploring global future 

water situations in the framework of the World Water Vision, the Global Environmental Outlook, 

and the IPCC emission scenarios (Cosgrove and Rijsberman 2000, Nakicenovic, Alcamo et al. 
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2000, UNEP 2002). For regional/local water resources planning, a number of qualitative-

quantitative scenarios were developed to analyze future water quantity (Doll 2004, Flörke and 

Alcamo 2004, Beck and Bernauer 2010, Zhu and Ringler 2012) and water quality (e.g.,Vaché, 

Eilers et al. 2002, King, Brown et al. 2003, Ames, Neilson et al. 2005), as well as to peruse 

sustainable ecosystems (e.g.,UNEP 2002, Carpenter, Pingali et al. 2005, UNEP 2007). 

2.4 Current implementation of scenario development steps 

In this section, we evaluate how the different steps in the general procedure of Figure 2.2 have 

been implemented in existing studies. Each of the five main steps is discussed in sequence.   

2.4.1 Step 1 - Define focal questions and main driving forces, and identify main sources of 

uncertainty 

Expert judgment and stakeholder involvement have been widely applied for identifying the main 

driving forces, variables of interest, and sources of uncertainty in particular case studies (Gallopín 

and Rijsberman 2000, Rosegrant, Cai et al. 2002, Mahmoud 2008, Mahmoud, Gupta et al. 2011). 

A scenario team or panel consisting of experts and stakeholders is established at the onset of the 

process (Alcamo 2008), allowing extensive communication and cooperation among team 

members. 

 

Expert judgment was first adopted by Herman Kahn, and was referred to as ‘Genius forecasting’ 

(Bishop, Hines et al. 2007). It relies on expert knowledge, reasoning, experience, imagination, 

and even intuition. Indeed, expert judgment has played an important role in the scenario 

definition process in cases where process knowledge is limited, data is scarce, and uncertainty is 

large. In those cases, their scientific knowledge and experience helps to identify and integrate 

representative variables from the major driving forces to the focal problems. Several formal 

procedures have been developed and applied to streamline this process, including surveys, 

interviews, Delphi techniques, nominal groups and brainstorming (Huss and Honton 1987, 

Rikkonen, Kaivo-oja et al. 2006). 

 

This process may be further expanded by inviting stakeholders to participate in the development 

process and have them share their opinions and local knowledge. Stakeholder-driven judgment is 

an open process involving stakeholders, researchers and decision-makers, to think, communicate 

and write down possible futures. The identification and choice of stakeholders are critical for the 

quality of scenarios, due to their large influence on the identification of key driving forces and the 
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formation of scenario outlines. They are usually selected from groups with different interests and 

requirements, and may comprise of local experts, governmental officials, and representatives of 

social groups or local residents. Stakeholders are invited to workshops, and are encouraged to 

discuss key driving forces and uncertainties of socio-economic, environmental and administrative 

aspects, while researchers assist them by providing scientific information. Qualitative 

participatory methods make use of pictures, card-techniques, collages, rich pictures and time lines 

to help stakeholders imagine and brainstorm the driving forces and main uncertainties (Van Vliet, 

Kok et al. 2007). 

 

2.4.2 Step 2 – Construct scenario logics and write down storylines for driving forces (C, SE) 

Both expert and stakeholder-driven judgement play a fundamental role in constructing scenario 

storylines. For example, scenario storylines for the IPCC-SRES and MA were developed based 

on knowledge and judgment of a wide range of experts from climate, hydrological, 

environmental, social and economic sciences. Regional stakeholder-driven scenarios were 

elicited in the SCENES and SAHRA projects (Table 2.2). A stakeholder discussion panel was 

built and required to work on a scenario definition exercise, after which storylines of scenarios 

were constructed for regional water resources development (Mahmoud 2008). 

 

Development of scenario logics is further facilitated by techniques such as dimensions of 

uncertainty analysis (Bishop, Hines et al. 2007) and global business network (GBN) matrix 

analysis (Schwartz 1991). The GBN matrix is a two-dimensional matrix comprising of two 

critical uncertainties with two states assigned to each uncertainty dimension. The process thus 

results in a total of four scenarios, which are subsequently further elaborated (storyline 

development). To construct the matrix, the two most critical uncertainties need to be selected, and 

extreme states are assigned to the two critical uncertainties to cover a wide range of plausible 

futures. This two-dimensional approach has been adopted to develop the widely-used IPCC-

SRES scenarios (A1, A2, B1, B2 storylines) (Nakicenovic, Alcamo et al. 2000), which consist of 

two uncertainty dimensions (global/ regional, economy/ environment-oriented) to describe future 

changes in population, economy, governance and technology. Similarly, four scenarios were 

created for MA using this technique, with two uncertainty dimensions defined by global/regional 

development and pro-active/reactive attitudes towards the environment (Carpenter, Pingali et al. 

2005). The GBN matrix can be used several times or by several groups in order to enrich the 

future alternatives. The SAHRA team defined two uncertainty dimensions (variable 
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climate/sustained drought, declining monitoring/enhanced monitoring), and invited two 

stakeholder groups to fill in each uncertainty domain. Thus, the two groups constructed eight 

storylines by combining the GBN matrix (Mahmoud 2008). 

 

Obviously, the idea behind the GBN matrix can be extended to more than two uncertainty 

dimensions, resulting in what could be called the Expanded GBN matrix, which in theory has no 

limitation on the number of uncertainties or the number of alternative states for each uncertainty. 

For example, three uncertainty dimensions corresponding to climate change, demographics and 

economic development were identified in the Verde River Watershed study (Table 2.2). Together 

with two extreme states for each uncertainty dimension, this resulted in 8 scenarios for future 

water supply and demand over a 50-year planning horizon (Mahmoud, Liu et al. 2009). However, 

with the increasing number of uncertainty dimensions, the complexity of these techniques 

hampers more widespread usage (Bishop, Hines et al. 2007). 

 

A common practice is to include a ‘Business-as-usual’ scenario, in combination with one or two 

extreme scenarios (Cosgrove and Rijsberman 2000, Gallopín and Rijsberman 2000, Groves 

2006). The ‘Business-as-usual’ (BAU) scenario, also named as ‘without-project conditions’ by 

the U.S. Army Corps of  Engineers (Yoe 2004),  is the future without any specific action or 

intervention taken to alter the future path.  The World Water Vision group explained ‘Business-

as-usual’ (BAU) scenario as a description of a world in which current policies on water resources 

management and development are continued unchanged, while the other two storylines 

‘Technology, Economics& the Private Sector’ and ‘Values and Lifestyles’ included the 

optimistic view of improving water management and pessimistic view of a future water crisis 

respectively (Gallopín and Rijsberman 2000). For the European outlook on water use, a BAU 

scenario was developed assuming that current environmental policies continue, and no specific 

policies are implemented to curtail water use. This scenario was compared with a climate 

scenario based on GHG emission reduction policies (Flörke and Alcamo 2004). 

  

2.4.3 Step 3 - Quantify future development of driving forces (C, SE) according to the 

storyline  

Most studies rely on expert judgment and modelling to convert qualitative scenario descriptions 

into quantitative scenarios. The process typically involves generating a quantitative scenario 

(with numerical values attached to the relevant variables) for each of the qualitative storylines 
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developed in step 2. The most common assumption is then that the various scenarios are all 

equally likely. As an example of the use of expert judgment, the SCENES team employed fuzzy 

cognitive mapping (FCM), which is a semi-quantitative method that allows conversion of 

qualitative expert judgment into quantitative scenarios (Kok and van Vliet 2011). Cognitive maps 

were first introduced by Axelrod (1976) in social science, and fuzzy logic was added to the 

cognitive maps by Kosko (1986) to quantify ambiguity and relations among uncertain variables. 

Hence, the method generates quantitative scenarios with an estimation of the associated 

uncertainty.  

 

More traditional modelling approaches differ between socio-economic and climate variables. A 

common approach for assessing socio-economic change under a ‘Business-as-usual’ scenario is 

to perform trend analysis, whereby historical trends in e.g. population growth are simply 

extrapolated (Bishop, Hines et al. 2007). In other cases, one may rely on results from more 

extensive socio-economic analyses; for example, numerical values for population growth in the 

IPCC-SRES and MA scenarios were taken from previous studies of the United Nations and 

International Institute for Applied Systems Analysis (Carpenter, Pingali et al. 2005, IPCC 2007, 

Alcamo 2008). 

 

The most common approach for quantifying future climate variables such as precipitation and 

temperature is to post-process the output from General Circulation Models (GCMs) driven by the 

IPCC emission scenarios (Mimikou, Baltas et al. 2000, Eckhardt and Ulbrich 2003, Buytaert, 

Vuille et al. 2010, Chung, Rodri´Guez-di´az et al. 2010). GCMs represent and simulate physical 

processes in the atmosphere, ocean, cryosphere and land surface. Output from more than 20 

GCMs is now available for generating monthly climate scenarios up to the year 2100. The GCM 

outputs are global, and downscaling techniques are typically used to obtain regional climate 

scenarios (e.g.,Ramirez and Jarvis 2010). Often only a small number of GCMs are considered to 

generate scenarios (e.g.,Mimikou, Baltas et al. 2000, Eckhardt and Ulbrich 2003, Chung, 

Rodri´Guez-di´az et al. 2010). More recently, however, studies tend to generate climate scenarios 

by combining many GCMs and emission scenarios (e.g.,Dessai and Hulme 2007, Buytaert, 

Vuille et al. 2010), thereby more accurately representing the uncertainties associated with the 

emission scenarios driving these models, as well as the inherent uncertainties of modelling the 

complex climate system. Guidelines for selecting and combining GCM results to help scientists 

and managers based on perceptions of model evaluations were proposed. Projections of the most 
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sensitive climate variables to the decision problem are suggested to combine as many different 

models and emissions scenarios as possible. Effort should be made to evaluate the defined 

variables against observations just to recognize model biases instead of weighting and discarding 

the model outputs, and to understand the uncertainty of downscaled regional climate projections 

instead of ignoring them in the decision-making process (Mote, Duffy et al. 2011). 

 

2.4.4 Step 4 - Quantify future development for water-related variables (W) 

Once quantitative scenarios have been constructed for the relevant socio-economic (SE) and 

climate (C) driving variables, these are translated into corresponding quantitative scenarios for 

water-related variables (W), such as water availability and demand. Computer simulations have 

typically been used in this step, based on either deterministic or probabilistic models. 

 

Deterministic hydrological models are often used to simulate scenarios of future water 

availability, water demand and water quality, taking the projections of climatic variables and 

socio-economic variables as model input (Arnell 1999, Arnell 2004, Chung, Rodri´Guez-di´az et 

al. 2010). Hydrological rainfall-runoff models have been applied both globally and regionally to 

project future water availability scenarios, by assessing the impact of climate change on water 

resources based on the climatic scenarios generated by GCMs (Arnell 1999, Liuzzo, Noto et al. 

2010). Water demand-oriented models have been used to analyse and visualize scenarios of 

future water supply-demand (e.g.,Beck and Bernauer 2010, Mahmoud, Gupta et al. 2011). 

Examples are the well-known water supply-demand models like the WaterGAP model (Flörke 

and Alcamo 2004), the IMPACT-WATER model (Rosegrant, Cai et al. 2002), and the SWAT 

model (Soil and Water Assessment Tool) (Vaché, Eilers et al. 2002, Eckhardt and Ulbrich 2003, 

Jayakrishnan, Srinivasan et al. 2005). 

 

A shortcoming of these models is that they do not account for inherent uncertainties in the 

models themselves. Probabilistic models have been used to circumvent this limitation. For 

example, Bayesian Networks have been used to generate water quality, water quantity or related 

environmental scenarios with probabilities under different management strategies or policies, 

thereby helping to test the robustness of alternative management options (Ames, Neilson et al. 

2005, Castelletti and Soncini-Sessa 2007). For computational reasons, these applications 

typically resort to discretization of the relevant variables. An alternative class of probabilistic 

method relies on scenario trees. A scenario tree aggregates predefined scenarios into a tree 
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structure, e.g. representing a multi-period future time horizon. Due to their flexibility in defining 

scenarios dynamically, scenario trees are commonly used in multi-stage stochastic decision 

making in water management. Particularly in water supply and water allocation problems, 

scenario trees are used to represent uncertainty of the unknown parameters or inputs of multi-

stage stochastic programming models (Watkins Jr, McKinney et al. 2000, Jayakrishnan, 

Srinivasan et al. 2005). 

 

2.4.5 Step 5 – Refining and updating scenarios 

Scenario refinement can be implemented through an iterative process, whereby quantitative 

model output is communicated back to the larger group of experts and stakeholders involved in 

the initial qualitative scenario development phase. An example where this has been done and 

documented is the ‘Story-and-Simulation’ approach developed by the SCENES project, which 

converts qualitative storylines and quantitative scenarios iteratively (Van Vliet, Kok et al. 2007, 

Alcamo 2008, Kok, van Vliet et al. 2011). Outlines of scenarios proposed by a scenario team 

involving stakeholders and quantitative water scenarios simulated by a modeling team have to be 

reported to an expert panel in order to revise the storylines and check the consistency between 

qualitative descriptions and quantitative outcomes. The process of rewriting the storylines, re-

assigning values to the driving forces and re-quantifying the scenarios if necessary is iterated 

until an accepted version of the storylines and quantification is reached.  

 

Further, as the future will not stop changing, updating scenarios iteratively by periodic review 

and corrections, incorporating new knowledge and data as they become available, is a useful step, 

as Schwartz (1991) stated ‘it is important to know as soon as possible which of several scenarios 

is closest to the course of history as it unfolds’. Post-audits and monitoring have been used for 

this purpose, e.g. in the formal framework for scenario development for the water supply and 

demand scenarios in the Verde River Watershed, USA (Table 2.2). Post-auditing allows one to 

re-examine and refine scenarios such that scenarios account for the most recent information. 

Monitoring establishes measurable indicators to find which scenarios are converging or diverging 

from the actual evolving future, in order to improve the consistency of observed and designed 

scenario paths in an on-going scenario development process. Use of such indicators allows one to 

evaluate the success of the intended scenario development goals, and to update if needed (Liu, 

Mahmoud et al. 2008). A similar process was used to adaptively revise the IPCC GHG emission 

scenarios, which are widely used to quantify the impacts of future climate change on water 
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resources. So far, IPCC has updated the scenarios twice since 1990 (SA90, IS92 and SRES) 

(IPCC 1990, IPCC 1992c, IPCC 2000), and new emission scenarios are anticipated for the Fifth 

Assessment Report in 2014 (IPCC 2008). Changes over the three scenarios were reviewed and 

evaluated according to these five aspects: the description of storylines, structure, development 

process, scientific setting and triggers, and applicability. Significant enhancement has been 

achieved in the scientific adequacy (credibility), transparency, participation (legitimacy) (Hulme 

and Dessai 2008), and applicability of the IPCC’s emission scenarios (Girod, Wiek et al. 2009).  

2.5 Limitation in existing applications 

Three limitations in current applications are highlighted, namely (i) the limited number of 

quantitative scenarios considered, (ii) implicit and incomplete characterization of uncertainties, 

and (iii) the lack of transparency when implementing expert judgment procedures. 

 

2.5.1 Limited number of quantitative scenarios  

As documented in Table 2.2, all the reviewed studies only considered a handful of discrete 

quantitative scenarios, which are essentially obtained by assigning numerical values to variables 

in the corresponding qualitative storylines. Whereas qualitative scenarios  have been limited to a 

handful of descriptive storylines or themes, mostly including a ‘Business-as-usual’ scenario and a 

couple of extreme scenarios along several axes of main uncertainties, quantitative scenarios 

should ideally also cover intermediate situations in between these storyline descriptions. Indeed, 

the key variables in water resources planning are almost always continuous; they are not 

restricted to a discrete set of values. Hence, artificially restricting the scenario space to a discrete 

set provides only a very crude approximation of physical states of climate/water-related variables. 

In other words, quantitative scenarios should not only assign values discretely based on the main 

qualitative scenario themes, but also for a multitude of intermediate situations. The wide range of 

continuous quantitative scenarios are useful to test and evaluate the robustness of management 

strategies against all the future states included (Tezuka, Murata et al. 2005, Groves 2006). The 

implementation of statistical tools and mathematical algorithms together with the increased 

computational capabilities facilitate the generation and utilization of the large set of scenarios. 

For example, Mont Carlo applications routinely involve millions of model runs, where each 

model run essentially represents a different scenario (Tezuka, Murata et al. 2005). Scenario 

discovery algorithms classify a wide range of scenarios simulated by hundreds to millions of 

model runs into multi-dimensional regions, and select regions of interest reflecting the 
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performance of policies for decision-support application (Bryant and Lempert 2010). In order to 

design robust strategies to narrow the water supply-demand gap in California up to 2030, 500 

different future states of water supply and demand were sampled from a large set of plausible 

future states to evaluate 24 New Supply/ Efficiency Signpost policies by using scenario discovery 

algorithms (Groves 2006). 

 

2.5.2 Implicit and incomplete uncertainty characterization   

Existing applications typically consider scenarios to be equally likely. Exceptions are studies that 

develop probabilistic scenarios using Bayesian Networks (Ames, Neilson et al. 2005, Castelletti 

and Soncini-Sessa 2007). A potential drawback of using scenarios without explicitly stating their 

probabilities is that this may lead to confusion, as scenario users would assign probabilities 

themselves or select scenarios intuitively (Schneider 2001). For climate scenarios, Gay (Gay and 

Estrada 2009) states that there is a danger that missing probabilities would free up decision-

makers to take any action given the high level of uncertainty surrounding the climate change 

threat. The same case could occur to decision makers when no probability or equal probability is 

attached to water scenarios. By attaching probabilities to the various scenarios, the weight that 

each scenario plays in developing water management plans is explicitly considered and 

quantified. Realizing that the objective scenario probabilities in the classic frequentists’ sense are 

impossible to obtain (van de Heijden 1994), the probabilistic assessment is necessarily subjective 

so that it is consistent with available knowledge and expert judgement (Gay and Estrada 2009). It 

is also extremely useful as long as it is done in a transparent and explicit manner. Several axiom-

based theories are available to check and limit the subjectivity. The use of Bayesian probabilities 

drives people to explain the judgements explicitly and they are open to peer review and criticism, 

thereby exposing hidden assumptions, biases, and expectations behind the purely intuitive 

scenarios (Millett 2008). The Maximum Entropy framework allows the least prejudiced 

probability assignment in the sense that it utilizes all the information available but remains as 

non-committal as possible when information is not available (Jaynes 1957, Myung, Ramamoorti 

et al. 1996, Weijs, Schoups et al. 2010). In addition, focusing exclusively on uncertainty in 

driving variables (climate and socio-economic) and ignoring other uncertainties such as 

uncertainties introduced by the various model components used to generate scenarios for water-

related variables, should be addressed to avoid overconfidence in the model outputs. For instance, 

a probabilistic framework was formulated to generate low-flow scenarios under climate change 
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impact for the river Thames, including the consideration of uncertainties from hydrological 

models by weighting their performance of reproducing the historical annual low flow series. 

  

2.5.3 Lack of transparency  

A recurring finding in reviewed literature is the lack of clarity and transparency as to how 

descriptive storylines are converted into quantitative scenarios. A way to increase the 

transparency is to build specific protocols in the scenario development team or panel, such as the 

protocol for converting qualitative to quantitative knowledge designed in the ‘Story-and-

Simulation’ approach (Alcamo 2008). Documentation of the scenario development process also 

improves transparency and communication of scenarios. This also encourages scenario 

developers to write down as explicitly as possible the techniques that have been applied and also 

the expert judgement that has been made. It is also important to gain insights into existing 

limitations of existing methods, avoid known pitfalls, and improve them where necessary. 

Relatively little information was encountered on this crucial component of the scenario 

development procedure during our literature review, as the assumptions and judgement made by 

experts were not written down explicitly in most cases. Hence, this is one area that deserves more 

attention than it has received in the literature. Progress can be made by developing and applying 

transparent and therefore reproducible methods, with clear and exhaustive documentation of their 

implementation in a particular application. Moreover, a transparent and open environment which 

allows extensive and efficient communication and interaction between experts, decision makers 

and stakeholders is necessary for the scenario development process.  

2.6 Proposed probabilistic framework 

In this section, a case is made for a probabilistic framework of developing scenarios for water 

resources planning and management that addresses some of the limitations identified in current 

studies. The framework relies on a Bayesian probabilistic model for the relevant driving forces 

(variables) shown in Figure 2.1, including climatic (C), socio-economic (SE), and water-related 

variables (W). Attaching probabilities to quantify these driving forces would lead to the 

probabilistic water scenarios, and then the weight that each scenario plays in developing water 

management plans is explicitly considered and quantified. The valuable information helps 

decision makers to rank the importance of alternative scenarios. Whereas probability and 

statistics is not the only framework available for dealing with future uncertainty, it provides a 
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consistent and well-developed framework for accounting for uncertainty. In essence, adopting a 

Bayesian probabilistic view allows us to: 

 

1. Use a variety of well-established and developed methods, such as the Principle Of Maximum 

Entropy (POME) and formal elicitation methods, for specifying continuous distributions of the 

driving forces, i.e. climate and socio-economic variables; besides, sensitivity analysis can be 

utilized when probability distributions are too difficult to be specified due to diverse views and 

assumptions from multiple experts;   

2. Quantify resulting uncertainties in water-related variables (due to a combination of uncertainties 

in driving forces, models, and data) in a systematic and principled way by applying basic rules of 

probability, with flexible updating as new knowledge and data become available. 

 

Uncertainties regarding the future evolution of all variables is represented by a joint probability 

density function (PDF), denoted by p(C, SE, W), which can be translated as the probability of the 

occurrence of the future state comprising of the given climate scenarios, socio-economic 

scenarios and the resulted water scenarios. In other words, each set of specific values for �, ��, � is assigned a density value, quantifying our belief as to how likely it is that the particular given 

set of values will occur in the future. The use of a probability density function (as opposed to a 

probability mass function) implies that variables such as rainfall, temperature, population growth, 

and water supply are treated as continuous, as indeed they should. This is in contrast with 

previous Bayesian modelling studies, which typically rely on a discrete representation of 

continuous variables (Ames, Neilson et al. 2005, Groves 2006). Discretization of the values of a 

continuous variable into a finite set of intervals introduces unknown approximations and errors 

and should be avoided. 

 

Applying basic rules of probability, and using the relations between ��, �, and � implied by the 

arrows in Figure 2.1, allows us to express the joint pdf in a more useful form: ����, �,�� = ��������|������|��, ��                                                           (2.1) 

 

where �����, ���|���, and ���|��, �� quantify uncertainties in future values of, respectively, 

socio-economic, climate, and water-related variables. The vertical bar ‘|’ is used to indicate 

probabilistic conditioning, e.g. ���|���quantifies climate uncertainty given a particular value for 

socio-economic variables. The joint pdf, and therefore scenarios for ��, �, and �, can thus be 

computed by specifying each term in the expression above. We now outline several suggestions 
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for how our proposed Bayesian probabilistic framework can be implemented using the general 

procedure of Figure 2.2.  

 

Step 1 and 2 in Figure 2.2 can be implemented using existing methods as also applied in previous 

studies. However, progress can be made here by developing and applying transparent and 

reproducible methods that include clear and exhaustive documentation of their implementation in 

a particular application. 

 

Step 3 – Quantify future development of driving forces (�, �) according to the storyline  

Using the notation adopted above, this step aims to quantify and specify distributions ����� and ���|���, from a set of qualitative narratives (storylines). As the knowledge of ‘true’ or objective 

scenario probabilities are impossible to obtain the probabilistic assessment is necessarily 

subjective relying on the available knowledge and judgment of experts, and a transparent and 

explicit procedure will be beneficial to expose biases behind the expert judgement We highlight 

two formal statistical methods that can be used for probabilistic assessment, namely prior 

elicitation and the Principle Of Maximum Entropy (POME). A large amount of literature is 

available on formal methods and protocols for eliciting probability distributions from experts 

(e.g.,Myung, Ramamoorti et al. 1996, O'Hagan, Buck et al. 2007). These methods allow 

identification of entire probability distributions for variables of interest (e.g.,Jaynes 1957, Gay 

and Estrada 2009). Elicitation methods are expected to be mostly useful for obtaining 

distributions for socio-economic variables, i.e. for specifying �����, as models that predict future 

evolution of socio-economic systems are not as readily available as climate models. 

 

In contrast, specifying distributions ���|��� for climate variables for given socio-economic 

scenarios (typically GHG emission scenarios), can more easily be based on output from GCMs, 

as done in many previous studies. However, reliance on GCMs only produces a discrete set of 

scenarios, even if combining several GHG emission scenarios and several GCMs. The question is 

then how to convert this data into continuous distributions for relevant climate variables. It turns 

out that the POME is ideally suited for this purpose. The POME (Jaynes 1957) is a method 

originating from information theory for assigning the least-biased probability distribution given 

the available knowledge and data. In information theory, entropy is a measure of the uncertainty 

associated with a random variable represented by a probability distribution (Shannon 1948). 

Application of the POME to assign probability distributions to scenarios amounts to maximizing 
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the uncertainty subject to constraints representing the current knowledge status. The method was 

applied in (Gay and Estrada 2009) for generating probabilistic climate change scenarios for the 

year 2100, given knowledge of the IPCC’s likely ranges of climate variables together with 

different agents’ judgement and subjective beliefs. The method has also been used to elicit 

probabilities from multiple experts, i.e. aggregating opinions from two or more experts for the 

prediction of the outcome of uncertain events (Myung, Ramamoorti et al. 1996). In that sense, it 

can be used in combination with the elicitation methods described above. 

 

In case the two methods are not applicable and a consensus of probability assignment of the 

driving forces cannot be reached due to various gaps in knowledge and assumptions by the 

experts, sensitivity analysis provides a solution for utilizing all the possible probability 

distributions to generate water scenarios. The sensitivity of the resulting water scenarios on these 

diverse assumptions can be investigated as well. For example, different PDFs were assigned to 

climate variables, i.e. precipitation and temperature, to generate scenarios for additional water 

required to cope with climate change in the east of England. The sensitivity of the water scenarios 

to various climate change uncertainties were evaluated, as well as the robustness of water 

management strategies to these uncertainties (Dessai and Hulme 2007). 

 

Step 4 - Quantify future development for water-related variables (�) 

In the proposed probabilistic framework, this step involves specifying the conditional 

distribution	���|��, ��. A probabilistic hydrological model can be used for this purpose, as e.g. 

advocated in Schoups and Vrugt (Schoups and Vrugt 2010). Such a model combines physical 

knowledge in the form of water balance equations with a statistical description of residual model 

errors. Hence, the approach explicitly quantifies model uncertainties, which may be a significant 

part of the overall uncertainties. Hydrological and statistical parameters in these models may be 

estimated from historical data, as demonstrated in Schoups and Vrugt. Total or marginal 

uncertainty in water-related variables W may subsequently be computed using basic rules of 

probability: the joint distribution between all variables is first computed using Eq. 2.1, and 

variables ��  and �  are then integrated out (marginalized) to obtain the marginal or total 

distribution p(�), which quantifies total uncertainty over water-related variables, accounting for 

uncertainty in future values of driving forces (�, ��) as well as uncertainties related to converting 

driving forces into water-related variables. Such computations are most straightforwardly 

executed using Monte Carlo sampling (Nawaz and Adeloye 2006). 
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Step 5 – Refining and updating scenarios 

Scenario refinement can be implemented through an iterative process, as discussed above. 

Updating scenario storylines as well as probabilities, however, is particularly elegant and natural 

in the probabilistic framework proposed here. Assume that an initial set of scenarios was 

generated according to the joint pdf ����, �,��, by following steps 1-4. At a later time, say 

several years later, the scenarios are to be updated, for example, by taking into account new data � that has been obtained since the initial scenarios were produced.  This new set of scenarios can 

be represented by a new joint pdf ����, �,�|��, which can be obtained by application of  the 

Bayes rule: ����, �,�|�� ∝ ���|��, �,������, �,��                                                (2.2) 

 

where ����, �,��is given by Eq. 2.1, and ���|��, �,�� quantifies the extent to which the new 

observations fit with the original scenarios developed according to	����, �,��. 
 

One limitation of the proposed framework is that it relies on expert judgement for assigning 

probabilities, which is prone to bring bias and subjectivity. Generally speaking, it is very hard, if 

not impossible, to eliminate all subjectivity. Our proposed methodology addresses this issue in at 

least three ways. First, we rely as much as possible on formal methods, such as the principle of 

maximum entropy (POME) and the basic rules of probability, for quantifying and propagating 

uncertainties. We emphasize that POME assigns the least prejudiced probability in the sense that 

it utilizes all the information available but remains as non-committal as possible with information 

not available (Jaynes 1957, Myung, Ramamoorti et al. 1996). The use of Bayesian probabilities 

encourages people to explain their judgements explicitly such that these become open to peer 

review and criticism, thereby exposing hidden assumptions, biases, and expectations (Millett 

2008). Second, if POME is not used, we advocate making explicit all the assumptions and expert 

judgments that feed into the mathematical models (e.g. specification of probabilities, elicitation 

of scenario storylines, etc.). Expert judgment remains an important component of environmental 

planning (Krueger, Page et al. 2012), and an explicit and transparent elicitation procedure is 

extremely important. Third, following good practice in the application of Bayesian methods, we 

propose the use of sensitivity analysis to evaluate to what extent the resulting scenarios and 

uncertainties are affected by various assumptions. In summary, we do not claim that the 

mathematical methods proposed here will magically solve all problems of subjectivity, however 

the methodology is geared towards minimizing and quantifying impacts of subjective decisions, 



 

29 

29 Scenario development for water resources planning and management 

and does not preclude use of advanced expert elicitation techniques that aim to reduce biases 

(e.g.,O'Hagan, Buck et al. 2007, Krueger, Page et al. 2012). 

 

In short, the probabilistic framework can potentially be used to develop water scenarios to cope 

with the two limitations discussed in section 2.5. The approaches used in the framework are 

scientifically sound as they are well-established and well-utilized, which increases the credibility 

of the development process. The Bayesian-based framework provides the flexibility for updating 

the probabilistic water scenarios, by providing new perspectives and information to facilitate 

water resources management adapting to the changing futures. 

2.7 Conclusions 

Our review on scenario development in water resources planning and management illustrates the 

wide popularity of this approach to explore future water systems and assist strategic planning in 

an uncertain and complex world. Scenario development addresses uncertainties of three 

interdependent systems influencing the water system. We presented an iterative development 

procedure according to the reviewed scenario development studies. Techniques used for each step 

were summarized, aiming to provide information for the choice of proper techniques to develop 

scenarios. The main conclusions from this evaluation are that the qualitative and quantitative 

construction step, specifically, the ‘continuous’ and ‘probabilistic’ scenarios with explicit 

quantification of uncertainties, has not been adequately addressed in existing literature, as they 

are highly important for providing information for robust decision making. Finally, a 

probabilistic framework was proposed to address the above issues using existing techniques from 

information theory and statistics, pointing the way forward for scenario development practices in 

water resources planning and management.  



 

This Chapter is based on “Probabilistic scenario development to analyse future runoff in the Yellow 

River Basin”, C. Dong, G. Schoups, N. van de Giesen, Environmental Engineering and Management 

Journal, 2013. 
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Chapter 3 Probabilistic scenario development: 

Climate change impact on future runoff in the Yellow 

River Basin (YRB), China 

3.1 Introduction 

The Yellow River is the second longest river in China. It flows around 5500 km in north China, 

originating from the Tibetan plateau, going through the northern semiarid region, the loess 

plateau, the eastern plain, and finally discharging into the Bohai Sea (see Figure 3.1). Its drainage 

basin covers about 573,000 km2, including 12.9 million hectares of farmland, 31% of which is 

irrigated with water from the Yellow River. The Yellow River Basin (YRB) holds 13% of the 

total cultivated area in China, while it only holds 2% of the country’s water resources (CMWR 

2002). It is of importance for China in food production and economic development, for example, 

it generated 16% of Chinese grain production and 12% of the country’s GDP in 2000. In the 

YRB, annual evaporation varies from 850 to 1600 mm, whereas annual precipitation varies from 

200 to 700 mm. Natural average annual runoff amounts to 53.3 km3 and the annual renewable 

water resources per capita are estimated at 588 m3, less than one third of the Chinese average 

level (Cenacchi, Xu et al. 2011). It is characterized by severe water scarcity: the ratio of surface 

water withdrawals to total water supply was up to 64% in 2008, which is one of the highest in the 

world. In the last two decades, the water-caused hazard has shifted from flooding to droughts in 

the Yellow River Basin due to increasing pressures from population growth, economic 

development and climate change (Xu, Fu et al. 2010). Climate change is posed to worsen water 

scarcity conditions in the YRB (Cenacchi, Xu et al. 2011).  

 

Impacts of climate change on water availability are subject to large uncertainties, and scenario-

based approaches have been widely used to account for these uncertainties. The four scenario 

families (A1, B1, A2, B2) for greenhouse gas emissions developed by the IPCC have been widely 

used to estimate climate change impacts on water resources (IPCC 2000). The four scenario 

families were written to describe the world about future economic, social, environmental and 

technological development. A1 and B1 are both global-oriented, and expect low population 

growth and rapid economic development. A1 storylines diverges to three groups (A1FI, A1B, 
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A1T) due to the various technological change in the energy system, while B1 is more 

environment-friendly with clean energy and improved resources efficiency. A2 and B2 scenario 

families both focus on the local or regional levels. A2 narrates that high population growth and 

more fragmented and slower economic pattern than in other storylines. B2 describes the world 

moderately with intermediate population growth and economic development, and environmental 

sustainability will become a significant issue. Most of the researches adopted the A2 and B2 

storylines to describe the future development track of the YRB. For example, annual runoff in the 

entire YRB is projected to increase up to 2.2% for scenario A2, and 8.4% for scenario B2 by the 

year 2020 compared with the baseline period (1961-1990), based on output from a single General 

Circulation Model (GCM) (Zhang, Fu et al. 2007). However, no single GCM can be considered 

‘best’ or ‘sufficient’ to deal with the uncertainty, and it is important to utilize results from a range 

of models (Mote, Duffy et al. 2011), which can at least add information and understanding about 

the climate change. Moreover, realizing that not all future climate projections have equal 

likelihood of occurrence, the use of probabilities to explicitly quantify uncertainty is 

recommended. In this paper, a probabilistic framework of scenario development based on 

multiple emission scenarios and GCMs is proposed and used to assess the impact of climate 

change on water availability in the YRB. 

 

Figure 3.1 the Yellow River and Yellow River drainage basin.  

3.2 Materials and methods 

3.2.1 Materials 

In order to develop climate change scenarios in the Yellow River Basin, the outputs of 11 GCMs 

(Table 3.1) using the IPCC emission scenarios SRES-A1B, SRES-A2A, and SRES-B2A were 

analysed for the period 2010-2039. The outputs were downscaled to a spatial resolution of 2.5 

min using the Delta Method. This is a statistical downscaling method, which applies the surface 
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of interpolated anomalies or deltas (changes in climate variables) to a high-resolution baseline 

(historical) climate grid from the WorldClim dataset (Hijmans, Cameron et al. 2005), accounting 

for bias due to the difference in baselines. Further description of the Delta downscaling method 

can be found in (Ramirez and Jarvis 2010). Another dataset is downscaled with 30 mins 

resolution using ClimGen from 7 GCMs, but only one scenario family A1B is available.  

Table 3.1 General Circulation models (GCMs)  

Model Institute, Country Reference 

CCCMA-CGCM3.1(T47) Canadian Centre for Climate Modelling and Analysis, Canada (Scinocca, McFarlane et al. 2008) 

CCCMA-CGCM3.1 (T63) Canadian Centre for Climate Modelling and Analysis, Canada (Scinocca, McFarlane et al. 2008) 

CSIRO-MK3.0 
Commonwealth Scientific and Industrial Research Organization, 
Australia  

(Gordon, Rotstayn et al. 2002) 

IPSL-CM4 Institute Pierre Simon Laplace, France (Marti, Braconnot et al. 2005) 

MPI-ECHAM5 Max Planck Institute, Germany (Jugnclaus, Botzet et al. 2006) 

NCAR-CCSM3.0 National Center for Atmospheric Research, USA  (Collins, Bitz et al. 2005) 

UKMO-HADCM3 Hadley Centre for Climate Prediction and Research, UK (Gordon, Cooper et al. 2000) 

UKMO-HADGEM1 Hadley Centre for Climate Prediction and Research, UK (Johns, Durman et al. 2006) 

MRI-CGCM2.3.2 Japan Meteorological Agency, Japan (Yukimoto, Noda et al. 2001) 

MIROC3.2-HIRES CCSR/NIES/FRCGC, Japan (Hasumi and Emori 2004) 

MIROC3.2-MEDRES CCSR/NIES/FRCGC, Japan (Hasumi and Emori 2004) 

 

 
Figure 3.2 Monthly average precipitation and temperature in 2010-2039 from GCMs. 

 

In order to simulate the rainfall-runoff process in the Yellow River Basin, monthly precipitation, 

pan evapotranspiration and natural runoff data above the Huayuankou gauging station were 

collected for the period of 1952-2000. The reason to simulate hydrological processes above 

Huayuankou gauging station is that the Yellow river below the Huayuankou station is suspended, 

and as a result, the natural discharge of the Huayuankou gauge station can be taken as the natural 

runoff from the whole Yellow River Basin. Figure 3.3 shows the mean and standard deviation of 

the monthly precipitation and temperature for the period 1961-1990.The standard deviation of 
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monthly precipitation is big especially in summer and autumn, which is consistent with the 

change predicted by GCMs in Figure 3.2. The temperature has relatively small variation each 

month and is also consistent with its change in 2010-2039. 

 
Figure 3.3 Mean and standard deviation of monthly precipitation and temperature in the YRB during 1961-1990. 

 

3.2.2 Methods 

Climate scenarios of future precipitation and temperature were developed based on the results of 

multiple GCMs. Probability distributions were assigned to future precipitation and temperature to 

explicitly represent a full set of future possibilities based on the Principle of Maximum Entropy 

(POME). Probabilistic climate scenarios were used as input to a conceptual hydrological model 

to simulate future river runoff to estimate climate change impacts on water availability. In this 

section, a description of the POME, and the conceptual hydrological model will be given. 

 

3.2.2.1 Principle of Maximum Entropy (POME) 
In 1984, Shannon introduced entropy into information theory as “a measure of how much 

‘choice’ is involved in the selection of an event”. Shannon entropy was used to measure the 

uncertainty or chaos associated with a set of events when their occurrence is unknown but 

represented by a probability distribution. Shannon formulated the mathematically expression of 

entropy and applied it in the field of communications. If X is a discrete random variable with 

distribution given by 	Pr�� = ��� = �� for  � = �1,2, … , ��                                                   (3.1) 

Then the entropy of X is defined as ���� = −∑ ���� ! "#$%��                                                               (3.2) 

If X is a continuous random variable with probability density		����, then the entropy of X is 
sometimes defined as ���� = −& ����"#$%'(' ����)�                                                      (3.3) 
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Where unit of entropy is bit if the base b=2; nat for b=e, and dit (or digit) for b=10. 
 

Jaynes contributed to the applications of entropy and proposed the Principle of Maximum 

Entropy (POME) in the 1950s. He stated that “the maximum entropy distribution is the least 

biased one which is maximally noncommittal with regard to missing information, and that it 

agrees with what is known, but expresses maximum uncertainty with respect to all other matters” 

(Jaynes 1957). The principle of maximum entropy is based on the premise that when estimating 

the probability distribution, the maximum entropy distribution, whose entropy is at least as great 

as that of all other members of a specified class of distribution, should be selected as it leaves the 

largest remaining uncertainty consistent with the constrains representing the available 

information. For example, given the mean and standard deviation, the normal distribution *�+, ,� has the maximum entropy among all distributions with specified mean	μ and standard 

deviation σ; similarly, given the mean value 1 λ⁄  and the variable is positive, the exponential 

distribution ����1�  has the maximum entropy. In Bayesian probability, the principal of 

Maximum Entropy was a way to assign a prior probability distribution.  

 
3.2.2.2 Hydrological model 
A spatially lumped hydrologic model (Schoups, Vrugt et al. 2010) derived from the FLEX model 

framework (Fenicia, Savenije et al. 2007) is used to simulate the rainfall-runoff process. The simple 

hydrological model lumped partitions rainfall into runoff, evaporation and percolation into a 

surface and subsurface water storages. Snow accumulation and snowmelt is not taken into account. 

The model operates at the basin level, with no attempt to model the spatial distribution of 

hydrological process and storage in the basin. The hydrological model has been applied in the 

French Board Basin and a semiarid Guadalupe River Basin in the USA (Schoups and Vrugt 2010). 

The model consists of four reservoirs: an interception reservoir (IR) represents the interception 

process; an unsaturated soil reservoir (UR) denotes the soil storage capacity; a fast reacting 

reservoir (FR) accumulates the fast runoff and a slow reacting reservoir (SR) gathers the percolated 

runoff (Figure 3.4). The fluxes represent the routine through the reservoirs. Runoff generation is 

assumed to be dominated by saturated overland flow and simulated as a function of water storage. 

The mathematical expression of the model based on an unsaturated zone water balance equation is 

written as Eq.3.4 (Schoups, Vrugt et al. 2010): 
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�234 56758 = 9: − ;< − �: − 9=                                                                   (3.4) 

 

Where �>  is the relative storage (=� �234⁄ ), �  is total storage (L), �234	 is maximum storage 

capacity (L),t is the time (T), 9:		is the effective rainfall rate (L/T), �? is the Interception rate (L/T), ;< is runoff generation rate (L/T), �:	is actual transpiration rate (L/T), and 9=	is percolation rate 

(L/T). The interception rate is assumed to be negligible here, and effective rainfall 9:	 is 

approximately equal to observed rainfall. The other three fluxes in Eq. 3.4 are parameterized as 

functions of relative storage: ;< = 9:@��>	; 	BC�,     �: = �D@��>	; 	BE�    ,  9= = 9=234@��>	; 	B=� 
F8 = F< +F=,         F< = 56H58 = I<�< ,      	F= = 56J58 = I=�K                                       (3.5) 

Where �D	is potential evaporation rate (L/T), 9=234 	is maximum percolation rate (L/T), and	BC, BE 

and B6  are process-specific parameters,	�< , �=  are storage of fast and slow reacting reservoirs, 

I<, I= are time constant to characterize the discharge routing through the fast and slow reservoirs 

respectively. The flux function @  is assumed to take the following form and is monotonically 

increasing from 0 to 1: 

@��>	; 	B� = !(:LMN7!(:LM                                                                          (3.6) 

 

Figure 3.4 Hydrological model structure based on (Fenicia, Savenije et al. 2007, Schoups and Vrugt 2010). 

 

A formal likelihood function was used for estimate the parameter uncertainty. The error of the 

hydrological model is modelled by a first-order, auto-correlated, heteroscedastic error model with 

a Skew Exponential Power (SEP) distribution which has a heavier tail than Gaussian distribution 

(Schoups and Vrugt 2010). The Generalized likelihood function improved estimation of 

parameter and total predictive uncertainty when applied to a daily rainfall-runoff hydrological 
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model in French Broad basin and Guadalupe River Basin, USA. Additionally, it can be used for 

handling complex residual errors in hydrological models. 

Table 3.2 Prior uncertainty range of hydrological and error model parameters 

Parameter    Symbol Minimum Maximum Units 
Soil storage capacity       Smax 0 50000 mm 
Maximum percolation rate      Qmax 0 3000 mm/month 
Evaporation parameter BE 0 500  
Runoff parameter BC 0 300  
Time constant, fast reservoir       Kf 0 10 month 
Time constant, slow reservoir       Ks 0 100 month 
Heteroscedasticity slope       ,! 0             1  
Autocorrelation coefficient      	∅! 0  1  

3.3 Results 

3.3.1 Probabilistic scenarios of climate variables  

Precipitation and mean temperature in the YRB are the climate variables of interest here, as these 

will determine future hydrological conditions. Three assumptions are made in order to develop 

the probabilistic scenarios: (1) all the GCMs perform equally well, (2) the statistics (mean and 

standard deviation) of the multiple model experiments is generalized to approximately represent 

the ‘real statistics’, and (3) temperature will always increase in the future due to global warming. 

Probability distributions of the scenarios of the change of monthly precipitation and mean 

temperature (baseline period 1961-1990) in the period of 2010-2039 are assigned based on the 

Principle of Maximal Entropy. This results in a normal distribution for the change of 

precipitation, given the mean and standard deviation, and a lognormal distribution for the change 

of temperature, given the mean and standard deviation and assuming change is always positive 

(assumption 3 above). The probability density functions are thus: P9Q 	~	*�+STQ , ,STQ�;		 PUQ 	~	"�*�+SVQ , ,SVQ�                                                                   (3.7) W = 1,2, … ,12 

where P9Q , PUQ  represent changes in precipitation and temperature in the i-th month between 

future and baseline periods. 

 

Probabilistic climate scenarios are then generated by Monte Carlo sampling. First, changes in 

precipitation and temperature for the period 2010-2039 are sampled from the generated 

probability density functions, which are converted into future monthly precipitation 9<XQ and 

temperature U<XQ  by adding the sampled changes to the baseline monthly values. Bootstrap 
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sampling (Austin and Tu 2004) is used to sample the original baseline precipitation and 

temperature in each month to take into account the natural variability of the climate variables. 

Dong (2012) applied Bootstrap sampling to characterize the variability and uncertainty of hydro-

climatic variables such as precipitation, temperature and runoff in the Yellow River Basin, given 

the historical data. 

9<XQ = 9%3=:	Q∗ + P9Q ; U<XQ = U%3=:	Q∗ + PUQ ,	W = 1,2,… ,12                                                    (3.8)	
 

where 9<XQ , U<XQ  are the ‘future’ case of precipitation and temperature in the i-th month; 

9%3=:	Q∗ , U%3=:	Q∗  are the baseline precipitation and temperature generated by bootstrap sampling from 

the original monthly values (historical record). 

 

3.3.2 Posterior distribution of parameters and performance of the hydrological model 

The generalized formal likelihood function is used to estimate the uncertainty of the model 

parameters by considering the residues. A Markov Chain Monte Carlo algorithm named 

DREAM_ZS (DiffeRential Evolution Adaptive Metropolis algorithm) (Vrugt, ter Braak et al. 

2009) was used to generate posterior parameter distributions and predictive uncertainty (Schoups 

and Vrugt 2010). The monthly data between 1952-1990 are used to calibrate the model and 

generate the posterior distributions of the hydrological and error model parameters Figure 3.5).  

 

Figure 3.5 posterior distributions of hydrological and error model parameters. 

 

The parameter set which has the maximum likelihood value given the observed data is optimal 

for the hydrological model. The period between 1991 and 2000 is used to verify the model. The 
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graphs below (Figure 3.6) shows the observed natural runoff and the runoff simulated using the 

model.  

 
Figure 3.6 Model calibration and validation in the Yellow River Basin. 

 

3.3.3 Runoff scenarios considering climate change 

When analysing the potential impact of climate change on runoff in the period 2010-2039, 

probabilistic seasonal and monthly runoff are generated using the hydrological model based on 

the pre-defined scenarios of precipitation and temperature. The future pan evaporation is obtained 

based on an empirical relationship with temperature, which was derived from historical data 

(Figure 3.7). Future seasonal and monthly runoff is more informative and of practical interest 

compared with annual runoff. For example, water demand for irrigation in the YRB is large 

during the wheat growing seasons in winter and spring, when rainfall is scarce and irrigation is 

required; peak water demand for rice, which is also heavily irrigated, is in summer and autumn. 

Hence, information on changes in seasonal or monthly runoff, rather than annual, is needed for 

water management.  

 
Figure 3.7 the relationship between monthly temperature and logarithm of pan evaporation  

of the YRB between 1951-2000. 
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Figure 3.8 show the average seasonal runoff (left) and the 90% uncertainty band (right) 

considering different uncertainty sources. Case a represents the runoff between1961-1990. Case  

b, c, d, e represent the predicted runoff between 2010-2039; case b considers only the input data 

uncertainty (i.e., probabilistic precipitation and temperature scenarios developed in section 3.1) 

with the optimal parameter set; case c accounts merely for the model parameters uncertainty; case 

d adds uncertainty in the model structure (residual uncertainty), and case e combines all sources 

of uncertainty (parameters, model structure, and climatic input). Table 3.3 shows the average 

value of runoff and the percentage of change in different conditions. In spring and autumn, runoff 

will decrease by around 25% and 12%. In summer and autumn, runoff will increase by a small 

percentage. The 90% uncertainty band of the runoff (figure 3.8 (right)) shows that the uncertainty 

due to the input data is slightly larger than that due to the hydrological model. It implies that to 

consider all different uncertainty sources is important as they are both significant. 

 

Figure 3.8 Average seasonal runoff (left) and the 90% uncertainty band (right) of the seasonal runoff considering 

different uncertainty sources: line a represents historical conditions (baseline), line b is the model prediction in 2020s 

without considering model uncertainty, line c,d,e are the runoff in 2020s considering the uncertainty from 

parameters, parameters plus model structure, and parameters, model structure and input data. 

 

Table 3.3 Seasonal average runoff in historical and predictive conditions (mm) 

  Spring Summer Autumn Winter 

Case a 5.11 9.80 10.23 2.38 

Case b 3.86 (-24.37%) 10.25(4.59%) 9.06(-11.46%) 2.42(1.58%) 

Case c 3.79(-25.81%) 10.04(2.42%) 8.91(-12.95%) 2.41(1.11%) 

Case d 3.79(-25.87%) 10.04(2.47%) 8.91(-12.97%) 2.41(0.11%) 

Case e 3.82(-25.22%) 10.12(3.27%) 9.00(-12.10%) 2.42(0.15%) 

 

Compared with the average runoff, a probability distribution provides more information, such as 

the high and low runoff associated with their probabilities. Figure 3.9 shows results for the 

cumulative probability distributions (CDF) of seasonal runoff, respectively. Five cumulative 
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probability distributions are shown for each season, and each line accounting for different sources 

of uncertainty on future runoff. In spring and autumn, the runoff is decreasing as the whole future 

CDF is shifted to the left, compared to historical conditions. For example, median values for the 

five cases (a-e) are 4.94, 3.81, 3.80, 3.79 and 3.75 mm respectively. During autumn, runoff also 

tends to decrease, and median values for autumn are 9.77, 8.88, 8.90, 8.86 and 8.70 mm. In 

summer and winter, the future CDFs are shifted slightly to the right, compared to historical 

conditions, indicating a slight increase in runoff: median values are 9.43, 10.02, 10.02, 9.99 and 

9.85 mm for summer, and for winter 2.29, 2.40, 2.41, 2.41 and 2.40 mm. Figure 3.10 shows the 

CDF of monthly runoff, and the same coloured line represents the runoff accounting for the same 

uncertainty. In Mar., May, Oct. and Nov., the monthly runoff has a large decreasing.  

 

 
Figure 3.9 cumulative probability distributions of seasonal runoff  

(The same colour line represents the same uncertainty source as in figure 3.8). 
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Figure 3.10 cumulative probability distributions of monthly runoff  

(The same colour line represents the same uncertainty source as in figure 3.8). 

3.4 Discussions and Conclusions 

Scenarios of climate variables such as precipitation and temperature were developed based on 

multiple GCMs and IPCC emission scenarios, and lognormal distribution and normal 

distributions were attached to the two climatic variables respectively, using the Principle of 

Maximum Entropy. Seasonal and monthly runoff scenarios were generated to estimate future 

water availability under the impact of climate change. The results show that runoff for the period 

2010-2039 is decreasing in spring and autumn, while in summer and autumn it slightly increases 

compared with baseline conditions. The methodology and results presented here complement and 

improve upon previous studies of the potential effects of future climate change on runoff in the 

Yellow River basin (e.g.,Zhang, Fu et al. 2007, Li, Hao et al. 2008, Xu, Fu et al. 2010). Zhang 

(Zhang, Fu et al. 2007) predicted that annual runoff in the Yellow River Basin is projected to 

increase up to 2.2% for IPCC scenario A2, and 8.4% for scenario B2 (2010-2039) compared with 

the baseline period (1961-1990). The Yellow River Commission projected that the average runoff 

decrease by 16.99% under climate change (Xu, Fu et al. 2010). Our prediction is that annual 

runoff change is between the range of -18% to 7% under climate change impact, which almost 

covers all their results. From a methodological point of view, our work improves upon previous 

studies by (i) explicitly attaching probabilities to the various scenarios, as opposed to assuming 
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all scenarios to be equally likely (for example, we develop probability distributions for 

precipitation and temperature using the Principle of Maximum Entropy), and (ii) by accounting 

for additional sources of uncertainty, such as hydrological modelling uncertainty, and errors in 

downscaling GCM output to local or regional scale. It has been investigated that the uncertainties 

from the climatic inputs and the hydrological model are both significant. The result is a set of 

fully probabilistic seasonal runoff scenarios that explicitly encompass a wide range of possible 

futures, which allows water managers to make robust decisions by testing strategies against the 

plausible range of future runoff in the face of climate change. 



 

 This Chapter is based on “Scenario-based Expert Elicitation Approach for Future Water Demand 

Projection in the Yellow River Delta, China”, C. Dong, G., Schoups, N. van de Giesen, 2014, under 

review. 
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Chapter 4 Probabilistic scenario development:  

Water demand projections in the Yellow River Delta 

(YRD), China 

4.1 Introduction 

Scenario development is a useful tool to describe future states of the world under uncertainty, and 

probabilistic quantification of scenarios is desirable to provide explicit information to decision 

makers (Schneider 2001, Dong, Schoups et al. 2013). Noticing that it is difficult or even 

impossible to combine probabilities and scenarios objectively due to scientific uncertainty, 

subjective approaches are required to fulfil the task (Dessai and Hulme 2004). Subjective expert 

judgement/elicitation techniques have been widely used to elicit probabilities under uncertainty in 

studies such as environment studies, climate change and policy analysis (Morgan and Keith 1995, 

Titus and Narayanan 1996, Morgan, Pitelka et al. 2001, Webster, Forest et al. 2003, Zickfeld, 

Levermann et al. 2007, Low-Choy, James et al. 2012). The process of eliciting relevant 

knowledge and beliefs of experts to support probability elicitation or quantitative analysis is 

called expert elicitation (Low-Choy, James et al. 2012). Expert elicitation can be based on either 

a single expert or multiple experts, and it is assumed that a group of experts typically outperform 

a single one (Ferrell 1985). A challenge when using multiple experts is how to achieve consensus 

among their different opinions. In water resources planning and management, scenarios for 

variables such as population growth and irrigation water use, can be developed based on the 

judgement of experts, such as decision makers, hydrologists, stakeholders, and water managers. 

Additionally, future water supply and demand scenarios need to account for potential correlations 

between the variables of interest. Therefore, multivariate probability analysis is needed to model 

future water situations.  

 

In this chapter, three issues are addressed in order: (1) How to quantify scenarios using expert 

judgment under uncertainty, (2) How to aggregate multiple experts’ assessment into one single 

probability distribution, and (3) How to construct multivariate distributions to model dependence 

among variables. 
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4.1.1 Expert-elicitation for developing probabilistic scenarios  

Expert-elicitation is suitable for specifying the probability distribution of an uncertain quantity, 

when available data is limited. A large amount of literature on expert elicitation has been 

published, both from statistical and psychological perspectives (e.g.,Garthwaite, Kadane et al. 

2005, Choy, O'Leary et al. 2009, Krueger, Page et al. 2012, Low-Choy, James et al. 2012) . The 

use of expert elicitation in environment modelling under uncertainty due to data shortage has 

been reviewed by (Choy, O'Leary et al. 2009, Krueger, Page et al. 2012). Krueger et al. suggested 

that a formal and systematic use of expert opinions will benefit modelling under uncertainty and 

enhance the rigour of information that informs decision making. In psychological research, 

'heuristics and biases' have been proposed by Tversky and Kahneman in 1970s (Tversky and 

Kahneman 1973) to describe human errors in assessing probabilities when facing uncertainty. 

Reviews about psychological research on expert elicited probabilities are provided by (O'Hagan, 

Buck et al. 2006, Kynn 2008). They both emphasised the necessity of taking into account the 

biases when managing expert elicitation. Despite the psychological constraints, Garthwaite 

reviewed statistical methods for expert elicited probability distributions and summarized several 

criteria to evaluate the quality of expert elicited probability distributions, pointing out that a 

successful elicitation should represent the opinion of the person being elicited, instead of how 

accurate the elicitation is in the objectivistic sense (Garthwaite, Kadane et al. 2005). Chhibber et 

al. outlined the problems of expert elicitation such as expert bias and dependence and addressed 

the difficulties to understand and treat them. They suggested that progress needs to be made to 

make expert opinions acceptable to the scientific community (Chhibber, Apostolakis et al. 1992). 

 

4.1.2 Aggregating probability distributions from multiple experts  

When eliciting with multiple experts’ opinions, the information needs to be aggregated in order 

to obtain a single probability distribution. The aggregation can be solved using either behavioural 

or mathematical methods. Behavioural methods aim to achieve some kind of consensus through 

interactions, discussions and negotiations among experts, for example, the Delphi method, the 

Nominal Group method, decision conferencing and Kaplan’s approach (Clemen and Winkler 

1999). Mathematical methods range from simply taking the arithmetic or geometric means of 

probabilities assessed by experts to complex models such as axiomatic approaches (weighting 

scheme by using expert opinions) and Bayesian approaches (updating scheme by using expert 

opinions). Recently, the focus of mathematical methods has shifted to Bayesian approaches since 

a Bayesian paradigm was clearly formed for aggregating expert’s opinions by (Winkler 1968, 
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Morris 1977). Bayesian models were first developed and applied for combining probability 

distributions when they are normally distributed (Winkler 1981). Mendal and Sheridan developed 

Bayesian models when probability distributions are not necessary normally distributed (Mendel 

and Sheridan 1989). Jouini and Cleman employed a copula function to estimate the likelihood 

function in the Bayesian model (Jouini and Clemen 1996). Clemen and Winkler (1999) tried to 

answer the question “what is the best way to combine the judgement?” by comparing the two 

categories of methods. They have reviewed a variety of mathematical methods through several 

studies, and found out that, in general, simpler aggregation mathematical methods such as simple 

models by putting equal weights to probabilities assessed by experts perform as well as more 

complex methods. Besides, by comparing the simple and weighted average method with 

behavioural methods, empirical studies show that the behavioural methods work slightly better or 

approximately at the same level as the mathematical methods. 

 

4.1.3 Multivariate analysis given specified marginal distributions  

In uncertainty and decision making analysis, it is often required to consider multivariate analysis 

through constructing multivariate joint probability distributions from specified marginal 

distributions (Clemen and Reilly 1999, Fang, Fang et al. 2002). Statistical studies have 

investigated the multivariate dependence structures given the specified marginal distributions. 

Meta-Gaussian distribution were constructed to model bivariate densities in hydrology (Kelly and 

Krzysztofowicz 1997). Fang extended the bivariate densities to a new class of distributions called 

meta-elliptical distributions (Fang, Fang et al. 2002). These methods are both based on the copula 

technique. Copula is derived from the Latin word “copulare”, meaning to connect or join 

(Schmidt 2006). The concept has been recognized in the statistical field since (Sklar 1959). A 

copula is a tool for modelling the dependent relationship of multiple random variables. A number 

of copula functions has been defined, important copulas such as Gaussian copula, Farlie-Gumbel-

Morgenstern class of copula (Johnson and Kott 1975), and Archimedean copulas family 

including parametric Clayton copulas (Clayton 1978), Frank copula (Frank 1979) and Gumbel 

copula. Genest and Rivest (Genest and Rivest 1993) studied the statistical properties of the 

Archimedean copulas. Bhat and Eluru (Bhat and Eluru 2009) reviewed the properties of these 

copulas and applied them to model residential self-selection effects in travel behaviour in the US. 

Recently, copulas have been applied in finance, econometrics, actuarial studies, hydrological 

modelling, drought analysis, travel behaviour modelling and healthcare fields (Kelly and 
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Krzysztofowicz 1997, Cherubini, Luciano et al. 2004, Frees and Wang 2005, Zimmer and Trivedi 

2006, Genest and Favre 2007, Bhat and Eluru 2009, Shiau and Modarres 2009). 

 

This chapter provides a scenario-based expert elicitation framework to probabilistically explore 

future scenarios under uncertainty, and copula-based methods to do multivariate analysis when 

dependence among variables is taken into account. At the end, a case study on water demand 

projection in the Yellow River Delta, China, is presented. Expert elicitation is guided by the well-

structured SHELF procedure, and the experts’ judgement will be aggregated using a 

mathematical approach. In modelling water demand, it is important to take into account the 

interrelationship among the variables, for instance, variables such as population growth and the 

per capital water demand. The projection of water demand in the next 30 years will inform and 

benefit the water resources planning and management in the Yellow River Delta. 

4.2 Expert Elicitation of Priors: SHELF METHOD 

In this research, SHELF (the Sheffield Elicitation Framework) is applied for probability 

elicitation through the interaction between experts and facilitator (who can be the decision maker 

or some relevant person). It provides the platform to capture expert’s knowledge and feedbacks 

dynamically and graphically. SHELF is a freely available package, including some basic software 

in the R language. Currently, a new version SHELF2.0 is available (Oakley and O'Hagan 2010). 

SHELF has been used in a variety of fields to elicit experts’ judgement in the Bayesian inferential 

framework (Higgins, Dryden et al. 2012, Higgins, Dryden et al. 2012, Ren and Oakley 2012, 

Kinnersley and Day 2013, Scholten, Scheidegger et al. 2013).  

 

Before entering the elicitation stage, several things are essential and should be set up. (i) the 

experts who have special knowledge about the uncertain quantity of interest, and a facilitator who 

is familiar with the elicitation process should be identified. (ii) the facilitator should explain the 

purpose and importance of the elicitation to the participated experts. (iii) the participants will 

receive some ‘training’ to familiarise the process, and an evaluation about their strengths and 

weaknesses. The evaluation will be useful to beware of the deficiency and bias of the group’s 

knowledge. (iv) all available relevant evidence about all the quantities of interest should be 

reviewed by the participants, in order to avoid their biased or impaired judgement based on 

partial evidence. (v) the participants can help structure and choose quantities which are easier to 

elicit. For example, to decompose quantities into independent quantities can avoid the estimation 
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of joint probability, as the SHELF framework is not set up for joint probability assessment. The 

last task of the preparation is to define the chosen quantities.  

 

To elicit a distribution of the predefined variable Z, four general steps can be done (Figure 4.1): 

1. The expert makes a small number of probabilistic judgements about Z;  

2. The facilitator fits a suitable parametric probability distribution to the expert’s 

judgements; 

3. The facilitator reports the fitted distribution to the expert(s), and ask if the distribution is 

acceptable based on their beliefs; 

4. If the distribution is acceptable to the expert(s), then the elicitation can be completed. 

Otherwise, the facilitator fits an alternative distribution according to additional 

probabilistic judgement form the experts.  

 

Figure 4.1 The elicitation process of SHELF method. 

 

SHELF accommodates several different protocols for eliciting a distribution of the predefined 

variable in the first step. The probability method elicits the probability distribution by asking 

experts for some specified probabilities. The Quartile method uses the expert estimation of the 

median and upper/lower quartiles of the distribution. The Roulette method asks experts to 

indicate their probabilities for ten bins of values; and the Tertile method asks the experts for their 

median and upper/lower tertiles (Oakley and O'Hagan 2010).The facilitator is free to choose 

which protocol to use. In this study, the quartile method is used and the way to assess the 

probability of predefined variable Z is as follows:  

 

1.1. Elicit plausible ranges (L, U) of the quantity which are agreed by all experts. 

1.2. Specify the median value M, where P (Z <M) and P (Z  >M) are equal, by the experts 

separately. 

1.3. Specify lower and upper quartile (Q1,Q2), when P( L<	Z <Q1)= P( Q1<	Z <M)= P( M<	Z 

<Q2)= P( Q2<	Z <U)=0.25.  The facilitator can ask them to adjust their values if necessary.  
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When a group of experts participate in the elicitation process, mathematical methods or 

behavioural methods are required to aggregate experts’ opinions into a single probability 

distribution. In SHELF, a behavioural method is used to combine experts’ assessment to fit a 

single probability distribution. Discussions and interactions among experts are encouraged to 

specify group consensus judgement for the probability distribution, for instance, in the quartile 

method, an agreement on the values for the median and quartiles is required. To fit a final 

distribution, revision of the group judgement is allowed according to their feedback.   

4.3 Aggregating experts’ probability distributions 

4.3.1 Axiomatic approaches 

Axiomatic approaches aggregate probabilities based on axiom-based aggregation formulas. A 

simple approach is called the linear opinion pool, to aggregate probability distribution by linearly 

weighting the opinions from experts. 

 ��Z� = ∑ [QQ→� �Q�Z�                                                               (4.1) 

Where n is the number of experts, �Q�Z� is the probability assessment of the variable Z from the 

ith expert; [Q are the weights, summing to 1; ��Z� is the combined probability distribution of Z. 

 

For mixing the probability distributions into a single one, the (raw) moments of the mixture are 

the weighted average of the same moments of the component distributions (Frühwirth-Schnatter 

2006). For example, the first and second moment of the mixed probability distribution when the 

component is normal distributed is: 

+�Z� =] [QQ→� +Q�Z� 
,�Z�^ = ∑ [QQ→� �σQ̂ + �+Q − +�^�                                                    (4.2) 

Where +Q  is the mean of probability distribution given by the ith expert, ,Q is the standard 

deviation of each component distribution. 

 

Allocating weights to different experts is a subjective process. Various methods were reviewed 

by  (Genest and McConway 1990) . Normally, the weight can be interpreted as “the better an 

expert, the heavier the weight ought to be attached to his/her opinion”. The calibration approach 

has been widely employed to assess the quality of an expert’s judgement. The approach requires 

experts to give plenty of probability assessments on many variables, and the ability of the 

experts’ probability assessment can be measured by their performance (Morris 1977). In the 

Classic Model, three different weighting schemes, namely equal weighting, global weighting, and 
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item weighting, were developed and distinguished by the ways how weights are assigned to the 

experts’ assessment (Cooke 2013).  

 

Although the linear pooling approach was shown to perform as good as more complex methods 

in aggregating opinions from experts, there is one disadvantage of the approach in that the 

dependence among experts’ judgement is not taken into account (Clemen and Winkler 1999). In 

the next section, methods based on a Bayesian approach to consider the interrelationship will be 

briefly reviewed. 

 

4.3.2 Bayesian approaches 

Experts often have similar training, background and experience, and they are prone to provide 

redundant and dependent information. The impact of dependence on the precision and value of 

information has been investigated, and the results indicate that positive dependence among 

information sources can have a serious negative effect on the precision and value of the 

information (Clemen and Winkler 1985). Dependence among experts’ judgement is an important 

and unavoidable source of difficulty. Morris (Morris 1983) pointed out that ‘one of the future 

challenges in the field of expert modelling is the construction of general models of expert 

dependence. In expert-aggregating probability distributions problems, empirical studies have 

found that correlations among expert judgement in forecasting can be quite high, typically above 

0.8 (Jouini and Clemen 1996).  

 

To cope with dependence among experts, a Bayesian approach has been used for combining 

probabilities from experts’ elicitation. Expert judgement can be used to elicit prior subjective 

probability distributions based on their available knowledge and beliefs. The prior probability 

judgement can be aggregated to elicit the posterior probability distribution. The Bayesian 

approach then provides the theoretical basis for expert-elicited probability estimation (Morris 

1977, Varis and Kuikka 1997, Choy, O'Leary et al. 2009).  

@�Z|$!, $^,⋯ , $�� = <�`a,`b,⋯,`c|d�∙`�d�&<�`a,`b,⋯,`c|d�`�d�5d ∝ @�$!, $^,⋯ , $�|Z�$�Z�                           (4.3) 

 

Where Z is the quantity whose probability distribution is estimated,	 $Qdenotes the probability 

distribution of Z estimated by expert i. 	$�Z� : the prior probability distribution about Z. Usually, the prior probability is assessed by 

experts or decision makers. However, hindsight bias occurs when the experts already have partial 
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historical information about Z, and have to give priors by pretending they don’t know about it 

(Fischhoff 2003). To avoid the risk, non-informative priors, ‘Sceptical’ or ‘Enthusiastic’ priors 

(Abrams, Myles et al. 2004) given by decision-makers could be used.  @�$!, $^, ⋯ , $�|Z� : the likelihood function. It reflects the expert’s probability assessment 

conditional on the ‘true’ values of Z . When a group of dependent experts participant the 

probability assessment, the likelihood function is the joint probability assessment over the expert 

set. 

 @�Z|$!, $^, ⋯ , $�� : the posterior probability of Z given the expert’s judgement. 

 

The format of Bayesian models to aggregate experts’ judgement is determined by the marginal 

distributions and the construction of the likelihood function @�$!, $^, ⋯ , $�|Z�. However, it is 

difficult to estimate an appropriate likelihood function, as a probabilistic model has to be 

constructed to capture the interrelationships among Z  and $!, $^, ⋯ , $� , as well as the 

dependence among the bias and errors from different experts’ judgement $!, $^, ⋯ , $� .  

 

For aggregating probability estimation of a discrete event from a group of experts, four different 

likelihood functions were constructed in the Bayesian paradigm. The four likelihood functions 

were constructed based on the independence model, Genest and Scherivish linear regression 

model (Genest and Schervish 1985), Bernoulli sampling (Morris 1983), and multivariate normal 

model (French 1981), respectively. For aggregating probability distributions assessed from a 

group of experts, Error density function such as a Normal Model (Winkler 1981) and Copula 

functions (Jouini and Clemen 1996) were used to capture the dependence among experts 

judgement and construct the likelihood function in Bayesian models. The normal model (Winkler 

1981) specifies the dependence among experts based on the density function of expert’ 

judgement errors. However, the model was only suitable for the normally distributed marginal, 

and the aggregated distribution is also normal distributed. The Copula-based model (Jouini and 

Clemen 1996) captures the dependence among a set of experts with one single parameter, the 

concordance probability, which is cognitive and also not flexible if different levels of dependence 

needs to be captured. Additionally, the two methods are sensitive to the dependence level among 

experts’ judgement. 
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4.4 Copula-based models for multivariate analysis  

4.4.1 Basis of Copula 

A copula is used for modelling dependence of several random variables, and is derived from the 

Latin word “copulare”, meaning to connect or join (Schmidt 2006). A copula function serves as a 

dependence function, and represents a distribution on the unit square with uniform marginal 

distribution. It can be used to link the joint multivariate function and their marginal distribution 

functions, encoding dependence among different information sources and marginal distributions. 

One advantage of copulas is that the dependence assessment is separate from the marginal 

distributions, and the marginal distributions can be formulated independently.  

 

Sklar’s Theorem (Sklar 1959): Given a joint cumulative distribution function f��!, ⋯ , ��� for 

random variables �!, ⋯ , �� with marginal cumulative distribution functions g!��!�, ⋯ , g�����. 
Then the joint cumulative distribution can be written in the form of copula: f��!, ⋯ , ��� = �hg!��!�,⋯ , g�����i                                              (4.4) 

Where �hj!,⋯ , j�i is a joint distribution function with uniform information marginal, and it is 

called a Copula. If gQ is continuous, then C is unique, and if gQ is discrete, then C is unique on  ;�g!� ×⋯× ;�g��, where ;�gQ� is the range of gQ.  
 

Given that gQ is continuous and differentiable, the joint density @��!, ⋯ , ��� can be written as the 

product of the marginal densities and the copula density. Then,  @��!, ⋯ , ��� = $!��!� × ⋯× $�����lhg!��!�,⋯ , g�����i, lhg!��!�,⋯ , g�����i = m�� �mg!⁄ ⋯ , mg��                                                  (4.5) 

Where $Q��Q� is the density corresponding to gQ��Q�, l is the copula density. l is independent 

from the marginal probability distributions. If these variables are independent, then l = 1, and @��!, ⋯ , ��� = $!��!� × ⋯× $�����. 
 

4.4.2 Copula-based models 

Three steps are required to apply copula-based probability models. First is to identify the 

marginal probability distributions, second is to model the dependence among the information 

sources or variables, and third is to identify an appropriate copula function. In this section, the 

measures to assess correlation and two important copula functions will be mentioned.  
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4.4.2.1 Correlation assessment  
To measure the dependence, the product moment correlation n, rank-order correlations such as 

the Spearman’s n=  and Kendall’s o are sufficient in constructing several copula families. The 

explanation of these correlations and their properties can be found in (Kurowicka and Cooke 

2006). A brief description of these dependence measures is given below.  

 (1) Product moment correlation n 

The Product moment correlation n  is also called linear or Pearson correlation. The product 

moment correlation of two random variables �, p is defined as: 

n��, p� = E�qr�(E�q�E�r�stsu                                                            (4.6) 

Where ����, ��p� and ,q, ,rare the expectations and standard deviation of �, p,respectively. |n��, p�| ≤ 1. If n��, p� = 0, the two variables are independent. If n��, p� > 0	�< 0�, then the 

two variables are positively (negatively) correlated. Larger values imply stronger correlations.  

 

Statistical estimation and expert judgement can be applied to assess the correlation. When 

estimation is statistical, the correlation depends on the linear regression between the data of two 

variables; when estimation is judgemental, the experts are supposed to be familiar with the 

statistical concepts related to correlation, and are capable to make a reasonable assessment of the 

bivariate relationships. Research has been done about directly eliciting correlation between 

variables, for example, Gokhale and Press (Gokhale and Press 1982) showed that individuals 

with statistical knowledge are able to assess the correlation between two data sets by reading their 

scatterplot. Clemen (Clemen, Fischer et al. 2000) compared six methods to elicit a correlation 

between weight and height in a population of male MBA students, and found that direct 

estimation of the correlation by specifying a value between -1 and 1 performed better than the 

other five methods, such as asking individuals to estimate the Kendall’s o  between the two 

variables. Garthwaite suggested that graphic methods perform better to describe the linear 

regression between two variables. For two variables X and Y, to elicit points from the regression 

function z��� = ��p|� = �� allows the estimation of the correlation if the experts believes their 

relationship is linear (Garthwaite, Kadane et al. 2005). 

 

(2) Spearman correlation 

The rank or Spearman correlation n=��, p� of two random variables �, p with joint probability  
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distribution fq,r and the marginal probability distribution fq and fr, respectively, is given by:                                                           

n=��, p� = n�fq, fr�                                                                     (4.7) 

Where n�fq, fr� denotes the product moment Pearson’s correlation. 

n�fq, fr� = {|}�Ct,Cu�~}3>�Ct�}3>�Cu�	                                                      (4.8) 

Unlike the product moment correlation, the Spearman correlation always exists and it is 

independent of the marginal distributions. Hence, it can be a suitable measure for techniques that 

are required to be independent of marginal probability distributions, such as the copula between 

two random variables. 

 

(3) Probability of Concordance to estimate Kendall’s o. 
Concordance measures the extent to which a set of random variables tends to be identical from 

the ordering of another set of variables. Conversely, the dependence relation is called discordant. 

Let ��!Q, �^Q⋯ ,��Q�  and ��!�, �^�⋯ ,����  be two independent and identically distributed n-

tuples of random variables. They have the same distribution as ��!, �^⋯ ,���. The random 

variables ��!, �^⋯ ,��� are concordant if �!Q < �!�, �^Q < �^�⋯,��Q < ���  or 

�!Q > �!�, �^Q > �^�⋯,��Q > ���, 
The probability of concordance 9l of ��!, �^⋯ ,��� is  9l = 9��!Q < �!�, �^Q < �^�⋯ ,��Q < ����  or 

9��!Q < �!�, �^Q < �^�⋯,��Q < ��� 
The Kendall’s o can be related to 9l; o = 29l − 1                                                                             (4.9) 

If two random vectors (X,Y) are from the bivariate normal distribution, the relationship among 

Spearman’s n=��, p� , Kendall’s o��, p�, or the Persons correlation n��, p� can be written as 

(Kruskal 1958):  

n��, p� = KW�	����q,r�^ � ,  n��, p� = 2KW�	���J�q,r�� �                                  (4.10) 

 
4.4.2.2 Copula functions 
A series of copula families and their characteristics have been explained in (Kurowicka and 

Cooke 2006, Bhat and Eluru 2009). Among them, two copulas, i.e. the Archimedean copula and 

the Gaussian copula, which are very popular, are briefly explained. 
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Gaussian Copula is derived from a multivariate normal distribution. It is comprehensive in 

obtaining the Frechet lower and upper bounds and capturing the full range of dependence (both 

positive and negative) (Bhat and Eluru 2009). The Gaussian copula with a correlation matrix ;  

is written as: 

���3X==�j� = Φ��Φ(!�j!�,⋯ ,Φ(!�j���                                                 (4.11) 

; = �1 nn 1� 
Where Φ��Φ(!�j!�,⋯ ,Φ(!�j��� is the multivariate normal distribution with zero mean and 

correlation matrix ; , n  is the  product Person’s moment correlation, and Φ is the CDF of a 

standard normal distribution.  

 

The Gaussian copula density l��3X==�j� is written as: 

l��3X==�j� = exp�− !̂��La�Xa�⋮�La�Xc��
V ∙ �R(! − �� ∙ ��La�Xa�⋮�La�Xc��� |R|ab�                                 (4.12) 

Where T represents the vector transpose, and � is the identity matrix. 

 

To generate uniform random variates from the Gaussian Copula (Schmidt 2006), one can use the 

following algorithm: 

1. For an arbitrary covariance matrix Σ� obtain the correlation matrix Σ. 

2. Perform a Cholesky-decomposition Σ = �V�. 

3. Generate idd standard normal pseudo random variates  X!�,⋯ , X5� . 

4. Compute ��!,⋯ , �5�V = � = ��� from �� = �X!�,⋯ , X5� �V. 

5. Return �Q = Φ�ΧQ�, W = 1,⋯ , )  where Φ  is the standard normal cumulative distribution 

function. 

 

The correlation matrix Σ  has to be a valid matrix in order to perform the Cholesky-

decomposition. A valid matrix has the important properties such as all entries should between  

[-1,1], with 1 along the main diagonal, symmetric and positive semi-definite (PSD). To be a 

positive semi-definite matrix, the eigenvalues of the matrix should be positive, and the 

determinant of the matrix should be non-negative. However, the matrix elicited is not always 

positive definite; Nicholas J. Higham’s algorithm can be applied to find the closest valid 

correlation matrix (Higham 2002). 
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Figure 4.2 shows scatter samples from the Gaussian copula-based bivariate distribution with a 

correlation parameter n = 0.9239  and two normal marginal distributions. The samples are 

symmetric around the central points, called radially symmetric, and are away from the tails. It 

shows that the Gaussian copula is radially symmetric, with strong dependence in the middle and 

weak dependence in the tails of the marginal distributions. 

 

The Archimedean copula can be defined iff (if and only if) there exists a convex and strictly 

decreasing function  : �0,1i → h0,+∞� , with φ�1� = 0 . 	 ¤��� < 0,  and  ¤¤��� > 0  for all 0 < � < 1.  �0� = ∞, then the inverse function  (!  exists. Thus, the bivariate Archimedean 

copula is: �^�j!, j^� =  (!� �j!� +  �j^��                                                           (4.13) 

To extend to higher dimensions: 

 ���j!,⋯ , j�� =  (!� �j!� + ⋯+  �j���                                               (4.14) 

Where j!, ⋯ , j� are marginal cumulative probability distributions of the random variables.   is 

the generator function. For example,  ��� = !d �¥(d − 1� generates the Clayton copula;  ��� =
−"� :L¦§(!:L¦(! 	generates the Frank copula; where Z is the dependence parameter. 

 

Frank copulas, for example, are the only class of one-parameter Archimedean copulas allowing 

negative dependence and obtaining the Frechet lower and upper bounds. The Frank-copula form 

of a bivariate distribution is: 

�^|d = − !d "� ¨1 + ©:L¦ªa(!«©:L¦ªb(!«:L¦(! ¬		 , −∞	 < Z < ∞,	Z ≠ 0                                  (4.15) 

With                                                                ��� = −"� :L¦§(!:L¦(!  

Where Z is the only parameter to decide the dependence level between variable �!, �^, and Jouini 

(Jouini and Clemen 1996) listed the corresponding values of Z  and Kendall’s o ; j!, j^  are 

marginal cumulative probability distributions of variable �!,  �^  to construct a bivariate 

distribution, �j!, j^� ∈ h0,1i^. To extend the copula function to the multi-dimensional form, 

��|d = − !d "� ¨1 + ©:L¦ªa(!«©:L¦ªb(!«⋯©:L¦ªc(!«©:L¦(!«cLa ¬ , � ≥ 2                                     (4.16) 

Figure 4.2 shows samples from a Frank copula with a correlation parameter Z = 14.14 and the 

same marginal distributions. As with the Gaussian copula, the Frank copula has a radially 

symmetric dependence.   
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In Archimedean copulas, the single dependence parameter, Kendall’s o , is shared by all 

marginals of interest. It is difficult to estimate it in practice. More flexible structures are required 

to be constructed for high dimensions if Archimedean copulas are used to analyse multivariate 

joint distributions (Zimmer and Trivedi 2006).  

 

Figure 4.2 Bivariate copula plots. Left: Gaussian copula o = 0.75, n = 0.9239, Right: Frank copula o = 0.75, Z = 14.14, with 

marginal distributions �!~*�5,3� and �^~*�0,5�. 
4.5 Case study 

4.5.1 Introduction of YRD 

The Yellow River Delta (N37º40´- N38º10´, E118º41´- E119º16´) is the biggest alluvial plain in 

China and one of the youngest in the world, located in the coastal area of the Yellow River 

drainage basin in the east China. The main area of the YRD is located in the Dongying 

municipality. It includes five districts (Hekou, Lijin, Kenli, Dongying and Guangrao) and the 

wetlands (Figure 4.3). It has an area of about 6000 km2. The Yellow River Delta includes urban 

areas, agriculture, fishing, natural reserve and holds economic importance for its oil and gas 

production.  

 

The available water resources in the YRD are limited due to the polluted local surface water and 

salinized groundwater. About 90% of water use is provided by the Yellow River. However, 

between 1995 to 1998, the lower Yellow River was dry more than 120 days every year, up to 200 

days in 1997. The zero-flow conditions have stopped since the Xiaoliangdi dam was put into 

operation in 2000. In recent years, a sharp decrease of water availability in the dry season 

occurred in the lower Yellow River caused by the rapid increase of water consumption in the 

Yellow River Basin area. 

 

On the other hand, water demand in the Yellow River Delta is increasing with population growth, 

agricultural expansion and industry development. There is severe competition between different  
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sectors for limited water resources in the YRD, especially between agriculture and industry. 

Although farms are small-scale, and agricultural productivity is low, agriculture uses a substantial 

part of the available water in periods of low river flow (Deltares 2009). The industry water reuse 

efficiency is relatively low (0.63) in the Yellow River Delta, and the industry is likely to consume 

more water as it continues to develop.   

 

Therefore, to develop scenarios about the water demand will be crucial for better allocation of 

limited water resources and development of water management strategies for alleviating water 

stress, while maintaining socio-economic development.  

                
Figure 4.3 Location and five districts of the Yellow River Delta 

 

4.5.2 Narrative Scenarios of future water demand 

Narrative scenarios are storylines used to qualitatively describe the future states or development 

of the event. Water demand scenarios were developed using the GBN (Global Business Network) 

matrix analysis. The GBN matrix technique emerged with publication of the well-known future 

explorative book ‘ The Art of the long view ‘ written by (Schwartz 1991). The GBN matrix is 

constructed based on two dimensions of uncertainty with polarized values, which defines four 

domains with combined values from each uncertainty dimension. In each domain, storylines can 

be fleshed out and elaborated to describe the uncertainties. To construct the matrix, the two most 

important uncertainties need to be identified. 

 

Scenarios of water demand are projections of the amount of water that would be generated in 

certain socio-economic and water use conditions, assuming unconstrained water supply (Groves 
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2006). Socio-economic factors such as population growth, economic development, agricultural 

patterns, water use styles, technologic innovation, and water policy are main drivers of future 

water demand projections. Water use pattern is believed to be the most important factor that 

influences future water demand (2030WaterResourcesGroup 2009). As agriculture is the biggest 

water user, it matters whether the industry or agriculture dominates the socio-economic 

development. Two important components of water use are from agriculture and industry, 

therefore, two dimensions of main uncertainties are picked up to construct the water demand 

scenarios, which are water use entities (industry/agriculture) and water use patterns (water-

saving/ water consumptive). In each domain formulated by two extremes, a storyline can be 

constructed to describe the development of main driving forces (variables) (Figure 4.4).  

 

Urbanization speed-up/water saving: Urbanization will speed up with more urban citizens and more land 

for urbanization purpose than agricultural expansion. Population in urban area increase larger than that in 

rural area, and more people emigrate from rural area into cities. Economy will maintain its fast growth, 

and agriculture become less intensive. Environment protection is important for quality of life. Water-

saving policy helps to change social water use patterns. Environment is important in the water-saving 

society. The water use efficiency will be improved in both industry and agriculture. 

 

Urbanization speed-up/water consumptive: Urbanization would develop as the case described above, and 

the priority is put in the industry instead of agriculture. From the institution level, water saving policy and 

technology is not improved. From the individual level, people don’t have much awareness of water 

saving. So the water use patterns and water use efficiency are hardly improved.  

 

Agriculture intensive/ water-saving: Agriculture remains the main socio-economic activity, and more 

uncultivated land is changed into farmland than for urbanization. The rural population keeps on increasing 

and less immigration activities will happen. Economy growth slows down. Irrigation remains the biggest 

water user, and its demand for water keeps on increasing as there will be more agriculture. People have 

more awareness of water saving and environment protection. Water-saving policy encourages farms and 

industry to improve water use efficiency. 

 

Agriculture intensive/ water-consumptive: Agriculture is important for the local people and economy as 

described in the third scenario. As described in the second scenario, the agriculture and industry water 

consumption is not encouraged to be improved. 
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Figure 4.4 GBN matrix of water demand scenarios. 

 

4.5.3 Water Demand Model 

Three main attitudes of water demand were summarized by (Hoekstra 1998): a given need which 

should be satisfied, a necessity only to be met for ‘basic needs’ such as drinking water, an 

economic good subject to the price charged. This work adopts the first view of water demand to 

support population, agriculture, industries and ecosystem. A large number of water demand 

models exist in the literature. Three important criteria can be used to select a proper model to 

forecast socio-economic water demand: planning objective, available data and available 

resources. Generally, four methodologies to forecast water demand are trend extrapolation, per 

capita method, number of unit times a fixed per unit use method, and number of unit times a 

variable per unit use method (Davis 2003). From the data collecting point of view, more complex 

model will require more detailed and various data. According to the available data and discussion 

with the experts, a relatively simple and general model based on the number of unit times per unit 

use method was used by aggregating water requirement from the end users (e.g., people, crops, 

livestock, and industry). The model is well suited to project future water demand 

straightforwardly, by considering how the change of the scale or production of water user and 

their average water use intensity will impact future demand. Figure 4.5 demonstrates the 

components that influence water demand. Water demand in the Yellow River Delta include 

mainly four users: domestic water demand, industry water demand, agriculture water demand and 

environment water demand. Among them, agriculture was the biggest water user, consuming 

more than 80% of the total water use. Total water demand �8|8,³ in the year y is the sum of water 

requirement of the four sectors in the same year: 
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�8|8,³ 	 = �5|2,³ 	+�Q�5,³ 	+ �3`>,³ 	+ �:�},³	                                               (4.17) 

Where �5|2,³	 is the domestic water demand in year y; �Q�5,³ is the industry water demand in 

year y; �3`>,³	  is the agricultural water demand in year y; �:�},³	 is the environment water 

demand in year y.	 
 

Domestic water demand: Domestic water demand includes water required for household in 

rural and urban area. It is principally dependent on per capita water consumption, population 

growth, water use efficiency, and water price elasticity. The impact of price elasticity on water 

demand is not considered in the estimation of domestic water demand, due to relatively low and 

stable historical water prices.  �5|2,³ = ∑ 9#�Q,³? ∙ ´5|2,Q,³      i=1,2                                                        (4.18) 

Where  9#�Q,³ is the population in rural area (i=1) and urban area (i=2) in year y, ́5|2,Q,³ is the 

corresponding average per capita water consumption.  

 

Industry water demand: Industry water demand is impacted by industry production, marginal 

productivity of water, industry water use efficiency, water price, and water production elasticity. 

In the YRD, industry water users mainly include water for production, architecture and tertiary 

business. In the Cobb-Douglas production function, the water demand for production is a 

function of marginal productivity of water nQ�5,�,³  ($/m3), total production 9µ)�,³  ($), and 

production elasticity of water , .The index j represents industry, architect and tertiary 

departments. �Q�5,³ =	∑ , ∙ 9µ)�,³/nQ�5,�,³·                                                            (4.19) 

 

However, the industry production elasticity of water is difficult to estimate when the historical 

data on capital, labor, and energy is hard to collect. Therefore, the industry water demand is 

simplified as the water withdrawn per unit industrial production ́Q�5,�,³ (m3/$) multiplied by total 

production 9µ)�,³ ($).  

�Q�5,³ =	∑ 9µ)�,³ ∙ Q́�5,�,³·      j=1,2,3                                                  (4.20) 

 

Agriculture water demand: Irrigation water consumption for crops such as wheat, soybean, 

cotton and rice contributes more than 90% of water use in the agriculture sector. The rest of water 

is provided to orchard, fishing and livestock. Irrigation water demand is determined by crop 

types, crop areas, climatic conditions, irrigation efficiency, etc. Agriculture water demand �3`>,³ 
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is computed as the crop area �µ¸¹�,³multiplied by average water use intensity ´3`>,�,³, taking 

into account the agricultural water use efficiency ¸@@�,³. k is different crop types. 

�3`>,³ =	∑ º>:3»,¼∙?½¾7,»,¼:<<»,¼�                                                                  (4.21) 

 

Environment water demand includes the wetland water demand in the estuary and the out-

stream ecological water use in the YRD municipality in the study. The objective of sufficient 

water for a healthy ecological system was not always met, as minimal weight was put on the 

environment in the past. For example, the out-stream water use holds only 2% of total water 

demand in the YRD in the last 10 years. Therefore, the objective of environment water prediction 

is to improve the health of the ecological system by meeting the minimal water requirement for 

the wetland ecological system and to maintain or improve the out-stream municipality 

environmental water conditions in the YRD. According to estimates, the minimal water demand 

to keep healthy wetland ecology is about 0.686km3 (Li, Fan et al. 2011). In this study, wetland 

water demand will be met at the minimal level, and the out-stream municipality environmental 

water demand will be changed corresponding to the weight put on the environment. The water 

demand prediction will only include the out-stream water demand. It was simplified by modelling 

the growth rate µ:�}. The range of growth rates is [0-4%], considering the different importance 

levels of the environment in society based on the scenarios. A uniform distribution was assigned 

to it. �:�},³¿8 = �:�},³ × �1 + µ:�}�8                                                            (4.22) 

 

Figure 4.5 Components of water demand. The variables in colored box will be quantified based on scenarios,  

and variables with the same color are considered as a group. 
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4.5.4 Future water demand projection 

To project water demand of domestic, industrial and agricultural sectors, the number of water use 

units and the per unit use values change each year, as quantified by a growth rate µ. Therefore, 

the projection of future water demand depends on the growth rate in the predicted period. Future 

water demand is influenced by a variety of variables, such as socio-economic development, 

population growth, climate conditions, life quality, water use efficiency, water saving technology, 

etc.. These variables thus also affect the growth rate. However, future states of these variables are 

uncertain, leading to difficulty in quantifying the growth rate. Another difficulty is that some of 

these growth rates are definitely interrelated, and the dependence level will impact the final 

outcomes. Therefore, it is necessary to model the dependence structure by considering the joint 

multivariate distributions. 

 

To take into account the two difficulties, two steps are required to quantify the growth rate and 

model the future water demand probabilistically to cope with uncertainty: 

 

(1) Assign marginal probability distributions 	$Q�µQ� to variables of interest, i.e. the annual growth rates. 

Scenario-based expert elicitation was applied to quantify the variables probabilistically under uncertainty, 

considering that historical data is not available. Scenarios of water demand were developed to articulate 

future thinking into storylines and explore possible tracks of the variables. On the basis of the storylines, 

probability distributions of the growth rates were elicited using expert judgement using the SHELF 

procedure. 

 

(2) Construct joint distributions among these variables if they are dependent,	@�µ!, µ̂ ,⋯ , µ�|;� and sample 

from the multivariate distribution and propagate the uncertainties to the outcome using Monte Carlo 

simulations. In modelling future water demand, the dependence of variables were taken into account using 

the Gaussian Copula considering the high dimensionality of the problem.  

 

The process can be formulated using Bayesian inference in the following way: @��8|8 , µ!, µ̂ , ⋯ , µ�|;� ∝ @��8|8|µ!, µ̂ ,⋯ , µ�, ;�@�µ!, µ̂ , ⋯ , µ�|;�;                                     (4.23) 

And the multivariate joint probability distribution can be written as: @�µ!, µ̂ , ⋯ , µ�|;� = 	$!�µ!�$^�µ̂ �⋯$��µ�� × l��3X==; 
l��3X== = exp	�− ÀÁ©ÂLa(?«À^ �/|;|!/^                                                            (4.24) 
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Where l��3X== 	is the n-dimensional Gaussian copula, R is the Pearson’s correlation matrix, I is the � × � identity matrix, $Q�µQ� is the marginal density distribution of µQ , V is vector of variables 

coming from the specific marginal distributions and the correlations. 

 

The correlation matrix R contains correlation coefficients between different growth rates. To 

decrease the number of parameters to be estimated, the variables are divided into three groups to 

model domestic, industrial and agricultural water demand, respectively (variables in yellow, 

green and blue colour in Figure 4.5). And the variables are assumed to be independent with the 

ones in other groups. Therefore, the process can be split into three segments and written as: 

@��8|8 , µ!, µ̂ ,⋯ , µ�|;� ∝ @©�5|2Ãµ!!, ⋯ , µ!Ä«@©µ!!,⋯ , µ!Ä|;!«… 

× @©�Q�5Ãµ̂ !,⋯ , µ̂ �«@©µ̂ !,⋯ , µ̂ �|;^« × @©�3`>ÃµÅ!,⋯ , µÅ�«@�µÅ!,⋯ , µ�Å|;Å�;          (4.25) 

With: 

@©µQ!, ⋯ , µQ�Ä/�/��|;Q« = 	$Q!�µQ!�⋯$Q�Ä/�/��©µQ�Ä/�/��« × lQ ; 									W = 1,2,3,			Æ + Ç + � = � 

lQ = ÈÉÊ�(ËÁÌÍÎLaLÏÐËb �
|ÂÎ|ab 										                                                   (4.26) 

Where ;!	�µ!!, ⋯ , µ!Ä� , ;^	�µ̂ !, ⋯ , µ̂ �� , ;Å�µÅ!, ⋯ , µÅ��  are the correlation coefficients of 

variables in three groups, respectively, 	$Q�µQ� is the marginal density distribution of µQ  (W =1,2,3), lQ�Ä/�/���3X==  is the Æ	#µ	Ç	#µ	�-dimensional Gaussian copula, I is the identity matrix of size 

Æ	#µ	Ç	#µ	�, and V is a vector of variables coming from the specific marginal distributions and the 

correlations. 

 

4.5.5 Results 

4.5.5.1 Marginal probability distribution assessment 
The quartile probability assessment of each variable from the three experts is shown in appendix 

A. A plausible range of each variable is first required to be decided. According to the SHELF 

procedure, the lower and upper bounds are the same for all experts. The range of the variable is a 

joint decision of the experts, so that they all believe that the variable is extremely unlikely to be 

located outside this range. The identification of the 50% quartile is relatively simple, and the 25% 

and 75% quartiles are obtained by anchoring the bounds and the median values. After eliciting all 

values, experts should check if the range of four intervals (lower bound ~ 25% quartile, 25% 

~50% quartile, 50% ~75% quartile, 75% quartile ~ the upper bound) is equally likely. From the 



 

64 
 

64 Chapter 4 

elicitation table, experts were very diverse in the opinions of most variables, and agree in some 

variables such as grass and fishing area growth rate. 

 

Appendix B gives an example of how to fit the distribution of urban population growth rate to the 

quartile estimation using SHELF software. Each figure shows the value of three quartiles and the 

density function. A normal distribution was fit to the variable based on each expert’s judgement, 

and the figure in the right-bottom shows the mixed distribution based on the average value of 

quartiles estimated by experts. As shown in the figure, the values of 25% and 75% quartiles of 

the fitted distribution do not perfectly match the estimation. In order to check the goodness of fit 

of the distributions, the estimated quartile values and the same quartile from the fitted 

distributions are plotted. Figure 4.6 shows that the estimated quartile values matches well with 

values of the same quartile from the fitted distributions. It shows that the fitted distributions can 

represent the experts’ judgement. 

 

Figure 4.6 Estimated quartile values and values from the fitted distribution. 

 

Appendix C demonstrates the fitted priors based on three experts’ judgement and the posteriors 

using the linear pooling approach. Normal distributions were fit to represent the uncertainty of 

variables. According to (Clemen and Winkler 1999), simple combination rules such as a simple 

average tends to perform quite well although it considers no dependence between experts. 

However, complex models such as normal model and copula models are quite sensitive to the 

dependence, leading to poor performance in some cases (Jouini and Clemen 1996). Therefore, the 

simple aggregating method, Linear opinion pooling, was applied to combine the experts’ 

opinions into a single probability distribution. We assumed experts to be equally qualified and 
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gave them equal weights. The simple equal-weight method produces multi-modal probability 

distributions when the opinions of experts are diverse, for instance, the posterior densities of rural 

water use intensity growth rate, orchard area growth rate and so on. The multi-modal densities 

allow the co-existence of the heterogeneity of experts’ opinions.  

 

4.5.5.2 Multivariate probability distribution analy sis 
The variables are likely to be dependent, and the dependence level will impact the final outcome. 

In order to consider their dependency, a multivariate distribution was constructed on the basis of 

the marginal distributions and Gaussian Copula function.  

 

The important step is to identify the correlation coefficient among the variables. Unsurprisingly, 

there is no way to get the accurate correlation between variables, especially since the data is not 

available. Therefore, the information provided by people who have local and statistical 

knowledge with correlation becomes valuable. The correlation matrix was estimated by 

consulting seven Chinese PhD researchers in the Water Management Group at TU Delft. They 

first received statistical knowledge about the Pearson’s correlation coefficient, and were given 

several scatterplots to train their judgement about the strength of correlation between a pair of 

variables. The correlation was judged separately at first, and the final outcome was refined after 

discussions. The result is listed in Appendix D. 

 

Markov Chain Monte Carlo (MCMC) was used to sample from the Gaussian copula-based 

multivariate joint distributions. The simulations were run 10,000 times for each group of 

distributions, and the first half of the samples were removed as burn-in. As an example, figure 4.7 

shows the multivariate distribution samples of r.pop1, r.pop2, r.Idom1, based on Gaussian Copula 

n1 = −0.8 , n2 = −0.45 , n3 = h1 − 0.8 − 0.45;	−0.8	1	0;	−0.45	0	1i , with marginal probability 

distributions of r.pop1, r.pop2, r.Ipop1.The samples from the Gaussian copula-based 

bivariate/multivariate distributions are symmetric around the central points. 

 

Figure 4.8 shows 50 samples from the multivariate distributions of variables of domestic, 

industrial and agricultural water demand separately. As a Gaussian copula considers weak tail 

dependencies and no dependence is considered at the extremes, the samples were mainly 

distributed in the central part of the marginal distributions. In the graph, the samples which are 

distributed with opposite bounds such as variables 2, 4, 14, 17, 18, 19, clearly demonstrate the 

bimodal marginal distributions. 
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Figure 4.7 Multivariate distribution samples, Gaussian copula n1 = −0.8, n2 = −0.45, n3 = h1 − 0.8 −0.45;	−0.8	1	0;	−0.45	0	1i, with marginal probability distributions of r.pop1, r.pop2, r.Ipop1. 

 

Figure 4.8 MCMC samples of variables from Gaussian Copula-based multivariate distributions. 

 

4.5.5.3 Future water demand  
In this section, future water demand until 2039 is predicted according to the results from the 

scenario-based expert elicitation and the Gaussian Copula-based model when dependence among 

variables is considered. MCMC samples from the multivariate probability distribution were 

applied as input to the water demand models. However, the autocorrelation of the driving 

variables are not taken into account. Figure 4.9 and 4.10 shows the future water demand without 

and with considering the dependence. The uncertainty band of water demand is smaller with 

considering the dependence of the variables, as the samples from the joint Guess-copula 
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distributions are more centralized compared with the samples from marginal distributions 

separately. In the following analysis, the future water demand focuses on the results of the 

Gaussian copula-based model. 

 

Water demand consists of four main sectors: domestic, industrial, agricultural and environmental 

water sectors. The 99% quartile and the probability distribution of annual water demand of the 

four sectors are presented in Figure 4.10. The 50% percentile of water demand, seen as the 

medium of water demand, in all sectors tend to increase, as the distribution of water demand 

mainly locates on the right side of the value in the base year. The 0.5% percentile represents the 

scenarios of water-saving society and slow growth in both industry and agriculture in the YRD. It 

shows decreases in domestic/ industrial water demand for a short period and a constant decrease 

in the agricultural water demand, which is consistent with the probability distributions shown in 

the figure below. The 99.5% percentile mainly represents the water-consumption behaviour and 

rapid growth in both agriculture and industry in the YRD. It shows a yearly increasing trend for 

all the sectors. The shapes of 0.5% and 99.5% percentiles are slightly symmetric around the 50% 

percentile, which reflects the symmetric structure about the centre point in the Gaussian copula 

(excluding environmental sector). The change of total water demand combines the change of the 

four sectors, which follows the shape of the former three sectors since they contribute about 95% 

of total water demand. The uncertainty of water demand in the future is increasing due to the 

wider band of the 99% confidence interval. Overall, future water demand has an increasing trend 

in the long term.  If no water management strategies are planned and adopted, the water shortage 

problem is likely to become worse in the future. 

 

Table 4.1 shows the three percentiles of water demand every 5 years and the change compared 

with the base year 2010. The water demand is increasing every 5 years. The order of water 

demand from different sectors remains the same, and they are agriculture, industry, domestic and 

environment. Although the agriculture is still the biggest water user in the YRD, industrial water 

demand has a bigger increment than that of agriculture, which is consistent with the assumption 

made by the experts that the urbanization speed-up is more likely than the agricultural intensive 

scenario (r.prd1, r.prd2, r.prd3 in Appendix A).  
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Figure 4.9 0.5%, 50% and 99.5% percentile and probability distribution of annual water demand between 2010- 2039 

when variables are considered independently. (a) domestic water demand, (b)industrial water demand,(c)agricultural 

water demand,(d) out-stream environmental water demand, (e) total water demand. The red broken line is water use 

in 2010 

 

Figure 4.10 0.5%, 50% and 99.5% percentile and probability distribution of annual water demand between 2010- 

2039 when variables are considered dependently.  (a) domestic water demand, (b) industrial water demand,(c) 

agricultural water demand,(d) out-stream environmental water demand, (e) total water demand. The red broken line 

is water use in 2010 
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Table 4.1 0.5%, 50% and 99.5% percentiles of water demand (km3) 

Year Percentile Domestic (a) Industrial (b) Agricultural(c) Environmental (d) Total (e) 

2010 
 

0.0869 0.1676 0.9231 0.0677 1.2453 

2015 

0.5% 0.0809 (-6.84) 0.1682 (0.39) 0.8611(-6.7) 0.0685 (1.32) 1.1789 (-5.32) 

50% 0.0888 (2.26) 0.1956 (16.71) 0.9364 (1.45) 0.0702 (3.82) 1.2912 (3.69) 

99.5% 0.0948 (9.12) 0.2186 (30.45) 1.0220  (10.72) 0.0720 (6.45) 1.4075 (13.03) 

2020 

0.5% 0.0833 (-4.07) 0.1850  (10.43) 0.8555 (-7.3) 0.0705 (4.18) 1.1945 (-4.07) 

50% 0.0921 (6.04) 0.2277 (35.86) 0.9525 (3.20) 0.0731 (8.05) 1.3456 (8.06) 

99.5% 0.0992 (14.26) 0.2674 (59.59) 1.0695 (15.87) 0.0760 (12.28) 1.5124 (21.45) 

2025 

0.5% 0.0871 (0.25) 0.2067  (23.34) 0.8547 (-7.4) 0.0727 (7.52) 1.2214 (-1.91) 

50% 0.0968 (11.44) 0.2645  (57.86) 0.9666 (4.72) 0.0763 (12.72) 1.4044 (12.77) 

99.5% 0.1049 (20.73) 0.3261  (94.57) 1.1054 (19.75) 0.0802 (18.54) 1.6167 (29.82) 

2030 

0.5% 0.0921(6.09) 0.2308 (37.75) 0.8527 (-7.61) 0.0753 (11.28) 1.2512 (0.47) 

50% 0.1030 (18.53) 0.3076 (83.57) 0.9904 (7.29) 0.0797 (17.85) 1.4809 (18.92) 

99.5% 0.1127 (29.70) 0.3949 (135.63) 1.1718 (26.94) 0.0848 (25.36) 1.7643 (41.68) 

2035 

0.5% 0.0985 (13.37) 0.2616 (56.12) 0.8499 (-7.92) 0.0781 (15.51) 1.2883 (3.45) 

50% 0.1106 (27.32) 0.3569 (112.95) 1.0155 (10.01) 0.0836 (23.55) 1.5666 (25.81) 

99.5% 0.1219 (40.34) 0.4745 (183.16) 1.2282(33.06) 0.0899 (32.82) 1.9147 (53.75) 

Note: the numbers in parentheses are the percentages of change compared to water demand in 2010 (%). 

4.6 Discussions and Conclusion 

4.6.1 Scenario-based expert elicitation under uncertainty  

Scenario-based expert elicitation provides a feasible framework to incorporate experts’ opinions 

regarding uncertainty to project future states, as data-based approaches are not feasible due to the 

data scarcity. Scenarios articulate the mental models in the manner of storylines, and numerical 

information can then be added to model the future states quantitatively on the basis of the stories. 

Scenarios attached with probabilities are believed to be more realistic as the future states would 

not be equally likely, and they allow scenario developers to quantify their assumptions explicitly. 

To quantify the scenarios, expert elicitation was largely researched and used considering data 

limitations. In the study, scenario-based expert elicitation assessed the probability distributions, 

and allows the projection of future water demand stochastically.  

 

Expert elicitation is scientifically sound when it is credible, transparent and repeatable. To this 

end, the well-structured SHELF procedure provides a comprehensive and repeatable procedure to 

incorporate experts’ knowledge as input to model future water demand. The graphical interface 

enabled experts to visualize their assessment of probability distributions, and give immediate 

feedback and adjustment of their judgement. However, two important issues need to be addressed 

before starting the expert elicitation process: (1) selection and training of experts has to be done 
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carefully before their judgement can be used to support decision making; (2) the calibration of 

experts’ ability to express their knowledge is useful to validate their judgement. In the study, the 

training of experts’ judgement in the probabilistic way was carried out, but the performance of 

experts’ judgement was not formally calibrated and distinguished. However, the SHELF allowed 

the elicitation process to receive immediate and frequent feedback from the experts, which tends 

to calibrate the expert judgement to be consistent with his knowledge. In order to keep the 

process transparent, the elicitation process should be well recorded.  

 

4.6.2 Mathematical methods of aggregating probability distribution need to be improved 

Three experts were interviewed and consulted for the assessment of probability distributions. The 

aggregated probability distribution assessed by the three experts was valuable for capturing the 

accumulative information about experts’ opinions regarding uncertainty. The simple linear 

pooling method was implemented for this purpose. The linear pooling method allows the 

assignment of different weights to experts, and the expert who is believed to give better 

judgement would receive more weight. The knowledge level and ability to provide probability 

assessment were regarded equally qualified as their judgement were ensured by iterative 

adjustment and correction with SHELF. It is believed that “ the simple rule will always play an 

important role due to their ease of use, robust performance and defensibility in public policy 

”(Clemen and Winkler 1999). As far as more complex mathematical models, the Bayesian 

aggregation rules are powerful and growing rapidly. It considers the dependence among experts, 

and allows for updating the expert’s beliefs. However, constructing the likelihood functions to 

model the dependence and the biases of experts is difficult and subtle, yet it directly determines 

the quality of the aggregated probability distributions. Further studies are required to better 

understand the behaviour and the full potential of Bayesian rules to facilitate the assessment and 

aggregation (Chhibber, Apostolakis et al. 1992). Another issue about the aggregation of multiple 

probability distributions is that the single aggregated one is actually not the judgement from any 

expert. It means that experts have to negotiate or compromise in order to reach a consensus, or 

more research has to be done to develop better mathematical combination rules and behaviour 

aggregation procedures to improve the performance.  

 

4.6.3 Copula-based multivariate probability distributions 

In this study, dependence among water variables to model water demand is considered and 

copula-based model was used to construct multivariate probability distributions. Copula theory 
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has become popular in economic and financial models to account for the dependence between 

multiple variables; similarly, its application in water resources management should be also 

promising as the different driving forces of water events are interdependent. Copula-based 

models provide explicit tools to construct multivariate probability distributions, and the copula 

function is independent from the marginal distributions, which makes the approach flexible. This 

study assumed multivariate normal distribution among multiple variables, and investigated the 

Gaussian copula, which is more tractable for high dimensions. The comparison and application of 

various bivariate-copula could be also interesting, and has been discussed by (Bhat and Eluru 

2009). Three steps are required to construct copula-based multivariate probability distribution: 

first, the marginal probability distributions have to be specified for each variable, and this can be 

done with the techniques of data-based estimation or expert elicitation; then the dependence of 

the variables has to be quantified with the Pearson’s moment correlation, rank-order correlations 

Spearman’s n= or Kendall’s o; last step is to identify the copula to join the marginal distributions 

into a multivariate distribution. One challenge of the copula-based model is to extend the copula 

function into higher dimension, as the correlations matrix becomes larger with higher dimension. 

More effort to estimate the correlations and expensive computation will be required. 

 

4.6.4 Water demand projection in the YRD 

Future water demand in the Yellow River Delta is difficult to project as the driving forces such as 

population growth, water use patterns, water policy are unknown, and the past data is not 

adequate to estimate the trend of development in this study. Scenarios are powerful tools to create 

pathways of their development, and probabilistic information is helpful to quantify the 

uncertainty. A GBN matrix outlined the water demand scenarios including main uncertainties, 

and storylines were elaborated to flesh out four scenarios. However, not only four pathways were 

quantified based on each scenario, but also the possible situations between each scenario were 

taken into account. Indeed, it is difficult to match the quantitative pathway with the scenarios 

specifically, but the probability distribution includes the plausible range of futures covered by the 

four scenarios as well as the futures between them. Additionally, the probabilistic information 

was propagated to yield probabilistic water demand scenarios.  

 

Water demand is likely to increase in the long run, and the lower and upper bound of the 

uncertainty band represent two extremes: water saving society together with slow growth of 

urbanization and agriculture, which approaches the centre of the GBN matrix; water consumption 
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society with rapid growth of urbanization and agriculture, which approaches the extremes of the 

matrix. Values between the bounds represent the possible futures between the extreme scenarios. 

As the urbanization speed-up scenarios are assumed to be more likely than agricultural society, 

the industrial water demand has a bigger increment compared with that of agricultural water 

demand. If no water management strategies are adopted, the water shortage situation is likely to 

become more severe. 

 

In summary, the paper presented a scenario-based expert elicitation method and copula-based 

multivariate analysis to explore future water demand under uncertainty. In water resources 

planning and management, the information from experts with special knowledge and experience 

is valuable as input for modelling and decision making, although there are quite some challenges 

in evaluating the credibility and reliability of the obtained information. Therefore, to explore the 

full potential of information from experts, it is important to develop scientifically sound 

mathematical and behaviour approaches to make good use of this information. This study 

employed well-structured expert elicitation procedure and mathematical approaches, taking into 

account the credibility, availability and feasibility of these approaches. The water demand 

projections are supposed to facilitate the decision making process in water resources planning and 

management, will be used in Chapter 6 for a decision making case study in the Yellow River 

Delta, China. 
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Chapter 5 Probabilistic scenario-based decision 

making framework for water resources planning and 

management 

5.1 Introduction 

Decision making under uncertainty refers to the act of choosing one decision among two or more 

decision alternatives when the outcomes of those alternatives are uncertain (Schultz, Mitchell et 

al. 2010). Uncertainty in decision making exists due to the deficiencies in knowledge about the 

past, present and future states of the system to be managed, and the ambiguities in perceiving 

consequences of decision alternatives in the decision-making process. In addition, decision 

making uncertainty exists in practical decision making activities due to the diverse social 

objectives, interests and backgrounds of different stakeholders and decision makers. Accounting 

for uncertainty in decision making, it is necessary to analyze potential risks and to hedge 

decisions away from large losses (Reckhow 1994).  

 

Decision analysis has been applied to assist making decisions in the face of uncertainty. It starts 

from framing the decision problem, going through the process of analyzing uncertainty, modeling 

decision alternatives and assessing decision performance, communicating uncertainty and risk to 

decision makers, and eventually helping them to make decisions in a consistent and rational way. 

Schultz (Schultz, Mitchell et al. 2010) pointed out that the main part of decision analysis is to 

structure decision models incorporating uncertainties, identify the consequences of decision 

alternatives and incorporate decision makers’ preferences. A set of ideas and analytical models 

has been developed to manage uncertainties for decision analysis, such as event trees and 

Bayesian Belief Networks for probabilistic inference and uncertainty propagation (Huang, Chen 

et al. 2001, Robertson and Wang 2004, Ames, Neilson et al. 2005), decision trees, influence 

diagrams and scenario development for modeling and exploring uncertain events and the decision 

outcomes (Peterman and Anderson 1999, von Winterfeldt and Edwards 2007, Mahmoud 2008). 

Another crucial task for decision analysis is to rank decision alternatives under uncertainty for 

choosing the final decision. A set of decision rules has been developed and adopted to rank 

decision alternatives according to their consequences against uncertainties and the preference of 
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decision makers (Tung, Wang et al. 1993, Reda and Beck 1997, Xu and Booij 2004, Xu and 

Tung 2009). However, the presence of uncertainty in the consequences and decision makers’ 

preference complicate the selection of an appropriate decision rule. Most of decision rules focus 

on the stochastic consequences and decision makers’ preference on wealth (risk-neutral decision 

makers), while ignoring the case that decision makers are usually not risk neutral but risk averse 

or risk seeking when making decisions in face of uncertainty. Utility functions that incorporate 

decision makers’ preference and risk attitudes are useful to understand such influences on the 

final choice of alternatives (Schultz, Mitchell et al. 2010). 

 

A well-structured decision making framework is essential to support and guide decision analysis 

in face of uncertainty. A number of decision making frameworks have been developed and 

adopted in water resources planning and management (Stewart and Scott 1995, Duchness, Beck 

et al. 2001, Groves 2006, Xu, Tung et al. 2009, Lempert and Groves 2010, Vucetic and 

Simonovic 2011). Means III et al. (2010) (Means III, Laugier et al. 2010) reviewed and compared 

five decision making frameworks incorporating uncertainties, namely classic decision making 

method, traditional scenario planning, robust decision making, real options and portfolio 

planning. Here, we will compare the first three methodologies. From the perspective of 

uncertainty management, classic decision making applies probabilities to characterize 

uncertainties and identifies the optimal decision against the most likely scenarios. Therefore, the 

outcome of decision making will be sensitive to identification of the most likely scenarios, and be 

vulnerable to surprises or unexpected events in the future (Lempert, Groves et al. 2006). The 

traditional scenario planning and robust decision making abandon probabilistic information, and 

identify the robust decision over a wide range of scenarios. However, the lack of probabilistic 

information makes it impossible to quantify the risk that decision alternatives may cause, for 

example, the risk of economic losses, so that decision makers are ambiguous about the risk of 

choosing any alternative under uncertainty. On the other hand, it is likely to lead to arbitrary 

selection of scenarios and alternatives (Means III, Laugier et al. 2010). A framework to combine 

the probabilistic information and a large set of scenarios is more desirable to cope with 

uncertainties in decision making. 

 

This chapter is organized as follows: firstly, the classic decision theory based on Expected Utility 

theory in face of uncertainty will be introduced briefly; secondly, three popular decision making 

frameworks in water resources planning and management, classic decision making, traditional 
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scenario planning and robust decision making will be reviewed and compared, focusing on the 

difference of these frameworks, for example, the uncertainty management, the output 

presentation, the involvement of decision makers’ preference and risk attitudes, etc.; thirdly, 

decision rules to rank decision alternatives in water resources management will be investigated 

and compared, in order to find an appropriate decision rule; lastly, a probabilistic scenario-based 

decision making framework will be proposed, trying to compensate for disadvantages of existing 

methods. The proposed framework provides a plausible approach to explicitly manage 

uncertainties, as well as inform the influence of decision makers’ preference and risk attitudes on 

decision making. 

5.2 Decision theory 

Decision theory was developed to study the decision making problem when facing uncertain 

outcomes of choices. Going back to 1713, the conventional method is to choose a decision based 

on maximizing the expected value of outcomes. However, the idea was first challenged by the 

famous St. Petersburg Paradox.  It was a coin-tossing game and the player invested money k to 

play with it. The gain will be doubled if a tail appears, and the player will lose everything (the 

gain would be 0) if a head appears. The payoff will be	∑ h�!̂�� × 2��(!� × � + �!̂�� × 0i'� ! , 

where n is number of coin tosses before head appears. The game would have infinite gain as the 

probability of tail and head is equal, and the player should enter the game based on the maximal 

expected gain. But the paradox is that most individuals are not willing to pay to enter the game. 

Daniel Bernoulli resolved the St. Petersburg Paradox in 1738 by introducing the value function to 

incorporate an individual’s preference level on wealth, and demonstrated a diminishing marginal 

satisfaction associated with increasing wealth. An individual’s preference to wealth is included in 

Bernoulli’s value function, but the value function was not able to distinguish a sure thing and an 

uncertain alternative with identical expected outcomes. To address the issue, von Neumann and 

Morgenstern extended the theory by introducing expected utility theory to incorporate decision 

makers’ preferences towards wealth and the corresponding risk under uncertainty. The preference 

among uncertain alternatives can be identified by knowing the utility of their outcomes and the 

probabilities. A set of axioms were developed to pursue rational decision making behavior under 

uncertainty (von Neumann and Morgenstern 1947).  These axioms are: 

(1) Completeness. The decision maker is unambiguous about his preference or can distinguish his 

preference against multiple alternatives. For two options, L and M		W@	j�Ò� < j�Ó�, j�Ó� < j�Ò�		#µ	j�Ò� = j�Ó� 



 

76 
 

76 Chapter 5 

then    L ≺ M,M ≺ L	or	L ∼ M	   (either M is preferred, or L is preferred, or L indifferences M). 

(2) Transitivity. It  assumes the preference is consistent across any three options 	if	L ≺ M,M ≺ N	then	L ≺ N 

(3) Continuity. It assumes a probability p exists so that decision makers’ preference against the 

outcome of an uncertain alternative (p, Ò; 1 − p,*) is indifferent to the outcome of a certain 

option	M. The outcome of the certain option is called the certainty equivalent of the uncertain 

option.	 	W@	Ò ≺ Ó ≺ *	, ¥ℎ¸µ¸	¸�WK¥	¹	�µ#à¹àW"W¥á	� ⊆ h0,1i,		 � ∙ j�Ò� + �1 − �� ∙ j�*� = j�Ó� 
Then                                                       �Ò + �1 − ��*~Ó 

(4) Independence. It assumes that a preference holds independently of the possibility of another 

outcome. W@	Ò ≺ Ó, ¥ℎ¸�	@#µ	¹�á	*	¹�)	� ⊆ �0,1�,		 �Ò + �1 − ��* ≺ �Ó + �1 − ��*	 
 

A utility is a dimensionless number to measure the worth, satisfaction, or preference on wealth 

that an individual has. A utility function ���� is a real mathematical function to convert value 

functions V(x) of an attribute set X into real numbers which incorporates risk attitudes and given 

preferences. Decisions made based on values ã���	encode the strength of preference over wealth 

involving riskless attitudes, while utility encodes both the preference and risk attitudes 

(Krzysztofowicz 1983). Concerning uncertainty, von Neumann and Morgenstern assumed that all 

probabilities should be decided objectively. It was later expanded by Savage (Savage 1954) who 

introduced subjective probabilities into the expected utility maximization models, which 

contributed greatly to modern decision analysis.  

 

The utility function and the value function can be mapped as:  ���Q� = ��ã��Q��                                                             (5.1) 

The expected utility equation assumed the linear relationship between the probabilities and the 

utility (Weijs 2011) . Expected utility can be written as: ���ä�, �å� = ∑ ���Q ! �Q��Q                                                  (5.2) 

Where ��∙� is the individual’s utility function, ã��Q� is the consequence of the attributes, e.g. 

monetary outcomes, in the i-th state of the future world, and �Q is the probability of the ith state 

of the world. ���ä�, �å� is the expected utility. According to the utility theory developed by von 
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Neumann and Morgenstern, X is preferred to Y if and only if the expected utility of X is larger 

than Y. 

� ≻ p		W@@	�©����« > ����p��                                                  (5.3) 

5.3 Existing methods for decision making under uncertainty 

5.3.1 Classic decision making  

Classic decision making specifies the likelihood of future uncertain states using probabilistic 

information, estimates the outcomes of decision alternatives, determines the decision makers’ 

utility functions and helps decision makers to find the optimal decision in the sense that it has the 

highest expected utility. The crucial component required by classic decision making is to 

determine the probability distribution for future states of the world. Statistical methods can be 

used to determine the probability distributions on the basis of adequate historical data with the 

assumption of stationarity, which assumes the variables or events do not change in temporal and 

spatial scale. However, subjective probabilities are also suitable to estimate the future states of 

variables in case of uncertainty (Dessai and Hulme 2004). Subjective probabilities can be 

assigned using Bayesian models and expert judgement. Whether the uncertainty is well 

characterized and the decision model is well structured is important for finding the stochastically 

optimal decision (Morgan, Dowlatabadi et al. 2009).  

 

The mathematical expression of classic decision making is as follows (e.g. discrete states): Let D 

denote the space of the viable decisions )³ to the problem; X denotes the space of scenarios to 

represent possible states �ç ; è denotes the space of possible outcome Z³ç given the decision )³ 

under the future state �ç. ��Z³ç|�ç, )³� denotes the probability of the outcome given the specified 

state and the decision, p(xz) denotes the probability distribution of the future states; j�	Z³ç�   is 

the utility given the outcome. The expected utility for each decision is expressed as: 

�©��)³�« = ∑ j�Z³çç→é ���Z³ç|�ç , )³����ç�	                                           (5.4) 

The decision which has the maximal expected utility is the optimal decision according to the 

traditional expected utility maximization rule.  

����)Q∗�� ≥ � Ì�©)�«Ð 					Ç ≠ W                                                       (5.5) 
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States → �!	             ⋯          �ç              ⋯             �é      ���)� 		 ↓  
Probabilities → ���!�        ⋯         ���ç�        ⋯          ���é�            )! ⋮ )³ 

⋮ )r 

j�Z!!�      ⋯        j�Z!ç�       ⋯          j�Z!é�  					⋮       ⋱            ⋮           ⋰       ⋮        j�Z³!�      ⋯        j�Z³ç�       ⋯          j�Z³é�  					⋮      ⋰           ⋮          ⋱          ⋮         j�Zr!�      ⋯        j�Zrç�       ⋯          j�Zré�  

] j�Z!çç→é ���Z!ç|�ç, )!����ç� 
⋮ 

] j�Z³çç→é ���Z³ç|�ç, )³����ç� 
⋮ 

] j�Zrçç→é ���Zrç|�ç , )r����ç� 
Decisions ↑   

Table 5.1 matrix of expected utilities functions under each decision. The top row defines each state of the world 

under uncertainty. Second row indicate the objective or subjective assessment of each state’s probability of 

occurring. The first column lists the decisions under consideration. The interior of the matrix reflects the utility of the 

outcomes corresponding to each decision acting in each state. The rightmost column represents the expected utility 

of each decision d (Groves 2006). 

 

Classic decision analysis has been widely applied in a range of water management problems in 

face of uncertainty. Examples includes flood management strategies (de Kort  and Booij 2007), 

water quality management (Duchness, Beck et al. 2001), urban water supply system management 

(Kodikara 2008) and water infrastructure management (Chowdhury and Rahman 2008). The 

method allows defining multiple, and often conflicting objectives, quantifies uncertainty with 

probabilities explicitly, provides the consequences of each strategies against the objectives 

clearly, and enables decision makers to choose the optimal option straightforwardly. It can also 

be integrated with other decision making methods, such as scenario planning to analyse the 

strategies against different scenarios, real options to look at a strategy’s uncertainty based on a 

comparison between costs and risk profiles, which are closely dependent on strategies (Means III, 

Laugier et al. 2010). However, classic decision analysis is suitable when uncertainty can be well 

characterized with probabilities, which is difficult to be implemented when uncertainty is 

complex and high-dimensional. Additionally, it provides one optimal option, which might not be 

resilient or adaptive to the uncertain future conditions.  

 

5.3.2 Traditional scenario planning 

Traditional scenario planning identifies a strategy that best and commonly prepares for a 

plausible set of uncertain circumstances (Means III, Laugier et al. 2010). Scenarios are developed 

through the identification of crucial uncertainties and driving forces, aiming to go beyond 

extrapolation of current trends and explore plausible future alternatives. Strategies are identified 

for each scenario, and then a near-term common strategy is selected to cope with all scenarios. In 
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long-term planning, the strategy will be reassessed and adapted when a signpost occurs. 

Signposts are established to monitor the divergence of a scenario from the others or its original 

path, and determine when the strategies are no longer suitable to all or most scenarios. 

 

Scenarios are descriptions of future state of the world in a consistent and plausible way, and they 

can be qualitative and quantitative. The development of scenarios is the crucial process to 

manage uncertainty for decision making purpose. Key uncertainties are identified and ranked 

based on the importance level and the uncertainty level with respect to the central questions 

(Means III, Laugier et al. 2010). The development techniques of scenarios for water resources 

planning and management have been reviewed by Dong et al. (2013). Traditional scenario 

planning treats scenarios equally likely to occur, instead of assigning probabilities to future 

states, as in classic decision analysis. 

 

Scenario-based framework has been applied in water resources management under uncertainty, 

such as water policy development (Stewart and Scott 1995), water resources planning and 

watershed management (Mahmoud 2008, Mahmoud, Gupta et al. 2011), ecological protection 

(Zacharias, Dimitriou et al. 2005). Scenarios are useful when historical data or statistical 

information is not sufficient or necessarily required. It can be used in both short-term and long-

term decision making, allowing decision makers to analyze the performance of strategies against 

different future conditions. However, typically future conditions are characterized by a small 

number of scenarios, which limits the ability of scenario planning to address uncertainty 

completely. Scenarios with diverse views might require disparate strategies and the method 

doesn’t bring consensus of these strategies. Additionally, as probabilities are not available, it 

leads to arbitrary selection of scenarios and strategies. 

 

5.3.3 Robust decision making framework 

A robust strategy is defined here as one that performs well compared with decision alternatives 

over a large ensemble of alternative futures (Lempert, Groves et al. 2006). Unlike the optimal 

strategy focusing on the most likely futures, robustness takes into account less likely and extreme 

events or states of the future. The robust decision making method generates robust strategies 

adapted to large sets of quantitative scenarios through an iterative process. The process includes: 

(1) suggest initial candidate robust strategies, (2) identify vulnerability of the strategies against 

certain clusters of future circumstances, (3) suggest hedges that address vulnerabilities of the 
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initial strategies, (4) characterize tradeoffs between the full range of futures and a cluster of 

future circumstances where strategies might perform poorly (Lempert, Groves et al. 2006). The 

robust decision making concept has been applied in water resources management under 

uncertainty. Groves (Groves 2006) has examined robust strategies for California water 

management strategies in the face of climate and socio-economic uncertainties, and Dessai and 

Hulme (Dessai and Hulme 2007) have identified adaptation strategies robust to climate change 

uncertainties for water resources management in the United Kingdom. 

 

Robust decision making differs from the classic decision making approach without considering 

probabilities, which is consistent with the traditional scenario planning idea. However, it differs 

from traditional scenario planning by generating a large ensemble of scenarios using model 

simulations instead of narratives. The advantage of the method is that (1) a complete set of 

strategies is not required at the beginning of decision analysis, as adaptive strategies can be 

proposed in the process iteratively; (2) the consequence and vulnerability of each strategy to 

future conditions is identified, and it enables decision makers to determine their own objectives 

and risk acceptance in long-term plans. However, sophisticated computation and analytic abilities 

is required in the process. Generally, robust decision making does not determine one single best 

strategy. Instead, it uses the information in computer simulations to distinguish the reasonable 

choices from the unreasonable ones, and to demonstrate the tradeoffs among the reasonable 

options. Robust decision making requires high level of decision-maker engagement (Groves, 

Knopman et al. 2008), as they have to assign their own subjective likelihood to the critical 

scenarios, estimate their acceptance level of the strategies’ vulnerabilities, and select one final 

robust strategy. 

5.4 Decision making rules for water resources management under uncertainty 

Decision rules are used to rank candidate decision alternatives under uncertainty and find out the 

optimal and robust decision given the outcomes of decision alternatives against future conditions. 

Xu and Tung (2009) have reviewed and summarized four categories of decision rules in water 

resources planning and management. Among them, three popular categories will be introduced. 

In addition, decision rules based on utility theory can be used when decision makers’ preference 

and attitudes to wealth and risk are taken into account. 
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5.4.1 Classic decision rules 

Various classic approaches exist: mean-value method, Markowitz mean-variance method, 

minimax regret or maxmin value method (Markowitz 1959, Duchness, Beck et al. 2001, Xu and 

Booij 2004, Figueira, Greco et al. 2005, de Kort  and Booij 2007). The mean-value method 

compares different alternatives on the basis of the expected value of consequences; the 

Markowitz mean-variance method selects the alternative with smaller variance for the same 

expected value, or the larger expected value for identical variance; the maxmin rule tries to find 

the alternative which minimizes the maximal loss value based on a simple pessimistic view, and 

the minimax rule chooses the preferred alternative by minimizing their maximum regret 

(opportunity loss if the alternative is chosen instead of others). These methods are easy to 

implement. However, they will miss information provided by probability distributions generated 

by model outcomes, as they only focus on the first or second moments or the single best or worst 

outcome. As shown in Figure 5.1, the decision makers might have difficulty in choosing a better 

decision merely based on the mean value (Left figure) and mean-variance rule (Right figure) if 

they don’t take into account the entire probability distribution (Tung, Wang et al. 1993).  

 
Figure 5.1 Consequences of two alternatives with same mean (left) and same mean and variance (right). 

 

5.4.2 Statistical decision rules 

A widely used stochastic decision rule is the stochastic dominance (SD) rule (e.g.,Tung, Wang et 

al. 1993, Tung and Yang 1994). Stochastic dominance has been applied in decision theory since 

(Allais 1953). The SD rule focuses on the ordering of uncertain options for specific risk profiles 

(Levy 1992). For example, SD rules were applied to compare candidate alternatives by 

comparing the risk profile, which represents the cumulative probability distribution (CDF) of 

consequences from decision alternatives. Three degree levels, namely, first-degree stochastic 
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dominance tests (FSD), second-degree stochastic dominance test (SSD) and third-degree 

stochastic dominance test (TSD) were developed gradually due to the complexity of dominance 

characteristics between CDFs. Mathematically, these can be expressed as follows, 

Pf!(^�!���� = & h@!�á� −4(' @̂ �á�i)á = f!��� − f̂ ��� ≥ 0  for all X;  (FSD) 

Pf!(^�^���� = & hf!�á� −4(' f̂ �á�i)á = & Pf!(^�!� �á�4(' )á ≥ 0  for all X; (SSD)               (5.6)               

Pf!(^�Å���� = & & hf!�á� − f̂ �á�}('4(' i)î)á = & Pf!(^�^��á�}(' )î ≥ 0   for all X;  �!��� ≤ �^���; (TSD)  

 

Where @!�á� and @̂ �á� are the CDF of decision alternative 1 and 2, respectively. �!��� and �^��� are their expected value. 

 

When the CDFs (cumulative density functions) of two decisions do not cross, the dominance 

relationship can be determined by the first-order stochastic domain (FSD) test. The FSD test 

determines that decision 1 dominates decision 2 iif (if and only if) f!��� ≥ f̂ ��� for the case 

where � represents a “cost” (the less the better). Conversely, the dominance relationship between 

them is opposite when X represents a benefit (the more the better). Non-dominance between two 

alternatives requires a higher level stochastic dominance test. For example, the right figure shows 

that decision 1 dominates decision 2 by SSD as the area A is bigger than area B (Figure 5.2). 

However, higher degree of stochastic dominance requires extra assumptions, for example, the 

SSD test assumes the decision makers are risk averse and prefer a less risky outcome; the TSD 

test further assumes that the decision makers have a diminishing risk adverse attitude against the 

outcomes. The disadvantage of higher degree of stochastic dominance test are: (1) parametric 

probability distributions have to be assigned to the CDF for easier integral computation; (2) 

computation is more expensive when more integrals of the CDF are involved; (3) the assumed 

risk attitudes of decision makers are difficult to be justified in practice. 

 

Figure 5.2 Decision 1 dominates decision 2 by FSD (Left) and SSD (Right). 
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5.4.3 Stochastic-Ranking-Based decision rules 

Given that different possible rankings can be sampled statistically due to uncertainty, these rules 

measure the similarity or difference between pairs of ranking. Two measures, a rank correlation 

coefficient (Kendall 1948) and Xu’s risk measure (Xu. Y. P. and Tung 2008) were developed for 

this purpose. The rank correlation coefficient is calculated over a score matrix which measures 

the agreement between pairs of ranking, and one alternative is ranked before others when the 

overall rank correlation coefficient between it and the others is larger than 1. Xu’s risk measure 

presents the risk of obtaining a pair of weak ranking of alternatives and the corresponding 

expected loss. The risk was defined as the product between the probability of obtaining 

unacceptable ranking and the opportunity loss of the ranking. Decision makers have to decide 

whether they are willing to accept the risk or not. 

 

5.4.4 Stochastic-Utility-Based decision rules  

To combine the full probability information and the risky context, stochastic utility based rules 

follow expected utility theory and involve the context of decision makers’ risk attitudes to 

uncertainty. The approach analyzes the risk profile associated with the utilities considering 

decision makers’ risk attitudes (Schultz, Mitchell et al. 2010). This method ranks decision 

alternatives by maximizing the expected utility at a certain level of risk attitude of decision 

makers, and it can also analyze the sensitivity of the ranking by altering the risk attitudes. 

 

Three risk attitudes of decision makers can be represented by different utility functions. They are 

risk neutral, risk averse and risk seeking (Figure 5.3). Risk neutral attitudes are described by a 

linear utility function, and decision makers evaluate the risk depending only on the values (model 

outputs), which linearly translate to utilities. Risk averse behavior is described by a concave 

utility function with decreasing marginal utilities. Decision makers are cautious and conservative 

when they deal with uncertainty. Conversely, risk seeking behavior has a convex utility function 

with increasing marginal utilities. For risk averse decision makers, the utility increases with 

increasing preference (returns, profits), and the marginal utility is decreasing. 

 �¤��� > 0;	�¤¤��� < 0;	                                                              (5.7) 

With risk seeking decision makers, the utility increases with wealth but the marginal utility is 

increasing: 	�¤��� > 0;	�¤¤��� > 0;	                                                             (5.8) 
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Figure 5.3 Utility function curves associated with different risk attitudes (Pinto and Garvey 2012). 

 

Certainty equivalent ��{:� is an important index to distinguish the risk attitudes of decision 

makers, and compare alternatives under the same risk attitude. It is the certain amount that is 

equally preferred to the expected value ���� of the alternative. For example, you can either play 

a game with 50% of $3000 gain and 50% of getting nothing, or you can have $1000 for sure. The 

expected value of playing the game is 0.5*$3000+0.5*0=$1500. If you prefer to accept $1000 for 

sure instead of playing the game, your certainty equivalent is $1000. In other words, you are 

conservative and resist taking the risk even with a higher expected return. Concerning risk averse 

against loss, for instance, you have to choose either losing $3000 with a probability of 50% and 

nothing with 50%, or lose $1700 for sure. The expected loss of the first choice is 

0.5*$3000+0.5*0=$1500. If you choose to pay $1700 for sure instead of playing the gamble, then 

your certainty equivalent is $1700. In that case, you are risk averse and resist taking the risk even 

with a lower loss. In general, the behavior of taking a sure thing over a risky alternative which 

has higher expected return or lower expected loss is called risk averse; conversely, rejection of a 

sure thing under the same circumstances is called risk seeking.  

 

The difference between the expected value and the certainty equivalent is called risk premium 

; = ���� − �{:. It is the minimal amount that the decision maker is willing to pay to compensate 

the risk to choose an uncertain alternative, or to avoid the risk to choose an uncertain alternative. 

On the other hand, from the uncertainty management point of view, the risk premium is the 

difference between the expected values of an alternative with and without considering uncertainty 

(Schultz, Mitchell et al. 2010). 

 

Using certainty equivalent �{:, the three different risk attitudes in terms of profits/returns can be 

specified as follows:  
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• �{: < ����	or	; > 0 , If the certainty equivalent specified by the decision maker is less than the 

expected profit for a decision, the decision makers have a risk adverse attitude with respect to 

uncertainty. 

• �{: = ����	or	; = 0, If the certainty equivalent specified by the decision maker is equal to the 

expected profit for a decision, the decision makers have a risk neutral attitude. 

• �{: > ����	or	; < 0, If the certainty equivalent specified by the decision maker is greater to the 

expected profit for a decision, the decision makers have a risk seeking attitude. 

 

However, these definitions have to be adjusted for outcomes specified in terms of decreasing 

preference such as costs. In that case, decision makers are risk averse if their certainty equivalent 

is greater than the expected cost, and risk seeking if their certainty equivalent is smaller than the 

expected cost. 

 

Figure 5.4 Certainly equivalent and risk averse attitude.  

 

Mathematically, the utility corresponding to the certainly equivalent xïÈ equals the expected 

utility of the decision alternative along the attribute X (Norstad 2011). Then, U�xïÈ� =���q���)                                                               (5.9) x{: = �q(!����q���))                                                        (5.10) 

 

Therefore, certainty equivalent can be used as an index to compare the preference of decision 

makers on alternatives. To compare alternatives, the alternative with larger certainty equivalent is 

preferred in terms of profits as the expected utility is also larger, and with smaller certainty 

equivalent is preferred in terms of cost, providing that the appropriate utility function is used. In 

Figure 5.5, when  decision makers’ preference increases as the attribute increases, alternative 1 is 

preferred to alternative 2 as the certainty equivalent of alternative 1 is larger than that of 

alternative 2 , x{:! > x{:^ , and �!��q� > �^��q�  . Conversely, alternative 2 is preferred to 

alternative 1 as the certainty equivalent of alternative 1 is larger than that of alternative 2 , 
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x{:! > x{:^ , and �!��q� < �^��q�  ,when concerning the decreasing preference of decision 

makers.  

 

Figure 5.5 Certainty equivalent and alternatives ranking.  

 

5.4.5 Comparison of different rules 

Unlike classic decision rules, the other three methods take the full probability distribution into 

account. The full probability distribution is regarded to represent uncertainty better than several 

statistics and it provides more information. It is more likely to cover extreme cases, which is 

crucial to avoid large damage or loss.  

 

Risk is interchangeable with uncertainty. Risk defined by engineers is the product of the damage 

due to hazards events and the probability of the events occurrence. Risk can be also defined from 

the decision makers’ perspective, which is quantified by the amount of money that decision 

makers are willing to pay to assume or compensate the risk (Levy 1992). Among these methods, 

Only Xu’s risk measure and utility-based decision rule take into account the decision makers’ 

attitude and tolerance level towards risk when they have to make decisions under uncertainty. 

However, Xu’s risk measure leaves the quantification and analysis of decision maker’s 

preference to risks implicit, and the consequences of different risk attitude levels of decision 

makers are ambiguous to them. However, the advantage of the utility-based decision rule is that 

decision makers are asked to identify their preference and informed about the consequences 

explicitly if they overestimate or underestimate the risks. 

 

As evaluated by Xu and Tung (2009), the decision rules have different computational 

requirements and ease of use. Classic decision rules have high computational efficiency and the 

results are easy to be used by decision makers. Statistical decision rules need to compare the full 

probability distributions using high degree dominance tests if necessary, which leads to high 
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computational requirements. The results are easy to be implemented as the deterministic ranking 

is provided. Stochastic-Ranking-Based rules need relatively low computational capacity as a pair 

of alternatives is compared at a time, but the computational time will increase exponentially with 

the increasing number of alternatives. The results don’t point out the deterministic ranking, and 

the decision makers have to choose a reasonable ranking according to the provided information. 

Stochastic-Utility-Based decision rules require relatively high computational capacity 

considering the computation of value functions as well as utility functions. The results are 

deterministic for an individual decision maker who is supposed to know his preference on wealth 

and risk beforehand. When a group of decision makers are involved, a consensus of utility 

functions is difficult to reach and various utility structures are required to resolve the issue. 

Therefore, the results can be non-deterministic for multi-decision makers. 

Table 5.2 Comparison of different decision rules 

Decision rules Classic decision 
rules Statistical decision rules Stochastic-Ranking-

Based 
Stochastic-Utility-

Based 

Methods 

mean-value method, 
Markowitz mean-
variance method, 
min/max method 

stochastic dominance 
rank correlation 
coefficient and Xu’s risk 
measure 

Expected utility 
maximization and 
Certainty equivalence 

Information 
needed 

first and second 
moments of 
probability 
distribution 

full probability 
distribution 

full probability 
distribution, decision 
makers' opinions on 
uncertainty 

full probability 
distribution, decision 
makers' opinions  and 
risk attitudes on 
uncertainty 

Risk informed not informed 
implicitly informs risk of 
each alternative against 
uncertainty 

Xu's risk measure 
explicitly informs the risk 
of obtaining weak ranking 

explicitly informs risk 
of each alternative 
against uncertainty and 
decision makers' risk 
attitude 

Computing 
requirements 

Low Relatively High Relatively Low Relatively High 

Ranking result deterministic ranking deterministic ranking non-deterministic ranking deterministic ranking  

 

5.5 Probabilistic scenario-based decision making framework 

5.5.1 Characteristics of the framework 

A probabilistic scenario-based decision making framework incorporating uncertainty is proposed 

based on existing frameworks and decision rules. The framework tries to incorporate the 

strengths and compensate for the shortcomings of existing methods. The framework implements 

uncertainty management by developing scenarios, while modifying the traditional scenario 

development by generating a large number of quantitative scenarios using model simulations and 

Monte Carlo techniques, and explicitly addressing uncertainty with probabilistic information 

using Bayesian analysis and expert judgement, as demonstrated in Chapter 3 and 4. By doing so, 
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problems can be avoided such as limited scenarios to display potential future circumstances, or 

arbitrary selection of scenarios and strategies due to lack of probabilistic information. The 

proposed framework takes the complete view of future states into account. It constructs 

probability distributions to assign continuous values to the variables, in order to test the decision 

alternatives against any value with a probability included in the scenarios. This allows the 

selection of robust decisions against the plausible range of future conditions. The process is 

designed to be adaptive, and signposts should be detected as new evidence and information 

becomes available. Additionally, the decision maker’s uncertainty and risk tolerance level are 

quantified in the decision making framework, in order to explicitly provide multiple view to 

uncertainty and risk to decision makers (Keeney and Wood 1977). The comparison of existing 

frameworks and the proposed framework is listed in table 5.3.  

Table 5.3 Comparison of different decision frameworks 

Decision 
making 
methods 

Classic decision 
analysis 

Traditional scenario 
planning 

Robust Decision 
making 

Probabilistic scenario-based 
decision making 

Uncertainty 
management 

Probabilities are 
assigned to 
uncertain  future 
states explicitly 

Scenarios are 
developed to identify 
crucial uncertainties 
and driving forces of 
future states 

Scenarios are 
generated by model 
simulations to 
represent uncertainty 

Scenarios are generated to 
quantify crucial uncertainties by 
model simulations and Monte 
Carlo simulations 

Probability 
information 

Required Not required Not required Required 

Scenario 
number 

Most likely 
scenarios 

Few numbers A large ensemble  A large ensemble 

Output  

Expected outcomes 
and expected utility 
of alternatives , and 
their rank  

The performance of 
common strategy to 
cope with all scenarios, 
signposts are 
established for 
suggesting adaptive 
strategy  

The consequences 
and vulnerabilities of 
strategies against 
scenarios 

Risk profile of outcomes and 
utilities of strategies against 
scenarios and the associated 
probabilities and risks 

Decision 
makers' 
involvement 

In early stage and 
making final 
decision 

The whole process of 
decision making 

Highly engaged in 
the whole process of 
decision making  

The whole process of decision 
making plus risk management 

Decision 
makers' risk 
attitude 

Risk neutral Not specified Not specified 
Risk neutral, risk seeking ,risk 
averse 

Decision 
selection 

Deterministic Not  deterministic Not  deterministic Deterministic 

Decision type 

Optimal against 
most likely 
scenarios 

Robust and adaptive 
against developed 
scenarios 

Robust and adaptive 
against a large 
ensemble of 
scenarios 

Robust and rational against a 
large ensemble of scenarios 

 

5.5.2 General procedure and approach 

The general procedure and approach of the proposed framework are shown in Figure 5.6. The 

details are introduced below: 
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(1) Frame the decision problem. Identify the objectives / criteria and uncertain factors of the 

decision making problem. The objectives/criteria represent the preference and consideration of 

decision makers. They can be related to various dimensions, such as economic, environmental, 

political, and social aspects. In water resources planning and management, economic criteria are 

quite desirable and feasible such as maximize the net benefit of water projects, minimize the cost 

of infrastructures investment, etc. Objectives/criteria are mathematically expressed by the 

objective functions. The objective functions are usually expressed in monetary terms, such as loss 

function or payoff function. They quantify the cost or benefit across any possible state when any 

of the decisions would be put into practice. 

 

(2) Propose the decision candidates which are viable. A pool of decision alternatives should be 

proposed and identified for further consideration and selection based on the objectives/criteria. 

The decision candidates can be generated through brainstorming to ensure a set of creative and 

viable decisions are included (Xu, Booij et al. 2007). 

 

(3) Manage uncertainties in the decision problem. Identify critical uncertainties and driving 

forces, and assign probabilities to related variables to address uncertainty. Build and validate 

water management models to propagate uncertainty of driving forces using hydrologic models, 

water demand models, or water quality models to simulate future states of water availability, 

water demand or water quality. Scenario analysis, Bayesian probability and Monte Carlo analysis 

have been widely applied in uncertainty analysis and strategic decision making in environmental 

studies (Varis 1997, Middelkoop, Kwadijk et al. 2002, de Kort  and Booij 2007). In this 

framework, scenario development associated with Bayesian Monte Carlo analysis is selected as 

the approach to explore future states and their probabilities. 

 

(4) Compute the criteria performance against scenarios. Cost-benefit analysis, or cost-

effectiveness analysis when the benefit is difficult to estimate, is most popular for rational 

decision making. Economic criteria such as expected cost, cost-benefit ratio, or net benefit are 

widely used to evaluate the performance of each decision alternative. The probabilistic scenarios 

of water variables serve as input to the objective function, and the risk profile representing the 

values of each decision alternative can be constructed using the outcomes of Monte Carlo 

simulation. In addition, utility functions are constructed to assess and analyse the influence of 

decision maker’s risk tolerance levels on the final choice of decision. 
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(5) Rank and evaluate alternatives. Alternatives are ranked and evaluated based on the full risk 

profile of outcomes and utilities, and stochastic dominance is suitable for that purpose. The 

alternative with higher expected utility is more desirable and receives higher rank. The ranking 

results can be sensitive to the use of various decision models, ranking methods, different criteria 

or preference from multiple decision makers. Sensitivity analysis is necessary to test the 

robustness of the ranking strategies and decision making. It shows the decision maker which 

parameters or assumptions have large impact on the model outcomes and ranking strategies of 

alternative decisions (Schultz, Mitchell et al. 2010). To analyze the sensitivity of rank results on 

the risk tolerance from different decision makers, certainty equivalent can be a useful index to 

compare the performance of each alternative. 

 

In the decision making process, decision makers are highly involved. Their opinions on 

uncertainty and risk, and their expectations on the alternative performances determine the 

selection and acceptance of the final decision. If the decisions ranked and selected in the formal 

round is not accepted by decision makers, the decision making process can be repeated with a 

new set of decision alternatives.  

 

Figure 5.6 The proposed framework for decision making under uncertainty. 

5.6 Conclusion 

This chapter reviewed and compared existing decision frameworks and the decision rules for 

decision making incorporating uncertainty in the field of water resources planning and 
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management. Indeed, uncertainty management decides the quality of decisions that will be made, 

and existing frameworks have their own strong and weak points when dealing with uncertainty. 

A probabilistic scenario-based decision making framework is proposed based on existing 

frameworks. It is different from any single framework, by introducing a large set of scenarios to 

explore a plausible range of future alternatives, and probabilistic information to explicitly 

quantify uncertainty. On the other hand, the choice of an appropriate decision rule is also crucial 

for ranking alternatives and incorporating the decision maker’s preference. The framework 

includes the use of utility functions to take into account the preference of decision makers 

towards both wealth and risk. Besides the maximal expected utility rule, a risk index, certainty 

equivalent is used to represent the difference between expected utilities of decision alternatives 

with and without considering uncertainty. In summary, the proposed decision making framework 

hopes to help decision makers to make robust, adaptive decisions rationally under uncertainty, 

and at the same time, to understand the influence of decision makers’ opinions and risk attitudes 

under uncertainty on the decision making results. An application of the proposed framework is 

discussed in Chapter 6. 
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Chapter 6 Probabilistic scenario-based decision 

making under uncertainty in the Yellow River Delta 

(YRD), China 

6.1 Introduction 

The Yellow River Delta, an important area for food production as well as a base of petroleum 

production, comprises an area of about 6000 km3 and feeds a population of 1.8 million. 

Economically, the YRD has received great attention from the government since one of the 

priority projects “Development and conservation in the Yellow River Delta” listed in China’s 

Agenda 21 (ChinaGovernment 1994). Ecologically, the Yellow River Delta Nature Reserve, a 

State Nature Reserve, contains the largest newborn wetland in China and abundant aquatic 

biological resources (Li, Yuan et al. 1999). With the prediction of increasing water demand for 

population growth, food and petroleum production, industrialization and sustainable ecosystem, 

reliable and sufficient water supply becomes a challenge for the next decades, in order to 

empower the development of the YRD.  

 

YRD is short of local water resources and heavily depends on the Yellow River. With limited and 

polluted surface water and saline groundwater in the YRD, approximately 90% of the water 

resources are provided by the Yellow River (Li, Fan et al. 2011). However, the annual discharge 

from the Yellow River to the YRD has decreased greatly in the past decade due to the significant 

decline of annual water availability in the YR and an increase in upstream water diversions. 

Between 1970s and 1990s, zero-flow occurred frequently in the downstream YR. Especially in 

1997, no water was available in the YRD for 226 days, which had an extremely negative impact 

on the socio-economic activities as well as the ecological sustainability in the YRD (Yang, Li et 

al. 2004). To strategically mitigate the effect of water shortages, the State Council approved the 

‘1987 Water Allocation scheme’. The YRD is allowed to obtain maximally 0.728 km3 of water 

from the YR, although the actual water allocation averaged 0.916 km3 from 2002 to 2010 (Li, 

Fan et al. 2011). Due to the complex and uncertain changes in water availability in the YR and 

upstream water diversions, it is not clear whether current allocations can be maintained.  
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In previous chapters, probabilistic scenarios of future water availability in the YR (Chapter 3) and 

water demand in the YRD (Chapter 4) have been developed that account for potential changes in 

climate, socio-economic and environmental factors. This chapter aims to match the future water 

supply and demand given the developed scenarios. To fill the gap between the future water 

supply and demand in the YRD, two types of measures are recommended according to (Groves 

2006, Li, Fan et al. 2011): (1) increase water supply by developing new supply sources, for 

example, by measures such as inter-basin water transfer, wastewater treatment, rain harvesting, or 

desalination. (2) Improve water use efficiency to decrease water demand while maintain 

economic development. Water use efficiency in the YRD is much lower than developed 

countries, for instance, 40% ~ 50% for irrigation water use and 63% water reuse for industrial, 

compared with 70% ~ 80% and more than 90% respectively in developed countries (Li, Fan et al. 

2011). There is large potential for improving water use efficiency and saving substantial water 

resources. Water managers have to figure out what combinations of management strategies are 

cost-effective for meeting future water demand in the YRD when both water supply and water 

demand are uncertain. For this purpose, the proposed probabilistic scenario-based decision 

making procedure will be implemented to identify robust and cost-effective management 

measures to fulfill the water shortage. 

6.2 Decision making framework 

The proposed decision making framework is used to support the decision making considering the 

uncertain future water supply and demand conditions in the long-term water resources planning 

in the YRD. New water supply and more efficient water use are two efficient solutions for the 

future water shortage problem in China (2030WaterResourcesGroup 2009), but costs needed to 

implement these measures determine their effectiveness and desirableness. Table 6.1 shows the 

component of the decision making framework, including the external parameters required for the 

models, management measures, decision models and analysis used in the decision making 

process. Three critical models used in the decision making framework are as follows: (1) scenario 

development for future water supply and water demand in a probabilistic manner to cope with 

uncertainty; (2) cost-effectiveness analysis used to investigate the performance of each water 

management measure considering the cost over the water supply and demand scenarios; (3) 

expected utility analysis incorporating the decision makers’ preference and risk attitudes to the 

management measures besides the monetary comparison, and demonstrating the impact of the 

decision makers’ different risk attitudes on the decision making result.  
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Table 6.1 Decision making framework components 

Parameters Management measures 
-  Future water demand 
-  Future water supply 
-  Unit cost of new supply  
-  Unit cost of efficiency improvement  
-  Unit cost of supplementary supply 
-  Discounting rate (3%) 
-  Risk tolerance level of decision makers 

Water supply increase 
-   New water supply project (0,1,2) 
-   Supplementary supply (wastewater treatment) 
Water demand decrease 
- Water use efficiency improvement by 5%, 10%, 15%, 20% and 
25%  

Costs Models and analysis 
-Water use efficiency improvement 
-New supply projects investment 
-Supplementary supply investment 

Water supply scenarios development (2010-2039) 
Water demand scenarios development  (2010-2039) 
Cost- effectiveness analysis 
Expected utility analysis    

 

In this chapter, the main steps of the probabilistic scenario-based decision making are the 

following: 

1) Decision framing: this step is to understand the decision problem, identify the decision 

objective or criteria, and propose decision alternatives (equal as water management measures).  

2) Uncertainty analysis: this step is to generate large ensemble of scenarios to represent 

uncertainty in the decision problem in a probabilistic way. 

3) Evaluate and rank decision alternatives: this step is to generate and compare the risk profiles of 

both the monetary and utility-based outcomes of decision alternatives in order to choose the 

optimal and desirable decision. The information provided by the full probability distributions of 

outcomes is used and stochastic decision rules are implemented to rank decisions. 

4) Sensitivity analysis: this step is to test the robustness of the chosen decision for different 

values and probability distributions of the parameters in decision making models, as well as for 

different decision making environment such as a group of decision makers with different 

preference and risk attitudes. 

 

The decision process and the result have to be communicated and discussed with decision 

makers, in order to involve the opinions and preferences of the decision makers and increase the 

understanding between scientists and the decision makers. For example, the uncertainty analysis 

should involve the opinions and knowledge from the decision makers; the utility function should 

be formatted according to the decision maker’s preference; and the choice of the final decision 

should be checked if it is acceptable and adoptable. The probabilistic scenario-based decision 

making framework is flexible and repeatable as it allows for updating the probabilities if more 

knowledge becomes available and the adaption of management measures if the future deviates 

from the pre-defined scenarios. 
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6.3 Formulation of the decision problem 

6.3.1 Objective functions 

The decision problem is to match the future water supply and water demand in the YRD for the 

next 30 years, given the uncertain future water supply, water demand and policy situations. The 

objectives are both monetary-expressed and utility-based. The monetary objective is to minimize 

the total cost for preventing future water shortages. Mathematically, the objective function is 

written as: 

ÓW�Q	�9�|�Q , �� = ∑ �ñò|óÎ,q��!¿5�òV                                                               (6.1) 

where PC is the present cost of the decision alternatives, �Q is the ith decision alternatives,	� are 

random variables representing uncertainty considered in the decision model (e.g., water supply, 

water demand and unit price of decision alternatives) , �8 is the cost of implementing the decision 

alternative in the tth year, d is the discount rate, T is the total planning horizon (in this case, from 

2013 to 2039), and the cost of alternatives must be estimated each year, discounted and 

aggregated over the planning horizon. 

 

To take into account risk attitudes towards uncertainty, a utility-based objective is also 

considered, which aims to maximize the expected utility against the monetary outcomes of the 

decision alternatives under uncertain situations. The objective function can be written as: 

Ó¹�Q	�����9�|�Q, ���� = ����∑ �ñò|óÎ,q��!¿5�ò �V �                                         (6.2) 

Where U is the utility function associated with the cost function, and ���) is the expected utility. 

 

6.3.2 Decision alternatives 

Decision candidates focus on increasing water supply and decreasing water demand separately or 

combined. The strategy is to start from consider expanding water supply by adding new water 

projects, and then reducing water demand by improving efficiency. New supply to the YRD 

comes mainly from the Yangzi River through the South-to-north water transfer project, which is 

estimated to provide an additional water supply of approximately 2×108 m3 per year from 2015 

onward (Li, Fan et al. 2011). Water supply generated by investment of water treatment plants can 

be a supplement when water from the new supply project still cannot meet water demand. 

Decision makers would face the problem of how to choose the new supply strategies. If the water 

supply strategy cannot provide enough water for the future, it will influence the living standard 

and production in the YRD; however, if the water supply strategy provides more water than is 
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required, it would cause the waste of water resources as well as money. To decide if an additional 

water supply project is required, ‘signpost’ policies are considered to trigger new supply projects 

adaptively to provide more water supply but with slightly higher unit cost in future conditions. 

Water supply can be added through the investment of up to 2 water supply projects (NS = 0, 1, 2). 

If the signpost policy contains NS=0, the first signpost is triggered in 2015. If the future water 

supply and demand in the next 10 years shows one new water supply project is needed, then one 

project will be built in 2015 and NS=0 converts to NS=1. If the future water supply and demand 

in the next 10 years after 2015 shows another water project , the second new water project will be 

triggered and built in 2025, and NS=1 converts to NS=2. On the other hand, the water use 

efficiency improvement includes water use for both agriculture and industry, by 5%, 10%, 15%, 

20% and 25%. It starts to be invested and implemented from 2013 onward. These management 

measures can be implemented separately, named d1 to d7, as shown in table 6.2. New water 

project (NS=0, 1, 2) and water use efficiency improvement by certain percentage is combined, 

named d8 to d17. Likewise, the water shortage after any management measures is fulfilled by 

higher-cost supplementary supply. 

Table 6.2 Proposed water management measures 

Decision alternatives Explanation Capacity Start year 

d1 1 water supply project 0.1km3 2015 

d2 1 more water supply project plus d1 0.1km3 2025 

d3 

Agriculture and industry water use 
efficiency improvement 

5% 2013 

d4 10% 2013 

d5 15% 2013 

d6 20% 2013 

d7 25% 2013 

d8 Combination of d1 and d3 
  

d9 Combination of d1 and d4 
  

d10 Combination of d1 and d5 
  

d11 Combination of d1 and d6 
  

d12 Combination of d1 and d7 
  

d13 Combination of d2 and d3 
  

d14 Combination of d2 and d4 
  

d15 Combination of d2 and d5 
  

d16 Combination of d2 and d6 
  

d17 Combination of d2 and d7 
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6.4 Scenario analysis of water supply and demand in the YRD 

6.4.1 Water supply in the YRD  

Water supply in the YRD ���rÂó� comprises of discharge form the YR ( ��rÂ ), and local 

surface water �ÒrÂó	and groundwater �grÂó. According to the data between 1987 and 2010, 

the water supply from the YR contributed 83% of the total water supply (Figure 6.1). Due to the 

water pollution in the local rivers and the brackish groundwater, the local water contributed much 

less. The total water supply is written as: ��rÂó = ��rÂ +�ÒrÂó +�grÂó                                                    (6.3) 

 

As water supply in the YRD heavily depends on the YR, the focus is on the future water 

availability situations in the YR ���rÂ�	. Considering the uncertainty of water availability and 

the water division in the YRB, water availability of the YR for the YRD	���rÂó� is crucial to 

decide the water supply in the YRD. On the other hand, water supply from the local water 

resources is planned to be 2.84×108 m3 from the surface water and 1.15×108 m3 from the 

groundwater, according to the water resources planning in (Li, Fan et al. 2011). 

 

Figure 6.1 Water supplies from three sources in the YRD between 1987 and 2010. 

 

Two steps have to be implemented to find out the future water availability from the YR to the 

YRD,		��rÂó: 

(1)  Predict future runoff of the YR considering climate change impact, ��rÂ ; 

(2) Obtain the water availability from the YR to the YRD by deducting water withdrawal by nine 

provinces in the YRB as well as two regions outside the basin,	�ÒrÂô, and the environmental 

water requirement ��:�}. ��rÂó = ��rÂ +�grÂ −�ÒrÂô −��:�}                                               (6.4) 
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Where ��rÂó is water availability from the YR to the YRD; ��rÂ is the future runoff in the 

YR; �grÂ is the available groundwater capacity, �grÂ = 11�zÅ; �ÒrÂô is the water allocated 

and consumed in the YRB; ��:�} is the environment water requirement, the optimal value is 21 

km3 to keep in-stream healthy ecological system and sedimentation transportation; and the 

minimal value is  5�zÅ  to guarantee the environmental water requirement for base flow in non-

flooding season (Li 2008 ). To maintain the ecosystem in the YRD Nature Reserve, the minimal 

environment water requirement is 0.686 km3. In the analysis, the minimal environmental water 

requirement is always first satisfied before the YRD withdrawals water from the YR. 

 

6.4.1.1 Future runoff in the YRB,	�õö÷ 
Considering the climate change impact on the runoff in the YRB, a conceptual rainfall-runoff 

model was used to simulate and predict future runoff. Probabilistic scenarios of climate variables 

were constructed and used as input of the model to compute runoff. The procedure has been 

explained in chapter 3. The results of the rainfall - runoff models are different when considering 

different uncertainty sources such as the input, model parameters, residual errors, and overall 

uncertainty. The average historical runoff between 1960 and 1990 is 82.57mm, and the average 

future runoff between 2010 and 2039 is 76.66mm, 75.16mm, 75.13mm and 76mm respectively. 

The average annual runoff decreases by 7.15%, 8.97%, 9.01% and 7.95%. As the mean value is 

insufficient to represent all the information contained in the simulated runoff, four parametric 

probability distributions are assigned, which are lognormal distribution, normal distribution, 

gamma distribution and weibull distribution. Figure 6.2 shows the probability distributions fit of 

the simulated future runoff, and the historical annual runoff between 1960 and 1990. The index 

(1, 2, 3, 4) in figure 2 shows the simulated runoff considering the four types of uncertainty 

sources, respectively. The four probability distributions fit the simulated data well except that the 

weibull distribution over-fit the low runoff. In figure 6.2(4), lognormal distribution overestimates 

both the low and high runoffs. Overall speaking, normal distribution and gamma distribution fit 

the model simulation data better than the other two probability distributions. To compare the 

impact of uncertainty from each source on the simulated runoff, the uncertainty from the input is 

larger than the uncertainty from the model parameters, as the probability density function (PDF) 

are much narrower than when input uncertainty is considered. The PDF of the runoff considering 

the input uncertainty has a slightly fatter tail on the high runoff, compared with the PDF 

considering uncertainty from the model parameters and residual errors. Considering the sufficient 

uncertainty from both the input and the hydrological model, to analyse the overall uncertainty 



 

99 

99 
Probabilistic scenario-based decision making under uncertainty  

in the Yellow River Delta, China 

(Figure 6.2(4)) is useful to increase the confidence of the decision making, although the 

accumulation of uncertainty makes the decision making more complex. In the following analysis 

to estimate the future water availability in the YRD from the YR, the simulated runoff 

considering the input uncertainty (Figure 6.2(1)) and the overall uncertainty (Figure 6.2(4)) will 

be applied to distinguish the climate change impact from the hydrological model.  

 

Figure 6.2 CDF of historical runoff (1960-1990) and future runoff (2010-2039) when considering different 

uncertainty sources, (1) uncertainty only from input; (2) uncertainty only from model parameters; (3) uncertainty 

from model parameters and errors; (4) uncertainty from all parts. Four parametric probability distributions fit of 

future runoff. 

 

6.4.1.2 Future water withdrawal in the YRB, �øö÷ù 
The water withdrawal is decided by the water demand as well as the water allocation scheme in 

the YRB. At present, the water demand in these areas reaches 73.04km3. YRCC projects that 

water demand will reach 59km3 by 2030 and 64km3 by 2050 besides 21km3 

environmental/ecological water requirements, and the water shortage is estimated to be 11km3 

and 16km3 if no measures would be taken (Li 2008 ). To settle down the big conflict between 

water demand – supply and prevent zero-flow at the downstream, the Yellow River 1987 Water 

Allocation scheme was formulated by the National Council based on the report by the National 

Plan Commission and the Water Conservation Department. The total water allocation is 37 

km3/year in the YRB (0.78km3/year in the YRD). The number was calculated by deducting 

21km3 for in-stream eco-environment water requirement from the 58km3 average annual runoff 
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from 1919 to 1975. The ‘1987 Water Allocation scheme’ was revised in 1998 considering the 

decline of water availability in the YR, and the water allocated to the YRD became 0.728km3 

(Yang, Shao et al. 2010). The implementation of the 1987 water allocation scheme brings the 

gain of environmental sustainability at the expense of economic loss. Li (Li 2008 ) calculated the 

economic cost by 2030. The irrigation output will reduce by 233.5 billion RMB, the industrial 

output will drop by 17.5 billion RMB, the crop yield will decrease by 29730 ton/year and the 

GDP will decline by 627.9 billion RMB. Regions downstream of the YR, including the YRD, 

would encounter even larger economic loss. The future water withdrawal of the YRB is crucial to 

maintain the production and development of the YRB, as well as the water availability in the 

YRD and the eco-environment requirement. 

 

Two scenarios S1 and S2 are developed to explore the future water allocation in the YRB by 

emphasising two extreme aspects: the environmental sustainability and socio-economic 

development:  

S1:‘1987 Yellow River Water Allocation Scheme’, the water abstraction insists the allocation 

quota ��!úûü	 (36.272km3) to prevent zero flow even though it may cause slow socio-economic 

development in the 30 years. 

S2:‘Demand-based Allocation scheme’, the water allocation �ÒrÂô satisfies the water demand 

in the Yellow River Basin		���rÂô�  to maximize socio-economic development while 

guaranteeing the minimal environment water demand. 

 

To quantify the future water allocated in the YRB	��ÒrÂô� , scenarios S1 and S2 can be seen as 

the minimal and maximal extremes of the water allocation schemes. The possible futures between 

the extremes are also taken into account by assigning a uniform distribution in the range (uniform 

distribution is the maximal entropy distribution given two values of the intervals). 

   ���ÒrÂô� = ý !þóuÍ�(þºa��� ,																																			��!úûü < �ÒrÂô < ��rÂô0, 																				�ÒrÂô < ��!úûü		#µ				�ÒrÂô > ��rÂô                            (6.5) 
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Figure 6.3 Scenarios of annual water allocation in the YRB.  

 

6.4.1.3 Future water availability from the YR to the YRD, �õö÷� 
Eight cases associated with the future water withdrawal scenarios in the YRB are taken into 

account to analyse the water availability in the YRD from the YR.  A Monte Carlo technique was 

applied to sample from the distributions of the future water availability and water withdrawal. 

The eight cases are as follows: (1) The Four parametric probability distributions of the future 

runoff simulated considering only the input uncertainty (LN1, N1, G1, W1); (2) The Four 

parametric probability distributions of the future runoff simulated considering the overall 

uncertainties (LN4, N4, G4, W4). 

 

Figure 6.4 shows the 99% uncertainty band and the median value of water availability into the 

YRD. The annual water availability is decreasing, and it is consistent with the historical trend. 

When considering overall uncertainty sources, the uncertainty band of water availability is wider 

than that when considering only input uncertainty by approximately 10 km3. As the lognormal 

distributed runoff has a long tail when considering overall uncertainties, it also contains much 

higher upper bound than that of the other distributions. Zero water availability occurs as a result 

of low water availability and high water demand scenarios in the YRB. Table 6.3 lists the values 

of the 99% uncertainty band of the water availability in the YRD. The 0.5 percentile of water 

availability corresponds to the worst case, which is zero flow in all situations. The medium water 

availability is between 15 km3 to 17 km3 in 2010, and it drops largely to 11 km3 and 12 km3 in 

2039. The upper bound drops mostly by 1 km3. But the Lognormal and Weibull distributions lead 

to the increased values, due to their overestimation of the high runoff in the YRB (Figure 6.2(4)).  

S1 

S2 
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Figure 6.4 0.5%, 50% and 99.5% percentile (lower, middle and upper lines, respectively) of annual water availability 

in the YRD from the YR when the runoff is lognormal, normal, gamma and weibull distributed. The green line is the 

historical water discharge. The top figure shows the uncertainty band when considering input uncertainty due to 

climate change, and the bottom one shows that when considering all uncertainties. The lines are not continuous due 

to the lack of data. 

 

Table 6.3 0.5%, 50% and 99.5% percentile of water availability in the YRD from the YR at the year 2010 and 2039 

Percentile 0.5% 50% 99.5% 

Year 2010 2039 2010 2039 2010 2039 

LN1 0 0 16.65 12.23 42.84 41.17 

N1 0 0 16.95 12.32 40.66 39.69 

G1 0 0 16.65 12.27 42.51 41.47 

W1 0 0 17.23 12.56 39.90 39.09 

LN4 0 0 15.21 11.16 104.99 106.13 

N4 0 0 16.45 11.82 46.71 45.28 

G4 0 0 15.81 11.41 55.01 51.84 

W4 0 0 16.7 11.02 46.70 47.73 

Note: LN, N, G, W represents lognormal, normal gamma and weibull distributed runoff in the YRB, (1) and (4) 

represents the runoff considering only climate change uncertainty and overall uncertainties. 

 

According to the 1987 Water Allocation scheme (Li, Fan et al. 2011) , Water supply in the YRD 

from the YR should be no more than 0.728 km3. Therefore, three types of the future water supply 

are formed, which are zero supply when zero flow occurs in the downstream, the maximal supply 

when water availability is no less than 0.728 km3, and non-zero supply between the zero and 

maximal supply. Figure 6.5 shows eight cases about future water supply in the YRD (WS1, WS2, 
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WS3, WS4, WS5, WS6, WS7, WS8) under the eight cases (LN1, N1, G1, W1, LN4, N4, G4, W4) 

and the probabilities of the three types of water supply. According to Table 6.4, the maximal 

supply has the largest chance to occur in the future, and the zero supply occurs less when only 

input uncertainty is considered. The supply between the two types has small probability to occur 

in the future.  

 

Figure 6.5 Probability of water supply scenarios from the YR to the YRD 
 

Table 6.4 Probability of three types of water supply in the YRD from the YR (%) 
  WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 

Zero-supply 7.73 8.22 7.89 11.05 22.76 13.26 14.73 17.08 

Non-zero supply 1.18 1.13 1.16 1.13 1.38 1.27 1.39 1.25 

Maximal supply 91.09 90.65 90.95 87.82 75.86 85.47 83.88 81.67 

 

6.4.2 Water supply-demand analysis 

Probabilistic scenarios of annual water demand in the YRD from 2010-2039 have been described 

in Chapter 5. The total water demand in the YRD has the tendency of increasing. Instead of 

considering the blue water footprints (consumptive use of ground- and surface water flows) 

(Hoekstra, Chapagain et al. 2011, Hoekstra, Mekonnen et al. 2012), the water demand scenarios 

are explored to analyze the future water conditions against water supply. Figure 6.6 shows the 

example of the distribution of annual water shortage under the cases WS2 and WS6 in the YRD 

between 2010 and 2039. To analyze the impact of future water demand on water shortage 

situations, the water demand with deterministic (annual average water demand) and stochastic 

(probability distribution of annual water demand) values are taken into account separately to 

calculate the water shortage. The distributions of annual water shortage are presented in the top 

and bottom figures, without and with considering water demand uncertainty, respectively. 

According to the figures, some findings can be addressed: 

 

0

20

40

60

80

100

WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8

P
ro

b
a

b
il
it

y

Scenarios of water supply from the YR in the YRD

zero supply Non-zero supply Maximal supply



 

104 
 

104 Chapter 6 

(1) There are two peaks of water shortage around -0.25km3 /year and -1km3 /year, which is 

consistent with the high probabilities of minimal and maximal water supply in cases WS2 and 

WS6. The right peak is higher and wider than the left peak, as the maximal water supply is more 

likely to occur in both cases. 

(2) Water shortage located in the left peak under case WS2 is slightly less than that under scenario 

WS6, as the probability of minimal water supply occurs in WS2 is lower than that in WS6.  

(3) Without considering the uncertainty from the water demand in the YRD, the range of water 

shortage is smaller than that of taking into account the water demand uncertainty.  

 

Figure 6.6 Distribution of annual water shortage (water supply-water demand) between 2010-2039 in the YRD, 

under the scenarios WS2 (left) and WS6 (right), associated with deterministic and probabilistic water demand the 

YRD, (top) and (bottom) respectively. 

6.5 Performance of water management strategies  

6.5.1 Cost analysis 

The total cost includes the cost invested to build new water supply projects ��D; improve water 

use efficiency �E<< ; and supplementary water supply by expanding wastewater treatment 

capacities  �==  if there is any shortage between water demand and additional water supply. 

Considering different water management strategy portfolios, the total cost of specific strategy 

under future states can be written as below:  
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��8|�Q , �� = ��E<<|�, 9: , �Q , �� + ���D|*�D, ��D, 9�=, �Q , �� + ��==|9∆�,∆F, ��                   (6.6) 

 

Where E is the water use efficiency improvement strategy,	9: is the unit price of water saving 

from the efficiency improvement, *�D	 is capacity of new water supply projects, ��D is the 

signpost to trigger a new water supply project, 9�= is the unit cost of water from the new water 

supply project, and  ∆F is the water supply deficit after management measures are adopted. 9∆� 

is the unit price to fill the deficit. 

 

New supply projects follow the basic features: (1) the project construction cost is amortized over 

the lifetime of the project; (2) the amortized cost must be paid even if the supply is not used 

(Groves 2006). The unit cost of the first new water supply project is specified to be 0.012$/m3. 

The second project triggered by the signpost policy cost 20% more than the former one, since the 

cost of labour, land or material is assumed to increase in the future. 

 

The unit cost of reducing water demand by improving efficiency is assumed to increase as higher 

efficiency is reached. The unit cost of different efficiency improvement is simplified by the 

formula:  ���:<<��% = ���:<<
�% ∗ �1 + ¹�                                                         (6.7) 

 

Where  ���:<<��% ,	���:<<
�% are the unit cost of efficiency improvement by higher percentage 

and sequential lower percentage.  ¹ is the growth rate of additional cost. In the model, 5%, 10%, 

15%, 20% and 25% efficiency improvement is assumed, and the additional cost is assumed to be 

20% compared to the sequential lower percentage. The unit cost of improving irrigation and 

industry water demand by 5% is specified to be 0.02 $/m3 and 0.025$/m3. 

 

The supplementary supply is required when water shortage still exists even with the additional 

water provided by new water projects, and the water demand reduction. The supplementary 

supply is from expanding wastewater treatment, and the unit cost is assumed to be higher than the 

other two decision candidates, which is 0.04$/m3.  

 

6.5.2 Expected utility analysis 

Utility can measure the strength of decision makers’ preference and risk attitudes; however, there 

is no unique equation that objectively yields the strength. But an equation can be selected for 

comparative measure of the strength. The Iso-elastic utility and negative exponential utility 
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functions are mostly used, and the explanation can be found in (Norstad 2011). Garvey (Garvey 

2008) introduced a common and convenient form of exponential utility function, considering the 

decision makers’ preference on both gains and losses. An implicit assumption in this form of the 

exponential utility function is that the decision maker expresses a constant risk attitude over all 

levels of wealth and risk, which contradicts the prospect theory proposed by Kahneman and 

Tversky (1979). The exponential utility function has been applied in decision making under 

uncertainty by (Schultz, Mitchell et al. 2010, Gonzalez, Payán et al. 2012). 

 

If utilities are monotonically increasing over the levels X for an evaluation criterion ’more is 

preferred’, such as profit, and then the exponential utility function can be written as: 

���� = � !(:L©§L§�Îc«7!(:L©§�½§L§�Îc«7 ,			µ ≠ 04(4�Îc4�½§(4�Îc 							,			µ = 0                                                                    (6.8) 

If utilities are monotonically decreasing over the levels X as ‘less is preferred’, such as cost, and 

the exponential utility function is written as follows: 

���� = � !(:L�§�½§L§�7!(:L©§�½§L§�Îc«7 ,			µ ≠ 04�½§(44�½§(4�Îc 							,						µ = 0                                                                 (6.9) 

Where µ is the risk tolerance parameter. It determines the shape of the utility curve. If µ is 

positive, the utility function is concave, representing risk averse attitude. If µ is negative, the 

utility function is convex, representing risk taking attitude. If µ → 0, the utility function is risk 

neutral. The curves away from the risk neutral one describe higher levels of risk averse or risk 

taking behaviour. Figure 6.7 shows nine shapes of utility that reflect an individual’s risk attitudes 

with increasing preference and decreasing preference. The curves approaching the risk neutral 

line represent less risk averse behaviour when µ > 0 and less risk taking behaviour when µ < 0. 

 

Figure 6.7 Utility of different risk-tolerance level with increasing preference and decreasing preference.  
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6.5.3 Compare and rank alternatives 

In this section, the decision making procedure will be carried out by dealing with uncertainty in 

the following manner: water shortage scenarios are generated according to water supply scenario 

WS2 associated with probabilistic water demand in the YRD, and the market price of water 

management measures are defined as the deterministic value described in 6.4.1. Sensitivity 

analysis will be implemented in order to test the robustness of the outcomes of decision analysis 

in the next session. 

 

6.5.3.1 Decision making without considering utility explicitly  
If the decision maker makes decisions only based on the monetary or physical term, the decision 

objective is to minimize the expected cost under uncertainty. Figure 6.8 shows the mean and 

standard deviation of the monetary outcomes from each alternative. The mean value and standard 

deviation represent the expected cost and the corresponding uncertainty (risk) of obtaining the 

mean value. According to the Markowitz mean-standard deviation decision rule (Markowitz 

1959), a better decision alternative should have both smallest mean cost and standard deviation. 

However, this cannot lead to a specific ranking, as no alternative has the smallest mean value and 

standard deviation simultaneously.  

 

Instead, a risk profile is used to represent the cumulative probability distribution over possible 

costs of a decision alternative against the probabilistic range of water supply and demand 

scenarios. Figure 6.9 shows the risk profiles of the 17 decision alternatives with the fixed 

parameters of the cost effectiveness model. The five most cost effectiveness decision alternatives 

(d2, d8, d9, d13, d14) were selected based on first-order statistic domain analysis, and the rest is 

abandoned in the following analysis. They are shown on the right of the figure.  

 

Figure 6.8 Mean and standard deviation of total cost from 17 decision alternatives. 
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Figure 6.9 Risk profiles of the total cost from decision alternatives, left figure shows the risk profiles of 17 

alternatives, right one shows the risk profiles of the 5 most cost-effectiveness alternatives. 

The total cost of decision alternatives ranges approximately from 0.5×108 $ to 5.5×108 $. The 

range of the 5 selected alternatives is narrowed to 0.5×108 $ to 3.5×108 $. The risk profiles are 

crossed on the right figure. The SSD (second-order stochastic dominance) test is required to rank 

the decision alternatives, by assuming the decision makers are risk averse. Table 6.5 shows the 

results of the SSD test when fitting the CDF of the total cost by (a) normal distribution, (b) 

lognormal distribution, (c) gamma distribution, (d) weibull distribution, (e) best-fit distribution. 

MSE (Mean Square Error) was used to evaluate and measure the goodness-of-fit of the four 

parametric distributions to the total cost. For decision alternative d2, d8, d9, d13, d14, the best-fit 

distributions are normal, lognormal, gamma, normal and lognormal distribution, respectively. 

Under the five conditions, the rank of alternatives is as follows: 

(a) Normal distributed: d2 < d8 < d13 < d9 < d14; 

(b) Lognormal distributed: d2 < d8 < d13 < d9 < d14; 

(c) Gamma distributed: d14 < d13 < d9 < d2 < d8; 

(d) Weibull distributed: d14 < d9 < d2 < d13 < d8; 

(e) Best-fit distributed: d8 < d2 < d14 < d13 < d9. 

The ranking result is sensitive to the assignment of probability distributions to the outcomes of 

decision alternatives. The ‘best’ decision d14 (2 water supply projects plus 10% water use 

efficiency improvement) when the outcomes are normal or lognormal distributed becomes the 

‘worst’ when they are gamma or weibull distributed. However, the most plausible ranking result 

ought to be consistent with that when the best-fit probability distribution is assigned, that is, d9 (1 

water supply projects plus 10% water use efficiency improvement) is the best decision. 
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Table 6.5 SSD test matrix between alternatives 

a d2 d8 d9 d13 b d2 d8 d9 d13 c d2 d8 d9 d13 

d2         d2         d2         

d8 N       d8 N       d8 N       

d9 N N     d9 N N     d9 P P     

d13 N N P   d13 N N P   d13 P P P   

d14 N N N N d14 N N N N d14 P P P P 

d d2 d8 d9 d13 e d2 d8 d9 d13 

d2         d2         

d8 N       d8 P       

d9 P P     d9 N N     

d13 N P N   d13 N N P   

d14 P P P P d14 N N P P 

Note: matrix a, b, c, d, e represent the SSD test results when the total cost is normal, lognormal , gamma, weibull , 

best-fit distributed respectively. N and P denote negative and positive value. Each element denotes the CDF of the 

column alternative minus that of the row alternative.  

  

6.5.3.2 Decision making with considering utility explicitly 
If the decision maker is willing to include the preference towards risk, the objective becomes to 

maximize the expected utility. Risk tolerance parameter can represent the comparative risk 

attitudes. Figure 6.10 shows the risk profiles of utility when the risk tolerance parameter equals to 

-2, 0, and 2, which quantify the risk taking, risk neutral and risk averse level of the decision 

maker. When  µ = −2, the values of utility are mainly distributed in [0,0.3]; when µ = 2 , the 

values of utility are mainly distributed in [0.8,1]. It can be explained as the risk taking person 

would prefer paying much less to achieve the same goal (for example, relieve water shortage) 

than the risk averse person, the utility to pay the same amount for the risk taking person is also 

lower than that of the risk averse person. 
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Figure 6.10 Risk profiles of utility from the decision alternatives under different risk tolerance levels (r= -2, 0, 2). 

 

Table 6.6 Expected total present cost (PC), expected utility and certainty equivalent of 5 decision alternatives 

Decision 
criteria 

Risk tolerance 
parameter 

Risk 
attitude 

Unit d2 d8 d9 d13 d14 

E(PC|Di,X)     108 $ 2.1315 2.1652 2.1217 2.1541 2.1472 

E(U(PC|Di,X)) 
-2 risk taking 

  0.0645 0.0586 0.0602 0.0584 0.0542 

Xce 108 $ 1.8994 1.9468 1.9338 1.9486 1.9862 

E(U(PC|Di,X)) 
0 risk neutral 

  0.6715 0.6646 0.6735 0.6669 0.6683 

Xce 108 $ 2.1315 2.1652 2.1217 2.1541 2.1472 

E(U(PC|Di,X)) 

2 
risk averse 

  0.9976 0.9975 0.9978 0.9976 0.9978 

Xce 108 $ 2.4047 2.4265 2.3539 2.4083 2.3562 
 

The 5 alternatives (d2, d8, d9, d13, d14) dominate the rest in terms of utility. Table 6.6 lists the 

expected total present cost, expected utility and certainty equivalent under three risk attitudes of 

the 5 decision alternatives. The goal is to pick the decision alternative with the maximal expected 

utility or the smallest certainty equivalent. The ranking result is different when the risk attitudes 

are different. A risk neutral and risk averse decision maker would choose d9 gives the highest 

expected utility and smallest certainty equivalent; while a risk taking decision maker would 

prefer d2 for the same reason. 
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6.6 Sensitivity analysis 

Sensitivity analysis can test the robustness of the decision analysis results when altering the 

parameter values or probability distributions in the decision making model. It can also 

demonstrate the decision analysis carried out in different decision environments, such as 

individual decision maker or a group of decision makers. In this section, sensitivity analysis will 

be implemented to test the robustness of the decision analysis results both for the uncertainty in 

the decision models and the decision environments. The “one-at-once” rule will be applied in the 

sensitivity analysis, which means one parameter value will be changed and the other parameters 

are constant in every test. The sensitivity analysis for the decision model is carried out by altering 

the probability distributions of the future water supply in the YRD (WS1 to WS8) and the future 

water demand in the YRD (deterministic water demand with considering the uncertainty (mean 

values) and probabilistic water demand with considering the uncertainty (probability 

distributions)), and the market price of the water management measures. The “one-at-once” rule 

is applied by altering the probability distributions, while the values of other parameters such as 

market prices and risk tolerance parameters are assumed to be constant. The sensitivity analysis 

for different decision environment is implemented by changing the risk tolerance parameters. For 

a single decision maker, he is supposed to know his own value and preference, while the 

assignment of probability distributions and market price are uncertain to them. For multiple 

decision makers, besides the uncertainty faced by a single decision maker, the diversity of risk 

tolerance levels among them is a key parameter of interest. Altering the risk tolerance parameter 

is supposed to demonstrate the different interests and risk attitudes among decision makers, and 

to explain the difficulty to reach the consensus between different decision makers. 

 

6.6.1 Sensitivity analysis for probability distribution patterns 

Table 6.7 shows the sensitivity analysis results for different probability distributions of the future 

water supply and whether or not considering uncertainty in future water demand, when the 

decision maker has a risk taking, risk neutral and risk averse attitude. When the decision maker is 

risk taking (r = -2), the optimal decision is not sensitive to the assignment of probability 

distributions, but sensitive to the water demand situations. d9 (1 new water projects plus 10% 

water use efficiency improvement) and d2 (2 new water projects) are the optimal decision under 

each water demand situations. When the decision maker is risk neutral (r = 0), the optimal 

decision is not sensitive to either the probability distributions or the water demand situations. d9 

performs better than other alternatives in the term of minimizing the total cost and maximizing 
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the expected utility. When the decision maker is risk averse (r = 2), the lognormal distributed and 

the weibull distributed water supply scenario (WS5 and WS8) provide different result from other 

probability distributions. The expected utility and certainty equivalent of d14 (2 new water 

projects plus 10% water use efficiency improvement) and d9 are similar, and d14 performs 

slightly better than d9. When analyzing the influence of different values of risk tolerance 

parameter (r= -2, 0, 2), the optimal decision remains the same when deterministic water demand 

is taken into account regardless of the different risk attitudes. Under the probabilistic water 

demand situation, risk taking decision makers prefer d2, while risk neutral and risk averse 

decision makers prefer d9. The decision result is least sensitive to the patterns of probability 

distributions of water supply compared with the other two factors. 

Table 6.7 Sensitivity analysis for different probability distributions and risk attitudes 

(a) Sensitivity analysis when the decision maker is risk taking, r = -2 

Water supply WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 

Deterministic water demand  d9 d9 d9 d9 d9 d9 d9 d9 

Probabilistic water demand  d2 d2 d2 d2 d2 d2 d2 d2 

(b) Sensitivity analysis when the decision maker is risk neutral , r =0 

Water supply WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 

Deterministic water demand  d9 d9 d9 d9 d9 d9 d9 d9 

Probabilistic water demand  d9 d9 d9 d9 d9 d9 d9 d9 

(c) Sensitivity analysis when the decision maker is risk averse, r = 2 

Water supply WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 

Deterministic water demand  d9 d9 d9 d9 d14 d9 d9 d14 

Probabilistic water demand  d9 d9 d9 d9 d14 d9 d9 d9 

 

6.6.2 Sensitivity analysis for market price of management measures 

Table 6.8 provides the sensitivity analysis result to the unit price of water management measures 

for risk taking, risk neutral and risk averse decision makers. The unit cost was treated as 

deterministic numbers in the decision model. However, it is necessary to analyze the influence of 

different market price on the selection of decision, as the price can change over time due to 

factors beyond the control of decision makers (Schultz, Mitchell et al. 2010). The change of unit 

price generates more diverse results, and the decision makers’ risk attitudes have less influence 

on the decision compared with the market price. Five unit prices of new water projects lead to 

two optimal choices under each risk tolerance level. d13 (2 new water projects plus 5% water use 

efficiency improvement) is more preferred for a risk taking decision maker when the new water 
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project has a lower unit price, while d14 becomes more preferable for risk neutral and risk averse 

decision makers. It makes sense as 2 new water projects are more economic efficient at low 

prices compared with efficiency improvement. However, higher unit price of new water project 

reduces the popularity of building new water projects, and d9 becomes more preferred. The 

change of the unit price of efficiency improvement can lead to a similar conclusion. With low 

unit price of efficiency improvement, the measure to improve water use efficiency by large 

percentage becomes more satisfactory so that d10 (1 new water projects plus 15% water use 

efficiency improvement) or d9 are preferred. When the unit price goes higher, d2 performs better. 

The fluctuation of the market price of supplementary supply leads to three different optimal 

choice under each risk attitude. When the unit price of supplementary supply is quite much lower 

than other measures, d1 (1 new water project and supplementary supply) becomes favorable; 

when the price goes up, d2 and d14/d15 are favorable. With the increment of the unit price, 

measures such as new water project or efficiency improvement become more cost effective. 

Table 6.8 Sensitivity analysis of the market price of water management measures and different risk attitudes 

Unit price of water projects ($/m3) 0.006 0.008 0.016 0.02 0.024 

risk tolerance parameter r= -2 d13 d13 d9 d9 d9 

risk tolerance parameter r= 0 d14 d14 d9 d9 d9 

risk tolerance parameter r=  2 d14 d14 d9 d9 d9 

Unit price of efficiency improvement ($/m3) 0.01 0.015 0.02 0.025 0.03 

risk tolerance parameter r= -2 d10 d9 d2 d2 d2 

risk tolerance parameter r= 0 d10 d9 d9 d2 d2 

risk tolerance parameter r= 2 d10 d9 d9 d2 d2 

Unit price of supplementary supply ($/m3) 0.005 0.025 0.065 0.085 0.1 

risk tolerance parameter r= -2 d1 d2 d14 d14 d14 

risk tolerance parameter r= 0 d1 d2 d14 d15 d15 

risk tolerance parameter r= 2 d1 d2 d14 d15 d15 

 

6.6.3 Sensitivity analysis for different risk tolerance parameter 

Figure 6.11 shows the expected utility value and the certainty equivalent of decision makers with 

different risk attitudes under WS2 and probabilistic water demand in the YRD. d2, d9 and d14 are 

favorable compared with others with higher expected utility and lower certainly equivalent 

against all risk tolerance levels. d2 performs better than the others when decision makers are risk 

taking. When decision makers are risk neutral, d9 is more preferred. As the decision maker 

becomes more risk averse, their preference shifted from d9 to d14 gradually. This can be 

explained with the information provided by the risk profiles of the total cost (Figure 6.12). The 

risk profile of d2 has higher probability in both lower and higher cost compared with d9 and d14. 
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A risk-taking decision maker is willing to take the risk with higher probability of higher cost, in 

order to have more chance to achieve much lower cost. This could explain the preference on d2 

in risk-taking situations. As the decision maker becomes more risk taking, the preference on d2 

becomes more obvious. This is consistent with the phenomena demonstrated in the figure that the 

expected utility and certainty equivalent of d2 becomes larger than those of d9 and d14. On the 

contrary, the risk averse decision maker prefers the decision alternative with lower chance to get 

higher cost, for example, d9 and d14. As d14 has slightly less probability of higher cost even the 

lower cost occurs with lower probability compared with d9, d14 becomes favorable when the 

decision maker becomes more risk averse. 

 

Figure 6.11 Expected utility and certainly equivalent with different risk tolerance parameter  

values under WS2 (-5 to 5). 

 

Figure 6.12 Risk profiles of outperformed decision alternatives d2, d9 and d14. 

 

Table 6.9 shows the sensitivity analysis results to more values of the risk tolerance parameter and 

the probability distributions assigned to water supply, considering water demand uncertainty. The 

decision analysis result is more robust to the probability distributions but much more sensitive to 

the decision makers’ risk attitudes. Under the same risk attitude, the decision result keeps the 
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same even the probability distribution pattern changes. However, the decision result changes 

according to the risk tolerance parameter under the same probability distribution pattern. 

Table 6.9 Sensitivity analysis of the risk attitudes  

r -5 -4 -3 -2 -1 0 1 2 3 4 5 

WS1 d2 d2 d2 d2 d2 d9 d9 d9 d14 d14 d14 

WS2 d2 d2 d2 d2 d2 d9 d9 d9 d14 d14 d14 

WS3 d2 d2 d2 d2 d2 d9 d9 d9 d14 d14 d14 

WS4 d2 d2 d2 d2 d2 d9 d9 d9 d14 d14 d14 

WS5 d2 d2 d2 d2 d2 d9 d9 d14 d14 d14 d14 

WS6 d2 d2 d2 d2 d2 d9 d9 d9 d14 d14 d14 

WS7 d2 d2 d2 d2 d2 d9 d9 d9 d14 d14 d14 

WS8 d2 d2 d2 d2 d2 d9 d9 d9 d14 d14 d14 

6.7 Discussion and Conclusions 

This chapter has applied the proposed decision making framework to demonstrate the decision 

making process under uncertainty in the YRD, China. The decision problem focuses on matching 

the water supply and water demand using management measures for long-term water planning. 

Monetary and utility-based objective functions were identified, aiming to evaluate decisions by 

combing the engineering as well as decision makers’ perspectives. Uncertainty analysis and the 

decision rules used to rank decision alternatives have been emphasized and investigated, and 

sensitivity analysis has been implemented to test the robustness of the decision in the decision 

making process. 

 

Monetary and utility-based decision objectives have been identified to measure the consequences 

of decision alternatives. The monetary consequence of decision alternatives was quantified and 

addressed by risk profiles considering both the total cost and the corresponding probability 

distributions. To rank their performance, a set of risk profiles has to be compared and analyzed 

on the basis of minimizing the total cost. Unlike the traditional method by comparing one or two 

moments of the probability distributions, for instance, the mean value and the standard deviation, 

the information provided by the whole probability distribution was implemented using the 

principle of stochastic dominance. Second-order stochastic dominance test was applied 

considering the complexity of risk profiles, and d9 (1 new water supply project and 10% of water 

use efficiency improvement) outperformed others by considering the monetary consequences. 

The consequence of utility against the total cost was ranked based on expected utility theory. 

Expected utility theory defines the rational decision is the one with the maximal expected utility 
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according to the decision maker’s utility function. In addition, certainty equivalent was applied to 

differentiate the risk attitudes of decision makers, and discriminate the performance of decision 

alternatives. When considering the different risk attitudes of decision makers, the most favorable 

decision became d2 (1 new water supply project in 2015, and 1 new water project in 2025) when 

the decision maker is risk taking (r = -2). When the decision maker is risk neutral (r = 0), the 

most favorable decision is the same as the optimal decision considering only the monetary 

outcome. As the decision maker becomes risk averse (r = 2), d9 still has the maximal expected 

utility and the minimal certainty equivalent according to the decision maker’s utility function. 

 

The decision making process has dealt with two major types of uncertainties, outcome 

uncertainty and decision uncertainty (Van Asselt 2000, Xu and Booij 2004). Outcome 

uncertainties include (1) uncertainty from water supply conditions in the YRD due to the impact 

of climate change on water availability in the YRB, and the in-basin water division; (2) 

uncertainty from the water demand circumstances in the YRD, due to the socio-economic 

development and environment requirement; (3) uncertainty from the consequences of each 

management measure due to the input and parameters of decision models. To deal with the 

outcome uncertainty, scenarios of future water supply and water demand were developed using 

probability distributions. Scenarios attached with probability distributions express the uncertainty 

and the assumptions handling uncertainties explicitly and quantitatively, and the application of 

probability allows the updating when new information becomes available based on Bayesian 

theory. The probabilistic scenarios of future water supply and water demand contain a range of 

values as well as their chance to occur, instead of limited number of values with equal likelihood 

to represent the uncertain future. On the other hand, decision uncertainty was taken into account 

by considering and differentiating the preference and risk attitudes of decision makers in a risky 

context. Utility was applied to measure decision makers’ preference beyond the monetary 

outcomes, such as satisfaction to both the total cost and the risk in the study. A negative 

exponential utility function was implemented to model three risk attitudes through the risk 

tolerance parameter. Although the decision maker is supposed to know his preference based on 

the axiom of expected utility theory, there is no unique utility function suitable for all decision 

makers’ preference. The format of the utility function has to be reinvestigated and restudied in 

each application when facing different decision makers. The elicitation of utility functions is a 

complex process and has been extensively studied theoretically and practically (e.g.,Chajewska, 

Getoor et al. 1998, Abdellaoui 2000, Chajewska, Koller et al. 2000, Gonzales and Perny 2004). 
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The consideration of risk attitudes of the decision makers is useful to explain the divergent 

opinions and preferences of decision makers due to their different risk attitudes in the face of 

uncertainty. However, how to solve the disagreement among decision makers is beyond the scope 

of the study. Future research can be conducted to look at this interesting problem. 

 

Sensitivity analysis has been used to test the sensitivity of decisions when the values or 

probability distributions of the input or the parameters are changed in the decision models. 

Sensitivity analysis focused on the probability distributions attached to the future water supply 

and water demand scenarios, market price of the management measures which are beyond the 

control of decision makers, and the risk tolerance levels of decision makers. Four parametric 

probability distributions were chosen to be attached to the water supply scenarios, in order to test 

the sensitivity of decision making results to the probability distribution patterns. The result shows 

that the patterns of probability distributions have almost no impact on the final decision. The 

water demand scenarios in a deterministic way and probabilistic way produced different decision 

making results when the decision maker is risk taking. However, to consider the uncertainty of 

future water demand instead of using a single trend helps decision makers to build confidence, as 

the decision is more robust against a large set of futures instead of a single one. The result under 

the probabilistic water demand scenarios is more plausible and robust against the uncertain 

futures. The differentiation of preference and risk attitudes of decision makers leads to the 

various choices of optimal decision, which can be explained as whether the decision makers’ 

willing to take the risk with higher probability of higher cost, in order to have more chance to 

achieve much lower cost. Finally, the decision result is more sensitive to the market price of the 

management measures and then risk attitude levels of decision makers, compared with the 

probability distribution patterns assigned to the water supply scenarios.  

 

In short, the study tried to deal with the decision making problem from both the perspective of 

engineers and decision makers. It managed to explain one of the reasons why it is difficult to 

achieve consensus in a collective decision making from the risk point of view in an uncertain 

context. Additionally, this study focused on the analysis of two important uncertainty sources 

using the probabilistic scenarios-based approach and sensitivity analysis. Especially, the 

probabilistic scenario-based approach has combined the strength from the existing classic 

decision making and traditional scenario planning. Other uncertainties are out of the scope of the 

study, such as uncertainties in the communication process to the decision makers. However, it is 
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essential to realize the importance and essential to communicate and present the decision results 

to the decision makers, and future work is required to take it into account. Decision making in 

water resources planning and management is complex in real life as uncertainty is unavoidable, 

the developed decision making framework has provided a feasible way to cope with uncertainty 

as well as making decisions as plausible and robust as possible against the uncertain futures.  



 

119 
 

119 

Chapter 7 Conclusions and Recommendations 

7.1 Conclusions  

This thesis describes uncertainty management and decision making under uncertainty for water 

resources planning and management. Uncertainty always exists in the decision making process 

and complicates it. The study provides answers to the two research questions raised in the 

introduction: (1) How to develop scenarios for future water circumstances to cope with 

uncertainty? (2) How to make robust and rational decisions based on the developed scenarios? 

What I contributed to answering these two questions are:  

 

(1) Uncertainties from hydro-climatic, socio-economic, and institutional variables were studied. 

Scenarios were developed to cope with uncertainty both qualitatively and quantitatively. Unlike 

traditional scenario development, probability distributions were attached to quantitative scenarios 

in order to address uncertainty completely and explicitly. Chapter 2 reviewed studies and 

methods for scenario development, and argued the necessity of attaching probabilistic 

information to scenarios. Probabilistic scenarios were developed and applied to estimate future 

climatic variables in the Yellow River Basin (Chapter 3), and project driving forces of future 

water demand in the Yellow River Delta (Chapter 4), respectively.  

(2) A probabilistic scenario-based decision making framework was developed, which emphasizes 

uncertainty management and decision making, and aims at robust and rational decisions under 

uncertainty by including a large set of scenarios with associated probabilities, as opposed to the 

use of deterministic predictions (Chapter 5). The proposed framework was built on the basis of 

probabilistic scenario development and decision theory. The framework integrates the strengths 

of three existing decision-making methods applied in water resources management while 

avoiding their disadvantages. In Chapter 6, the proposed decision making framework was applied 

to choose the most cost-effective and favourable water management policy for matching future 

water supply and water demand in the Yellow River Delta. 

 

The main contribution of the thesis was to add probabilistic information to scenario development, 

and apply it to develop water scenarios in the Yellow River Basin and Yellow River Delta. As 

assignment of probabilities typically is a subjective process, use of reference methods and proper 

documentation of procedures is essential. This was demonstrated in Chapter 3, where 
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probabilistic climate scenarios were developed using the Principle of Maximum Entropy 

(POME), which selects the probability distribution with maximal entropy (largest uncertainty) 

given available knowledge. This provides a reason to prefer one probability distribution on the 

others. Besides uncertainty related to future climate change, uncertainty from the applied 

hydrological model was not negligible. The propagation of uncertainty from the climatic driving 

forces and the applied hydrological model to future runoff was quantified using the Markov 

Chain Monte Carlo (MCMC) sampling. Regarding contributions of each uncertainty source to the 

total uncertainty, it was found that uncertainty from the climate variables contributes more than 

the model parameters, but is similar to uncertainty due to hydrological model structure and 

parameters. It was important to consider the uncertainty from both climate change and 

hydrological model since they are both significant. 

 

Chapter 4 developed a scenario-based expert elicitation framework to probabilistically explore 

the driving forces of future water demand. The well-established SHELF method was applied to 

estimate the prior probability distributions of the driving forces on basis of the scenario 

storylines. Following the GBN matrix approach, four storylines comprising two extremes 

(urbanization speed-up/ agriculture intensive, water-saving/ water consumptive) were constructed 

to describe the future development of the YRD. Estimates from three water experts were 

aggregated into a single probability distribution using the simple linear pooling approach. The 

Gaussian copula was used to model the dependence among the driving forces. Uncertainty from 

all driving forces was propagated to future water demand using MCMC sampling. Instead of 

being presented with limited discrete values, future water demand was quantified using 

continuous probability distributions, covering a wide range of possible future alternatives. 

 

Following probabilistic scenario development, another contribution of the thesis was the 

development of a systematic decision making framework to support robust and rational decision 

making under uncertainty. The framework not only investigated the monetary objective, but also 

further engaged the decision makers by investigating their preferences and risk attitudes (risk 

averse, risk neutral, risk taking) under uncertainty. Decision making is not only about choosing a 

decision, but also about why the decision is chosen by the decision maker, and why 

disagreements could exist within a group of decision makers. Although consideration of their 

preference and risk attitudes could not provide a prescriptive guide for decision making, it could 

help to explain, and even predict the behaviour of decision makers. The application of maximum 
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expected utility theory allows the engagement of decision makers’ preference and risk attitudes. 

To compare the economic outcomes of decision alternatives, the entire distribution of costs and 

utilities, rather than one or two moments, were taken into account, and alternatives were ranked 

using stochastic dominance tests. In Chapter 6, 17 management measures were proposed to fill 

the water shortage gap in the YRD for the next 30 years. Monetary and utility-based objective 

functions were identified, thus combining the engineering as well as decision makers’ 

perspectives. A negative exponential utility function was implemented to model three risk 

attitudes using the risk tolerance parameter. In the decision making process, sensitivity analysis 

was implemented to test the robustness of decision alternatives given uncertainty from water 

supply, water demand, market price of management measures, and the preference from decision 

makers. The sensitivity analysis showed that the decision result is more sensitive to the market 

price of the management measures and risk attitudes of decision makers, than to the probability 

distribution patterns assigned to the water scenarios.  

7.2 Future directions and researches 

Eight recommendations are proposed for future research on scenario development and decision 

making in water resources planning and management.  

 

(1) The proposed Bayesian framework in probabilistic scenario development has great potential 

in future scenario development exercises. Instead of assigning probability distributions 

objectively, the Bayesian framework provides a paradigm to assign subjective priors and update 

to posteriors in light of new information and data. In the study, non-informative priors were 

assigned for the climate variables, and information about climate change from GCMs was used to 

update the probability distributions. Bayesian probabilities add numerical values to scenarios; 

however, there are challenges to apply Bayesian probabilities for scenario development: such as 

knowledge requirement about probabilities and Bayesian theory, and sufficient resources 

requirement such as time, information, computation and research. For example, the application of 

the probability update is complicated, as to obtain new data or information is sometimes 

expensive and time-consuming, to estimate the conditional probabilities requires scenario 

developers to be highly explicit and clear about their assumptions, or the likelihood function is 

difficult to estimate or interpret. Future research should be carried out to better understand and 

implement Bayesian probabilities in scenario development. 
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(2) More research has to be carried out to increase the credibility and reliability of expert 

elicitation in probabilistic scenario development. Expert elicitation can be used to estimate priors 

and the likelihood functions when hard data is not available or limited. Usually, experts need to 

be carefully selected and trained, and they are supposed to be calibrated to show their ability to 

express their knowledge. In this study, the experts were not calibrated in advance of the water 

demand scenarios development exercise, but they were asked to provide feedback and revision of 

their judgement iteratively using an existing method (SHELF). Expert elicitation can provide 

important inputs for scientific research and real-life applications, while more research has to be 

carried out to increase its credibility and reliability. Another issue with expert elicitation is the 

aggregation of the opinions of multiple experts; neither mathematical approaches such as 

Bayesian paradigm nor behaviour approaches can perfectly solve the problem. Future research 

should be done to develop better mathematical models and behaviour aggregation procedures to 

improve the performance.  

 

(3) The rainfall-runoff model applied to simulate the hydrological process in the YRB should be 

improved. Considering the large area of the YRB and its heterogeneous characteristics of the 

hydrological parameters (land use, soil moisture, evaporation, etc.), the YRB should be divided 

into several sub-basins when simulating the hydrological process. In future research, spatial 

variability should be included in the modelling process in order to better understand and model 

the hydrological processes.  

 

(4) Further investigations should be implemented to weigh the GCMs prediction performance 

when estimating the probability distributions of the hydro-climatic variables. The hydro-climatic 

variables, as input for the hydrological model, were downscaled outputs from multiple GCMs 

and IPCC emission scenarios. In the analysis, all downscaled climate scenarios were assumed to 

be equally weighted. The uncertainty due to different downscaling techniques is difficult to be 

determined. The performance of the GCMs is different due to the different assumptions about 

climate model parameters and structures, and should be weighted differently in future work.  

 

(5) Decision makers should be engaged more in decision analysis. Decision makers were 

involved by explicitly indicating and measuring their preference and risk attitudes. The risk 

attitudes were simply modelled by a negative exponential utility function. Their preference of the 

decision alternatives were measured and compared by expected utility. In reality, no single utility 
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function can objectively represent the decision makers’ preference and risk attitudes. There have 

been a number of studies to elicit utility functions (e.g.,Chajewska, Getoor et al. 1998, 

Abdellaoui 2000), which have not been widely applied in decision making problems in water 

resources planning and management. Although expected utility theory, as a simplification and 

abstraction of reality, has been challenged not to represent the complex and usually ‘irrational’ 

human behaviours, to investigate the complex human behaviours is out of the study scope. 

However, future research should pay more attention to study the characteristics and behaviours of 

decision makers, in order to elicit the utility functions which can closely represent and interpret 

their preferences.  

 

(6) Adaptive water management should not be a trendy concept but a pragmatic guide. Adaptive 

water resources management is more flexible and dynamic to deal with uncertainty and surprise, 

as it allows the change of decisions after new information is obtained or new lessons are learned 

from past experience, since adaptive water management is a ‘learning through doing’ process 

(Slinger, Huizinga et al. 2005).  Although the proposed decision making framework did not 

explicitly emphasize an adaptive process, it is meant to support an iterative and repetitive 

decision making, when scenarios are diverging from expected trajectories, or new decision 

alternatives have to be proposed and evaluated under the framework. In order to support adaptive 

water management, continuous monitoring and comparison of developed scenarios and future 

reality is required for scenario updating.  

 

(7) A large effort in decision making research has been made to understand and analyse 

uncertainty, and more effort should also be made to communicate uncertainty among scientists, 

experts, decision makers, and stakeholders. Besides scientific research conducted by scientists 

and experts, the participation of stakeholders and decision makers let them contribute local 

knowledge and expectations to scenario development in face of uncertainty. Communicating 

uncertainty is also helpful for the public and the decision makers to realize the potential risks 

associated with uncertainty. Articulating uncertainty to the public without technical background 

is a challenge, but it is essential for a transparent and participatory water resources management.  

 

(8) Water shortage in the YRD is likely to become worse, due to the impact of climate change, 

population growth, economic development, water competition upstream, etc. Water supply in the 

YRD is heavily dependent on the YRB. However, the water shortage situation in the YRB is 



 

124 
 

124 Chapter 7 

already severe enough. The available water allocated to the YRD is not likely to meet its 

increasing water demand and socio-economic development. The thesis mainly investigated the 

technical measures to manage water supply and demand, such as building new water projects and 

investing in water saving technologies. The effect of these measures to relieve water shortage is 

significant and rapid, but large monetary and labour investment is required to implement them. 

However, non-technical measures are believed to help in relieving the problem in a low-cost and 

high-impact way. For example, increasing the public awareness and participation of water-saving 

through education, adjusting water prices (the water price for irrigation is very low while its 

water demand is high in the YRD) to stimulate more efficient water use, promoting rain harvest 

technology for each household, etc (Savenije and Van Der Zaag 2002). In practice, an optimal 

combination of technical and non-technical water management is required to relieve the water 

shortage problems and maintain socio-economic development.  
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Appendix 

Appendix A. Scenario-based probabilistic elicitation with SHELF 
 

The probabilistic elicitation procedure includes the SHELF methods procedure to elicit prior 

probabilities from experts described in section 4.2. The details are described below. 

 

(1) Selection of experts 

It is worthwhile to involve multiple experts and aggregate their opinions of probability 

assessment. Ferrell(1985) suggest that three to five experts are a good number. Three experts, one 

water manager Mr. Mingyuan Fan and two researchers Ms. Huawei Chen and Dr. Jian Liu, from 

the Water Resource Research Institute in Shangdong Province were involved and consulted for 

predicting water demand. Mr. Fan works on water resources management, and especially focuses 

on optimal water resources distribution in the YRD. Ms. Chen and Dr. Liu work on hydrology 

and water resource management. They have been working and researching about water resources 

issues in the Yellow River Delta for years and have experience in modelling water availability 

and demand, planning water infrastructure and allocating water in the YRD. In the study, experts 

are identified without using calibration approaches, and they are assumed to be equally qualified 

for the probability assessment. 

 

(2) ‘Training’ of experts 

As the experts already have plenty of knowledge and experience about water resources planning 

and management in the Yellow River Delta, the training mainly aims to help them to get familiar 

with the knowledge of probability, in order to build their comfort with the elicitation process. To 

explain the 50% quartile of a variable, denoted as X (50%), questions were asked such as “which 

value of X do you think is equally likely to be exceeded or not”. To elicit the 25% quartile, 

questions were asked such as “what is the value of X located in the middle between the X (50%) 

and the lowest possible value of X?” Another training task is to help them get familiar with the 

SHELF procedure and software. The SHELF package includes the procedure and notes, and they 

were explained to experts. To practice the SHELF-Quartile elicitation process, the probability 

distribution of the historical annual urban population growth rate in the YRD was estimated by 

them. Their elicited probability distributions were compared with the probability distribution 
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from the observed data (although very few). Through this exercise, the experts were expected to 

have better understanding of probability distributions and the elicitation approach. 

(3) Elicitation process using SHELF 

Although the experts already have plenty of knowledge and experience about water resources 

planning and management in the YRD, available materials about the quantities of interest were 

sent beforehand. More information is helpful to avoid “availability heuristic” in which experts 

rely only on the knowledge already in their mind.  

 

Before the elicitation process, the purpose of the elicitation and the uncertainties should be 

explained explicitly. The variables were defined as explained in section 5.5.4. The quartile 

method was chosen for probability elicitation. In practice, it is not possible to estimate the 

probability distribution directly, but rather the quartiles or moments of the probability 

distribution. The upper and lowers bounds, as well as 25%, 50%, and 75% quartiles, were elicited 

in order to characterize the tails, the position, and the quartiles in between, which helps to decide 

the shape and fit the curve with an appropriate probability distribution. The experts were 

consulted and had to make judgement separately for each variable. With the judgement of 

quartiles, a probability distribution can be fit using SHELF software, and the expert can adjust 

and correct the distribution through the visualized curve. 
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Appendix B. Quartile estimation for annual growth rate of water demand variables in the next 30 
years from three experts under SHELF procedure. Unit (%) 

Quartile Index Variable Description E 1 E2 E3 Index Variable Description E 1 E2 E 3 
0 

1 r.pop1 urban population 

0.5 0.5 0.5 

11 r.area1 
paddy rice 

area 

0.5 0.5 0.5 
0.25 2 1 2 0.8 0.6 0.55 
0.5 3.00 2 2.5 1.00 0.7 0.7 
0.75 3.20 3 3 1.20 1 1 
1 3.50 3.5 3.5 1.30 1.3 1.3 
0 

2 r.pop2 rural population 

-3 -3 -3 

12 r.area2 
other crop 

area 

0.5 0.51 0.51 
0.25 -2.5 -2.5 -1.5 2 0.7 0.55 
0.5 -2 -1.5 -1.3 2.5 1.5 1 
0.75 -1.5 0.5 -0.2 2.6 2.5 2.5 
1 2 2 2 3 3 3 
0 

3 r.Ipop1 
urban water use 

intensity 

-2.5 -2.5 -2.5 

13 r.area3 
vegetable 

area 

0.5 0.48 0.48 
0.25 -0.4 -0.5 -0.1 1 0.8 0.55 
0.5 0.15 0.1 0.1 1.2 1 0.7 
0.75 0.16 0.15 0.15 1.5 1.5 1.4 
1 0.17 0.17 0.17 2 2 2 
0 

4 r.Ipop2 
rural water use 

intensity 

-8.7 -8.7 -8.7 

14 r.area4 orchard area 

1 1 1 
0.25 0.5 -7 -0.5 5 2 1.5 
0.5 0.8 -5 0.1 6 3 2 
0.75 0.9 -3 0.15 6.8 5 2.7 
1 1 1 1 7 7 7 
0 

5 r.prd1 
industry 

production 

-3 -3 -3 

15 r.area5 grass area 

-1.8 -1.8 -1.8 
0.25 5 2 8 -0.5 -1 -0.5 
0.5 7 6 8.5 1 0.5 0.7 
0.75 9 8 9 1.2 1 1 
1 10 10 10 2 2 2 
0 

6 r.prd2 
archetect 

production 

-4 -4 -4 

16 r.area6 fishing area 

-1.1 -1.1 -1.1 
0.25 5 1 7 -0.5 -0.8 -1 
0.5 6 4 7.1 0 0.2 0.5 
0.75 6.5 6 7.4 0.3 0.5 0.8 
1 7.5 7.5 7.5 1 1 1 
0 

7 r.prd3 
tertiary 

production 

5 5 5 

17 r.Iagr1 
paddy rice 
irrgation 
intensity 

-2 -2 -2 
0.25 8 7 5.5 -1.8 -1.5 -

1.75 
0.5 15 10 6.5 -1 -1 -1.7 
0.75 18 15 7 -0.5 -0.6 -1.5 
1 20 20 20 0 0 0 
0 

8 r.Iind1 
industry water 
use intensity 

-5 -5 -5 

18 r.Iagr2 
other crop 
irrgation 
intensity 

-5 -5 -5 
0.25 -4.5 -4.5 -4.5 0 -4 -4 
0.5 -4 -4 -3.5 2.2 -3 -3 
0.75 -3 -2 -3 2.5 1 -2 
1 1 1 1 3 3 3 
0 

9 r.Iind2 
archetect water 
use intensity 

-2 -2 -2 

19 r.Iagr3 
vegetable 
irrgation 
intensity 

-5 -5 -5 
0.25 -1.9 -1.5 -1.5 0 -4.5 -4.5 
0.5 -1.8 -1 -1.3 2.3 -4 -2.5 
0.75 -1 0.34 -1 2.5 -2 -2 
1 2 2 2 3 3 3 
0 

10 r.Iind3 
tertiary water use 

intensity 

-10 -10 -10             
0.25 -9 -7.5 -8        
0.5 -8 -5 -6.5        
0.75 -6 -3 -4.5        
1 -1 -1 -1             
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Appendix C Probability fitting of urban population growth rate using SHELF Quartile method 
Quartile estimation of urban population growth rate by three experts 

Quartile Index Variable Description E 1 E2 E3 
0 

1 r.pop1 
urban 

population 

0.5 0.5 0.5 
0.25 2 1 2 
0.5 3.00 2 2.5 
0.75 3.20 3 3 
1 3.50 3.5 3.5 

 

 

Figures of distribution fit for r.pop1 with SHELF  

(E1)                                                                                                   (E2) 

                         

 

(E3) 
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Appendix D Prior probability distributions fitted with SHELF and resulting combined probability 
distributions using an equally weighted average approach 
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Appendix E Correlation matrix (Product moment correlation) among variables 
(1) Pearson’s correlation of variables to model domestic water demand 

  r.pop1 r.pop2 r.Idom1 r.Idom2 

r.pop1 1 -0.8 -0.45 0 

r.pop2 -0.8 1 0 -0.25 

r.Idom1 -0.45 0 1 0 

r.Idom2 0 -0.25 0 1 

 

(2) Pearson’s correlation of variables to model industrial water demand 

  r.prd1 r.prd2 r.prd3 r.Iind1 r.Iind2 r.Iind3 

r.prd1 1 0.50 0.45 -0.6 -0.2 -0.25 

r.prd2 0.50 1 0.40 -0.2 -0.6 -0.2 

r.prd3 0.45 0.40 1 -0.4 -0.4 -0.6 

r.Iind1 -0.6 -0.2 -0.4 1 0 0 

r.Iind2 -0.2 -0.6 -0.4 0 1 0 

r.Iind3 -0.25 -0.2 -0.6 0 0 1 

 

(3) Pearson’s correlation of variables to model agricultural water demand 

  r.area1 r.area2 r.area3 r.area4 r.area5 r.area6 r.Iarea1 r.Iarea2 r.Iarea3 

r.area1 1 0.6 0.45 0.45 0.3 0.2 -0.6 -0.25 -0.25 

r.area2 0.6 1 0.5 0.5 0.35 0.25 -0.3 -0.6 -0.3 

r.area3 0.45 0.5 1 0.4 0.3 0.2 -0.2 -0.2 -0.6 

r.area4 0.45 0.5 0.4 1 0.25 0.15 -0.15 -0.15 -0.15 

r.area5 0.3 0.35 0.3 0.25 1 0.1 -0.1 -0.1 -0.1 

r.area6 0.2 0.25 0.2 0.15 0.1 1 -0.1 -0.1 -0.1 

r.Iarea1 -0.6 -0.3 -0.2 -0.15 -0.1 -0.1 1 0 0 

r.Iarea2 -0.25 -0.6 -0.2 -0.15 -0.1 -0.1 0 1 0 

r.Iarea3 -0.25 -0.3 -0.6 -0.15 -0.1 -0.1 0 0 1 
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