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Abstract: This study aims at developing a new set of equations of mean motion in the presence
of surface waves, which is practically applicable from deep water to the coastal zone, estuaries,
and outflow areas. The generalized Lagrangian mean (GLM) method is employed to derive a
set of quasi-Eulerian mean three-dimensional equations of motion, where effects of the waves are
included through source terms. The obtained equations are expressed to the second-order of wave
amplitude. Whereas the classical Eulerian-mean equations of motion are only applicable below
the wave trough, the new equations are valid until the mean water surface even in the presence of
finite-amplitude surface waves. A two-dimensional numerical model (2DV model) is developed to
validate the new set of equations of motion. The 2DV model passes the test of steady monochromatic
waves propagating over a slope without dissipation (adiabatic condition). This is a primary test for
equations of mean motion with a known analytical solution. In addition to this, experimental data
for the interaction between random waves and a mean current in both non-breaking and breaking
waves are employed to validate the 2DV model. As shown by this successful implementation and
validation, the implementation of these equations in any 3D model code is straightforward and may
be expected to provide consistent results from deep water to the surf zone, under both weak and
strong ambient currents.

Keywords: generalized Lagrangian mean; quasi-Eulerian mean; radiation stresses; wave-current
coupling; mean currents; three-dimensional mean flow

1. Introduction

The interaction between waves and currents has been the subject of much research
in recent decades. There are two representations of wave-averaged effects on the currents
called “radiation stress” and “vortex force”. The concept of “radiation stress: was first
introduced by Longuet-Higgins and Stewart [1] to explain the transfer of wave energy to a
uniform current. This concept was used by Longuet-Higgins and Stewart [2] to study the
changes in the mean surface level and the currents caused by gravity waves. The radiation
stress concept has been successful in explaining phenomena such as wave “set-up”, “surf
beats”, the steepening of the surface waves on adverse currents [3], and the generation
of long-shore currents by oblique incident waves [4–6]. However, since “radiation stress”
introduced by Longuet-Higgins and Stewart [1] is a two-dimensional horizontal tensor
it is only practical for two-dimensional, depth-averaged models. In reality, the current is
depth-dependent, so the vertical structure of the radiation stress should be specified.

Some scientists attempted to apply the “radiation stress” concept in three-dimensional
models. Xie, Wu [7] applied radiation stress as a depth uniform body force in the Princeton
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ocean model, even though the radiation stress is caused by depth-varying wave velocity
and hydrodynamic pressure. Therefore, their assumption for the vertical structure of
radiation stress is not accurate. Xia, Xia [8] considered the vertical structure of radiation
stress; however, the three-dimensional radiation stress formulation was derived from
two-dimensional radiation stress.

The second representation of the wave and current interaction is expressed in terms
of the vortex force. This representation was first developed by Craik and Leibovich [9]
in the work of constructing a realistic theoretical model of steady Langmuir circulations.
Their research focused on the near-surface layer to explain the generation of Langmuir
currents as a result of the interaction between surface waves and wind-driven circulation
through the action of a vortex force. Leibovich [10] extended this theory to allow vertical
density stratification and slow time variation. McWilliams and Restrepo [11] developed a
perturbation theory to obtain wave-averaged equations of motion. Their theory is based on
the assumption of small wave slope and deep water. McWilliams, Restrepo [12] developed
a system of mean equations of motion based on an asymptotic theory to account for
the interaction of waves and currents. In this, the effects of waves on the current are
expressed in terms of the vortex force formalism. However, the equations of McWilliams,
Restrepo [12] are only valid when the ratio of mean current to the wave orbital velocity
is a small quantity, and are only applicable outside the breaking zone. Newberger and
Allen [13] developed a three-dimensional, hydrostatic model for surf zone applications,
with applicability to linear waves interacting with a depth-uniform mean current. They
divided the effect of waves on the mean currents into surface and body forces. The surface
force represents the wave dissipation, and the body force represents the gradient of the
Bernoulli head and vortex-force. The equations of McWilliams, Restrepo [12] were used by
Uchiyama, McWilliams [14] for surf zone applications. In this, the non-conservative forcing
by breaking waves, roller waves, bottom and surface streaming and wave-enhanced mixing
are added through empirical formulas. Their equations were implemented in the COAWST
(coupled ocean—atmosphere—wave—sediment transport) modeling system by Kumar,
Voulgaris [15] with some modifications for empirical formulas of wave-induced forcing.

The relationship between “radiation stress” and “vortex force” representations was
studied by Lane, Restrepo [16]. In this, the asymptotic assumption proposed by McWilliams,
Restrepo [12] was used to look for the similarities and discrepancies of these two representa-
tions. They proved that these two representations are equivalent (Equations (38) and (39)).
However, their work was only restricted to non-dissipative waves. All the theories men-
tioned above are expressed in an Eulerian-mean framework, though when finite-amplitude
waves are present, the region between the wave trough and wave crest is not always filled
by the fluid but by the air during part of the wave period. This poses a problem due to a
large difference in density between the fluid and the air.

In the work of Mellor [17] and Mellor [18], a wave-following sigma-coordinate system
was employed to couple the three-dimensional circulation models with wave models.
The coupling included depth-dependent wave radiation stress terms. Their equations are
inconsistent in the simple case of shoaling waves without energy dissipation [19]. Recently,
Mellor [20] and Mellor [21] derived prognostic equations for Eulerian mean flow on sigma-
coordinates. The three-dimensional momentum equations were inferred from the vertically
integrated momentum equations by adding a term for which vertical integration is zero.
Similar to the work of Xia, Xia [8], the inference of three-dimensional momentum equations
from two-dimensional momentum equations is not straightforward. This inconsistency
was also pointed out by Ardhuin, Suzuki [22]. Moreover, in the momentum equation of
Mellor [20] and Mellor [21], there is a lack of a term related to the divergence of the vertical
momentum flux [22].

The generalized Lagrangian mean (GLM) method was introduced by Andrews and
McIntyre [23], hereafter referred to as AM. The basic idea of this method is to average
over disturbance positions of the fluid particle. Therefore, the GLM method is valid from
the bottom to the mean water surface even in conditions of finite-amplitude waves. This
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method provides a powerful foundation for the analysis of the wave–current interaction
and gives a physical interpretation of the interaction between waves and currents. Based on
the GLM method, AM developed a set of equations of mean motion in a general condition
of the wave–current interaction. Their set of equations is complete and depends on ther-
modynamic properties such as entropy and enthalpy. However, the disturbance-related
quantities, which include both wave-induced and turbulence-induced effects, are not explic-
itly represented through source terms. Their equations were employed by Leibovich [24] to
derive Langmuir circulation equations under the assumption that the waves are dominated
by their irrotational part. The GLM equations of AM were simplified by Dingemans [25]
with the assumption of constant density, and removing all thermodynamic terms, yet
leaving the disturbance quantities as implicit. Groeneweg [26] used an alternative method
to obtain GLM equations, where the Reynolds-averaged Navier–Stokes (RANS) equations
were rewritten in terms of GLM quantities. The mean quantities in RANS equations are
obtained by applying the Eulerian mean method; therefore, his set of equations is not
suitable to the region above the wave trough. His set of equations was implemented in the
Delft3D-FLOW model by Walstra, Roelvink [27] with simplification for the wave-induced
driving force. Ardhuin, Rascle [19] developed a practical set of equations of mean motion
based on the work of Dingemans [25]. Their equations are written in term of quasi-Eulerian
mean velocity ûi defined by:

ûi = uL
i − pi, (1)

where, uL
i is the ith- component of GLM velocity, and pi is the ith-component of pseudo-

momentum defined by:

pi =
∂ξj

∂xi

{
ul

j + (Ω× ξ)j

}
, (2)

where, xi is the ith-component of position x, ξ is the disturbance displacement of the fluid
particle, uj

l is the jth-component of Lagrangian disturbance velocity, and Ω is the angular
velocity of the Earth. In Equation (2) the summation convention for the indices is employed.
This convention is also used throughout this paper with the indices from 1 to 3.

The equations of mean motion by Ardhuin, Rascle [19] are explicit in terms of the
wave forcing and applicable outside the breaking zone; their equations provide qualitative
results for surf zone applications [19]. This is due to the fact that the Stokes drift only
approximates to pseudomomentum when the waves are irrotational and the mean flow is
of second-order of the disturbance amplitude (AM).

In this paper, a set of equations of mean motion using the GLM method is developed.
The equations are written in terms of quasi-Eulerian velocity defined as GLM velocity
minus Stokes drift. The new equations are valid from offshore to coastal areas. Outside
the surf zone and for non-dissipative waves, the new equations are identical to equations
of Ardhuin, Rascle [19]; for dissipative waves, there are subtle differences. In the case
of infinitesimal and conservative waves, the new equations reduce to the well-known
classical Eulerian mean equations of motion. The new set of equations is validated with
an adiabatic test, non-breaking waves propagating on a strong ambient current in a wave
flume, breaking waves propagating over a barred profile in a wave flume, and obliquely
incident breaking waves in a large-scale sediment transport facility (LSTF).

Figure 1 is a flowchart describing the methodology of this research. It helps readers
understand the structure of this paper easier.
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Figure 1. A flowchart describing the methodology of the research.

2. Derivation of the Quasi-Eulerian Mean Equations of Motion

The GLM method is an exact theory of nonlinear waves on a Lagrangian-mean flow
proposed by AM. In the following, only some properties of the GLM operator are present.
Full details of this method are given in the original paper of AM. The basic idea of the GLM
method is to average over positions displaced by a certain disturbance. That is, if ξ(x, t)
is the particle displacement of the fluid particle then the GLM of any quantity ϕ(x, t) is
defined as:

ϕ(x, t)
L
= ϕ{x + ξ(x, t), t}, (3)
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where, the operator () expresses a time average over a wave period. The term on the
right-hand side of the above equation is a usual Eulerian mean operator. The following
notation was employed throughout this study:

ϕξ(x, t) = ϕ{x + ξ(x, t), t}, (4)

The Lagrangian disturbance quantity ϕl is defined by (AM):

ϕl(x, t) = ϕξ(x, t)−ϕL(x, t), (5)

The quasi-Eulerian mean quantity ϕ and quasi-Eulerian disturbance quantity ϕ′ are
defined, respectively, by (AM):

ϕ(x, t) = ϕL(x, t)−ϕS(x, t), (6)

ϕ′ = ϕ−ϕ, (7)

where, ϕS is the Stokes correction of the quasi-Eulerian mean quantity ϕ.
Assuming that any quasi-Eulerian disturbance can be decomposed into wave and

turbulence components, such as:
ϕ′ = ϕ̃+ϕt, (8)

where, ϕ̃ and ϕt are the wave and turbulent quantities, respectively. Moreover, the
turbulent and wave quantities are assumed to be uncorrelated. That is, for any ϕ and ψ:

ϕ̃ψt = 0, (9)

2.1. Derivation of Quasi-Eulerian Mean Equations of Motion
2.1.1. Derivation of Quasi-Eulerian Mean Momentum Equation

In this work, the fluid is assumed incompressible (ρ = const) and the dependence of
hydrodynamic processes on thermodynamic terms is neglected (Assumption 1). Let us
start with the momentum equation for the total flow written in the Eulerian framework.
The ith equation is expressed by:

∂ui
∂t

+ uj
∂ui
∂xj

+ 2(Ω× u)i +
∂Φ
∂xi

+
1
ρ

∂p
∂xi

+ Xi = 0, (10)

where, i and j represent for the spatial directions (i and j run from 1 to 3), the angular
velocity of the Earth Ω is assumed constant, Φ(x, t) is the potential of the gravitational
force, p is pressure, and X is a function of non-wave dissipative forcing.

Evaluating Equation (10) at the disturbance position of the fluid particle Ξ = x + ξ
to obtain:(

∂ui
∂t

+ uj
∂ui
∂xj

)ξ

+ (2(Ω× u)i)
ξ +

(
∂Φ
∂xi

)ξ

+

(
1
ρ

∂p
∂xi

)ξ

+ (Xi)
ξ = 0, (11)

Equation (11) is valid from the bottom to the free water surface. Assuming that the
gravitational acceleration g is constant then:

∂Φ
∂xi

= δi3g, (12)

where, δi3 is the Kronecker delta function given by:

δij =

{
1 if i = j

0 otherwise
, (13)
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Taking the time-average of Equation (11) (and after some manipulation) to obtain
the following momentum equation written in term of GLM quantities (see Appendix A
for detail):

DLuL
i + 2

(
Ω× uL

)
i
+ δi3g + 1

ρ
∂p
∂xi

+ XL
i = − 1

ρ
∂

∂xj

(
ξj

∂p′
∂xi

)
− 1

2ρξjξk
∂3 p

∂xi∂xj∂xk
+ O(ε3),

(14)

where, ε = |ξ| is a small parameter in the order of disturbance displacement amplitude,
and DL is the Lagrangian mean material derivative defined as:

DL
= ∂/∂t + uL.∇, (15)

where, ∇ =
(

∂
∂x , ∂

∂y , ∂
∂z

)
is the gradient operator.

In the above equation, both wave and current-induced turbulent effects are involved
in the quasi-Eulerian disturbance and GLM terms. For example, quasi-Eulerian disturbance
pressure p′ includes wave-induced pressure p̃ and turbulence-induced pressure pt. There
is no available theory to calculate such quasi-Eulerian disturbance terms. Therefore, it is
necessary to separate wave and turbulent terms from the quasi-Eulerian disturbance. In
the following, Equation (14) is used to develop a quasi-Eulerian mean momentum equation
in the GLM framework. The goal of this exercise is that the wave-induced velocity, the
turbulence, and the mean velocity are separated.

Using the definition of quasi-Eulerian mean quantity in Equation (6), Equation (14)
can be rewritten as:

DLui + 2(Ω× u)i + δi3g + 1
ρ

∂p
∂xi

+ Xi = −DLuS
i − 2

(
Ω× uS

)
i
− XS

i

− 1
ρ

∂
∂xj

(
ξj

∂p′
∂xi

)
− 1

2ρξjξk
∂3 p

∂xi∂xj∂xk
+ O(ε3),

(16)

After some manipulation, the right-hand side of Equation (16) can be expressed as
(see Appendix B):

−DLuS
i − 2

(
Ω× uS

)
i
− XS

i − 1
ρ

∂
∂xj

(
ξj

∂p′
∂xi

)
− 1

2ρξjξk
∂3 p

∂xi∂xj∂xk

= − ∂(ui ′uj ′)
∂xj

+ uS
k

∂ui
∂xk

+ O(ε3),
(17)

The first term on the right-hand side of Equation (17) can be decomposed into the
wave and turbulent components, such as:

−
∂
(
ui′uj′

)
∂xj

= −
∂
(

ũiũj

)
∂xj

−
∂
(

ut
i u

t
j

)
∂xj

, (18)

where, ũi and ut
i are ith—components of wave and turbulent velocities, respectively. It is

stressed that an assumption of no correlation between wave and turbulent quantities is
employed in this step (see Equation (9)).

Equation (17) expresses the relationship between the Stokes drift, wave-induced
pressure, and wave-radiation stress. Inserting Equations (17) and (18) into Equation (16) to
obtain the following momentum equation in terms of quasi-Eulerian mean velocity:

Dui
Dt

+ 2(Ω× u)i + δi3g + Xi = −
1
ρ

∂p
∂xi
−

∂
(

ũiũj

)
∂xj

+
1
ρ

∂τij

∂xj
+ O(ε3), (19)

where, τij = −ρut
i u

t
j is the turbulent stress tensor.
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The momentum Equation (19) includes four variables: three components of quasi-
Eulerian mean velocity u and pressure p. Effects of waves and turbulence can be modeled
as source terms. The momentum equation can be solved in combination with the continuity
equation. The turbulent effect is expressed in the form of Reynolds turbulent stress, which
can be calculated by using existing turbulent submodels, and the wave effect following an
appropriate wave model.

2.1.2. Mass Conservation Equation

The mass conservation equation is necessary to close the set of equations of the mean
motion. The mass conservation is simplified under the assumption of slow modulation
of the waves (Assumption 2). For an incompressible fluid (Assumption 1), the mass
conservation equation is expressed by (AM):

∂uL

∂x
+

∂vL

∂y
+

∂wL

∂z
=

1
2

(
∂3ξjξk

∂t∂xj∂xk
+ uL

l
∂3ξjξk

∂xl∂xj∂xk

)
, (20)

In the following, the vertical GLM velocity is assumed a small quantity, i.e., wL = O(ε).
Using Assumption 2 the right-hand side of Equation (20) is simplified as:

1
2

(
∂3ξjξk

∂t∂xj∂xk
+ uL

l
∂3ξjξk

∂xl∂xj∂xk

)
=

∂

∂t

(
1
2

∂2ξ2
3

∂z2

)
+ O(ε3), (21)

Notice that quasi-Eulerian mean quantities are averaged over the wave period. There-
fore, in the scale of the mean current, the right-hand side of Equation (21), generally, differs
from zero. According to the definition of Stokes correction in AM, the term in brackets on
the right-hand side of Equation (21) is the Stokes correction of the mean position of the
fluid particle ZS, i.e.,

ZS
=

1
2

∂2ξ2
3

∂z2 + O(ε3), (22)

In stationary waves, the temporal derivative of ZS is zero, so Equation (20) becomes:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= −
(

∂uS

∂x
+

∂vS

∂y
+

∂wS

∂z

)
, (23)

However, in nonstationary waves, the right-hand side of Equation (21) differs from
zero and is also of second-order of the disturbance amplitude. In general, the continuity
Equation (20) is rewritten as:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

=
∂ZS

∂t
−
(

∂uS

∂x
+

∂vS

∂y
+

∂wS

∂z

)
, (24)

Equation (24) indicates that the divergence of quasi-Eulerian mean velocity is compen-
sated by the divergence of Stokes drift and the time variation of Stokes correction of the
mean position of the fluid particle. Combined with the momentum Equation (19) we had a
set of four independent equations in four unknowns as long as the wave and turbulent
motions are described by an appropriate wave theory and a relation to the mean flow,
respectively. In principle, these equations can be solved numerically.

3. Validation of Quasi-Eulerian Mean Equations of Motion
3.1. Model Implementation

In this part, a two-dimensional numerical model is developed based on the quasi-
Eulerian mean equations of motion, which were developed in the previous part. The model
is written for the variation of hydrodynamic properties in the x- and z-directions (2DV
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model). All hydrodynamic properties are assumed to be uniform in the y-direction. The
accelerations of mean vertical velocity and dissipative forcing are neglected in the vertical
momentum equation of mean motion (hydrostatic assumption for the mean flow). The
wave properties such as wave amplitude, wave energy, and wave energy dissipation are
calculated by wave energy balance equation and roller energy equation given by Roelvink
and Reniers [28]. Besides, the horizontal variation of the mean atmospheric pressure at the
water surface and Coriolis’ effect are assumed small and neglected.

3.1.1. DV Governing Equations

The quasi-Eulerian mean momentum equations in the 2DV model are given by:

∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z
− υmol∆u = −g

∂ζ

∂x
−

∂
(

ũ2 − w̃2
)

∂x
− ∂ũw̃

∂z
+

1
ρ

(
∂τ11

∂x
+

∂τ13

∂z

)
+ O(ε3), (25)

∂v
∂t

+ u
∂v
∂x

+ w
∂v
∂z

+ X2 = −υmol∆v = −∂ũṽ
∂x
− ∂ṽw̃

∂z
+

1
ρ

(
∂τ21

∂x
+

∂τ23

∂z

)
+ O(ε3), (26)

where, only molecular viscosity is considered as non-wave dissipative forcing and υmol is
molecular viscosity.

The components of turbulence stress tensor are parameterized by:

τ11 = ρυT
h

∂u
∂x

, τ13 = ρυT
v

∂u
∂z , (27)

τ21 = ρυT
h

∂v
∂x

, τ23 = ρυT
v

∂v
∂z , (28)

where, υT
h and υT

v are horizontal and vertical turbulent viscosities, respectively. In this
study, horizontal turbulent viscosity is assumed a constant υT

h = 1.0× 10−3 m2/s, and
vertical turbulent viscosity is assumed a constant-parabolic distribution, i.e.,

υT
v (z) =

{
κδ
(

1− δ
h

)
u∗,c i f (z + h) ≤ δ

−κz
(
1 + z

h
)
u∗,c otherwise

, (29)

where, κ = 0.041 is the Von Karman constant, u∗,c =
√
|τc|/ρ is friction velocity, and τc is

the bed shear stress caused by the mean current.
In the condition of stationary waves, the quasi-Eulerian mean continuity equation in

the 2DV model is:
∂u
∂x

+
∂w
∂z

=
∂ZS

∂t
− ∂uS

∂x
− ∂wS

∂z
, (30)

If the bed level is fixed then the depth-integrated continuity equation is simplified as:

∂ζ

∂t
+

∂

∂x

∫ ζ
L

−h
udz = − ∂

∂x

(∫ ζ
L

−h
uSdx

)
, (31)

3.1.2. Depth-Dependent Wave Radiation Stress in the 2DV Model

The following formulas are derived with the assumption that all the surface waves
are uniform in the y-direction. Components of wave radiation stress tensor in horizontal
momentum equations are defined as:

Sxx = ρ
(

ũ2 − w̃2
)

Sxz = ρũw̃, (32)

Syx = ρṽũ Syz = ρṽw̃, (33)
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With the assumption of slow modulation of the waves, the shear components of
radiation stress tensor can be estimated by a local linear wave theory. The horizontal
components of the wave velocity are given by:

ũ =
k1σa

k
cosh k(z + h)

sinhkh
cos(k1x + k2y− σt), (34)

ṽ =
k2σa

k
cosh k(z + h)

sinhkh
cos(k1x + k2y− σt), (35)

The vertical component of wave velocity is calculated from the continuity equation
for the wave motion:

w̃ = σa
sinhk(z + h)

sinhkh
sin(k1x + k2y− σt)− k1

k2 σ
∂a
∂x

sinhk(z + h)
sinhkh

cos(k1x + k2y− σt), (36)

Then, shear components of the wave radiation stress tensor are:

Sxx = ρgka2

(
k2

1
k2

cosh2 k(z + h)
sinh2kh

− sinh2k(z + h)
sinh2kh

)
, (37)

Syx = ρga2 k1k2

k
cosh2 k(z + h)

sinh2kh
, (38)

The vertical distribution of normal components of wave radiation stress in dissipative
waves was analyzed by Deigaard and Fredsøe [29]. Their study is restricted to shallow
water waves, where the horizontal wave velocity is assumed to be depth-independent.
This results in the linear variation of Sxz and Syz with depth. Usually, the horizontal wave
velocity is a depth-dependent quantity (e.g., wind waves in deep water), in which case
more general formulation for Sxz and Syz are required. In general, the normal components
of wave radiation stress can be decomposed into conservative and decay parts, such as:

ũw̃ = ũw̃CS + ũw̃DC, (39)

ṽw̃ = ṽw̃CS + ṽw̃DC, (40)

where, the subscripts CS and DC represent the conservative and decay parts of the normal
components of wave radiation stress, respectively.

(a) Conservative part of the normal component of the wave radiation stress in weak
ambient current.

When the ambient current is small in comparison with the near-bed orbital velocity, the
conservative part of the normal component of the wave radiation stress can be calculated
from Equations (34)–(36) to obtain:

ũw̃CS = −
gk2

1asinh(2k(z + h))
2k2sinh2kh

∂a
∂x

, (41)

ṽw̃CS = − gk1k2asinh(2k(z + h))
2k2sinh2kh

∂a
∂x

, (42)

The above formulas agree with the results obtained by You [30] and Groeneweg [26]
when the incident angle of the wave is zero (θ = 00).

(b) Conservative part of the normal component of the wave radiation stress in a strong
ambient current.

As pointed out by Supharatid, Tanaka [31], and Nielsen and You [32], the ambient cur-
rent has a significant impact on the vertical distribution of wave radiation stress. Therefore,
Equations (41) and (42) are no longer suitable in the presence of a strong ambient current. The
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normal component of the wave radiation stress is enhanced by a factor CWR = (CWR,1, CWR,2)
representing the effect of the ambient current. Equations (41) and (42) become:

ũw̃CS = −
CWR,1gk2

1asinh(2k(z + h))
2k2sinh2kh

∂a
∂x

, (43)

ṽw̃CS = −CWR,2gk1k2asinh(2k(z + h))
2k2sinh2kh

∂a
∂x

, (44)

For regular waves, the empirical factors CWR,1 and CWR,2 are calculated based on the
formula, which was proposed by Nielsen and You [32], i.e.,

CWR,1 = 1 + 100
u∗
σa

(z + h)
D

, (45)

CWR,2 = 1 + 100
v∗
σa

(z + h)
D

, (46)

where, (u∗, v∗) is the friction velocity caused by waves and currents, a is the wave ampli-
tude, and D = h + ζ the mean of total water depth.

As indicated by Ockenden and Soulsby [33], for a substantial part of the time, the
bottom shear stresses caused by random waves exceed those of the corresponding reg-
ular waves. In this study, Formulas (43) and (44) are modified to apply for random
waves as follows:

CWR,1 = 1 + 100
√

2
u∗
σa

(z + h)
D

, (47)

CWR,2 = 1 + 100
√

2
v∗
σa

(z + h)
D

, (48)

where, a = 0.5Hrms with Hrms is the root mean square wave height. The empirical co-
efficient approximates unity when the ambient current is small in comparison with the
near-bed orbital velocity. The friction velocity components caused by waves and currents
are calculated by:

u∗ =
√

τb,1/ρ v∗ =
√

τb,2/ρ, (49)

where, τb = (τb,1, τb,2) is the total bed-shear stress caused by waves and currents. Simply,
the instantaneous total bed shear stress can be decomposed as:

τb = τw + |τcw|, (50)

where, τw is the wave-induced bed shear stress and τcw is the bed-shear stress caused by
the mean current in the presence of waves. In this work, τw is calculated based on the
formula introduced by Soulsby [34].

For monochromatic waves, shear stress τcw is calculated by:

τcw = −1
2
ρ fcwub

√
u2

b +
1
2
|uorb|2, (51)

where, fcw is the friction factor of the mean current in the presence of waves [35], ub = (ub, vb)
is the near-bed horizontal velocity, and |uorb| is the near-bed orbital velocity amplitude.

For random waves, the Formula (51) is modified based on the approximate practical
formula of Feddersen, Guza [36], i.e.,

τcw = −1
2
ρ fcwub

√
(1.16s)2 + ub

2, (52)

(c) Decay-related parts of the normal component of the wave radiation stress.



J. Mar. Sci. Eng. 2021, 9, 76 11 of 40

Outside the bottom boundary layer, the decay-related part of wave radiation stress
gradient is caused by the dissipative forcing, i.e.,

∂ũw̃DC
∂z

= −
Fbr,1(z)
ρ

− Fmx,1(z)
ρ

, (53)

∂ṽw̃DC
∂z

= −
Fbr,2(z)
ρ

− Fmx,2(z)
ρ

, (54)

where, Fbr = (Fbr,1, Fbr,2) represents the effect of breaking wave and roller wave, and
Fmx = (Fmx,1, Fmx,2) represents the wave-induced mixing. In this work, the vertical distri-
bution of the wave-induced forcing terms Fbr and Fmx is estimated by empirical formulas
proposed by Uchiyama, McWilliams [14].

At the bottom, the wave energy is dissipated due to bottom friction. According to
Longuet-Higgins [37]:

ũw̃DC(−h) = −
k1D f

ρσ
, (55)

ṽw̃DC(−h) = −
k2D f

ρσ
, (56)

Defining Ftot as the total of wave-induced mixing and current-induced turbulent
forcing, i.e.,

Ftot,1

ρ
=

1
ρ

(
Fmx,1 +

∂τ11

∂x
+

∂τ13

∂z

)
, (57)

Ftot,2

ρ
=

1
ρ

(
Fmx,2 +

∂τ21

∂x
+

∂τ23

∂z

)
, (58)

The total of wave-induced forcing caused by the conservative part of the wave radia-
tion stress and breaking wave and roller wave-induced forcing Fw is:

Fw,1

ρ
= −

∂
(

ũ2 − w̃2
)

∂x
+

∂ũw̃CS
∂z

+
Fbr,1

ρ
, (59)

Fw,2

ρ
= −

[
∂ũṽ
∂x

+
∂ṽw̃CS

∂z

]
+

Fbr,2

ρ
, (60)

Then, the sum (Fw + Ftot) represents the total effects of wave and turbulence on the
mean current.

3.1.3. Bottom Boundary Layer Thickness in the Wave–Current Interaction Condition

In the condition of waves combined with current, Van Rijn [35] proposed the
following formula:

δ = 0.2Aorb(Aorb/kn)
−0.25, (61)

where, kn = 30z0 is the Nikuradse roughness.
However, Equation (61) does not account for the effect of near-bed mean current on the

bottom boundary layer thickness. Therefore, it is only suitable if the near-bed mean current
is small in comparison with the near-bed orbital velocity. When the near-bed current is
significant and is comparable to the orbital velocity the following formula is proposed:

δ = 0.2Aorb(Aorb/kn)
−0.25(1 + |ub|/|uorb|), (62)

It is clear that when |ub| � |uorb| the Formula (62) reduces to Formula (61).



J. Mar. Sci. Eng. 2021, 9, 76 12 of 40

3.2. Numerical Approximation

The 2DV equations of mean motion are discretized based on the finite difference
method on a fully staggered grid (C-grid). An implicit numerical scheme has been used
to discretize the equations. Finally, the tridiagonal matrix algorithm (Thomas algorithm)
has been used to solve these equations. In the model, the water level is approximated at
the grid point (i, k), the horizontal component of velocity at (i + 1/2, k), and the vertical
component of velocity at (i, k + 1/2). The advection terms are approximated following the
principles described in Stelling and Busnelli [38]. This method ensures the conservation
of properties near large local gradient areas. The 2DV model developed in this study is a
time-domain model starting from rest and simulating to equilibrium in all cases.

3.3. Adiabatic Test

The adiabatic test, described in Bennis, Ardhuin [39], is a seemingly simple but chal-
lenging test of the derived equations since any imbalance leads to strong spurious circula-
tions. This test was applied firstly by Ardhuin, Rascle [19]. In this, a steady monochromatic
small-amplitude wave propagates over a slope without dissipation. This test has an exact
solution by solving Laplace’s equation for the instantaneous velocity potential with given
bottom, surface, and lateral boundary conditions [19]. In the work of Ardhuin, Rascle [19],
the adiabatic test was solved by using the NTUA-nl2 model (National Technical Univer-
sity of Athens numerical model) developed by Belibassakis and Athanassoulis [40]. The
quasi-Eulerian mean current is depth-uniform.

3.3.1. Bathymetry

The bathymetry was symmetrical and varied slowly from 4 to 6 m in the x-direction,
and was uniform in the y-direction (Figure 2). The maximum bottom slope was 2.6 × 10−2,
and the reflection coefficient was R = 1.4× 10−9, so the reflected wave in the momentum
balance could be neglected [19].
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3.3.2. Boundary Conditions

At the boundary, a regular wave with a height of 1.02 m and a period of 5.26 s
was imposed. This is also the wave that was used by Ardhuin, Rascle [19], and Bennis,
Ardhuin [39] to test their models in the adiabatic condition. The mean water level at the
outflow boundary is given by:

ζ = − ka2

2sinh2kD
, (63)

At the inflow boundary, the quasi-Eulerian mean velocity is vertical uniform and
given by:

u(z) = − 1

h + ζ
L

∫ ζ
L

−h
uS(z)dz, (64)

At the outflow boundary, the Neumann boundary condition is applied, i.e.,

∂u
∂x

= −∂uS

∂x
, (65)
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3.3.3. Numerical Results

Figure 3 shows the spatial distribution of Stokes drift in the x-direction. It shows that
the Stokes drift was constant over the horizontal bed and the magnitude of the Stokes drift
increased with a decrease in water depth and vice versa.
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The comparison of the mean water level calculated by the numerical model and
calculated by the formula of Longuet-Higgins and Stewart [3] is given in Figure 4. It shows
a perfect agreement between the two calculation methods.
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In the adiabatic condition, the total forcing Ftot,1 was zero. The vertical distribution
of wave forcing term Fw,1/ρ is presented in Figure 5. It shows that wave-induced forcing
Fw,1/ρ was zero when the waves propagated over a flat bed. On a sloping bed, this forcing
was not nil and was distributed uniformly over depth. Then, the total forcing (Fw,1 + Ftot,1)
was depth-uniform in the adiabatic condition.
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When the wave propagated over a slope, the change of the wave height led to the
change of Stokes drift. Due to the conservation of mass and momentum, the quasi-Eulerian
mean velocity also changed. However, the vertical integration of total flow was still
unchanged, and in this case, it equaled zero:

∫ ζ
L

−h
uLdz = 0, (66)
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Since all dissipative forcing was absent, the quasi-Eulerian mean horizontal velocity
was uniformly distributed over the vertical. However, the GLM velocity inherited the
non-uniformity from the Stokes drift (Figure 6a). Figure 6b presents the quasi-Eulerian
mean velocity calculated with the 2DV model. It proves that quasi-Eulerian mean equations
of motion passed the adiabatic test.
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3.4. Mean Current in the Presence of Non-Breaking Waves

In the experiment of Klopman [41], the vertical distribution of the mean current was
measured in three different types of waves: monochromatic waves, bichromatic waves,
and random waves. The experiments were performed for four conditions of ambient
currents: currents only (CO), waves only (WO), waves following currents (WFC), and
waves opposing currents (WOC). The wave height was chosen so that no wave breaking
took place. Therefore, the bottom friction plays an important role in the vertical distribution
of the mean current. In the following, the experimental data for random waves were
employed to validate the 2DV numerical model.

3.4.1. Input Parameters

The experiment was performed in a wave flume that has a horizontal flat bottom. The
flume was 45 m long, 1 m wide, and 0.5 m deep. The total discharge was kept constant:
Q = 0 m3/s for the case of wave-only, and Q = 0.08 m3/s for the remaining cases. The
properties of the random waves at the wave paddle are given in Table 1.

Table 1. Wave properties at the paddle.

Wave Type Tp (s) Hrms (m) h (m)

Random 1.7 0.1 0.5

The flow velocities were measured at the center of the channel, i.e., 22.5 m from the
wave paddle. Two laser-Doppler velocimetry flow meters (LDVs) were used to measure
flow velocity components. The vertical distributions of Eulerian-mean velocities measured
at the center of the flume are presented in Figure 6.

In the WO condition (Figure 7a), the wave propagated from the right-hand side to the
left-hand side. It shows that the wave-induced streaming near the bed was in the same
direction as the propagation of the surface waves. The horizontal mean velocity changes
sign at a height of approximately 0.13 m from the bed [41]. Outside the bottom streaming
layer, the mean velocity varied almost linearly. In Figure 7b, the vertical distribution of
horizontal mean velocity is presented in three conditions: CO, WFC, and WOC. It shows
that vertical profiles of the mean current changed significantly in the presence of surface
waves. In the WFC condition, the velocity shear ∂u/∂z was negative in the upper part of
the water column (z/h > 0.4). In the WOC condition, the mean velocity decreased near
the bed (z/h < 0.4), and increased near the surface (z/h > 0.4) in comparison with the
current-only condition.
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By linear extrapolation of the velocities in a semilogarithmic scale, Klopman [41]
obtained the friction velocity u∗ ≈ 7.3× 10−3 m/s. The vertical distribution of the Reynolds
shear stress −utwt is present in Figure 8. The bottom shear stress was estimated by
Klopman [41] about τb/ρ = 4.6× 10−5 m2/s2, corresponding to the friction velocity of
u∗ =

√
τb/ρ ≈ 6.7× 10−3 m/s. Then, the friction velocity calculated from the bed shear

stress was slightly smaller than obtained from the velocity profile.
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3.4.2. Boundary Conditions

In the model, the shear stress is assumed to vanish at the mean water surface, since
non-breaking waves are considered, i.e.,[(

υv + K f r

)∂u
∂z

]
z=ζ

= 0, (67)

where, υv = υT
v + υmol . At the bottom, the bottom boundary condition is given by:[(

υv + K f r

)∂u
∂z

]
z=−h+δ

= −
kD f

ρσ
− τcw

ρ
, (68)

At the outflow boundary, the boundary condition for the mean water level and the
mean current is given by:

ζ = − ka2

2sinh2kh
, (69)



J. Mar. Sci. Eng. 2021, 9, 76 16 of 40

∂u
∂x

= −∂uS

∂x
, (70)

At the inflow boundary, the quasi-Eulerian mean velocity is given by:

u(z) =
1

h + ζ
L QL − uS(z), (71)

where, QL is the mean of total discharge through the pipe.

3.4.3. The Numerical Results

The experiment of Klopman [41] is simulated by the 2DV model with spatial steps
of ∆x = 0.15 m, ∆z = 0.0025 m, and a time step of ∆t = 0.5 s. In the experiment, due to
small technical issues, there was uncertainty in the measured discharge (see Klopman [41]
for more detail). However, these errors were not corrected in his document. Generally, the
measured discharge is expressed as a total of the real discharge and error discharge, i.e.,

Qmeasured = Qreal + Qerr, (72)

where, Qreal is the real discharge through the wave flume, Qmeasured is the measured dis-
charge, and Qerr is the error of flow discharge. In CO condition, it found that when Qerr
approximates to 0.003 m3s−1 (3.75% of the real discharge) a good agreement between
numerical results and experimental data was obtained. In waves combined with current
conditions, the error of flow discharge is assumed similar to the current only condition.
In the WO condition, flow discharge Qerr is zero by definition. In all tests, the bed rough-
ness is kept constant z0 = 4.0 × 10−5 m, corresponding to a Nikuradse roughness of
kn = 1.2× 10−3 m. In Table 2, the bottom boundary thickness is presented. In the con-
dition of waves combined with current, bottom boundary thickness δ was calculated by
two methods: the formula of Van Rijn [35] and its modified Formula (62). The results are
presented in Table 2.

Table 2. Bottom boundary thickness δ in different waves and current conditions.

Conditions Formula (62) (×10−3 m) Van Rijn [35] (×10−3 m)

CO 0.1 0.1
WO 1.3 1.3
WFC 5.3 3.6
WOC 4.9 3.6

Table 3 presents the characteristics of the mean flow near the bed calculated by the
2DV model. It shows that bottom stress in conditions of waves combined with the current
was much higher than that in conditions of WO and CO. This is because momentum mixing
under wave-current interaction conditions was much higher than in conditions of both
WO and CO (see for instance the discussion in Chapter 3 of [42]).

Table 3. Characteristics of the near-bed mean flow.

Conditions |ub|
(×10−2 m/s)

|τb|
(×10−2 kgm2/s2)

u∗
(×10−2 m/s)

CO 8.16 5.4 0.74
WO 0.9 0.21 0.13
WFC 8.10 37.67 1.94
WOC 5.86 24.6 1.56

The vertical distribution of Reynolds turbulent viscosity is presented in Figure 9.
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It shows that the viscosity in the WFC condition was bigger than in the WOC con-
dition, and viscosity in waves combined with current conditions was bigger than in the
CO condition. Moreover, the viscosity in the WO condition was much smaller than for
other conditions.

In Figure 10, the conservative part of ũw̃ in different conditions of waves combined
with the current was plotted. It clearly shows that the ambient current had a significant
impact on the normal component of the wave radiation stress. Moreover, the conservative
part of the normal component of wave radiation stress ũw̃ in the condition of the following
waves was slightly bigger than that in the condition of the opposing waves.
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Figure 10. Vertical distribution of the wave radiation stress component ũw̃CS.

In non-breaking waves, the wave-induced forcing term Fw,1/ρ only represents the
effect of the conservative part of the wave radiation stress. Figure 11a–c show the vertical
distributions of forcing term Fw,1/ρ and mixing term Ftot,1/ρ at the center of the wave flume.
In all three tests, i.e., WO, WFC, and WOC, the forcing Fw,1 is completely compensated
by total mixing Ftot,1 at any water depth level. The total of these two forcing terms, i.e.,
(Fw,1 + Ftot,1), is depth-uniform in the non-breaking wave condition.

Figure 12 shows the vertical distribution of the Reynolds turbulent stress at the center
of the wave flume. Near the bed, the turbulent stress calculated by the 2DV numerical
model was about τb/ρ ≈ 54.4× 10−6 m2/s2, and the corresponding friction velocity was
7.4× 10−3 m/s (Table 4), which was in good agreement with the friction velocity obtained
from the mean velocity profile by Klopman [41], i.e., 7.3× 10−3 m/s.
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Figure 12. Reynolds turbulent stress −utwt in the CO condition.

Table 4. Wave properties at the offshore boundary.

Experiment Hs (m) Tp (s)

Test 1B 0.206 2.03
Test 1C 0.103 3.3.3

The spatial distribution of the quasi-Eulerian mean velocity calculated with the 2DV
model in the condition of CO is given in Figure 13. The (vertically uniform) inflow boundary
was specified at position x = 0 m.
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Figure 13. Spatial distribution of quasi-Eulerian mean velocity in the CO condition.

The comparison between numerical results and experimental data in the middle of
the flume is given in Figure 14. The comparison is given in both the linear scale and
semilogarithmic scale. It shows that the mean current profile calculated with the 2DV
model closely followed the experimental data. The agreement was good not only in the
upper part of the water column but also close to the bed.
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In Figure 15, the spatial distributions of Stokes drift and quasi-Eulerian mean velocity
in the WO condition are presented. In this, surface waves are imposed at x = 45 m and
propagated towards the left. The Stokes drift was in the direction of the waves, whereas
the quasi-Eulerian mean velocity was in the opposite direction. The magnitude of Stokes
drift and quasi-Eulerian mean velocity decreased in the wave propagation direction due to
the effect of bottom friction. However, the momentum transport of total flow through any
vertical section was zero.
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The comparison between the quasi-Eulerian mean velocity calculated with the 2DV
model and experimental data in the WO condition is given in Figure 16. It shows a very
good agreement between model results and experimental data in the whole vertical section
even on both linear scale and semilogarithmic scale. The near-bed wave-induced streaming
is in the wave propagation direction. The mean horizontal velocity varied near-linearly
from above the bottom streaming layer up to the mean surface level.

The spatial distribution of quasi-Eulerian mean velocity in conditions of WFC and
WOC are presented in Figure 17a,b. In the case of WFC, the magnitude of the mean velocity
was not the biggest at the water surface but located inside the water column. In the case of
WOC, the magnitude of velocity increased from the bottom to the water surface.

Figure 18a,b shows the comparisons between experimental data and numerical model
results under the condition of waves combined with the current in a linear scale. It shows
that the vertical profile of the mean velocity calculated by the 2DV model fit well with
experimental data in the whole water column. The agreement holds for both WFC and
WOC conditions.
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In Figure 19a,b, the semilogarithmic scale is employed to see the agreement between
the 2DV model results and experimental results. It shows that the agreement between the
2DV model results and experimental data was very good even in the area very close to
the bed. Besides, the mean current velocity profiles using the boundary layer thickness
formulation proposed by Van Rijn [35] (Equation (61)) were also plotted (dashed line). The
result calculated by the modified formulation (62) was better than the result calculated by
the formulation of Van Rijn [35], especially in the region close to the bed. It is noticed that
the formula to calculate boundary layer thickness δ, i.e., Formula (62), is an extension of the
formula proposed by Van Rijn [35] (Formula (61)). In Formula (38), the effect of near-bed
current is accounted for when calculating δ. Table 2 presents boundary layer thickness δ
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in different conditions of waves combined with the current. In the wave-only condition,
Formulas (38) and (37) are identical. However, the difference between them is significant in
cases of a strong ambient current. Comparison presents in Figure 18 suggest that near-bed
current should be accounted for to calculate bottom boundary layer thickness, especially in
the case of a strong ambient current.
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(b) Lateral boundary conditions: 

Figure 19. Vertical distribution of quasi-Eulerian mean velocity in the semilogarithmic scale.

3.5. Breaking Waves Propagating in a Wave Flume
3.5.1. Bathymetry and the Wave Properties at the Boundary

The experiment of Boers [43] was carried out in a wave flume with dimensions of 40 m
long, 1.05 m high, and 0.8 m wide. The bottom of the flume is filled with sand and mortar
on the top layer. Two breaker bars are designed at the bottom. The still water level was
fixed at the level z = 0 m. The bottom profile of the calculation area is depicted in Figure 20.
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Two wave conditions with the highest and lowest wave height at the boundary in the
experiment of Boers [43] were employed in this work (tests 1B and 1C). The properties of
the waves at the offshore boundary are given in Table 4, where Hs was the significant wave
height of the waves.

3.5.2. Boundary Conditions

(a) Surface and bottom boundary conditions:
At the GLM water surface, the total shear stress is assumed to vanish, i.e.,[(

υv + K f r + Kb

)∂u
∂z

]
z=ζ

L
= 0, (73)

where, υv = υmol + υT
v
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At the bed, the momentum dissipated by bottom friction is assumed to be transferred
to the vertical mixing, i.e.,[(

υv + K f r + Kb

)∂u
∂z

]
z=−h+δ

= −
k1D f

ρσ
− τcw,x

ρ
, (74)

(b) Lateral boundary conditions:
The quasi-Eulerian mean water level at the offshore boundary is:

ζ = − ka2

2sinh2kD
, (75)

The quasi-Eulerian mean velocity at the offshore boundary is:

u(z) = − 1

h + ζ
L

∫ ζ
L

−h
uS(z′)dz′, (76)

At the land boundary, the GLM velocity in the cross-shore direction is zero then:

u(z) = −uS(z), (77)

3.5.3. Model Validation

In the experiment, the cross-shore distribution of significant wave height was calcu-
lated from the zeroth-order spectral moment of surface elevation [43], that is:

Hs = 4

√∫ fN

0
S( f )d f , (78)

where, S( f ) is the spectral energy density, and fN is Nyquist frequency of the measurements
(≈10 Hz).

The significant wave height in the 2DV numerical model is calculated from the wave
energy balance equation. In Figure 21, the spatial distributions of significant wave height
in tests 1B and 1C are presented. In this, the dots present the experimental data, and the
solid line presents the numerical model results. It shows that the numerical model results
fit well with measured data. In test 1B, the experimental data was slightly lower than the
model results in the region from x = 5 m to x = 14 m. In test 1C, the recirculation was rather
small then a better agreement between two kinds of data was obtained.
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Figure 21. Distribution of significant wave height HS.

Figure 22a,b show the vertical distribution of forcing term Fw,1/ρ and total mixing
term Ftot,1/ρ at x = 22.9 m. It shows that the wave-induced forcing Fw,1/ρ is completely
balanced by total mixing Ftot,1/ρ. Total forcing (Fw,1 + Ftot,1) is depth—uniform in breaking
wave conditions.
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Figure 22. Distribution of wave-induced forcing terms at x = 22.9 m.

The comparison of the mean water level calculated by the 2DV numerical model with
measured data is given in Figure 23. In both tests, the calculated mean water level fits well
with measured data even in the breaking wave area.
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Figure 23. Distribution of mean water level ζ.

The horizontal distribution of Stokes drifts and quasi-Eulerian mean velocities cal-
culated by the 2DV model is presented in Figure 24. At the locations near the sandbars,
it shows that the quasi-Eulerian mean velocity was increased in the shoreward direction.
This is due to the increase of Stokes drift in the onshore direction. In the breaking wave
area, it shows a large vertical shear of the quasi-Eulerian mean velocity.

The comparison between quasi-Eulerian mean velocities calculated by the 2DV nu-
merical model and measured data along the wave flume is given in Figures 25 and 26.
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Figure 26. Vertical distribution of horizontal mean velocity in test 1C.

Overall, the 2DV model simulated quite well the vertical distribution of the mean
velocity. In comparison with test 1B, the model results for the test 1C show a better
agreement with experimental data, especially near the sandbars. It suggests that empirical
formulas of Uchiyama, McWilliams [14] can be applied well for small-amplitude waves. For
the waves of high-amplitude, these empirical formulas just give qualitative results in the
breaking zone and further research on the wave forcing in breaking wave areas is needed.

3.6. Breaking Waves Propagating in a Large-Scale Facility
3.6.1. Laboratory Setup and Boundary Conditions

(a) Laboratory setup:
In this section, the 2DV model was employed to simulate the cross-shore and the

longshore currents with the input data obtained from the large-scale sediment transport
facility (LSTF). The design of the LSTF is presented in detail in the paper of Hamilton
and Ebersole [44]. The facility has dimensions of approximately 30 m cross-shore by 50 m
longshore by 1.4 m deep. The concrete beach has a longshore dimension of 31 m and a
cross-shore dimension of 21 m, with a slope of 1:30. Unidirectional long-crested waves were
generated with four piston-type wave generators. An active pumping and recirculation
system comprised of 20 independent pumps and pipelines were used to control the cross-
shore distribution of mean longshore current. Pumping rates were adjusted iteratively to
converge toward the proper setting, based on the measurements along the beach.

The wave conditions at the offshore boundary are given in Table 5. The TMA spectrum
(self-similar spectral shape) with the width parameter of 3.3 was employed. It is an
extension of deep water spectrum JONSWAP for applications in shallow water.

Table 5. Incident wave properties at the boundary.

Wave Type Tp (s) Hs (m) θ(0) h (m)

Irregular 2.5 0.225 10 0.667

(b) Surface and bottom boundary conditions:
At the mean water surface, the total shear stress is assumed to vanish, i.e.,[(

υv + K f r + Kb

)∂u
∂z

]
z=ζ

L
= 0, (79)

[(
υv + K f r + Kb

)∂v
∂z

]
z=ζ

L
= 0, (80)

where, υv = υmol + υT
v .
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The bottom boundary condition in the cross-shore direction is given by:[(
υv + K f r + Kb

)∂u
∂z

]
z=−h+δ

= −
k1D f

ρσ
− τcw,x

ρ
, (81)

According to Longuet-Higgins [4], the bed shear stress in the longshore direction can
be calculated based on the local rate of energy dissipation. Therefore:

τcw,y = −
k2

[
(1− αr)Dw + Dr + D f

]
σ

, (82)

From Equations (52) and (82) the bottom boundary condition in the longshore direction
is given by:

vb =
2k2

[
(1− αr)Dw + Dr + D f

]
ρσ fcw

√
(1.16s)2 + |ub|2

, (83)

(c) Lateral boundary conditions:
At the offshore, boundary conditions for quasi-Eulerian mean water level and quasi-

Eulerian mean velocity components are:

ζ = − ka2

2sinh2kD
, (84)

u = − 1

h + ζ
L

∫ ζ
L

−h+δ
uSdz, (85)

v = u tan θ, (86)

At the land boundary, the GLM velocity in the x-direction is zero. Besides, the no-slip
boundary condition is assumed for quasi-Eulerian velocity in the y-direction. Then:

u(z) = −uS(z), (87)

v(z) = 0, (88)

3.6.2. Numerical Results and Discussion

Figure 27 shows the comparison of significant wave height between experimental
data and numerical results calculated by the 2DV model. The comparison shows a very
good agreement between experimental data and model results.
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In Figure 28, a comparison of the mean water level between experimental data and
the 2DV model result is given. There was a small difference of about a few millimeters
outside the breaking zone. The difference between these two kinds of data was bigger in
the area closer to the coastline. It might be due to the recirculation system of the facility or
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because the experimental data was for a closed basin, so the volume of water in the setup
was taken from offshore.
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Figure 28. Distribution of the mean water level ζ.

(a) Cross-shore direction:
Figure 29 presents the vertical distribution of wave forcing term Fw,1/ρ and total

mixing Ftot,1/ρ at the location x = 10.9 m. It shows that momentum caused by wave
forcing was completely compensated by total mixing. The total of these two forcing terms
was depth-uniform.
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Figure 30 shows an overview of the spatial distribution of cross-shore velocity cal-
culated by the 2DV model. It shows that outside the wave breaking zone, the vertical
distribution of the quasi-Eulerian mean velocity was almost uniform. However, inside the
wave breaking zone, the mean velocity shows a strong vertical shear.
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The LSTF data was also employed by Teles, Pires-Silva [45] to validate the TELEMAC 
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Figure 30. Distribution of cross-shore velocity.

The LSTF data was also employed by Teles, Pires-Silva [45] to validate the TELEMAC
3D model. In Figure 31, comparisons of cross-shore mean velocities between experimental
data, results of the TELEMAC 3D model, and results of the 2DV model were carried out at
six cross-shore locations.
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Figure 31. Vertical profiles of cross-shore velocity.

The results obtained from the 2DV model fit quite well with the experimental data,
and much better than the results obtained by the TELEMAC 3D model in most of the cross-
sections. Closer to the surface and the land boundary the difference between experimental
data and 2DV model results became bigger. The difference might be due to the use
of empirical formulas for the wave-induced forcing, and the return flow in the facility.
Improvement of these formulas making use of the large body of literature on the return
flow profiles is recommendable but outside the scope of this study.

(b) Longshore direction:
Figure 32 shows the vertical distribution of the wave-induced forcing Fw,2/ρ and

total mixing Ftot,2/ρ in the longshore direction at x = 10.9 m. It shows that the total
mixing Ftot,2 is balanced by wave-induced forcing Ftot,2. The total forcing (Fw,2 + Ftot,2) is
depth-uniform.
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The cross-shore distribution of the longshore velocity calculated by the 2DV numerical
model is presented in Figure 33. According to the results, the longshore velocity increases
shoreward. The maximum magnitude of the longshore velocity reached approximately
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0.35 m/s at the position x ≈ 14 m. After this point, the longshore velocity was decreased
toward the shoreline.
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In Figure 34, a comparison between experimental data and numerical results at one-
third of the water depth above the bottom is given. It shows that the results obtained by the
2DV model agreed well with the experimental data and matched the observed cross-shore
distribution better than the results obtained by the TELEMAC 3D model.
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Figure 34. Longshore velocity at z = −2h/3.

The comparison of the longshore velocities at different vertical cross-sections is given
in Figure 35. The results of the TELEMAC 3D model show quite good agreement at four
locations from x = 9.5 m to x = 13.9 m. However, at the location near the offshore x = 7.1 m
and the location near the coastline x = 15.3 m the differences between experimental data
and results from the TELEMAC 3D model were significant. In contrast, the results of the
2DV model show good agreement with experimental data at all six cross-sections.
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4. Discussion

Following Van Rijn [35], the bottom boundary layer thickness δ was calculated by the
Formula (61). In this, the effect of mean current on bottom boundary layer thickness was
neglected. However, interactions of current with wave boundary layer and waves with
current boundary layer led to the enhancement of current-induced friction, wave energy
dissipation, and bed shear stress. Then, both waves and current should be considered in
calculating bottom boundary thickness. In this paper, the formula given by Van Rijn [35]
was modified to take into account the effect of ambient current. The use of the modified
formula obtained a better agreement with experimental data than the use of the original
formula of Van Rijn [35].

In the work of Nielsen and You [32], an empirical coefficient CWR was proposed
to account for the effect of strong ambient current on the vertical distribution of wave
radiation stress components. However, that coefficient is only applied to regular waves.
In this work, a modified formula was proposed to apply for random waves. With that
modification, the mean current profiles calculated by the 2DV model agreed well with
experimental data obtained by Klopman [41].

In breaking wave conditions, dissipative wave forcing terms were estimated by using
empirical formulas introduced by Uchiyama, McWilliams [14]. The cross-shore velocity
profiles obtained by the 2DV model showed good agreement with experimental data
presented in the works of Boers [43] and Hamilton and Ebersole [44]. However, there are
differences between model results and observed data near the breaking points. It requires
further research on the vertical distribution of wave breaking induced forcing. In the long-
shore direction, the effect of breaking wave-induced forcing was small. Then, the longshore
current data calculated by the 2DV model fitted very well with experimental data.

The LSTF test was also employed by Teles, Pires-Silva [45] to validate the TELEMAC
3D model. That model was developed based on the work of Ardhuin, Rascle [19], and
Bennis, Ardhuin [39]. As indicated by Ardhuin, Rascle [19], their equations are only
expected to give qualitative results for surf zone applications. The comparison presented
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in the previous part also showed that the 2DV model obtained a better agreement with
observed data than TELEMAC 3D model.

5. Conclusions

In this paper, a new set of equations of motion written in terms of quasi-Eulerian mean
velocity was developed based on the GLM method. The new equations were valid from the
bottom to the mean water surface even in the presence of finite-amplitude waves. These
equations are practical for a wide range of applications from deep water to shallow water
areas. All terms in the equations are expressed to the second-order of the wave amplitude.
Both non-wave forcing and wave-induced forcing terms are under consideration. When
the wave height is infinitesimal, the quasi-Eulerian mean equations of motion reduce to the
classical Eulerian mean equations of motion. In cases of density stratification, the buoyancy
effect should be included as external forcing.

In the work of Longuet-Higgins and Stewart [2], the effects of waves on the mean
current are expressed in terms of the traditional radiation stress concept. It is a depth-
integrated term and is only suitable for the depth-averaged equations of motion. In 3D
problems, that concept is no longer suitable. In this paper, a depth-dependent wave
radiation stress concept was introduced. Then, the effects of surface waves on the mean
current could be specified at any level of the water column. The vertical distribution of the
mean current was described in detail with the use of a depth-dependent wave radiation
stress tensor. With the use of an empirical coefficient CWR, the depth-dependent radiation
stress could be calculated in the condition of a strong ambient current. It is noticed that the
vertical integration of the new depth-dependent wave radiation stress coincided with the
traditional radiation stress.

A 2DV numerical model was developed to validate the new quasi-Eulerian mean
equations of motion. The turbulent viscosity and wave-induced mixing were calculated
by a simple submodel with the assumption of constant-parabolic distribution. The model
shows a better comparison with experimental data than previous studies. The model
passed the well-known adiabatic condition suggested by Ardhuin, Rascle [19]. It does not
produce spurious velocities when the waves propagate on a sloping bottom. As a result,
vertical uniform distribution of quasi-Eulerian mean horizontal velocity was obtained even
on the slope.

Subsequently, the experiment of Klopman [41] for random waves was employed to
validate the 2DV model in the condition of non-breaking waves combined with a current.
The comparison between experimental data and numerical results showed very good
agreement in the whole vertical section even in areas that were very close to the bed. In the
condition of breaking waves, two experiments presented in the dissertation of Boers [43]
were used. It was shown that the new equations performed very well for the experiment of
smaller wave height (test 1C). In the experiment of bigger wave height (test 1B), the vertical
distribution of the mean velocity near the breaking point gave qualitatively correct results.
In the comparison of longshore current in the LSTF test [44], a good agreement was found
not only for depth-averaged longshore current but also for depth varying longshore current.
For cross-shore currents, there was a difference between model results and experimental
data in the wave breaking zone. The difference between the experimental data and model
results in tests 1B and LSTF was likely to be due to the empirical formulas for wave
breaking that were strong simplifications of the complex breaking process. Further tuning
of such formulations against a large number of datasets on wave decay and generated
longshore and cross-shore currents was recommended.

Finally, with the use of quasi-Eulerian mean variables, the new set of equations of
motion can be easily implemented to existing 3D models developed based on the classical
Eulerian mean method. The implementation is straightforward and does not require much
effort. It can improve significantly the results of simulating coastal processes such as coastal
sediment transport, transport of plastic, and other pollutants such as oil slicks.
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Appendix A Derivation of the GLM Momentum Equation

In the following, the momentum equation of the mean motion written in terms of the
GLM velocity was derived. It is the result of applying the GLM operator to the momentum
equation of motion of the total flow. The equation obtained in this part is equivalent to the
GLM momentum equation expressed in AM. The GLM momentum equation was used to
develop a quasi-Eulerian mean momentum equation.

Averaging Equation (11) over a wave period to obtain:

(
∂ui
∂t

+ uj
∂ui
∂xj

)ξ

+ (2(Ω× u)i)
ξ +

(
∂Φ
∂xi

)ξ

+

(
1
ρ

∂p
∂xi

)ξ

+ (Xi)
ξ = 0, (A1)

According to AM, the first term on the left-hand side of Equation (A1) can be rewritten as:

(
∂ui
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+ uj
∂ui
∂xj

)ξ

=
∂uL

i
∂t

+ uL
j

∂uL
i

∂xj
, (A2)

Since Ω is constant, the second term on the left-hand side of Equation (A2) becomes:

(2(Ω× u)i)
ξ = 2(Ω× uL)i, (A3)

Since only gravitational potential is considered in the term Φ(x, t), the third term in
the left-hand side of the Equation (A1) can be expressed as:

(
∂Φ
∂xi

)ξ

= (δi3g)ξ = δi3g, (A4)

When ∇.u
′
= 0 then according to AM:

∇.ξ = O(ε2), (A5)

Using Taylor expansion the pressure gradient term in the Equation (A1) can be ex-
pressed as:
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+ O(ε3), (A6)

Inserting Equations (A2)–(A4), (A6) into Equation (A1) to obtain the momentum
equation in the GLM framework:
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+ O(ε3), (A7)
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B. Derivation of the Radiation Stress Tensor in the GLM Framework

In this appendix, the relationship between the three-dimensional radiation stress
gradient and other terms in the GLM momentum Equation (A7) is presented. From this,
the GLM momentum Equation (A7) can be written in terms of quasi-Eulerian mean velocity.

For any quantity ϕ, AM obtained the following relationship between Lagrangian
disturbance and quasi-Eulerian disturbance:

ϕl = ϕ′ + ξj
∂ϕ

∂xj
+ O(ε2), (A8)

Using (A8) the first term on the right-hand side of Equation (14) can be expressed as:
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∂2 p
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)
+ O(ε3), (A9)

Subtracting 14 from 11 to obtain the following equation for the evolution of
disturbance motion:

DLul
i + (2(Ω× u)i)

l + (δi3g)l + (Xi)
l +

(
1
ρ

∂p
∂xi

)l
= 0, (A10)

Since the gravitational acceleration g is assumed constant, the third term on the left-
hand side of the Equation (A10) is neglected. Multiply Equation (A10) with ξj and then
take the spatial derivative ∂/∂xj to obtain:
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, (A11)

The first term in the right-hand side of Equation (A11) is decomposed as:
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The first term on the right-hand side of A12 can be expressed as:
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From the definition of Lagrangian disturbance, the second term on the right-hand side
of A12 becomes:
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Substitute Equations (A13) and (14) into the Equation (A12):
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In the following, all terms on the right-hand side of Equation (A15) are rewritten in
terms of quasi-Eulerian disturbance based on the relationship (A8). Then, the first term in
the right-hand side of Equation (A15) can be rewritten as:
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Similarly, the second term on the right-hand side of (A15) becomes:
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The third term on the right-hand side of Equation (A15) is expressed by:
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Substituting Equations (A16)–(A18) into Equation (A15):
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Similarly, the second and the third terms in the right-hand side of (A11) can be
expressed in term of quasi-Eulerian disturbance quantities, such as:
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where, εimn is the Levi-Civita symbol defined by:

εimn =


+1 if(i, m, n) is an even permutation of (1, 2, 3)
−1 if (i, m, n) is an odd permutation of (1, 2, 3)

0 if any index is repeated
, (A21)

The third terms on the right-hand side of Equation (A11) is rewritten as:
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From Equations (A19), (A20), and (A22) the left-hand side of Equation (A11) can be
expressed in term of quasi-Eulerian disturbance quantities as:
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Replacing Equation (A23) into Equation (A9):
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The sixth term on the right-hand side of Equation (A24) can be expressed as:
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∂xk

+ O(ε3),
(A25)

Similarly, the seventh term on the right-hand side of Equation (A24) is expressed as:

ξjξkDL
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)
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∂
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)
− ξjξk
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∂xl

+ O(ε3), (A26)

From Equation (A26) the total of the last four terms in the right-hand side of Equation
(A23) becomes:
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(A27)

Since ϕS = O(ε2) then from Equation (14), we have:

DLui + 2(Ω× u)i + δi3g + Xi +
1
ρ

∂p
∂xi

= O(ε2), (A28)

Therefore, in the second-order of the accuracy of small disturbance amplitude Equa-
tion (A27) can be rewritten as:
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(A29)

From Equations (A25) and (A29) the sum of the last six terms in Equation (A24) can
be expressed by:
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(A30)

Substituting Equation (A30) into Equation (A24) to obtain the following relationship:
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Following the definition of Stokes correction (AM) the second term on the right-hand
side of Equation (A31) can be expressed as:
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The second term on the right-hand side of Equation (A32) is expressed as:
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The last three terms on the right-hand side of Equation (A31) become:
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Replacing Equations from A32 to A36 into Equation (A31):
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Or equivalently:
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Equation (A38) shows the relationship between the evolution of Stokes drift and the
disturbances of a fluid particle. This is the basis to develop quasi-Eulerian mean equations
of motion.
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