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Summary

Uncertainty is an unavoidable part of decision mgkDecisions always have to be made before
perfect knowledge on their consequences is knoveveer, there is no ‘perfect knowledge’ in
hindsight. To research uncertainty and take actipreactively becomes the challenge to
scientists and decision makers. In water resouptasning and management, uncertainty is
presenting at all stages of planning, developirdyraanaging a water system (Loucks, Van Beek
et al. 2005). The water systems are dynamicallyedriby factors such as climate, environment,
demographics, socio-economy, technology, policied @egulations, etc. For example, climate
change will affect hydrological and water condiBosuch as rainfall, temperature, water
availability for irrigation; socio-economic developnt causes the change of water demand.
However, the variation of these driving forces rkmown and beyond the control of decision
makers, so as their impact on water systems. To plad manage water systems without
addressing uncertainty will invite surprises antepbal risk subject to unexpected consequences
and losses. Therefore, the objective of this thissie contribute knowledge to decision making

under uncertainty for water resources planningraadagement.

Scenarios have been widely used to explore unogytdor long-term strategic planning.
Scenarios are defined as “a coherent and plaudiseription of possible future states of the
world” by the IPCC. They are distinguished from theterministic or most-likely prediction of
future states. Scenario-based approaches have dpg#ied largely to analyse future water-
related issues, and support water managers andialecnakers to put forward strategies for
potential problems. Two criteria ‘robustness’ aratibnality’ are proposed for decision making
in face of uncertainty. Unlike traditional decisianalysis which makes decisions based on the
‘most-likely’ futures, robust decisions are thoskowperform satisfactorily over a wide range of
plausible future states. Rationality was usuallydeiled to maximize the expected profits in
economic terms. Von Neumann and Morgenstern (18dd@gd the risk attitudes and satisfaction
of decision makers to economic outcomes, and ioted expected utility theory to model
rationality as maximizing the expected utility. Bpply scenario-based approaches to support
decision making in a rational and robust way, thecial task is to develop scenarios that can

describe and quantify future states under unceytain
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Summary

Two research questions are raised in the research:
(1) How to develop scenarios for future water ainstances to cope with uncertainty?

(2) How to make robust and rational decisions basethe developed scenarios?

Scenarios are defined as qualitative storylinesiatiee future, however, quantitative projections
and numerical information should be included tainf decision making. Traditional scenarios
were quantified according to each storyline, aravés out possible situations in between them.
The ignorance of in-between scenarios constraiesettplorative characteristic of scenarios.
Besides, each storyline is assumed to be equ&iyyliwithout attaching probabilities. Future
states with equal chance are not realistic, afidrdes decision makers to pick up any scenario
arbitrarily. Conversely, the application of proldalds encourages representing uncertainty and
explaining assumptions behind scenarios explicittyis also more approachable for risk
quantification, and informs decision makers théedént chances of future situations. The thesis
advances scenario development by combining nundrit@mation and attaching probability
distributions.

Probability distributions of future states can obky estimated subjectively, and they are highly
conditional on the assumptions being made. Baygmialpabilities and expert judgement are two
main techniques to combine subjective probabilittesl scenarios. Subjectivity cannot be
avoided or stopped when talking about uncertaimtgl the important thing is to make the
assumptions and expert judgement about scenariosxalecit and transparent as possible.
Besides, the principle of Maximal entropy can beduto choose probability distributions with
the largest uncertainty. To estimate climate changect on water availability in the Yellow
River Basin (YRB), China in the next 30 years, @tobstic scenarios of water availability were
generated which are based on the climate scen@esipitation and temperature) based on the
projections of General Circulation Models (GCMsp. ifivestigate socio-economic development
impact on water demand in the Yellow River DeltaR(Y), China, probabilistic scenarios of
water demand were developed using expert judgerfent. storylines comprising two extremes
(urbanization speed-up/ agriculture intensive, wasving/ water consumptive) were constructed
to describe the future development of the YRD. Aisteng expert elicitation technique, i.e. the
SHELF method, is used to elicit prior probabilities socio-economic driving variables from

local experts. Probability distributions from inglual experts are then aggregated, and



Summary iii

correlations between different variables are takémaccount by using a multivariate probability

distribution based on the Gaussian Copula.

The thesis developed the probabilistic scenari@thadecision making framework to handle
uncertainties and support decision making in aesyatic, robust and rational manner. The
framework relies on a full probabilistic distriboti of scenarios and outcomes, and ranks
decision alternatives based on expected utilitptheThe framework not only investigated the
monetary objective, but also further engaged theisdm makers by investigating their
preferences and risk attitudes (risk averse, resktnal, risk taking) under uncertainty. The risk
attitudes of decision makers were modelled usingegative exponential utility function. The
decision making framework was applied for a casdysbf long-term water resources planning
and management in the YRD. Evaluation and rankihngamdidate strategies was performed
against the full probability distribution of watexupply and demand scenarios. Sensitivity
analysis was performed to test the robustnesseofiéitisions with respect to uncertain factors

such as water supply and demand, market pricethenisk attitudes of decision makers.

In summary, the thesis contributes knowledge oretamty management and decision making,
which includes: achieve better understanding ofstiage-of-the-art in scenario science; advance
scenario development — from qualitative storylit@guantitative projections, discrete states to
continuous states, equal- likelihood states to giodistic states; develop the probabilistic
scenario-based decision making framework to handéertainties and support decision making
in a systematic, robust and rational manner; takibgaccount risk from both the engineers’ and
decision makers’ perspectives; and analyse thedntle of decision makers’ risk attitudes on the
choice of decisions.
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Samenvatting

Onzekerheid is een onvermijdelijk onderdeel vanluie®rming. Beslissingen moeten altijd
worden gemaakt voordat perfecte kennis over delgemadaarvan bekend is. Echter, er is geen
'volmaakte kennis' achteraf. Om de onzekerheidn@e@oeken en proactief maatregelen te
treffen wordt de uitdaging voor wetenschappers @ritismakers. In de planning en beheer van
watervoorraden is onzekerheid in alle stadia vaanmihg, ontwikkeling en beheer van een
watersysteem aanwezig (Loucks, Van Beek et al.5P0De watersystemen worden dynamisch
gedreven door factoren zoals het klimaat, milieamdgrafie, socio-economie, technologie,
beleid en regelgeving, etc. Bijvoorbeeld: klimaaarelering zal de hydrologische- en
wateromstandigheden zoals regenval, temperatuubedehikbaarheid van water voor irrigatie
beinvioeden; sociaaleconomische ontwikkeling zatgbr een verandering in de vraag naar
water. Echter, de variatie van deze drijfveren isbekend en buiten de controle van
beleidsmakers, net als hun impact op watersystekheinplannen en beheren van watersystemen
zonder het aanpakken van onzekerheid nodigt uivéotassingen en mogelijke risico’s met
onverwachte gevolgen en verliezen. Het doel vapiefschrift is daarom kennis bij te dragen

aan besluitvorming onder onzekerheid voor watesueses planning en beheer.

Scenario's zijn op grote schaal gebruikt om de kereeid voor strategische planning op lange
termijn te onderzoeken. Scenario's zijn gedefidiegls "een samenhangend en aannemelijk
beschrijving van mogelijke toekomstige toestandean \de wereld" door het IPCC. Ze
onderscheiden zich van de deterministische of meesarschijnlijke voorspelling van
toekomstige toestanden. Op scenario's gebaseerdaldrengen zijn grotendeels gebruikt om
toekomstige water gerelateerde vraagstukken teyssr@n en om waterbeheerders en
beleidsmakers te ondersteunen om strategieén paam te brengen voor mogelijke problemen.
De twee criteria 'robuustheid’ en 'rationaliteiijn zvoorgesteld voor besluitvorming met
onzekerheid. In tegenstelling tot traditionele lesshgsanalyse die beslissingen maakt op basis
van de 'meest waarschijnlijke' toekomsten, gedragbuouste beslissingen zich naar wens over
een breed scala van plausibele toekomstige statdionaliteit was meestal gemodelleerd om de
verwachte winsten in economische termen te maxéman. Von Neumann en Morgenstern
(1947) voegde de risico-attitudes en tevredenhead Wesluitvormers toe aan economische

resultaten, en introduceerde verwachte nutstheone rationaliteit te modelleren als het

iv
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maximaliseren van het verwachte nut. Om op scesagebaseerde aanpakken toe te passen om
besluitvorming te ondersteunen in een rationeleobnuste manier, is het cruciaal om scenario’s
te ontwikkelen die de toekomstige staten kunnenchyggen en kwantificeren onder

onzekerheid.

Twee onderzoeksvragen worden gesteld in het ondlerzo

(1) Hoe kunnen we scenario's voor toekomstige watestandigheden ontwikkelen om met
onzekerheid om te gaan?

(2) Hoe kunnen we robuuste en rationele beslissingemen op basis van de ontwikkelde

scenario's?

Scenario's worden gedefinieerd als kwalitatieve haallijnen over de toekomst, maar
kwantitatieve prognoses en numerieke gegevens mogterden meegenomen om de
besluitvorming te informeren. Traditionele scenariwerden gekwantificeerd op basis van elke
verhaallijn apart, en laat mogelijke situaties wekg tussen hen ligt. De onwetendheid van de
tussenin scenario's beperkt de exploratieve kenmek scenario's. Bovendien wordt
verondersteld dat elk verhaalljn even waarschinlis zonder daaraan verbonden
waarschijnlijkheden. Toekomstige toestanden megkgekans zijn niet realistisch, en het dwingt
besluitvormers scenario’s willekeurig uit te kiezédmgekeerd moedigt het toepassen van
waarschijnlijkheden het representeren van onzelerban en het expliciet uitleggen van
veronderstellingen. Het is ook meer toegankelijlorvbet kwantificering van risico, en het
informeert beleidsmakers over de verschillende samjnlijkheden van toekomstige situaties.
Het proefschrift bevordert scenario-ontwikkelingodtnet combineren van numerieke gegevens

en het aanbrengen van kansverdelingen.

In tegenstelling tot frequentists die waarschikiigden schatten aan de hand van enorm veel
waargenomen data, kunnen de kansverdelingen vdiornmstige toestanden alleen geschat
subjectief worden, en zijn ze zeer afhankelijk @annames. Bayesiaanse waarschijnlijkheden en
expert judgementzijn twee belangrijke technieken om subjectieveamehijnlijikhneden en
scenario's te combineren. Subjectiviteit kan nietden voorkomen of gestopt wanneer het over
onzekerheid gaat, en het belangrijkste is om deamaas emxpert judgemeraver scenario’s zo
expliciet en transparant mogelijk te maken. Daash&an het principe van maximale entropie

worden toegepast om kansverdelingen te kiezen emez@ groot mogelijke onzekerheid. Om de
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impact van klimaatverandering in te schatten opekchikbaarheid van water in de Gele Rivier
Bekken (GRB) in China voor de komende 30 jaar, errgrobabilistische scenario's van de
beschikbaarheid van water gegenereerd die gebasgerop de klimaatscenario's (neerslag en
temperatuur) op basis van de projecties@aneral Circulation Model§GCM's). Om de invloed
van sociaaleconomische ontwikkeling op de vraag nader te onderzoeken in de Gele Rivier
Delta (GRD) in China, werden probabilistische sciers van de vraag naar water ontwikkeld
met behulp vaexpert judgemen¥ier verhaallijnen bestaande uit twee uiterstergnelling van
verstedelijking / landbouw intensief, waterbespdréwater consumptief) werden geconstrueerd
om de toekomstige ontwikkeling van de GRD te bepdw. Een bestaande
expertbevragingtechniek, namelijk d&HELF methode wordt gebruikt om a priori
waarschijnlijkheden van de sociaaleconomische stdeevariabelen van lokale experts te
verkrijgen. Kansverdelingen van individuele deskged worden vervolgens samengevoegd, en
correlaties tussen de verschillende variabelen &orderdisconteerd met behulp van een

multivariate kansverdeling op basis van de Gaussiaula.

Het proefschrift ontwikkelde het kader voor op su@vis gebaseerd probabilistische
besluitvorming om met onzekerheden om te gaan emestuitvorming te ondersteunen in een
systematische, robuuste en rationele manier. Heterkas gebaseerd op een volledige
probabilistische verdeling van scenario's en uitkiam, en rangschikt beslissingsalternatieven op
basis van verwachte nutstheorie. Het kader heeftallieen onderzoek gedaan naar de monetaire
doelstelling, maar heeft ook de beslissers erbtyokken door het onderzoeken van hun
voorkeuren en risicohouding (risico ontwijkend, iats neutraal, risico nemend) onder
onzekerheid. De risicohoudingen van beslissers \gerdodelleerd met behulp van een negatief
exponentiéle nutsfunctie. Het besluitvormingskaderd toegepast op een case study van
langetermijnplanning van watervoorraden en manageme de GRD. Evaluatie en
rangschikking van kandidaat-strategieén werd udgey tegen de volledige kansverdeling van
vraag en aanbod naar water scenario's. Gevoelggread/se werd uitgevoerd om de robuustheid
van de gekozen beslissing te testen ten opzichewnaekere factoren zoals de vraag en aanbod

naar water, de marktprijzen en de risicohoudingheridsmakers.

Vi
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Chapter 1 Introduction

1.1 Water Resources planning and management

Water resources planning and management referakonghdecisions and taking actions to solve
water-related problems and obtain benefits from tise of water resources. Water-related
problems can be caused by too much, too little yvateby water of low quality due to pollution.
These problems can cause great damage and lossme[s wealth, health, or even lives, when
no careful planning and management takes placdanaaard looking manner. The task of water
resources planning and management is to take adiihandle these problems proactively and
reactively, in order to avoid loss and obtain beregfonomically and socially. The scope of water
resources planning and management involves inflagnand improving the interaction and
integration among three independent and dynamisysté¥ms: natural resources subsystem,
socio-economic subsystem, and institutional suksys{Loucks, Van Beek et al. 2005).
Integrated water resources management (IWRM) wasduced to systematically consider the
three subsystems and manage water resources inglone of water resources, water users, and
their temporal and spatial scales (Savenije and d&anZaag 2000, Savenije and Van der Zaag
2008), for the sake of equitable, efficient andiainsble development of water, land and other
environmental resources (Calder 1998, GWP 2000cksiVan Beek et al. 2005).

However, the subsystems are continuously chanfingxample, the changing relation between
anthropological development and water in the Amtboene has been reviewed by (Savenije,
Hoekstra et al. 2013). Unsurprisingly, they willntmue the changing in the future, thereby
impacting water resources. The future state ofwhter system is dynamic and driven by many
variables from the changing subsystems; e.g. dimanvironment, demographics, socio-
economy, technology, policies and regulations, watenagement infrastructure, etc. For
instance, climate change and aging infrastructwiésmpact water supply. Population growth
and urbanization will impact water demand. Thetshif the social preferences and values will
also impact water policy. These driving forces dewveloping in uncertain ways beyond the
control of scientists and decision makers, andathg they drive the water systems are unknown
as well (Mahmoud 2008)he challenge for water resources planning and genant is that

both the changing subsystems and their impact darwgstems cannot be known or understood
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completely and accurately in either short or loegm Decisions have to be made for the

immediate future while considering their long-tampact.

Uncertainty is present in all stages of planningvedoping, and managing a water system
(Loucks, Van Beek et al. 2005). Failure to addnessertainty in decision making activities
invites potential risk subject to unexpected conseges or losses. This thesis is about decision
making under uncertain future circumstances forewaesources planning and management.
Decision making under uncertainty refers to theohahoosing one decision among two or more
decision alternatives when the outcomes of thosgsida alternatives are uncertain (Schultz,
Mitchell et al. 2010). This thesis focuses on buaddan integrated framework for explicitly
addressing uncertainties and establishing decisites for ranking decision alternatives in the

decision making process.

1.2 Decision making under uncertainty in water resorces planning and
management

Uncertainty has been studied extensively and dledsifrom different perspectives and
disciplines (e.g.,Kahneman and Tversky 1982, Mor@882, van Asselt and Rotmans 2002,
Ascough li, Maier et al. 2008). Generally, threairses of uncertainty have been classified:
intrinsic variability in the systems or processesler consideration, uncertainty due to limited
knowledge, and decision making uncertainty (Kahneraad Tversky 1982, van Asselt and
Rotmans 2002, Ascough li, Maier et al. 2008). Maitiey, known as ‘external uncertainty’, refers
to the unknowable or unpredictable knowledge dudadovariability of natural processes and the
diversity of social values and human behaviour. Tdek of knowledge, known as ‘internal
uncertainty’, refers to the incomplete or imprecisgowledge state about the systems or
processes of interest. To take into account detisiaking activities, uncertainties occur
associated with the selection of a particular desisnaking approach, for instance, framing
decision problems, quantifying social objectivesually in monetary term), proposing decision
alternatives, assessing decision performance, mané#ue conflicts and diverse backgrounds of
stakeholders, and identifying the preference askl aititudes of decision makers. Strategically,
two approaches will be adopted in light of uncetai to reduce uncertainty by ‘buying
information’ through integrating existing knowledgsd additional research; and &ocept

uncertainty andact consciously through selecting robust decisionsigiheadaptable decision
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making framework, and take into account decisiolkaria attitudes towards uncertainty and risk
(Thissen and Agusdinata 2008).

Uncertainties due to the intrinsic variability akenost irreducible, while uncertainty due to lack
of knowledge can be reduced by additional dataecttin and further scientific research. Data
monitoringand model simulations are the main approachesitokgawledge and understanding
about the past and present conditions, and todstdature conditions. For example, to estimate
climate change impact on water resources, climatdets are applied to understand the climate
response to social activities and project futurdrbyclimatic variables. Hydrological models are
used to understand the hydrological response nmatdi change and forecast the future hydrologic
states for planning and managing the water systBimissurprisingly, the limited data availability
and the lack of knowledge cause our understandirtpeoclimatic and hydrological behaviour
and interactions to be incomplete. This leads toertainties incorporated in the modelling
process, for example, uncertainty in model stregwdue to an attempt to form a simplified and
approximated expression of a real process, andtanty in parameter values and input data due
to measurement errors and lack of data. These tantges are then propagated and accumulate
in the model outputs. Decision makers rely on ttiermation delivered by these model outputs,

given these uncertainties, to make decisions iewasource planning and management.

1.3 Robustness and rationality in decision makingnder uncertainty

Robustness is the key criterion for evaluatingrafigve decisions under uncertainty (Lempert,
Groves et al. 2006). Robust decisions should perfoo worse than other decision alternatives
over a wide range of plausible future alternativBise scenario development to describe and
quantify uncertainty is crucial to decide the rdibess of decisions. In traditional decision
analysis, the outcomes of candidate decisionsamergted based on the forecasted ‘most likely’
future scenarios. Since no evidence would fullyprthe actuality of the forecasted ‘most-likely’
futures, decisions based on the ‘most-likely’ fetscenarios would be suboptimal, and different
views of ‘most-likely’ futures are likely to lead ta variety of suboptimal decisions (Kouvelis
and Yu 1997). Robustness is opposite to suboptimaiig to find the decision which performs
satisfactorily over all potential assumptions amensrios about the future. Practically, it is
difficult to find a single decision performing noovge than others over all potential scenarios.
The final decision should be relatively less sewisito the assumptions used to characterize the

values and probability distributions of the paraenef the decision models.
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Rationality has traditionally been assumed to regmethe behaviour and preference of decision
makers in face of uncertainty, such as Von-Neum@rfdM) rationality (von Neumann and
Morgenstern 1947). It implicitly suggests that Hehaviour of decision makers can be modelled
in mathematical format, and their preference ofifeitactions can be predicted. Rationality has
been modelled as maximizing the expected profitaometary terms. It was challenged by the St.
Petersburg Paradox in 1713 which found that indizig refused to invest to play a coin-toss
game with infinite expected payoff, noticing thatets satisfaction decreases as marginal payoff
increases, and one becomes more cautious with hgheff while encountering the risk of
losing everything. From the engineering perspegtivisk is defined as the product of
consequence of an event multiplied with its prolgbiof occurrence. However, from the
perspective of decision makers, risk is measurégtieaamount of money that a decision maker is
willing to pay to compensate the risk (Levy 1999)r example, some decision makers tend to be
cautious to invest in a high-return, high-risk eyemhile some might be more aggressive and
risk-seeking in the same situation. The attitudedexision makers towards wealth and risk are
assumed to influence the decision making resultn \Weumann-Morgenstern modelled
rationality as maximizing the expected utility tltdiaracterizes the decision makers’ satisfaction
and attitudes on wealth and the corresponding (s Neumann and Morgenstern 1947). Two
dimensions are encoded in the expected utility rihethe value by means of utility, and the
information by means of probability (North 1968)at®nality in the expected utility framework
implies that a rational decision maker values theeutain outcome of a decision as a linear
function of the probabilities (Weijs 2011).

1.4 Research Questions
To establish an integrated decision making fram&wloat explicitly addresses uncertainty, two

research objectives are identifies:

(1) How to develop scenarios for future water cingiances to cope with uncertainty?

(2) How to make robust and rational decisions basedhe developed scenarios?

Statistics and probability are the traditional foed deal with uncertainty. Recently, scenario
analysis has also been widely employed to exploreemainty. As a future planning tool,
scenarios can be used to explore and articulategadissible future trajectories of the driving

forces affecting water resources. Scenarios aieatbhs plausible and consistent descriptions of
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future states of the world in face of uncertairdpd each scenario unfolds a possible future
(http://www.ipcc-data.org/ddc_definitions.html). Y®a scenarios have been largely developed
and utilized in describing future changes in watesources globally and regionally, in a
qualitative and quantitative manner (e.g.,Gallopimd Rijsberman 2000, Rosegrant, Cai et al.
2002, Florke and Alcamo 2004, Gleick, Cooley et 2005). However, two limitations of
guantitative scenarios need to be improved: (i) need for extending discrete scenarios to
continuous scenarios to more completely cover &itoonditions, and (ii) the need for
introducing probabilistic scenarios to explicitlyantify uncertainties. Usually, one trajectory
was quantified based on each storyline, which orthts possible trajectories between two
storylines and constrains the explorative charesties of scenarios. On the other hand,
probabilistic scenarios encourage representing rtaingy and explaining assumptions behind
scenarios explicitly (Millett 2008). From a risk aysis perspective, the implementation of
probability theory is more approachable for rislagtification and more easily interpreted for
risk management (Mcintyre, Lees et al. 2003). Tésigeament of probabilities is subjective to
some extent, typically requiring consensus amongeks, which can be a difficult and complex
process. This has been used to challenge the ugerobfbility distributions in scenario
development (Lempert, Groves et al. 2006, Kortelingssai et al. 2013). However, although
subjective, stochastic approaches provide a traespaand reproducible methodology to
systematically quantify probabilities from knowledgr belief of scientists and decision makers.
Examples include formal expert elicitation procexturfor identifying prior probability
distributions (e.g.,Oakley 2010, Low-Choy, Jamesakt 2012) and Bayesian updating to
incorporate new knowledge into the distributionsg(€hoy, O'Leary et al. 2009, Scholten,
Scheidegger et al. 2013). Furthermore, subjecticay be reduced (though not completely
eliminated) by techniques such as the principléakimal Entropy, grounded in information
theory, which provides a method for identifyingioprprobability distributions (e.g. for driving
forces) with the largest remaining uncertainty ¢stesit with the available information (Jaynes
1957). Monte Carlo techniques can then be usedrdpagate uncertainties from the driving
forces to the variables of interest (Dessai and dan Sluijs 2011). Therefore, the first
contribution of this work is to address limitatioimsexisting approaches by advancing scenarios
from discrete to continuous, and from equal-liketid to probabilistic ensembles to explore

uncertain futures.
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The developed scenarios are critical to supportistet making under uncertainty. The
application of the range of continuous and prolistiil scenarios allows the search for robust
decisions. The second contribution of this worksists of identifying decision alternatives, not
on the basis of any single or several ‘most-likedgénarios, but instead on the basis of the full
probability distributions of the quantified scemaxi A risk profile is applied to represent the
outcomes of decision alternatives and the corredipgrcumulative probability distributions. The
full probability distribution view that the risk gfile provides is more informative for the
decision maker in hedging against the risk of poenformance for some scenarios than in the
expected performance over all potential scenafamyelis and Yu 1997). The outcomes of
decision alternatives are represented using mon&tams based on economic models, but also
utility terms from utility functions to incorporatgecision makers with risk averse, risk neutral
and risk seeking attitudes towards the monetargoonés. The expected utility theory framework
is used to support decision-making by maximizing texpected utility of the decision
alternatives. It provides normative and descriptivethods for rational decision making on the
basis of explicit probabilistic information to claterize uncertainty. This is in contrast with
actual human behaviour, which often is not raticarad typically violates expected utility theory
(Shaw and Woodward 2008). Finally, to account fabjsctive assumptions made in the
modelling process, a sensitivity analysis was a&pplto test the sensitivity of decision
performance when assumptions of probability distidns and values of the decision models
change. The work thus builds and applies a proisébil scenario-based decision making
framework to incorporate uncertainty analysis amgp®rt robust and rational decision making in
a risky context, and extends both the classicailstet making framework focusing only on the
most-likely scenarios and the traditional scenaplanning and robust decision making

frameworks that exclude probabilistic information.

1.5 Outline of the thesis

Scenarios are critical to deal with uncertaintydecision making in water resource planning and
management. Chapter 2 reviews scenario developmteehhiques and studies for a better
understanding of the knowledge of scenario devetopgmThe chapter identifies two major
limitations of quantitative scenario developmenidss, and proposes a probabilistic framework

to advance scenario development.
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Chapter 3 develops probabilistic climate scenafjwscipitation and temperature) based on the
projections of GCMs, and applies them as inpui tonceptual hydrological model to construct

probabilistic scenarios of water availability iretiellow River Basin (YRB), China.

Chapter 4 develops probabilistic scenarios of futwater demand in the YRD, China. An
existing expert elicitation technique, i.e. the S$ifEnethod, is used to elicit prior probabilities of
socio-economic driving variables from local expefsobability distributions from individual

experts are then aggregated, and correlations batw#ferent variables are accounted for by

using a multivariate probability distribution bassuthe Gaussian Copula.

Chapter 5 reviews existing decision making framéwaand decision rules under uncertainty
applied in water resources planning and managememirobabilistic scenario-based decision
making framework is proposed to handle uncertan@ed support decision making in a
systematic, robust and rational manner. The framewelies on a full probabilistic range of

scenarios, and ranks decision alternatives basedmected utility theory.

Chapter 6 applies the developed decision makingdveork to demonstrate the decision making
process under uncertainty in the YRD, China. Thasien problem focuses on matching water
supply with water demand using management measorésng-term water planning. Monetary

and utility-based objective functions are usedvaliate decisions by combining the engineering
as well as decision makers’ perspectives. Prolstibilscenarios of future water supply and

demand are analysed, and stochastic utility bassilidn rules are used to rank decision
alternatives, taking into account different risketance levels of decision makers. The chapter
ends with sensitivity analysis to test the robussnef the final decision with respect to various

assumptions made.

Chapter 7 reports conclusions, and proposes recaduatiens for further research on decision

making under uncertainty for water resources plagand management.



Chapter 2 Scenario development for water resources

planning and management

2.1 Introduction

Scenarios have been used as an important toolxfioreng future uncertainties in a coherent,
consistent and plausible way, and as such, theg hagn widely used for strategic planning and
policy making (Yoe 2004). In addition, scenariodshsplanning has been adopted as a
management technology to articulate mental modmsitathe future and to help managers make
better decisions (Martelli 2001).

Scenarios were first used by strategic plannerstiier U.S. military to forecast possible
consequences of a nuclear war after World War #rnitin Kahn, regarded as the ‘Father of
scenario planning’, introduced scenario planning asethod to think about uncertain futures and
for generating ideas and strategies in businessplg (Kahn 1962). Since then, scenarios have
been used in a wide range of applications, withleubfferences in how scenarios were defined,
depending on the context or field of applicatioar Example, Porter (1985) defined a scenario as
‘an internally consistent view of what the futureght turn out to be- not a forecast, but one
possible future outcome’. Schwartz (1991) integulescenarios as ‘a tool for ordering one’s
perception about alternative future environmentw/imch one’s decisions might be played out'.
The Intergovernmental Panel on Climate Change (P@$cribed a scenario as ‘a coherent,
internally consistent and plausible descriptioragfossible future state of the world. It is not a
forecast; rather, each scenario is one alternaitivage of how the future can unfold.’
(http://www.ipcc-data.org/ddc_definitions.html). 8tkey point in all these definitions is that
scenarios deal with uncertainty in the future, that they are different from forecasts or
predictions. Indeed, the aim of scenario planngtpigenerate a wide range of possible futures,

rather than focusing only on the most likely outeom

Several reviews of scenario planning have appemrdatie literature. Chermack et al. (2001)
reviewed scenario planning literature from a cotugpperspective, describing the status of
knowledge on scenario planning. Yoe (2004) revievieztature on scenario planning for

decision-making under uncertainty, and outlinedcgfme models and techniques to develop

This Chapter is based on “Scenario development for water resource planning and management: A
review”, C. Dong, G. Schoups, N. van de Giesen, Technological Forecasting & Social Change, 2012.
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scenarios. Wagner et al. (2006) provided a reviethe state-of-the-art of scenario development
and proposed a formal framework for scenario dearaknt. Borjeson et al. (2006) categorized
scenarios into three types, namely predictive, @gplve and normative, and discussed

techniques for scenario development appropriatedoh category.

In an extensive overview of scenario developmectrgues, Bishop et al. (2007) inventoried
eight categories of techniques, including a totalk® variations, and discussed their utility,
strengths and weaknesses. Varum and Melo (201@)ded a systematic overview of scenario
planning studies published in the last few decaBesently, Haasnoot and Middelkoop (2012)
reviewed water policy evolution by using scenaiiothe Netherlands, documenting a shift from
predicting to exploring the future, which has résdlin more robust decision-making.

Previous studies on water resource managementdewenstrated that scenarios are also useful
to account for uncertainties associated with cliopatemographic, economic, social, technical
and political conditions that affect the performaraf water resource systems, including their
effects on future water availability, water demamohd water management strategies
(e.g.,Gallopin and Rijsberman 2000, Alcamo and @p@ti 2009). Scenario-based approaches
have been applied to explore and analyze futurerwatated issues, as well as to support water

managers and decision-makers to put forward saisitior potential problems (Mahmoud 2008).

Although a number of studies, as outlined abovegeHacused on reviewing and summarizing
the philosophy and practice of scenario planninggveew specifically aimed at water resource
planning and management is missing. Thereforehasnumber of studies on scenario-based
water resource planning and management is boorthieggoals of this paper are to review the
status of knowledge on scenario development foemagsource planning and management, to
highlight the shortcomings in existing methods, a@ondsuggest potential opportunities for

improving development of water resource scenarios.

The chapter is structured as follows. We start eatien 2.2 by formulating typical water

management goals, and identifying the main unceréa and driving forces that need to be taken
into account. Several examples from the literatnme given to illustrate the diverse range of
water planning practice. In section 2.3, we outiingeneral procedure for scenario development,
consisting of all the important steps that ideahpould be included in water resource scenario

development. Section 2.4 reviews how these steps haen implemented in existing studies.

9
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Section 2.5 highlights aspects of the general glhaeethat have not been adequately addressed
in existing literature, leading us to suggest ahmétlogical framework in section 2.6 that can

potentially address these limitations.

2.2 Water resources planning and management undemgertainty

The fundamental goal of water resource plannirdy rmanagement is to match the demand for
water by the socio-economic system with the supglantity and quality) of the water system
through administrative control and management (waggulations/laws and infrastructure),
without compromising ecosystem sustainability (GA0®0). Figure 2.1 and Table 2.1 give an
overview of the variables and interdependent subgeys that need to be taken into account in
this context. In essence, changes in water resaystems (W) are driven by changes in three
related subsystems, i.e. the climate system (), dbcio-economic system (SE) and the
management system (M). Important socio-economidakbes include population growth,
economic development, technological change, anématd land use practices. For example,
demographic change, economic development, techiwalognnovation and geographical
conditions directly impact future water consumptipatterns, and water demand by different
users (McCarthy, Canziani et al. 2001). The climsystem has a direct impact on water
availability and water demand via changes in teiapee, precipitation and evaporation. Finally,
management intervention such as water allocati@tegjies, legislative standards, and political
intervention stimulates changes in the socio-econ@ystem and hence plays an important role

in influencing future pathways of water systems.

Uncertainty about the future development of thecseconomic and climate systems is the main
reason for developing water resource scenariosinstance, with the growth of population and
economy, water demand from domestic, industrialagritultural sectors will increase, resulting
in more stress on limited, shared water resourdeghropogenic climate change, caused by
Greenhouse Gas (GHG) emissions, with higher teryerand altered precipitation patterns,
directly impact water resource availability andgation water demand (McCarthy, Canziani et
al. 2001, Fischer, Tubiello et al. 2007, Chung, R@lez-di'az et al. 2010, Falloon and Betts
2010, Xiong, Holman et al. 2010, Zhu and Ringlet20 as well as water quality and ecosystem
stability. Assessing future impacts of climate dpais subject to significant uncertainty, due to
knowledge and data gaps on climate system behawibrits interaction with the water system.

This is reflected in widely diverging model-basemjpctions of future precipitation and water

10
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supply (Gay and Estrada 2009, Buytaert, Vuillele2@10, Chung, Rodri"Guez-di’az et al. 2010,

Falloon and Betts 2010). Consequently, mitigatiayrfe potential negative impacts of climate

change on water resources has become an impohali¢rtge to water managers (IPCC 2007).

Impact

«// \\

Laws/policies

Figure 2.1 Relationship between three interdependgstems: the climate system (C) and socio-economi

system (SE) are the main drivers affecting changedter systems (W). Water resources managements(M)

used to achieve a sustainable balance between deweand (via its influence on SE, e.g. through land

water use policies) and water supply (via its dffec W, e.g. by infrastructural investments to rilistte water).

Examples of key variables in each system are list8dble 2.1.

Table 2.1 Main driving forces and variables fromethinterdependent systems that impact water sgstem

Interdependent systems  Main driving forces Variable

Socio-economic system Demographic change population, food or lifestyle, migration, ...

Economic development GpP |evel, industry structure...
pollution control, wastewater treatment,

Technological innovation: . o
improvement in water use efficiency

Geographical conditions |and use, vegetation covirrigation area..

Climate system

temperature, precipitation, humidity, wind

Climate change speed,...

Management system

Management measuregater infrastructure investment ,water transfer...
water-use quota, water allocation, water

Legislative standards X
regulations..

Political intervention  water policies, water prices ...

To cope with these significant uncertainties inevatesource planning and management, several

studies have focused on developing scenarios faerwsystems. The underlying idea is that

scenarios that display alternative future statethefwater system facilitate water managers to

make robust decisions and management strategiegpgré Popper et al. 2003, Lempert, Groves

et al. 2006). Scenario development for water ressuplanning and management help decision

makers to understand the implications of the uagdsgt (Groves 2006) and explore the future

water availability (surface water, groundwater agm, water quality) (Mimikou, Baltas et al.
2000, Mahmoud, Gupta et al. 2011, Zhovtonog, Hoffma&t al. 2011) and water demand
conditions (Flérke and Alcamo 2004, Zhu and Rindl@d2), and as a result, designing and

11
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making robust management strategies or policiesctuieve planning objectives (alleviating
water stress, improving water quality, maintainthg ecosystem service, etc.) (Lévite, Sally et
al. 2003, Muhammetoglu, Muhammetoglu et al. 200%v&s 2006, Weng, Huang et al. 2010).

Table 2.2 lists several illustrative examples oérsrio development for water resources
management across a range of scales. Projects amidhe World Water Vision (WWV)
(Cosgrove and Rijsberman 2000, Gallopin and Rifgbar 2000) , the Global Water Outlook
(GWO) (Rosegrant, Cai et al. 2002), and Global Wé&igures (GWF) (Alcamo and Gallopin
2009, Gallopin 2012) focused on assessing watdlabildy and demand at the global scale,
with subsequent downscaling to continental andonati scales to provide a reference for
regional water resource planning and managemerg. Nlhllennium Ecosystem Assessment
(MA) explored four different scenarios for managegpsystem services in the face of growing
water demand, considering biodiversity and humanegpeelfare (Carpenter, Pingali et al. 2005).
Water footprint scenarios for 2050 analysed glabad European consumptive green, blue and
grey water footprint (Hoekstra, Chapagain et all13Ounder four storylines (global/regional
market/sustainability ) (Ercin and Hoekstra 20IPree water utopias were created from the
perspectives of hierarchist, egalitarian and irdlialist (Hoekstra 2000) to assess long-term
future water situations in Zambezi basin (Hoek4©988). At the European scale, the SCENES
project (Water Scenarios for Europe and for Neighing States) developed a set of
comprehensive scenarios of Europe’s future frestmasources to address how water resources
in Europe may develop up to 2050 (e.g.,lital, Vaem et al. 2011, Zhovtonog, Hoffmann et al.
2011). The European Outlook on Water Use proposethé European Environment Agency
(EEA) presented quantitative scenarios for futuadaewuse, water availability and water stress up
to 2030 in 30 European countries, including recomuagions for improving water outlooks in
Europe (Florke and Alcamo 2004). Many examples agest of regional-scale scenario
development. For example, a study in central Greeosidered two climate scenarios causing
decreases in stream flow and water quality (MimjkBaltas et al. 2000), and other studies e.qg.
in the Verde River Watershed and the San Pedra liagArizona (Mahmoud 2008, Mahmoud,
Gupta et al. 2011), and in California (Groves 200@)\e looked at matching water supply and
demand under a range of future climate, demogragtmd economic scenarios. Scenarios for
driving forces have also been used to evaluatetafemess of mitigation strategies (Carter, Jones
et al. 2007). For example, water pricing has begroeed to stimulate more efficient water use,

and redistribution of water from domestic and indak sectors to irrigation and environment
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(Rosegrant, Cai et al. 2002). Finally, a set ofssmin scenarios has been developed by the

Intergovernmental

Panel

on Climate Change (IPCQ)nsidering future anthropogenic

greenhouse gas (GHG) emissions and climate chasge,function of demographic, economic,

and technological changes, land-use patterns, andug other human activities (Nakicenovic,

Alcamo et al. 2000). Although the IPCC scenarios ot listed in the table as they are not

directly water scenarios, they are highly importdné to their wide usage in estimating climate

change impact on water resources (Arnell 2004, heiscTubiello et al. 2007, Charlton and
Arnell 2011, Zhu and Ringler 2012).

Table 2.2 Examples of scenario development at §labatinental,

and regional scales for water resources management

it

Name of | Time Spatial Main variables included in scenarios Story Source
study horizon | scale W C SE M -line no.
(Cosgrove and
water .
WwWV 2025 Global | availability none population, GDP, etc none 3 ggﬂgﬁ?ﬁﬂfooo’
and demand Rijsberman 20C)
water recipitation infrastructure (Rosegrant, Cai et a
GWO 2025 Global | availability precip ' | population, GDP, etc | . 3 grant, '
and demar temperature investment 2002)
birth/death rate, GDP,
GWF 2050 Global wgter e>'<treme water use efficiency, | water transfer 5 (Gallopin 2012)
withdraw climate eventg otc
water
2015/ availability recipitation population, GDP, (Carpenter, Pingali
MA 2030/ Global |and use, precip ' | water use efficiency, | none 4 p +Fing
; temperature al. 2005)
2050 aquatic land use, etc.
biodiversity
Water Population, economy,
footprint Global/ . production pattern, (Ercin and Hoekstra
(WF) 2050 Europe water footprint| none consumption pattern, none 4 2012)
scenarios technology
Three water Population, economy, | water trade,
water 2050 Zambez| supply/deman | none cropland, hydropower,| wastewater 3 (Hoekstra 1998)
utopias technology treatment
. . (lital, Voronova et al|
water N population, GDP, European /national
SCENES | 2050 Europe| availability precipitation, irrigation area, land | policies and 4 2011, Zhovtonog,
temperature o Hoffmann et al.
and demand use, etc. legislation
2011)
European .
Outlook 2030 Europe | water deman dprecipitation, Zlct)iltjrl?ctilton, r(gtl:ijlf)c’tion none 2 (Florke and Alcamo
on Water P temperature | .- Y P ’ 2004)
Use irrigated areas, etc.
water
Pinios 2050 Greece availability precipitation, | contaminant none 2 (Mimikou, Baltas et
river basin and water temperature | concentrations al. 2000)
quality
water .
V_erde availability precipitation, _po_pulgtlon, GDP water demand (Mahmoud, Gupta ef
River 50 years| USA and water temperature irrigation efficiency, allocation 8 al. 2011)
Watershed| demand P land use '
precipitation, | population, water use
SAHRA 2030 USA W}%f;gx;g:]d temperature, | intensity, land use, water rights, 8 (Mahmoud 2008)
Scenarios | /2050 %vel wind speed | water-saving legislation
appliances etc.
California population, water use
water 50 years| USA water demanfd  none intensity and none 4 (Groves 2006)
demant coefficients, et
population, irrigation .
World water precipitation, | area, water use water price, (Rosegrant, Cai et al.
water and | 2025 Global withdrawal temperature | intensity and !rr|gat|0n 4 2002)
food investment

efficiency, etc.
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2.3 General procedure for water resources scenaritevelopment

As illustrated in the previous section, scenariasehbeen developed for a wide variety of
settings, scales, and geographic settings. Detipgevariety, most studies follow one or more
steps of the general iterative procedure outlinedFigure 2.2. The various steps can be

summarized as follows:

(1) Define focal questions (water-related variaplesin driving forces (variables), and identify
main sources of uncertaintyhis step includes understanding the current sttmatind finding
out focal questions and objectives relevant to watanagers and stakeholders. It is crucial to
identify key variables representing the focal quesand driving forcesSE, G andM systems)
as well as the main uncertainties affecting thkedtalders’ objectives. Additionally, appropriate
temporal (daily, monthly, seasonal, annual, dedadaid spatial (local, regional, basin,

continental, global) scales need to be identifrethe analysis.

(2) Construct scenario logic and write down stori@@s/en the key variables and driving forces
identified in step 1, the goal is to qualitativedeescribe a small nhumber of scenarios that
essentially map out the boundaries of what theréutonay bring. These storylines focus on the
driving forces impacting the water system and sthqubvide a broad view of future change, in
response to the situation when the future is drignforces laying outside the control and
foresight of decision makers (Gleick, Cooley et28l05). To write down the storylines is then to

fill in the details (especially focusing on thewuinig forces) of the scenario logic defined.

(3) Quantify future development of driving forcescarding to the storylines. This step involves
assigning numerical values and associated probabilto the driving forces based on their
development described by the storylines. For exanfpture changes in population growth rate,

irrigation area, and temperature are quantified.

(4) Quantify future development of water-relatediafsles of interest. In this step, quantitative
scenarios for the driving forces are translated aarresponding quantitative scenarios for water-

related variables, typically using computer simolaimodels.

(5) Refine and update the scenarios. Scenario erafemt is an iterative process aimed at

achieving consistency between quantitative and itqtige results obtained during all the

14
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previous steps. An additional layer of revisionp®vided by updating the scenarios as new
knowledge and data become available. This stepoadkiges that scenario development is not a

‘once-for-all’ activity, but rather an evolving aedntinuing learning process.

1. Define focal questions (water variables of interest), the
main driving forces (variables) and associated uncertainty

A

A

2. Construct scenario logic and write down scenario
storylines

Y

3. Quantify future development of driving forces
according to the storylines No

A

4. Quantify future development of the water-related
variables of interest onsistent with the
expectation of

original storylines

New knowledge
/data available

Y

5. Refine and update scenarios

Figure 2.2 General iterative procedures for watepurces scenario development.

We note that the procedure outlined above, and iguré 2.2, combines qualitative and
guantitative scenario construction. Although sciExsawere originally conceived as qualitative
stories by Kahn (1962), and Schwartz (1991), modeemario analysis often relies on computer
models to quantify future change (Groves 2006, Aloca2008). Qualitative scenarios, in most
cases, describe futures in the form of storylinedich helps the communication and
understanding between scientists, decision-makeds séakeholders with different knowledge
levels. However, the lack of numerical informatibampers further scientific and decision-
making activities. For example, when a reservos t@abe designed in order to alleviate the
unevenly distributed water resources, storylinegescribe water shortage situations in dry years
and water abundance in wet years are not suffidenidentify an optimal design for the

reservoir.

Examples of qualitative-quantitative scenarios hbaeen provided for exploring global future
water situations in the framework of the World Watesion, the Global Environmental Outlook,

and the IPCC emission scenarios (Cosgrove and éRijgn 2000, Nakicenovic, Alcamo et al.
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2000, UNEP 2002). For regional/local water resosirpdanning, a number of qualitative-

quantitative scenarios were developed to analyreduvater quantity (Doll 2004, Florke and

Alcamo 2004, Beck and Bernauer 2010, Zhu and Rirngfd2) and water quality (e.g.,Vaché,

Eilers et al. 2002, King, Brown et al. 2003, Am&kilson et al. 2005), as well as to peruse
sustainable ecosystems (e.g.,UNEP 2002, Carpéhitayali et al. 2005, UNEP 2007).

2.4 Current implementation of scenario developmensteps

In this section, we evaluate how the different stapthe general procedure of Figure 2.2 have
been implemented in existing studies. Each of itheerhain steps is discussed in sequence.

2.4.1 Step 1 - Define focal questions and main dmg forces, and identify main sources of
uncertainty

Expert judgment and stakeholder involvement hawn lveidely applied for identifying the main
driving forces, variables of interest, and souieasncertainty in particular case studies (Gallopin
and Rijsberman 2000, Rosegrant, Cai et al. 200hndaid 2008, Mahmoud, Gupta et al. 2011).
A scenario team or panel consisting of expertsstakleholders is established at the onset of the
process (Alcamo 2008), allowing extensive commuiooaand cooperation among team
members.

Expert judgment was first adopted by Herman Kalmdl, &as referred to as ‘Genius forecasting’
(Bishop, Hines et al. 2007). It relies on experbwiedge, reasoning, experience, imagination,
and even intuition. Indeed, expert judgment hasg/quaan important role in the scenario
definition process in cases where process knowletnited, data is scarce, and uncertainty is
large. In those cases, their scientific knowledgd experience helps to identify and integrate
representative variables from the major drivingcés to the focal problems. Several formal
procedures have been developed and applied tondineathis process, including surveys,
interviews, Delphi techniques, nominal groups amdirtstorming (Huss and Honton 1987,
Rikkonen, Kaivo-oja et al. 2006).

This process may be further expanded by invitiagettolders to participate in the development
process and have them share their opinions antiknoa/ledge. Stakeholder-driven judgmest

an open process involving stakeholders, researametslecision-makers, to think, communicate
and write down possible futures. The identificateord choice of stakeholders are critical for the

quality of scenarios, due to their large influencethe identification of key driving forces and the
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formation of scenario outlines. They are usuallgcted from groups with different interests and
requirements, and may comprise of local expertgegonental officials, and representatives of
social groups or local residents. Stakeholdersirarged to workshops, and are encouraged to
discuss key driving forces and uncertainties ofeseconomic, environmental and administrative
aspects, while researchers assist them by providiogntific information. Qualitative
participatory methods make use of pictures, cacttrigues, collages, rich pictures and time lines
to help stakeholders imagine and brainstorm thérdyiforces and main uncertainties (Van Vliet,
Kok et al. 2007).

2.4.2 Step 2 — Construct scenario logics and writkown storylines for driving forces C, SE)

Both expert and stakeholder-driven judgement pldynalamental role in constructing scenario
storylines. For example, scenario storylines fa BRCC-SRES and MA were developed based
on knowledge and judgment of a wide range of espdrom climate, hydrological,
environmental, social and economic sciences. Ragiatakeholder-driven scenarios were
elicited in the SCENES and SAHRA projects (Tabl2).2A stakeholder discussion panel was
built and required to work on a scenario definitexercise, after which storylines of scenarios

were constructed for regional water resources deweént (Mahmoud 2008).

Development of scenario logics is further faciBtby techniques such as dimensions of
uncertainty analysis (Bishop, Hines et al. 2007yl giobal business network (GBN) matrix
analysis (Schwartz 1991). The GBN matrix is a timmghsional matrix comprising of two
critical uncertainties with two states assigneceaeh uncertainty dimension. The process thus
results in a total of four scenarios, which are ssgpently further elaborated (storyline
development). To construct the matrix, the two neosical uncertainties need to be selected, and
extreme states are assigned to the two criticagérimiaties to cover a wide range of plausible
futures. This two-dimensional approach has beerptadoto develop the widely-used IPCC-
SRES scenarios (Al, A2, B1, B2 storylines) (Nakameo, Alcamo et al. 2000), which consist of
two uncertainty dimensions (global/ regional, ecogbenvironment-oriented) to describe future
changes in population, economy, governance anchtémtpy. Similarly, four scenarios were
created for MA using this technique, with two unagrty dimensions defined by global/regional
development and pro-active/reactive attitudes tdwane environment (Carpenter, Pingali et al.
2005). The GBN matrix can be used several timebyoseveral groups in order to enrich the

future alternatives. The SAHRA team defined two artainty dimensions (variable
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climate/sustained drought, declining monitoringmted monitoring), and invited two
stakeholder groups to fill in each uncertainty domdhus, the two groups constructed eight

storylines by combining the GBN matrix (Mahmoud )0

Obviously, the idea behind the GBN matrix can béeeded to more than two uncertainty
dimensions, resulting in what could be called thpdhded GBN matrix, which in theory has no
limitation on the number of uncertainties or thentner of alternative states for each uncertainty.
For example, three uncertainty dimensions corredipgnto climate change, demographics and
economic development were identified in the VerdeeRWatershed study (Table 2.2). Together
with two extreme states for each uncertainty dinmemsthis resulted in 8 scenarios for future
water supply and demand over a 50-year planning¢m(Mahmoud, Liu et al. 2009). However,
with the increasing number of uncertainty dimensjothe complexity of these techniques
hampers more widespread usage (Bishop, Hines 20@r.).

A common practice is to include a ‘Business-as-liseaanario, in combination with one or two
extreme scenarios (Cosgrove and Rijsberman 2000ppBa and Rijsberman 2000, Groves
2006). The ‘Business-as-usual’ (BAU) scenario, alamed as ‘without-project conditions’ by
the U.S. Army Corps of Engineers (Yoe 2004), hie future without any specific action or
intervention taken to alter the future path. Therl/ Water Vision group explained ‘Business-
as-usual’ (BAU) scenario as a description of a @anlwhich current policies on water resources
management and development are continued unchangeitt the other two storylines
‘Technology, Economics& the Private Sector’ and I and Lifestyles’ included the
optimistic view of improving water management aresgmistic view of a future water crisis
respectively (Gallopin and Rijsberman 2000). Fa Buropean outlook on water use, a BAU
scenario was developed assuming that current emagatal policies continue, and no specific
policies are implemented to curtail water use. Tétenario was compared with a climate

scenario based on GHG emission reduction poli¢iEsKe and Alcamo 2004).

2.4.3 Step 3 - Quantify future development of driig forces C, SE) according to the
storyline

Most studies rely on expert judgment and modeltmgonvert qualitative scenario descriptions
into quantitative scenarios. The process typicallyolves generating a quantitative scenario

(with numerical values attached to the relevantabédes) for each of the qualitative storylines
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developed in step 2. The most common assumptidheis that the various scenarios are all
equally likely. As an example of the use of expedgment, the SCENES team employed fuzzy
cognitive mapping (FCM), which is a semi-quantitatimethod that allows conversion of
qualitative expert judgment into quantitative scevg(Kok and van Vliet 2011). Cognitive maps
were first introduced by Axelrod (1976) in soci&ience, and fuzzy logic was added to the
cognitive maps by Kosko (1986) to quantify ambigwnhd relations among uncertain variables.
Hence, the method generates quantitative scenavitds an estimation of the associated

uncertainty.

More traditional modelling approaches differ betwemcio-economic and climate variables. A
common approach for assessing socio-economic chamggr a ‘Business-as-usual’ scenario is
to perform trend analysis, whereby historical teend e.g. population growth are simply

extrapolated (Bishop, Hines et al. 2007). In otbases, one may rely on results from more
extensive socio-economic analyses; for example,emigad values for population growth in the

IPCC-SRES and MA scenarios were taken from previtugies of the United Nations and

International Institute for Applied Systems Anaty¢Carpenter, Pingali et al. 2005, IPCC 2007,
Alcamo 2008).

The most common approach for quantifying futurenelie variables such as precipitation and
temperature is to post-process the output from @érculation Models (GCMs) driven by the
IPCC emission scenarios (Mimikou, Baltas et al. ®0Bckhardt and Ulbrich 2003, Buytaert,
Vuille et al. 2010, Chung, Rodri"Guez-di"az et2010). GCMs represent and simulate physical
processes in the atmosphere, ocean, cryospheréaaddsurface. Output from more than 20
GCMs is now available for generating monthly climmatenarios up to the year 2100. The GCM
outputs are global, and downscaling techniquestyeally used to obtain regional climate
scenarios (e.g.,Ramirez and Jarvis 2010). Oftey @dmall number of GCMs are considered to
generate scenarios (e.g.,Mimikou, Baltas et al.020Bckhardt and Ulbrich 2003, Chung,
Rodri’Guez-diaz et al. 2010). More recently, hoarewtudies tend to generate climate scenarios
by combining many GCMs and emission scenarios ,[Begsai and Hulme 2007, Buytaert,
Vuille et al. 2010), thereby more accurately repréig the uncertainties associated with the
emission scenarios driving these models, as welhasnherent uncertainties of modelling the
complex climate system. Guidelines for selecting eambining GCM results to help scientists

and managers based on perceptions of model evaisatiere proposed. Projections of the most
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sensitive climate variables to the decision problre suggested to combine as many different
models and emissions scenarios as possible. Efwtld be made to evaluate the defined
variables against observations just to recognizdeahnbiases instead of weighting and discarding
the model outputs, and to understand the unceytainlownscaled regional climate projections

instead of ignoring them in the decision-makingoess (Mote, Duffy et al. 2011).

2.4.4 Step 4 - Quantify future development for waterelated variables (W)

Once quantitative scenarios have been constructedhé relevant socio-economi&H) and
climate C) driving variables, these are translated into esponding quantitative scenarios for
water-related variabled\), such as water availability and demand. Compsitaulations have
typically been used in this step, based on eite&rdhinistic or probabilistic models.

Deterministic hydrological models are often used simulate scenarios of future water
availability, water demand and water quality, takithhe projections of climatic variables and
socio-economic variables as model input (Arnell4,98rnell 2004, Chung, Rodri"Guez-di‘az et
al. 2010). Hydrological rainfall-runoff models hakieen applied both globally and regionally to
project future water availability scenarios, byesssng the impact of climate change on water
resources based on the climatic scenarios geneogt&CMs (Arnell 1999, Liuzzo, Noto et al.
2010). Water demand-oriented models have been teseshalyse and visualize scenarios of
future water supply-demand (e.g.,Beck and Bern&@820, Mahmoud, Gupta et al. 2011).
Examples are the well-known water supply-demand efsolike the WaterGAP model (Florke
and Alcamo 2004), the IMPACT-WATER model (Rosegrdbai et al. 2002), and the SWAT
model (Soil and Water Assessment Tool) (Vaché r&i al. 2002, Eckhardt and Ulbrich 2003,
Jayakrishnan, Srinivasan et al. 2005).

A shortcoming of these models is that they do ramoant for inherent uncertainties in the
models themselves. Probabilistic models have besad do circumvent this limitation. For

example, Bayesian Networks have been used to gengeder quality, water quantity or related
environmental scenarios with probabilities unddfedent management strategies or policies,
thereby helping to test the robustness of altereathianagement options (Ames, Neilson et al.
2005, Castelletti and Soncini-Sessa 2007). For ctatipnal reasons, these applications
typically resort to discretization of the relevamriables. An alternative class of probabilistic

method relies on scenario trees. A scenario tregeggtes predefined scenarios into a tree
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structure, e.g. representing a multi-period futimes horizon. Due to their flexibility in defining

scenarios dynamically, scenario trees are commasBd in multi-stage stochastic decision
making in water management. Particularly in wateppty and water allocation problems,
scenario trees are used to represent uncertaintiyeofinknown parameters or inputs of multi-
stage stochastic programming models (Watkins JrKiMwy et al. 2000, Jayakrishnan,

Srinivasan et al. 2005).

2.4.5 Step 5 — Refining and updating scenarios

Scenario refinement can be implemented throughtenmative process, whereby quantitative
model output is communicated back to the largeugrof experts and stakeholders involved in
the initial qualitative scenario development phase.example where this has been done and
documented is the ‘Story-and-Simulation’ approaelkeatioped by the SCENES project, which
converts qualitative storylines and quantitativersrios iteratively (Van Vliet, Kok et al. 2007,
Alcamo 2008, Kok, van Vliet et al. 2011). Outlinekscenarios proposed by a scenario team
involving stakeholders and quantitative water sgesssimulated by a modeling team have to be
reported to an expert panel in order to revisestbeylines and check the consistency between
qualitative descriptions and quantitative outcontdse process of rewriting the storylines, re-
assigning values to the driving forces and re-gbang the scenarios if necessary is iterated

until an accepted version of the storylines anchtjtieation is reached.

Further, as the future will not stop changing, updpscenarios iteratively by periodic review
and corrections, incorporating new knowledge artd da they become available, is a useful step,
as Schwartz (1991) stated ‘it is important to krasrvsoon as possible which of several scenarios
is closest to the course of history as it unfold®st-audits and monitoring have been used for
this purpose, e.g. in the formal framework for scem development for the water supply and
demand scenarios in the Verde River Watershed, J3hle 2.2). Post-auditing allows one to
re-examine and refine scenarios such that scenadosunt for the most recent information.
Monitoring establishes measurable indicators td fulich scenarios are converging or diverging
from the actual evolving future, in order to impeothe consistency of observed and designed
scenario paths in an on-going scenario developpracess. Use of such indicators allows one to
evaluate the success of the intended scenario afgweht goals, and to update if needed (Liu,
Mahmoud et al. 2008). A similar process was useatiptively revise the IPCC GHG emission

scenarios, which are widely used to quantify th@dnts of future climate change on water
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resources. So far, IPCC has updated the scenavios since 1990 (SA90, IS92 and SRES)
(IPCC 1990, IPCC 1992c, IPCC 2000), and new emssa@narios are anticipated for the Fifth
Assessment Report in 2014 (IPCC 2008). Changestheethree scenarios were reviewed and
evaluated according to these five aspects: therigésa of storylines, structure, development
process, scientific setting and triggers, and appliity. Significant enhancement has been
achieved in the scientific adequacy (credibilityansparency, participation (legitimacy) (Hulme
and Dessai 2008), and applicability of the IPCQrsssion scenarios (Girod, Wiek et al. 2009).

2.5 Limitation in existing applications
Three limitations in current applications are highted, namely (i) the limited number of
quantitative scenarios considered, (i) implicidancomplete characterization of uncertainties,

and (iii) the lack of transparency when implemegxpert judgment procedures.

2.5.1 Limited number of quantitative scenarios

As documented in Table 2.2, all the reviewed stdialy considered a handful of discrete
quantitative scenarios, which are essentially olethiby assigning numerical values to variables
in the corresponding qualitative storylines. Whergaalitative scenarios have been limited to a
handful of descriptive storylines or themes, mostbluding a ‘Business-as-usual’ scenario and a
couple of extreme scenarios along several axes ah mncertainties, quantitative scenarios
should ideally also cover intermediate situatianbétween these storyline descriptions. Indeed,
the key variables in water resources planning dmeost always continuous; they are not
restricted to a discrete set of values. Hencdjaally restricting the scenario space to a disere
set provides only a very crude approximation ofgatgl states of climate/water-related variables.
In other words, quantitative scenarios should mby assign values discretely based on the main
qualitative scenario themes, but also for a mulgtof intermediate situations. The wide range of
continuous quantitative scenarios are useful tbded evaluate the robustness of management
strategies against all the future states includexxifka, Murata et al. 2005, Groves 2006). The
implementation of statistical tools and mathematalgorithms together with the increased
computational capabilities facilitate the genematand utilization of the large set of scenarios.
For example, Mont Carlo applications routinely ilweo millions of model runs, where each
model run essentially represents a different seen@rezuka, Murata et al. 2005). Scenario
discovery algorithms classify a wide range of sdesasimulated by hundreds to millions of
model runs into multi-dimensional regions, and celeegions of interest reflecting the
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performance of policies for decision-support amilan (Bryant and Lempert 2010). In order to
design robust strategies to narrow the water sug@hgand gap in California up to 2030, 500
different future states of water supply and demamde sampled from a large set of plausible
future states to evaluate 24 New Supply/ EfficieBa@ynpost policies by using scenario discovery
algorithms (Groves 2006).

2.5.2 Implicit and incomplete uncertainty characteization

Existing applications typically consider scenatiobe equally likely. Exceptions are studies that
develop probabilistic scenarios using Bayesian eta/ (Ames, Neilson et al. 2005, Castelletti
and Soncini-Sessa 2007). A potential drawback mfguscenarios without explicitly stating their
probabilities is that this may lead to confusios, stenario users would assign probabilities
themselves or select scenarios intuitively (SchereRD01). For climate scenarios, Gay (Gay and
Estrada 2009) states that there is a danger thedingi probabilities would free up decision-
makers to take any action given the high level méastainty surrounding the climate change
threat. The same case could occur to decision reakieen no probability or equal probability is
attached to water scenarios. By attaching proliegslio the various scenarios, the weight that
each scenario plays in developing water managerpéris is explicitly considered and
quantified. Realizing that the objective scenariobabilities in the classic frequentists’ sense are
impossible to obtain (van de Heijden 1994), thebphilistic assessment is necessarily subjective
so that it is consistent with available knowledgéd axpert judgement (Gay and Estrada 2009). It
Is also extremely useful as long as it is done traasparent and explicit manner. Several axiom-
based theories are available to check and limisthgectivity. The use of Bayesian probabilities
drives people to explain the judgements expliathg they are open to peer review and criticism,
thereby exposing hidden assumptions, biases, apéctations behind the purely intuitive
scenarios (Millett 2008). The Maximum Entropy frameek allows the least prejudiced
probability assignment in the sense that it utdizd the information available but remains as
non-committal as possible when information is natilable (Jaynes 1957, Myung, Ramamoorti
et al. 1996, Weijs, Schoups et al. 2010). In addijtifocusing exclusively on uncertainty in
driving variables (climate and socio-economic) aigghoring other uncertainties such as
uncertainties introduced by the various model camepts used to generate scenarios for water-
related variables, should be addressed to avoictoridence in the model outputs. For instance,

a probabilistic framework was formulated to genedaiv-flow scenarios under climate change
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impact for the river Thames, including the consitien of uncertainties from hydrological

models by weighting their performance of reprodgdime historical annual low flow series.

2.5.3 Lack of transparency

A recurring finding in reviewed literature is thack of clarity and transparency as to how
descriptive storylines are converted into quantéatscenarios. A way to increase the
transparency is to build specific protocols in siegenario development team or panel, such as the
protocol for converting qualitative to quantitatiderowledge designed in the ‘Story-and-
Simulation” approach (Alcamo 2008). Documentatidrih@ scenario development process also
improves transparency and communication of scemarithis also encourages scenario
developers to write down as explicitly as possthke techniques that have been applied and also
the expert judgement that has been made. It is iatportant to gain insights into existing
limitations of existing methods, avoid known pitsaland improve them where necessary.
Relatively little information was encountered onisttcrucial component of the scenario
development procedure during our literature reviasvthe assumptions and judgement made by
experts were not written down explicitly in mossea. Hence, this is one area that deserves more
attention than it has received in the literaturegPRess can be made by developing and applying
transparent and therefore reproducible methods, elitar and exhaustive documentation of their
implementation in a particular application. Moreg\e transparent and open environment which
allows extensive and efficient communication anigriaction between experts, decision makers

and stakeholders is necessary for the scenaridagsuent process.

2.6 Proposed probabilistic framework

In this section, a case is made for a probabilisamework of developing scenarios for water
resources planning and management that addressesafahe limitations identified in current
studies. The framework relies on a Bayesian prdistibimodel for the relevant driving forces
(variables) shown in Figure 2.1, including climaft), socio-economic§E), and water-related
variables YV). Attaching probabilities to quantify these driginforces would lead to the
probabilistic water scenarios, and then the wetbht each scenario plays in developing water
management plans is explicitly considered and dfiecht The valuable information helps
decision makers to rank the importance of alteveasscenarios. Whereas probability and

statistics is not the only framework available éwaling with future uncertainty, it provides a
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consistent and well-developed framework for accogntor uncertainty. In essence, adopting a

Bayesian probabilistic view allows us to:

1. Use a variety of well-established and developedhods, such as the Principle Of Maximum
Entropy POME) and formal elicitation methods, for specifyingniouous distributions of the
driving forces, i.e. climate and socio-economiciatales; besides, sensitivity analysis can be
utilized when probability distributions are too fiitilt to be specified due to diverse views and
assumptions from multiple experts;

2. Quantify resulting uncertainties in water-relatediables (due to a combination of uncertainties
in driving forces, models, and data) in a systecratid principled way by applying basic rules of
probability, with flexible updating as new knowledgnd data become available.

Uncertainties regarding the future evolution of\alliables is represented by a joint probability
density function (PDF), denoted pyC, SE, W)which can be translated as the probability of the
occurrence of the future state comprising of theemi climate scenarios, socio-economic
scenarios and the resulted water scenarios. Iir otbels, each set of specific values €ISE,

W is assigned a density value, quantifying our belgeto how likely it is that the particular given
set of values will occur in the future. The useagfrobability density function (as opposed to a
probability mass function) implies that variables!s as rainfall, temperature, population growth,
and water supply are treated as continuous, asdéhdeey should. This is in contrast with
previous Bayesian modelling studies, which typicalely on a discrete representation of
continuous variables (Ames, Neilson et al. 200mv@s 2006). Discretization of the values of a
continuous variable into a finite set of intervalfroduces unknown approximations and errors

and should be avoided.

Applying basic rules of probability, and using ttedations betweeSE, €, andW implied by the

arrows in Figure 2.1, allows us to express thet jodf in a more useful form:
p(SE,C,W) = p(SE)p(CISE)p(W|SE, C) (2.1)

wherep(SE), p(C|SE), andp(W|SE, C) quantify uncertainties in future values of, respety,
socio-economic, climate, and water-related varmblEne vertical bar ‘|' is used to indicate
probabilistic conditioning, e.g(C|SE)quantifies climate uncertainty given a particulatue for
socio-economic variables. The joint pdf, and themefscenarios fafE, C, andW, can thus be

computed by specifying each term in the expresalmyve. We now outline several suggestions
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for how our proposed Bayesian probabilistic framewean be implemented using the general

procedure of Figure 2.2.

Step 1 and 2 in Figure 2.2 can be implemented wesigling methods as also applied in previous
studies. However, progress can be made here bylog@vg and applying transparent and
reproducible methods that include clear and exhaudbcumentation of their implementation in

a particular application.

Step 3 — Quantify future development of driving foces €, SE) according to the storyline

Using the notation adopted above, this step aintgigmtify and specify distributiongSE) and
p(C|SE), from a set of qualitative narratives (storylines3 the knowledge of ‘true’ or objective
scenario probabilities are impossible to obtain tfirebabilistic assessment is necessarily
subjective relying on the available knowledge amdgment of experts, and a transparent and
explicit procedure will be beneficial to exposedaa behind the expert judgement We highlight
two formal statistical methods that can be used fgaybabilistic assessment, namely prior
elicitation and the Principle Of Maximum Entropp@ME). A large amount of literature is
available on formal methods and protocols for efig probability distributions from experts
(e.g.,Myung, Ramamoorti et al. 1996, O'Hagan, Betkal. 2007). These methods allow
identification of entire probability distributiorfer variables of interest (e.g.,Jaynes 1957, Gay
and Estrada 2009). Elicitation methods are expedtedbe mostly useful for obtaining
distributions for socio-economic variables, i.a. $pecifyingp (SE), as models that predict future

evolution of socio-economic systems are not asilseadailable as climate models.

In contrast, specifying distributions(C|SE)for climate variables for given socio-economic
scenarios (typically GHG emission scenarios), caneneasily be based on output from GCMs,
as done in many previous studies. However, relimm&CMs only produces a discrete set of
scenarios, even if combining several GHG emissgamarios and several GCMs. The question is
then how to convert this data into continuous dhstions for relevant climate variables. It turns
out that thePOME is ideally suited for this purpose. TROME (Jaynes 1957) is a method
originating from information theory for assigniniget least-biased probability distribution given
the available knowledge and data. In informatiogotly, entropy is a measure of the uncertainty
associated with a random variable represented pyobkability distribution (Shannon 1948).

Application of thePOME to assign probability distributions to scenariasoants to maximizing
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the uncertainty subject to constraints represernthegurrent knowledge status. The method was
applied in (Gay and Estrada 2009) for generatirgpgilistic climate change scenarios for the
year 2100, given knowledge of the IPCC’s likely gas of climate variables together with
different agents’ judgement and subjective belidse method has also been used to elicit
probabilities from multiple experts, i.e. aggreggtiopinions from two or more experts for the
prediction of the outcome of uncertain events (MyuRamamoorti et al. 1996). In that sense, it

can be used in combination with the elicitation moelis described above.

In case the two methods are not applicable andnaersus of probability assignment of the
driving forces cannot be reached due to variouss gapknowledge and assumptions by the
experts, sensitivity analysis provides a solutiar fitilizing all the possible probability

distributions to generate water scenarios. Theitpahsof the resulting water scenarios on these
diverse assumptions can be investigated as wallekample, different PDFs were assigned to
climate variables, i.e. precipitation and tempe®tio generate scenarios for additional water
required to cope with climate change in the ea&irgfland. The sensitivity of the water scenarios
to various climate change uncertainties were ewailjaas well as the robustness of water

management strategies to these uncertainties (Das$&lulme 2007).

Step 4 - Quantify future development for water-relaed variables @)

In the proposed probabilistic framework, this stepolves specifying the conditional
distributionp (W |SE, C). A probabilistic hydrological model can be usedtfas purpose, as e.g.
advocated in Schoups and Vrugt (Schoups and V0§02 Such a model combines physical
knowledge in the form of water balance equatiorth &istatistical description of residual model
errors. Hence, the approach explicitly quantifiesdel uncertainties, which may be a significant
part of the overall uncertainties. Hydrological astdtistical parameters in these models may be
estimated from historical data, as demonstratedSeéhoups and Vrugt. Total or marginal
uncertainty in water-related variables W may subeatly be computed using basic rules of
probability: the joint distribution between all vables is first computed using Eqg. 2.1, and
variablesSE and C are then integrated out (marginalized) to obtdie tmarginal or total
distribution p{/), which quantifies total uncertainty over watelated variables, accounting for
uncertainty in future values of driving force$ §E) as well as uncertainties related to converting
driving forces into water-related variables. Suabmputations are most straightforwardly

executed using Monte Carlo sampling (Nawaz and @\@eR006).
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Step 5 — Refining and updating scenarios
Scenario refinement can be implemented throughteamative process, as discussed above.
Updating scenario storylines as well as probaesithowever, is particularly elegant and natural
in the probabilistic framework proposed here. Assuthat an initial set of scenarios was
generated according to the joint pdfSE, C, W), by following steps 1-4. At a later time, say
several years later, the scenarios are to be updateexample, by taking into account new data
D that has been obtained since the initial scenaveye produced. This new set of scenarios can
be represented by a new joint pdSE, C, W|D), which can be obtained by application of the
Bayes rule:

p(SE,C,W|D) « p(D|SE,C,W)p(SE,C,W) (2.2)

wherep(SE, C,W)is given by Eq. 2.1, angl(D|SE, C, W) quantifies the extent to which the new

observations fit with the original scenarios depeld according tp(SE, C, W).

One limitation of the proposed framework is thatdties on expert judgement for assigning
probabilities, which is prone to bring bias andjeativity. Generally speaking, it is very hard, if
not impossible, to eliminate all subjectivity. Canoposed methodology addresses this issue in at
least three ways. First, we rely as much as passiblformal methods, such as the principle of
maximum entropy FOME) and the basic rules of probability, for quantilyiand propagating
uncertainties. We emphasize tiRDME assigns the least prejudiced probability in thessehat

it utilizes all the information available but remaias non-committal as possible with information
not available (Jaynes 1957, Myung, Ramamoorti €1296). The use of Bayesian probabilities
encourages people to explain their judgements @tplisuch that these become open to peer
review and criticism, thereby exposing hidden agsions, biases, and expectations (Millett
2008). Second, IPOME is not used, we advocate making explicit all tegumptions and expert
judgments that feed into the mathematical modets @pecification of probabilities, elicitation
of scenario storylines, etc.). Expert judgment r@san important component of environmental
planning (Krueger, Page et al. 2012), and an exmicd transparent elicitation procedure is
extremely important. Third, following good practirethe application of Bayesian methods, we
propose the use of sensitivity analysis to evaldatevhat extent the resulting scenarios and
uncertainties are affected by various assumptidmssummary, we do not claim that the
mathematical methods proposed here will magicallyesall problems of subjectivity, however

the methodology is geared towards minimizing anantjfiying impacts of subjective decisions,
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and does not preclude use of advanced expertagitit techniques that aim to reduce biases
(e.g.,O'Hagan, Buck et al. 2007, Krueger, Pagé €042).

In short, the probabilistic framework can poteiyidde used to develop water scenarios to cope
with the two limitations discussed in section ZIhe approaches used in the framework are
scientifically sound as they are well-established well-utilized, which increases the credibility
of the development process. The Bayesian-basecdwank provides the flexibility for updating
the probabilistic water scenarios, by providing nperspectives and information to facilitate

water resources management adapting to the chahgines.

2.7 Conclusions

Our review on scenario development in water ressuptanning and management illustrates the
wide popularity of this approach to explore futwater systems and assist strategic planning in
an uncertain and complex world. Scenario developnaadresses uncertainties of three
interdependent systems influencing the water sysi&@ presented an iterative development
procedure according to the reviewed scenario dpwadmt studies. Techniques used for each step
were summarized, aiming to provide information thee choice of proper techniques to develop
scenarios. The main conclusions from this evalnatice that the qualitative and quantitative
construction step, specifically, the ‘continuougida‘probabilistic’ scenarios with explicit
quantification of uncertainties, has not been adexiy addressed in existing literature, as they
are highly important for providing information forobust decision making. Finally, a
probabilistic framework was proposed to addressatim/e issues using existing techniques from
information theory and statistics, pointing the wiagward for scenario development practices in

water resources planning and management.
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Chapter 3 Probabilistic scenario development:
Climate change impact on future runoff in the Yello
River Basin (YRB), China

3.1 Introduction

The Yellow River is the second longest river in i@hilt flows around 5500 km in north China,
originating from the Tibetan plateau, going throudpe northern semiarid region, the loess
plateau, the eastern plain, and finally dischargimg the Bohai Sea (see Figure 3.1). Its drainage
basin covers about 573,000 %nncluding 12.9 million hectares of farmland, 3Bf6which is
irrigated with water from the Yellow River. The Yal River Basin (YRB) holds 13% of the
total cultivated area in China, while it only hold% of the country’s water resources (CMWR
2002). It is of importance for China in food protlan and economic development, for example,
it generated 16% of Chinese grain production anh H2 the country’'s GDP in 2000. In the
YRB, annual evaporation varies from 850 to 1600 mumereas annual precipitation varies from
200 to 700 mm. Natural average annual runoff anotmtc3.3 km3 and the annual renewable
water resources per capita are estimated at 588ea%8 than one third of the Chinese average
level (Cenacchi, Xu et al. 2011). It is charactediby severe water scarcity: the ratio of surface
water withdrawals to total water supply was up4&%in 2008, which is one of the highest in the
world. In the last two decades, the water-causedrdahas shifted from flooding to droughts in
the Yellow River Basin due to increasing pressufie@sn population growth, economic
development and climate change (Xu, Fu et al. 20CMnate change is posed to worsen water
scarcity conditions in the YRB (Cenacchi, Xu et24111).

Impacts of climate change on water availability subject to large uncertainties, and scenario-
based approaches have been widely used to acomuttieflse uncertainties. The four scenario
families A1, B1, A2, BRfor greenhouse gas emissions developed by th€ rve been widely
used to estimate climate change impacts on wasaurees (IPCC 2000). The four scenario
families were written to describe the world aboutufe economic, social, environmental and
technological developmenfl and B1 are both global-oriented, and expect low poputatio

growth and rapid economic developmeAL storylines diverges to three groupSlFEl, AlB,

This Chapter is based on “Probabilistic scenario development to analyse future runoff in the Yellow
River Basin”, C. Dong, G. Schoups, N. van de Giesen, Environmental Engineering and Management
Journal, 2013.
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AlT) due to the various technological change in thergn system, whileB1 is more
environment-friendly with clean energy and improvedources efficiencyA2 andB2 scenario
families both focus on the local or regional lev#2 narrates that high population growth and
more fragmented and slower economic pattern thasthar storylinesB2 describes the world
moderately with intermediate population growth &ednomic development, and environmental
sustainability will become a significant issue. Ma$ the researches adopted 2 and B2
storylines to describe the future development tifdke YRB. For example, annual runoff in the
entire YRB is projected to increase up to 2.2%skenaricA2, and 8.4% for scenarid2 by the
year 2020 compared with the baseline period (1980}, based on output from a single General
Circulation Model (GCM) (Zhang, Fu et al. 2007).Wver, no single GCM can be considered
‘best’ or ‘sufficient’ to deal with the uncertaintgnd it is important to utilize results from a gan
of models (Mote, Duffy et al. 2011), which can @adt add information and understanding about
the climate change. Moreover, realizing that ndtfature climate projections have equal
likelihood of occurrence, the use of probabilitiés explicitly quantify uncertainty is
recommended. In this paper, a probabilistic frantéwof scenario development based on
multiple emission scenarios and GCMs is proposetl used to assess the impact of climate
change on water availability in the YRB.

Legend
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Figure 3.1 the Yellow River and Yellow River draggabasin.

3.2 Materials and methods

3.2.1 Materials

In order to develop climate change scenarios inviléow River Basin, the outputs of 11 GCMs
(Table 3.1) using the IPCC emission scenafES-A1BSRES-A2A and SRES-B2Awere
analysed for the period 2010-2039. The outputs wlerenscaled to a spatial resolution of 2.5

min using the Delta Method. This is a statisticalvdscaling method, which applies the surface
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of interpolated anomalies or deltas (changes imatke variables) to a high-resolution baseline
(historical) climate grid from the WorldClim datagelijmans, Cameron et al. 2005), accounting
for bias due to the difference in baselines. Furttescription of the Delta downscaling method
can be found in (Ramirez and Jarvis 2010). Anotthataset is downscaled with 30 mins

resolution using ClimGen from 7 GCMs, but only aeenario familyA1Bis available.
Table 3.1 General Circulation models (GCMs)

Model Institute, Countr Referenc

CCCMA-CGCM3.1(T47) Canadian Centre for Climate Mitidg and Analysis, Canada (Scinocca, McFarlana .€2008)
CCCMA-CGCM3.1 (T63) Canadian Centre for Climate Mitidg and Analysis, Canada (Scinocca, McFarlarat.€2008)

CSIRO-MK3.0 glcj)gtlgl(i);wealth Scientific and Industrial Researcha@ization, (Gordon, Rotstayn et al. 2002)
IPSL-CM4 Institute Pierre Simon Laplace, France itM8raconnot et al. 2005)
MPI-ECHAMS5 Max Planck Institute, Germany (JugnclaBstzet et al. 2006)
NCAR-CCSM3.0 National Center for Atmospheric ResbatJSA (Collins, Bitz et al. 2005)
UKMO-HADCM3 Hadley Centre for Climate PredictiondaResearch, UK (Gordon, Cooper et al. 2000)
UKMO-HADGEM1 Hadley Centre for Climate PredictiondaResearch, UK (Johns, Durman et al. 2006)
MRI-CGCM2.3.2 Japan Meteorological Agency, Japan ukiwhoto, Noda et al. 2001)
MIROC3.2-HIRES CCSR/NIES/FRCGC, Japan (Hasumi ameaiE2004)
MIROC3.2-MEDRES CCSR/NIES/FRCGC, Japan (Hasumitmdri 2004)
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Figure 3.2 Monthly average precipitation and terapge in 2010-2039 from GCMs.

In order to simulate the rainfall-runoff procesdhie Yellow River Basin, monthly precipitation,
pan evapotranspiration and natural runoff data ebibe Huayuankou gauging station were
collected for the period of 1952-2000. The reasorsitmulate hydrological processes above
Huayuankou gauging station is that the Yellow ribelow the Huayuankou station is suspended,
and as a result, the natural discharge of the Hua§au gauge station can be taken as the natural
runoff from the whole Yellow River Basin. Figure33hows the mean and standard deviation of
the monthly precipitation and temperature for tleeiged 1961-1990.The standard deviation of
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monthly precipitation is big especially in summerdaautumn, which is consistent with the
change predicted by GCMs in Figure 3.2. The tentperahas relatively small variation each
month and is also consistent with its change irD22039.
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Figure 3.3 Mean and standard deviation of monthégipitation and temperature in the YRB during 1:96890.

3.2.2 Methods

Climate scenarios of future precipitation and terapee were developed based on the results of
multiple GCMs. Probability distributions were assg to future precipitation and temperature to
explicitly represent a full set of future possitids based on the Principle of Maximum Entropy
(POME). Probabilistic climate scenarios were used astitp a conceptual hydrological model
to simulate future river runoff to estimate climateange impacts on water availability. In this

section, a description of tHFOME, and the conceptual hydrological model will beegiv

3.2.2.1 Principle of Maximum Entropy POME)
In 1984, Shannon introduced entropy into infornmatiheory as “a measure of how much

‘choice’ is involved in the selection of an even8hannon entropy was used to measure the
uncertainty or chaos associated with a set of svariten their occurrence is unknown but
represented by a probability distribution. Shanfmmulated the mathematically expression of
entropy and applied it in the field of communicaso If X is a discrete random variable with
distribution given by

Pr(X = x;) =py for k =(1,2,...,n) (3.1)
Then the entropy oX is defined as
H(X) = — Xk=1 P logpPr (3.2)

If Xis a continuous random variable with probabiligndity p(x), then the entropy of is
sometimes defined as

HX) = —[* p(x)logy p(x)dx (3.3)
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Where unit of entropy is bit if the babe2; nat forb=e, and dit (or digit) fob=10.

Jaynes contributed to the applications of entropy aroposed the Principle of Maximum
Entropy POME) in the 1950s. He stated that “the maximum entrdigyribution is the least
biased one which is maximally noncommittal with aejto missing information, and that it
agrees with what is known, but expresses maximueerntginty with respect to all other matters”
(Jaynes 1957). The principle of maximum entroplased on the premise that when estimating
the probability distribution, the maximum entropgtdbution, whose entropy is at least as great
as that of all other members of a specified clasiistribution, should be selected as it leaves the
largest remaining uncertainty consistent with thenstrains representing the available
information. For example, given the mean and stahdieviation, the normal distribution
N(u,0) has the maximum entropy among all distributionthvépecified meap and standard
deviationo; similarly, given the mean valug/A and the variable is positive, the exponential
distribution Exp(4) has the maximum entropy. In Bayesian probabilitye principal of

Maximum Entropy was a way to assign a prior proltgiadistribution.

3.2.2.2 Hydrological model
A spatially lumped hydrologic model (Schoups, Vregtal. 2010) derived from tHeLEX model

framework (Fenicia, Savenije et al. 2007) is usesimulate the rainfall-runoff process. The simple
hydrological model lumped partitions rainfall intanoff, evaporation and percolation into a
surface and subsurface water storages. Snow acationuand snowmelt is not taken into account.
The model operates at the basin level, with nomgdteto model the spatial distribution of
hydrological process and storage in the basin. Aydrological model has been applied in the
French Board Basin and a semiarid Guadalupe RigsinBn the USA (Schoups and Vrugt 2010).
The model consists of four reservoirs: an inteioepteservoir IR) represents the interception
process; an unsaturated soil reserv@lR) denotes the soil storage capacity; a fast ragctin
reservoir FR) accumulates the fast runoff and a slow reactsgmoir SR gathers the percolated
runoff (Figure 3.4). The fluxes represent the meitthrough the reservoirs. Runoff generation is
assumed to be dominated by saturated overlanddfaivsimulated as a function of water storage.
The mathematical expression of the model basechamsaturated zone water balance equation is
written as Eq.3.4 (Schoups, Vrugt et al. 2010):
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das,
Smax o= = Po = Ry — Eo — P; (3.4)

WheresS, is the relative storage §#Smax), S is total storagell), S,,., IS maximum storage
capacity [),t is the time 7), P, is the effective rainfall rateL(T), E, is the Interception rate.AT),
Ry is runoff generation rate (T), E, is actual transpiration rat&/T), andP; is percolation rate
(L/T). The interception rate is assumed to be negégibere, and effective rainfal, is
approximately equal to observed rainfall. The otifiieee fluxes in Eq. 3.4 are parameterized as
functions of relative storage:

Ry = Pef(Sr; ap), Ee=Epf(Sr; ap) . Fs = Ponaxf(Sr; as)

Q:=0Q;+0Qs Qr=2L=K:S;, Qs=2=K,S, (3.5)

dt dt
WhereE, is potential evaporation rate/T), Pypq, is maximum percolation raté /), andar, ag
andas are process-specific parameteds,S; are storage of fast and slow reacting reservoirs,
Ky, K, are time constant to characterize the dischargéngthrough the fast and slow reservoirs
respectively. The flux functiofi is assumed to take the following form and is monimally

increasing from O to 1:

1_e—a5r
1-e~@

f(Sr; a)= (3.6)

IR: Interception reservoir
UR: Unsaturated soil reservoir
FR: Fast reacting reservoir
SR: Slow reacting reservoir
P: Precipitation
E;: Interception
P.: Effective precipitation
E.: Evaporation
R¢: Recharge to FR
Ps: Percolation to SR
Qs: Fast discharge
Qg: Slow discharge

R¢ Qq: Total discharge

Ps | a
Q. 1t

Figure 3.4 Hydrological model structure based @ani{€ia, Savenije et al. 2007, Schoups and VrugbR01

Y

A formal likelihood function was used for estimdke parameter uncertainty. The error of the
hydrological model is modelled by a first-ordertauoorrelated, heteroscedastic error model with
a Skew Exponential PoweBEB distribution which has a heavier tail than Gaassiistribution
(Schoups and Vrugt 2010). The Generalized likelthdanction improved estimation of

parameter and total predictive uncertainty whenliagpo a daily rainfall-runoff hydrological

35



36 Chapter 3

model in French Broad basin and Guadalupe RivemB&kSA. Additionally, it can be used for

handling complex residual errors in hydrologicaldals.

Table 3.2 Prior uncertainty range of hydrologiaadl &rror model parameters

Parameter Symbol Minimum Maximum Units
Soil storage capacity Se O 50000 mm
Maximum percolation rate Qw O 3000 mm/month
Evaporation parameter ag O 500

Runoff parameter ap O 300

Time constant, fast reservoir K 0 10 month
Time constant, slow reservoir K 0 100 month
Heteroscedasticity slope 0y 0 1

Autocorrelation coefficient 0, 0 1

3.3 Results

3.3.1 Probabilistic scenarios of climate variables
Precipitation and mean temperature in the YRB lagectimate variables of interest here, as these
will determine future hydrological conditions. Thrassumptions are made in order to develop
the probabilistic scenarios: (1) all the GCMs perfeequally well, (2) the statistics (mean and
standard deviation) of the multiple model experitaga generalized to approximately represent
the ‘real statistics’, and (3) temperature will ai8 increase in the future due to global warming.
Probability distributions of the scenarios of thieasge of monthly precipitation and mean
temperature (baseline period 1961-1990) in theopeoif 2010-2039 are assigned based on the
Principle of Maximal Entropy. This results in a m@l distribution for the change of
precipitation, given the mean and standard deviaaod a lognormal distribution for the change
of temperature, given the mean and standard dewiaind assuming change is always positive
(assumption 3 above). The probability density fiomd are thus:

6P; ~ N(uspir 05pi);

8T; ~ InN(usri, 057:) (3.7)

i=12..12

whereéP;, 6T; represent changes in precipitation and temperaturine i-th month between

future and baseline periods.

Probabilistic climate scenarios are then generbiedlonte Carlo sampling. First, changes in
precipitation and temperature for the period 20082 are sampled from the generated

probability density functions, which are convertedo future monthly precipitatiom’}u and

temperatureTfiu by adding the sampled changes to the baseline hiyorntalues. Bootstrap
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sampling (Austin and Tu 2004) is used to sample dhginal baseline precipitation and
temperature in each month to take into accountmttaral variability of the climate variables.
Dong (2012) applied Bootstrap sampling to charatehe variability and uncertainty of hydro-
climatic variables such as precipitation, tempesand runoff in the Yellow River Basin, given
the historical data.

P}u = Pinse + OP;;

Tfiu = l;‘Zse + 6Tl ’i = 1121 --'112 (38)

where Pfiu,Tf"u are the ‘future’ case of precipitation and tempee in thei-th month;

b o, T, are the baseline precipitation and temperaturergéed by bootstrap sampling from

the original monthly values (historical record).

3.3.2 Posterior distribution of parameters and perbrmance of the hydrological model

The generalized formal likelihood function is ustedestimate the uncertainty of the model
parameters by considering the residues. A MarkowairfCHMonte Carlo algorithm named
DREAM_ZS(DiffeRential Evolution Adaptive Metropolis algthim) (Vrugt, ter Braak et al.
2009) was used to generate posterior parameteibdisdons and predictive uncertainty (Schoups
and Vrugt 2010). The monthly data between 1952-1&@0used to calibrate the model and

generate the posterior distributions of the hydymal and error model parameters Figure 3.5).
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Figure 3.5 posterior distributions of hydrologieald error model parameters.

The parameter set which has the maximum likelihealde given the observed data is optimal

for the hydrological model. The period between 188d 2000 is used to verify the model. The
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graphs below (Figure 3.6) shows the observed natunaff and the runoff simulated using the
model.
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Figure 3.6 Model calibration and validation in tfiellow River Basin.

3.3.3 Runoff scenarios considering climate change

When analysing the potential impact of climate g®mon runoff in the period 2010-2039,
probabilistic seasonal and monthly runoff are getesl using the hydrological model based on
the pre-defined scenarios of precipitation and tneoire. The future pan evaporation is obtained
based on an empirical relationship with temperatwieich was derived from historical data
(Figure 3.7). Future seasonal and monthly runofingre informative and of practical interest
compared with annual runoff. For example, water a®anfor irrigation in the YRB is large
during the wheat growing seasons in winter andngpnivhen rainfall is scarce and irrigation is
required; peak water demand for rice, which is &leavily irrigated, is in summer and autumn.

Hence, information on changes in seasonal or mpmthioff, rather than annual, is needed for
water management.
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Figure 3.7 the relationship between monthly temipeesand logarithm of pan evaporation
of the YRB between 1951-2000.
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Figure 3.8 show the average seasonal runoff (lafiji the 90% uncertainty band (right)
considering different uncertainty sources. Casepresents the runoff between1961-1990. Case
b, c, d, erepresent the predicted runoff between 2010-26&89¢b considers only the input data
uncertainty (i.e., probabilistic precipitation atemperature scenarios developed in section 3.1)
with the optimal parameter set; caseccounts merely for the model parameters unceytaiase
d adds uncertainty in the model structure (residunalertainty), and casecombines all sources
of uncertainty (parameters, model structure, ammatic input). Table 3.3 shows the average
value of runoff and the percentage of change ifediht conditions. In spring and autumn, runoff
will decrease by around 25% and 12%. In summeraardmn, runoff will increase by a small
percentage. The 90% uncertainty band of the ruffigtire 3.8 (right)) shows that the uncertainty
due to the input data is slightly larger than ttha¢ to the hydrological model. It implies that to

consider all different uncertainty sources is intaot as they are both significant.
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Figure 3.8 Average seasonal runoff (left) and tB&uncertainty band (right) of the seasonal rumoffisidering
different uncertainty sources: ligerepresents historical conditions (baseline), brige the model prediction in 2020s
without considering model uncertainty, lired,e are the runoff in 2020s considering the uncenaifibm

parameters, parameters plus model structure, aadneters, model structure and input data.

Table 3.3 Seasonal average runoff in historical gnedictive conditions (mm)

Spring Summer Autumn Winter
Casea 5.11 9.80 10.23 2.38
Caseb 3.86 (-124.37%)| 10.25(4.59%) 9.06(-11.46%) 2.4K%p
Casec 3.79(-25.81%) | 10.04(2.42%) 8.91(-12.95%) 2.41(%)]
Cased 3.79(-25.87%) | 10.04(2.47%)) 8.91(-12.97%) 2.41(®}L]
Casee 3.82(-25.22%) | 10.12(3.27%) 9.00(-12.10%) 2.42(@)"

Compared with the average runoff, a probabilityrdisition provides more information, such as
the high and low runoff associated with their pimbies. Figure 3.9 shows results for the

cumulative probability distributions (CDF) of seasab runoff, respectively. Five cumulative

39



40 Chapter 3

probability distributions are shown for each seasmal each line accounting for different sources
of uncertainty on future runoff. In spring and auty the runoff is decreasing as the whole future
CDF is shifted to the left, compared to historicahditions. For example, median values for the
five casesd-€) are 4.94, 3.81, 3.80, 3.79 and 3.75 mm respégtiriring autumn, runoff also
tends to decrease, and median values for autum®.@re 8.88, 8.90, 8.86 and 8.70 mm. In
summer and winter, the future CDFs are shiftedhtlijgto the right, compared to historical
conditions, indicating a slight increase in runoffedian values are 9.43, 10.02, 10.02, 9.99 and
9.85 mm for summer, and for winter 2.29, 2.40, 22141 and 2.40 mm. Figure 3.10 shows the
CDF of monthly runoff, and the same coloured liepresents the runoff accounting for the same

uncertainty. In Mar., May, Oct. and Nov., the mdntlunoff has a large decreasing.
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Figure 3.9 cumulative probability distributionsseasonal runoff

(The same colour line represents the same uncgrsonrce as in figure 3.8).
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(The same colour line represents the same uncgrsonrce as in figure 3.8).

3.4 Discussions and Conclusions

Scenarios of climate variables such as precipiasiod temperature were developed based on
multiple GCMs and IPCC emission scenarios, and daogal distribution and normal
distributions were attached to the two climaticiaflles respectively, using the Principle of
Maximum Entropy. Seasonal and monthly runoff scesawere generated to estimate future
water availability under the impact of climate cganThe results show that runoff for the period
2010-2039 is decreasing in spring and autumn, whikummer and autumn it slightly increases
compared with baseline conditions. The methodolgy results presented here complement and
improve upon previous studies of the potentialffeof future climate change on runoff in the
Yellow River basin (e.g.,Zhang, Fu et al. 2007, Hgo et al. 2008, Xu, Fu et al. 2010). Zhang
(Zhang, Fu et al. 2007) predicted that annual rfuimothe Yellow River Basin is projected to
increase up to 2.2% for IPCC scenaki® and 8.4% for scenari®2 (2010-2039) compared with
the baseline period (1961-1990). The Yellow Riventnission projected that the average runoff
decrease by 16.99% under climate change (Xu, Ral. &010). Our prediction is that annual
runoff change is between the range of -18% to 7#euwclimate change impact, which almost
covers all their results. From a methodologicahpoif view, our work improves upon previous

studies by (i) explicitly attaching probabilities the various scenarios, as opposed to assuming
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all scenarios to be equally likely (for example, wevelop probability distributions for
precipitation and temperature using the Princigl&aximum Entropy), and (ii) by accounting
for additional sources of uncertainty, such as aldjical modelling uncertainty, and errors in
downscaling GCM output to local or regional sc#idnas been investigated that the uncertainties
from the climatic inputs and the hydrological mode¢ both significant. The result is a set of
fully probabilistic seasonal runoff scenarios teaplicitly encompass a wide range of possible
futures, which allows water managers to make rodastsions by testing strategies against the

plausible range of future runoff in the face ofidite change.
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Chapter 4 Probabilistic scenario development:
Water demand projections in the Yellow River Delta
(YRD), China

4.1 Introduction

Scenario development is a useful tool to desculeré states of the world under uncertainty, and
probabilistic quantification of scenarios is deieato provide explicit information to decision
makers (Schneider 2001, Dong, Schoups et al. 2(048Jicing that it is difficult or even
impossible to combine probabilities and scenaribgedively due to scientific uncertainty,
subjective approaches are required to fulfil trek essai and Hulme 2004). Subjective expert
judgement/elicitation techniques have been widebduo elicit probabilities under uncertainty in
studies such as environment studies, climate chandgolicy analysis (Morgan and Keith 1995,
Titus and Narayanan 1996, Morgan, Pitelka et ab12@ebster, Forest et al. 2003, Zickfeld,
Levermann et al. 2007, Low-Choy, James et al. 20TRke process of eliciting relevant
knowledge and beliefs of experts to support prditgbelicitation or quantitative analysis is
called expert elicitation (Low-Choy, James et @12). Expert elicitation can be based on either
a single expert or multiple experts, and it is assti that a group of experts typically outperform
a single one (Ferrell 1985). A challenge when usmudfiple experts is how to achieve consensus
among their different opinions. In water resourgdsnning and management, scenarios for
variables such as population growth and irrigatieatter use, can be developed based on the
judgement of experts, such as decision makersologists, stakeholders, and water managers.
Additionally, future water supply and demand scerganeed to account for potential correlations
between the variables of interest. Therefore, maltate probability analysis is needed to model

future water situations.

In this chapter, three issues are addressed im:qdeHow to quantify scenarios using expert
judgment under uncertainty, (2) How to aggregatdtiple experts’ assessment into one single
probability distribution, and (3) How to construmtiltivariate distributions to model dependence

among variables.

This Chapter is based on “Scenario-based Expert Elicitation Approach for Future Water Demand

Projection in the Yellow River Delta, China”, C. Dong, G., Schoups, N. van de Giesen, 2014, under 43

review.



44  Chapter 4

4.1.1 Expert-elicitation for developing probabilistc scenarios

Expert-elicitation is suitable for specifying theopability distribution of an uncertain quantity,
when available data is limited. A large amount ibérature on expert elicitation has been
published, both from statistical and psychologipatspectives (e.g.,Garthwaite, Kadane et al.
2005, Choy, O'Leary et al. 2009, Krueger, Pagd. 1042, Low-Choy, James et al. 2012) . The
use of expert elicitation in environment modellingder uncertainty due to data shortage has
been reviewed by (Choy, O'Leary et al. 2009, Kruelgage et al. 2012). Krueger et al. suggested
that a formal and systematic use of expert opinwifisbenefit modelling under uncertainty and
enhance the rigour of information that informs dem making. In psychological research,
'heuristics and biases' have been proposed by Kywensd Kahneman in 1970s (Tversky and
Kahneman 1973) to describe human errors in asgepsobabilities when facing uncertainty.
Reviews about psychological research on experitedigrobabilities are provided by (O'Hagan,
Buck et al. 2006, Kynn 2008). They both emphasitednecessity of taking into account the
biases when managing expert elicitation. Despie pksychological constraints, Garthwaite
reviewed statistical methods for expert elicitedability distributions and summarized several
criteria to evaluate the quality of expert elicitptbbability distributions, pointing out that a
successful elicitation should represent the opirabthe person being elicited, instead of how
accurate the elicitation is in the objectivistinse (Garthwaite, Kadane et al. 2005). Chhibber et
al. outlined the problems of expert elicitation Isus expert bias and dependence and addressed
the difficulties to understand and treat them. Thaggested that progress needs to be made to

make expert opinions acceptable to the scientdrarmunity (Chhibber, Apostolakis et al. 1992).

4.1.2 Aggregating probability distributions from multiple experts

When eliciting with multiple experts’ opinions, tlhformation needs to be aggregated in order
to obtain a single probability distribution. Thegaggation can be solved using either behavioural
or mathematical methods. Behavioural methods aiactoeve some kind of consensus through
interactions, discussions and negotiations amomegrex, for example, the Delphi method, the
Nominal Group method, decision conferencing andl&ap approach (Clemen and Winkler
1999). Mathematical methods range from simply tgkine arithmetic or geometric means of
probabilities assessed by experts to complex maogleth as axiomatic approaches (weighting
scheme by using expert opinions) and Bayesian appes (updating scheme by using expert
opinions). Recently, the focus of mathematical rmd¢hhas shifted to Bayesian approaches since

a Bayesian paradigm was clearly formed for aggmegatxpert’'s opinions by (Winkler 1968,
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Morris 1977). Bayesian models were first developedl applied for combining probability
distributions when they are normally distributedif®er 1981). Mendal and Sheridan developed
Bayesian models when probability distributions ao¢ necessary normally distributed (Mendel
and Sheridan 1989). Jouini and Cleman employedpaladunction to estimate the likelihood
function in the Bayesian model (Jouini and Clem@@g). Clemen and Winkler (1999) tried to
answer the question “what is the best way to comlbire judgement?” by comparing the two
categories of methods. They have reviewed a vadetyathematical methods through several
studies, and found out that, in general, simplgregation mathematical methods such as simple
models by putting equal weights to probabilitieseased by experts perform as well as more
complex methods. Besides, by comparing the simplé weighted average method with
behavioural methods, empirical studies show thabthavioural methods work slightly better or

approximately at the same level as the mathematie#thods.

4.1.3 Multivariate analysis given specified marginkdistributions

In uncertainty and decision making analysis, iften required to consider multivariate analysis
through constructing multivariate joint probabilitglistributions from specified marginal
distributions (Clemen and Reilly 1999, Fang, Farigak 2002). Statistical studies have
investigated the multivariate dependence structgiresn the specified marginal distributions.
Meta-Gaussian distribution were constructed to rhbiariate densities in hydrology (Kelly and
Krzysztofowicz 1997). Fang extended the bivariaesities to a new class of distributions called
meta-elliptical distributions (Fang, Fang et al02)) These methods are both based orcdipala
technique. Copula is derived from the Latin wordpualare”, meaning to connect or join
(Schmidt 2006). The concept has been recognizdterstatistical field since (Sklar 1959). A
copula is a tool for modelling the dependent retaghip of multiple random variables. A number
of copula functions has been defined, importanutagpsuch as Gaussian copula, Farlie-Gumbel-
Morgenstern class of copula (Johnson and Kott 19880 Archimedean copulas family
including parametric Clayton copulas (Clayton 197/ank copula (Frank 1979) and Gumbel
copula. Genest and Rivest (Genest and Rivest 18@@)ed the statistical properties of the
Archimedean copulas. Bhat and Eluru (Bhat and ER0Q9) reviewed the properties of these
copulas and applied them to model residential sgiction effects in travel behaviour in the US.
Recently, copulas have been applied in financen@oetrics, actuarial studies, hydrological

modelling, drought analysis, travel behaviour mbwgl and healthcare fields (Kelly and
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Krzysztofowicz 1997, Cherubini, Luciano et al. 2084ees and Wang 2005, Zimmer and Trivedi
2006, Genest and Favre 2007, Bhat and Eluru 2d08u%nd Modarres 2009).

This chapter provides a scenario-based expertatlam framework to probabilistically explore
future scenarios under uncertainty, and copulaebasethods to do multivariate analysis when
dependence among variables is taken into accounthedend, a case study on water demand
projection in the Yellow River Delta, China, is pemted. Expert elicitation is guided by the well-
structured SHELF procedure, and the experts’ jucgemwill be aggregated using a
mathematical approach. In modelling water demands important to take into account the
interrelationship among the variables, for instan@iables such as population growth and the
per capital water demand. The projection of watanand in the next 30 years will inform and

benefit the water resources planning and manageimém Yellow River Delta.

4.2 Expert Elicitation of Priors: SHELF METHOD
In this research, SHELF (the Sheffield Elicitati(ftamework) is applied for probability

elicitation through the interaction between expartd facilitator (who can be the decision maker
or some relevant person). It provides the platftmncapture expert’s knowledge and feedbacks
dynamically and graphically. SHELF is a freely dable package, including some basic software
in the R language. Currently, a new version SHEQRR available (Oakley and O'Hagan 2010).
SHELF has been used in a variety of fields to tedigperts’ judgement in the Bayesian inferential
framework (Higgins, Dryden et al. 2012, Higgins,yBen et al. 2012, Ren and Oakley 2012,
Kinnersley and Day 2013, Scholten, Scheideggel 2043).

Before entering the elicitation stage, severalghiare essential and should be set up. (i) the
experts who have special knowledge about the wainegtiantity of interest, and a facilitator who
is familiar with the elicitation process should identified. (ii) the facilitator should explain the
purpose and importance of the elicitation to thetigipated experts. (iii) the participants will
receive some ‘training’ to familiarise the proceasd an evaluation about their strengths and
weaknesses. The evaluation will be useful to bewérdne deficiency and bias of the group’s
knowledge. (iv) all available relevant evidence w@ball the quantities of interest should be
reviewed by the participants, in order to avoidirth®ased or impaired judgement based on
partial evidence. (v) the participants can helpdtire and choose quantities which are easier to

elicit. For example, to decompose quantities inttlependent quantities can avoid the estimation
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of joint probability, as the SHELF framework is rs#t up for joint probability assessment. The

last task of the preparation is to define the chageantities.

To elicit a distribution of the predefined variaBlefour general steps can be done (Figure 4.1):

1. The expert makes a small number of probabilistiggments abow;

2. The facilitator fits a suitable parametric probapil distribution to the expert's
judgements;

3. The facilitator reports the fitted distribution tive expert(s), and ask if the distribution is
acceptable based on their beliefs;

4. If the distribution is acceptable to the expertthen the elicitation can be completed.
Otherwise, the facilitator fits an alternative distition according to additional
probabilistic judgement form the experts.

T N N
“ : “ - = ?)
\\\ Eetuﬁ//h \\\ EI|cut// " %Flt // \\,A\cféeptablf/

Figure 4.1 The elicitation process of SHELF method.

SHELF accommodates several different protocolsefaiting a distribution of the predefined
variable in the first step. The probability methelitits the probability distribution by asking
experts for some specified probabilities. The Qlearhethod uses the expert estimation of the
median and upper/lower quartiles of the distributidhe Roulette method asks experts to
indicate their probabilities for ten bins of valuasd the Tertile method asks the experts for their
median and upper/lower tertiles (Oakley and O'Hagah0).The facilitator is free to choose
which protocol to use. In this study, the quartiethod is used and the way to assess the

probability of predefined variab is as follows:

1.1. Elicit plausible ranggs, U) of the quantity which are agreed by all experts.

1.2. Specify the median valld, whereP (6 <M) andP (6 >M) are equal, by the experts
separately.

1.3. Specify lower and upper quart(l@1,Q2) whenP( L< 8 <Q1)= P( Q1< <M)=P( M<#
<Q2)=P( Q2<80 <U)=0.25. The facilitator can ask them to adjustrthalues if necessary.
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When a group of experts participate in the eliotatprocess, mathematical methods or
behavioural methods are required to aggregate &Xpepinions into a single probability
distribution. In SHELF, a behavioural method is dise combine experts’ assessment to fit a
single probability distribution. Discussions anderactions among experts are encouraged to
specify group consensus judgement for the prolghdistribution, for instance, in the quartile
method, an agreement on the values for the medidngaartiles is required. To fit a final
distribution, revision of the group judgement imaled according to their feedback.

4.3 Aggregating experts’ probability distributions
4.3.1 Axiomatic approaches
Axiomatic approaches aggregate probabilities basedxiom-based aggregation formulas. A
simple approach is called theear opinion poolto aggregate probability distribution by linearly
weighting the opinions from experts.

p(0) = Xisnw; pi(6) (4.1)
Wheren is the number of expertg;(8) is the probability assessment of the varigbfeom the

ith expert;w; are the weights, summing toA(6) is the combined probability distribution &f

For mixing the probability distributions into a gla one, the (raw) moments of the mixture are
the weighted average of the same moments of thep@oemt distributions (Frihwirth-Schnatter

2006). For example, the first and second momemh@imixed probability distribution when the

component is normal distributed is:

RO = 0im()
0(6)? = Xinn wi (07 + (W — 1)?) (4.2)
Wherey; is the mean of probability distribution given blyetith expertg;is the standard

deviation of each component distribution.

Allocating weights to different experts is a sulijge process. Various methods were reviewed
by (Genest and McConway 1990) . Normally, the Wweican be interpreted as “the better an
expert, the heavier the weight ought to be attatcbdds/her opinion”. The calibration approach
has been widely employed to assess the quality @xaert’s judgement. The approach requires
experts to give plenty of probability assessmemisnmany variables, and the ability of the
experts’ probability assessment can be measurethdy performance (Morris 1977). In the

Classic Model, three different weighting schemesnely equal weighting, global weighting, and
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item weighting, were developed and distinguishedheyways how weights are assigned to the

experts’ assessment (Cooke 2013).

Although the linear pooling approach was shownddgym as good as more complex methods
in aggregating opinions from experts, there is disadvantage of the approach in that the
dependence among experts’ judgement is not takerastount (Clemen and Winkler 1999). In
the next section, methods based on a Bayesian agpto consider the interrelationship will be

briefly reviewed.

4.3.2 Bayesian approaches

Experts often have similar training, background amgerience, and they are prone to provide
redundant and dependent information. The impadeplendence on the precision and value of
information has been investigated, and the reguligcate that positive dependence among
information sources can have a serious negativectefdn the precision and value of the

information (Clemen and Winkler 1985). Dependent®iag experts’ judgement is an important

and unavoidable source of difficulty. Morris (M@&T1983) pointed out that ‘one of the future

challenges in the field of expert modelling is tbenstruction of general models of expert

dependence. In expert-aggregating probability idistions problems, empirical studies have

found that correlations among expert judgemenbredasting can be quite high, typically above
0.8 (Jouini and Clemen 1996).

To cope with dependence among experts, a Bayegpjproach has been used for combining
probabilities from experts’ elicitation. Expert geiment can be used to elicit prior subjective
probability distributions based on their availaBl@owledge and beliefs. The prior probability
judgement can be aggregated to elicit the postegprobability distribution. The Bayesian
approach then provides the theoretical basis f@erelicited probability estimation (Morris
1977, Varis and Kuikka 1997, Choy, O'Leary et 802).

f 92, 9n 0)-qg(O
ff((jll,jzz,,jﬂlg))gg((G)?ie X f(gll g2, gnle)g (9) (43)

f(0191,92,,9n) =

Where@ is the quantity whose probability distribution estimated,g;denotes the probability
distribution off estimated by expert
g(0) : the prior probability distribution abo@t Usually, the prior probability is assessed by

experts or decision makers. However, hindsight basirs when the experts already have partial
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historical information abow®, and have to give priors by pretending they déndw about it
(Fischhoff 2003). To avoid the risk, non-informatipriors, ‘Sceptical’ or ‘Enthusiastic’ priors
(Abrams, Myles et al. 2004) given by decision-makayuld be used.

f(91,92 ,9,10) : the likelihood function. It reflects the expertjgrobability assessment
conditional on the ‘true’ values &. When a group of dependent experts participant the
probability assessment, the likelihood functiotthis joint probability assessment over the expert
set.

(@191, 92+, gn) : the posterior probability & given the expert’'s judgement.

The format of Bayesian models to aggregate expgrtigiement is determined by the marginal
distributions and the construction of the likelidofunctionf (g4, g,,:*, gn18). However, it is
difficult to estimate an appropriate likelihood @lion, as a probabilistic model has to be
constructed to capture the interrelationships aménand g4, 9,,**, 9., as well as the

dependence among the bias and errors from diffepgyerts’ judgemerg,, g,,**+, gn -

For aggregating probability estimation of a diserevent from a group of experts, four different
likelihood functions were constructed in the Bagasparadigm. The four likelihood functions
were constructed based on the independence moeéekst and Scherivish linear regression
model (Genest and Schervish 1985), Bernoulli sargplMorris 1983), and multivariate normal
model (French 1981), respectively. For aggregaprmpability distributions assessed from a
group of experts, Error density function such asoamal Model (Winkler 1981) and Copula
functions (Jouini and Clemen 1996) were used totucapthe dependence among experts
judgement and construct the likelihood functiorBeyesian models. The normal model (Winkler
1981) specifies the dependence among experts basethe density function of expert
judgement errors. However, the model was only blgtéor the normally distributed marginal,
and the aggregated distribution is also normatibisted. The Copula-based model (Jouini and
Clemen 1996) captures the dependence among a sepefts with one single parameter, the
concordance probability, which is cognitive andatst flexible if different levels of dependence
needs to be captured. Additionally, the two methar@ssensitive to the dependence level among

experts’ judgement.
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4.4 Copula-based models for multivariate analysis

4.4.1 Basis of Copula

A copula is used for modelling dependence of sévaralom variables, and is derived from the
Latin word “copulare”, meaning to connect or jochimidt 2006). A copula function serves as a
dependence function, and represents a distribugiorthe unit square with uniform marginal
distribution. It can be used to link the joint nindiriate function and their marginal distribution
functions, encoding dependence among differentimédion sources and marginal distributions.
One advantage of copulas is that the dependenessasent is separate from the marginal
distributions, and the marginal distributions cafdrmulated independently.

Sklar's Theorem (Sklar 1959): Given a joint cummiatdistribution functiorf (x4, -+, x,,) for
random variable&, ---, X,, with marginal cumulative distribution functiofg(x;), -, G, (x,).
Then the joint cumulative distribution can be venittin the form of copula:

F(xq, o, %) = C[G1(x1), -+, G ()] (4.4)
WhereClu4, -+, u,] is a joint distribution function with uniform infmation marginal, and it is
called a Copula. Ifi; is continuous, the® is unique, and itr; is discrete, the© is unique on
R(Gy) X -+ X R(Gy), WhereR(G;) is the range of;.

Given thatG; is continuous and differentiable, the joint dengix,, -+, x,,) can be written as the
product of the marginal densities and the coputesiti Then,
fQeg, e xn) = g1(xq) X -+ X g (xn)c[G1(x1), -, Gr(Xn)],
c[Gy(x1), -, G ()] = 0"C/(0Gy -+, 0Gy) (4.5)
Whereg;(x;) is the density corresponding @(x;), c is the copula density. is independent

from the marginal probability distributions. If thes variables are independent, tken 1, and

fOen e xn) = ga(X1) X+ X g (%)

4.4.2 Copula-based models

Three steps are required to apply copula-basedapiittly models. First is to identify the
marginal probability distributions, second is to dabthe dependence among the information
sources or variables, and third is to identify @prapriate copula function. In this section, the

measures to assess correlation and two import@uladunctions will be mentioned.
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4.4.2.1 Correlation assessment
To measure the dependence, the product momentat@nep, rank-order correlations such as

the Spearman’s; and Kendall’sr are sufficient in constructing several copula fesi The
explanation of these correlations and their progertan be found in (Kurowicka and Cooke
2006). A brief description of these dependence oreass given below.

(1) Product moment correlatign

The Product moment correlatign is also called linear or Pearson correlation. Pheduct

moment correlation of two random variab/e¥ is defined as:

E(XY)-E(X)E(Y)

Ox 0y

pX,Y) = (4.6)

WhereE (X), E(Y) andoy, oyare the expectations and standard deviatioH, Bfrespectively.
lp(X,Y)| < 1. If p(X,Y) = 0, the two variables are independentp(¥,Y) > 0 (< 0), then the

two variables are positively (negatively) correthtearger values imply stronger correlations.

Statistical estimation and expert judgement canapplied to assess the correlation. When
estimation is statistical, the correlation depeodshe linear regression between the data of two
variables; when estimation is judgemental, the ggpare supposed to be familiar with the
statistical concepts related to correlation, aredcapable to make a reasonable assessment of the
bivariate relationships. Research has been donet aticectly eliciting correlation between
variables, for example, Gokhale and Press (Gokhatk Press 1982) showed that individuals
with statistical knowledge are able to assess dhelation between two data sets by reading their
scatterplot. Clemen (Clemen, Fischer et al. 20@d)pared six methods to elicit a correlation
between weight and height in a population of mal8AVistudents, and found that direct
estimation of the correlation by specifying a vahetween -1 and 1 performed better than the
other five methods, such as asking individuals strmeate the Kendall’s between the two
variables. Garthwaite suggested that graphic methmetform better to describe the linear
regression between two variables. For two varialesdY, to elicit points from the regression
functionm(x) = E(Y|X = x) allows the estimation of the correlation if thegpers believes their

relationship is linear (Garthwaite, Kadane et GD%).

(2) Spearman correlation

The rank or Spearman correlatipf(X,Y) of two random variableX, Y with joint probability
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distributionFy y and the marginal probability distributidfy andFy, respectively, is given by:
ps(X,Y) = p(Fx, Fy) (4.7)
Wherep(Fy, Fy) denotes the product moment Pearson’s correlation.

_ cov(Fx,Fy)
p(FX' FY) - var(Fx)var(Fy) (4'8)

Unlike the product moment correlation, the Spearncarmrelation always exists and it is
independent of the marginal distributions. Hentean be a suitable measure for techniques that
are required to be independent of marginal proligllstributions, such as the copula between

two random variables.

(3) Probability of Concordance to estimate Kendall’
Concordance measures the extent to which a seindbm variables tends to be identical from
the ordering of another set of variables. Convgrdbe dependence relation is called discordant.
Let (X1 X2 -+, X)) and (X1, X5 -+, Xp;) be two independent and identically distributed
tuples of random variables. They have the sameilglitbn as(X;,X,---,X,). The random
variables(X;, X, -+, X,,) are concordant if

X < Xqj, Xoi < Xpjoo, Xy < Xpyj or

X1i > X1, X > Xpj -, Xni > Xnnj,s
The probability of concordand& of (X4, X, -+, X,) IS

Pc=P(Xy; < X1, X0 < Xgj -+, Xni < Xnj) or

P(X1; < X1j,X2i < Xoj -+, Xni < Xnj

The Kendall'st can be related tBc;
T=2Pc—1 (4.9)

If two random vectors (X,Y) are from the bivariatermal distribution, the relationship among
Spearman’'g,(X,Y) , Kendall'st(X,Y), or the Persons correlatigifX,Y) can be written as
(Kruskal 1958):

nt(X)Y)

p(X,Y) = sin( >

). p(X,Y) = 2sin(2ED) (4.10)

4.4.2.2 Copula functions
A series of copula families and their characterssthave been explained in (Kurowicka and

Cooke 2006, Bhat and Eluru 2009). Among them, taoutas, i.e. thérchimedean copuland

the Gaussian copulayhich are very popular, are briefly explained.
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Gaussian Copula is derived from a multivariate normal distributiolt is comprehensive in
obtaining the Frechet lower and upper bounds aptudag the full range of dependence (both
positive and negative) (Bhat and Eluru 2009). Tlau<sian copula with a correlation matRix
is written as:

CRY (W) = D5(@7 (ug), -, @~ (un)) (4.11)

G

Where®y (@~ 1(uy), -, ® 1(u,)) is the multivariate normal distribution with zeroean and
correlation matrixR, p is the product Person’s moment correlation, é@nd the CDF of a

standard normal distribution.

The Gaussian copula densif§f“ss (u) is written as:

c§S3 (u) = exp —5<“’ “‘”) (R - < 1(”1)) IRz (4.12)

L(up) ~1(uy)

WhereT represents the vector transpose, Argdthe identity matrix.

To generate uniform random variates from the GaasSiopula (Schmidt 2006), one can use the
following algorithm:

1. For an arbitrary covariance mattbobtain the correlation matrix

2. Perform a Cholesky-decompositibr= AT A.

3. Generate idd standard normal pseudo randomtesiig, ---, X,

4. ComputgXy, -, X;)"T = X = AX fromX = (X, -+, X)T".

5. ReturnU; = ®(X;),i =1,---,d where ® is the standard normal cumulative distribution

function.

The correlation matrixX has to be a valid matrix in order to perform thé&olésky-
decomposition. A valid matrix has the importantgeuies such as all entries should between
[-1,1], with 1 along the main diagonal, symmetrimdapositive semi-definite (PSD). To be a
positive semi-definite matrix, the eigenvalues bk tmatrix should be positive, and the
determinant of the matrix should be non-negativeweler, the matrix elicited is not always
positive definite; Nicholas J. Higham’s algorithnanc be applied to find the closest valid

correlation matrix (Higham 2002).
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Figure 4.2 shows scatter samples from the Gaussipnla-based bivariate distribution with a
correlation parametep = 0.9239 and two normal marginal distributions. The sampées
symmetric around the central points, called ragiallmmetric, and are away from the tails. It
shows that the Gaussian copula is radially symmetrith strong dependence in the middle and

weak dependence in the tails of the marginal tistions.

The Archimedean copula can be definedff (if and only if) there exists a convex and styictl
decreasing functiorp: (0,1] — [0, +), with @(1) =0. ¢'(x) <0, and¢''(x) > 0 for all

0 <x <1.¢9(0) =, then the inverse functiop! exists. Thus, the bivariate Archimedean

copula is:
C2(ug,uz) = 9~ p(wy) + 9(u2)) (4.13)
To extend to higher dimensions:
C(uy, =+ un) = @7 H(@(ur) + -+ + 9 (uy)) (4.14)

Whereu,, -+, u,, are marginal cumulative probability distributioosthe random variables is

the generator function. For exampjgx) = %(t“9 — 1) generates the Clayton copula(x) =

e 0x_q

—In generates the Frank copula; whéris the dependence parameter.

e=0-1
Frank copulas, for example, are the only classna-parameter Archimedean copulas allowing
negative dependence and obtaining the Frechet lameupper bounds. The Frank-copula form

of a bivariate distribution is:

(e=0-1)(e~2-1)
e=9-1

Cai :_%ln 1+ , —0 <0 <00,0%#0 (4.15)

—Gx_l

With p(x) = —lnee_T_l

Where@ is the only parameter to decide the dependenet between variabl&;, X,, and Jouini

(Jouini and Clemen 1996) listed the correspondiaieas of8 and Kendall'st; u,,u, are

marginal cumulative probability distributions of nable X;, X, to construct a bivariate

distribution,(u,,u,) € [0,1]%. To extend the copula function to the multi-dinienal form,

(=0a-1)(em0¥2-1)--(e0¥n-1)
(e—e—l)n_l

Cojp = —5ln |1+ , n =2 (4.16)

Figure 4.2 shows samples from a Frank copula witloreelation parametér = 14.14 and the
same marginal distributions. As with the Gaussiaputa, the Frank copula has a radially

symmetric dependence.
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In Archimedean copulas, the single dependence maemmKendall'st, is shared by all
marginals of interest. It is difficult to estimdten practice. More flexible structures are reedir

to be constructed for high dimensions if Archimedeapulas are used to analyse multivariate
joint distributions (Zimmer and Trivedi 2006).

2 0 2 0
-5 =5
10 10
-15 15
10 -5 0 5 10 15 20 0 5 0 5 10 15 20
X1 X1

Figure 4.2 Bivariate copula plots. Left: Gaussiapudat = 0.75, p = 0.9239, Right: Frank copula = 0.75,6 = 14.14, with
marginal distribution&; ~N(5,3) andX,~N(0,5).

4.5 Case study

4.5.1 Introduction of YRD

The Yellow River Deltal37°40"- N38°10", E118°41"- E119918& the biggest alluvial plain in
China and one of the youngest in the world, locatethe coastal area of the Yellow River
drainage basin in the east China. The main areth®fYRD is located in the Dongying
municipality. It includes five districts (Hekou, jli, Kenli, Dongying and Guangrao) and the
wetlands (Figure 4.3). It has an area of about 6060 The Yellow River Delta includes urban
areas, agriculture, fishing, natural reserve anldlsheconomic importance for its oil and gas

production.

The available water resources in the YRD are lichdee to the polluted local surface water and
salinized groundwater. About 90% of water use igvijpled by the Yellow River. However,
between 1995 to 1998, the lower Yellow River wasmdore than 120 days every year, up to 200
days in 1997. The zero-flow conditions have stoppiede the Xiaoliangdi dam was put into
operation in 2000. In recent years, a sharp deeredswater availability in the dry season
occurred in the lower Yellow River caused by thpidaincrease of water consumption in the

Yellow River Basin area.

On the other hand, water demand in the Yellow Ridelta is increasing with population growth,

agricultural expansion and industry developmeneré&hs severe competition between different
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sectors for limited water resources in the YRD,eesly between agriculture and industry.
Although farms are small-scale, and agriculturaldoictivity is low, agriculture uses a substantial
part of the available water in periods of low riflew (Deltares 2009). The industry water reuse
efficiency is relatively low (0.63) in the Yellowiter Delta, and the industry is likely to consume

more water as it continues to develop.

Therefore, to develop scenarios about the wateraddnwill be crucial for better allocation of
limited water resources and development of watenagament strategies for alleviating water

stress, while maintaining socio-economic develogmen

Bohai Sea

Bohai Sea

Legend

—pstream
Middiesfream
= Downstream
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Laizhou Bay

Dongying

Guangrao

0 100 200
[ [

Figure 4.3 Location and five districts of the Yell®iver Delta

4.5.2 Narrative Scenarios of future water demand

Narrative scenarios are storylines used to quiéiyt describe the future states or development
of the event. Water demand scenarios were develogiad the GBN (Global Business Network)
matrix analysis. The GBN matrix technique emergéith wublication of the well-known future
explorative book ‘ The Art of the long view * wrih by (Schwartz 1991). The GBN matrix is
constructed based on two dimensions of uncertainity polarized values, which defines four
domains with combined values from each uncertaiintyension. In each domain, storylines can
be fleshed out and elaborated to describe the tamotes. To construct the matrix, the two most

important uncertainties need to be identified.

Scenarios of water demand are projections of theuamof water that would be generated in

certain socio-economic and water use conditiorsiragig unconstrained water supply (Groves
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2006). Socio-economic factors such as populati@wtyr, economic development, agricultural
patterns, water use styles, technologic innovatao water policy are main drivers of future
water demand projections. Water use pattern ibati to be the most important factor that
influences future water demand (2030WaterResoumeg52009). As agriculture is the biggest
water user, it matters whether the industry or cadiire dominates the socio-economic
development. Two important components of water ase from agriculture and industry,

therefore, two dimensions of main uncertainties @ioked up to construct the water demand
scenarios, which are water use entities (indugiridalture) and water use patterns (water-
saving/ water consumptive). In each domain fornedaby two extremes, a storyline can be

constructed to describe the development of mainrdyiforces (variables) (Figure 4.4).

Urbanization speed-up/water saving: Urbanization will speed up with more urban citizemsl more land
for urbanization purpose than agricultural expamsiopulation in urban area increase larger thaniih
rural area, and more people emigrate from rurad amo cities. Economy will maintain its fast grdwt
and agriculture become less intensive. Environnpeatection is important for quality of life. Water-
saving policy helps to change social water useepst Environment is important in the water-saving

society. The water use efficiency will be improvadoth industry and agriculture.

Urbanization speed-up/water consumptive: Urbanization would develop as the case describegteg and
the priority is put in the industry instead of agitture. From the institution level, water saviraigy and
technology is not improved. From the individual devpeople don’t have much awareness of water

saving. So the water use patterns and water useeffy are hardly improved.

Agriculture intensive/ water-saving: Agriculture remains the main socio-economic attjivand more
uncultivated land is changed into farmland thanuidmanization. The rural population keeps on insirga
and less immigration activities will happen. Ecoryognowth slows down. Irrigation remains the biggest
water user, and its demand for water keeps onasorg as there will be more agriculture. Peopleshav
more awareness of water saving and environmenégfioh. Water-saving policy encourages farms and

industry to improve water use efficiency.

Agriculture intensive/ water-consumptive: Agriculture is important for the local people armbeomy as
described in the third scenario. As described & gbcond scenario, the agriculture and industrgmwat

consumption is not encouraged to be improved.
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Urbanization speed-up

A

Population: more urban Population: more urban
citizens citizens
Economy: fast growth Economy: fast growth;
Agriculture: less agriculture Agriculture: less agriculture
land use land use
Environment: very important Environment: less important
Water saving - P Water consumptive

Population: rural population
increase faster than urban
Economy: lowest growth
Agriculture: high price crops/
water saving crops
Environment: very important

Population: rural population
increase faster than urban
Economy: growth slow
down;

Agriculture: less crop change
Environment: less important

 /

Agricuture intensive

Figure 4.4 GBN matrix of water demand scenarios.

4.5.3 Water Demand Model

Three main attitudes of water demand were sumnthbygHoekstra 1998): a given need which
should be satisfied, a necessity only to be met‘dasic needs’ such as drinking water, an
economic good subject to the price charged. Thigkwdopts the first view of water demand to
support population, agriculture, industries andsgstem. A large number of water demand
models exist in the literature. Three importantecia can be used to select a proper model to
forecast socio-economic water demand: planning ctibgg available data and available
resources. Generally, four methodologies to fotesader demand are trend extrapolation, per
capita method, number of unit times a fixed pett uise method, and number of unit times a
variable per unit use method (Davis 2003). Fromddua collecting point of view, more complex
model will require more detailed and various datecording to the available data and discussion
with the experts, a relatively simple and generatlel based on the number of unit times per unit
use method was used by aggregating water requiteimoen the end users (e.g., people, crops,
livestock, and industry). The model is well suited project future water demand
straightforwardly, by considering how the changehef scale or production of water user and
their average water use intensity will impact fetwlemand. Figure 4.5 demonstrates the
components that influence water demand. Water dénvarthe Yellow River Delta include
mainly four users: domestic water demand, industiter demand, agriculture water demand and
environment water demand. Among them, agricultues whe biggest water user, consuming
more than 80% of the total water use. Total watenahdi/,,. ,, in the year y is the sum of water

requirement of the four sectors in the same year:
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Wtot,y = Wdom,y + Wind,y + Wagr,y + VVenv,y (4-17)
WhereW,., , is the domestic water demand in ygaW, , is the industry water demand in
yeary, Wy4,, is the agricultural water demand in yearW,,,, is the environment water

demand in yeay.

Domestic water demand:Domestic water demand includes water required farskhold in
rural and urban area. It is principally dependemtper capita water consumption, population
growth, water use efficiency, and water price etégt The impact of price elasticity on water
demand is not considered in the estimation of dtimester demand, due to relatively low and
stable historical water prices.

Waomy = 21PoDiy “lgom,iy 1=1,2 (4.18)
Where Pop; , is the population in rural areg=() and urban area=) in year ylzom,, is the

corresponding average per capita water consumption.

Industry water demand: Industry water demand is impacted by industry potidn, marginal
productivity of water, industry water use efficignevater price, and water production elasticity.
In the YRD, industry water users mainly include evafior production, architecture and tertiary
business. In the Cobb-Douglas production functithng water demand for production is a
function of marginal productivity of wates;,, ;. ($/n7), total productionPrd;,, ($), and
production elasticity of water .The index j represents industry, architect and tertiary
departments.

Winay = X0 Prd;jy/pina,jy (4.19)

However, the industry production elasticity of waite difficult to estimate when the historical
data on capital, labor, and energy is hard to cbll€herefore, the industry water demand is
simplified as the water withdrawn per unit industproductionl;,,, ; ,, (m*/$) multiplied by total
productionPrd; ,, ($).

Winay = X, Prdjy - Iingjy 1=1,2,3 (4.20)

Agriculture water demand: Irrigation water consumption for crops such as whsaybean,
cotton and rice contributes more than 90% of waserin the agriculture sector. The rest of water
is provided to orchard, fishing and livestock. daiion water demand is determined by crop

types, crop areas, climatic conditions, irrigatedficiency, etc. Agriculture water demaig,;, ,,
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is computed as the crop améeea, , multiplied by average water use intensity, x ,, taking
into account the agricultural water use efficieegy , . k is different crop types.

Wagry = Zk% (4.21)
Environment water demand includes the wetland water demand in the estuadytha out-
stream ecological water use in the YRD municipaiitythe study. The objective of sufficient
water for a healthy ecological system was not asvanet, as minimal weight was put on the
environment in the past. For example, the out-streater use holds only 2% of total water
demand in the YRD in the last 10 years. Therefitve objective of environment water prediction
is to improve the health of the ecological systgmmieeting the minimal water requirement for
the wetland ecological system and to maintain oprawe the out-stream municipality
environmental water conditions in the YRD. Accoglto estimates, the minimal water demand
to keep healthy wetland ecology is about 0.686km3Kan et al. 2011). In this study, wetland
water demand will be met at the minimal level, &né out-stream municipality environmental
water demand will be changed corresponding to temht put on the environment. The water
demand prediction will only include the out-streaater demand. It was simplified by modelling
the growth rate,,,,. The range of growth rates is [0-4%], considetting different importance
levels of the environment in society based on tienarios. A uniform distribution was assigned
to it.

Wenvy+t = Wenvy X (1 + Tenp)® (4.22)
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Figure 4.5 Components of water demand. The vaahleolored box will be quantified based on sciersar

and variables with the same color are consideredgrsup.
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4.5.4 Future water demand projection

To project water demand of domestic, industrial agdcultural sectors, the number of water use
units and the per unit use values change each geayyantified by a growth rate Therefore,

the projection of future water demand depends ergtbwth rate in the predicted period. Future
water demand is influenced by a variety of variaplguch as socio-economic development,
population growth, climate conditions, life qualityater use efficiency, water saving technology,
etc.. These variables thus also affect the groati However, future states of these variables are
uncertain, leading to difficulty in quantifying trggowth rate. Another difficulty is that some of
these growth rates are definitely interrelated, #mel dependence level will impact the final
outcomes. Therefore, it is necessary to model #@pendence structure by considering the joint

multivariate distributions.

To take into account the two difficulties, two stegre required to quantify the growth rate and

model the future water demand probabilisticallgope with uncertainty:

(1) Assign marginal probability distributiong;(r;) to variables of interest, i.e. the annual grovétes.
Scenario-based expert elicitation was applied &ntjfy the variables probabilistically under unegmty,
considering that historical data is not availalSeenarios of water demand were developed to aaticul
future thinking into storylines and explore possibiacks of the variables. On the basis of theyltas,
probability distributions of the growth rates wesbcited using expert judgement using the SHELF

procedure.

(2) Construct joint distributions among these Jalga if they are dependelfir;, r,, -+, 1,,|R) and sample
from the multivariate distribution and propagate tlncertainties to the outcome using Monte Carlo
simulations. In modelling future water demand, diependence of variables were taken into accoungusi

the Gaussian Copula considering the high dimenkigrd the problem.

The process can be formulated using Bayesian méera the following way:
f(WtotlrlerI "',Tan) X f(Wtotlrlan: "',Tn,R)f(T1.Tz. "',Tan); (423)
And the multivariate joint probability distributiazan be written as:

Gauss.
)

flrura, -, mR) = g1(r1) g2 (12) - gn (1) X ¢

T(p—1_
cgeuss = exp(— U=y /R )12 (4.24)
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WherecS*¥ss is the n-dimensional Gaussian copuRds the Pearson’s correlation matrixs the
n X n identity matrix,g;(r;) is the marginal density distribution f V is vector of variables

coming from the specific marginal distributions ahd correlations.

The correlation matriXR contains correlation coefficients between différgrowth rates. To
decrease the number of parameters to be estinthtedariables are divided into three groups to
model domestic, industrial and agricultural watemand, respectively (variables in yellow,
green and blue colour in Figure 4.5). And the Ja@ea are assumed to be independent with the
ones in other groups. Therefore, the process capliiento three segments and written as:
f(Weor, 11,72, 1o |R) f(Wdom|7"11:"'»r1q)f(7”11:"'»r1q|R1)
X f(Wind|7”21:"'»rzj)f(rzp"'»r2j|R2) X f(Wagr|T31:"'»T3k)f(7’31:"':Tk3|R3); (4.25)

With:

f(riv - TiqsioR) = 9@ = Gicasipo(Ticasip) X € =123, q+j+k=n
o LE1)

2

¢ = (4.26)

IRi2
Where Ry (111,°**,714) » Ry (121,-,725) , R3(r31,°++,73) are the correlation coefficients of
variables in three groups, respectively(r;) is the marginal density distribution gf (i =

1,2,3), cf(g}‘jjk) is theq or j or k-dimensional Gaussian copulajs the identity matrix of size
q or j or k, andV is a vector of variables coming from the speatfiarginal distributions and the

correlations.

4 5.5 Results

4.5.5.1 Marginal probability distribution assessmenh
The quartile probability assessment of each vagifiloim the three experts is shown in appendix

A. A plausible range of each variable is first riegd to be decided. According to the SHELF
procedure, the lower and upper bounds are the gamadl experts. The range of the variable is a
joint decision of the experts, so that they allided that the variable is extremely unlikely to be
located outside this range. The identificationh&f 50% quatrtile is relatively simple, and the 25%
and 75% quatrtiles are obtained by anchoring thatt®@and the median values. After eliciting all
values, experts should check if the range of fotervals (lower bound ~ 25% quartile, 25%
~50% quartile, 50% ~75% quartile, 75% quartile e tipper bound) is equally likely. From the
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elicitation table, experts were very diverse in tpgnions of most variables, and agree in some

variables such as grass and fishing area growgh rat

Appendix B gives an example of how to fit the disition of urban population growth rate to the
quartile estimation using SHELF software. Eachriggshows the value of three quartiles and the
density function. A normal distribution was fit tiee variable based on each expert’s judgement,
and the figure in the right-bottom shows the mixistribution based on the average value of
quartiles estimated by experts. As shown in ther&gthe values of 25% and 75% quartiles of
the fitted distribution do not perfectly match thgtimation. In order to check the goodness of fit
of the distributions, the estimated quartile valumsd the same quartile from the fitted
distributions are plotted. Figure 4.6 shows that éistimated quartile values matches well with
values of the same quartile from the fitted disttibns. It shows that the fitted distributions can

represent the experts’ judgement.

20r

Estimated Quartiles from experts
n

_10 | | 1 1 1 ]
-10 5 0 5 10 15 20

Guartiles from SHELF fitted distribution

Figure 4.6 Estimated quartile values and values fitee fitted distribution.

Appendix C demonstrates the fitted priors basedhoge experts’ judgement and the posteriors
using the linear pooling approach. Normal distridng were fit to represent the uncertainty of
variables. According to (Clemen and Winkler 199nple combination rules such as a simple
average tends to perform quite well although itsiders no dependence between experts.
However, complex models such as normal model apdilaomodels are quite sensitive to the
dependence, leading to poor performance in sones¢dsuini and Clemen 1996). Therefore, the
simple aggregating method,inear opinion pooling,was applied to combine the experts’
opinions into a single probability distribution. Véssumed experts to be equally qualified and

64



Probabilistic scenario development: Water demand projections
in the Yellow River Delta, China
gave them equal weights. The simple equal-weighthatk produces multi-modal probability
distributions when the opinions of experts are digefor instance, the posterior densities of rural
water use intensity growth rate, orchard area draate and so on. The multi-modal densities

allow the co-existence of the heterogeneity of egpepinions.

4.5.5.2 Multivariate probability distribution analy sis
The variables are likely to be dependent, and 8peddence level will impact the final outcome.

In order to consider their dependency, a multivardistribution was constructed on the basis of

the marginal distributions and Gaussian Copulatfanc

The important step is to identify the correlatiarefficient among the variables. Unsurprisingly,
there is no way to get the accurate correlatiowben variables, especially since the data is not
available. Therefore, the information provided bgople who have local and statistical
knowledge with correlation becomes valuable. Theretation matrix was estimated by
consulting seven Chinese PhD researchers in therWédnagement Group at TU Delft. They
first received statistical knowledge about the Bealls correlation coefficient, and were given
several scatterplots to train their judgement alibatstrength of correlation between a pair of
variables. The correlation was judged separatefysdt and the final outcome was refined after

discussions. The result is listed in Appendix D.

Markov Chain Monte CarloMCMC) was used to sample from the Gaussian copula-based
multivariate joint distributions. The simulationserg run 10,000 times for each group of
distributions, and the first half of the sampleseveemoved as burn-in. As an example, figure 4.7
shows the multivariate distribution samples of ppor.pop2, r.ldom1, based on Gaussian Copula
pl=-08, p2 =-045, p3=[1-0.8—-045; —0.810; —0.4501], with marginal probability
distributions of r.popl, r.pop2, r.lpopIThe samples from the Gaussian copula-based

bivariate/multivariate distributions are symmetround the central points.

Figure 4.8 shows 50 samples from the multivariagridutions of variables of domestic,

industrial and agricultural water demand separat&ya Gaussian copula considers weak tail
dependencies and no dependence is considered atxthemes, the samples were mainly
distributed in the central part of the marginaltlaitions. In the graph, the samples which are
distributed with opposite bounds such as variaBle$, 14, 17, 18, 19, clearly demonstrate the

bimodal marginal distributions.
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Figure 4.7 Multivariate distribution samples, Gaas<opulgpl = —0.8, p2 = —0.45,p3 =[1 - 0.8 —
0.45; —0.8 1 0; —0.45 0 1], with marginal probability distributions ofpop1, r.pop2, r.Ipopl.
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Figure 4.8MCMC samples of variables from Gaussian Copula-basédiivamiate distributions.

4.5.5.3 Future water demand
In this section, future water demand until 203%iedicted according to the results from the

scenario-based expert elicitation and the GausSggula-based model when dependence among
variables is consideredMCMC samples from the multivariate probability disttion were
applied as input to the water demand models. Howete autocorrelation of the driving
variables are not taken into account. Figure 4®4&0 shows the future water demand without
and with considering the dependence. The unceytdand of water demand is smaller with

considering the dependence of the variables, ass#mples from the joint Guess-copula
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distributions are more centralized compared witk 8amples from marginal distributions
separately. In the following analysis, the futuratev demand focuses on the results of the

Gaussian copula-based model.

Water demand consists of four main sectors: domeastustrial, agricultural and environmental
water sectors. The 99% quartile and the probalilisgribution of annual water demand of the
four sectors are presented in Figure 4.10. The p@¥entile of water demand, seen as the
medium of water demand, in all sectors tend toease, as the distribution of water demand
mainly locates on the right side of the value ia Hase year. The 0.5% percentile represents the
scenarios of water-saving society and slow growthath industry and agriculture in the YRD. It
shows decreases in domestic/ industrial water ddrf@na short period and a constant decrease
in the agricultural water demand, which is consisteith the probability distributions shown in
the figure below. The 99.5% percentile mainly repres the water-consumption behaviour and
rapid growth in both agriculture and industry ire tHRD. It shows a yearly increasing trend for
all the sectors. The shapes of 0.5% and 99.5% p@eseare slightly symmetric around the 50%
percentile, which reflects the symmetric structab®ut the centre point in the Gaussian copula
(excluding environmental sector). The change dltaiater demand combines the change of the
four sectors, which follows the shape of the fortieee sectors since they contribute about 95%
of total water demand. The uncertainty of water aedhin the future is increasing due to the
wider band of the 99% confidence interval. Oveffaliure water demand has an increasing trend
in the long term. If no water management strategie planned and adopted, the water shortage

problem is likely to become worse in the future.

Table 4.1 shows the three percentiles of water deneaery 5 years and the change compared
with the base year 2010. The water demand is iscrgaevery 5 years. The order of water
demand from different sectors remains the sametladare agriculture, industry, domestic and
environment. Although the agriculture is still thiggest water user in the YRD, industrial water
demand has a bigger increment than that of agui@jltvhich is consistent with the assumption
made by the experts that the urbanization speed-opre likely than the agricultural intensive
scenarioi(prdl, r.prd2, r.prd3in Appendix A).
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Table 4.1 0.5%, 50% and 99.5% percentiles of wagenand (kM)

Year | Percentile | Domestic (a) Industrial (b) | Agricutural(c) | Environmental (d) Total (e)
2010 0.0869 0.1676 0.9231 0.0677 1.2453
0.5% 0.0809 (-6.84) 0.1682 (0.39 0.8611(-6.7) 8306L..32) 1.1789 (-5.32
2015 50% 0.0888 (2.26) 0.1956 (16.71)) 0.9364 (1.4F) @20(B.82) 1.2912 (3.69)
99.5% 0.0948 (9.12) 0.2186 (30.45)  1.0220 (10.F2) 0.0720 (6.45) 1.4075 (13.03)
0.5% 0.0833 (-4.07)| 0.1850 (10.43) 0.8555 (-7.8)  .0705 (4.18) 1.1945 (-4.07|
2020 50% 0.0921 (6.04) 0.2277 (35.86) 0.9525 (3.20) 10(B.05) 1.3456 (8.06)
99.5% 0.0992 (14.26 0.2674 (59.59)  1.0695 (15.87) 0.0760 (12.28) 1.5124 (21.45)
0.5% 0.0871 (0.25) 0.2067 (23.34) 0.8547 (-7.4) 0727 (7.52) 1.2214 (-1.91
2025 50% 0.0968 (11.44) 0.2645 (57.86) 0.9666 (4.72) 0768 (12.72) 1.4044 (12.77)
99.5% 0.1049 (20.73 0.3261 (94.57) 1.1054 (19.f5) 0.0802 (18.54) 1.6167 (29.82)
0.5% 0.0921(6.09) 0.2308 (37.75) 0.8527 (-7.61) 7930(11.28) 1.2512 (0.47
2030 50% 0.1030 (18.53),  0.3076 (83.57) 0.9904 (7.29) 7970(17.85) 1.4809 (18.92)
99.5% 0.1127 (29.70)  0.3949 (135.6B) 1.1718 (26.94) 0.0848 (25.36) 1.7643 (41.68)
0.5% 0.0985 (13.37))  0.2616 (56.13) 0.8499 (-7.92) .0781 (15.51) 1.2883 (3.45
2035 50% 0.1106 (27.32)) 0.3569 (112.95) 1.0155(10.01) .0836 (23.55) 1.5666 (25.81)
99.5% 0.1219 (40.34) 0.4745(183.1p) 1.2282(33.06) 0.0899 (32.82) 1.9147 (53.75)

Note: the numbers in parentheses are the percentdgbange compared to water demand in 2010 (%).

4.6 Discussions and Conclusion

4.6.1 Scenario-based expert elicitation under unctinty

Scenario-based expert elicitation provides a féadiamework to incorporate experts’ opinions
regarding uncertainty to project future stategjats-based approaches are not feasible due to the
data scarcity. Scenarios articulate the mental fsadethe manner of storylines, and numerical
information can then be added to model the futtates quantitatively on the basis of the stories.
Scenarios attached with probabilities are beliesede more realistic as the future states would
not be equally likely, and they allow scenario degers to quantify their assumptions explicitly.
To quantify the scenarios, expert elicitation wasyély researched and used considering data
limitations. In the study, scenario-based expeditation assessed the probability distributions,

and allows the projection of future water demarmdisastically.

Expert elicitation is scientifically sound whenist credible, transparent and repeatable. To this
end, the well-structured SHELF procedure providesraprehensive and repeatable procedure to
incorporate experts’ knowledge as input to modélriei water demand. The graphical interface
enabled experts to visualize their assessment afapility distributions, and give immediate

feedback and adjustment of their judgement. Howewar important issues need to be addressed

before starting the expert elicitation process:gdlection and training of experts has to be done
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carefully before their judgement can be used tgstipdecision making; (2) the calibration of
experts’ ability to express their knowledge is uséd validate their judgement. In the study, the
training of experts’ judgement in the probabilistvay was carried out, but the performance of
experts’ judgement was not formally calibrated drsdinguished. However, the SHELF allowed
the elicitation process to receive immediate aeduent feedback from the experts, which tends
to calibrate the expert judgement to be consistatit his knowledge. In order to keep the

process transparent, the elicitation process sHmildell recorded.

4.6.2 Mathematical methods of aggregating probabily distribution need to be improved

Three experts were interviewed and consulted ®rgsessment of probability distributions. The
aggregated probability distribution assessed bythihee experts was valuable for capturing the
accumulative information about experts’ opiniongjareling uncertainty. The simple linear
pooling method was implemented for this purposee Tihear pooling method allows the
assignment of different weights to experts, and é¢xpert who is believed to give better
judgement would receive more weight. The knowletiyel and ability to provide probability
assessment were regarded equally qualified as jhdgement were ensured by iterative
adjustment and correction with SHELF. It is beli@évwbat “ the simple rule will always play an
important role due to their ease of use, robustopmance and defensibility in public policy
"(Clemen and Winkler 1999). As far as more complaathematical models, the Bayesian
aggregation rules are powerful and growing rapittligzonsiders the dependence among experts,
and allows for updating the expert’'s beliefs. Hoamr\constructing the likelihood functions to
model the dependence and the biases of experiigsiltd and subtle, yet it directly determines
the quality of the aggregated probability distribns. Further studies are required to better
understand the behaviour and the full potentidB@yesian rules to facilitate the assessment and
aggregation (Chhibber, Apostolakis et al. 1992)oter issue about the aggregation of multiple
probability distributions is that the single aggreml one is actually not the judgement from any
expert. It means that experts have to negotia@ompromise in order to reach a consensus, or
more research has to be done to develop betterematical combination rules and behaviour

aggregation procedures to improve the performance.

4.6.3 Copula-based multivariate probability distributions
In this study, dependence among water variablemdadel water demand is considered and

copula-based model was used to construct multieapeobability distributions. Copula theory
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has become popular in economic and financial motelsccount for the dependence between
multiple variables; similarly, its application inater resources management should be also
promising as the different driving forces of watrents are interdependent. Copula-based
models provide explicit tools to construct multiade probability distributions, and the copula
function is independent from the marginal distribag, which makes the approach flexible. This
study assumed multivariate normal distribution aghonultiple variables, and investigated the
Gaussian copula, which is more tractable for highetisions. The comparison and application of
various bivariate-copula could be also interestiagd has been discussed by (Bhat and Eluru
2009). Three steps are required to construct cepagad multivariate probability distribution:
first, the marginal probability distributions hatebe specified for each variable, and this can be
done with the techniques of data-based estimatiogxpert elicitation; then the dependence of
the variables has to be quantified with the Pedssmoment correlation, rank-order correlations
Spearman’g, or Kendall'st; last step is to identify the copula to join tharginal distributions
into a multivariate distribution. One challengetloé copula-based model is to extend the copula
function into higher dimension, as the correlatiomegrix becomes larger with higher dimension.

More effort to estimate the correlations and expensomputation will be required.

4.6.4 Water demand projection in the YRD

Future water demand in the Yellow River Delta #iclilt to project as the driving forces such as
population growth, water use patterns, water pobcg unknown, and the past data is not
adequate to estimate the trend of developmenisrsthdy. Scenarios are powerful tools to create
pathways of their development, and probabilistiédorimation is helpful to quantify the
uncertainty. A GBN matrix outlined the water demasténarios including main uncertainties,
and storylines were elaborated to flesh out foenados. However, not only four pathways were
quantified based on each scenario, but also thsilpessituations between each scenario were
taken into account. Indeed, it is difficult to matthe quantitative pathway with the scenarios
specifically, but the probability distribution inmes the plausible range of futures covered by the
four scenarios as well as the futures between thadditionally, the probabilistic information

was propagated to yield probabilistic water demsseharios.

Water demand is likely to increase in the long rand the lower and upper bound of the
uncertainty band represent two extremes: watemgasociety together with slow growth of

urbanization and agriculture, which approachex#rgre of the GBN matrix; water consumption
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society with rapid growth of urbanization and agltere, which approaches the extremes of the
matrix. Values between the bounds represent theiljedutures between the extreme scenarios.
As the urbanization speed-up scenarios are asstorieel more likely than agricultural society,
the industrial water demand has a bigger increncentpared with that of agricultural water
demand. If no water management strategies are ediojhie water shortage situation is likely to

become more severe.

In summary, the paper presented a scenario-bagesttealicitation method and copula-based
multivariate analysis to explore future water dechamder uncertainty. In water resources
planning and management, the information from espeith special knowledge and experience
is valuable as input for modelling and decision mgkalthough there are quite some challenges
in evaluating the credibility and reliability ofétobtained information. Therefore, to explore the
full potential of information from experts, it ismportant to develop scientifically sound
mathematical and behaviour approaches to make gsedof this information. This study
employed well-structured expert elicitation procedand mathematical approaches, taking into
account the credibility, availability and feasityliof these approaches. The water demand
projections are supposed to facilitate the decisi@king process in water resources planning and
management, will be used in Chapter 6 for a detismaking case study in the Yellow River
Delta, China.
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making framework for water resources planning and

management

5.1 Introduction

Decision making under uncertainty refers to theohahoosing one decision among two or more
decision alternatives when the outcomes of thoseratives are uncertain (Schultz, Mitchell et
al. 2010). Uncertainty in decision making exist® da the deficiencies in knowledge about the
past, present and future states of the system tmdeaged, and the ambiguities in perceiving
consequences of decision alternatives in the decisiaking process. In addition, decision

making uncertainty exists in practical decision mgkactivities due to the diverse social

objectives, interests and backgrounds of diffestakeholders and decision makers. Accounting
for uncertainty in decision making, it is necess&wyanalyze potential risks and to hedge
decisions away from large losses (Reckhow 1994).

Decision analysis has been applied to assist makéegsions in the face of uncertainty. It starts
from framing the decision problem, going througé ginocess of analyzing uncertainty, modeling
decision alternatives and assessing decision pegioce, communicating uncertainty and risk to
decision makers, and eventually helping them toerddcisions in a consistent and rational way.
Schultz (Schultz, Mitchell et al. 2010) pointed dliét the main part of decision analysis is to
structure decision models incorporating uncertagtiidentify the consequences of decision
alternatives and incorporate decision makers’ peefges. A set of ideas and analytical models
has been developed to manage uncertainties fosidecanalysis, such as event trees and
Bayesian Belief Networks for probabilistic inferenand uncertainty propagation (Huang, Chen
et al. 2001, Robertson and Wang 2004, Ames, Neiitoal. 2005), decision trees, influence
diagrams and scenario development for modelingeamptbring uncertain events and the decision
outcomes (Peterman and Anderson 1999, von Windréeld Edwards 2007, Mahmoud 2008).
Another crucial task for decision analysis is takralecision alternatives under uncertainty for
choosing the final decision. A set of decision suteas been developed and adopted to rank

decision alternatives according to their consegegm@ainst uncertainties and the preference of
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decision makers (Tung, Wang et al. 1993, Reda asxk B997, Xu and Booij 2004, Xu and
Tung 2009). However, the presence of uncertaintyher consequences and decision makers’
preference complicate the selection of an apprtgdacision rule. Most of decision rules focus
on the stochastic consequences and decision makefsrence on wealth (risk-neutral decision
makers), while ignoring the case that decision mskee usually not risk neutral but risk averse
or risk seeking when making decisions in face afeutainty. Utility functions that incorporate
decision makers’ preference and risk attitudesumeful to understand such influences on the
final choice of alternatives (Schultz, Mitchelladt 2010).

A well-structured decision making framework is edie to support and guide decision analysis
in face of uncertainty. A number of decision makimgmeworks have been developed and
adopted in water resources planning and managef@&awart and Scott 1995, Duchness, Beck
et al. 2001, Groves 2006, Xu, Tung et al. 2009, per and Groves 2010, Vucetic and
Simonovic 2011). Means lll et al. (2010) (Means augier et al. 2010) reviewed and compared
five decision making frameworks incorporating unaigties, namely classic decision making
method, traditional scenario planning, robust denismaking, real options and portfolio
planning. Here, we will compare the first three Imoglologies. From the perspective of
uncertainty management, classic decision making liegppprobabilities to characterize
uncertainties and identifies the optimal decisigaiast the most likely scenarios. Therefore, the
outcome of decision making will be sensitive tontiécation of the most likely scenarios, and be
vulnerable to surprises or unexpected events infuhae (Lempert, Groves et al. 2006). The
traditional scenario planning and robust decisiakimy abandon probabilistic information, and
identify the robust decision over a wide range aérarios. However, the lack of probabilistic
information makes it impossible to quantify thekridhat decision alternatives may cause, for
example, the risk of economic losses, so that gecisakers are ambiguous about the risk of
choosing any alternative under uncertainty. Ondtreer hand, it is likely to lead to arbitrary
selection of scenarios and alternatives (Meand dugier et al. 2010). A framework to combine
the probabilistic information and a large set otrsrios is more desirable to cope with
uncertainties in decision making.

This chapter is organized as follows: firstly, tassic decision theory based on Expected Utility
theory in face of uncertainty will be introducedeflly; secondly, three popular decision making

frameworks in water resources planning and managgrokassic decision making, traditional
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scenario planning and robust decision making wellrbviewed and compared, focusing on the
difference of these frameworks, for example, thecedtainty management, the output
presentation, the involvement of decision makergfgrence and risk attitudes, etc.; thirdly,
decision rules to rank decision alternatives inavaésources management will be investigated
and compared, in order to find an appropriate da&cisuile; lastly, a probabilistic scenario-based
decision making framework will be proposed, trytogcompensate for disadvantages of existing
methods. The proposed framework provides a plaasdghproach to explicitly manage
uncertainties, as well as inform the influence efidion makers’ preference and risk attitudes on
decision making.

5.2 Decision theory
Decision theory was developed to study the decismaking problem when facing uncertain
outcomes of choices. Going back to 1713, the caieal method is to choose a decision based
on maximizing the expected value of outcomes. Hawrethe idea was first challenged by the
famous St. Petersburg Paradox. It was a coinfigsgame and the player invested mokey
play with it. The gain will be doubled if a tail pgars, and the player will lose everything (the
gain would be 0) if a head appears. The payoff ME;‘;l[(%)n x 20 x 4 (%)n x 0],
where n is number of coin tosses before head app€he game would have infinite gain as the
probability of tail and head is equal, and the plaghould enter the game based on the maximal
expected gain. But the paradox is that most indiadsl are not willing to pay to enter the game.
Daniel Bernoulli resolved the St. Petersburg Patadd 738 by introducing the value function to
incorporate an individual’s preference level on ltfeaand demonstrated a diminishing marginal
satisfaction associated with increasing wealthir&tividual’s preference to wealth is included in
Bernoulli’s value function, but the value functiaras not able to distinguish a sure thing and an
uncertain alternative with identical expected ootes. To address the issue, von Neumann and
Morgenstern extended the theory by introducing etquk utility theory to incorporate decision
makers’ preferences towards wealth and the corneBpg risk under uncertainty. The preference
among uncertain alternatives can be identified thgvking the utility of their outcomes and the
probabilities. A set of axioms were developed tospa rational decision making behavior under
uncertainty (von Neumann and Morgenstern 1947)es&laxioms are:

(1) Completeness. The decision maker is unambiguous & preference or can distinguish his

preference against multiple alternatives. For twtioms, L and M
if u(l) <u(M),u(M) <u(L) or u(L) = u(M)
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then L<M,M<LorL~M (eitherM is preferred, oL is preferred, or L indifferenceg).
(2) Transitivity. It assumes the preference is coanisacross any three options
ifL<MM<NthenL <N
(3) Continuity. It assumes a probabilipyexists so that decision makers’ preference agtiest
outcome of an uncertain alternatiye; 1 — p, N) is indifferent to the outcome of a certain
optionM. The outcome of the certain option is called theainty equivalent of the uncertain
option.
if L<M < N ,there exist a probability p < [0,1],
p-u(l) + A —p) ulN) =uM)
Then pL+ (1 —-p)N~M
(4) Independence. It assumes that a preference hadpéndently of the possibility of another

outcome.
if L<M,then for any N andp € (0,1),
pL+ (1 —p)N<pM+ (1-p)N

A utility is a dimensionless number to measurewoeth, satisfaction, or preference on wealth
that an individual has. A utility functioti(x) is a real mathematical function to convert value
functionsV(x) of an attribute seX into real numbers which incorporates risk attituded given
preferences. Decisions made based on va(esencode the strength of preference over wealth
involving riskless attitudes, while utility encoddsoth the preference and risk attitudes
(Krzysztofowicz 1983). Concerning uncertainty, We@umann and Morgenstern assumed that all
probabilities should be decided objectively. It iater expanded by Savage (Savage 1954) who
introduced subjective probabilities into the expdctutility maximization models, which
contributed greatly to modern decision analysis.

The utility function and the value function canrbapped as:
Ulx)) =WV (x) (5.1)
The expected utility equation assumed the linemtiomship between the probabilities and the
utility (Weijs 2011) . Expected utility can be weh as:
E(U{x,p}) = 21 U(x)p; 5.3)
WhereW (+) is the individual's utility functionV/(x;) is the consequence of the attributes, e.g.
monetary outcomes, in thdh state of the future world, ampgis the probability of the ith state

of the world.E (U{x, p}) is the expected utility. According to the utilityeory developed by von
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Neumann and MorgensterK,is preferred tor if and only if the expected utility of is larger
thany.
X>Y iff E(UX)) > EUY)) 5.3)

5.3 Existing methods for decision making under unceinty

5.3.1 Classic decision making

Classic decision making specifies the likelihoodfature uncertain states using probabilistic
information, estimates the outcomes of decisiorraditives, determines the decision makers’
utility functions and helps decision makers to fthé optimal decision in the sense that it has the
highest expected utility. The crucial componenturesfl by classic decision making is to
determine the probability distribution for futurtates of the world. Statistical methods can be
used to determine the probability distributionstba basis of adequate historical data with the
assumption o$tationarity, which assumes the variables or events do notgehemtemporal and
spatial scale. However, subjective probabilities also suitable to estimate the future states of
variables in case of uncertainty (Dessai and HuR64). Subjective probabilities can be
assigned using Bayesian models and expert judgenwWhether the uncertainty is well
characterized and the decision model is well stinect is important for finding the stochastically

optimal decision (Morgan, Dowlatabadi et al. 2009).

The mathematical expression of classic decisionimgak as follows (e.g. discrete states): Det
denote the space of the viable decisidpso the problemX denotes the space of scenarios to
represent possible states; & denotes the space of possible outcéegiven the decisiod,,
under the future state,. p(6,,|x,, d,) denotes the probability of the outcome given {reciied
state and the decisiop(x;) denotes the probability distribution of the futwtatesu(6,,) is
the utility given the outcome. The expected utifity each decision is expressed as:

E(U(dy)) = X5z u(Oy)D Oy %, dy)p(x,) (5.4)
The decision which has the maximal expected utitghe optimal decision according to the

traditional expected utility maximization rule.

EW@E)) = E(U(d)) j=#i (5.5)
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States— x x, Xz EU) L
Probabilities— p(x,) p(x,) p(xz)
dy u(@;1) - u(61,) u(612) Z u(01,)P(812x,, d1)p(x,)
z-Z
dy u(gyl) u(gyz) u(gyZ) Z u(gyz)p(gyzlxz' dy)p(xz)
z-Z
dy u(fy) - u(ly) u(byz) Z WOy DOy, %s0 dy)P(X,)
z-Z
Decisionst

Table 5.1 matrix of expected utilities functionsden each decision. The top row defines each stateeoworld
under uncertainty. Second row indicate the objectdr subjective assessment of each state’s prdigabi
occurring. The first column lists the decisions endonsideration. The interior of the matrix refiethe utility of the
outcomes corresponding to each decision actingah state. The rightmost column represents thectageutility
of each decisiod (Groves 2006).

Classic decision analysis has been widely apphed range of water management problems in
face of uncertainty. Examples includes flood manag@ strategies (de Kort and Booij 2007),
water quality management (Duchness, Beck et all R@®ban water supply system management
(Kodikara 2008) and water infrastructure managen{@mowdhury and Rahman 2008). The
method allows defining multiple, and often coniligt objectives, quantifies uncertainty with
probabilities explicitly, provides the consequenadseach strategies against the objectives
clearly, and enables decision makers to chooseptimal option straightforwardly. It can also
be integrated with other decision making methodshsas scenario planning to analyse the
strategies against different scenarios, real optionlook at a strategy’s uncertainty based on a
comparison between costs and risk profiles, whiehckosely dependent on strategies (Means llI,
Laugier et al. 2010). However, classic decisionyams is suitable when uncertainty can be well
characterized with probabilities, which is diffitilo be implemented when uncertainty is
complex and high-dimensional. Additionally, it prd@s one optimal option, which might not be
resilient or adaptive to the uncertain future ctinds.

5.3.2 Traditional scenario planning

Traditional scenario planning identifies a strateppt best and commonly prepares for a
plausible set of uncertain circumstances (Meand.dugier et al. 2010). Scenarios are developed
through the identification of crucial uncertaintiesd driving forces, aiming to go beyond
extrapolation of current trends and explore pldesibture alternatives. Strategies are identified

for each scenario, and then a near-term commotegirés selected to cope with all scenarios. In
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long-term planning, the strategy will be reassesaad adapted when signpostoccurs.
Signpostsare established to monitor the divergence of aaceifirom the others or its original

path, and determine when the strategies are netauitable to all or most scenarios.

Scenarios are descriptions of future state of thddain a consistent and plausible way, and they
can be qualitative and quantitative. The develognt#nscenarios is the crucial process to
manage uncertainty for decision making purpose. Kegertainties are identified and ranked
based on theémportance leveland theuncertainty levelwith respect to the central questions
(Means lll, Laugier et al. 2010). The developmestdhniques of scenarios for water resources
planning and management have been reviewed by [@org. (2013). Traditional scenario
planning treats scenarios equally likely to ocdustead of assigning probabilities to future

states, as in classic decision analysis.

Scenario-based framework has been applied in wasaurces management under uncertainty,
such as water policy development (Stewart and St@®5), water resources planning and
watershed management (Mahmoud 2008, Mahmoud, Gaipéé 2011), ecological protection

(Zacharias, Dimitriou et al. 2005). Scenarios aeeful when historical data or statistical

information is not sufficient or necessarily requir It can be used in both short-term and long-
term decision making, allowing decision makersralgze the performance of strategies against
different future conditions. However, typically twe conditions are characterized by a small
number of scenarios, which limits the ability ofemario planning to address uncertainty
completely. Scenarios with diverse views might reguisparate strategies and the method
doesn’t bring consensus of these strategies. Auxdilly, as probabilities are not available, it

leads to arbitrary selection of scenarios andegjias.

5.3.3 Robust decision making framework

A robust strategy is defined here as one that pegavell compared with decision alternatives
over a large ensemble of alternative futures (Letmpg&roves et al. 2006). Unlike the optimal
strategy focusing on the most likely futures, rahass takes into account less likely and extreme
events or states of the future. The robust decisiaking method generates robust strategies
adapted to large sets of quantitative scenariasutiir an iterative process. The process includes:
(1) suggest initial candidate robust strategiey,id@ntify vulnerability of the strategies against

certain clusters of future circumstances, (3) ssgéedges that address vulnerabilities of the
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initial strategies, (4) characterize tradeoffs lesw the full range of futures and a cluster of
future circumstances where strategies might perfooorly (Lempert, Groves et al. 2006). The
robust decision making concept has been appliedvater resources management under
uncertainty. Groves (Groves 2006) has examined stolairategies for California water

management strategies in the face of climate anm-®Tonomic uncertainties, and Dessai and
Hulme (Dessai and Hulme 2007) have identified aatapt strategies robust to climate change

uncertainties for water resources management ittiited Kingdom.

Robust decision making differs from the classicislea making approach without considering
probabilities, which is consistent with the traglital scenario planning idea. However, it differs
from traditional scenario planning by generatingaege ensemble of scenarios using model
simulations instead of narratives. The advantagé¢hefmethod is that (1) a complete set of
strategies is not required at the beginning of gei analysis, as adaptive strategies can be
proposed in the process iteratively; (2) the consage and vulnerability of each strategy to
future conditions is identified, and it enablesidien makers to determine their own objectives
and risk acceptance in long-term plans. Howevehisticated computation and analytic abilities
is required in the process. Generally, robust datismaking does not determine one single best
strategy. Instead, it uses the information in cotapsimulations to distinguish the reasonable
choices from the unreasonable ones, and to dematmdine tradeoffs among the reasonable
options. Robust decision making requires high lesfedecision-maker engagement (Groves,
Knopman et al. 2008), as they have to assign theim subjective likelihood to the critical
scenarios, estimate their acceptance level of tita¢egies’ vulnerabilities, and select one final

robust strategy.

5.4 Decision making rules for water resources managnent under uncertainty
Decision rules are used to rank candidate decaltennatives under uncertainty and find out the
optimal and robust decision given the outcomesegfsion alternatives against future conditions.
Xu and Tung (2009) have reviewed and summarized dategories of decision rules in water
resources planning and management. Among thene opular categories will be introduced.
In addition, decision rules based on utility theoan be used when decision makers’ preference

and attitudes to wealth and risk are taken intoact

80



Probabilistic scenario-based decision making framework for

water resources planning and management 81

5.4.1 Classic decision rules

Various classic approaches exist: mean-value metidarkowitz mean-variance method,
minimax regret or maxmin value method (Markowit5329Duchness, Beck et al. 2001, Xu and
Booij 2004, Figueira, Greco et al. 2005, de Konhd éooij 2007). The mean-value method
compares different alternatives on the basis of é¢ipected value of consequences; the
Markowitz mean-variance method selects the altemawvith smaller variance for the same
expected value, or the larger expected value femtidal variance; the maxmin rule tries to find
the alternative which minimizes the maximal loskigabased on a simple pessimistic view, and
the minimax rule chooses the preferred alternatiye minimizing their maximum regret
(opportunity loss if the alternative is chosen @ast of others). These methods are easy to
implement. However, they will miss information pided by probability distributions generated
by model outcomes, as they only focus on the dirgecond moments or the single best or worst
outcome. As shown in Figure 5.1, the decision nakeight have difficulty in choosing a better
decision merely based on the mean value (Left égand mean-variance rule (Right figure) if

they don’t take into account the entire probabidiistribution (Tung, Wang et al. 1993).
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Figure 5.1 Consequences of two alternatives withesmean (left) and same mean and variance (right).

5.4.2 Statistical decision rules

A widely used stochastic decision rule is the séstic dominanceSD) rule (e.g.,Tung, Wang et
al. 1993, Tung and Yang 1994). Stochastic domin&asebeen applied in decision theory since
(Allais 1953). TheSD rule focuses on the ordering of uncertain optifmmsspecific risk profiles
(Levy 1992). For exampleSD rules were applied to compare candidate alterestily
comparing the risk profile, which represents thenalative probability distribution (CDF) of

consequences from decision alternatives. Threeedelpvels, namely, first-degree stochastic

81



82

Chapter 5

dominance testsFSD), second-degree stochastic dominance t&SD( and third-degree
stochastic dominance teISD were developed gradually due to the complexitgainance

characteristics between CDFs. Mathematically, tlvasebe expressed as follows,
SED ) = [7 [A®) — f2()]dy = Fi(x) = F,(x) 2 0 for all X; (FSD)
SFE () = [* IR ) - B0y = [* §F1 () dy 2 0 for all X; (SSD) (5.6)

SES,0) = [ 7 [F() - Rdvdy = [*_SEZ,(y»)dv =0 forallX; E;(X) < Ey(X); (TSD)

Wheref; (y) andf,(y) are the CDF of decision alternative 1 and 2, retspaly. F;(X) and

E,(X) are their expected value.

When the CDFs (cumulative density functions) of tdecisions do not cross, the dominance
relationship can be determined by the first-ordeclsastic domainHSD) test. TheFSD test
determines that decision 1 dominates decision #fi@nd only if)F; (x) = F,(x) for the case
whereX represents a “cost” (the less the better). Comlggrthe dominance relationship between
them is opposite wheX represents a benefit (the more the better). Nonhaance between two
alternatives requires a higher level stochasticidante test. For example, the right figure shows
that decision 1 dominates decision 2 ®$Das the area A is bigger than area B (Figure 5.2).
However, higher degree of stochastic dominanceimegj@extra assumptions, for example, the
SSDtest assumes the decision makers are risk avatserafer a less risky outcome; th&8D
test further assumes that the decision makers hamminishing risk adverse attitude against the
outcomes. The disadvantage of higher degree ohastic dominance test are: (1) parametric
probability distributions have to be assigned te ®DF for easier integral computation; (2)
computation is more expensive when more integrith® CDF are involved; (3) the assumed

risk attitudes of decision makers are difficulb justified in practice.
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Figure 5.2 Decision 1 dominates decision P (Left) andSSD(Right).
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5.4.3 Stochastic-Ranking-Based decision rules

Given that different possible rankings can be sachglatistically due to uncertainty, these rules
measure the similarity or difference between pafreanking. Two measures, a rank correlation
coefficient (Kendall 1948) and Xu'’s risk measurei(¥. P. and Tung 2008) were developed for
this purpose. The rank correlation coefficient adcalated over a score matrix which measures
the agreement between pairs of ranking, and omenalive is ranked before others when the
overall rank correlation coefficient between it ahé others is larger than 1. Xu’'s risk measure
presents the risk of obtaining a pair of weak ragkof alternatives and the corresponding
expected loss. The risk was defined as the prothetiveen the probability of obtaining
unacceptable ranking and the opportunity loss efrdmking. Decision makers have to decide
whether they are willing to accept the risk or not.

5.4.4 Stochastic-Utility-Based decision rules

To combine the full probability information and thisky context, stochastic utility based rules
follow expected utility theory and involve the cext of decision makers’ risk attitudes to
uncertainty. The approach analyzes the risk pradgsociated with the utilities considering
decision makers’ risk attitudes (Schultz, Mitchell al. 2010). This method ranks decision
alternatives by maximizing the expected utility aatcertain level of risk attitude of decision

makers, and it can also analyze the sensitivithefranking by altering the risk attitudes.

Three risk attitudes of decision makers can beessrted by different utility functions. They are
risk neutral, risk averse and risk seeking (Figbu®). Risk neutral attitudes are described by a
linear utility function, and decision makers evatuthe risk depending only on the values (model
outputs), which linearly translate to utilities.sRiaverse behavior is described by a concave
utility function with decreasing marginal utilitieBecision makers are cautious and conservative
when they deal with uncertainty. Conversely, riskldng behavior has a convex utility function
with increasing marginal utilities. For risk averdecision makers, the utility increases with
increasing preference (returns, profits), and thegmal utility is decreasing.

U'(x) > 0; U"(x) < 0; (5.7)
With risk seeking decision makers, the utility isases with wealth but the marginal utility is
increasing:

U'(x) > 0; U"(x) > 0; (5.8)
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Figure 5.3 Utility function curves associated wdifferent risk attitudes (Pinto and Garvey 2012).

Certainty equivalent (x..) is an important index to distinguish the risk tattes of decision
makers, and compare alternatives under the sahkettitude. It is the certain amount that is
equally preferred to the expected vali(&) of the alternative. For example, you can eithasypl

a game with 50% of $3000 gain and 50% of gettintping, or you can have $1000 for sure. The
expected value of playing the game is 0.5*$300041:$1500. If you prefer to accept $1000 for
sure instead of playing the game, your certaintyivedent is $1000. In other words, you are
conservative and resist taking the risk even wikingher expected return. Concerning risk averse
against loss, for instance, you have to chooserritsing $3000 with a probability of 50% and
nothing with 50%, or lose $1700 for sure. The exgecloss of the first choice is
0.5*$3000+0.5*0=$1500. If you choose to pay $17@0sure instead of playing the gamble, then
your certainty equivalent is $1700. In that cagey &re risk averse and resist taking the risk even
with a lower loss. In general, the behavior of sgka sure thing over a risky alternative which
has higher expected return or lower expected bsslled risk averse; conversely, rejection of a

sure thing under the same circumstances is catikgeeking.

The difference between the expected value and dhainty equivalent is called risk premium
R = E(X) — x... It is the minimal amount that the decision makewilling to pay to compensate
the risk to choose an uncertain alternative, avoid the risk to choose an uncertain alternative.
On the other hand, from the uncertainty managerpeirit of view, the risk premium is the
difference between the expected values of an altiemwith and without considering uncertainty
(Schultz, Mitchell et al. 2010).

Using certainty equivalent.., the three different risk attitudes in terms obfgs/returns can be

specified as follows:
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* x,<EX)orR >0, If the certainty equivalent specified by theidiem maker is less than the
expected profit for a decision, the decision makenge a risk adverse attitude with respect to
uncertainty.

* x., = EX)orR =0, If the certainty equivalent specified by the dam maker is equal to the
expected profit for a decision, the decision makenge a risk neutral attitude.

* x. > E(X)orR <0, If the certainty equivalent specified by the dem maker is greater to the

expected profit for a decision, the decision makerge a risk seeking attitude.

However, these definitions have to be adjustedofdcomes specified in terms of decreasing
preference such as costs. In that case, decisi&armare risk averse if their certainty equivalent
is greater than the expected cost, and risk seekthgir certainty equivalent is smaller than the

expected cost.

Increasing preference - o Decreasing preference
UdEGOY | T )
) T Ux(E(x))
E(Ux(x)) s )
(X
iR ! ; .
a e o E) b Attribute X a EM) Xe b Attribute X

Figure 5.4 Certainly equivalent and risk aversiguate.

Mathematically, the utility corresponding to theteely equivalenk.. equals the expected
utility of the decision alternative along the ditrieX (Norstad 2011). Then,
U(xce) =E(Ux(x)) (5.9)
Xce = Ux ' (E(Ux (x))) (5.10)

Therefore, certainty equivalent can be used asdexito compare the preference of decision
makers on alternatives. To compare alternativesalternative with larger certainty equivalent is
preferred in terms of profits as the expected tutis also larger, and with smaller certainty
equivalent is preferred in terms of cost, providihgt the appropriate utility function is used. In
Figure 5.5, when decision makers’ preference amae as the attribute increases, alternative 1 is
preferred to alternative 2 as the certainty eqemalof alternative 1 is larger than that of
alternative 2 X o1 > Xcez, andE;(Uy) > E,(Uyx) . Conversely, alternative 2 is preferred to

alternative 1 as the certainty equivalent of aléue 1 is larger than that of alternative 2 ,
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Xce1 > Xcez» aNdE;(Uy) < E,(Uy) ,when concerning the decreasing preference ofsideci

makers.
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Figure 5.5 Certainty equivalent and alternativeskirzg.

5.4.5 Comparison of different rules

Unlike classic decision rules, the other three méshtake the full probability distribution into
account. The full probability distribution is regad to represent uncertainty better than several
statistics and it provides more information. Itnre likely to cover extreme cases, which is

crucial to avoid large damage or loss.

Risk is interchangeable with uncertainty. Risk defi by engineers is the product of the damage
due to hazards events and the probability of tlemesvoccurrence. Risk can be also defined from
the decision makers’ perspective, which is quadifby the amount of money that decision
makers are willing to pay to assume or compens$eteisk (Levy 1992). Among these methods,
Only Xu’s risk measure and utility-based decisiafertake into account the decision makers’
attitude and tolerance level towards risk when thaye to make decisions under uncertainty.
However, Xu's risk measure leaves the quantificat@and analysis of decision maker’'s
preference to risks implicit, and the consequerafedifferent risk attitude levels of decision
makers are ambiguous to them. However, the advardathe utility-based decision rule is that
decision makers are asked to identify their prefeeeand informed about the consequences

explicitly if they overestimate or underestimate tisks.

As evaluated by Xu and Tung (2009), the decisiofesruhave different computational
requirements and ease of use. Classic decisiona haee high computational efficiency and the
results are easy to be used by decision makersstieta decision rules need to compare the full

probability distributions using high degree domicartests if necessary, which leads to high
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computational requirements. The results are eabg tionplemented as the deterministic ranking
is provided. Stochastic-Ranking-Based rules nekadively low computational capacity as a pair
of alternatives is compared at a time, but the agatnal time will increase exponentially with
the increasing number of alternatives. The regigist point out the deterministic ranking, and
the decision makers have to choose a reasonatkmgaaccording to the provided information.
Stochastic-Utility-Based decision rules require ateely high computational capacity
considering the computation of value functions asdlvas utility functions. The results are
deterministic for an individual decision maker wissupposed to know his preference on wealth
and risk beforehand. When a group of decision nzlkee involved, a consensus of utility
functions is difficult to reach and various utilistructures are required to resolve the issue.

Therefore, the results can be non-deterministiarfolti-decision makers.

Table 5.2 Comparison of different decision rules

Classic decision
rules
mean-value method,

Markowitz mean-

Stochastic-Ranking-
Basec

Stochastic-Utility-

Statistical decision rules
Basec

Decision rules

rank correlation Expected utility

Methods B stochastic dominance coefficient and Xu’s risk | maximization and
variance method, measure Certainty equivalence
min/max method Y €q
first and second full probability f;lui!tﬁmtz%?\mgecision

Information | moments of full probability distribution, decision Lo
- L R makers' opinions and

needed probability distribution makers' opinions on - .

P . risk attitudes on
distribution uncertainty

uncertainty
explicitly informs risk

Risk informed

not informed

implicitly informs risk of
each alternative against
uncertainty

Xu's risk measure
explicitly informs the risk
of obtaining weak ranking

of each alternative
against uncertainty and
decision makers' risk
attitude

Computing
requirements

Low

Relatively High

Relatively Low

Relatively High

Ranking result

deterministic ranking

determiniséioking

non-deterministic ranking

deterministickiaug

5.5 Probabilistic scenario-based decision making dmework

5.5.1 Characteristics of the framework

A probabilistic scenario-based decision making #amrk incorporating uncertainty is proposed
based on existing frameworks and decision rules Tamework tries to incorporate the
strengths and compensate for the shortcomingsisfirex methods. The framework implements
uncertainty management by developing scenariosJewmmodifying the traditional scenario
development by generating a large number of quaiviit scenarios using model simulations and
Monte Carlo techniques, and explicitly addressimgeautainty with probabilistic information
using Bayesian analysis and expert judgement, m®gtrated in Chapter 3 and 4. By doing so,
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problems can be avoided such as limited scenaviaksplay potential future circumstances, or
arbitrary selection of scenarios and strategies twuéack of probabilistic information. The

proposed framework takes the complete view of #&utgtates into account. It constructs
probability distributions to assign continuous \&uo the variables, in order to test the decision
alternatives against any value with a probabilitglided in the scenarios. This allows the
selection of robust decisions against the plausidtege of future conditions. The process is
designed to be adaptive, and signposts should textdd as new evidence and information
becomes available. Additionally, the decision makancertainty and risk tolerance level are
quantified in the decision making framework, in @rdo explicitly provide multiple view to

uncertainty and risk to decision makers (Keeney fmbd 1977). The comparison of existing

frameworks and the proposed framework is listetéle 5.3.

Table 5.3 Comparison of different decision framekgor

a‘;ﬂiﬂgn Classi(_: decision Tradit_ional scenario Rob_ust Decision Propa_lbilistic s_cenario-based
methods analysis planning making decision making
Probabilities are Scenarios are Scenarios are Scenarios are generated to
Uncertainty assigne.d to deve_loped to iQentify g.enera'ged by model quantify‘crucigl uncertainties by
uncertain future crucial uncertainties simulations to model simulations and Monte
management L L . X .
states explicitly and driving forces of | represent uncertainty Carlo simulations
future state
Pmbab”.'ty Required Not required Not required Required
information
ﬁﬁﬁﬂ;ﬂo g/lcoesr’:;rli(géy Few numbers A large ensemble A large ensemble
Expected outcomes| The performance of The consequences | Risk profile of outcomes and
and expected utility| common strategy to and vulnerabilities of| utilities of strategies against
of alternatives , and| cope with all scenarios| strategies against scenarios and the associated
Output their rank signposts are scenarios probabilities and risks
established for
suggesting adaptive
strategy
Decision In early stage and | The whole process of | Highly engaged in | The whole process of decision
makers' making final decision making the whole process off making plus risk management
involvement | decision decision making
Decision . . . .
makers' risk Risk neutral Not specified Not specified Risk neutral, risk seeking ,risk
. averse
attitude
sDeelgftlicc))? Deterministic Not deterministic Not deterministic | Deterministic
Optimal against Robust and adaptive | Robust and adaptive|
- most likely against developed against a large Robust and rational against a
Decision type - - -
scenarios scenarios ensemble of large ensemble of scenarios
scenarios

5.5.2 General procedure and approach

The general procedure and approach of the propimastework are shown in Figure 5.6. The

details are introduced below:
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(1) Frame the decision problem. Identify the obyas / criteria and uncertain factors of the
decision making problem. The objectives/criteripresent the preference and consideration of
decision makers. They can be related to varioueusions, such as economic, environmental,
political, and social aspects. In water resourdasmng and management, economic criteria are
quite desirable and feasible such as maximize ¢hdenefit of water projects, minimize the cost
of infrastructures investment, etc. Objectivesécit are mathematically expressed by the
objective functions. The objective functions araally expressed in monetary terms, such as loss
function or payoff function. They quantify the castbenefit across any possible state when any

of the decisions would be put into practice.

(2) Propose the decision candidates which are &iablpool of decision alternatives should be
proposed and identified for further consideratiow @election based on the objectives/criteria.
The decision candidates can be generated throwghsbrrming to ensure a set of creative and

viable decisions are included (Xu, Booij et al. 2P0

(3) Manage uncertainties in the decision probledentify critical uncertainties and driving
forces, and assign probabilities to related vaestib address uncertainty. Build and validate
water management models to propagate uncertaintyiwihg forces using hydrologic models,
water demand models, or water quality models toukite future states of water availability,
water demand or water quality. Scenario analysayeBian probability and Monte Carlo analysis
have been widely applied in uncertainty analysi$ stnategic decision making in environmental
studies (Varis 1997, Middelkoop, Kwadijk et al. 200de Kort and Booij 2007). In this
framework, scenario development associated witheBiay Monte Carlo analysis is selected as

the approach to explore future states and thelvgbitities.

(4) Compute the criteria performance against seesarCost-benefit analysis, or cost-
effectiveness analysis when the benefit is diffidal estimate, is most popular for rational
decision making. Economic criteria such as expectesd, cost-benefit ratio, or net benefit are
widely used to evaluate the performance of eaclsidecalternative. The probabilistic scenarios
of water variables serve as input to the objectivection, and the risk profile representing the
values of each decision alternative can be constluasing the outcomes of Monte Carlo
simulation. In addition, utility functions are cdngted to assess and analyse the influence of

decision maker’s risk tolerance levels on the fittadice of decision.
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(5) Rank and evaluate alternatives. Alternativesranked and evaluated based on the full risk
profile of outcomes and utilities, and stochastaméhance is suitable for that purpose. The
alternative with higher expected utility is moresolable and receives higher rank. The ranking
results can be sensitive to the use of varioussaetimodels, ranking methods, different criteria
or preference from multiple decision makers. Sensit analysis is necessary to test the
robustness of the ranking strategies and decisiaking. It shows the decision maker which
parameters or assumptions have large impact omduel outcomes and ranking strategies of
alternative decisions (Schultz, Mitchell et al. @QDITo analyze the sensitivity of rank results on
the risk tolerance from different decision makexsitainty equivalent can be a useful index to

compare the performance of each alternative.

In the decision making process, decision makers hagaly involved. Their opinions on

uncertainty and risk, and their expectations on d#fternative performances determine the
selection and acceptance of the final decisiothdfdecisions ranked and selected in the formal
round is not accepted by decision makers, the ibecimaking process can be repeated with a

new set of decision alternatives.

Decision makers’ involvement

e  Opinion's on uncertainty
e  Expectations
e  Risk tolerance level

ccepted b Yes
decision
makers?

Select
decision

Figure 5.6 The proposed framework for decision mgkinder uncertainty.

5.6 Conclusion

This chapter reviewed and compared existing datifiameworks and the decision rules for
decision making incorporating uncertainty in theldi of water resources planning and
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management. Indeed, uncertainty management detieegiality of decisions that will be made,
and existing frameworks have their own strong aedkwoints when dealing with uncertainty.
A probabilistic scenario-based decision making ®amrk is proposed based on existing
frameworks. It is different from any single frameawoby introducing a large set of scenarios to
explore a plausible range of future alternativesd g@robabilistic information to explicitly
quantify uncertainty. On the other hand, the choican appropriate decision rule is also crucial
for ranking alternatives and incorporating the deci maker’'s preference. The framework
includes the use of utility functions to take iriocount the preference of decision makers
towards both wealth and risk. Besides the maximpketed utility rule, a risk index, certainty
equivalent is used to represent the difference éatwexpected utilities of decision alternatives
with and without considering uncertainty. In sumyndhe proposed decision making framework
hopes to help decision makers to make robust, m@agecisions rationally under uncertainty,
and at the same time, to understand the influehdeasion makers’ opinions and risk attitudes
under uncertainty on the decision making results.afplication of the proposed framework is

discussed in Chapter 6.
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Chapter 6 Probabilistic scenario-based decision
making under uncertainty in the Yellow River Delta
(YRD), China

6.1 Introduction

The Yellow River Delta, an important area for fomaduction as well as a base of petroleum
production, comprises an area of about 6000 lkamd feeds a population of 1.8 million.
Economically, the YRD has received great attenfimm the government since one of the
priority projects “Development and conservationtle Yellow River Delta” listed in China’s
Agenda 21 (ChinaGovernment 1994). Ecologically, felow River Delta Nature Reserve, a
State Nature Reserve, contains the largest newhettand in China and abundant aquatic
biological resources (Li, Yuan et al. 1999). Wilte tprediction of increasing water demand for
population growth, food and petroleum productiorgustrialization and sustainable ecosystem,
reliable and sufficient water supply becomes alehgk for the next decades, in order to

empower the development of the YRD.

YRD is short of local water resources and heavdgeahds on the Yellow River. With limited and
polluted surface water and saline groundwater & YIRRD, approximately 90% of the water
resources are provided by the Yellow River (Li, FEaral. 2011). However, the annual discharge
from the Yellow River to the YRD has decreased tyen the past decade due to the significant
decline of annual water availability in the YR aad increase in upstream water diversions.
Between 1970s and 1990s, zero-flow occurred fretyiéam the downstream YR. Especially in
1997, no water was available in the YRD for 226gjayhich had an extremely negative impact
on the socio-economic activities as well as thdoggeal sustainability in the YRD (Yang, Li et
al. 2004). To strategically mitigate the effectvedter shortages, the State Council approved the
1987 Water Allocation schemé&he YRD is allowed to obtain maximally 0.728 kwf water
from the YR, although the actual water allocatimeraged 0.916 kinfrom 2002 to 2010 (Li,
Fan et al. 2011). Due to the complex and uncedhanges in water availability in the YR and

upstream water diversions, it is not clear whetherent allocations can be maintained.
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In previous chapters, probabilistic scenarios tfifel water availability in the YR (Chapter 3) and
water demand in the YRD (Chapter 4) have been dpedlthat account for potential changes in
climate, socio-economic and environmental factdiss chapter aims to match the future water
supply and demand given the developed scenariodillTine gap between the future water
supply and demand in the YRD, two types of measaresecommended according to (Groves
2006, Li, Fan et al. 2011): (1) increase water ufyy developing new supply sources, for
example, by measures such as inter-basin watesféranvastewater treatment, rain harvesting, or
desalination. (2) Improve water use efficiency tecr@ase water demand while maintain
economic development. Water use efficiency in theDYis much lower than developed
countries, for instance, 40% ~ 50% for irrigatioatar use and 63% water reuse for industrial,
compared with 70% ~ 80% and more than 90% respgtin developed countries (Li, Fan et al.
2011). There is large potential for improving watee efficiency and saving substantial water
resources. Water managers have to figure out wdrabmations of management strategies are
cost-effective for meeting future water demandhe ¥YRD when both water supply and water
demand are uncertain. For this purpose, the propgsebabilistic scenario-based decision
making procedure will be implemented to identifybust and cost-effective management

measures to fulfill the water shortage.

6.2 Decision making framework

The proposed decision making framework is usedippart the decision making considering the
uncertain future water supply and demand conditiarthe long-term water resources planning
in the YRD. New water supply and more efficient evatise are two efficient solutions for the
future water shortage problem in China (2030WatsdgecesGroup 2009), but costs needed to
implement these measures determine their effecsseand desirableness. Table 6.1 shows the
component of the decision making framework, inahgdihe external parameters required for the
models, management measures, decision models ailgsianused in the decision making
process. Three critical models used in the decisiaking framework are as follows: (1) scenario
development for future water supply and water deinana probabilistic manner to cope with
uncertainty; (2) cost-effectiveness analysis usedvestigate the performance of each water
management measure considering the cost over ther wapply and demand scenarios; (3)
expected utility analysis incorporating the deacisioakers’ preference and risk attitudes to the
management measures besides the monetary compaaisbrdemonstrating the impact of the

decision makers’ different risk attitudes on theidi®n making result.
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Table 6.1 Decision making framework components

Parameters Management measures
- Future water demand Water supply increase
- Future water supply - New water supply project (0,1,2)
- Unit cost of new supply - Supplementary supply (wastewater treatment)
- Unit cost of efficiency improvement Water demand decrease
- Unit cost of supplementary supply - Water use efficiency improvement by 5%, 10%, 1596 and
- Discounting rate (3%) 25%
- Risk tolerance level of decision makers
Costs Modelsand analysis
-Water use efficiency improvement Water supply scenarios development (2010-2039)
-New supply projects investment Water demand scenarios development (2010-2039)
-Supplementary supply investment Cost- effectiveness analysis
Expected utility analysis

In this chapter, the main steps of the probakilistenario-based decision making are the
following:

1) Decision framing: this step is to understand dteeision problem, identify the decision
objective or criteria, and propose decision altevea (equal as water management measures).
2) Uncertainty analysis: this step is to generamd ensemble of scenarios to represent
uncertainty in the decision problem in a probabdig/ay.

3) Evaluate and rank decision alternatives: tlep & to generate and compare the risk profiles of
both the monetary and utility-based outcomes ofisitat alternatives in order to choose the
optimal and desirable decision. The informationvpted by the full probability distributions of
outcomes is used and stochastic decision rulesgaemented to rank decisions.

4) Sensitivity analysis: this step is to test thbustness of the chosen decision for different
values and probability distributions of the paraengtin decision making models, as well as for
different decision making environment such as augrof decision makers with different

preference and risk attitudes.

The decision process and the result have to be cmicated and discussed with decision
makers, in order to involve the opinions and peaiees of the decision makers and increase the
understanding between scientists and the decisakers. For example, the uncertainty analysis
should involve the opinions and knowledge from dleeision makers; the utility function should
be formatted according to the decision maker'sguesfce; and the choice of the final decision
should be checked if it is acceptable and adoptdlite probabilistic scenario-based decision
making framework is flexible and repeatable adldves for updating the probabilities if more
knowledge becomes available and the adaption olagement measures if the future deviates

from the pre-defined scenarios.
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6.3 Formulation of the decision problem

6.3.1 Objective functions

The decision problem is to match the future watgapsy and water demand in the YRD for the
next 30 years, given the uncertain future watepbywater demand and policy situations. The
objectives are both monetary-expressed and ubbtsed. The monetary objective is to minimize
the total cost for preventing future water shortagdathematically, the objective function is

written as:

. C¢|DiX
Min; (PCID;, X) = B TH2 (6.1)

wherePC is the present cost of the decision alternatibgss the ith decision alternatives,are

random variables representing uncertainty consitieréhe decision model (e.g., water supply,
water demand and unit price of decision alterna)ivé; is the cost of implementing the decision
alternative in the" year, d is the discount rafgjs the total planning horizon (in this case, from
2013 to 2039), and the cost of alternatives mustebgmated each year, discounted and

aggregated over the planning horizon.

To take into account risk attitudes towards unaeiya a utility-based objective is also
considered, which aims to maximize the expecteltyuigainst the monetary outcomes of the

decision alternatives under uncertain situatiom® dbjective function can be written as:

Max; (E(U(PCID, X)) = E(U(Zr ) (6.2)

WhereU is the utility function associated with the castétion, andE (U) is the expected utility.

6.3.2 Decision alternatives

Decision candidates focus on increasing water sugpdl decreasing water demand separately or
combined. The strategy is to start from considgraexling water supply by adding new water
projects, and then reducing water demand by impopwfficiency. New supply to the YRD
comes mainly from the Yangzi River through the &eawtnorth water transfer project, which is
estimated to provide an additional water supplygmproximately 2x1bm? per year from 2015
onward (Li, Fan et al. 2011). Water supply generéginvestment of water treatment plants can
be a supplement when water from the new supplyeptagtill cannot meet water demand.
Decision makers would face the problem of how toode the new supply strategies. If the water
supply strategy cannot provide enough water forftiare, it will influence the living standard

and production in the YRD; however, if the watepply strategy provides more water than is
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required, it would cause the waste of water ressias well as money. To decide if an additional
water supply project is requiredjgnpost’ policies are considered to trigger new supply potsje
adaptively to provide more water supply but witlylsily higher unit cost in future conditions.
Water supply can be added through the investmemp ¢ 2 water supply projectsi$= 0, 1, 2).

If the signpost policy containdS=0, the first signpost is triggered in 2015. If theure water
supply and demand in the next 10 years shows omenager supply project is needed, then one
project will be built in 2015 andlS=0 converts tdNS=1. If the future water supply and demand
in the next 10 years after 2015 shows another vpaigect , the second new water project will be
triggered and built in 2025, andS=1 converts toNS=2. On the other hand, the water use
efficiency improvement includes water use for bagniculture and industry, by 5%, 10%, 15%,
20% and 25%. It starts to be invested and impleetefrom 2013 onward. These management
measures can be implemented separately, named dZ, tas shown in table 6.2. New water
project NS=0, 1, 2) and water use efficiency improvement bytain percentage is combined,
named d8 to d17. Likewise, the water shortage aftgr management measures is fulfilled by

higher-cost supplementary supply.

Table 6.2 Proposed water management measures

Decision alternatives Explanation Capacity Start yar
di 1 water supply project 0.1km3 2015
d2 1 more water supply project plus d1 0.1km3 2025
d3 5% 2013
d4 10% 2013
c
dé 20% 2013
d7 25% 2013
ds8 Combination of d1 and d3
do Combination of d1 and d4
d10 Combination of d1 and d5
di1 Combination of d1 and d6
di2 Combination of d1 and d7
d13 Combination of d2 and d3
di4 Combination of d2 and d4
di5 Combination of d2 and d5
di16 Combination of d2 and d6
di7 Combination of d2 and d7
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6.4 Scenario analysis of water supply and demand the YRD

6.4.1 Water supply in the YRD

Water supply in the YROWSyrp) comprises of discharge form the YRA/(Syg), and local
surface wateW Lygp and groundwatelV Gy . According to the data between 1987 and 2010,
the water supply from the YR contributed 83% of tb&l water supply (Figure 6.1). Due to the
water pollution in the local rivers and the brabkggoundwater, the local water contributed much

less. The total water supply is written as:
WSYRD = WSYR + WLYRD + WGYRD (63)

As water supply in the YRD heavily depends on the, Yhe focus is on the future water
availability situations in the YRWAyy) . Considering the uncertainty of water availabikyd
the water division in the YRB, water availability the YR for the YRD(W Aygp) is crucial to
decide the water supply in the YRD. On the othemdhavater supply from the local water
resources is planned to be 2.84%1f° from the surface water and 1.15%1@° from the

groundwater, according to the water resources pignn (Li, Fan et al. 2011).

Yellow River
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=
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) 4

Figure 6.1 Water supplies from three sources intRB between 1987 and 2010.
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Two steps have to be implemented to find out ther&uwater availability from the YR to the
YRD, WAygp:

(1) Predict future runoff of the YR consideringwhte change impadt/ Ayy, ;

(2) Obtain the water availability from the YR teetYRD by deducting water withdrawal by nine
provinces in the YRB as well as two regions outsiue basiniW Ly g, and the environmental

water requiremenit/D,,,,,.
WAygrp = WAyg + WGygr — Wlygg — WDy, (6.4)
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WhereW Aygp is water availability from the YR to the YRV Ay is the future runoff in the
YR; WGyy, is the available groundwater capacityGyr = 11km?3; WiLygp is the water allocated
and consumed in the YRB D,,,,,, is the environment water requirement, the optivadlie is 21
km® to keep in-stream healthy ecological system andmemtdation transportation; and the
minimal value is5km3 to guarantee the environmental water requirerfeerttase flow in non-
flooding season (Li 2008 ). To maintain the ecamysin the YRD Nature Reserve, the minimal
environment water requirement is 0.686°kim the analysis, the minimal environmental water

requirement is always first satisfied before theDrWithdrawals water from the YR.

6.4.1.1 Future runoff in the YRB,WAyg
Considering the climate change impact on the rumotihe YRB, a conceptual rainfall-runoff

model was used to simulate and predict future fufsbbabilistic scenarios of climate variables
were constructed and used as input of the modebtopute runoff. The procedure has been
explained in chapter 3. The results of the raifalinoff models are different when considering
different uncertainty sources such as the inputdehparameters, residual errors, and overall
uncertainty. The average historical runoff betw&860 and 1990 is 82.57mm, and the average
future runoff between 2010 and 2039 is 76.66mml6tAm, 75.13mm and 76mm respectively.
The average annual runoff decreases by 7.15%, 8.9004% and 7.95%. As the mean value is
insufficient to represent all the information cdntd in the simulated runoff, four parametric
probability distributions are assigned, which aognlormal distribution, normal distribution,
gamma distribution and weibull distribution. Figus& shows the probability distributions fit of
the simulated future runoff, and the historical @anrunoff between 1960 and 1990. The index
(1, 2, 3, 4 in figure 2 shows the simulated runoff considgrihe four types of uncertainty
sources, respectively. The four probability digitibns fit the simulated data well except that the
weibull distribution over-fit the low runoff. Indiure 6.2(4), lognormal distribution overestimates
both the low and high runoffs. Overall speakinginmal distribution and gamma distribution fit
the model simulation data better than the other pnabability distributions. To compare the
impact of uncertainty from each source on the sitewl runoff, the uncertainty from the input is
larger than the uncertainty from the model parametes the probability density function (PDF)
are much narrower than when input uncertainty isictered. The PDF of the runoff considering
the input uncertainty has a slightly fatter tail dre high runoff, compared with the PDF
considering uncertainty from the model parametatsrasidual errors. Considering the sufficient

uncertainty from both the input and the hydrolobitedel, to analyse the overall uncertainty
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(Figure 6.2(4)) is useful to increase the confiderof the decision making, although the
accumulation of uncertainty makes the decision ngknore complex. In the following analysis
to estimate the future water availability in the ¥Rrom the YR, the simulated runoff
considering the input uncertainty (Figure 6.2(I))l &he overall uncertainty (Figure 6.2(4)) will
be applied to distinguish the climate change imfrach the hydrological model.
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Figure 6.2 CDF of historical runoff (1960-1990) afdture runoff (2010-2039) when considering diffare
uncertainty sources, (1) uncertainty only from @) uncertainty only from model parameters; {@ertainty
from model parameters and errors; (4) uncertaimwynfall parts. Four parametric probability disttibas fit of

future runoff.

6.4.1.2 Future water withdrawal in the YRB,W Lygp
The water withdrawal is decided by the water demasavell as the water allocation scheme in

the YRB. At present, the water demand in thesesareaches 73.04KmYRCC projects that
water demand will reach 59Kmby 2030 and 64kt by 2050 besides 21Km
environmental/ecological water requirements, arelwhater shortage is estimated to be 131km
and 16kn if no measures would be taken (Li 2008 ). To seetibwn the big conflict between
water demand — supply and prevent zero-flow atdivenstream, th&ellow River 1987 Water
Allocation schemevas formulated by the National Council based onréport by the National
Plan Commission and the Water Conservation DepaittmEhe total water allocation is 37
km®year in the YRB (0.78kffyear in the YRD). The number was calculated byudédg

21knT for in-stream eco-environment water requiremeoinfthe 58km average annual runoff
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from 1919 to 1975. Thel987 Water Allocation schemwias revised in 1998 considering the
decline of water availability in the YR, and thetermallocated to the YRD became 0.728km
(Yang, Shao et al. 2010). The implementation of 2887 water allocation scheme brings the
gain of environmental sustainability at the expenfseconomic loss. Li (Li 2008 ) calculated the
economic cost by 2030. The irrigation output wdbuce by 233.5 billion RMB, the industrial
output will drop by 17.5 billion RMB, the crop yeelwill decrease by 29730 ton/year and the
GDP will decline by 627.9 billion RMB. Regions dostream of the YR, including the YRD,
would encounter even larger economic loss. Theduiater withdrawal of the YRB is crucial to
maintain the production and development of the YB8,well as the water availability in the

YRD and the eco-environment requirement.

Two scenariosS1and S2 are developed to explore the future water allocatn the YRB by
emphasising two extreme aspects: the environmestetainability and socio-economic
development:

S1:1987 Yellow River Water Allocation Scheme’, wter abstraction insists the allocation
quotalWA,og, (36.272km) to prevent zero flow even though it may cause slocio-economic
development in the 30 years.

S2:'Demand-based Allocation scheme’, the watercallionW Ly satisfies the water demand
in the Yellow River Basin(WDygg) to maximize socio-economic development while

guaranteeing the minimal environment water demand.

To quantify the future water allocated in the YRBLygg) , scenarioSlandS2can be seen as
the minimal and maximal extremes of the water alfien schemes. The possible futures between
the extremes are also taken into account by asgjgnuniform distribution in the range (uniform

distribution is the maximal entropy distributiorvgn two values of the intervals).

1
P(Wlyrs) = {W Whisgr < Wlyre < WDyrs

0, WLYRB < WA1987 or WLYRB > WDYRB

(6.5)
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Figure 6.3 Scenarios of annual water allocatiotihéYRB.

6.4.1.3 Future water availability from the YR to the YRD, WAygp
Eight cases associated with the future water watlvdf scenarios in the YRB are taken into

account to analyse the water availability in theD/fRom the YR. A Monte Carlo technique was
applied to sample from the distributions of theufet water availability and water withdrawal.
The eight cases are as follows: {)e Four parametric probability distributionsf the future
runoff simulated considering only the input uncitia (LN1, N1, G1, W1L) (2) The Four
parametric probability distributionsof the future runoff simulated considering the aer
uncertaintiefLN4, N4, G4, W4)

Figure 6.4 shows the 99% uncertainty band and théian value of water availability into the
YRD. The annual water availability is decreasingd at is consistent with the historical trend.
When considering overall uncertainty sources, theettainty band of water availability is wider
than that when considering only input uncertaingyapproximately 10 kfh As the lognormal
distributed runoff has a long tail when considermgerall uncertainties, it also contains much
higher upper bound than that of the other distidng. Zero water availability occurs as a result
of low water availability and high water demandrso#os in the YRB. Table 6.3 lists the values
of the 99% uncertainty band of the water availapiin the YRD. The 0.5 percentile of water
availability corresponds to the worst case, whghkearo flow in all situations. The medium water
availability is between 15 kirto 17 kn? in 2010, and it drops largely to 11 &mnd 12 kmin
2039. The upper bound drops mostly by *kBut the Lognormal and Weibull distributions lead
to the increased values, due to their overestimatfahe high runoff in the YRB (Figure 6.2(4)).
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Figure 6.4 0.5%, 50% and 99.5% percentile (loweddie and upper lines, respectively) of annual watailability
in the YRD from the YR when the runoff is lognormabrmal, gamma and weibull distributed. The griéesis the
historical water discharge. The top figure showe timcertainty band when considering input uncergailue to
climate change, and the bottom one shows that whesidering all uncertainties. The lines are netticmous due

to the lack of data.

Table 6.3 0.5%, 50% and 99.5% percentile of wateil@bility in the YRD from the YR at the year 2040d 2039

Percentile 0.5% 50% 99.5%
Year 2010 2039 2010 2039 2010 2034
LN1 0 0 16.65 12.23 42.84 41.17
N1 0 0 16.95 12.32 40.66 39.69
G1 0 0 16.65 12.27 42.51 41.47
w1 0 0 17.23 12.56 39.90 39.09
LN4 0 0 15.21 11.16 104.99 106.13
N4 0 0 16.45 11.82 46.71 45.28
G4 0 0 15.81 1141 55.01 51.84
W4 0 0 16.7 11.02 46.70 47.73

Note: LN, N, G, Wrepresents lognormal, normal gamma and weibutfidiged runoff in the YRB, (1) and (4)

represents the runoff considering only climate ¢gjeanmncertainty and overall uncertainties.

According to thel987 Water Allocation scheme (Li, Fan et al. 201\Jater supply in the YRD
from the YR should be no more than 0.728 kiherefore, three types of the future water supply
are formed, which are zero supply when zero floaucg in the downstream, the maximal supply
when water availability is no less than 0.728%kiand non-zero supply between the zero and
maximal supply. Figure 6.5 shows eight cases atubute water supply in the YRDAS1, WS2,
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WS3, WS4, WS5, WS6, WS7, Wi8er the eight caseEN1, N1, G1, W1, LN4, N4, G4, W4
and the probabilities of the three types of watgpty. According to Table 6.4, the maximal
supply has the largest chance to occur in the éutand the zero supply occurs less when only
input uncertainty is considered. The supply betwidentwo types has small probability to occur
in the future.

M zero supply B Non-zero supply Maximal supply

=
A O 0O O
o O o o

Probability

N
o

_- 1 - I - 1 - 1 . 1 - 1 - 1 ._1
ws1 ws2 WSs3 ws4 wSs5 wsé ws7z ws8
Scenarios of water supply from the YR in the YRD

o

Figure 6.5 Probability of water supply scenariasrfrthe YR to the YRD

Table 6.4 Probability of three types of water sypplthe YRD from the YR (%)

WS1 WS2 WS3 W4 Wsb5 WS6 WS7 WS8
Zero-supply 7.73 8.22 7.89 11.05 22.76 13.46 14.73 17.08
Non-zero supply 1.18 1.13 1.16 1.13 1.39 1.27 139 1.25
Maximal supply 91.09 90.65 90.95 87.82 75.8p 85.47 83.88 81.67

6.4.2 Water supply-demand analysis

Probabilistic scenarios of annual water demanthénYtRD from 2010-2039 have been described
in Chapter 5. The total water demand in the YRD tm&stendency of increasing. Instead of
considering the blue water footprints (consumptisge of ground- and surface water flows)
(Hoekstra, Chapagain et al. 2011, Hoekstra, Mekomteal. 2012), the water demand scenarios
are explored to analyze the future water conditiagainst water supply. Figure 6.6 shows the
example of the distribution of annual water shagtagder the case¥S2andWS6in the YRD
between 2010 and 2039. To analyze the impact afrdutvater demand on water shortage
situations, the water demand with deterministion(eh average water demand) and stochastic
(probability distribution of annual water demand)lues are taken into account separately to
calculate the water shortage. The distributionarofual water shortage are presented in the top
and bottom figures, without and with consideringtavademand uncertainty, respectively.

According to the figures, some findings can be adskd:
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(1) There are two peaks of water shortage arour®5k@® /year and -1krh/year, which is
consistent with the high probabilities of minimaddamaximal water supply in cas#gS2and
WS6 The right peak is higher and wider than the pefak, as the maximal water supply is more
likely to occur in both cases.

(2) Water shortage located in the left peak undee\/S2is slightly less than that under scenario
WS6, as the probability of minimal water supply wscin WS2is lower than that iNVS6

(3) Without considering the uncertainty from thetevademand in the YRD, the range of water

shortage is smaller than that of taking into actdlie water demand uncertainty.
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Figure 6.6 Distribution of annual water shortageat@r supply-water demand) between 2010-2039 inYtRE,
under the scenariod/S2(left) and WS6(right), associated with deterministic and prokiabd water demand the

YRD, (top) and (bottom) respectively.

6.5 Performance of water management strategies

6.5.1 Cost analysis
The total cost includes the cost invested to bonéd/ water supply projects,,; improve water

use efficiencyCgsr; and supplementary water supply by expanding wasts treatment
capacities Cy if there is any shortage between water demand aafttitional water supply.
Considering different water management strategyfqas, the total cost of specific strategy

under future states can be written as below:
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(CtlDi'X) = (CEfflE' PetDi'X) + (Cnpanp'SnptPneri'X) + (CsslpAQ'AQIX) (66)

WhereE is the water use efficiency improvement stratépys the unit price of water saving
from the efficiency improvementy,,, is capacity of new water supply projecs,is the
signpost to trigger a new water supply projégt,is the unit cost of water from the new water
supply project, andAQ is the water supply deficit after management messare adopted,,

is the unit price to fill the deficit.

New supply projects follow the basic features:tf project construction cost is amortized over
the lifetime of the project; (2) the amortized castist be paid even if the supply is not used
(Groves 2006). The unit cost of the first new watepply project is specified to be 0.012%/m

The second project triggered by the signpost palast 20% more than the former one, since the

cost of labour, land or material is assumed togase in the future.

The unit cost of reducing water demand by improeffgciency is assumed to increase as higher
efficiency is reached. The unit cost of differeffiiceency improvement is simplified by the

formula:

UC(effh)% = UC(effl)% * (1 + a) (67)

Where UCefrnyn » UCerryy are the unit cost of efficiency improvement byteg percentage

and sequential lower percentageis the growth rate of additional cost. In the mp88&6, 10%,
15%, 20% and 25% efficiency improvement is assurard,the additional cost is assumed to be
20% compared to the sequential lower percentage. Uit cost of improving irrigation and
industry water demand by 5% is specified to be /62 and 0.025$/rh

The supplementary supply is required when watertape still exists even with the additional
water provided by new water projects, and the wdmand reduction. The supplementary
supply is from expanding wastewater treatment,thadinit cost is assumed to be higher than the
other two decision candidates, which is 0.04%/m

6.5.2 Expected utility analysis
Utility can measure the strength of decision makaneference and risk attitudes; however, there
IS no unique equation that objectively yields theersgth. But an equation can be selected for

comparative measure of the strength. The Iso-eladtlity and negative exponential utility
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functions are mostly used, and the explanationbsafound in (Norstad 2011). Garvey (Garvey
2008) introduced a common and convenient form pbeential utility function, considering the
decision makers’ preference on both gains and $ogse implicit assumption in this form of the
exponential utility function is that the decisioraker expresses a constant risk attitude over all
levels of wealth and risk, which contradicts the@gpect theory proposed by Kahneman and
Tversky (1979). The exponential utility functionshdeen applied in decision making under
uncertainty by (Schultz, Mitchell et al. 2010, Galez, Payan et al. 2012).

If utilities are monotonically increasing over thevels X for an evaluation criterion 'more is

preferred’, such as profit, and then the exponkutibty function can be written as:

1—@‘(x_xmin)r £ 0
— ., I
U(x) = 1—e_£i'f;frlrzfi;xmin)r . (68)
—_ , =
Xmax—Xmin

If utilities are monotonically decreasing over theelsX as ‘less is preferred’, such as cost, and
the exponential utility function is written as fols:

1—e~(*max—x)r
— —(xmax—x i )T' r* 0
Ux) ={1-¢ min (6.9)
Xmax—X )
—_— , r=20
Xmax—Xmin

Wherer is therisk tolerance parameter. It determines the shape of the utdige. Ifr is
positive, the utility function is concave, repretieg risk averse attitude. #f is negative, the
utility function is convex, representing risk tagimattitude. Ifr — 0, the utility function is risk
neutral. The curves away from the risk neutral dascribe higher levels of risk averse or risk
taking behaviour. Figure 6.7 shows nine shapegilitiyuhat reflect an individual’s risk attitudes
with increasing preference and decreasing prefetehlse curves approaching the risk neutral

line represent less risk averse behaviour when0 and less risk taking behaviour wherc 0.
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Figure 6.7 Utility of different risk-tolerance lewaith increasing preference and decreasing pratere
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6.5.3 Compare and rank alternatives
In this section, the decision making procedure bdlcarried out by dealing with uncertainty in
the following manner: water shortage scenariogyaresrated according to water supply scenario
WS2 associated with probabilistic water demand in ¥#D, and the market price of water
management measures are defined as the determiumadtie described in 6.4.1. Sensitivity
analysis will be implemented in order to test tbbustness of the outcomes of decision analysis
in the next session.

6.5.3.1 Decision making without considering utilityexplicitly
If the decision maker makes decisions only basethermonetary or physical term, the decision

objective is to minimize the expected cost underewainty. Figure 6.8 shows the mean and
standard deviation of the monetary outcomes frooh @dternative. The mean value and standard
deviation represent the expected cost and the spmneling uncertainty (risk) of obtaining the
mean value. According to the Markowitz mean-statdadeviation decision rule (Markowitz
1959), a better decision alternative should hawbk bmallest mean cost and standard deviation.
However, this cannot lead to a specific rankingh@aslternative has the smallest mean value and
standard deviation simultaneously.

Instead, a risk profile is used to represent thawdative probability distribution over possible
costs of a decision alternative against the prdiséibi range of water supply and demand
scenarios. Figure 6.9 shows the risk profiles &f iy decision alternatives with the fixed
parameters of the cost effectiveness model. Therfigst cost effectiveness decision alternatives
(d2, d8, d9, d13, d14) were selected based ondrdsr statistic domain analysis, and the rest is
abandoned in the following analysis. They are showthe right of the figure.
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Figure 6.8 Mean and standard deviation of total frosn 17 decision alternatives.
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Figure 6.9 Risk profiles of the total cost from d&mn alternatives, left figure shows the risk [iiexf of 17
alternatives, right one shows the risk profileshaef 5 most cost-effectiveness alternatives.

The total cost of decision alternatives ranges @pprately from 0.5x19$ to 5.5x18 $. The
range of the 5 selected alternatives is narrowedl 3816 $ to 3.5x18 $. The risk profiles are
crossed on the right figure. TISSD(second-order stochastic dominance) test is redquo rank
the decision alternatives, by assuming the decisiakers are risk averse. Table 6.5 shows the
results of theSSDtest when fitting the CDF of the total cost by (armal distribution, (b)
lognormal distribution, (c) gamma distribution, dgibull distribution, (e) best-fit distribution.
MSE (Mean Square Error) was used to evaluate and meedisa goodness-of-fit of the four
parametric distributions to the total cost. Forisien alternative d2, d8, d9, d13, d14, the best-fi
distributions are normal, lognormal, gamma, nor@ad lognormal distribution, respectively.

Under the five conditions, the rank of alternatiisgas follows:

(a) Normal distributed: d2 < d8 < d13 < d9 < d14;
(b) Lognormal distributed: d2 < d8 < d13 <d9 < dl4
(c) Gamma distributed: d14 < d13 < d9 < d2 < d8;
(d) Weibull distributed: d14 < d9 < d2 < d13 < d8;
(e) Best-fit distributed: d8 < d2 < d14 < d13 < d9.

The ranking result is sensitive to the assignmérgrabability distributions to the outcomes of
decision alternatives. The ‘best’ decision d14 (2tew supply projects plus 10% water use
efficiency improvement) when the outcomes are nébmndognormal distributed becomes the
‘worst’ when they are gamma or weibull distributétbwever, the most plausible ranking result
ought to be consistent with that when the begtrbbability distribution is assigned, that is, d9 (

water supply projects plus 10% water use efficiengygrovement) is the best decision.
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Table 6.55SDtest matrix between alternatives

Note: matrixa, b, ¢, d, eepresent th&SDtest results when the total cost is normal, lograr, gamma, weibull ,

best-fit distributed respectively. N and P denatgative and positive value. Each element denote<DF of the

column alternative minus that of the row alternativ

6.5.3.2 Decision making with considering utility eglicitly
If the decision maker is willing to include the faence towards risk, the objective becomes to

a | d2| d8| d9| did b| d2 dB8 d9 di3 c pg2 |d8 [d9 d13
d2 d2 d2

d8 | N dg | N dg | N

d9 | N| N d | N| N dad | P

di3| N| N di3| N| N| P di3| P P
dl4| N| N N | dl4] N| N| N| N| di4 R H P
d | d2| d8| d9| d13§ e| d2 dB d9 di3

d2 d2

d8 | N dag | P

a9 | P| P d | N| N

di3| N| P| N di3| N| N| P

di4| P| P| P P| di4 N N H &
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maximize the expected utility. Risk tolerance pastan can represent the comparative risk

attitudes. Figure 6.10 shows the risk profilestdfty when the risk tolerance parameter equals to

-2, 0, and 2, which quantify the risk taking, riskutral and risk averse level of the decision

maker. Whenr = -2, the values of utility are mainly distributed i8,0.3]; whernr = 2, the

values of utility are mainly distributed in [0.8,1} can be explained as the risk taking person

would prefer paying much less to achieve the saoa @or example, relieve water shortage)

than the risk averse person, the utility to paysame amount for the risk taking person is also

lower than that of the risk averse person.
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Figure 6.10 Risk profiles of utility from the deicis alternatives under different risk toleranceeleyf= -2, 0, 2).

Table 6.6 Expected total present cdXTC), expected utility and certainty equivalent ofécidion alternatives
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De.CISI.OI'] Risk tolerance Rlsk Unit d2 ds d9 d13 d14
criteria parameter attitude
E(PC|D,X) 16$ | 2.1315| 2.1653 2.121F 2.1541 2.1472
o . . .
E(U(PCJDi,X) 2 risk taking 0.064¢ | 0.058¢ | 0.060: | 0.058¢ | 0.054:
Xce 10°$ | 1.8994| 1.9468 1.9338 1.9486 1.9862
E(U(PC|Di,X)) . 0.6715| 0.6644 0.673b 0.6669 0.66B3
0 risk neutral
Xce 1% $ 2.1315| 2.1652 2.1217 2.1541 2.1472
E(U(PC|Di,X)) . 0.9976| 0.9979 0.997B 0.9976 0.9978
risk averse
Xce 2 10°$ | 2.4047| 2.4265 2.3530 2.4083 2.3562

The 5 alternatives (d2, d8, d9, d13, d14) domitiaerest in terms of utility. Table 6.6 lists the

expected total present cost, expected utility amtoty equivalent under three risk attitudes of
the 5 decision alternatives. The goal is to piekdikcision alternative with the maximal expected
utility or the smallest certainty equivalent. Ttaking result is different when the risk attitudes
are different. A risk neutral and risk averse decismaker would choose d9 gives the highest

expected utility and smallest certainty equivalemhile a risk taking decision maker would

prefer d2 for the same reason.
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6.6 Sensitivity analysis

Sensitivity analysis can test the robustness ofdideision analysis results when altering the
parameter values or probability distributions ire tidecision making model. It can also
demonstrate the decision analysis carried out fferdnt decision environments, such as
individual decision maker or a group of decisionkera. In this section, sensitivity analysis will
be implemented to test the robustness of the aecemalysis results both for the uncertainty in
the decision models and the decision environm@ifis.“one-at-once” rule will be applied in the
sensitivity analysis, which means one parametarevalill be changed and the other parameters
are constant in every test. The sensitivity analf@i the decision model is carried out by altering
the probability distributions of the future watempgply in the YRD WS1 to WS8and the future
water demand in the YRDd¢terministic water demandith considering the uncertainty (mean
values) and probabilistic water demand with consig the uncertainty (probability
distributions), and the market price of the water managemensunea. The “one-at-once” rule
is applied by altering the probability distributgyrwhile the values of other parameters such as
market prices and risk tolerance parameters argreststo be constant. The sensitivity analysis
for different decision environment is implementgdchanging the risk tolerance parameters. For
a single decision maker, he is supposed to knowohis value and preference, while the
assignment of probability distributions and markeice are uncertain to them. For multiple
decision makers, besides the uncertainty faced single decision maker, the diversity of risk
tolerance levels among them is a key parametantefast. Altering the risk tolerance parameter
is supposed to demonstrate the different inter@stisrisk attitudes among decision makers, and

to explain the difficulty to reach the consensutsveen different decision makers.

6.6.1 Sensitivity analysis for probability distribution patterns

Table 6.7 shows the sensitivity analysis resultgiffierent probability distributions of the future
water supply and whether or not considering ungesgtan future water demand, when the
decision maker has a risk taking, risk neutral asklaverse attitude. When the decision maker is
risk taking ¢ = -2), the optimal decision is not sensitive te@ tassignment of probability
distributions, but sensitive to the water demartdasions. d9 (1 new water projects plus 10%
water use efficiency improvement) and d2 (2 newewatojects) are the optimal decision under
each water demand situations. When the decisionemizkrisk neutral r( = 0), the optimal
decision is not sensitive to either the probabtitgtributions or the water demand situations. d9

performs better than other alternatives in the tefrminimizing the total cost and maximizing
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the expected utility. When the decision makersg& averser(= 2), the lognormal distributed and

the weibull distributed water supply scenafd5andWSB) provide different result from other

probability distributions. The expected utility amertainty equivalent of d14 (2 new water
projects plus 10% water use efficiency improvementyl d9 are similar, and d14 performs
slightly better than d9. When analyzing the infloenof different values of risk tolerance
parameterrE -2, 0, 2), the optimal decision remains the sarhen deterministic water demand
is taken into account regardless of the differask attitudes. Under the probabilistic water
demand situation, risk taking decision makers pref2, while risk neutral and risk averse
decision makers prefer d9. The decision resule&stl sensitive to the patterns of probability

distributions of water supply compared with theasttwo factors.

Table 6.7 Sensitivity analysis for different probiypdistributions and risk attitudes

(a) Sensitivity analysis when the decision makeisistaking,r = -2

Water supply WsS1 WsS2 WS3 Wws4 WsS5 WS6 WSs7 WS8
Deterministic water demand d9 do do d9 d9 d9 dp do
Probabilistic water demand d2 d2 d2 d2 d2 d2 d2 d2

(b) Sensitivity analysis when the decision makeisik neutral y =0

Water supply WS1 WS2 WS3 Wws4 WS5 WS6 WS7 WS8
Deterministic water demand d9 do do d9 d9 do do
Probabilistic water demand d9 do do d9 d9 do do do

(c) Sensitivity analysis when the decision makeisk averser = 2

Water supply WS1 WS2 WS3 Wws4 WS5 WS6 WS7 WS8
Deterministic water demand d9 do do d9 di4q d9 dap 14 d
Probabilistic water demand do do do d9g di4 d9 dp 9 d

6.6.2 Sensitivity analysis for market price of mangement measures

Table 6.8 provides the sensitivity analysis regulthe unit price of water management measures
for risk taking, risk neutral and risk averse derismakers. The unit cost was treated as
deterministic numbers in the decision model. Howeiés necessary to analyze the influence of
different market price on the selection of decisias the price can change over time due to
factors beyond the control of decision makers (8zhWiitchell et al. 2010). The change of unit
price generates more diverse results, and theideamsakers’ risk attitudes have less influence
on the decision compared with the market pricee kinit prices of new water projects lead to
two optimal choices under each risk tolerance led&B (2 new water projects plus 5% water use

efficiency improvement) is more preferred for &riaking decision maker when the new water
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project has a lower unit price, while d14 becomesenpreferable for risk neutral and risk averse
decision makers. It makes sense as 2 new wateegisoare more economic efficient at low
prices compared with efficiency improvement. Howevegher unit price of new water project
reduces the popularity of building new water prtge@nd d9 becomes more preferred. The
change of the unit price of efficiency improvemean lead to a similar conclusion. With low
unit price of efficiency improvement, the measuoeirnprove water use efficiency by large
percentage becomes more satisfactory so that di@lwater projects plus 15% water use
efficiency improvement) or d9 are preferred. Whies winit price goes higher, d2 performs better.
The fluctuation of the market price of supplementaupply leads to three different optimal
choice under each risk attitude. When the unitepoatsupplementary supply is quite much lower
than other measures, d1 (1 new water project apglementary supply) becomes favorable;
when the price goes up, d2 and d14/d15 are favarabith the increment of the unit price,

measures such as new water project or efficienpyorement become more cost effective.

Table 6.8 Sensitivity analysis of the market po€evater management measures and different rigkdds

Unit price of water projects ($/m3) 0.006 0.008 1®0 0.02 0.024
risk tolerance parameter -2 d13 di3 d9 do d9
risk tolerance parameter 0 di4 di4 do do do
risk tolerance parameter 2 di4 di4 do do d9
Unit price of efficiency improvement ($/m3) 0.01 005 0.02 0.025 0.03
risk tolerance parameter -2 d10 d9 d2 d2 d2
risk tolerance parameter 0 di0 do do d2 d2
risk tolerance parameter 2 d10 do d9 d2 d2
Unit price of supplementary supply ($/m3) 0.00b 250 | 0.065 0.085 0.1
risk tolerance parameter -2 di d2 di4 di4 di4
risk tolerance parameter 0 di d2 di4 dis dis
risk tolerance parameter 2 di d2 di4 di5 di5

6.6.3 Sensitivity analysis for different risk toleeance parameter

Figure 6.11 shows the expected utility value amddértainty equivalent of decision makers with
different risk attitudes und&vS2and probabilistic water demand in the YRD. d2, d@ d14 are
favorable compared with others with higher expeattitity and lower certainly equivalent
against all risk tolerance levels. d2 performsdyetian the others when decision makers are risk
taking. When decision makers are risk neutral, £I9npre preferred. As the decision maker
becomes more risk averse, their preference shifi@oh d9 to d14 gradually. This can be
explained with the information provided by the rigiofiles of the total cost (Figure 6.12). The
risk profile of d2 has higher probability in bothwer and higher cost compared with d9 and d14.
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A risk-taking decision maker is willing to take thisk with higher probability of higher cost, in
order to have more chance to achieve much lowdr Tbss could explain the preference on d2
in risk-taking situations. As the decision makecdraes more risk taking, the preference on d2
becomes more obvious. This is consistent with thenpmena demonstrated in the figure that the
expected utility and certainty equivalent of d2 drees larger than those of d9 and d14. On the
contrary, the risk averse decision maker prefezsdcision alternative with lower chance to get
higher cost, for example, d9 and d14. As d14 habt} less probability of higher cost even the

lower cost occurs with lower probability comparedhwd9, d14 becomes favorable when the

decision maker becomes more risk averse.
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Figure 6.11 Expected utility and certainly equiveleith different risk tolerance parameter
values undewS2(-5 to 5).
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Figure 6.12 Risk profiles of outperformed decisidternatives d2, d9 and d14.

Table 6.9 shows the sensitivity analysis resultsitoe values of the risk tolerance parameter and
the probability distributions assigned to water@ypconsidering water demand uncertainty. The
decision analysis result is more robust to the gdly distributions but much more sensitive to

the decision makers’ risk attitudes. Under the saisle attitude, the decision result keeps the
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same even the probability distribution pattern ¢jesn However, the decision result changes

according to the risk tolerance parameter undesdinee probability distribution pattern.
Table 6.9 Sensitivity analysis of the risk attitade

r S| 4| 3 2| -1 0 1 2 3 4 5
WS1| d2 | d2 | d2| d2| d2l d9 d9 d9 di4 d14 dp4
WS2| d2 | d2 | d2| d2| d2l d9 d9 d9 di4 dl4 di4
WS3| d2 | d2 | d2| d2| d20 d9 d9 d9 di4 d14 di4
WS4| d2 | d2 | d2| d2| d2l d9 d9 d9 di4 dl4 di4
WS5| d2 | d2 | d2| d2| d2 d9 d9 dig di4 di4 dp4
WS6| d2 | d2 | d2| d2| d2l d9 d9 d9 di4 dil4 di4
WS7(d2 | d2 | d2| d2| d2l d9 d9 d9 di4 di4 di4
WS8( d2 | d2 | d2| d2| d2l d9 d9 d9 di4 d14 dp4

6.7 Discussion and Conclusions

This chapter has applied the proposed decisionngakamework to demonstrate the decision
making process under uncertainty in the YRD, Chirtee decision problem focuses on matching
the water supply and water demand using managemeasures for long-term water planning.
Monetary and utility-based objective functions wetentified, aiming to evaluate decisions by
combing the engineering as well as decision maksFespectives. Uncertainty analysis and the
decision rules used to rank decision alternativ@gehbeen emphasized and investigated, and
sensitivity analysis has been implemented to testrobustness of the decision in the decision

making process.

Monetary and utility-based decision objectives hbgen identified to measure the consequences
of decision alternatives. The monetary consequehaecision alternatives was quantified and
addressed by risk profiles considering both thaltebst and the corresponding probability
distributions. To rank their performance, a setisi profiles has to be compared and analyzed
on the basis of minimizing the total cost. Unlike traditional method by comparing one or two
moments of the probability distributions, for inste, the mean value and the standard deviation,
the information provided by the whole probabilitystdbution was implemented using the
principle of stochastic dominance. Second-orderchaistic dominance test was applied
considering the complexity of risk profiles, and (@9ew water supply project and 10% of water
use efficiency improvement) outperformed otherscbysidering the monetary consequences.
The consequence of utility against the total coas wanked based on expected utility theory.

Expected utility theory defines the rational demisis the one with the maximal expected utility
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according to the decision maker’s utility function.addition, certainty equivalent was applied to
differentiate the risk attitudes of decision makensd discriminate the performance of decision
alternatives. When considering the different rigkwedes of decision makers, the most favorable
decision became d2 (1 new water supply projecOitb2and 1 new water project in 2025) when
the decision maker is risk taking £ -2). When the decision maker is risk neutrat(0), the

most favorable decision is the same as the optoheaision considering only the monetary
outcome. As the decision maker becomes risk a\erse?), d9 still has the maximal expected

utility and the minimal certainty equivalent accoglto the decision maker’s utility function.

The decision making process has dealt with two maypes of uncertainties, outcome
uncertainty and decision uncertainty (Van AsselO®0Xu and Booij 2004). Outcome
uncertainties include (1) uncertainty from watep@y conditions in the YRD due to the impact
of climate change on water availability in the YRBnd the in-basin water division; (2)
uncertainty from the water demand circumstanceshe YRD, due to the socio-economic
development and environment requirement; (3) uag#st from the consequences of each
management measure due to the input and paranddtetscision models. To deal with the
outcome uncertainty, scenarios of future water guppd water demand were developed using
probability distributions. Scenarios attached vtbbability distributions express the uncertainty
and the assumptions handling uncertainties exipliaihd quantitatively, and the application of
probability allows the updating when new informatibecomes available based on Bayesian
theory. The probabilistic scenarios of future watepply and water demand contain a range of
values as well as their chance to occur, insteduinited number of values with equal likelihood
to represent the uncertain future. On the othedhdeacision uncertainty was taken into account
by considering and differentiating the preferenod ask attitudes of decision makers in a risky
context. Utility was applied to measure decisionkenrg’ preference beyond the monetary
outcomes, such as satisfaction to both the totat emd the risk in the study. A negative
exponential utility function was implemented to rmebdhree risk attitudes through the risk
tolerance parameter. Although the decision makeupposed to know his preference based on
the axiom of expected utility theory, there is noque utility function suitable for all decision
makers’ preference. The format of the utility fuoothas to be reinvestigated and restudied in
each application when facing different decision erak The elicitation of utility functions is a
complex process and has been extensively studemtdtically and practically (e.g.,Chajewska,
Getoor et al. 1998, Abdellaoui 2000, Chajewska,létadt al. 2000, Gonzales and Perny 2004).
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The consideration of risk attitudes of the decisioakers is useful to explain the divergent
opinions and preferences of decision makers dubdwo different risk attitudes in the face of
uncertainty. However, how to solve the disagreeraeming decision makers is beyond the scope

of the study. Future research can be conductesbtodt this interesting problem.

Sensitivity analysis has been used to test theitsetys of decisions when the values or
probability distributions of the input or the pareters are changed in the decision models.
Sensitivity analysis focused on the probabilitytrlsitions attached to the future water supply
and water demand scenarios, market price of theageanent measures which are beyond the
control of decision makers, and the risk toleraleels of decision makers. Four parametric
probability distributions were chosen to be attacteethe water supply scenarios, in order to test
the sensitivity of decision making results to tmelqability distribution patterns. The result shows
that the patterns of probability distributions halenost no impact on the final decision. The
water demand scenarios in a deterministic way aobgbilistic way produced different decision
making results when the decision maker is risknigkHowever, to consider the uncertainty of
future water demand instead of using a single trezlps decision makers to build confidence, as
the decision is more robust against a large saitofes instead of a single one. The result under
the probabilistic water demand scenarios is moeugible and robust against the uncertain
futures. The differentiation of preference and retkitudes of decision makers leads to the
various choices of optimal decision, which can kplaned as whether the decision makers’
willing to take the risk with higher probability dfigher cost, in order to have more chance to
achieve much lower cost. Finally, the decision iteisumore sensitive to the market price of the
management measures and then risk attitude leyetfe@sion makers, compared with the

probability distribution patterns assigned to thetev supply scenarios.

In short, the study tried to deal with the decisioaking problem from both the perspective of
engineers and decision makers. It managed to expla¢ of the reasons why it is difficult to
achieve consensus in a collective decision makiom fthe risk point of view in an uncertain
context. Additionally, this study focused on thealysis of two important uncertainty sources
using the probabilistic scenarios-based approacth sensitivity analysis. Especially, the
probabilistic scenario-based approach has combthed strength from the existing classic
decision making and traditional scenario plannidther uncertainties are out of the scope of the

study, such as uncertainties in the communicatrocgss to the decision makers. However, it is
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essential to realize the importance and essewotiebtmunicate and present the decision results
to the decision makers, and future work is requtetbke it into account. Decision making in
water resources planning and management is complesal life as uncertainty is unavoidable,
the developed decision making framework has praladeasible way to cope with uncertainty

as well as making decisions as plausible and radmipbssible against the uncertain futures.
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Chapter 7 Conclusions and Recommendations

7.1 Conclusions

This thesis describes uncertainty management acdioie making under uncertainty for water
resources planning and management. Uncertaintyyalwaists in the decision making process
and complicates it. The study provides answersh&o tivo research questions raised in the
introduction: (1) How to develop scenarios for future water cingtances to cope with
uncertainty? (2) How to make robust and rationatidens based on the developed scenarios?

What | contributed to answering these two questares

(1) Uncertainties from hydro-climatic, socio-econojand institutional variables were studied.
Scenarios were developed to cope with uncertaiatly ualitatively and quantitatively. Unlike
traditional scenario development, probability digitions were attached to quantitative scenarios
in order to address uncertainty completely and ieitigl Chapter 2 reviewed studies and
methods for scenario development, and argued thmeseiy of attaching probabilistic
information to scenariofrobabilistic scenarios were developed and appbeestimate future
climatic variables in the Yellow River Basin (Chap®), and project driving forces of future
water demand in the Yellow River Delta (Chapterrd$pectively.

(2) A probabilistic scenario-based decision maKnagnework was developed, which emphasizes
uncertainty management and decision making, and ainrobust and rational decisions under
uncertainty by including a large set of scenaridth \@ssociated probabilities, as opposed to the
use of deterministic predictions (Chapter 5). Theppsed framework was built on the basis of
probabilistic scenario development and decisiomtheThe framework integrates the strengths
of three existing decision-making methods appliedwater resources management while
avoiding their disadvantages. In Chapter 6, th@@sed decision making framework was applied
to choose the most cost-effective and favourableemmanagement policy for matching future

water supply and water demand in the Yellow Riveit®

The main contribution of the thesis was to add pbilistic information to scenario development,
and apply it to develop water scenarios in the ofelRiver Basin and Yellow River Delta. As
assignment of probabilities typically is a subjeetprocess, use of reference methods and proper

documentation of procedures is essential. This wamonstrated in Chapter 3, where
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probabilistic climate scenarios were developed aqisine Principle of Maximum Entropy
(POMBE), which selects the probability distribution withaximal entropy (largest uncertainty)
given available knowledge. This provides a reasopréfer one probability distribution on the
others. Besides uncertainty related to future demehange, uncertainty from the applied
hydrological model was not negligible. The propagabf uncertainty from the climatic driving
forces and the applied hydrological model to futawmeoff was quantified using the Markov
Chain Monte CarloNICMC) sampling. Regarding contributions of each unaeigssource to the
total uncertainty, it was found that uncertaintynfr the climate variables contributes more than
the model parameters, but is similar to uncertaohiye to hydrological model structure and
parameters. It was important to consider the uacest from both climate change and

hydrological model since they are both significant.

Chapter 4 developed a scenario-based expert gbctéramework to probabilistically explore
the driving forces of future water demand. The wesliablished SHELF method was applied to
estimate the prior probability distributions of tliiving forces on basis of the scenario
storylines. Following the GBN matrix approach, fostorylines comprising two extremes
(urbanization speed-up/ agriculture intensive, wasving/ water consumptive) were constructed
to describe the future development of the YRD. reates from three water experts were
aggregated into a single probability distributicsing the simple linear pooling approach. The
Gaussian copula was used to model the dependermegdime driving forces. Uncertainty from
all driving forces was propagated to future watemdnd usingMCMC sampling. Instead of
being presented with limited discrete values, fitwater demand was quantified using

continuous probability distributions, covering adeirange of possible future alternatives.

Following probabilistic scenario development, amotlcontribution of the thesis was the
development of a systematic decision making franmewm support robust and rational decision
making under uncertainty. The framework not onlestigated the monetary objective, but also
further engaged the decision makers by investigdtieir preferences and risk attitudes (risk
averse, risk neutral, risk taking) under uncertaibtecision making is not only about choosing a
decision, but also about why the decision is chobgnthe decision maker, and why
disagreements could exist within a group of denigizakers. Although consideration of their
preference and risk attitudes could not provideesgriptive guide for decision making, it could

help to explain, and even predict the behaviowtesiision makers. The application of maximum
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expected utility theory allows the engagement afisien makers’ preference and risk attitudes.
To compare the economic outcomes of decision atmes, the entire distribution of costs and
utilities, rather than one or two moments, werestalito account, and alternatives were ranked
using stochastic dominance tests. In Chapter Gndfagement measures were proposed to fill
the water shortage gap in the YRD for the next 8ary. Monetary and utility-based objective
functions were identified, thus combining the emginng as well as decision makers’
perspectives. A negative exponential utility fuootiwas implemented to model three risk
attitudes using the risk tolerance parameter. éndécision making process, sensitivity analysis
was implemented to test the robustness of decialtamnatives given uncertainty from water
supply, water demand, market price of managemeasures, and the preference from decision
makers. The sensitivity analysis showed that th@san result is more sensitive to the market
price of the management measures and risk attitofldscision makers, than to the probability

distribution patterns assigned to the water scesatri

7.2 Future directions and researches
Eight recommendations are proposed for future rebean scenario development and decision

making in water resources planning and management.

(1) The proposed Bayesian framework in probabdlistienario development has great potential
in future scenario development exercises. Inste&dassigning probability distributions
objectively, the Bayesian framework provides a gaya to assign subjective priors and update
to posteriors in light of new information and daba.the study, non-informative priors were
assigned for the climate variables, and informasibaut climate change from GCMs was used to
update the probability distributions. Bayesian tmbties add numerical values to scenarios;
however, there are challenges to apply Bayesiabaibties for scenario development: such as
knowledge requirement about probabilities and Bayegheory, and sufficient resources
requirement such as time, information, computaéind research. For example, the application of
the probability update is complicated, as to obtagw data or information is sometimes
expensive and time-consuming, to estimate the tiondl probabilities requires scenario
developers to be highly explicit and clear abowirtlassumptions, or the likelihood function is
difficult to estimate or interpret. Future reseastiould be carried out to better understand and

implement Bayesian probabilities in scenario deeient.
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(2) More research has to be carried out to increéhsecredibility and reliability of expert
elicitation in probabilistic scenario developmeaxpert elicitation can be used to estimate priors
and the likelihood functions when hard data is anailable or limited. Usually, experts need to
be carefully selected and trained, and they arpssgul to be calibrated to show their ability to
express their knowledge. In this study, the experse not calibrated in advance of the water
demand scenarios development exercise, but they agied to provide feedback and revision of
their judgement iteratively using an existing meth@HELF). Expert elicitation can provide
important inputs for scientific research and rél-hpplications, while more research has to be
carried out to increase its credibility and reliiai Another issue with expert elicitation is the
aggregation of the opinions of multiple expertsjthme mathematical approaches such as
Bayesian paradigm nor behaviour approaches caeqbgrisolve the problem. Future research
should be done to develop better mathematical rscaled behaviour aggregation procedures to

improve the performance.

(3) The rainfall-runoff model applied to simulateethydrological process in the YRB should be
improved. Considering the large area of the YRB #@scheterogeneous characteristics of the
hydrological parameters (land use, soil moistuvaperation, etc.), the YRB should be divided
into several sub-basins when simulating the hydjiobd process. In future research, spatial
variability should be included in the modelling pess in order to better understand and model

the hydrological processes.

(4) Further investigations should be implementedveagh the GCMs prediction performance
when estimating the probability distributions oé thydro-climatic variables. The hydro-climatic
variables, as input for the hydrological model, evélownscaled outputs from multiple GCMs
and IPCC emission scenarios. In the analysis,@iingcaled climate scenarios were assumed to
be equally weighted. The uncertainty due to difierdownscaling techniques is difficult to be
determined. The performance of the GCMs is diffeidure to the different assumptions about

climate model parameters and structures, and st@naeighted differently in future work.

(5) Decision makers should be engaged more in idecianalysis. Decision makers were
involved by explicitly indicating and measuring ith@reference and risk attitudes. The risk
attitudes were simply modelled by a negative exptakutility function. Their preference of the

decision alternatives were measured and comparedficted utility. In reality, no single utility
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function can objectively represent the decision enskpreference and risk attitudes. There have
been a number of studies to elicit utility funcsorie.g.,Chajewska, Getoor et al. 1998,
Abdellaoui 2000), which have not been widely applie decision making problems in water
resources planning and management. Although exgedttlity theory, as a simplification and
abstraction of reality, has been challenged noepoesent the complex and usually ‘irrational’
human behaviours, to investigate the complex hubmaviours is out of the study scope.
However, future research should pay more attenta@tudy the characteristics and behaviours of
decision makers, in order to elicit the utility fittons which can closely represent and interpret
their preferences.

(6) Adaptive water management should not be a yeondcept but a pragmatic guide. Adaptive
water resources management is more flexible andrdymto deal with uncertainty and surprise,
as it allows the change of decisions after newrimédion is obtained or new lessons are learned
from past experience, since adaptive water manageimea ‘learning through doing’ process
(Slinger, Huizinga et al. 2005). Although the pmepd decision making framework did not
explicitly emphasize an adaptive process, it is mhda support an iterative and repetitive
decision making, when scenarios are diverging frexpected trajectories, or new decision
alternatives have to be proposed and evaluated tineléramework. In order to support adaptive
water management, continuous monitoring and corsparof developed scenarios and future

reality is required for scenario updating.

(7) A large effort in decision making research Hmeen made to understand and analyse
uncertainty, and more effort should also be madeotamunicate uncertainty among scientists,
experts, decision makers, and stakeholders. Besidestific research conducted by scientists
and experts, the participation of stakeholders dadision makers let them contribute local
knowledge and expectations to scenario developnmeféce of uncertainty. Communicating
uncertainty is also helpful for the public and thecision makers to realize the potential risks
associated with uncertainty. Articulating uncertgito the public without technical background

is a challenge, but it is essential for a transpaaead participatory water resources management.

(8) Water shortage in the YRD is likely to becomerse, due to the impact of climate change,
population growth, economic development, water cetitipn upstream, etc. Water supply in the

YRD is heavily dependent on the YRB. However, thatex shortage situation in the YRB is
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already severe enough. The available water alldctdethe YRD is not likely to meet its
increasing water demand and socio-economic devedopnThe thesis mainly investigated the
technical measures to manage water supply and dkrsach as building new water projects and
investing in water saving technologies. The effefcthese measures to relieve water shortage is
significant and rapid, but large monetary and lakdouestment is required to implement them.
However, non-technical measures are believed {o inalelieving the problem in a low-cost and
high-impact way. For example, increasing the pud@reness and participation of water-saving
through education, adjusting water prices (the watece for irrigation is very low while its
water demand is high in the YRD) to stimulate meificient water use, promoting rain harvest
technology for each household, etc (Savenije and Dar Zaag 2002). In practice, an optimal
combination of technical and non-technical watenaggement is required to relieve the water

shortage problems and maintain socio-economic dpunt.
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Appendix A. Scenario-based probabilistic elicitatisith SHELF

The probabilistic elicitation procedure include® tSBHELF methods procedure to elicit prior

probabilities from experts described in section I details are described below.

(1) Selection of experts

It is worthwhile to involve multiple experts and gaggate their opinions of probability
assessment. Ferrell(1985) suggest that threedakperts are a good number. Three experts, one
water manager Mr. Mingyuan Fan and two researddstsHuawei Chen and Dr. Jian Liu, from
the Water Resource Research Institute in ShangBoogince were involved and consulted for
predicting water demand. Mr. Fan works on wateoueses management, and especially focuses
on optimal water resources distribution in the YRMs. Chen and Dr. Liu work on hydrology
and water resource management. They have beenngaakid researching about water resources
issues in the Yellow River Delta for years and haxperience in modelling water availability
and demand, planning water infrastructure and afing water in the YRD. In the study, experts
are identified without using calibration approachesd they are assumed to be equally qualified

for the probability assessment.

(2) ‘Training’ of experts

As the experts already have plenty of knowledge experience about water resources planning
and management in the Yellow River Delta, the trgnmainly aims to help them to get familiar
with the knowledge of probability, in order to kitheir comfort with the elicitation process. To
explain the 50% quartile of a variable, denoteX §50%), questions were asked such as “which
value of X do you think is equally likely to be eaded or not”. To elicit the 25% quatrtile,
questions were asked such as “what is the valo€lotated in the middle between the X (50%)
and the lowest possible value of X?” Another tnagntask is to help them get familiar with the
SHELF procedure and software. The SHELF packadades the procedure and notes, and they
were explained to experts. To practice the SHELRB«@le elicitation process, the probability
distribution of the historical annual urban popigdatgrowth rate in the YRD was estimated by

them. Their elicited probability distributions weoempared with the probability distribution
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from the observed data (although very few). Throtiaé exercise, the experts were expected to
have better understanding of probability distribng and the elicitation approach.

(3) Elicitation process using SHELF

Although the experts already have plenty of knowgke@nd experience about water resources
planning and management in the YRD, available na$eabout the quantities of interest were
sent beforehand. More information is helpful to idvi@availability heuristic” in which experts

rely only on the knowledge already in their mind.

Before the elicitation process, the purpose of ¢heitation and the uncertainties should be
explained explicitly. The variables were defined eeplained in section 5.5.4. The quartile
method was chosen for probability elicitation. Imagtice, it is not possible to estimate the
probability distribution directly, but rather theuaytiles or moments of the probability
distribution. The upper and lowers bounds, as a&l5%, 50%, and 75% quatrtiles, were elicited
in order to characterize the tails, the positiord the quartiles in between, which helps to decide
the shape and fit the curve with an appropriatebgiodity distribution. The experts were
consulted and had to make judgement separatelyedch variable. With the judgement of
quartiles, a probability distribution can be fitingg SHELF software, and the expert can adjust

and correct the distribution through the visualizedve.
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Appendix B. Quartile estimation for annual grow#ter of water demand variables in the next 30
years from three experts under SHELF proceduret (Jo)i

Quartile | Index Variable Description E1l E2 E3 Index Variable Description E1 E2 E3

0 0.5 0.5 0.5 0.5 0.5 0.5

0.25 2 1 2 addy rice 0.8 0.6 0.55

0.5 1 r.popl urban population 3.00 2 25 11 rareal p arga 1.00 0.7 0.7

0.75 320 3 3 120 1 1

1 3.5C 3E 3.t 13C 1.2 1.2

0 -3 -3 -3 0.5 0.51 0.51

0.25 25 -25 -1.5 other cro 2 0.7 0.55

0.5 2 r.pop2 rural population -2 -1.5 -1.3 12 r.area2 area P 25 15 1

0.75 -1.5 05 -0.2 2.6 25 25

1 2 2 2 3 3 3

0 25 -25 -2.5 0.t 0.4¢ 0.4¢

0.25 urban water use 0+ 05 01 vegetable T 08 0.55

0.5 3 r.lpopl intensit 0.15 0.1 0.1 13 r.area3 grea 1.2 1 0.7

0.75 Y 0.16 0.15 0.15 1.5 1.5 1.4

1 0.17 0.17 0.17 2 2 2

0 -8.7 -8.7 -8.7 1 1 1

0.2¢ rural water use O L 0.5 S 2 L

0.t 4 r.lpop2 intensit 0.€ -5 0.1 14 r.aread orchard area 6 3 2

0.75 y 0.9 -3 0.15 6.8 5 2.7

1 1 1 1 7 7 7

0 -3 -3 -3 -1.8 -1.8 -1.8

0.25 industr 5 2 8 -0.5 -1 -0.5

0.t 5 r.prdl roductign 7 6 8.t 15 r.areab grassarea 1 0.t 0.7

0.75 P 9 8 9 12 1 1

1 10 10 10 2 2 2

0 -4 -4 -4 -1.1 -1.1 -1.1

0.25 archetect 5 1 7 -0.5 -0.8 -1

0.5 6 r.prd2 roduction 6 4 7.1 16 r.area6 fishingarea 0 0.2 0.5

0.7t P 6.5 6 7.4 2 0.t 0.€

1 7.5 7.5 7.5 1 1 1

0 5 5 5 -2 -2 -2

0.25 8 7 55 paddy rice -1.8 -1.5 -
tertiary . . 1.75

0.5 ! r.prd3 producon 15 10 65 | +/  "agl ::]rt%?]t's?t” 1 1 17

0.75 18 15 7 Y o5 06 15

1 20 20 20 0 0 0

0 -5 -5 -5 -5 -5 -5

0.25 industry water 45 -45 -4.5 othercrop 0O -4 -4

0.5 8 r.lind1 use in%/ensit -4 -4 -35 18 r.lagr2 irrgation 2.2 -3 -3

0.75 Y 3 2 3 intensity 25 1 -2

1 1 1 1 3 3 3

0 -2 -2 -2 -5 -5 -5

0.25 archetect water -19  -15 -15 vegetable 0 -4.5 -4.5

0.5 9 r.lind2 use intensit 1.8 -1 -1.3 19 r.lagr3 irrgation 2.3 -4 -25

0.75 Y a4 o034 a intensty 2.5 -2 -2

1 2 2 2 3 3 3

0 -10 -10 -10

0.25 terti t -9 -7.5 -8

05 | 10 ringg (erAywaleruse 5 g7 g

0.7¢ y 6 3 45

1 -1 -1 -1
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Appendix C Probability fitting of urban populatigmowth rate using SHELF Quartile method
Quartile estimation of urban population growth rayethree experts

Quartile | Index Variable Description E1 E2 E3
0 05 O0E& 0OE
0.25 urban 2 1 2
0.5 1 r.popl population 3.00 2 2.5
0.7t 32C 3 3

1 350 35

Figures of distribution fit for.poplwith SHELF

(E1)
lower quartile: 2.0

05 11 17 24 3

median: 3.0

T 1T 1 1
05 12 2 28 35

(E3)
lower quartile: 2.0

T 1T 1 1
05 1 15 2 25

median: 2.5

T T 1 1
05 12 2 28 358

upper quartile: 3.2

I

1T 1T 1T 1
3 31 32 34 35

Sum of squares: 0.0504
0.24 quantile: 2.1
0.76 quantile: 3.2

15

05 10 15 20 25 30 35
Normal
mean=268,sd=0783

upper quartile: 3.0

B

T 1 1 1
25 28 3 33 35

Sum of squares: 0.00739
0.25 quantile: 2
0.75 quantile: 3

00 086
L1l

Normal
mean=251,sd=0679

(E2)
lower quartile: 1.0

05 08 13 17 2

median: 2.0

7 T T 1
05 12 2 28 35

00 08

j

upper quartile: 3.0

H |

T T T 1
2 24 28 31 35

Sum of squares: 0.0231
0.24 quantile: 1.3
0.76 quantile: 2.8

05 10 15 20 25 30 35
Normal
mean =202, sd=107
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Appendix D Prior probability distributions fittedith SHELF and resulting combined probability
distributions using an equally weighted average @ggh

0 I SN et
-10 &5 0 5 10 — Equal average
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Appendix E Correlation matrix (Product moment ctatien) among variables

(1) Pearson’s correlation of variables to model dstic water demand

r.popl| r.pop2| r.domy r.ldom?
r.popl 1 -0.8 -0.45 0
r.pop2 -0.8 1 0 -0.25
rddoml| -0.45 0 1 0
r.dom2 0 -0.25 0 1

(2) Pearson’s correlation of variables to modelstdal water demand

r.prdl | r.prd2| r.prd3| r.lindl| r.lind2| r.lind3
r.prdl 1 0.50 0.45 -0.6 -0.2 -0.25
r.prd2 | 0.50 1 0.40 -0.2 -0.6 -0.2
r.prd3 | 0.45 0.40 1 -0.4 -0.4 -0.6
rlindl | -0.6 -0.2 -0.4 1 0 0
rlind2 | -0.2 -0.6 -04 0 1 0
rlind3 | -0.25 -0.2 -0.6 0 0 1

(3) Pearson’s correlation of variables to modeladjural water demand

rareal | rarea2| raread r.area4 r.areap r.areg6 areal| r.larea2| r.larea3
r.areal 1 0.6 0.45 0.45 0.3 0.2 -0.6 -0.24 -0.2
r.area2 0.6 1 0.5 0.5 0.35 0.25 -0.3 -0.6 -0.3
r.area3 0.45 0.5 1 0.4 0.3 0.2 -0.2 -0.2 -0.6
r.areasd 0.45 0.5 0.4 1 0.25 0.15 -0.19 -0.1% -0.1
r.area5 0.3 0.35 0.3 0.25 1 0.1 -0.1 -0.1 -0.14
r.area6 0.2 0.25 0.2 0.15 0.1 1 -0.1 -0.1 -0.14
rlareal | -0.6 -0.3 -0.2 -0.15 -0.1 -0.1 1 0 0
rlarea2 | -0.25 -0.6 -0.2 -0.15 -0.1 -0.1 0 1 0
rlarea3 | -0.25 -0.3 -0.6 -0.15 -0.1 -0.1 0 0 1
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