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Abstract 
Currently a new Eurocode is in development where the shear capacity will be based on the Critical 
Shear Crack Theory (CSCT), rather than a purely empirical model. The newly introduced formulae 
provide good results overall and include the effects of bending moments on the shear capacity. 
However, the formulae are known to be too conservative for prestressed continuous beams with 
low amounts of shear reinforcement and severely underestimate the shear capacity. If these 
formulae are applied, many existing structures would therefore no longer meet the code 
requirements. New structures with prestressed continuous elements would also require more 
material and it may become difficult to design efficient concrete members that meet the new code 
requirements.   
 
To prevent substantial costs, emissions and time investments, it was questioned if the design 
capacity of prestressed beams near intermediate supports could be increased by changing the 
location of the control section from 1d away from supports to the critical cross section. The location 
of the control cross section greatly influences the shear resistance according to the CSCT calculation. 
However, it is unclear how the critical cross section can be determined accurately.  
 
In this thesis the location of the critical cross section near intermediate supports was investigated for 
prestressed continuous beams with less than the minimum required shear reinforcement. A small 
number of models and experiments from literature were compared. Additionally, multiple Finite 
Element Analyses have been performed with a variety of settings, assuming different shear 
behaviour. A plasticity approach was also investigated, where the critical cross section is found at 
the location where the cracking load equals the ultimate load of a crack. 
 
This thesis found that the reinforcement ratios, prestressing stress, shear span and effective depth 
(as well as the concrete strength in lesser amount) influence the location of the critical cross section. 
The experiments and models found in literature, as well as the results found using the plasticity 
approach, indicate that the critical cross section for prestressed beams may be moved from 1d to 
1.5d away from intermediate supports. However, due to the limitations and assumptions of the 
models it would not be safe to apply this change without further validation. It is therefore 
recommended that experiments are done on prestressed continuous beams with low amounts of 
shear reinforcement before any changes are made to the location of the control section. 
 
  



 

III 
 

Table of contents  
Preface ......................................................................................................................................... I 
Abstract ....................................................................................................................................... II 
Table of contents  ....................................................................................................................... III 
Nomenclature .............................................................................................................................. V 
1. Introduction ............................................................................................................................. 1 
2. Theories, codes and modelling methods on shear in literature .................................................. 3 

2.1 Background .................................................................................................................................... 3 

2.2 Mechanical/shear models ............................................................................................................. 4 

2.3 Codes describing shear strength ................................................................................................... 7 

2.4 Modelling methods ..................................................................................................................... 13 

3. Inclination of shear cracks in literature ................................................................................... 17 
3.1 Crack angle estimations .............................................................................................................. 17 

3.2 Experiments ................................................................................................................................. 28 

3.3 Conclusion ................................................................................................................................... 31 

4. Finite Element Analysis (Smeared) .......................................................................................... 32 
4.1 General settings: ......................................................................................................................... 32 

4.2 Experiment 1 modelling simply supported ................................................................................. 33 

4.3 Experiment 2 modelling simply supported prestressed T-beam ................................................ 36 

4.4 Experiment 3 modelling continuously supported prestressed T-beam ...................................... 40 

4.5 Overview Smeared FEA ............................................................................................................... 42 

5. Finite Element Analysis (Discrete) ........................................................................................... 45 
5.1 Discrete models experiment 1 .................................................................................................... 45 

5.2 Discrete models experiment 3 .................................................................................................... 46 

5.3 Overview Discrete FEA ................................................................................................................ 47 

6. Theory of plasticity ................................................................................................................. 48 
6.1 Cracking load ............................................................................................................................... 49 

6.2 Ultimate load ............................................................................................................................... 50 

6.3 Effective compressive strength and effectiveness factors .......................................................... 50 

6.4 Shear capacity of simply supported with concentrated loading ................................................. 50 

6.5 Shear capacity of simply supported with uniform loading ......................................................... 51 

6.6 Shear strength of continuous with concentrated loading .......................................................... 51 

6.7 Shear strength of continuous with uniform loading ................................................................... 52 

6.8 Beams without over-reinforcement ............................................................................................ 52 

6.9 Results ......................................................................................................................................... 53 

6.10 Conclusion ................................................................................................................................. 55 

7. Discussion .............................................................................................................................. 56 
8. Conclusion ............................................................................................................................. 59 
References ................................................................................................................................. 61 
Appendix ................................................................................................................................... 64 

Appendix A. Additional crack angle estimations in literature ........................................................... 64 



 

IV 
 

Appendix B. Finite Element Analysis (Smeared) ............................................................................... 65 

Appendix C. Finite Element Analysis (Discrete) ................................................................................. 90 

Appendix D. Plasticity approach ........................................................................................................ 93 

Appendix E. Lattice models ............................................................................................................... 97 

 
  



 

V 
 

Nomenclature 
Symbol Definition Unit 
Ac Cross sectional area of concrete mm2 

Asl Cross sectional area of longitudinal reinforcement  mm2 
Asw Cross sectional area of transverse reinforcement  mm2 
a Shear span mm 
acs Effective shear span with respect to the considered control section mm 
aeff Effective shear span mm 
av Mechanical shear span mm 
b Width of an element mm 
bw Smallest width of a concrete member transferring shear mm 
CRd,c Design safety factor for shear, recommended value is equal to 0.12 - 
c Depth of the compression zone mm 
d Effective depth mm 
ddg Roughness parameter of the crack, taking into account the aggregate sizes. 

Ddg= 16mm +Dlower <=40 mm for concrete fck<= 60 MPa 
mm 

df Vertical distance between the tip of the crack and the longitudinal 
reinforcement 

mm 

dg Maximum aggregate size mm 
dlower Smallest value of the upper sieve size D, for the coarsest aggregates used in 

the concrete  
mm 

dnom Nominal value of the effective depth mm 
dp Effective depth of the prestressing steel mm 
ds Effective depth of the reinforcement steel mm 
dv Effective shear depth according to AASHTO LRFD mm 
Ec Modulus of elasticity concrete MPa 
Ep Modulus of elasticity prestressing steel MPa 
Es Modulus of elasticity steel MPa 
ep  Eccentricity of the axial forces from the centroid of the element mm 
Fpo Modulus of elasticity of prestressing tendons multiplied with strain 

difference between concrete and prestressing tendons. 
MPa 

f1 Principal tensile stress MPa 
f2 Principal compression stress MPa 
fc Concrete compressive strength MPa 
fcd Design concrete compressive strength MPa 
fck Characteristic concrete compressive strength MPa 
fcm Mean concrete compressive strength MPa 
fct Concrete tensile strength MPa 
fctm Mean concrete tensile strength MPa 
fu Ultimate strength of the reinforcement MPa 
fy Yield strength of reinforcement MPa 
fyd Design yield strength of reinforcement MPa 
fyk Characteristic value of the yield strength of the reinforcement MPa 
Gc Compressive fracture energy of concrete N/mm 
GF Tensile fracture energy of concrete N/mm 
h Height of the concrete member mm 
k Size factor for shear calculations in Eurocode2 - 
k1 Effectiveness factor of the prestressing term - 
kn Normal stiffness modulus N/mm3 
kt Shear stiffness modulus N/mm3 

kvp Coefficient considering the effects of axial forces - 
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L Length or span of the considered concrete member mm 
L0 Length of the loading plate mm 
M Acting moment (without design factors) kNm 
Mcr Cracking moment kNm 
MEd Design value of the acting moment kNm 
Mu Factored acting moment according to AASHTO LRFD kNm 
N Acting normal force (without design factors) kN 
NEd Design value of the acting normal force kN 
Nu Factored acting normal force according to AASHTO LRFD kN 
P Prestressing force acting on the concrete kN 
Pcr Cracking load kN 
Pu Ultimate load kN 
q Distributed loading kN/m 
rf Horizontal distance from the load introduction or intermediate support to 

the tip of the crack 
mm 

s Stirrup spacing mm 
V Acting shear (without design factors) kN 
Va Shear force transferred by aggregate interlocking kN 
Vc Shear force transferred by inclined compression chord  kN 
Vd Shear force transferred by the dowel action kN 
VEd Design value of the acting shear kN 
Vexp Experimentally found shear capacity kN 
Vp Component of the prestressing force in the direction of the shear force kN 
VR Shear capacity (without design factors) kN 
VRd,c  Design value of the concrete shear capacity  kN 
VRd,max Maximum design value of the shear capacity kN 
VRd,s Design value of the steel shear capacity kN 
Vt Shear force transferred by the residual tensile strength of the concrete kN 
Vu Factored acting shear according to AASHTO LRFD kN 
vmin Minimum shear capacity of a concrete element MPa 
w Crack width mm 
xa Horizontal location of the onset of the crack mm 
xf Horizontal location of the tip of the crack mm 
xL Horizontal length of the crack mm 
z Lever arm of internal forces mm 
αcw A Coefficient taking account of the stress state in the compression chord - 
β Factor indicating the ability of cracked concrete to transfer tension - 
β1 Crack angle measured between the locations where crack intersects the 

reinforcement and d/2 above the reinforcement 
° 

βAB Crack angle measured between the locations where crack intersects the 
reinforcement and the neutral axis 

° 

βBF Crack angle measured between the location where crack intersects the 
reinforcement and the crack tip 

° 

γv Partial factor for shear, γv= 1.4 for persistent and transient design situations - 
ε Strain at a depth of 0.6d from the most compressed fibre. - 
ε1 Principal tensile strain - 
εs Strain at the longitudinal reinforcement - 
θ Crack angle ° 
ν1 A strength reduction factor for cracked concrete - 
ρl Longitudinal reinforcement ratio - 
ρw Transverse reinforcement ratio - 
ρw,min Minimum transverse reinforcement ratio according to the Eurocode - 
σcp Average compressive stresses in the concrete, caused by prestressing forces. MPa 
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τRd,c Design shear resistance of concrete  MPa 
τRdc,min Minimum design shear resistance of concrete MPa 
φ Longitudinal reinforcement degree - 
ωw,ct Mechanical reinforcement ratio related to concrete tensile strength - 
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1. Introduction 
Throughout the world, concrete has been commonly used in the design of structures such as bridges 
and buildings even though some of its behaviour, such as the shear behaviour, is still widely 
debated. This uncertain concrete behaviour means that many different codes with different 
underlying models can be found on the design and assessment of concrete structures. One of these 
codes, the Eurocode, is used in Europe and is currently undergoing changes to the calculations and 
underlying models. As a result, the formula for shear capacity of concrete without shear 
reinforcement will no longer be based on purely empirical models. The formula will instead be based 
on a more theoretical approach, the Critical Shear Crack Theory (CSCT), where the capacity is 
determined by multiple shear transfer actions that influence and are influenced by the critical crack. 
The important difference compared to the current model, is that the acting moment and forces 
influences the shear capacity. For this reason, iteration is required at multiple cross-sections to find 
the global shear capacity. 
 
The location of the control cross section is an important parameter when determining the shear 
capacity with the newly proposed Eurocode. According to the proposed Eurocode, the control 
sections that must be investigated are located at a distance 1d from static and geometric 
discontinuities. However, for prestressed continuous beams with low amounts of shear 
reinforcement overconservative estimates are obtained, which may cause problems for both new 
and existing structures. It is questioned whether the control section should be moved. After all, the 
distance 1d is based on a 45-degree shear crack angle, while prestressed concrete with low amounts 
of shear reinforcement is expected to have smaller crack angles. With smaller crack angles the 
critical control section would be located at a distance x > 1d from the support, where the capacity is 
increased. However, it is still unclear how the critical crack angle and thus the critical control section 
can be determined accurately. 
 
This research aims to determine the critical cross section for prestressed continuous beams with low 
amount of shear reinforcement, so that the design capacity may be increased. The research question 
of this thesis is: “How can the location of the first control section, around intermediate supports, be 
determined and implemented to improve the proposed Eurocode, for prestressed concrete 
elements with less than the minimum required shear reinforcement?” 
The following question should be answered during this research: 

• What are the differences between the old formula, and the proposed formulae? and why 
should the new formulae be improved? 

• What methods can be used to estimate the shear crack angle or critical cross section? 

• What is the expected location of the shear critical cross-section near intermediate supports 
for prestressed beams with less than the required amount of shear reinforcement.  

• What are the limitations of the models/estimates of the critical shear crack location? 

• Can the models/estimates be implemented in the proposed Eurocode without any other 
changes to the proposal in a safe manner?  

 
This research aims to investigate the location of the critical shear crack. To achieve this a variety of 
methods have been used. A literature review has been conducted to investigate if current models or 
experiments could be used to develop a model for the shear crack, and what modelling techniques 
could be used otherwise. Afterwards it is investigated if smeared FEM can recreate accurate crack 
patterns that could serve as alternatives to experimental data. Discrete FEM and the plasticity 
approach have been used to find the critical crack location in the case the single critical crack 
governs the behaviour. These two methods clearly show the effects of the shear crack angle/location 
on the shear capacity. The plasticity method has also been used to identify the effects of different 
design parameters on the crack angle/location.  
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This research will consider prestressed reinforced concrete beams with shear reinforcement less 
than the minimum required amount according to the Eurocode. The focus of this research lies on 
cross sections close to intermediate supports and consider the effect of bending moment on the 
shear capacity. During this thesis only literature and software have been used that could be acquired 
without any cost or were available through the university. Effects related to temperature, dynamics, 
and alternative materials such as FRC and geopolymer will not be considered. 
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2. Theories, codes and 
modelling methods on 
shear in literature  

In this chapter, literature on the shear capacity of concrete members is discussed. This chapter 
provides the reader with background knowledge and information of relevant theories and design 
codes. It should become clear why new Eurocode formulas are introduced and why the location of 
the control section in the proposed Eurocode should be investigated. Finally, a small number of 
modelling methods, that can be used to model concrete behaviour, are discussed. These modelling 
methods may be useful in determining the control section for prestressed continuous elements with 
low amounts of shear reinforcement. 
 

2.1 Background 
When shear calculations are done for concrete members, a difference is made between members 
with and without stirrups (shear reinforcement). When shear reinforcement is applied, the engineer 
determines the amount of reinforcement that is required to prevent yielding and ensures that the 
compression chord has enough capacity. Although different codes vary in their assumptions and 
safety factors the general concept idea of preventing yielding holds. Unfortunately, when no stirrups 
are applied, the problem becomes more difficult, there is no universally accepted theory to describe 
this problem. Different design codes therefore use different methods of determining the shear 
capacity of concrete beams without shear reinforcement.  
 
In the upcoming Eurocode, the calculations will be done based on the Critical Shear Crack Theory 
(CSCT) instead of empirical formulas. In the CSCT, different shear transfer mechanisms in reinforced 
concrete together provide the capacity of a concrete element. Individual forces transferred by the 
shear mechanisms can be determined with complex expressions but are often approximated instead 
with a much simpler formula. The formula in the CSCT estimates the capacity of a single cross-
section, this means that multiple control sections must be investigated. The locations of these 
control sections have been determined based on experiments with reinforced concrete and are 
located at a distance d from discontinuities such as supports, point loads and points of contraflexure. 
 
It is important to know that the shear transfer mechanisms and the cracks in the concrete are 
influencing each other. This means that when the cracking behaviour, such as the slope or 
roughness, changes so does the capacity of the beam (through the changes of different shear 
transfer mechanisms) and the location of the critical cross section.  
 
The CSCT is based on experiments without axial loads. Prestressing is considered as a pre-
deformation that causes strain in the longitudinal reinforcement. By solving a moment equilibrium 
of a cross-section an extra factor kvp is obtained and added to the formula used in the CSCT. This 
term however, assumes that the crack pattern remains the same and that only the strain changes. It 
is unlikely that the model remains accurate for prestressed element with only this change, as 
prestressing does influence the crack patterns; the shape and slope of the cracks are influenced.  
 
In (Silva, Mutsuyoshi, & Witchukrangkrai, 2008) the effect of prestressing is investigated on simply 
supported beams; the crack patterns, and crack angles are recorded for each tested beam. The 
average crack angles of the reinforced beams are around 40° while those of prestressed beams with 
concrete compressive stresses of 3 MPa varied between 30 and 35 degrees. This shows that 
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compressive stresses, introduced by prestressing, lower the crack angle. This effect is also observed 
in other experiments and theories as shown in chapter 3. Inclination of shear cracks in literature. 
 
With different crack patterns, the loads transfer changes. This means the different shear transfer 
actions contribute differently and the total capacity changes. Additionally, the location of the critical 
cross-section that has been determined for reinforced concrete does likely not hold as the cracks 
may be located at different locations and under different angles. 
 
A case study done by (Adviesbureau ir. J.G Hageman B.V., 2021) shows that the results at end 
supports differ from the results found at intermediate supports. Shear calculations around 
intermediate supports seem to be much more conservative and increase the unity check 
considerably. A suggestion has been done that placing a control section at 2d distance from the 
middle support instead of 1d, can partly reduce the big increase in U.C. and may improve accuracy. 
 

2.2 Mechanical/shear models 
The shear capacity of concrete members can be estimated in many ways as there are many different 
codes and theories describing shear. Many these models, however, are based on empirical data, or 
the Modified Compressive Field Theory (MCFT). For this reason, a short explanation is given on 
empirical models, MCFT, as well as the Critical Shear Crack theory (CSCT), which will be the basis of 
the upcoming Eurocode. 
 

2.2.1 Empirical 
The shear behaviour of concrete without stirrups is not yet fully understood. For this reason, models 
are often based on regression analysis. These empirical models are based on experimental data and 
can therefore not adequately explain the physics behind shear failure. This means that the empirical 
model might not consider all variables on which the shear capacity depends. Variables that have 
been considered, might do not necessarily have the correct relation to the capacity. Furthermore, 
due to the limited number of experiments, it is possible that the formula/models do not closely 
relate to reality for elements that differ from the experimental set-up. 
 
However, even though empirical models are not based on physical meaning, they can still be used 
for design. One reason for this is that empirical models can be relatively accurate, especially for 
elements that are similar to the ones that have been tested. A second reason is that a lack of 
knowledge on the shear behaviour, limits the ability to create a simple yet accurate model based on 
physics (ZSUTTY, 1971). An empirical model, although not completely (physically) accurate, can 
result in a simple formula that can be used in a practical sense. 
 

2.2.2 Critical shear crack theory (CSCT) 
The critical shear crack theory is studied in the paper of (Muttoni & Ruiz, 2008) and will be 
summarized in this chapter. The critical shear crack theory is based on the reasoning that shear 
capacity is dependent on the critical shear crack width and its roughness. The angle of the shear 
crack is often assumed to be 45 degrees. The shear capacity according to CSCT is expressed in the 
formula: 

𝑉𝑅

𝑏𝑤𝑑
= √𝑓𝑐𝑓(𝑤, 𝑑𝑔) 

In this formula, w is the critical shear crack width and 𝑑𝑔the maximum aggregate size. 

 
Assuming plane sections remain plane, and linear elastic behaviour in compression, and taking the 
effects of the aggregate size, and crack width into account, the following expression is obtained: 
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𝑉𝑅

𝑏𝑤𝑑√𝑓𝑐

=
1

6
∗

2

1 + 120 ∗
𝜀𝑑

16 + 𝑑𝑔

 

 
Without axial forces, the strain at the control depth can be determined: 
 

𝜀 =
𝑀

𝑏𝑤𝑑𝜌𝑙𝐸𝑠(𝑑 −
𝑐
3)

∗
0.6𝑑 − 𝑐

𝑑 − 𝑐
 

 
the depth of the compression zone, noted as c, can be expressed as: 

𝑐 = 𝑑𝜌𝑙

𝐸𝑠

𝐸𝑐
(√1 +

2𝐸𝑐

𝜌𝑙𝐸𝑠
− 1) 

 
According to (Muttoni & Ruiz, 2019) the critical shear crack can occur at any location and has a 
bilinear shape. To calculate the shear strength, the location of the critical crack must be assumed, 
and the crack opening iteratively be increased. Once the applied shear force equals the resisting 
shear force, the shear capacity has been found for that cracking location. The governing location of 
the crack will be the location that has the lowest capacity among the locations. (Cavagnis, Ruiz, & 
Muttoni, 2018) States that there are three potential positions for the critical shear crack: 𝑥𝑎 =
𝑑, 𝑥𝑎 = 0.5𝑎, 𝑎𝑛𝑑 𝑥𝑎 = 𝑎 − 𝑑, where a is the shear span, and d is the effective height. 
 
The main assumptions of CSCT according to (Muttoni & Ruiz, 2019) are as follows: 

• Shear strength is governed by the shape and location of the critical shear crack  

• Shear can be transferred by different actions: Residual tensile strength, Aggregate 
interlocking, dowel action and the cantilever action. 

• Shear failure occurs when the shear load reaches the capacity. The capacity is equal to the 
sum of the potential shear transfer actions. 𝑉𝑅 = 𝑉𝑎 + 𝑉𝑡 + 𝑉𝑑 + 𝑉𝑐 

 

Shear transfer actions 
According to the CSCT the capacity of a concrete element is the combined strength of the so-called 
shear transfer actions. The shear transfer actions are separated into beam shear transfer actions and 
arching action. The beam transfer actions are cantilever action, aggregate interlock, dowelling 
action, and residual tensile strength of concrete. These beam transfer actions allow nonconstant 
forces in the flexural reinforcement and develop tensile stresses in transverse direction. The arching 
action instead keeps the force in the flexural reinforcement constant and does not require 
transverse tensile stresses to transfer shear. The thesis (Cavagnis F. , 2017) contains a chapter going 
further into detail regarding the shear transfer actions, the essentials are summarized below. For 
more detailed explanations or equations, the reader is advised to explore literature such as 
(Cavagnis F. , 2017).   
 

Cantilever action 
The flexural cracks cause teeth-like shape in the concrete. The concrete between cracks behaves as 
cantilevers, fixed at the top of the compression zone. The tensile forces in the longitudinal 
reinforcement changes between cracks, due to the varying moment at the two crack locations. If the 
cracks do not transfer loads, this means that an inclined compressive chord and an inclined tension 
tie must be present to create force equilibrium. 
 

Aggregate interlock 
The shear capacity introduced by the sliding of concrete, caused by an opening crack is called 
aggregate interlock. The capacity is obtained because aggregates from one side of the crack are 
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making contact to the concrete (matrix) at the other side of the crack causing a resistance to 
movement/sliding. The aggregate interlocking enables cracks to transfer shear through cracks.  
 

Dowelling action 
Dowel action refers to the mechanism by which a steel reinforcing bar, resists shear forces through 
its own shear capacity. This action can transfer loads across cracks in concrete structures. 
 

Residual tensile strength of concrete 
When concrete reaches its maximum stress and cracks, concrete starts to show softening behaviour. 
This means that concrete still has a capacity after cracking, given that the crack width is small. It is 
assumed that crack openings larger than 0.2 mm can no longer transfer stress. 
 

Arching action 
Arching action of concrete can develop when the longitudinal reinforcement loses its bond to the 
concrete. The longitudinal reinforcement will start to function as a tensile chord while the concrete 
will have an inclined compression chord that directly transfers the load. The concrete and detached 
reinforcement will now function like an arch. The arch action can only function if no cracks interfere 
with the arch (e.g. the arch/strut does not go through cracks). Arch action functions as a strut and tie 
model. 
 

2.2.3 Modified compression field theory (MCFT) 
The modified compression field theory is proposed in the paper (Vecchio & Collins, 1986) and will be 
briefly summarized. In the MCFT cracked concrete is treated as a different material with its own 
stress-strain characteristics. This new material has its own equations for equilibrium, compatibility, 
and stress-strain relationships. All of which are based on the average stresses and strains. The theory 
is based on tests of elements in a membrane element tester and assumes a rotating smeared crack 
model (Sadeghian & Vecchio, 2018). 
 
To explain the MCFT a membrane element is introduced, which contains a grid of reinforcement in x 
and y direction as can be seen in Figure 1. Axial loads are applied in x and y direction denoted as fy 
and fx. Shear loads are denoted as Vxy. It is assumed that the edges remain straight when the 
membrane deforms.  
 

 
Figure 1 membrane element (Vecchio & Collins, 1986) 
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The following assumptions are made: 

• Each strain corresponds to one stress state, there is no history dependency 

• Stresses and strains are averaged when an area is considered where multiple cracks occur. 

• No bond slip occurs, the reinforcement-concrete bond is perfect. 

• Reinforcement is uniformly distributed in both the longitudinal and transversal direction. 

• Edges of the deformed membrane remain straight and parallel  
 
A summary of the MFCT equations has been given in (Collins, Bentz, Sherwood, & Xie, 2008) and is 
shown in Figure 2 MCFT equations. Equation 15 in this figure, was derived from aggregate 
interlocking experiments done by (Walraven J. , 1981) and describes the shear that can be 
transferred in a crack. In this formula ag is the maximum aggregate size in mm, and the crack width 
equal to the principal tensile strain multiplied by the crack spacing w = ε1* Sθ. 

 
Figure 2 MCFT equations. (Collins, Bentz, Sherwood, & Xie, 2008) 

2.3 Codes describing shear strength 
Because there is a variety of shear strength models, design codes that are used throughout the 
world also differ from one another. Two important codes are the Eurocode2 and the AASHTO LRFD 
code. These two design codes, and the proposed Eurocode2, are briefly summarized in this chapter.  
 

2.3.1 Eurocode 2 
The Eurocode contains many formulae and design rules which apply to structures. Relevant for this 
research is the shear capacity for elements without stirrups (shear reinforcement). The formulae are 
found in (Eurocode2, 2015). The shear models are based on a regression analysis and are empirical 
models. 
 
In (Yang & Roosen, 2023) It has been mentioned that there are 5 fundamental reasons to change the 
current Eurocode. These reasons are: 
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1. The size effect is underestimated in the current Eurocode 
2. When axial tensile forces are applied the current Eurocode is too conservative 
3. The aggregate size, and therefore roughness of the crack is not considered in the current 

Eurocode 
4. The effect of shear slenderness is not considered, this means that the shear capacity can be 

overestimated (unsafe) for slender structures and underestimated (conservative) for non-
slender structures. 

5. The formula for shear capacity is based on a regression analysis. The formula may therefore 
not hold, and can even be unsafe, when parameters differ from the experimental setup 

 

Without shear reinforcement 
In the case that bending cracks have occurred and the design does not contain shear reinforcement. 
the design value for shear VRd,c is given by: 

𝑉𝑅𝑑,𝑐 = [𝐶𝑅𝑑,𝑐 ∗ 𝑘(100 ∗ 𝜌𝑙 ∗ 𝑓𝑐𝑘)1/3 + 𝑘1𝜎𝑐𝑝] ∗ 𝑏𝑤𝑑 

The value of VRd,c is at least equal to  

𝑉𝑅𝑑,𝑐 = [𝑣𝑚𝑖𝑛 + 𝑘1𝜎𝑐𝑝] ∗ 𝑏𝑤𝑑 

In these formulae: 

𝑘 = 1 + √
200

𝑑
≤ 2.0 with d in mm. 

𝜌𝑙 =
𝐴𝑠𝑙

𝑏𝑤𝑑
≤ 0.02 is the longitudinal reinforcement ratio. 

𝜎𝑐𝑝 =
𝑁𝐸𝑑

𝐴𝑐
< 0.2 𝑓𝑐𝑑 is the stress in the concrete due to an axial compressive force (Mpa). 

𝑑 =
𝑑𝑠

2𝐴𝑠𝑙+𝑑𝑝
2𝐴𝑝

𝑑𝑠𝐴𝑠𝑙+𝑑𝑝𝐴𝑝
 is the effective height (mm). 

 
The values used for CRd,c, vmin and k1 depend on the county of the design and can be found in the 
national annex of countries. The recommended values are: 

𝐶𝑅𝑑,𝑐 =
0.18

𝛾𝑐
; 𝑘1 = 0.15; 𝑣𝑚𝑖𝑛 = 0.035 ∗ 𝑘3/2 ∗ √𝑓𝑐𝑘 

 
The effect of prestressing or other axial forces are considered with the term 𝑘1𝜎𝑐𝑝. If the cross-

sectional properties, including reinforcement and prestressing layout, remain constant the capacity 
does as well. The governing cross section would then be determined by finding the location with the 
highest shear stresses.  
 

Members with shear reinforcement 
For members with vertical shear reinforcement the shear capacity is the smaller value of 

𝑉𝑅𝑑,𝑠 =
𝐴𝑠𝑤

𝑠
∗ 𝑧 ∗ 𝑓𝑦𝑤𝑑 ∗ 𝑐𝑜𝑡𝜃 

And 

𝑉𝑅𝑑,𝑚𝑎𝑥 =
𝛼𝑐𝑤 ∗ 𝑏𝑤 ∗ 𝑧 ∗ 𝜈1 ∗ 𝑓𝑐𝑑

𝑐𝑜𝑡𝜃 + 𝑡𝑎𝑛𝜃
 

for 
1 ≤ 𝑐𝑜𝑡𝜃 ≤ 2.5 

Recommended values of ν1 and αcw are given as follows: 
𝜈1 = 0.6                                      𝑓𝑜𝑟 𝑓𝑐𝑘 ≤ 60 𝑀𝑃𝑎 

𝜈1 = 0.9 −
𝑓𝑐𝑘

200
> 0.5             𝑓𝑜𝑟 𝑓𝑐𝑘 ≥ 60 𝑀𝑃𝑎 

𝛼𝑐𝑤 = 1 +
𝜎𝑐𝑝

𝑓𝑐𝑑
                         𝑓𝑜𝑟 0 ≤ 𝜎𝑐𝑝 ≤ 0.25𝑓𝑐𝑑 

𝛼𝑐𝑤 = 1.25                                𝑓𝑜𝑟 0.25𝑓𝑐𝑑 ≤ 𝜎𝑐𝑝 ≤ 0.5𝑓𝑐𝑑 

𝛼𝑐𝑤 = 2.5 (1 −
𝜎𝑐𝑝

𝑓𝑐𝑑
)               𝑓𝑜𝑟 0.5𝑓𝑐𝑑 ≤ 𝜎𝑐𝑝 ≤ 𝑓𝑐𝑑 
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2.3.2 Eurocode 2 proposal (prEN 1992) 
New formulae have been proposed for the shear capacity of (prestressed) concrete elements 
without stirrups. These formulae are based on simplifications of the CSCT. There are two variants 
that will be considered in this research, and these will be denoted as D7-main and D7-alt as is done 
in (Adviesbureau ir. J.G Hageman B.V., 2021).  
 

Control sections 
Multiple control sections should be analysed in the proposed Eurocode, as the shear capacity is 
dependent on the shear forces and bending moments. The shear capacity also must be determined 
in an iterative way for each of the control sections. Locations of control sections are at determined 
to be at a distance 1d from a static discontinuity (supports, points of contraflexure and concentrated 
loads) or at distance d from geometric discontinuities (changing cross section). However, it is noted 
that for geometric discontinuities this does not always hold, for some examples it may be expected 
that also the location of the discontinuity itself should be inspected. Furthermore, a section at the 
edge of the supports might also need to be inspected (Adviesbureau ir.J.G. Hageman B.V., 2023).  
 
The control section near the support is often called the ‘first control section’. In the (FprEN 1992-1-1, 
2023), this control section is located at a distance 1d from the support. This assumes that the shear 
crack angle is 45 degrees. For prestressed elements this assumption is however likely not accurate. 
This can be observed in documents like the RBK (Rijkswaterstaat, 2022b) where, for σcp > 5 N/mm2 
an angle of 30 degrees is estimated instead. For σcp between 0 and 5 N/mm2 it is stated that a linear 
interpolation can be assumed. The angle of 30 degrees follows from the fact that for prestressed 
elements a smaller angle was found in experimental data but has not been determined precisely. For 
this reason, the location where the first control section should be remains uncertain, and a 
conservative angle of 45 degrees was assumed. 
 

D7-main 
The formula of D7-main is obtained by using a power law expression for the CSCT failure criterion 
that uses the strain at reinforcement level (instead of strain at 0.6d).  

𝑉𝑐

𝑏𝑤 ∗ 𝑑 ∗ √𝑓𝑐

= 𝑘 ∗ (
𝑑𝑑𝑔

𝜀𝑠 ∗ 𝑑
) 

In this formula the strain at reinforcement level can be determined by the expression: 

𝜀𝑠 =
𝑉 ∗ 𝑎𝑐𝑠

𝐴𝑠 ∗ 𝐸𝑠 ∗ 𝑧
 

By assuming values for Es and z, introducing a safety factor and setting 𝑉𝐸 = 𝑉𝑐, the formula for D7-
main is obtained: 

𝜏𝑅𝑑,𝑐 =
0.66

𝛾𝑉
(100𝜌𝑙 ∗ 𝑓𝑐𝑘 ∗

𝑑𝑑𝑔

𝑑𝑛𝑜𝑚
)

1/3

≥ 𝜏𝑅𝑑𝑐,𝑚𝑖𝑛  

𝜏𝑅𝑑𝑐,𝑚𝑖𝑛 =
11

𝛾𝑉
√

𝑓𝑐𝑘

𝑓𝑦𝑑
∗

𝑑𝑑𝑔

𝑑
 

 
In members with an effective shear span acs smaller than 4d, the value for dnom may be replaced by: 

𝑎𝑣 = √
𝑎𝑐𝑠

4
∗ 𝑑 ≤ 𝑑 

 
For reinforced concrete without axial force the effective shear span acs may be calculated as: 

𝑎𝑐𝑠 = |
𝑀𝐸𝑑

𝑉𝐸𝑑
 | ≥ 𝑑 

 
Only the load case with maximum shear with the respective moment and the load case with 
maximum moment with the respective shear will need to be considered. 
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In the case that an axial force NEd is present (e.g. prestressing), dnom or av should be multiplied by a 
factor kvp and the capacity can be written as: 

𝑘𝑣𝑝 = 1 +
𝑁𝐸𝑑

|𝑉𝐸𝑑|
∗

𝑑

3 ∗ 𝑎𝑐𝑠
≥ 0.1  

𝜏𝑅𝑑,𝑐 =
0.66

𝛾𝑉
(100𝜌𝑙 ∗ 𝑓𝑐𝑘 ∗

𝑑𝑑𝑔

𝑘𝑣𝑝 ∗ 𝑎𝑣
)

1/3

≥ 𝜏𝑅𝑑𝑐,𝑚𝑖𝑛  

 
When a compressive force is applied (negative NEd), kvp lowers, and the shear capacity increases. The 
capacity is not constant, as it depends on the ratios between the shear force, bending moment and 
axial force. As the shear capacity is not constant, but dependant on the considered cross section, the 
shear crack angle will influence the capacity. With a smaller angle, the first control section will be 
further from intermediate supports. At this location the moment is lower and thus the shear 
capacity higher. Currently the shear crack angle is not implemented in the prEN 1992, a constant 
cross section located at 1d from discontinuities is used instead, but it should be clear that a different 
crack angle affects the capacity and should thus be investigated.  
 

D7-alt 
As an alternative to D7-main D7-alt was proposed in (FprEN 1992-1-1, 2023), which looks similar to 
the formula in the current Eurocode and contains a term for prestressing: 

𝜏𝑅𝑑,𝑐 =
0.66

𝛾𝑉
(100𝜌𝑙 ∗ 𝑓𝑐𝑘 ∗

𝑑𝑑𝑔

𝑑𝑛𝑜𝑚
)

1
3

− 𝑘1 ∗ 𝜎𝑐𝑝 ≥ 𝜏𝑅𝑑𝑐,𝑚𝑖𝑛  

In this expression k1 can be calculated with: 

𝑘1 =
0.5

𝑎𝑐𝑠,0
∗ (𝑒𝑝 +

𝑑

3
) ∗

𝐴𝑐

𝑏𝑤 ∗ 𝑧
≤ 0.18 ∗

𝐴𝑐

𝑏𝑤 ∗ 𝑧
 

 
In (Adviesbureau ir. J.G Hageman B.V., 2021), a different expression was used to determine k1. In 
that report k1 is determined as:  

𝑘1 =
1.4

𝛾𝑉
(0.07 +

𝑒𝑝

4 ∗ 𝑑
) ≤  0.15 ∗

1.4

𝛾𝑉
  

  

Effects of new formulae 
(Roosen, Yang, & Dieteren, 2023) shows that, based on 136 experiments, on average the determined 
shear capacity is slightly lower (conservative) for the D7-main on average compared to the current 
Eurocode. The experiments show that the experimental shear capacity on average was 1.34 times 
higher than the calculated shear capacity found with the current Eurocode. For the new Eurocode 
this is 1.41 times. The coefficient of variation however reduces from 27% in the current Eurocode to 
18% in D7-main. The model D7-main also shows less of a trend when the ratio acs/d is compared to 
Vexp/VRd.  
 
The report of Hageman (Adviesbureau ir. J.G Hageman B.V., 2021) mentions that the ease of use 
goes down with the proposed Eurocode. Different control sections must be considered, all of which 
may be governing. For all these cross sections, two load cases must be considered, maximum shear 
with corresponding moment, or maximum moment with corresponding shear. For moving loads, 
loads must be placed at different location for each control section until the governing situation is 
found. Because the cross-sectional properties are commonly not constant, the calculation is 
“unique” at each situation. Furthermore, to determine the maximum load at each control section, 
iterations must be done. This is the case because the shear capacity is based on the acting shear and 
moment on a cross section. It should be clear that the shear calculations according to the proposed 
Eurocode will no longer be feasible to do by hand. 
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In (Adviesbureau ir. J.G Hageman B.V., 2021) analyses have been done using D7-main, D7-alt and a 
third method known as “Valencia” by means of case studies. From these case studies it has become 
clear that the resulting capacities, and the locations of the critical cross section, vary wildly between 
models themselves, but also vary from the current Eurocode. Particularly at intermediate supports 
of prestressed beams, large differences are found between D7-main and the current Eurocode; D7-
main (the proposed Eurocode) produces overly conservative results. A suggestion is made that the 
control section located at 1d from the support is moved to 2d, this would decrease the differences 
between the current Eurocode and D7-main significantly. It is however not yet clear if this is 
possible. Without knowing the shear crack angle, the location of the first control section, near 
intermediate supports, is unknown and cannot be moved. The model then remains overly 
conservative. For this reason, a model that can determine the location of the first control section, 
should be developed. 
 

2.3.3 AASHTO LRFD 
As a comparison to the Eurocodes an American code, AASHTO LRFD, is briefly discussed. In (AASHTO 
LRFD, 2007), there are multiple procedures to determine the shear resistance. In 5.8.3.4.2, the 
second method to determine the shear resistance, a way to determine the inclination angle of 
diagonal compressive stresses (θ) is shown. To determine this angle, tables are given for elements 
with and elements without transverse reinforcement. The table for elements without transverse 
reinforcement is given in Figure 3. Elements without prestressing, will use 45-degree angles 
according to 5.8.3.4.1. 

 
Figure 3 Values for theta and beta, for sections with less than minimum transverse reinforcement (AASHTO LRFD, 2007) 

To find the inclination angle of the diagonal stresses εx and sxe are required. Linear interpolation is 
allowed between values of εx and sxe but this is not recommended for hand calculations. 
For members without transverse reinforcement Sxe can be taken as follows: 

Sxe =
35

𝑎𝑔 + 16
𝑆𝑥 ≤ 2000 𝑚𝑚 

Where Sx is equal to the effective shear height dv when less than the minimum transversal 
reinforcement is present as is visualized in Figure 4.  
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Figure 4 Member without transverse reinforcement and with concentrated longitudinal reinforcement (AASHTO LRFD, 2007) 

εx is the largest calculated longitudinal strain in the web of a section is subjected to the forces and 
moments Nu, Mu, and Vu and can be calculated for elements without transverse reinforcement as is 
shown in Figure 5. 

 
Figure 5 εx in the case less than minimum transverse reinforcement is present. (AASHTO LRFD, 2007) 

The nominal shear resistance can be found based on θ and β as follows: 
𝑉𝑅 = 𝑉𝑐 + 𝑉𝑠 + 𝑉𝑝 ≤ 0.25𝑓𝑐

′𝑏𝑣𝑑𝑣 

𝑉𝑐 = 0.083𝛽√𝑓𝑐′𝑏𝑤𝑑𝑣 

𝑉𝑠 =
𝐴𝑠𝑤𝑓𝑦𝑑𝑣(𝑐𝑜𝑡𝜃 + 𝑐𝑜𝑡𝛼)𝑠𝑖𝑛𝛼

𝑠
 

 
Although the AASHTO LRFD calculations are quite different from the proposed Eurocode, some 
important similarities are observed. In both AASHTO LRFD and the proposed Eurocode the shear 
capacity is dependent on the normal forces, shear forces, moment, aggregate size and amount of 
longitudinal reinforcement at an investigate cross section. Although, an estimate for the crack angle 
can be done with AASHTO LRFD, it is expected that this estimate cannot be applied to the proposed 
Eurocode in an accurate manner. The reason for this is that the inclination angle is meant to be used 
as an intuitive and conservative design parameter for the shear capacity, rather than accurate 
representation of the crack angle.  
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2.4 Modelling methods 
A variety of methods is available to model concrete behaviour. In this chapter an overview is given of 
several of these methods. 
 

2.4.1 Finite Element Method (FEM) 
Smeared cracking 
A common approach to modelling cracks in concrete is to use a finite element analysis (FEA) with 
smeared cracking. In smeared FEM a mesh of quadrilateral or triangular elements is used to model 
the investigated member. When forces or displacements are applied to the model, stresses and 
strains are calculated in the integration points of the elements. When the allowed stresses are 
exceeded, the stiffness in the affected integration points gradually reduce. This causes a 
deformation of the element and creates smeared damage, where the elements are still physically 
connected but show smeared damage. 
 
FEM can be used to find reasonable capacity estimates of concrete members, and it may be possible 
to obtain realistic estimates for the crack patterns. With the vast number of settings, a Finite 
Element Model can be made to reflect many of the assumptions that have been made. 
Unfortunately, this generally also means that many assumptions must be made, and the user could 
become lost, searching for optimal settings. This can mainly be a problem with settings such as the 
shear retention factor, which heavily influences shear behaviour and can be based on a variety of 
models. Fortunately, many of the settings are provided in a guideline (Hendriks & Roosen, 2022).  
 

Discrete cracking 
An alternative to using smeared cracking in FEM, is to use discrete cracking. In discrete cracking, the 
crack locations must be determined a priori and are put into the model. Cracks can no longer occur 
in every element and instead can only disconnect the predetermined elements when the strength is 
exceeded. In the case of continuous beams, where many flexural cracks may occur, a dilemma 
arises. Either all flexural cracks must be predicted and added to the model, or it must be assumed 
that the influence of the flexural cracks is minimal. On the other hand, the localised cracking of 
discrete cracks may give more realistic results than the smeared damage found in smeared FEM.  
 
It should be noted that the shape (crack angle) of the critical crack is not known a priori. This means 
that for a single beam not one, but multiple numerical models must be set up, the number of models 
being equal to how many different crack angles are considered. These models can be created 
quickly, especially if smeared models of the same beam have already been created, but running 
multiple discrete models will take longer than running a single smeared model.  
 

2.4.2 Extended Finite Element Method (XFEM) 
Extended Finite Element Method (XFEM) as the name suggests, is an extension of FEM which offers 
other analysis methods. A few advantages of XFEM over FEM are found in (Rombach & Faron, 2019) 
and shortly explained below. 
 
In FEM (smeared) cracks are modelled as regions with large strains and alter the shape and/or size of 
the finite elements, instead of creating actual discontinuities in the mesh. When discrete models are 
used, cracking occurs at the boundary of predetermined elements and the model is likely requires to 
re-mesh often and therefore increase the computational load. The cracking using the FEM may 
therefore create unrealistic and computationally expensive models.  
 
XFEM can create discontinuities in the model while not being required to align with the mesh 
elements, XFEM also does not require remeshing. Furthermore, complex crack patterns can be 
modelled without the need for very fine meshes, and the computational cost of XFEM may be lower 
than regular FEM. However, (Vellwock & Libonati, 2024) notices several drawbacks of XFEM. The 
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most important drawback relevant to this thesis is poor convergence behaviour. Additionally, the 
availability of (free) software capable of implementing XFEM should also be considered.  
 

2.4.4 Plasticity theory 
The Plasticity theory found in (Nielsen & Hoang, 1984) and the paper of (Zhang J. P., 1997) can be 
used to find critical cross sections for beams in shear. In this theory concrete is over-reinforced and 
behaves as a rigid plastic material according to the modified Mohr-Coulomb failure criterion.  In this 
method there are two expressions based on the crack properties. One expression can be used to 
determine the ultimate capacity for given cracks at a location. The second expression is used to find 
the load required for a crack to occur at the given location. If the failure load of a crack at a location 
is exceeded but not the cracking load, there will be no failure as the crack that would fail has not 
formed yet. If the cracking load is exceeded but not the failure load, the crack has enough capacity 
to support the beam and will not fail. This means that only when both cracking and failure loads are 
exceeded failure will occur. In (Zhang J. P., 1997) it is shown that this occurs when the cracking load 
is equal to the failure load, which is the case at one location that can be solved for. 
 
This method can be used to estimate the capacity and critical cross section for both reinforced and 
prestressed beams that are simply supported. It is also possible to extend this method to continuous 
beams by following the same steps as (Nielsen & Hoang, 1984) and (Zhang J. P., 1997). In this 
method, variations with different design parameters can be calculated in mere seconds and a clear 
influence of design parameters is shown on the critical crack and capacity.  
 

2.4.5 Lattice modelling (LM) 
In the lattice model the material is modelled as a lattice made of beam elements. Although 
rectangular grids are also common, triangular grids are less likely to show preferential crack 
directions. At the location where the capacity is exceeded a beam element breaks and is removed 
from the mesh. This way a crack is created or propagated. (Schlangen & Mier, 1992) 
 
In (Aydin, Tuncay, & Binici, 2019) a rectangular grid, with grid size d, has been used when modelling 
reinforced concrete. The grid contains uniformly distributed nodes, and each node interacts with 
points within the horizon, a predetermined distance. Common horizon values are 1.5d and 3.01d, for 
which a node has 8 and 28 connected nodes respectively. This holds for nodes away from the 
boundaries, as at the boundaries this cannot hold due to the lack of nodes. It is said that the square 
grid is the easiest model for lattice modelling in terms of mesh generation and defining 
reinforcement. Unfortunately, as the reinforcement follows the grid nodes in a horizontal or vertical 
direction, curved reinforcement such as curved prestressing tendons are difficult to model. (Aydin, 
Tuncay, & Binici, 2019) states that even though some directional dependency will be present, using 
the 1.5d horizon gives accurate and relatively fast results for modelling shear in reinforced concrete. 
It is shown that lattice modelling is a viable method to simulate reinforced concrete but may not be 
suitable for prestressed concrete. 
 

2.4.3 Sequential linear analysis (SLA)  
The method of the SLA uses multiple linear analysis in a sequence as the name suggests. The tensile 
softening curve which has a negative slope is replaced with a saw-tooth curve. This curve only 
consists of positive slopes and jumps, making it look like teeth. SLA for shear critical concrete beams 
is discussed in (Slobbe, Hendriks, & Rots, 2012), and a short summary is given below. 
 
Each analysis determines the critical integration point, where the highest stress/strength ratio is 
observed. The solution is then rescaled, and a stiffness and strength reduction is added to the critical 
integration point, according to saw-tooth constitutive laws. The previous steps are repeated until 
the damage has reached the desired location. This method can work well in cases where FEA is 
unable to give accurate/consistent results due to strong non-linearity and convergence problems. 
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This is because SLA consists of linear analysis without iteration. In case of prestressing this method 
becomes more complex, as the prestressing load should not be scaled. 

2.4.6 Discrete element method (DEM) 
In (Kaschube & Dieter, 2021) DEM is shortly discussed for RC. The concrete is modelled using 
spherical particles. The reinforcement is generally modelled as a line of particles, or truss or beam-
like elements. By using interfaces parallel to the reinforcement line, the bond behaviour is modelled. 
 
In (Shirzehhagh & Fakhimi, 2021) CA2, a 2D hybrid FEM-DEM software has been used to model RC 
beams. In this paper reinforcement is modelled using 1D linear cable elements while the concrete is 
modelled using discrete particles. The model was able to capture shear and flexural cracks as well as 
the capacity quite well. 
 

2.4.7 Galerkin finite volume method (GFVM)  
The Galerkin finite volume method (GFVM) has been used in soil, and computational fluid mechanics 
more frequently, but can also be used for modelling cracks (Sabbagh-Yazdi & Amiri, 2021). GFVM is a 
matrix-free method and therefore has reduced computational requirements. This means that the 
model runs faster than methods like FEM or XFEM. A variant of GFVM discussed by (Sabbagh-Yazdi & 
Amiri, 2021) is the Adaptive Galerkin Finite Volume Method (AGFVM), which increases the accuracy 
by automatically adapting an optimal mesh, while slightly increasing the computational load. The 
accuracy of AGFVM is like those of other methods such as FEM and XFEM, while the computational 
cost is lower.  
 

2.4.8 Element-Free Galerkin (EFG)  
As mentioned before, (Soparat & Nanakorn, 2008) states that FEM has difficulties in treating 
discontinuities that do not coincide with the original mesh. A common solution is the use of 
remeshing. However, this will be more computationally expensive. 
 
The Element-Free Galerkin (EFG) method, uses moving least-square approximations, and does not 
use a finite element mesh. This avoids the need for remeshing or refining meshes. The moving least 
squares method approximates a function by using scattered data. Cracks are modelled using 
interface elements and grow by adding new interfaces in each incremental step (Soparat & 
Nanakorn, 2008). These interfaces allow cracks to propagate unrestricted by the mesh. 
 

2.4.9 Selected models 
Due to the time limitations of this thesis only a few of the methods have been used. A short 
overview is given to explain why methods have or have not been chosen. 
 
Smeared FEM can be used to find reasonable capacity estimates of concrete members, and it may be 
possible to obtain realistic estimates for the crack patterns. This method is common, widely available 
and can be used to model prestressed concrete. For these reasons, smeared FEM is the first method 
that has been used in this thesis.  
 
Although Discrete FEM has some important drawbacks, it is expected to have better local behavior 
compared to smeared FEM as damage will no longer be smeared. If the critical (discrete) crack 
governs the overall behavior of the investigated members, it may be possible to obtain more 
accurate results than smeared FEM. With the availability of smeared models and experience in FEM, 
discrete models could be created in a relatively short amount of time. For these reasons discrete 
FEM has also been used.  
 
The XFEM was considered after smeared and discrete Finite Element Analyses had been conducted. 
This method is expected to provide better results but has ultimately not been used. It was decided 
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that other types of methods should be investigated instead of focusing purely on different Finite 
element Models. 
 
The plasticity theory can be used to estimate the capacity and critical cross section for both 
reinforced and prestressed beams. With this method, the crack angle or control section can be 
obtained within seconds, and a clear influence of design parameters is shown on the critical crack 
and capacity. This makes the plasticity theory an attractive choice and has therefore been used.  
 
Lattice models have been briefly used to model the crack patterns in prestressed concrete. However, 
realistic prestressing behaviour could not be recreated in a timely manner. Due to the time 
constraints of this thesis this method was abandoned. The lattice models can be found in Appendix 
E. Lattice models. 
 
The methods SLA, DEM, GFVM, EFG have not been used during this thesis. Compared to the other 
methods, not much literature is found on their use in modelling prestressed concrete and due to the 
limited time, the other methods were given priority. 
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3. Inclination of shear cracks 
in literature 

In literature, information on crack angles is found that may be used to determine the critical cross 
section. In this chapter, models and experiments found in literature are reviewed, to find influences 
on the crack angle and how this angle may be determined. Once the crack angle is known, the 
control section may be estimated at a location cot(θ)*d away from the intermediate supports. 
 

3.1 Crack angle estimations 
Several models have been found that estimate crack angles or locations of governing cross-sections. 
The models reported in this chapter vary in complexity and investigated parameters. Some of the 
models consider only the amount of prestressing stress in the concrete, while other models include 
different variables and might not consider prestressing. 
 

3.1.1 Cavagnis 
The thesis (Cavagnis F. , 2017) discusses the critical shear crack and aims to improve the theory. To 
accomplish this, several experiments are investigated. The thesis contains valuable information such 
as detailed explanation of the CSCT and experimental findings.  
 

Test setups 
The experiments done were varied, so that different loading conditions and different boundary 
conditions were considered. The beams were rectangular (250x600) and had 2φ22 or 2φ28 as both 
top and bottom reinforcement. The reinforcement ratios were ρ=0.54% and ρ=0.89% respectively. 
The concrete cover was 30mm. concrete strength ranged between 31.2 MPa and 36.9 MPa. 
Maximum aggregate size dg is equal to 16 mm. The average yield strength of the reinforcement was 
713 MPa (ultimate strength 820 MPa) for φ28 and 760 MPa (ultimate strength 920 MPa) for φ22. 
 

Critical Shear Crack Development types from flexural cracks. 
In the Cavagnis thesis it has been observed that for primary flexural cracks, also referred to as crack 
type A, the distance between cracks at mid-height varies between 0.4d - 0.8d, with 0.56d on 
average. Between these primary flexural cracks, smaller cracks that do not propagate to half the 
effective depth may be present. The angle of the primary flexural crack from point A (location of 
reinforcement) to d/2 above point A can be estimated by the formula:  

tan(𝛽1) = 1 + 1.25 ∗
𝑀𝐴

𝑉𝐴∗𝑑
= 1 + 1.25 ∗ 𝛼𝐴. 

Where MA and VA are the moment and shear at the location where the flexural crack intercepts the 
flexural reinforcement and 𝛼𝐴 is defined as: 

𝛼𝐴 =
𝑀𝐴(𝑥)

𝑉𝐴(𝑥) ∗ 𝑑
 

 
The inclination of the crack reduces as it propagates. The angle between point A and the neutral axis 
point B (or the point where the stress reaches the tensile strength if the crack propagates below the 
neutral axis) can be estimated by: 

𝛽𝐴𝐵 =
𝜋

4
+

𝜋

12
∗ 𝛼𝐴

1/3
<

𝜋

2
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Figure 6 Geometry and definition of parameters investigated (Cavagnis F. , 2017) 

The angle 𝛽𝐵𝐹 has a big scatter and therefore has no formula that can nicely fit the data. The angles 
were roughly between 8° and 35°, on average the angle was 22°. The angle 𝛽𝐵𝐹 and the 
corresponding length LF have been assumed to be 22.5° and d/6 respectively in the Cavagnis report. 
The vertical distance of the tip of the crack to the longitudinal reinforcement can be calculated with 
the formula: 𝑑𝑓 = 𝑑 − 𝑐 + 𝑙𝐹 ∗ sin (𝛽𝐵𝐹), where d is the effective depth, and c is the height of the 

compressive zone. The geometry and definitions are visualized in Figure 6. 
 
According to (Cavagnis F. , 2017) the primary flexural crack can turn into a critical shear crack in 
several ways. The different crack development types are listed below and are shown in Figure 7. 

• Critical Crack Development Type (CCDT) 1 allows full arching action and has a compressive 
strut that is undisturbed by cracks 

• CCDT 2, the flexural crack A develops a flat crack F in the compressive zone in a stable 
manner. It is possible for a secondary flexural crack C to merge with the primary crack and 
still develop crack type F in a stable manner. 

• CCDT 3, the failure is caused by the loss of local aggregate interlocking. The aggregate 
interlocking crack E’ propagates from the primary flexural crack. 

• CCDT 4, a secondary crack C merges with the primary crack causing the cracks to open and 
triggering failure. 

 

 
Figure 7 Critical Shear Crack Development types (Cavagnis F. , 2017) 
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Analysis of the shear transfer actions 
In chapter 5 of (Cavagnis F. , 2017) an analysis is done on the shear transfer actions. The relevant 
conclusions are listed below: 

• Cantilever action plays an important role before the critical crack forms. The cantilever 
action is seen to develop at loads much below the maximum loads 

• Arching action may be the dominant shear transfer action under the condition that the 
critical crack grows toward a location above the intermediate support plate in a stable 
manner.  

• The amount of aggregate interlocking depends on the geometry, kinematics and location of 
the critical crack. For cracks developing above or near the intermediate supports aggregate 
interlocking only plays a small part. However, if the crack is further away from the 
intermediate support, aggregate interlocking has a large contribution to the shear capacity. 

• For slender elements the shear is transferred by the sum of beam transfer actions. From 
these actions aggregate interlocking is usually dominant. 

• For concrete members subjected to uniform loads, the loads applied between intermediate 
supports and the critical shear crack can assumed to be transferred directly to the supports. 
From experiments it is observed that the critical shear crack meets the longitudinal 
reinforcement between d and 2.6d. 

• The shear-transfer actions differ depending on shape and location of a crack, but the total 
shear capacity does not vary significantly. This means that the location of a shear crack could 
potentially vary largely between similar elements, but also that the shear capacity can be 
determined in one calculation instead of a sum of multiple contributions.  

 

Closed-form equation 
In the thesis of (Cavagnis F. , 2017) power-law failure criterion and the load-deformation 
relationships are combined, and a closed-form equation is obtained for the shear capacity at the 
control section: 

𝑉𝑐 = 𝑘 ∗ (100 ∗ 𝜌𝑙 ∗ 𝑓𝑐 ∗
𝑑𝑑𝑔

𝑎𝑐𝑠
)

1
3

∗ 𝑏𝑤 ∗ 𝑑 

This closed-form expression is discussed for simply supported, cantilever and continuous beams. The 
closed-form expression in (Cavagnis F. , 2017) is known as Eq. (7.18) while a more refined calculation 
based on integration is known as (Eq. (7.3) + Eq. (7.7)) 
 

Simply supported beam under point loading 
To show that the closed-from equation has similar results to the refined calculations, the shear 
capacity has been graphed as a function of several parameters in Figure 8. In the top left corner, 
noted as (a), the total shear resistance and the resistance of different shear transfer actions are 
shown for a varying location of the critical crack. For this reinforced beam with a span of 2.5m a 30% 

capacity difference is observed between the locations 0.2
𝑋𝐹

𝑎
 and 0.6

𝑋𝐹

𝑎
. 
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Figure 8 Shear capacity of simply supported beams under point loads for possible control sections and different parameters 

(Cavagnis F. , 2017) 

Of the investigated parameters in Figure 8, only the a/d ratio seems to influence the location of the 
critical crack in a significant amount. However, as the curves are very flat (the different cross section 
locations have almost the same strength), it is said that only one of the sections needs to be 
checked. It is proposed by Cavagnis that this location is rf = 1d from the support.  
 
The closed form equation slightly overestimates the capacity for small (<3) a/d ratios and 
underestimates the strength of members with high (>7) a/d ratios or reinforcement ratios bigger 
than 2%. This is because of the assumption that the height of the compressive zone above the crack 
tip hf is 0.3d (while in fact is lies between 0.2d and 0.4d based on reinforcement ratio) and a slight 
inaccuracy in a coefficient k, which influences the shear capacity. 
 
Members with axial compression or prestressing, have a decreased effective shear span. The 
effective shear span for elements under central compression can be determined as follows: 

𝑎𝑒𝑓𝑓 = 𝑎 +
𝑁

𝑉
(

ℎ

2
−

𝑐

3
) ≅ 𝑎 +

𝑁

𝑉
∗

𝑑

3
 

Where N is the normal force (negative for compression), h is the beam height, c is the height of the 
compression zone. For prestressed elements this is visualized in Figure 9, the expression changes to: 

𝑎𝑒𝑓𝑓 = 𝑎 −
𝑃

𝑉
(

ℎ

2
−

𝑐

3
+ 𝑒𝑝) ≅ 𝑎 −

𝑃

𝑉
∗ (

𝑑

3
+ 𝑒𝑝) 

 

 
Figure 9 Equilibrium of internal forces and definition of aeff for a reinforced concrete beam without shear reinforcement 
subjected to axial compression forces or prestressing (compressive forces in blue and tensile forces in red) (Cavagnis F. , 

2017) 
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Simply supported beams under distributed loading 
Elements with l/d < 10 are different than elements with l/d>10. From experiments it is concluded 
that for l/d>10 the beam-transfer actions lose capacity and fail while for l/d<10 crushing of concrete 
occurs above the crack tip. For this reason, only l/d >10 has been discussed in the thesis of Cavagnis.  
 
The critical crack can start from a location between XA= 0.5d-1.5d from a support for a simply 
supported beam under distributed load. For design purpose XA=d is a reasonable assumption. The 
shear and moment should both be calculated at XF. XF is assumed to be 𝑥𝐹 ≅ 𝑥𝐴 + 0.5 = 1.5𝑑 which 
can also be observed from Figure 10. However, to keep the control section location the same for 
different conditions, xF is once again chosen at 1d. This is accepted as the load capacity is almost 
constant in the interval xF= 1d-1.75d. 
 

 
Figure 10 Shear capacity of simply supported beams under distributed loads for possible control sections and different 

parameters (Cavagnis F. , 2017) 

The shear strength of beams under a distributed load is lower than the same beam under a point 
load, for simply supported beams. This is because the shape, location and governing shear transfer 
actions are different. 

The coefficient k in the formula 𝑉𝑐 = 𝑘 ∗ (100𝜌𝑙 ∗ 𝑓𝑐𝑘 ∗
𝑑𝑑𝑔

𝑎𝑐𝑠
)

1

3
∗ 𝑏 ∗ 𝑑 has different optimal values for 

point loads and distributed loads (for the most accurate results). 0.016 for distributed and 0.019 for 
point loads. It is therefore stated that the same formula can be applied regardless of boundary 
conditions and that the k value can be adjusted for the differences in shear transfer. 
 

Cantilever beams under distributed loading 
For cantilever beams, the shear capacity is shown in relation to l/d and the reinforcement ratio in 
the Figure 11. In the graphs it is shown that the critical location rA lies between 1d-1.5d, but the 
thesis also mentions that another experimental investigation had observed a distance between 1d – 
2.6d. Note that for larger l/d and ρ, the position moves further away from the supports in the 
graphs. 

 
Figure 11 Shear capacity of cantilever beams under distributed loads for possible control sections and different parameters 

(Cavagnis F. , 2017) 
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For cantilever beams a reduction can be done on the applied shear loads. This reduction is applied 
because the moment to shear ratio is determined at xf instead of xa, and an increased dowel action is 
present. A reduction of 𝑞 ∗ 𝛥𝑥 can be done on the applied shear loads from xa or 𝑞 ∗ 𝛥𝑥𝑡𝑜𝑡 from xf, 
where 𝛥𝑥𝑡𝑜𝑡 = 𝑥𝐹 − 𝑥𝐴 + 𝛥𝑥. This is shown in Figure 12. 

 
Figure 12 Cantilever subjected to distributed loading: (a) rigid body equilibrium and internal forces; (b) definition of Δxtot 

(Cavagnis F. , 2017) 

The values of Δxtot/xF are plotted in Figure 13, together with locations of rF. without great loss of 

accuracy Δxtot/xF is estimated as 1/5 for all cases, which means 𝛥𝑉 =
𝑉𝐹

5
. This means that the shear 

capacity is increased by 25% (as only 80% of the load is carried by the crack.).  
 

 
Figure 13 xtot/xF and the capacity of cantilever beams under distributed loads for possible control sections and different 

parameters (Cavagnis F. , 2017) 

The effect of l/d, d and ρ on rf/d is also shown in the graphs. The l/d ratio seems to be the only 
parameter affecting the location of rf

 while location ra also seems to be influenced by ρ as can be 
seen in Figure 11 and Figure 13. The minimum capacity is found when rf=d for most cases and the 
graphs are relatively flat around this value, for this reason rF =d (and thus xF=l-d) has been 
determined as the control section for cantilever beams. 
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Continuous beams under distributed loading 
For continuous beams under distributed loading, the critical control section is once again 
investigated. As is done before with the cantilever beam, a reduction is made on the applied shear 

forces of 𝛥𝑉 =
𝑉𝐹

5
, increasing the capacity. The minimum load capacity can be found at control 

sections rF between 0.5d and 0.75d, and l/d seems to be the only parameter influencing this location 
as can be seen in Figure 14. Because low values of acs/d show overestimation of the capacity, and a 
consistent use rf =d is preferred, a limit of 𝑎𝑐𝑠 ≥ 𝑑 is introduced. With this limit the capacity has 
become almost constant after rf =0.75d, thus allowing the use of rf =d as critical cross section like 
cantilever and simply supported beams. 

 
Figure 14 Shear capacity of continuous beams under distributed loads for possible control sections and different parameters 

(Cavagnis F. , 2017) 

3.1.2 Hicks  
(Hicks, 1958) contains a model for prestressed I-beams loaded by a concentrated load in a simply 
supported setup. The beam’s prestressing was designed in such a way that the top fibre has zero 
stress and the bottom fibre a stress of -13.8 MPa. The beam did not contain transverse 
reinforcements. Different shear span-to-depth ratios (0.35-8.15) and concrete strengths (32-48 MPa) 
were investigated to study their influence on the capacity.  
 
At low shear span-to-depth ratios (a/d < 1.5) shear distortion failures were observed, where cracks 
occur in the web. The crack angles for these failures varied between 48° and 32°. For higher shear 
span-to-depth ratios (1.5 < a/d < 5) diagonal compression failure was observed. When a/d was on 
the lower end of this range, failure resembled the shear distortion type. If a/d is on the higher side 
the failure resembles diagonal tension failure. For diagonal tension failure (4.5 < a/d < 9) no web 
cracking occurred before failure and a crack angle of 19° was found, which was roughly equal to the 
estimate of the principal stress theory.  
 
The relation between the shear span-to-depth ratio and the crack angle is given in Figure 15. This 
graph also shows the relationship between the shear span-to-depth ratio and the principal tensile 
stresses at failure. According to the graph, the crack angle is close to 45° for very small a/d ratios and 
reduces significantly when a/d is increased. For a/d > 3.5, the crack angle seems to be constant 
around 18°.   
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Figure 15 Relation between angle of cracking and ftp' (principal tensile stresses at failure) and the shear span-to-depth ratio 

(Hicks, 1958) 

3.1.3 RBK 
The RBK (Richtlijnen Beoordeling Kunstwerken), is a Dutch code to assess and verify structures such 
as bridges. The inclination angle according to RBK is only dependant on the compressive stress due 
to prestressing σcp. The code assumes an angle of 45 degrees for elements where no prestressing is 
present and a 30-degree angle for elements where the concrete stress due to prestressing σcp >5 
N/mm2. This concrete stress should be determined at the location where the stresses due to 
prestressing are completely transferred to the concrete. (Rijkswaterstaat, 2022b) 
 
Between 0 < σcp < 5 N/mm2 a linear interpolation should be done from 45 to 30 degrees. The RBK 
states that these values were used because angles smaller than 45 degrees were found in 
experimental data when prestressed elements were investigated, whilst observing values of 45 
degrees when no prestressing is present. No detailed information is provided on how the 30 degrees 
or linear interpolation are achieved, and the angle is assumed to be a crude estimate.  
 

3.1.4 Mohr circle 
In (Dolan & Hamilton, 2019), the principal angle prior to cracking is discussed based on the Mohr 
circle. In this theory the element with shear stresses is rotated by the crack angle θ, so that it will be 
loaded only in principal directions f1 and f2. This theory is widely used to analyse stresses in concrete 
but has in this case been used to estimate the shear crack angle θ. In Figure 16 two Mohr-circles are 
shown, (a) in case of no prestressing, and (b) in case of prestressing. 

 
Figure 16 Principal stresses at neutral axis in beam with (a) No prestressing and (b) prestressing (Dolan & Hamilton, 2019) 

The shear stress denoted as Vmax, when prestressing is applied, can be expressed in the following 
formulae, based on the figure (b) above, Pythagoras theorem and trigonometry: 
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𝑉2 = (
𝜎𝑐𝑝

2
+ 𝑓1)

2

− (
𝜎𝑐𝑝

2
)

2

 

𝑉 = (
𝜎𝑐𝑝

2
+ 𝑓1) ∗ sin(2𝜃) 

Combining these two formulae an expression is for θ can be obtained: 

(
𝜎𝑐𝑝

2
+ 𝑓1)

2

− (
𝜎𝑐𝑝

2
)

2

= (
𝜎𝑐𝑝

2
+ 𝑓1)

2

∗ sin2(2𝜃) 

1 −
(

𝜎𝑐𝑝

2
)

2

(
𝜎𝑐𝑝

2
+ 𝑓1)

2 = sin2(2𝜃) 

cos2(2𝜃) = (

𝜎𝑐𝑝

2
𝜎𝑐𝑝

2
+ 𝑓1

)

2

 

𝜃 =
1

2
cos−1 (

𝜎𝑐𝑝

𝑓1
𝜎𝑐𝑝

𝑓1
+ 2

) 

In this formula f1 can be replaced by the tensile strength of the concrete as this will be the critical 
stress in f1 direction. This results in the graph shown in Figure 17, where the angle is plotted against 
the ratio σcp/fct, where σcp is the stress due to prestressing and fct the concrete tensile strength. 

 
Figure 17 Principal angle based on applied prestressing (Dolan & Hamilton, 2019) 

From Figure 17 it can be seen that without prestressing the angle is 45 degrees as is expected. For 
high prestressing, where prestressing stress is 4 times larger than the tensile strength, the critical 
angle is roughly 24 degrees. Although related, it should be noted that the angle is not the crack angle 
but the rotation of the principal directions before cracking. After cracking this method is said to be 
no longer applicable as the concrete no longer behaves linear and isotropic. Nevertheless, it may 
give an indication of the crack angle.  
 

3.1.5 Görtz  
In (Görtz, 2004) a linearized estimation of the crack angle is given by:  

𝑐𝑜𝑡𝜃 = 1 − 0.18
𝜎𝑐𝑝

𝑓𝑐𝑡𝑚
≤ 2.15 

When the effect of the shear reinforcement ratio is also considered, the following formula can be 
used instead: 

𝑐𝑜𝑡𝜃 = 1 +
0.15

𝜔𝑤,𝑐𝑡
− 0.18

𝜎𝑐𝑝

𝑓𝑐𝑡𝑚
≤ 2.15 

𝜔𝑤,𝑐𝑡 = 𝜌𝑤 ∗
𝑓𝑦

𝑓𝑐𝑡𝑚
 

The latter formula gives low angles when a low amount of shear reinforcement is used. When the 

minimum shear reinforcement of 𝜌𝑤,𝑚𝑖𝑛 = 0.08√𝑓𝑐𝑘/𝑓𝑦𝑘 (Eurocode2, 2015) is used for C40/50 

concrete, a 𝑐𝑜𝑡𝜃 > 2 is found even without prestressing.  
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3.1.6 Kuchma, Hawkins, Kim, Sun & Kim 
In (Kuchma, Hawkins, Kim, Sun, & Kim, 2008) simplifications to AASHTO LRFD are discussed. In this 
discussion two formulas are presented for the diagonal compression angle, which is assumed to be 
equal to the crack angle. AASHTO LRFD uses the angle to estimate the shear capacity, but the angle 
itself may be inaccurate. Nevertheless, the formulas are given (MPa is used). 

SIMP method: cot(𝜃) = 1 + 1.143 ∗
𝑓𝑝𝑐

√𝑓𝑐′
≤ 1.8  

CSA: 𝜃 = 29 + 3500𝜀𝑆; where 𝜀𝑠 =

𝑀𝑢
𝑑𝑣

+0.5𝑁𝑢+𝑉𝑢−𝑣𝑝−𝐴𝑝𝑓𝑝𝑜

𝐸𝑠𝐴𝑠𝑙+𝐸𝑝𝐴𝑝
  

The formula from the CSA method, which can also be found in (Holt, et al., 2022), requires iteration 
and assumes a critical cross section. Because the critical cross-section is the desired output and not a 
known input, additional effort would be required when using this method. This method, which 
already consists of iteration is therefore not deemed suited to find the crack angle and the critical 
cross section for continuous beams, 
 

3.1.7 Blesa 
In the thesis of (Blesa, 2019) twelve tests have been performed on simply supported, partially 
prestressed, I-beams. Although these tests are not done on continuous beams, valuable insight is 
obtained. In (Blesa, 2019), (multi)linear regression analyses are used to estimate the crack angle 

based on the stress ratio (SR = 
𝜎𝑐𝑝

𝑓𝑐𝑡
) and/or the shear reinforcement ratio ρw. For cracks in failure, the 

angle estimated using SR is: 

𝑐𝑜𝑡𝜃 = 2.0844 + 0.1939 ∗
𝜎𝑐𝑝

𝑓𝑐𝑡
 

 
For cracks in failure, the angle estimated using ρw is: 

𝑐𝑜𝑡𝜃 = 2.5767 − 126.68 ∗ 𝜌𝑤 
 
The angle can also be estimated using both SR and ρw: 

𝑐𝑜𝑡𝜃 = 2.42 − 134.90 ∗ 𝜌𝑤 + 0.23 ∗
𝜎𝑐𝑝

𝑓𝑐𝑡
 

 
The same has been done for cracks in service rather than in failure. For cracks in service, the angle 
estimated using the stress ratio is: 

𝑐𝑜𝑡𝜃 = 1.5813 + 0.4467 ∗
𝜎𝑐𝑝

𝑓𝑐𝑡
 

For cracks in service, the angle estimated using the shear reinforcement ratio is: 
𝑐𝑜𝑡𝜃 = 2.2754 − 126.9 ∗ 𝜌𝑤 

 
For cracks in service, the angle estimated using both SR and ρw is: 

𝑐𝑜𝑡𝜃 = 1.94 − 144.38 ∗ 𝜌𝑤 + 0.48 ∗
𝜎𝑐𝑝

𝑓𝑐𝑡
 

Multiple observations are made on these linear relationships:  

• It is visible that for low ρw, cotθ will remain above 1.5, even when little or no prestressing is 
applied. This gives angles of θ < 33.7° even when angles of ~45° may be expected.  

• It can be observed that cotθ increases when SR increases but decreases when ρw increases. 
This behaviour is expected and means the crack angle decreases with increasing SR and 
increases with increasing ρw.   

• When the crack angles at service and failure load are compared two differences can be 
identified; cotθ is higher at failure in all cases, and the effect of SR and ρw on cotθ is lower at 
failure compared to the effect under service load. 
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3.1.8 Zheng (RC) 
In (Zheng, et al., 2023) and (Zheng, et al., 2023b) estimations of the strut angle are discussed based 
on the minimum Energy Principle. This is done to estimate shear stiffness in RC cracked beams. The 
Formula obtained results in solutions which are too complex to express accurately. Figure 18 

however, gives a clear overview of the effects of the shear span-to-depth ratio λMV =
M

𝑉𝑑𝑣
, shear 

reinforcement ratio ρv, and longitudinal reinforcement ratio ρl. 

 

 
Figure 18 The influence of λMV on the angle (Zheng, et al., 2023) 

An increase in longitudinal reinforcement decreases the strut angle, while an increase in shear 
reinforcement decreases the strut angle. It can also be observed that λMV, especially for low 
longitudinal reinforcement ratios, can have a significant effect on the strut angle, increasing the 
angle for larger λMV. This indicates that for larger spans the crack angles will increase. 
 
In (Zheng, et al., 2023b) it is also mentioned that the concrete strength influences the strut angle, 
but this effect seems to be significantly less than that of λMV, ρv, and ρl. 
 

3.1.9 Overview of models 
In (Cavagnis F. , 2017) critical shear cracks are considered for reinforced simply supported, cantilever 
and continuous beams. Prestressed beams are not discussed in detail, but it is mentioned that the 
same method using a reduced effective shear span can be used. It is observed that the (shear) span 
to effective depth ratio (a/d) has a clear influence on the location of the critical cross section; for 
increasing a/d or l/d the distance to the governing control section from the support rf also increases. 
When the cantilever beams are investigated, it is shown that the longitudinal reinforcement ratio 
also affects the location where the crack meets the reinforcement ra; with increasing amounts of 
reinforcement ra becomes larger. Although the governing cross section locations are not constant, it 
is shown that the capacity at 1d generally is very close to the capacity at the governing cross section. 
Therefore, in (Cavagnis F. , 2017) it has been concluded that the governing cross section can be 
assumed to be located at a fixed 1d from static or geometric discontinuities (e.g. supports). 
 
In (Hicks, 1958) a relationship is shown between the shear span-to-depth ratio and the crack angle. 
Crack angles are close to 45° for very small a/d ratios and reduces for increasing a/d. From the 
moment a/d = 3.5 is reached the crack angle seems to remain constant around 18° for increasing a/d 
ratios.   
 
The models that do not require iteration (RBK, Mohr, Görtz, SIMP, Blesa) and consider prestressed 
concrete (simply supported) have been combined in a graph. The graph shows the relationship 
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between the ratio σcp/fct and estimated crack angle θ for simply supported beams. Some models 
require the concrete compressive strength and/or shear reinforcement ratio, for this reason C40/50 
concrete and a minimum shear reinforcement ratio has been assumed while creating the graph. This 
assumption also makes it possible to express models such as RBK, where the angle is not inherently 
related to the tensile strength. To prevent the graph from becoming too crowded, the formulas 
found in (Blesa, 2019) for service loads, and the formulas neglecting the influence of shear 
reinforcement found in (Blesa, 2019) and (Görtz, 2004) are found in the Appendix A.  instead.  

 
Figure 19 Relationship between the crack angle and σcp/fct for models found in literature for simply supported beams 

From Figure 19 it is observed that if the compressive stresses are equal to the tensile strength of 
concrete, the crack angles of all models are close to or below 33.7° (cotθ =1.5). Because in 
prestressed concrete the compressive forces are generally larger than the tensile strength, it is 
assumed for simply supported prestressed beams that the crack angle will be thus likely be lower 
than 33.7°.  
 
(Zheng, et al., 2023) does not consider prestressing, however it is shown in Figure 18 that for low 
amounts of shear reinforcement (0.5%) the strut angle will be below 33.7°. If it can be assumed that 
the crack angle is roughly equal to the strut angle this would further indicate that the angle of 33.7° 
may be an accurate crack angle. It can also be observed that the shear span-to-depth ratio plays an 
important role and will increase the strut angle for larger values.  
 

3.2 Experiments 
Only a small number of experiments have been found in literature that consider prestressed 
continuous beams failing in shear. Due to the absence of more relevant experiments, experiments 
with external prestressing or without identification of the critical shear cracks have also been 
considered. The small number of experiments meant that no detailed analysis was possible. 
 

3.2.1 Huber, Huber, Kolleger 
In (Huber, Huber, & Kollegger, 2018) tests have been done on prestressed cantilever T-beams. The 
paper also includes tests on simply supported setups and a test on a beam with slightly different 
loading conditions, but these are not considered in this thesis. Three experiments have been 
conducted in a similar setup and are considered: The first contained no shear reinforcement, the 
second contained ρw=0.074%, and the third ρw=0.168%. All beams have been prestressed to σcp=4.5 
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MPa and have a mean splitting tensile strength of roughly 4.5 MPa. Multiple concentrated loads 
were introduced with piston jacks to simulate a distributed loads in the span, and a single load is 
introduced at the end of the cantilever. 
 
The experiment without transverse reinforcement shows a critical shear crack that does not 
originate from a flexural crack and has a crack angle of roughly 12°. Beams with shear reinforcement 
show critical flexural shear cracks. The crack angles of these beams are around 21° on average 
(between 18-25°). 
 

3.2.2 Li, Zhang, Niue 
In (Li, Zhang, & Niu, 2011) an experimental study has been conducted on shear behaviour of 
segmental and externally prestressed continuous T-beams. The beams are loaded with concentrated 
loads. The study contains three monolithic experiments that may be relevant to this thesis. These 
experiments contain a longitudinal reinforcement ratio of 3% to guarantee shear failure, and a shear 
reinforcement ratio of 0.34%. The critical crack inclinations found in these experiments are in the 
range of 25-30°, in the case of a concrete compressive stress of 3 MPa due to prestress. The 
expected tensile strength is 4.07 MPa (based on C50/60 concrete). 
 
It should be noted that these experiments contain external prestressing and are likely behave 
differently from internally prestressed beams due to the different load transfer mechanisms. As 
internally prestressed beams are expected to have higher capacities and different crack patterns, 
these externally prestressed experiments may not be representative of other prestressed 
continuous beams, which are more often internally prestressed. Nonetheless, they offer insights into 
externally prestressed beams and may also provide indications about the behaviour of internally 
prestressed beams. 
 

3.2.3 Herbrand & Classen 
In (Herbrand & Classen, 2015) externally prestressed continuous I-beams have also been 
investigated. Six tests have been conducted on three continuous beams with concentrated loads, 
where one span of the beams has a shear reinforcement ratio of 0.067% and the other span a shear 
reinforcement ratio of 0.133%. The concrete compression due to the internal prestressing was 2.0 
MPa in all three beams. In the second and third beam, additional compressive stresses equal to 1.5 
and 2.5 MPa respectively were present from external prestressing. The splitting and tensile strength 
of the concrete are close to 3 MPa. No critical shear cracks have been identified in the paper, 
however from the crack patterns in Figure 20 angles of 20-30° are identified around the 
intermediate support.  
 

 
Figure 20 Crack patterns of test beams at shear failure (Herbrand & Classen, 2015) 
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From the experiments in (Herbrand & Classen, 2015) it is concluded that external prestressing 
mostly contributes to the initial shear cracking load, whilst only slightly increasing the ultimate shear 
capacity. When increasing amounts of external prestressing are applied the beam becomes more 
brittle. 
 

3.2.4 Herbrand, Kueres, Classen, & Hegger 
In (Herbrand, Kueres, Classen, & Hegger, 2018) two experiments on continuous prestressed beams 
with concentrated loads are shown, both with an average concrete compressive stress of 2.5 MPa 
due to prestressing. The splitting strength is roughly 3.65 MPa on average. The first experiment is 
done on a rectangular cross-section, the second experiment is done on an I-beam. Both experiments 
contain two tests, one on a section with 50% of the required shear reinforcement and the other on a 
section with 200% the required shear reinforcement. After the first section fails, it is strengthened so 
that the second section may be investigated. 
 
From the crack patterns it can be observed that the smallest crack angles around the intermediate 
supports vary between 25-32° for all four tests. However, the cracks around the intermediate 
support did not become critical, instead the cracks found near the point loads became critical shear 
cracks. 
 

3.2.5 Maurer, Gleich, Zilch & Dunkelberg 
In (Maurer, Gleich, Zilch, & Dunkelberg, 2014) a prestressed continuous T-beam with concentrated 
loads has been tested twice. The first span of the beam contained d8/200 shear reinforcement, and 
the second span d12/200. This brings the shear reinforcement ratios to roughly 0.08% and 0.19% 
respectively. The average concrete stress due to prestressing is 4.72 MPa. The expected tensile 
strength lies between 3.21 and 4.21 MPa (based on C35/35 and C55/67 concrete) 
 
Flexural shear cracks found in the experiment had crack inclinations between 25-40° while shear 
cracks had an inclination of around 20°. Failure did not occur near the intermediate support, but 
near the point load, where a flexural shear crack of 30° failed. The failure was caused by the yielding 
of the shear reinforcement and the subsequent crushing of concrete. 
 

3.2.6 Overview of experiments 
Even though some of the experiments are done on externally prestressed beams and the results may 
differ from internally prestressed beams, the effect of axial compression can still be investigated. For 
each of the papers σcp, σcp/fct, and θ are given below. For some papers the ratio σcp/fct is given as an 
estimated range. This is because not all papers determined the concrete properties accurately or 
considered varying prestressing levels. 
 

• In (Huber, Huber, & Kollegger, 2018), the compressive stresses due to prestressing are 
σcp=4.5 MPa, σcp/fct ≈ 1, and the critical crack angles are θ =18-25° for flexural shear failure. 
In the beam without transverse reinforcement the critical shear crack did not originate as a 
flexural crack, this crack has a crack angle of are θ =12°.  

• In (Li, Zhang, & Niu, 2011) the compressive stresses due to prestressing are σcp =3 MPa, 
σcp/fct ≈ 0.75, and the critical crack angles are θ =25-30°.  

• In (Herbrand & Classen, 2015) the compressive stresses due to prestressing are σcp =2-4.5 
MPa, σcp/fct ≈ 0.66-1.5, and the critical crack angles are θ = 20-30°. 

• In (Herbrand, Kueres, Classen, & Hegger, 2018) the compressive stresses due to prestressing 
are σcp =2.5 MPa, σcp/fct ≈ 0.69, and the critical crack angles are θ = 25-32°. 

• In (Maurer, Gleich, Zilch, & Dunkelberg, 2014) the compressive stresses due to prestressing 
are σcp =4.72 MPa, σcp/fct ≈ 1.12-1.47, and the critical crack angles was θ = 30°.  
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In all experiments σcp/fct is estimated between 0.66-1.5 and the largest observed crack angle is 32°. 
From these experiments it is expected that in the general case that σcp/fct >1, the crack angles will 
likely be below 32°.  
 

3.3 Conclusion 
In (Cavagnis F. , 2017) critical shear cracks are considered for reinforced concrete beams. Although it 
was shown that the locations of the governing cross sections were not constant, the control cross 
section was proposed to be at 1d from supports, which was also adopted in the prEN 1992 proposal. 
This location was proposed by (Cavagnis F. , 2017) because he found that the capacity at 1d from 
supports was generally close to the capacity found at the governing cross section. However, this 
might only hold for reinforced concrete as prestressed concrete has not been discussed in detail. 
Therefore, other models are considered in this thesis, where the control section is estimated by 
finding the shear crack angle. 
 
For simply supported beams it is shown using simple models, that the a/d ratio is an important 
parameter when determining the crack angle. Additionally, the reinforcement ratios ρl and ρw have a 
significant impact on the crack angle. When the different models are compared for prestressed 
concrete, it is observed that angles below 33.7° are likely to occur for σcp/fct >1. It is therefore 
indicated that 33.7° may be a better estimate for the crack angle than 45°.  
 
It should be noted that applying the models from the simply supported beams to continuous beams 
may give unsafe estimates because of the inherent differences between the two. Additionally, the 
models are based on empirical data or principal stresses and may not accurately describe cracking 
behaviour. However, in the absence of better models, the estimate of 33.7° is assumed to be a 
reasonable estimate of the crack angles of continuous beams.  
 
A small number of experiments on continuous/cantilever beams are discussed. As only a limited 
number of experiments can be found in literature, externally prestressed beams are included in this 
discussion. Additionally, two experiments that have been discussed show critical cracks near the 
point introduction rather than near the intermediate supports. It is found that for all experiments no 
critical shear crack angles above 32° are present. The compressive stresses due to prestressing in 
these experiments lies between 2 and 4.72 MPa, and the ratio σcp/fct lies between 0.66-1.5. One 
experiment is done on a cantilever beam without shear reinforcement. This beam shows a critical 
shear crack that does not originate from a flexural crack, with a crack angle of 12°. 
 
The models and experimental data show that for prestressing levels close to the tensile strength, the 
crack angles are expected to be below 33.7° and 32° respectively. Based on this it may be possible to 
adjust the control section for prestressed continuous beams from 1d to 1.5d (cot(33.7°)). However, 
because the models are not designed to accurately estimate the crack angles for continuous beams, 
and there is a limited number of experiments, there is no guarantee that this adjustment would be 
safe. 
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4. Finite Element Analysis 
(Smeared) 

Due to the lack of experimental data on prestressed continuous beams with low amounts of shear 
reinforcement, it is investigated if results of Finite Element Models can be used to investigate what 
influences the critical crack location and angle. If FEA provides accurate estimates, it may be possible 
to apply a regression analysis to the results. However, before FEA can be used for this purpose, it 
should be shown that FEA can indeed provide accurate and consistent estimations for different load 
and boundary conditions. For this reason, three experiments with significant differences are 
modelled and the results are compared to the experimental data. The first experiment is done on a 
simply supported reinforced concrete square beam. The second and third experiments are done on a 
prestressed T-beam, with experiment 2 being simply supported, and experiment 3 containing a 
cantilever. 
 

4.1 General settings: 
Most of the settings used are given in the guideline (Hendriks & Roosen, 2022). However, as the 
recommended rotating models are physically unrealistic, different fixed models have also been 
investigated. The structural analysis done in Diana FEA will consist of a 2D model with quadrilateral 
elements and quadratic interpolation. Longitudinal reinforcement is modelled with simple line 
elements, and prestressing tendons are modelled with lines. Interface elements have been added 
between the (support) plates and the beam to prevent stress localisation. 
 
The external loads are applied as a distributed load acting on the beam, or as concentrated loads 
acting on load plates. The prestressing load is added as a post-tensioning load: The anchor retention 
length =0.006 m, the friction factor 𝜇 = 0.19 assumes bonded strands (internal tendons), and the 
wobble factor is assumed to be 𝑘 = 0.01/m. Post tension scheme according to CEB-FIB Model code 
1990 has been used. The friction factor and wobble factor are based on (Eurocode2, 2015), the 
anchor retention length due to anchorage slip is based on (ETA, 2017). Both rotating and fixed crack 
models are investigated, with different mesh sizes, aggregate sizes, and stiffnesses. To investigate if 
bond-slip reinforcement is more accurate, several additional models have been created for the 
aggregate-size based shear retention models, containing bond-slip behaviour. Properties, including 
the steel stress limits, of prestressing steel is given in Figure 21 found in (Walraven & Braam, 2019) 
and are based on the code NEN-EN 10138. Unless specified otherwise Y1860S7 will be used. 
 

 
Figure 21 Mechanical properties of prestressing steel (Walraven & Braam, 2019) 

The analysis is run in two phases. First the prestressing load is added in a single step, after this the 
external load is incrementally increased using arc-length or displacement control. Regular Newton-
Rhapson is used with both a displacement and a force norm of 0.01. The program is set up to iterate 
up to 15 times if no convergence occurs, after which it continues to the next increment.  The mesh 
size in the models generally lies between 0.025 and 0.1 m and is in some cases varied to investigate 
the effect of refining the model.  
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4.2 Experiment 1 modelling simply supported 
4.2.1 Geometry and properties 
The beam SC51 found in (Cavagnis, Ruiz, & Muttoni, 2015) is modelled in DIANA FEA. This beam is 
simply supported, has a rectangular cross section (250 mm wide and 600 mm deep) and has a span 
of 5600 mm. The beam has 2φ28 on both the compressive and tensile sides with effective depth 
d=556 mm. The failure load was q = 60.4 kN/m and caused a crack pattern as shown in Figure 22. 

 
Figure 22 Crack pattern beam SC51 (Cavagnis, Ruiz, & Muttoni, 2015) 

4.2.2 Material properties  
The material properties that have been found in or derived from the paper are given here. For tables 
containing an overview including more detailed settings such as the shear retention and bond-slip 
parameters (only for some models) the reader is referred to Model properties experiment 1 in the 
Appendix. 
 
The compressive strength of the concrete during testing has been found to be roughly 33.6 MPa. As 
the young’s modulus of the concrete is not mentioned in the experiment, two options are used to 
estimate it. The first option is used in the ‘base’ model and uses a Youngs modulus according to 
C35/40 concrete, E=34000 MPa. The second option, referenced as ‘alt. E’, uses a calculation from the 
Eurocode to determine the Young’s modulus based on the concrete strength, the mean Young’s 
modulus according to this option is:  

𝐸𝑐𝑚 = 22000(𝑓𝑐𝑚)0.3 = 31646 𝑀𝑃𝑎 
 
The Poisson ratio used for concrete is 0.2 and is kept constant. The mass density is kept 0 in most 
models, the effect is tested in a model with a mass density of 2400 kg/m3 for concrete. 
The tensile strength of concrete is calculated according to the (Eurocode2, 2015) based on the 
compressive strength: 

𝑓𝑐𝑡𝑚 = 0.3 ∗ 𝑓𝑐𝑘

2
3 = 0.3 ∗ (𝑓𝑐𝑚 − 8)

2
3 = 2.606 𝑀𝑃𝑎 

 
The (tensile) fracture energy is once again calculated based on the compressive strength: 
 

𝐺𝐹 = 0.073 ∗ 𝑓𝑐𝑚
0.18 = 0.073 ∗ 33.60.18 = 0.137 𝑁/𝑚𝑚 

 
To model supports, steel plates are used with linear elastic steel and a Young’s modulus of 210000 
MPa and a Poisson ratio of 0.3. The mass density of the steel is not considered. 
 
The reinforcement steel has an average yield strength of roughly 710 MPa (average strength of 870 
MPa after hardening). The Young’s modulus of steel is assumed to be 200000 MPa. Embedded 
reinforcement is used to model the reinforcement bars. A linear strain hardening curve has been 
used to model plasticity. It is assumed that the ultimate plastic strain is equal to 0.05. 

𝑓𝑦 = 710 𝑀𝑃𝑎; 𝑓𝑢 = 870 𝑀𝑃𝑎; 𝜀𝑢 ≅ 0.05 

 
2D line interfaces have been added between the support plates and the concrete, the normal 
stiffness is assumed to be 2e13 N/m3

 and the shear stiffness is assumed to be 2e8 N/m3. 
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4.2.3 FprEN 1992-1-1 calculation 
Before the FEA and experiment are compared, the capacity is estimated using the formulas found in 
the upcoming Eurocode (FprEN 1992-1-1, 2023). 1d from the support is considered as the control 
section. The factor 𝛾𝑉 has been assumed 1.4 for persistent and transient design, and ddg has been 
assumed to be 32mm based on the maximum coarse aggregate size of 16mm as mentioned in the 
paper considering this experiment. A more complete calculation can be found in the Appendix. 

𝑎𝑐𝑠 = |
𝑀𝐸𝑑

𝑉𝐸𝑑
 | = 624.9 𝑚𝑚 ≥ 𝑑 = 556 𝑚𝑚 

𝑎𝑣 = √
𝑎𝑐𝑠

4
∗ 𝑑 = 294.7 𝑚𝑚 ≤ 𝑑 = 556 𝑚𝑚 

𝑉𝑅𝑑,𝑐 =
0.66

𝛾𝑉
(100𝜌𝑙 ∗ 𝑓𝑐𝑘 ∗

𝑑𝑑𝑔

𝑎𝑣
)

1/3

∗ 𝑏𝑤𝑑 = 96.9 𝑘𝑁 > 𝜏𝑅𝑑𝑐,𝑚𝑖𝑛 ∗ 𝑏𝑤𝑑 

𝑉𝑅𝑑𝑐,𝑚𝑖𝑛 =
11

𝛾𝑉
√

𝑓𝑐𝑘

𝑓𝑦𝑑
∗

𝑑𝑑𝑔

𝑑
∗ 𝑏𝑤𝑑 = 72.8 𝑘𝑁 

The maximum shear capacity is thus 96.9 kN according to the (FprEN 1992-1-1, 2023) calculation. To 
compare this value with the experimental load of q=60.4 kN/m, the shear capacity is rewritten to a 
distributed load that would cause this shear.  

𝑞𝑉𝑟𝑑,𝑐 =
𝑉𝑅𝑑,𝑐

1
2 𝐿 − 𝑑

= 43.2 𝑘𝑁/𝑚  

As may be expected, the capacity found with (FprEN 1992-1-1, 2023) is conservative and is with qVrd,c 
= 43.2 kN/m roughly 70% of the experimental value. 

 

4.2.4 Results experiment 1 
Numerous Finite Element Analysis have been done in an attempt to accurately model beam SC51. 
The crack patterns, and load displacement curves, ultimate load and estimated crack angles of all 
models can be found in the Appendix. Several relevant observations are made and are discussed in 
this chapter. 
 

 
Figure 23 crack pattern experiment 1 fixed model based on mean aggregate size of 8 mm, refined, alt E 

The Fixed models severely overestimate the capacity in most cases. For the fixed models with a 
shear retention based on aggregate size, the FEA was stopped at ~130 kN when still no failure was 
observed. At this point the longitudinal reinforcement had already become plastic and large flexural 
cracks are present as can be seen in Figure 23. The crack patterns of the aggregate size-based 
models were generally not like the experiments, regardless of if bond-slip was modelled.  
 
When a constant shear retention of 0.01, or a damage-based shear retention was used instead of a 
shear retention based on aggregate size, more realistic capacities and crack patterns were found. 
The overestimated capacity for the aggregate based shear retention may be explained by how the 
shear retention decreases with damage. The shear retention is 1 for closed cracks and decreases 
linearly to 0 when the crack width is equal to the mean aggregate size. This overestimates the 
capacity, especially for lower crack widths, as in reality the shear retention drops fast for small crack 
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widths. Another possible cause for the high capacity may be that shear locking occurred during the 
analysis, causing unrealistic results. 
 

 
Figure 24 crack pattern experiment 1 rotating model, refined the mesh twice 

The crack patterns found for the rotating models were consistent with the experimental crack 
pattern, and clear shear cracks are observed see Figure 24. The capacities found with the rotating 
models were also quite reasonable. However, when the mesh is refined, a significant increase in the 
capacity is observed. This indicates that the mesh size plays a significant role in the estimation and 
the accuracy is therefore questionable.  
 
The rotating model seems to be the best fit for this rectangular simply supported beam, as the fixed 
models show unexpectedly high capacities and generally unsatisfactory crack patterns. The 
capacities found in both the experiment and the models are higher than the estimate using (FprEN 
1992-1-1, 2023), this may be expected as this estimate is conservative.  
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4.3 Experiment 2 modelling simply supported prestressed T-beam  
The second experiment, found in (Huber, Huber, & Kollegger, 2018) is done on a simply supported, 
prestressed T-beam without stirrups PC4.5T000. The beam has a span of 7500 mm, and a load 
located at 2740 mm from the left support. Square end blocks are assumed to be present to 100mm 
past the supports to spread the prestressing force. The expected failure load is 709 kN. 
 

4.3.1 Geometry and properties 
 

 
Figure 25 Test setup of a single-span beam subjected to a single point load (Huber, Huber, & Kollegger, 2018) 

The test setup that has been modelled is shown in Figure 25. The prestressing tendon is simplified 
into linear parts in the models, this results in slightly different forces and effective depth throughout 
the model when compared to the experiment. The prestressing tendons (AP=1050 mm2) have been 
placed in the model according to the coordinates as shown in the table below. It should be noted 
that the model has an additional 400 mm (200mm added at both sides) in length, to ensure a 7500 
mm span, without introducing high localized stresses. 
 

Table 1 Location of the prestressing tendons experiment 2 

X Y 

0 0.367 
2.63 0.143 
5.27 0.143 
7.9 0.367 

 
Other than prestressing tendons, regular longitudinal reinforcement is present. At the bottom, the 
web contains 6d26 reinforcement located at y=52 mm (from the bottom). 
The top flange contains 12d12 reinforcement located at y =687 (from the bottom). 
From X>6000 mm, additional reinforcement is present in the top flange; 4d26 +2d20 at y=708 (from 
the bottom). The dimensions of the top Flange and of the web are 750 x 125 and 225 x 625 mm 
respectively. 
 

4.3.2 Material properties  
The material properties derived from the paper are given here. For tables containing more detailed 
settings such as the shear retention and bond-slip parameters (only for some models) in addition to 
the material properties the reader is referred to Model properties experiment 2 in the Appendix. 
 
The Youngs modulus of the concrete is 34351 MPa and the Poisson ratio is assumed to be 0.2. The 
compressive behaviour of concrete is assumed to be parabolic with a compressive strength of 69.5 
MPa and a compressive fracture energy of  

𝐺𝑐 = 250 ∗ 0.073 ∗ 𝑓𝑐𝑚
0.18 = 39158 𝑁/𝑚 
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The tensile behaviour is modelled using the Hordijk curve, with a tensile strength of 4.5 MPa and a 
fracture energy of  GF =154.3 N/m 
 
Steel plates have been used to model the supports and loading plates. These steel plates are linear 
elastic with a Young’s modulus of 200000 MPa and a Poisson ratio of 0.3. The dimensions of the 
plates are 200 x 200 mm. 
 
The reinforcement steel has a yield strength of 580 MPa and an ultimate strength of 670 MPa at an 
assumed plastic strain of 0.05. The Young’s modulus of reinforcement steel is 200000 MPa. 
 
The prestressing steel has a yield strength of 1750 MPa, and it is assumed that no hardening occurs. 
In reality the ultimate strength of the prestressing steel is 1908 MPa. The prestressing steel is loaded 
by a post-tensioning force of 1125 kN. The anchor retention length is assumed to be 0 due to pre-
wedging, the coefficient of friction is assumed to be 0.18, and the wobble factor 0.05 m-1. 
 
2D line interfaces have been added between the support plates and the concrete, the normal 
stiffness is assumed to be 2e13 N/m3

 and the shear stiffness is assumed to be 2e8 N/m3. 
 

4.3.3 FprEN 1992-1-1 calculation 
Before the FEA and experiment are compared, the capacity is estimated using the formulas found in 
the upcoming Eurocode (FprEN 1992-1-1, 2023). 1d from the concentrated load is considered as the 
control section. The factor 𝛾𝑉 has been assumed to be 1.4 for persistent and transient design, and 
ddg has been assumed to be 32mm based on the maximum aggregate size of 16mm as mentioned in 
the paper considering this experiment. Because the capacity is based on the applied forces (through 
kvp) it is not possible to find the capacity in a single calculation. For this reason, a simple python 
script was written, the (rounded) results are given in the formulas below. A more complete 
calculation can be found in the Appendix. 

𝑑 =
𝑑𝑠

2 ∗ 𝐴𝑠𝑙 + 𝑑𝑝 ∗ 𝐴𝑝

𝑑𝑠 ∗ 𝐴𝑠𝑙 + 𝑑𝑝 ∗ 𝐴𝑝
≅ 672 𝑚𝑚 

𝑎𝑐𝑠 = |
𝑀𝐸𝑑

𝑉𝐸𝑑
 | = 2067.9 𝑚𝑚 ≥ 𝑑 = 672 𝑚𝑚 

𝑎𝑣 = √
𝑎𝑐𝑠

4
∗ 𝑑 = 589.4 𝑚𝑚 ≤ 𝑑 = 672 𝑚𝑚 

𝑘𝑣𝑝 = 1 +
𝑁𝐸𝑑

|𝑉𝐸𝑑|
∗

𝑑

3 ∗ 𝑎𝑐𝑠
= 0.42 ≥ 0.1  

𝑉𝑅𝑑,𝑐 =
0.66

𝛾𝑉
(100𝜌𝑙 ∗ 𝑓𝑐𝑘 ∗

𝑑𝑑𝑔

𝑘𝑣𝑝 ∗ 𝑎𝑣
)

1/3

∗ 𝑏𝑤𝑑 = 209 𝑘𝑁 > 𝜏𝑅𝑑𝑐,𝑚𝑖𝑛 ∗ 𝑏𝑤𝑑 

𝑉𝑅𝑑𝑐,𝑚𝑖𝑛 =
11

𝛾𝑉
√

𝑓𝑐𝑘

𝑓𝑦𝑑
∗

𝑑𝑑𝑔

𝑑
∗ 𝑏𝑤𝑑 = 104.4 𝑘𝑁 

The maximum shear capacity is thus 209 kN at the critical control section. To compare this with the 
experimental load of F=709 kN, the shear capacity is rewritten so that it is expressed as concentrated 
load located at the same location as in the experiment. The reaction force at the left support was 
0.635*F.   

𝐹𝑉𝑅𝑑,𝑐 =
𝑉𝑅𝑑,𝑐 + 𝑉𝑝

0.635
= 483.6 𝑘𝑁  

Thus, the capacity found with (FprEN 1992-1-1, 2023)  for this experiment is 483.6 kN. This value is 
conservative and only 68% of the experimental value.  
 
If the capacity is checked at a control section 1d from the left support, the shear capacity would be 
390.4 kN which is equivalent to a concentrated load would of 769.2 kN instead, which is closer to the 
experiment where the critical crack starts near the left support and reaches a capacity of 709 kN. 
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The shear capacity using the formula from (FprEN 1992-1-1, 2023) is shown to be highly sensitive to 
the moment acting on a control section.  
 

4.3.4 Results experiment 2 
Several models have been made of beam PC4.5T000. The crack patterns, load displacement curves, 
ultimate loads and estimated crack angles can be found in the Appendix. The relevant observations 
are discussed in this chapter. 
 

 
Figure 26 crack pattern experiment 2 rotating model 

The crack patterns for the rotating models are quite poor as shown in Figure 26. A small number of 
flexural cracks are present in addition to large cracks following the reinforcement of steel. The 
critical shear crack found in the experiment is not observed. The capacity found with the rotating 
models is 12% higher than the capacity found with the experiment and is therefore quite accurate. 
 

 
Figure 27 crack pattern experiment 2 fixed model based on mean aggregate size of 12 mm 

The crack patterns found with the fixed models based on aggregate size are more in line with the 
experiments. And a large shear crack can be observed in Figure 27. For some bond-slip models 
similar results could be found, while in others the crack patterns highly deviate. The capacity is 
overestimated by 20% in the fixed models, using an aggregate size-based shear retention, which is 
reasonably accurate. However, when the prestressing load is decreased or removed, a large increase 
in capacity is observed in the models using an aggregate size-based shear retention, while a 
decrease is expected. When a damage based or constant shear retention factor of 0.01 is used this 
unexpected behaviour is not observed but these models are unable to capture the crack patterns for 
this experiment. Possible causes for the increased capacity for the models using aggregate size-
based shear retention are the fact that this shear retention is quite unrealistic, and shear locking. 
 
If displacement control is used for the analysis instead of arc-length control, the capacity is increased 
by approximately 200 kN, for both rotating and fixed models, which is an unexpected increase of 
more than 20%. After a rigorous investigation of the settings, the only difference found between arc-
length and displacement-controlled models, was the load step size (arc-length control required 
smaller load steps due to poorer convergence behaviour). For this reason, it is believed that the 
differences between the arc-length and displacement-controlled variants is caused by convergence 
behaviour and numerical errors. It is also possible that displacement control overestimates the 
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capacity, as it cannot deal with snap-back behaviour, and tries to solve for displacements that could 
not be found with arc-length control. 
 
From these results it seems that the fixed model (arc-length control) was able to best describe the 
shear failure of this simply supported prestressed T-beam. However, it seems to be unable to 
describe the shear failure in the case without prestressing in the case of aggregate size-based shear 
retention. Furthermore, the large differences between arc-length and displacement-controlled set-
ups, put the accuracy of the models in question, as it may be expected that they should provide 
roughly the same peak loads. 
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4.4 Experiment 3 modelling continuously supported prestressed T-
beam 
Experiment 3 is done before experiment 2 on the same beam found in (Huber, Huber, & Kollegger, 
2018). The setup contains a cantilever with a concentrated load to imitate a continuous beam. After 
failure occurs in the continuous part of the beam, it was possible to test the beam again resulting in 
experiment 2. 
 

4.4.1 Geometry and properties 
Experiment 3 has a span of 10.72 m, and a cantilever of 2.94 m and a total length of 14m. Between 
supports a distributed load is applied, at the cantilever a single concentrated point load is applied. 
The concentrated load is kept at a constant ratio of 5.11:1 to the distributed load. Failure occurs at 
100.5 kN/m with the point load then being 513.5 kN. 
 
The geometry and reinforcement layout used in the experiment is shown in Figure 28. A 
simplification has been made to the reinforcement layout in the models; it is assumed 4d26 on the 
bottom is applied throughout the entire element. At the bottom, the web contains 6d26 
reinforcement located at y=62 mm (from the bottom). The top flange contains 12d12 reinforcement 
located at y =687 (from the bottom). From X>6000 mm, additional reinforcement is present in the 
top flange; 4d26 +2d20 y=708 (from the bottom). 
 

 
Figure 28 Longitudinal view of the reinforcement layout and tendon profile (Huber, Huber, & Kollegger, 2018) 

The prestressing tendons are again modelled as multiple linear segments. The estimated location of 
the tendons differs slightly from experiment 2 as the estimates are done slightly differently. This 
small difference should have only a small effect on the results. The tendon profile shown Table 2. 
 

Table 2 Location of the prestressing tendons experiment 3 

X Y 

0 0.367 
3.03 0.143 
5.17 0.143 
10.92 0.614 
14.06 0.6 

 

4.4.2 DIANA Settings 
Because experiment 3 is done with the same beam as experiment 2, all the properties of experiment 
2 also apply to this experiment. For the material properties the reader is referred to ‘4.3 Experiment 
2 modelling simply supported prestressed T-beam’. For more detailed model settings, including 
shear and bond slip behaviour the reader is referred to   
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Model properties experiment 3 in the Appendix. 
 

4.4.3 FprEN 1992-1-1 calculation 
Before the FEA and experiment 3 are compared, the capacity is estimated using the formulas found 
in the upcoming Eurocode (FprEN 1992-1-1, 2023). 1d from the intermediate support is considered 
as the control section. The factor 𝛾𝑉 has been assumed to be 1.4 for persistent and transient design, 
and ddg has been assumed to be 32mm based on the maximum aggregate size of 16mm as 
mentioned in the paper that considers the experiment. A more complete calculation can be found in 
the Appendix. 

𝑑 =
𝑑𝑠

2 ∗ 𝐴𝑠𝑙 + 𝑑𝑝 ∗ 𝐴𝑝

𝑑𝑠 ∗ 𝐴𝑠𝑙 + 𝑑𝑝 ∗ 𝐴𝑝
≅ 677.8 𝑚𝑚 

𝑎𝑐𝑠 = |
𝑀𝐸𝑑

𝑉𝐸𝑑
 | = 2631 𝑚𝑚 ≥ 𝑑 = 677.8𝑚𝑚 

𝑎𝑣 = √
𝑎𝑐𝑠

4
∗ 𝑑 = 667.8 𝑚𝑚 ≤ 𝑑 = 677.8𝑚𝑚 

𝑘𝑣𝑝 = 1 +
𝑁𝐸𝑑

|𝑉𝐸𝑑|
∗

𝑑

3 ∗ 𝑎𝑐𝑠
= 0.52 ≥ 0.1  

𝑉𝑅𝑑,𝑐 =
0.66

𝛾𝑉
(100𝜌𝑙 ∗ 𝑓𝑐𝑘 ∗

𝑑𝑑𝑔

𝑘𝑣𝑝 ∗ 𝑎𝑣
)

1/3

∗ 𝑏𝑤𝑑 = 200.4 𝑘𝑁 > 𝜏𝑅𝑑𝑐,𝑚𝑖𝑛 ∗ 𝑏𝑤𝑑 

𝑉𝑅𝑑𝑐,𝑚𝑖𝑛 =
11

𝛾𝑉
√

𝑓𝑐𝑘

𝑓𝑦𝑑
∗

𝑑𝑑𝑔

𝑑
∗ 𝑏𝑤𝑑 = 103.7 𝑘𝑁 

The maximum shear capacity is thus 200.4 kN at the critical control section. To compare this value 
with the experimental load of q=100.5 kN/m, the shear capacity is rewritten so that it is expressed as 
distributed load.  

𝑞𝑉𝑟𝑑,𝑐 =
𝑉𝑅𝑑,𝑐 + 𝑉𝑃

11.87 − 5.11 − 0.678
= 44.8 𝑘𝑁/𝑚  

 
Where 11.87 comes from the support, 5.11 from the concentrated load at the cantilever and 0.678 
from the distributed load. VP is the shear caused by the prestressing (also present in VEd) and is equal 
to 72.26 kN in the tested area. 
 
Thus, the capacity found for this experiment is very conservative and only 45% of the experimental 
value. In the experiment it is shown that the critical crack is located at ~2800 mm from the 
intermediate support. According to (FprEN 1992-1-1, 2023) at this location the capacity is ~419 kN or 
q= 124 kN/m. This value is closer to the experiments but is still very conservative.  
 

4.4.4 Results experiment 3 
A small number of models have been created and investigated for the continuous beam PC4.5T000. 
The crack patterns, load displacement curves, ultimate loads and estimated crack angles of all 
different models for this experiment can be found in the Appendix. The relevant observations are 
discussed in this chapter. The rotating model was unable to create a crack pattern like the 
experiment. Instead, cracks were only observed very close to the support, see Figure 29. The 
capacity found with the rotating model 11% lower than the experimental value.  
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Figure 29 crack pattern experiment 3 rotating model 

Of the fixed models, only the models based on a mean aggregate size of 12mm were able to give 
reasonable crack patterns with a large diagonal crack as is shown in Figure 30. The capacity with the 
fixed model is 16% higher than the experimental value. If no prestressing is present, the capacity is 
lower as is expected. The crack patterns barely change between the prestressed and non-
prestressed variant. Of the three additional models containing bond slip behaviour two gave similar 
crack patterns. In the third model completely different crack patterns were observed, which shows 
that bond-slip properties can have a large influence on the crack patterns.  
 

 
Figure 30 crack pattern experiment 3 fixed crack based on mean aggregate size of 12 mm 

The fixed model based on a mean aggregate of 12 mm seems to best estimate the shear behaviour 
of the continuously supported prestressed T-beam If both the capacity and crack pattern are 
considered. The rotating models were not able to estimate a reasonable crack pattern. 
 

4.5 Overview Smeared FEA 
In the Finite Element Analyses three experiments have been modelled using the Diana FEA software. 
These experiments included: 1. a simply supported R.C. rectangular beam. 2. a simply supported P.C. 
T-beam 3. a continuously supported P.C. T-beam. Most of the settings adhered to the RWS 
guidelines for NLFEA, but some settings have been investigated. It was the hope of the author that 
with the right settings the shear behaviour could be estimated in an accurate and consistent manner 
so that the models could be expanded to hypothetical scenarios. 
 
The main differences between models are based on shear retention. Aggregate-size based, damage-
based and a constant 0.01 shear retention, as well as rotating models are investigated. These models 
all contain embedded bar reinforcement, except for the aggregate-size based models, where both 
embedded bar reinforcement and embedded bond-slip reinforcement are investigated. An overview 
of the results for each model and each experiment is given in Table 3, all the results can also be 
found in the Appendix. It can be observed that none of the models was able to estimate the crack 
angles and capacities in a reasonable manner for all three experiments. It is possible that no model is 
accurate for all loading- and boundary conditions, which could be related to the fact that generally 
simply supported beams are investigated under concentrated loads. 
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Table 3 Overview of the crack patterns and capacity found in FEA compared to the experiments 

 
 
The rotating models, although not perfect, managed to estimate capacities relatively close to the 
experimental values, depending on mesh size, and required less input parameters. However, the 
crack angles and critical cross-sections found in the models varied immensely from those found in 
the experiments. For the purpose of this thesis, the crack angles, or rather the location of the critical 
cross section must be estimated accurately. This means that the rotating models are not suitable for 
this thesis. 
 
Three different types of shear retention functions have been investigated for fixed cracks. The 
aggregate based shear retention overestimated the capacity in all cases but showed reasonable 
crack patterns when prestressing was present. However, with lower amounts or no prestressing the 
results indicate shear locking and become untrustworthy. A constant shear retention of 0.01 showed 
better estimates of the capacity but the crack patterns did not agree with the experiments. Finally, a 
damage-based shear retention was investigated. In most cases the crack patterns were very 
different than those found in the experiment. However, the capacities found with the damage-based 
retention were very accurate, within 10% of the experimental value for all three experiments. 
 
Several bond-slip models have also been investigated for the aggregate-size based shear retention. 
When determining the bond-slip parameters, multiple different estimates were found in literature. 
Based on the used bond-slip parameters, significant differences of crack patterns were observed in 
FEA. It was concluded that without accurate information of the bond it would be difficult to get 
more accurate results using bond-slip reinforcement compared to embedded bar reinforcement. 
 
In some cases, significant differences in capacity were observed between arc-length and 
displacement control. This is likely caused by bad convergence behaviour and the fact that 
displacement control cannot deal with snap-back behaviour. In the case of arc-length control, 
premature unloading has also been observed in several cases. This indicates that some of these 
models could have higher capacities.  
 
The experimental capacities and the capacities found with the smeared FEM models have also been 
compared to the capacities found using the upcoming Eurocode calculations. It is found that in all 
cases, the calculated capacities according to (FprEN 1992-1-1, 2023), are lower than the 
experimental and obtained values from the models. The largest difference between experiment and 
FprEN was found for the prestressed continuous beam where the Eurocode only estimated 45% of 
the experimental value. This is a further indication that the formulas in the upcoming Eurocode are 
too conservative for cross-sections where high moments are present.  
 
Additionally, calculations have been done using (FprEN 1992-1-1, 2023) near the critical cross 
sections found in experiments 2 and 3, instead of at the locations prescribed in the code.  The 
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capacities found at these locations are 9% and 24% higher than the experimental values and are 
therefore not safe to use. 
 
By analysing the smeared FEM results it was observed that none of the models were able to 
reproduce the crack patterns of all three experiments. Additionally, only the model with a damage-
based shear retention was able to estimate the shear capacity within 10% of the experimental value 
for all experiments. In the other models, the capacity has been overestimated by more than 30% for 
at least one of the experiments. The fact that the crack patterns and capacities obtained from the 
models deviate from the experiments, can in most cases be explained by shear locking, bad 
convergence behaviour, over estimation of the shear retention or over rotation of the cracks. It is 
also possible that the models are not accurate for all load/boundary conditions, causing inconsistent 
results between different experiments. It can be concluded that, based on the investigations, the 
smeared FEA has been unable to estimate the crack patterns in a consistently accurate manner and 
is thus unsuited for finding the critical cross section.   
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5. Finite Element Analysis 
(Discrete) 

Beams SC51 (Cavagnis, Ruiz, & Muttoni, 2015) and PC4.5T000 (Huber, Huber, & Kollegger, 2018), 
also known as Experiment 1 and Experiment 3 in this thesis, have also been modelled using discrete 
FEM. Using the discrete models, it is clearly shown that the crack location and angle influence the 
capacity of the investigated members. The available smeared models could be repurposed into 
discrete models without much additional effort. If the critical crack governs the shear behaviour, 
discrete models may provide better results than smeared cracking, as the discrete cracks cause the 
concrete to separate instead of smearing the damage over elements.  
 
For the material properties and DIANA setup the reader is referred to chapter 4. Finite Element 
Analysis (Smeared). In this chapter the longitudinal reinforcement and prestressing tendons have 
been modelled as embedded reinforcement or truss-bond slip reinforcement. The discrete cracks 
have been modelled using discrete crack models and crack dilatancy models. From a preliminary 
analysis it was found that a notch was sometimes required for failure to occur for discrete cracks. 
For this reason, the start of the crack was modelled as a small notch (of roughly 10-15 mm). Slightly 
different capacities were found between triangular and quadrilateral mesh and meshes with and 
without notches. Because the results show similar capacities and behaviour, for different meshes, 
mesh dependency was not investigated further.  
 

5.1 Discrete models experiment 1 
For experiment 1, a simply supported RC beam under distributed loading, multiple discrete models 
have been created with an angle of 45°, based on the experiment. Two reinforcement types are 
investigated. The first type that has been used is embedded reinforcement, which is commonly used 
to model reinforcement in FEM. The second type is truss bond-slip reinforcement which may provide 
more accurate results by considering bond-slip, depending on the accuracy of assumed bond 
properties. Additionally, to consider models both with and without coupling of the shear and normal 
behaviour, two crack models are considered. The first model is a discrete crack model, where the 
normal and shear behaviour is uncoupled. The second model is the crack dilatancy model, where the 
shear and normal behaviour is coupled. Two crack locations are modelled to investigate the effect of 
the crack location on the shear capacity.  
 
In the Appendix more detailed settings of the discrete models can be found. The expected failure 
load is 60.4 kN/m. To visualize the model, the discrete crack model with a 45° angle and the crack 
starting at 0.9m is shown in Figure 31. 
 

 
Figure 31 Experiment 1 discrete FEM with the crack located at 0.9m from the left support 

The capacities found with the different combinations of crack and reinforcement models are given in 
Table 4 for the different combinations of reinforcement and crack type. From this table it is observed 
that the crack dilatancy models severely overestimate the capacity while the discrete models 
underestimate the capacity. Except for the model using a discrete crack with embedded 
reinforcement, all models show a smaller capacity at 0.9m, where a lower shear, but higher moment 



 

46 
 

is present. This indicates that the discrete cracks may be governed by the cracking load and the 
acting moment, rather than the shear load. 
 

Table 4 Experiment 1 discrete FEM capacities 

Distance to 
support [m] 

Embedded 
dilatancy 
(low) 

Embedded 
dilatancy  

Bond-slip 
dilatancy 

Embedded 
Discrete 

Bond-slip 
Discrete 

0.2 400+ 427 277+ 46.5 62.3 

0.9 260 255 230+ 58 32.5 

 
The models using truss bond-slip reinforcement are modelled according to the CEB-FIB bond-slip 
function, with its settings based on (CEB-FIP Model code 1990, 1993). For these models, it was not 
possible to use the bond-slip function according to Doerr as this caused early divergence. All relevant 
settings for the different models can be found in the Appendix. 

5.2 Discrete models experiment 3 
For experiment 3, multiple discrete models have been created. Differences between models are 
reinforcement type (embedded or truss bond-slip), and crack type (discrete crack or crack dilatancy; 
contact density by Li et al.) as before. Additionally, the crack angles are varied to investigate which 
angle has the lowest capacity. It is expected that the critical shear crack may be found in the model 
with the smallest shear capacity.  
 
In these models the discrete crack, will propagate from the top of the beam (location depending on 
the crack angle) to the intermediate support. The crack remains straight (diagonal) and contains a 
small diagonal notch of roughly 10 mm at the top to prevent the model from diverging before 
opening the crack. The ultimate load found during the experiment is 100.5 kN/m. Figure 32 shows 
the model with a 22.6° angle. 
 

 
Figure 32 Experiment 3 discrete FEM with the crack angle of 22.6° 

In these models, the shear modulus after cracking is assumed to be 10% of the expected pre-
cracking stiffness (equivalent to a constant shear retention of 0.1) and therefore 7e10. The constant 
shear retention factor of 0.1 is found in multiple papers, as well as (Sagaseta, 2008) where the shear 
retention factors of multiple models are considered. Note that the shear stiffness modulus 
previously inputted for the discrete crack (dilatancy) interface was a dummy stiffness, which is ~1000 
times larger than the actual stiffness.   
 
The capacities for the different models can be found in Table 5. 
 

Table 5 Experiment 3 discrete FEM capacities 

Crack angle [°] Embedded 
dilatancy 

Bond-slip  
dilatancy 

Embedded 
Discrete 

Bond-slip  
Discrete 

16.7 200+ 200+ 200+ 200+ 

22.6 146 147 100 102 

30 96 86 53 76  

45 73 45 52 32  
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Initially crack angles of 22.6° and 16.7° were investigated, as these are close to the experimentally 
found angles. It is observed that the dilatancy models overestimate the capacity for both 16.7 and 
22.6 degrees. The discrete models with a 22.6° angle show capacities very close to the experimental 
values. To ensure that no incorrect conclusions are drawn, angles of 30 and 45 degrees are also 
investigated. It is found that for increasing crack angles the capacity decreases. Of the investigated 
angles, the models using 45° shows the smallest capacity and could therefore be considered critical. 
It is possible that the capacity keeps decreasing for increasing crack angles, but as 45° is already 
much larger than the expected angle, no additional crack angles are investigated.  
 

5.3 Overview Discrete FEA 
Discrete Finite Element Analyses have been done on a simply supported reinforced concrete beam 
and a continuous prestressed concrete beam in the DIANA software. Because there are different 
settings available, multiple models have been created and investigated. The main differences 
between the models are the type of discrete crack (discrete crack type vs crack dilatancy type) and 
type of reinforcement (embedded reinforcement type vs truss bond-slip type). For the continuous 
beams different crack angles were considered close to the expected angles (16.7°-22.6°). For the 
simple supported case two crack locations (0.2 and 0.9 m from the support) were considered but 
with a constant 45° angle. The expected capacity for the simply supported beam was 60.4 kN/m, for 
the continuous beam the capacity is expected to be 100.5 kN/m. 
 
For the simply supported experiment with a 45° angle, the crack dilatancy models severely 
overestimate the capacity for both embedded and truss bond-slip reinforcement. The models 
showed no signs of failure even when loads three times higher than the expected failure loads were 
applied, therefore the program was manually interrupted. For the discrete crack models, divergence 
occurs when loads between 50-105% of the expected failure loads are applied. However, this 
divergence is sudden and occurs before the crack opens. The different reinforcement types result in 
different ultimate loads with the embedded reinforcement being relatively constant for different 
crack locations, while the bond-slip reinforcement shows a larger variation between crack locations.  
 
For the simply supported beams, it is found that the capacity is lower at 0.9m compared to the 
capacity at 0.2m from the support. This lower failure load further away from the support indicates 
that the capacity may be more dependent on the moment than on the shear acting on a cross 
section. Together with the high capacities found using these models near the support, this indicates 
that the shear behaviour is likely not modelled accurately but may instead focus on mode I failure. In 
these models it is also required to use zero shear traction or a constant shear stiffness modulus after 
cracking. It is, however, known that the shear retention in cracked concrete has a nonlinear 
relationship to the crack width/strain and a constant value is expected to give inaccurate results.  
 
For the continuous beams with dilatancy models, both the embedded and bond-slip reinforcement 
types gave very similar results. Divergence occurred at loads that are 50 and 100% higher than the 
expected load for crack angles of 22.6° and 16.7° respectively. For the continuous beams using 
discrete cracks, the different reinforcement types again gave very similar results. For the angle of 
16.7° the program is interrupted as no failure is observed at twice the expected load. When using 
the angle of 22.6° divergence occurs very close to the expected failure loads. When the additional 
crack angles of 30° and 45° are investigated as an additional check, divergence was encountered at 
much lower load values. This would mean that the cracks with high crack angles are critical, which is 
different from the experiment and smeared FEM. This is another indication that the shear behaviour 
may not be modelled correctly.  
 
The discrete models indeed show that the capacity is highly dependent on the crack location/angle. 
However, the discrete cracking approach using FEM could not provide adequate results for the 
investigated models and properties.  



 

48 
 

6. Theory of plasticity 
This chapter and all following subchapters will discuss the theory of plasticity according to (Nielsen & 
Hoang, 1984) and the paper of (Zhang J. P., 1997). This method is expected to give reasonable 
estimates of the critical shear crack angle and location for rectangular prestressed beams. 
Additionally, this method is able to show a clear effect of the different design parameters on the 
critical crack angle/location. 
 
In the plastic theory it has been assumed that the concrete is over-reinforced and behaves as a rigid 
plastic material that follows the modified Mohr-Coulomb failure criterion. When stresses exceed the 
criterion, a sliding failure occurs along a yield line. The yield line is assumed to be fixed at the 
outmost fibre of the compression side (near the tip of the crack) while the starting point of the crack 
is located at an unknown position x from the support.  
 
When two curves in (Zhang J. P., 1997) are considered (see Figure 33), curve 1 representing the 
cracking load, and curve 2 representing the shear capacity, the location x can be explained. If the 
crack starts to the left of the intersection point of the curves, the cracking load is higher than the 
shear capacity. This means that no critical crack is formed.  
 
If the crack starts at the right of the intersection, the cracking load is below the shear capacity of the 
yield line. This means that the formed cracks do not fail, thus the yield line cannot be located at this 
position. Only at the intersection where the two curves meet does a critical diagonal crack form and 
shear failure occur. 

 
Figure 33 Effect of crack spacing on the position of the critical diagonal crack and on the ultimate load (Zhang J. P., 1997) 

According to the explanation given above, x must be at the location where the two curves meet. 
However, in practice this is not always the case. While a beam is loaded, cracks may occur before the 
capacity of the beam is reached. These existing cracks can influence the location of the diagonal 
crack. Due to crack spacing, it is possible that no crack can form at the location of the theoretical 
crack as is shown in Figure 33.  
 
Imagine a crack formed at location A, at the right of the theoretical location. Because of the crack 
spacing the first crack left of location A, location B, will be left of the theoretical location. The critical 
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crack can thus be located at either of these two locations. From the figure it is shown that at location 
A the capacity D’ has not been reached at the cracking load A’, which means that the load can be 
increased. When the load is increased, either load B’ at location B, or load D’ at location A is reached. 
If B’ is reached this means that a crack will form at location B. Because the capacity of this crack is 
lower than the cracking load, the beam will fail immediately, and the load will drop from B’ to C’. If 
D’ is reached the existing crack A becomes critical and crack B will not be formed. It is important to 
observe that the critical crack can thus also form to the left or right of the theoretical crack and that 
in this case the failure load will be higher than the theoretical value.  
  

6.1 Cracking load 
In (Zhang J. P., 1997), for a rectangular cross section, the maximum cracking moment for flexural 

cracks is determined with the expression: 𝑀𝑐𝑟 =
1

6
𝛾𝑏ℎ2𝑓𝑐𝑡 

In this expression b and h are the width and height of the beam, fct is the tensile strength of the 
concrete and γ is a plasticity factor roughly equal to 1.7 for rectangular cross-sections.  
When a fully plastic stress distribution is assumed as shown in Figure 34, the cracking moment can 

also be expressed as 𝑀𝑐𝑟 =
1

2
𝑏ℎ2𝑓𝑡

∗ 

It can be seen that 𝑓𝑡
∗ =

1

3
𝛾𝑓𝑐𝑡 

 

 
Figure 34 (a) Elastic and (b) plastic equivalent stress distribution in a flexurally cracked section at the maximum cracking 

moment (Zhang J. P., 1997) 

The diagonal cracking moment can be obtained in a fashion similar to flexural cracks. The tensile 
stresses are perpendicular to the crack. The cracking moment for diagonal cracks thus becomes 

𝑀𝑐𝑟 =
1

2
𝑏 ∗ 𝐿𝐴𝑅

2 ∗ 𝑓𝑡
∗ where 𝐿𝐴𝑅 = √𝑥𝐿

2 + ℎ2 and xL is the horizontal length of the crack equal to a-x. 

  
The tensile strength of concrete can be approximated with the compressive strength and a size 
effect. 

𝑓𝑐𝑡 = 1.2 ∗ (
𝑓𝑐

10
)

2
3

∗ 𝑆(ℎ) 

𝑆(ℎ) = (
ℎ

0.1
)

−0.3

 

Based on experiments the effective tensile strength is: 
𝑓𝑡

∗ ≅ 0.6𝑓𝑐𝑡 
 
The diagonal cracking load V=Pcr can be found using moment equilibrium around the crack tip 
(compression side): 

𝑉 ∗ (
1

2
𝐿0 + 𝑎) = 𝑀𝑐𝑟 

𝜏𝑐𝑟 =
𝑃𝑐𝑟

𝑏ℎ
=

1

2
𝑓𝑡

∗ (
1 + (

𝑎 − 𝑥
ℎ

)
2

𝑎
ℎ

+
𝐿0
2ℎ

) 
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6.2 Ultimate load 
The upper bound solution following the modified coulomb failure criterion is: 

𝜏𝑢 =
𝑃𝑢

𝑏ℎ
=

1

2
𝑓𝑐

∗ (√1 + (
𝑎 − 𝑥

ℎ
)

2

−
𝑎 − 𝑥

ℎ
) 

Here 𝑓𝑐
∗ =  𝜈𝑓𝑐 is the effective compressive strength, ν is a factor for effectiveness and τu the 

average failure shear stress. The solution can be obtained using work equilibrium or a strut and tie 
model on the beam shown in Figure 35. 

 
Figure 35 Shear failure mechanism by a yield line following the critical diagonal crack (Zhang J. P., 1997) 

6.3 Effective compressive strength and effectiveness factors 
To account for plasticity and microcracking, effectiveness factors are introduced for the compressive 
strength and the tensile strength. These effectiveness factors are found in (Nielsen & Hoang, 1984) 
and are as follows: 
Effective tensile strength 𝑓𝑡

∗ ≅ 0.6𝑓𝑐𝑡 
Effective compressive strength uncracked concrete 𝑓𝑐0

∗ = 𝜈0𝑓𝑐 
Effective compressive strength cracked concrete 𝑓𝑐

∗ = 𝜈𝑠𝑓𝑐0
∗ = 𝜈𝑠𝜈0𝑓𝑐 

 
𝜈0 = 𝜆 ∗ 𝑓1(𝑓𝑐) ∗ 𝑓2(ℎ) ∗ 𝑓3(𝜌𝑙) 

𝑓1(𝑓𝑐) =
3.5

√𝑓𝑐

 (5 < 𝑓𝑐 < 60 𝑀𝑃𝑎) 

𝑓2(ℎ) = 0.27 (1 +
1

√ℎ
) (0.08 < ℎ < 0.7 𝑚) 

𝑓3(𝜌𝑙) = 0.15𝜌𝑙 + 0.58 (𝜌𝑙 < 4.5%) 
 
λ is a constant based on the loading type and νs is assumed to be a constant 0.5 for shear and 
bending. λ is roughly 1.6 for concentrated loads and 1.2 for uniform loads. It seems that λ is set 
equal to 1.2 in case of concentrated loads with prestressing. For limited prestressing stresses this 
would reduce the capacity. It is suggested in the book (Nielsen & Hoang, 1984) this reduced capacity 
is because prestressing strands do not have the same ability to develop dowel action. The λ factor 
for uniform loading with prestressing is not mentioned in the book (Nielsen & Hoang, 1984) or the 
paper (Zhang J. P., 1997).  
 
As there is little mention of continuous beams in the book, λ is unknown for continuous beams. 
Therefore, it has been assumed by the author of this thesis that the λ factors of 1.6 and 1.2 can be 
used for concentrated and uniform loading conditions respectively, regardless of prestressing or 
boundary conditions. This differs slightly from the theory presented in (Zhang J. P., 1997) but no 
significant change in behaviour is observed when different λ values are compared. 
 

6.4 Shear capacity of simply supported with concentrated loading 
For prestressed beams similar formulae are found in (Zhang J. P., 1997), (Zhang J.-P. , 2001) and 
(Nielsen & Hoang, 1984). There is a slight difference between the formulae found in (Zhang J.-P. , 
2001) and (Zhang J. P., 1997). To ensure that the correct formulae are used, the author of this thesis 
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followed the theory and derived the same formulae as those found in (Zhang J. P., 1997). The 
formulae for a prestressed, simply supported beam with a concentrated load are as follows: 

𝜏𝑢 =
1

2
𝑓𝑐

∗ (√1 + (
𝑎 − 𝑥

ℎ
)

2

−
𝑎 − 𝑥

ℎ
) 

𝜏𝑐𝑟 =
1

2
𝑓𝑡

∗ (
1 + (

𝑎 − 𝑥
ℎ

)
2

+ 𝜎𝑐𝑝 ∗
𝑑
ℎ

𝑎
ℎ

+
𝐿0
2ℎ

)  

𝜈0 = 1.2 ∗ 𝑓1(𝑓𝑐) ∗ 𝑓2(ℎ) ∗ 𝑓3(𝜌𝑙) ∗ 𝑓4 (
𝜎𝑐𝑝

𝑓𝑐
) 

𝑓4 (
𝜎𝑐𝑝

𝑓𝑐
) = 1 + 2

𝜎𝑐𝑝

𝑓𝑐
 

 

6.5 Shear capacity of simply supported with uniform loading 
Formulae for simply supported beams with uniform loads but without prestressing, are found in 
(Zhang J. P., 1997). The beam that has been considered in (Zhang J. P., 1997) is shown in Figure 36. 
To be able to account for prestressing loads, the same steps are followed, and the formulae are 
derived with prestressing. They are as follows: 
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𝜈0 = 𝜆 ∗ 𝑓1(𝑓𝑐) ∗ 𝑓2(ℎ) ∗ 𝑓3(𝜌𝑙) 

𝑎0

ℎ
=

(𝑎/ℎ)2 − 1

2(𝑎/ℎ)
 

 
Figure 36 shear span of a beam subjected to a uniform load (Zhang J. P., 1997) 

 

6.6 Shear strength of continuous with concentrated loading 
Continuous beams are not touched in the (Zhang J. P., 1997) and only briefly mentioned in the 
(Nielsen & Hoang, 1984). However, by using the same methods it is possible to obtain formulas for 
the ultimate and cracking loads. It should be mentioned that without verification/calibration the λ 
factor cannot be estimated. It has been assumed that lambda equals 1.6. 
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𝜏𝑐𝑟 =
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)
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The definition of the variables is shown in Figure 37. Note that 𝑁 = 𝜎𝑐𝑝 ∗ 𝑏 ∗ ℎ for the considered 

rectangular case. 

 
Figure 37 Schematization of the different variables 

6.7 Shear strength of continuous with uniform loading 
Continuous beams with uniform loading are not touched in (Zhang J. P., 1997) and (Nielsen & Hoang, 
1984). Therefore, they have been derived in a similar manner. Because the size of the loading plates 
is not of relevance to this research, it is assumed the loading plates are infinitely small. This removes 
the dependency on the loading plate size and increases readability. The resulting formulas are as 
follows: 
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3
8 ∗ 𝐿2

 

 

6.8 Beams without over-reinforcement 
Previously it has been assumed that the concrete was over-reinforced to prevent flexural failure. 
When the assumption of over-reinforcement is not applied, the longitudinal reinforcement is 
expected to yield and the displacement along the yield lines are no longer necessarily vertical. 
Although yielding of the reinforcement is expected, it is still possible to find the theoretical shear 
capacity. In the case that an investigated beam is not over-reinforced (𝛷 < 0.5) the ultimate shear 
capacity may, according to (Nielsen & Hoang, 1984), be estimated by: 

𝜏𝑢 =
1

2
𝑓𝑐

∗ (√4𝛷(1 − 𝛷) + (
𝑎 − 𝑥

ℎ
)

2

−
𝑎 − 𝑥

ℎ
) 

In this formula, the longitudinal reinforcement degree is given as: 𝛷 =
𝐴𝑠𝑙∗𝑓𝑦

𝑏𝑤∗ℎ∗𝑓𝑐
.  

The main results obtained in this thesis using the plasticity theory will assume that the concrete is 
over-reinforced. The formula for beams without over-reinforcement has been used to check 
whether assuming over-reinforcement has a significant influence on the crack angle or if it may 
cause issues. 
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6.9 Results 
Models have been created of simply supported and continuous beams for both concentrated and 
uniform loads. These beams are assumed to be rectangular with straight prestressing tendons 
located at the effective depth d. Additionally, it has been assumed that the beams are over-
reinforced.  
 
By numerically setting the previously defined formulas for the ultimate and cracking load equal to 
each other, the capacity and crack angles can be determined. The base input variables for the simply 
supported beam are set to a= 5, h =0.5, Lo = 0.1, d = 0.4, fc=60, ρl=2 for both concentrated and 
uniform loading. For the continuous beam (symmetric 2 span beam), the base values of the variables 
are set to L=10, h=0.5, fc=60, ρl =2, d=0.4. For each of the input variables, three different values have 
been used to investigate their effect on the crack angles. In Table 6 and Table 7 this effect can be 
observed, in these tables only a single variable can deviate from the base values at a time. 
 
Using python τcr and τu are plotted with the base values for σcp =0, σcp =2 and σcp =10. When the 
ultimate load is equal to the cracking load the corresponding crack is critical. From Figure 38 the 
crack length xL and the capacity τ can be read at the intersection of two curves of the same 
prestressing level. For simplicity the crack angles have been calculated for the intersection points 
and are added to the legend.  

 
Figure 38 The capacity, crack angles and horizontal crack lengths of simply supported and continuous beams 

For each of the variables, two alternative values are also investigated. Only a single variable is 
changed at a time while all other variables keep their base values. The results are given in tables 
found in the appendix, where it is shown how the variables affect the crack angle for the models, in 
the case σcp = 0 (no prestressing) and in the case σcp =10 (high prestressing). A third case, σcp =2 has 
also been investigated but gave no additional insight. For this reason, only σcp = 0 and σcp = 10 are 
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given in this thesis. In the tables, option 2 contains the base values, this explains why θ2 is constant 
in each table. The tables for all setups can be found in the Appendix. Tables for the continuous beam 
under uniform loading is also shown below. 
 

 
The angles found in the graphs and tables are calculated as follows: 

𝜃 = atan (
ℎ

𝑥𝐿
) = atan (

ℎ

𝑎 − 𝑥
) 

 
Table 6 the effect of changing a single variable on the crack angle of a continuous beam (uniform load), in case where σcp = 

0 MPa 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

L [m] 4 10 20 28.7 21.4 17.2 

h [m] 0.2 0.5 1.0 15.9 21.4 25.6 

d [m] 0.135 0.4 0.3 21.4 21.4 21.4 

fc [MPa] 30 60 80 20.5 21.4 20.7 

ρ [%] 1 2 5 22.9 21.4 18.8 

 
Table 7 the effect of changing a single variable on the crack angle of a continuous beam (uniform load), in case where σcp = 

10 MPa 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

L [m] 4 10 20 63.1 32.0 21.2 

h [m] 0.2 0.5 1.0 24.4 32.0 35.6 

d [m] 0.135 0.4 0.3 22.5 32.0 27.9 

fc [MPa] 30 60 80 32.7 32.0 28.5 

ρ [%] 1 2 5 36.7 32.0 25.0 

 
All the investigated variables (a, h, d, fc, ρ, σcp) affect the crack angle according to the plasticity 
method. From the tables it seems that the concrete strength fc, has the least influence on the angle. 
In the case that the concrete strength is below 60 MPa this effect is especially small and could be 
ignored without a significant error gain. All other variables seem to be relevant and should be 
considered. 
 
The results from the graphs and tables show rather small crack angles, between 12-29 degrees 
(without prestress), that increase with increasing prestressing levels. These results are unexpected 
as shear cracks without prestressing are expected to have angles between 30-45° that decrease with 
increased prestressing.  
 
The low crack angles are likely caused by some of the assumptions in this method. Cracks in reality, 
are not straight, and concrete does not behave as a fully plastic material. These unrealistic 
assumptions affect mainly the ultimate load Pu of the cracks, where already an uncertain λ factor is 
present. By changing Pu, the cross-section where Pu = Pcr changes. This is also visible when the λ 
factor is changed, for lower λ Pu decreases, causing the crack angle to increase. Increasing crack 
angles for increasing prestressing can be explained in a similar manner. When prestressing is 
increased Pcr is increased significantly more than Pu. This causes the angle to increase as the cracks 
that would otherwise be critical have not been formed yet. 
 
Beams with 𝛷 ≤ 0.5 have also been investigated to guarantee that the degree of reinforcement is 
not the cause of these unexpected crack angles. Instead of assuming that 𝛷 = 0.5 it is now 

calculated as 𝛷 =
𝐴𝑠𝑙∗𝑓𝑦

𝑏∗ℎ∗𝑓𝑐
= 𝜌𝑙 ∗

𝑓𝑦

𝑓𝑐
. The problem is solved numerically using python again, with an 
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additional assumption that the yield strength of the steel is equal to 500 MPa. The resulting tables 
can be found in the Appendix. The resulting angles are larger than those found for over-reinforced 
beams and the effects of the different parameters is larger. Overall, the crack angles without 
prestressing are still lower than expected with angles between 15-35°. Like with the over reinforced 
beams, the angles also increase when prestressing is added. 
 
As a final check, another estimation is done: In (Zhang J. P., 1997) an additional approximation of x is 
given in the case of simple supports with a concentrated load. This crude approximation is used to 
check for possible mistakes made while setting up the numerical model. The approximation is as 
follows: 

𝑥 ≅ 0.74 ∗ (
𝑎

ℎ
− 2) ∗ ℎ  

 
The approximation is compared to the values obtained for the simply supported case with 
concentrated loading in Table 8. For high a/h ratios the approximation seems to differ from the 
tabled values by up to 5°, whilst for lower a/h ratios the approximation is quite close to the values 
found in the tables. Because the previously obtained values are similar to the crude approximation 
from Zhang, it is assumed no mistakes were made in deriving the values found in the tables.  
 
Table 8 Comparison of angles obtained using plasticity approach vs those obtained from the crude approximation of Zhang 

Case number a h a/h ratio Estimated θ Obtained θ Difference 

Case 1 2 0.5 4 21.6° 22.4° 0.8° 

Case 2 5 0.5 10 13.8° 16.5° 1.7° 

Case 3 10 0.5 20 8.5° 13.1° 4.6° 

Case 4 5 0.2 25 7.1° 12.0° 4.9° 

Case 5 5 1.0 5 19.8° 20.1° 0.3° 

 

6.10 Conclusion 
For a small variety of variables, the location of the crack, and the crack angles are obtained with the 
use of the plasticity method found in (Nielsen & Hoang, 1984) and by extending the theory to 
continuous and prestressed beams. It is shown that the crack angles found with this method are 
generally below 25 degrees for non-prestressed beams and increase when prestressing is applied. 
This is inconsistent with the knowledge that shear failure most often occurs under an angle of 30-45 
degrees, and under smaller angles in case of prestressing.  
 
A crude estimation, found in (Zhang J. P., 1997), has been used to confirm no mistakes were made 
while setting up the numerical model for the simply supported case, and no obvious errors were 
found. Additionally, a model without over-reinforcement was investigated. This model showed 
slightly larger crack angles overall, but the unexpected behaviour remained. It is determined that the 
low crack angles are likely caused by the assumptions and simplifications made within this approach. 
The increased crack angle for prestressed beams can be explained by the relatively large increase in 
Pcr compared to Pu. The cracks with smaller angles, that were critical without prestressing, have not 
formed yet when the prestressed beam fails.    
 
Even though this method may not accurately estimate the crack angles and critical cross section, 
some observations may hold true and should therefore be mentioned: The concrete strength fc has 
the smallest influence on the crack angle and could in most cases be neglected in the over-
reinforced beams. The lever arm d of the prestressing force influences the angle; however, this is 
only significant if prestressing levels are not too low. The prestressing stress σ, shear span a, the 
height of the beam h and the reinforcement ratio ρ show a clear influence on the crack angle. Extra 
attention should be given to these variables when a detailed model is developed for the crack angle 
or location of the critical cross section.   
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7. Discussion 
This thesis aimed to investigate the location of the critical shear crack for prestressed continuous 
concrete beams without shear reinforcement. If the location of the critical cross section is known, it 
may be possible to move the control sections in the upcoming Eurocode from 1d from the support 
to the critical location. If the control section moves away from the intermediate support, a higher 
design capacity would be found. This could solve the problem of overly conservative designs for 
prestressed continuous beams without shear reinforcement. 
 
In literature, several models estimate the location of the critical crack, or the critical crack angle, 
based on one or more of the following variables: σcp, ρl, ρw, a, d, and fck. A consistent behaviour is 
observed for the models; for increasing prestressing levels, the crack angle decreases. Most models 
agree that for σcp > fct, the crack angles are likely below 33.7°, which is equivalent to a horizontal 
crack length of more than 1.5d. From these results it may seem obvious that the control section may 
be moved from 1d to 1.5d, but this would be a premature conclusion. The models that were 
considered, are based on principal stresses or experiments on simply supported beams, and there is 
no guarantee these models can accurately estimate the crack angles of continuous beams. The 
model used in (Cavagnis F. , 2017) considered effects of different variables and loading conditions on 
the location of the critical cross section of reinforced concrete. Cavagnis did not go into much detail 
about prestressed concrete, but did mention that prestressing causes a reduction of the effective 
shear span. Although Cavagnis opted to use a constant control section located at 1d for all load 
conditions, it is observed that depending on the beam properties, the critical cross section could be 
located between 1d and 1.5d for a cantilever beam, even if no prestressing was present. It may be 
quite possible that if prestressing would have been considered by Cavagnis, values of larger than 
1.5d would have been found like in the other models. Unfortunately, none of the models are 
designed to estimate the crack angles of prestressed continuous beams. For this reason, the results 
obtained from the models are only indicative and cannot be used as a conservative estimate.  
 
In the absence of accurate models for prestressed continuous beams, experiments found in 
literature are investigated. Given enough experimental data, it may be possible to create and 
validate a model by means of a regression analysis or machine learning model, or by identifying the 
minimum and maximum crack angles. However, only a small number of experiments on prestressed 
continuous beams have been documented in literature. Of the experiments found on prestressed 
continuous beams, only 12 beams are relevant to this study and have been investigated. As there is 
such a small number of experiments no model can be developed. Therefore, the data is instead 
compared to the models discussed previously. In the experiments σcp/fct is roughly between 0.66-1.5, 
with σcp being between 2-4.72 MPa. The largest observed crack angle in these experiments is 32°. 
For these experiments it holds that the crack angles are smaller than 33.7° for σcp > fct, as was 
indicated by the different models. There is thus a strong indication, from models and experiments, 
that the critical cross section will be farther than 1.5d from the intermediate support. However, as 
there is a limited sample size, and some of these experiments contain external prestressing, no 
definitive conclusions can be drawn from these experiments.  
 
Because it was not possible to determine the critical cross section using literature alone, smeared 
FEA (Finite Element Analysis) has been considered. For the smeared FEA, three different 
experiments have been modelled using a variety of settings. Quite accurate capacities could be 
obtained using certain shear retention settings, but the crack patterns found in the experiments 
could not be recreated in a consistently accurate manner. There are several possible reasons why 
the crack patterns obtained with FEA differ from the experiment. One reason is that FEA suffers from 
(small) numerical errors.  As the simulation continues, these errors can stack and lead to results that 
are different from what may be expected. Differences can also be caused by many model 
assumptions such as (but not limited to) mesh size, homogeneity and element types, which can 
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influence the results. Although much care has been taken while setting up the models, it is also 
possible that human errors are present. Finally, it is also possible that the results found in the three 
experiments are not representative and could be outliers. In an attempt to get better crack patterns, 
several model settings have been varied. The resulting crack patterns were not considered accurate 
and consistent enough to find the critical crack location and study the effect of different beam 
properties on the critical location. 
 
The three experiments that were considered for smeared FEA, have also been compared to the 
shear capacity found in the upcoming Eurocode (FprEN 1992-1-1, 2023). It was found that the 
Eurocode capacities were conservative, especially for the prestressed continuous beam, where the 
estimated capacity was less than half the experimental value. This further illustrates that for 
prestressed continuous beams without shear reinforcement, the new Eurocode is too conservative. 
Estimates have also been made for the critical locations that had been found in experiments 2 and 3. 
It is shown that at these critical locations (FprEN 1992-1-1, 2023) overestimates the capacity by 9% 
and 24% respectively. It is therefore not safe to simply move the control section from 1d to the 
critical cross section. If the location of the critical cross section were to be used in upcoming 
Eurocode, changes will have to be made to the formulas for them to remain safe.  
 
In addition to smeared FEA, discrete FEA has also been investigated. In discrete FEA, the crack must 
be defined a priori. However, as the crack location/angle is unknown, multiple models must be 
investigated to find the critical location/angle. This roundabout way to find the critical crack was 
ineffective as the critical cracks differed from the cracks found in the experiments. For a prestressed 
continuous beam, of the four investigated angles (16.7°, 22.6°, 30°, 45°), the lowest capacity was 
observed for models containing 45° angles, while the crack angle in the experiment was found to be 
below 20°. The capacities of the finite element models were also quite different from the 
experimental capacity. The models with small angles severely overestimate the capacity while the 
models with a 45° angle underestimated the capacity.  Several possible causes have been identified 
that may explain the difference between the discrete models and the experiments. In these models, 
concrete is assumed to be linear elastic, with the exception of a single discrete crack. The flexural 
cracks are not considered even though they influence the load transfer and stiffness, and thus the 
capacity of the critical crack. It may also be possible that sub-optimal properties have been used for 
the different reinforcement types (embedded vs truss-bond slip) or discrete crack types (discrete 
crack vs crack dilatancy), and that better results may be obtained with different properties. Finally, it 
should be noted that only a small number of cracks are considered in the investigations and that the 
‘critical crack’ may have been skipped. If more cracks are considered it may be possible to get a 
better estimate of the critical crack angle and location. However, considering many different cracks 
with this method is unrealistic as it would take a large amount of time.  
 
Finally, a plasticity approach has been considered. Using this approach, crack angles for different 
beam properties and loading conditions have been determined. It was found that σcp, ρ, a, d, h, and 
fck influence the critical crack. The crack angles are determined by finding the location of the 
minimum capacity, which is found by setting the cracking and ultimate load, equal to each other. 
The angles found using this method are significantly smaller than expected. This is likely caused by 
the assumptions and simplifications that have been used within this method. Assumptions such as 
fully plastic concrete and straight yields lines influence the capacities of a crack, which in turn 
influence the critical crack location. It may be possible to obtain better crack angles if more realistic 
assumptions are made. However, it is likely that a large increase in complexity is required before any 
significant improvements are obtained. In this method prestressing was also shown to increase the 
crack angles, which contradicts the models and experiments found in literature. The reason why the 
crack angles increase with prestressing in this plasticity method can be explained in a simple 
manner: Prestressing increases the cracking capacity significantly more than the ultimate capacity of 
a crack. This means that cracks with smaller angles, which would have been critical without 



 

58 
 

prestressing, have not yet formed due to the increased cracking capacity when another crack 
reaches its capacity in the prestressed case.   
 
When investigating Finite Element Models, it was found that in some cases the (critical) crack was 
formed before failure occurred and could thus carry additional loads before failing. In cases where 
the critical crack formed at failure, the cracking load was likely higher than the ultimate capacity of 
the crack, causing immediate failure when the cracking load is reached. This is similar to what is 
found in the plasticity approach, where both the cracking and ultimate load of a crack must be 
exceeded. The combination of the ultimate and cracking load is therefore expected to determine the 
shape and location of the critical cross section.  
 
Although no definitive model could be developed to estimate the critical cross section, it was 
observed by several models and experiments from literature, as well as the plasticity approach, that 
the critical crack is influenced by σcp, ρ, a, d, and fck or fct. While not investigated, it is expected that 
this influence will also be present in FEA. Thus, it is important to consider all these variables when 
developing a model that identifies the critical cross-section. However, developing and validating 
such a model without a larger number of experiments will be difficult, as may be observed from this 
thesis. 
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8. Conclusion  
The aim of this thesis was to investigate the location of the critical shear crack, near intermediate 
supports, for prestressed concrete beams without shear reinforcement. The research questions of 
this thesis are: 
 
1. “How can the location of the first control section, around intermediate supports, be determined 

and implemented to improve the proposed Eurocode, for prestressed concrete elements with 
less than the minimum required shear reinforcement?” 

a. What are the differences between the old formula, and the proposed formulae? and 
why should the new formulae be improved?  

b. What methods can be used to estimate the shear crack angle or critical cross section? 
c. What is the expected location of the shear critical cross-section near intermediate 

supports for prestressed beams with less than the required amount of shear 
reinforcement.  

d. What are the limitations of the models/estimates of the critical shear crack location? 
e. Can the models/estimates be implemented in the proposed Eurocode without any other 

changes to the proposal in a safe manner? 
 
The answers to these questions are summarised below. 
 
The formula found in the current Eurocode is based on a regression analysis. This formula will be 
replaced in the upcoming Eurocode by a formula based on the Critical Shear Crack Theory. A clear 
difference is that the shear capacity in the proposed formula will be influenced by the aggregate size 
and acting moment and will require iteration to solve. It was found that the capacity of prestressed 
continuous beams without shear reinforcement was severely underestimated using the proposed 
formula. If no changes are made to the proposal, this may have large consequences for both new 
and existing structures, as more material or different designs would be needed to meet the code 
requirements. Moving the control section further away from intermediate supports to a critical cross 
section, would provide a higher capacity and could solve this problem. 
 
The critical cross section can be estimated by cot(θ)*d, where θ is the crack angle and d is the 
effective depth. In literature, multiple models, experiments and modelling methods can be found to 
estimate the crack angle. In this thesis the plasticity theory, Finite Element Analyses and 
models/crack patterns from literature are used to estimate the location of the critical cross section. 
 
The location of the critical control section could not be definitively estimated but it was observed 
that the critical location is influenced by the cracking and ultimate loads of different cracks. The 
parameters σcp, ρ, a, and d are shown to influence the crack angle, and the models and experiments 
indicate that the critical location for σcp > fct is farther than 1.5d from the intermediate supports. 
 
The models in literature were based on simply supported beams and/or principal stress directions. 
Additionally, only a limited number of relevant experiments were available in literature, which made 
it impossible to arrive at a conclusive answer. The plasticity theory and the FEA were also not 
deemed accurate and consistent enough to estimate the critical cross section, likely due to the 
assumptions and simplifications that have been made in these methods. 
 
Using the FprEN1992-1-1, the shear capacity has been estimated at the critical cross sections found 
in two experiments. It was found that the capacity for these experiments is overestimated if the 
critical cross section is used. It is therefore not safe to only check the capacity at the critical cross 
section, unless changes are made to the FprEN1992-1-1 or the definition of the critical cross section.  

 



 

60 
 

Considering the results, it is expected that the critical cross section can be moved farther away from 
the intermediate support for prestressed beams without shear reinforcement. While multiple 
models and experiments show that the critical cross section is likely located at a distance larger than 
1.5d from the intermediate support, this was not proven. It is therefore important that further 
research and experiments are done on prestressed continuous beams without shear reinforcement, 
to determine the critical cross section. It should be noted that the critical cross section could not be 
used to estimate the shear capacity in a safe manner. Therefore, additional research should be 
considered on how to safely implement the critical control section in the FprEN1992-1-1. 
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Appendix 
Appendix A. Additional crack angle estimations in literature 
To prevent Figure 19, shown in chapter 3. Inclination of shear cracks in literature, to become 
cluttered, less important relationships are shown in Figure 39. Cracks under service loads are 
deemed less important as these may not become critical cracks and may therefore not be relevant. 
In (Görtz, 2004) and (Blesa, 2019) there are expressions that consider the shear reinforcement ratios 
and allow investigation of beams with low amounts of shear reinforcement, which are of interest in 
this thesis. Excluding this effect would likely reduce the accuracy, because a significant variable is 
removed from the estimation, and remove the ability to investigate beams with low amounts of 
shear reinforcement. For this reason, the expressions which exclude the shear reinforcement from 
these models are also deemed less relevant.  
 

 
Figure 39 Additional relationship between the crack angle and σcp/fct for models found in literature for simply supported 

beams 

The (Blesa, 2019) models give reasonably similar results, and remain below 33.7°, for this reason no 
more attention is given to these models. 
 
It has been observed however, that the angles found with the model from (Görtz, 2004), without the 
shear reinforcement ratio, are higher and significantly larger than 33.7° at σcp/fct =1. For this reason, 
it is compared to variations where the shear reinforcement ratio is considered and three or ten 
times the minimum reinforcement ratio. With increasing amounts of shear reinforcement, the 
results become closer to those found in the model that does not consider shear reinforcement 
effects. Even with ten times the minimum reinforcement ratio, there is still roughly a 3° difference 
between the models that do and do not consider the shear reinforcement effect. Because there is a 
significant difference between the models that do and do not consider the shear reinforcement 
effect, and because the shear reinforcement ratio is known to be small, the model from (Görtz, 
2004) without the shear reinforcement effect is not considered in the main report. 
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Appendix B. Finite Element Analysis (Smeared) 
Model properties experiment 1 
The material properties used in the different models are given in Table 9 and Table 10. For some 
properties multiple settings are given, this is because multiple variations have been investigated. In 
the caption of the crack patterns, the legend of load-displacement curves and the model names in 
the overview the used settings are provided.  
 
Table 9 concrete model properties used in experiment 1 

Young’s modulus E=34000 MPa / Ealt=31646 MPa 

Poisson ratio 0.2 

Crack orientation Fixed / rotating 

Tensile curve Hordijk 

Tensile strength 2.606 MPa  

Mode I tensile fracture energy 137 N/m 

Shear retention function (applicable to fixed 
crack orientation) 

Constant (0.01) / damage based / aggregate 
size based (4 / 6 / 8 / 12 mm) 

 
Table 10 steel model properties used in experiment 1 

Young’s modulus E=200000 MPa 

Yield strength 710 MPa 

Ultimate strength 870 MPa 

Ultimate strain εu= 0.05 

 
Multiple bond-slip models with a cubic bond slip function by Doerr have also been investigated as an 
alternative to embedded reinforcement. In (Tejchman & Bobiński, 2013) it is mentioned that the 
Parameter c should be roughly 1.9ft and the shear slip plateau 0.06 mm. Due to convergence issues 
the shear slip plateau had to be changed to 0.6 mm for some cases; In two extreme cases, running a 
model with 0.06 mm did not only cause early divergence but also caused the file to become 
corrupted and unreadable. In all cases divergence at low load levels could not be prevented.  
 
As can be seen in (Pinto & Cantero, 2022) there are multiple methods to approximate the normal 
and shear stiffness modulus. The resulting stiffness moduli can differ significantly, and divergence 
may occur when they are too large or too small. The moduli used in the FEA models are based on the 
methods found in (Pinto & Cantero, 2022) as to not be too unrealistic, but are varied within ranges 
that do not cause numerical issues. This has been done to investigate if certain combinations would 
provide a more accurate response in the FEA models as is suggested in (Pinto & Cantero, 2022). If 
bond-slip is modelled this is mentioned in the name of the model, the properties are in Table 11. 
 
Table 11 Bond-slip settings used for experiment 1 (smeared) 

 Agg 12 Agg 12 increased 
bond stiffness 

Agg 6 Agg 6 
refined 

Agg 6 
v2 

Agg 6 
v3 

Agg 6 
v4 

Normal stiffness 
modulus [N/m3] 

2e13  6e13  2e13  2e13 2.6e11 8.6e11 8.6e14 

Shear stiffness 
modulus [N/m3] 

1e11  6e12  1e11  1e11  2.6e10 2.6e11 2.6e11 

Parameter c 
[N/m2] 

6.2e6  6.2e6  6.2e6  6.2e6  6.2e6  6.2e6 6.2e6 

Shear slip at 
plateau [m] 

6e-4  6e-5  6e-4  6e-4  6e-5  6e-5  6e-5  
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Crack patterns experiment 1 
Rotating 

 
Figure 40 experiment 1 observed crack pattern 

 
Figure 41 crack pattern experiment 1 rotating model 

 
 
 

 
Figure 43 crack pattern experiment 1 rotating model, refined the mesh twice 

 
Figure 44 crack pattern experiment 1 rotating model, alternative E 

 
Figure 45 crack pattern experiment 1 rotating model, alternative E, refined 

 
Figure 46 crack pattern experiment 1 rotating model, alternative E, refined twice 

Figure 42 crack pattern experiment 1 rotating model, refined mesh 
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Figure 47 crack pattern experiment 1 rotating model, alternative E, refined (improved interface) 

 
Figure 48 crack pattern experiment 1 rotating model, alternative E, refined twice (improved interface) 

Fixed 

 
Figure 49 experiment 1 observed crack pattern 

 
Figure 50 crack pattern experiment 1 fixed model based on mean aggregate size of 12 mm 

 
Figure 51 crack pattern experiment 1 fixed model based on mean aggregate size of 8 mm, refined, alt E 

 
Figure 52 crack pattern experiment 1 fixed model with constant shear retention of 0.01 
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Figure 53 crack pattern experiment 1 fixed model based on mean aggregate size of 4 mm 

Figure 54 crack pattern experiment 1 fixed model with damage-based retention factor 

 
Figure 55 crack pattern experiment 1 fixed model with damage-based retention factor and damage-based Poisson 
reduction 

 
Figure 56 crack pattern experiment 1 fixed and bond-slip model based on mean aggregate size of 12 mm 

 
Figure 57 crack pattern experiment 1 fixed and bond-slip model based on mean aggregate size of 12 mm, increased bond 
stiffness 

 
Figure 58 crack pattern experiment 1 fixed and bond-slip model based on mean aggregate size of 6 mm 
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Figure 59 crack pattern experiment 1 fixed and bond-slip model based on mean aggregate size of 6 mm, refined 

 
Figure 60 crack pattern experiment 1 fixed and bond-slip model based on mean aggregate size of 6 mm v2 

 
Figure 61 crack pattern experiment 1 fixed and bond-slip model based on mean aggregate size of 6 mm v3 

 
Figure 62 crack pattern experiment 1 fixed and bond-slip model based on mean aggregate size of 6 mm v4 
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Load-Displacement curves experiment 1  
Rotating 

  
Figure 63 load displacement curves of experiment 1 (rotating) shown in one graph (experimental capacity = 60.4 kN/m) 

Fixed 
 

 

Figure 64 load displacement curves of experiment 1 shown in one graph (experimental capacity = 60.4 kN/m) 
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Figure 65 Load displacement curves of experiment 1 bond-slip models shown in one graph (experimental capacity = 60.4 
kN/m) 

FprEN calculations experiment 1 
All calculations are done for the critical cross-section located at 1d from the support and 𝛾𝑉 = 1.4, ddg 
=32mm, fck =33.6 and d=556mm.  

𝑀𝐸𝑑 =
1

2
𝐿 ∗ 𝑞 ∗ 𝑑 −

1

2
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Overview experiment 1 
 
Table 12 Overview of experiment 1 results 

Model Failure load q (kN/m) Estimated angle (°) Plastic steel? 

EXPERIMENT 60.4 40  

FprEN 1992-1-1 
calculation 

43.2   

Rotating 73.6 30 No 

Rotating refined 69.1 26 No 

Rotating refined twice 84.7 29 No 

Rotating (alt. E) 64.5 34 No 

Rotating (alt. E) refined 84.8 31 No 

Rotating (alt. E) refined 
(interface improved) 

84.8 34 No 

Rotating (alt. E) refined 
twice 

91.4 27 No 

Rotating (alt. E) refined 
twice (interface 
improved) 

89.5 25-32 No 

Fixed agg 12mm 129+ - Yes at 114 kN/m 

Fixed agg 8mm (alt. E) 
refined 

128+ - Yes at 115 kN/m 

Fixed shear retention 
0.01 

79 34 No 

Fixed mean agg 4 mm 124 (divergence) - Yes at 114 kN/m 

fixed damage based 52 26 No 

Fixed damage based 
with Poisson reduction 

62.5 42 No 

Fixed agg 12mm, bond-
slip 

129  - Flexural failure Yes at 115 kN/m 

Fixed agg 12mm, bond-
slip, increased bond 
stifnesses 

124 - Flexural failure Yes at 115 kN/m 

Fixed agg 6mm bond-
slip 

126  - Yes at 115 kN/m 

Fixed agg 6mm, bond-
slip, refined 

132  - Flexural failure  Yes at 115 kN/m 

Fixed agg 6mm bond-
slip v2  

103 - unexpected 
divergence 

No 

Fixed agg 6mm bond-
slip v3 

126 - Flexural failure Yes at 115 kN/m 

Fixed agg 6mm bond-
slip v4 

126 - Flexural failure Yes at 115 kN/m 
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Model properties experiment 2 
The material properties used in the different models are given in Table 13 and Table 14Table 10. For 
some properties multiple settings are given, this is because multiple variations have been 
investigated. In the caption of the crack patterns, the legend of load-displacement curves and the 
model names in the overview the used settings are provided. If displacement control has been used 
instead of arc-length control this has also been mentioned. 
 
Table 13 concrete model properties used in experiment 2 

Young’s modulus E=34351 MPa  

Poisson ratio 0.2 

Crack orientation Fixed / rotating 

Tensile curve Hordijk 

Tensile strength 4.5 MPa  

Mode I tensile fracture energy 154.3 N/m 

Shear retention function (applicable to fixed 
crack orientation) 

Constant (0.01) / damage based / aggregate 
size based (12 mm) 

Compression curve Parabolic 

Compressive strength 69.5 MPa 

Compressive fracture energy 39158 N/m 

 
Table 14 steel model properties used in experiment 2 

Young’s modulus steel E=200000 MPa 

Yield strength 580 MPa 

Ultimate strength 670 MPa 

Ultimate strain εu= 0.05 

Yield strength prestressing tendon 1750 MPa 

Applied post tensioning force 0 / 281 kN (
1

4
 prestressing load) / 1125 kN 

The anchor retention length 0 m 

Coefficient of friction 0.18 

Wobble factor 0.05 m-1 

 
Additional bond-slip models have been investigated. In total four bond slip models are used as is 
shown in Table 15. One of the models is based on the tutorial (DIANA FEA). Models with increased 
normal and shear stiffness moduli have also been tested. However, early divergence occurred which 
could not be prevented, and these results have been omitted. In the case that bond slip is modelled 
this is mentioned in the name of the models, the legend of graphs or captions of figures. Bond-slip 
has only been considered for fixed models with a shear retention based on a mean aggregate size of 
12 mm. 
 
Table 15 Bond-slip settings used for experiment 2 (smeared) 

 No bond 
failure 

Doerr 
failure 

Doerr failure 
Tutorial values V1 

Doerr failure 
Increased stiffness 

Normal stiffness 
modulus [N/m3] 

2e12  2e13  1e12  2e13  

Shear stiffness 
modulus [N/m3] 

1e10 1e11 2e10  2e12  

Parameter c [N/m2] - (No 
failure) 

9e6  2e7  9e6 

Shear slip at plateau 
[m] 

- (No 
failure) 

6e-4  0.1 6e-5  
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Crack patterns experiment 2 
Rotating 

 
Figure 66 experiment 2 observed crack pattern 

 
Figure 67 crack pattern experiment 2 rotating model 

 
Figure 68 crack pattern experiment 2 rotating model, displacement control 

 
Figure 69 crack pattern experiment 2 without prestressing load 

 
Figure 70 crack pattern experiment 2 without prestressing load, displacement control 

Fixed 

 
Figure 71 experiment 2 observed crack pattern 
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Figure 72 crack pattern experiment 2 fixed model based on mean aggregate size of 12 mm 

 
Figure 73 crack pattern experiment 2 fixed model based on mean aggregate size of 12 mm, when only 1/4 prestressing is 
applied 

 
Figure 74 crack pattern experiment 2 fixed model with constant retention factor of 0.01 

 

 
Figure 75 crack pattern experiment 2 fixed, damage based, Poisson reduction 

 

 
Figure 76 crack pattern experiment 2 fixed model based on mean aggregate size of 12 mm, disp. control 
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Figure 77 crack pattern experiment 2 fixed model based on mean aggregate size of 12 mm, disp. control, phased support 

 
Figure 78 crack pattern experiment 2 fixed model based on mean aggregate size of 12 mm, without prestressing load 

 
Figure 79 crack pattern experiment 2 fixed model based on mean aggregate size of 12 mm, without prestressing load, disp. 
control 

 
Figure 80 crack pattern experiment 2 fixed model, without prestressing load, retention factor 0.01 

 
Figure 81 crack pattern experiment 2 fixed model based on mean aggregate size of 12 mm, without prestressing load, 
damage based 
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Figure 82 crack pattern experiment 2 fixed model based on mean aggregate size of 12 mm, without prestressing load, 
refined 

 
Figure 83 crack pattern experiment 2 fixed model based on mean aggregate size of 12 mm, without prestressing load, 
included Poisson reduction when damaged 

 
Figure 84 crack pattern experiment 2 fixed model based on mean aggregate size of 12 mm, without prestressing load, with 
class 3 beam reinforcement instead of embedded.  

 
Figure 85 crack pattern experiment 2 fixed bond-slip model based on mean aggregate size of 12mm, no bond failure, at 
peak load 

 
Figure 86 crack pattern experiment 2 fixed bond-slip model based on mean aggregate size of 12mm, no bond failure, AFTER 
peak load just before divergence 
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Figure 87 crack pattern experiment 2 fixed bond-slip model based on mean aggregate size of 12mm, Doerr failure 

 
Figure 88 crack pattern experiment 2 fixed bond-slip model based on mean aggregate size of 12mm, Doerr failure, tutorial 
values 

 
Figure 89 crack pattern experiment 2 fixed bond-slip model based on mean aggregate size of 12 mm, Doerr failure 
increased stiffnesses 
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Load-Displacement curves experiment 2 
Rotating 

 
Figure 90 Load displacement curves of experiment 2 (rotating) in one graph (including a load- controlled check) 
(experimental capacity 709 kN) 

Fixed 

 
Figure 91 Load displacement curves of experiment 2 in one graph (including a load- controlled check) (experimental 
capacity 709 kN) 
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Figure 92 Load displacement curves of experiment 2 bond-slip models in one graph (including a load- controlled check) 
(experimental capacity 709 kN) 

In the F-U Diagrams the prestressed models start off with a displacement (in opposite direction), this 
is caused by the prestressing load which causes initial displacements. The exception is the model 
with displacement control and a phased support. This model places the support at the load location 
after the prestressing has been applied, and only then it will start to record displacements.  
 
When the prestressing load is reduced or removed, an unexpected increase in capacity is observed. 
The increased capacity cannot be explained; therefore, the reliability of FEA results is questionable. 
Only when damage based, or a constant shear retention factor of 0.01 is used, does the capacity 
decrease for the models without prestressing.  
 
Just before the critical shear crack starts to develop, differences start to occur between the arc-
length control (turquoise) and the displacement control (dark green and blue) in Figure 91. 
Eventually the peak loads found by displacement control will also be ~200 kN higher than those 
found when using arc-length control. When analysing the crack patterns of models using arc-length 
and displacement control just before the critical crack develops, some differences can be seen. The 
crack patterns are shown below. 
 

 
Figure 93 fixed, arc-length control before critical crack develops 
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Figure 94 fixed, displacement control before critical crack develops 

Two main differences can be observed: 1. The variant with displacement control has slightly more 
cracks, thus the crack spacing in the arc-length control is bigger. 2. The cracks in the displacement 
control variant start off almost vertical before they incline toward the load. In the arc-length control 
variant, the cracks almost immediately incline toward the load. 
 
When the load/displacement is slightly increased multiple cracks connect, causing the critical crack 
to develop. In the arc-length control this happens at a lower load/displacement. Likely because the 
displacement controlled variant inclines at a later stage. 
 
The reason why the crack pattern differs may be a worse convergence behaviour of arc-length 
control. All settings were checked, apart from how the loading is controlled and the load steps (arc-
length needs smaller steps to prevent divergence) no differences between the models are present. 
 

FprEN calculations experiment 2 
All calculations are done for the critical cross-section located at 1d from the load and 𝛾𝑉 = 1.4, ddg 
=32mm, fck =69.5. Values written in the calculations may have been rounded.  

𝑑𝑝 = 750 − (143 +  (367 − 143) ∗
(𝑑 − 350)

2430
) = 577.3 𝑚𝑚 

𝑑 =
𝑑𝑠

2 ∗ 𝐴𝑠𝑙 + 𝑑𝑝
2 ∗ 𝐴𝑝

𝑑𝑠 ∗ 𝐴𝑠𝑙 + 𝑑𝑝 ∗ 𝐴𝑝
= 672.1 𝑚𝑚 

dp and d are solved iteratively with Ap = 1050 mm2, Asl = 3285 mm2 and ds = 698 mm. 
𝑉𝑝 = sin(5°) ∗ 1125 = 98.05 𝑘𝑁 

𝑀𝐸𝑑 = 0.635 ∗ 𝐹 ∗ (2940 − 𝑑) − 𝑉𝑝 ∗ (2940 − 𝑑) 

𝑉𝐸𝑑 = 0.635 ∗ 𝐹 − 𝑉𝑝 

acs = |
MEd

VEd
 | = |2940 − 672.1| = 2067.9 mm ≥ d = 672.1 mm 

av = √
acs

4
∗ d = √

2067.9

4
∗ 672.1 = 589.5 mm ≤ d = 672.1 mm 

𝑘𝑣𝑝 = 1 −
𝑃

𝑉𝑒𝑑
∗

𝑑

3 ∗ 𝑎𝑐𝑠
= 1 −

1125

209.1
∗

672.1

3 ∗ 2067.9
= 0.42 ≥ 0.1 

ρl =
Asl ∗ 𝑑𝑠 + 𝐴𝑝 ∗ 𝑑𝑝

bd2
=

6 ∗ (
26
2 )

2

∗ π ∗ 698 + 1050 ∗ 577.3

225 ∗ 672.12
= 0.0278 % 

VRd,c =
0.66

γV
(100ρl ∗ fck ∗

ddg

𝑘𝑣𝑝av
)

1/3

bd =
0.66

1.4
(2.8 ∗ 69.5 ∗

32

0.42 ∗ 672
)

1
3

∗ 225 ∗ 672 = 209 kN 

VRd,c ≥ τRdc,min ∗ bwd 

VRdc,min =
11

γV
√

fck

fyd
∗

ddg

d
∗ bwd =

11

1.4
√

69.5

435
∗

32

672.1
∗ 225 ∗ 672.1 = 104.4 kN 

FVRd,c =
VRd,c + 𝑉𝑝

0.635
= 483.57 kN  
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Overview experiment 2 
Table 16  Overview of experiment 2 results 

Model Failure load F (kN) Estimated angle (°) Plastic steel? 

EXPERIMENT 709  16 (left crack)  

FprEN 1992-1-1 
calculation 

483.6   

Lattice models 510-600 30-45  

Rotating 793.6 58 (left crack), 39 (right 
crack) 

No 

Rotating (disp control) 1000 35 and 48 (left cracks),  
29 (right crack) 

No 

Rotating w.o. prestress  372.9 25 (left crack), 28 (right 
crack) 

No 

Rotating w.o. prestress 
(disp control) 

402.5 25  No 

Fixed agg12 852 13-21  No 

Fixed ¼ prestress load 882+ - No 

Fixed retention 0.01 765 -  No 

Fixed damage based, 
Poisson reduction 

665 45 no 

Fixed (disp control) 1033 13-21  Yes after peak load 

Fixed (disp control) 
phased 

1040 13-21  Yes after failure 

Fixed w.o. prestress 1146+ -  Yes at 870 kN 

Fixed w.o. prestress 
(disp control) 

1327.3 -  Yes at 872 kN 

Fixed w.o. prestress (ret 
0.01) 

456 32 No 

Fixed w.o. prestress 
(damage) 

297 22 No 

Fixed w.o. prestress 
refined 

900  29  Yes at 874 kN 

Fixed w.o. prestress 
Poisson reduction  

1320+ -  Yes at 868 kN 

Fixed w.o. prestress 
class III 

1206+ -  Yes at 905 kN 

Fixed bond-slip no bond 
failure 

943 22 No 

Fixed bond-slip Doerr  838 22 No 

Fixed bond-slip Doerr, 
tutorial values 

897 45-52 No 

Fixed bond-slip Doerr, 
increased stiffnesses  

866 30 No 
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Model properties experiment 3 
The material properties used are given in Table 17 and Table 18Table 14Table 10. For some 
properties more than one setting/value is given, this is because multiple variations have been 
investigated. In the caption of the crack patterns, the legend of load-displacement curves and the 
model names in the overview the used settings are provided. If displacement control has been used 
instead of arc-length control this has also been mentioned. 
 
Table 17 concrete model properties used in experiment 3 

Young’s modulus E=34351 MPa  

Poisson ratio 0.2 

Crack orientation Fixed / rotating 

Tensile curve Hordijk 

Tensile strength 4.5 MPa  

Mode I tensile fracture energy 154.3 N/m 

Shear retention function (applicable to fixed 
crack orientation) 

Constant (0.01) / damage based / aggregate 
size based (12 mm) 

Compression curve Parabolic 

Compressive strength 69.5 MPa 

Compressive fracture energy 39158 N/m 

 
Table 18 steel model properties used in experiment 3 

Young’s modulus steel E=200000 MPa 

Yield strength 580 MPa 

Ultimate strength 670 MPa 

Ultimate strain εu= 0.05 

Yield strength prestressing tendon 1750 MPa 

Applied post tensioning force 0 / 1125 kN 

The anchor retention length 0 m 

Coefficient of friction 0.18 

Wobble factor 0.05 m-1 

 
Additional bond-slip models have been created for experiment 3, Table 19 contains the settings used 
in these models. Models with higher stiffnesses or CEB FIB models instead of cubic Doerr were also 
considered, however, early divergence occurred and could not be prevented. As not all models 
considered bond-slip behaviour, it is specifically mentioned in the name of the models when bond-
slip is modelled. Bond-slip has only been considered for fixed models with a shear retention based 
on a mean aggregate size of 12 mm. 
 
Table 19 Bond-slip settings used for experiment 3 (smeared) 

 Bond slip Bond slip v2 Bond slip v3 

Normal stiffness modulus [N/m3] 2e12 2e13 3.75e12 

Shear stiffness modulus [N/m3] 1e10 1e11 3.75e11 

Parameter c [N/m2] 9e6 9e6 9e6 

Shear slip at plateau [m] 6e-4 6e-4 6e-5 
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Crack patterns experiment 3 
Rotating 
 

 
Figure 95 experiment 3 observed crack patterns 

 
Figure 96 crack pattern experiment 3 rotating model 

 
Figure 97 crack pattern experiment 3 rotating model without prestressing load 

Fixed 

 
Figure 98 experiment 3 observed crack patterns 
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Figure 99 crack pattern experiment 3 fixed crack based on mean aggregate size of 12 mm 

 

 
Figure 100 crack pattern experiment 3 fixed crack, constant retention factor 0.01 

 
Figure 101 crack pattern experiment 3 fixed crack damage based, with Poisson reduction based on damage 

 
Figure 102 crack pattern experiment 3 fixed crack based on mean aggregate size of 12 mm, without prestressing load 

 

 
Figure 103 crack pattern experiment 3 fixed bond-slip model based on mean aggregate size of 12 mm 
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Figure 104 crack pattern experiment 3 fixed bond-slip model based on mean aggregate size of 12 mm v2 

 
Figure 105 crack pattern experiment 3 fixed bond-slip model based on mean aggregate size of 12 mm v3 
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Load-Displacement curves experiment 3 
Rotating 

 
Figure 106 Load displacement curves of experiment 3 (rotating) in one graph (experimental capacity 100.5 kN/m) 

 

Fixed 

 
Figure 107 Load displacement curves of experiment 3 in one graph (experimental capacity 100.5 kN/m) 
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Figure 108 Load displacement curves of experiment 3 Bond-slip models in one graph (experimental capacity 100.5 kN/m) 

FprEN calculations experiment 3 
All calculations are done using a solver for the critical cross-section located at 1d from the 
intermediate support and 𝛾𝑉 = 1.4, ddg =32mm, fck =69.5. Values written in the calculations may have 
been rounded. The support reaction at intermediate support is RB (excluding prestressing effects).  

𝑑𝑝 = 750 − (136 +  (607 − 136) ∗
(𝑑 − 350)

5384 − 350
) = 583.3 𝑚𝑚 

𝑑 =
𝑑𝑠

2 ∗ 𝐴𝑠𝑙 + 𝑑𝑝
2 ∗ 𝐴𝑝

𝑑𝑠 ∗ 𝐴𝑠𝑙 + 𝑑𝑝 ∗ 𝐴𝑝
=

6982 ∗ 4109 + 583.32 ∗ 1050

698 ∗ 4109 + 583.3 ∗ 1050
= 677.8 𝑚𝑚 

𝑅𝐵 =
(

1
2 ∗ 10.722 ∗ 𝑞 + 5.11 ∗ 13.66 ∗ 𝑞)

10.72
= 11.87𝑞 

𝑉𝑝 = sin(5°) ∗ 1125 ∗
(2630 + 5270)

10720
= 72.3 𝑘𝑁 

𝑀𝐸𝑑 = ((2940 + 𝑑) ∗ 5110 +
1

2
𝑑2 − 11870 ∗ 𝑑) ∗ 1 + 𝑉𝑝 ∗ 𝑑 = 527.3 𝑘𝑁𝑚 

𝑉𝐸𝑑 = (11870 − 5110 − 𝑑) ∗ 𝑞 − 𝑉𝑝 = 200.4 𝑘𝑁 

𝑎𝑐𝑠 = |
𝑀𝐸𝑑

𝑉𝐸𝑑
 | = 2631 𝑚𝑚 ≥ 𝑑 = 677.8𝑚𝑚 

𝑎𝑣 = √
𝑎𝑐𝑠

4
∗ 𝑑 = 667.8 𝑚𝑚 ≤ 𝑑 = 677.8𝑚𝑚 

𝑘𝑣𝑝 = 1 +
𝑁𝐸𝑑

|𝑉𝐸𝑑|
∗

𝑑

3 ∗ 𝑎𝑐𝑠
= 0.52 ≥ 0.1  

ρl =
Asl ∗ 𝑑𝑠 + 𝐴𝑝 ∗ 𝑑𝑝

bd2
=

(4 ∗ (
26
2 )

2

+ 2 ∗ (
20
2 )

2

+ 12 ∗ (
12
2 )

2

) π ∗ 698 + 1050 ∗ 583.3 

225 ∗ 677.82

= 0.0337 % 

𝑉𝑅𝑑,𝑐 =
0.66

𝛾𝑉
(100𝜌𝑙 ∗ 𝑓𝑐𝑘 ∗

𝑑𝑑𝑔

𝑘𝑣𝑝 ∗ 𝑎𝑣
)

1/3

∗ 𝑏𝑤𝑑 =
0.66

1.4
(3.37 ∗ 69.5 ∗

32

0.52 ∗ 667.8
)

1
3

∗ 225 ∗ 677.8

= 200.4 𝑘𝑁 > 𝜏𝑅𝑑𝑐,𝑚𝑖𝑛 ∗ 𝑏𝑤𝑑 

𝑉𝑅𝑑𝑐,𝑚𝑖𝑛 =
11

𝛾𝑉
√

𝑓𝑐𝑘

𝑓𝑦𝑑
∗

𝑑𝑑𝑔

𝑑
∗ 𝑏𝑤𝑑 =

11

1.4
√

69.5

435
∗

32

677.8
∗ 225 ∗ 677.8 = 103.7 𝑘𝑁 

𝑞𝑉𝑅𝑑,𝑐 =
𝑉𝑅𝑑,𝑐 + 𝑉𝑃

11.87 − 5.11 − 0.678
= 44.8 𝑘𝑁/𝑚  
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Overview experiment 3 
Table 20  Overview of experiment 3 results 

Model Failure load q (kN/m) Estimated angle (°) Plastic steel? 

EXPERIMENT 100.5 12  

FprEN 1992-1-1 
calculation 

44.8   

Rotating 89.7 29 no 

Rotating w.o. prestress  45.4  27 no 

Fixed agg12 116.2 16 no 

Fixed with retention 
0.01 

91.5 31  no 

Fixed damage based, 
and Poisson reduction 

90.36 40 no 

Fixed w.o. prestress 82.5 19 no 

Fixed agg12 Bond-slip 81 45 (crack does not go 
to support, crosses 
reinforcement at 1.4 m 
from intermediate 
support.) 

no 

Fixed agg12 Bond-slip v2 91 20 no 

Fixed agg12 Bond-slip v3 90.25 17 no 
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Appendix C. Finite Element Analysis (Discrete) 
First discrete model 
To get comfortable with modelling discrete models, the unreinforced beam with D= 150 found in the 
article (Ruiz, Elices, & Planas, 1998) has been modelled by using a vertical discrete crack in the 
middle of the beam. The beam contains a notch and fails in flexure. Using linear softening, a tensile 
strength of 3.8 MPa and a fracture energy 62.5 N/m in a discrete model, similar results can be found 
as in the article without any convergence issues. The peak load found in the discrete model is about 
30% larger, this increased load can partly be explained by the fact that the splitting tensile strength 
has been used in the model which is higher than the actual tensile strength.  
 

 
Figure 109 load-displacement curve D=150 for discrete mode Figure 110 load-crack opening curves. (Ruiz, Elices, & 

Planas, 1998) 

With this, an unreinforced concrete beam failing in flexure has been successfully modelled.  
 

Experiment 1 
Beam SC51 (Cavagnis, Ruiz, & Muttoni, 2015), a simply supported beam with distributed loading is 
modelled using the discrete cracking approach. Two different methods are used: Crack dilatancy and 
discrete cracking. The settings of both models can be found in this chapter. The additional settings 
required for the bond slip models are also given. 
 

Crack dilatancy settings 
The crack dilatancy settings (low) are shown in Table 21. 
Table 21 Dilatancy settings used for experiment 1 (low) 

Normal stiffness modulus 1e12 N/m3 

Shear stiffness modulus 1e11 N/m3 

Cubic compressive strength 6e7 N/m2 

Tensile strength 3e6 N/m2 

Maximum aggregate size 0.012 m 

Fracture energy 137 N/m 

 
It was found that rather low stiffness moduli had been used in the previous table. The stiffnesses are 
increased to a dummy stiffness determined by: 

𝑘𝑛 = 1000 ∗
𝐸𝑐

𝐿
 

𝑘𝑡 = 1000 ∗
𝐺𝑐

𝐿
 

Where ‘L’ is the element size used in the mesh.  
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The settings for the updated crack dilatancy models are shown in Table 22 and are used instead. 
Table 22 crack dilatancy settings used for experiment 1 

Normal stiffness modulus 6.8e14 N/m3 

Shear stiffness modulus 3e14 N/m3 

Cubic compressive strength 6e7 N/m2 

Tensile strength 3e6 N/m2 

Maximum aggregate size 0.012 m 

Fracture energy 137 N/m 

 

Discrete crack settings 
The settings required for the discrete crack are given in Table 23. 
Table 23 Discrete crack settings used for experiment 1 

Normal stiffness modulus 6.8e14 N/m3 

Shear stiffness modulus 3e14 N/m3 

Tensile strength 2.6e6 N/m2 

Fracture energy 137 N/m 

 

Truss-bond slip settings 
The values used for the truss-bond slip are based on (CEB-FIP Model code 1990, 1993) and are 
shown in Table 24. 
Table 24 Truss-bond slip settings used for experiment 1 

Normal stiffness modulus 2.2e12 N/m3 

Shear stiffness modulus 2.2e11 N/m3 

TAUmax 1.5e7 N/m2 

TAUf 2.3e6 N/m2 

S0 1e-6 m 

S1 6e-4 m 

S2 6e-4 m 

S3 1e-3 m 

Exponent alpha 0.4 

 

Experiment 3 
The tables containing settings of the different models are shown in Table 25 

Crack dilatancy 
Table 25 crack dilatancy settings used for experiment 3 

Normal stiffness modulus 1.4e15 N/m3 

Shear stiffness modulus 7e14 N/m3 

Cubic compressive strength 6.95e7 N/m2 

Tensile strength 4.5e6 N/m2 

Maximum aggregate size 0.012 m 

Fracture energy 154 N/m 
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Discrete crack 
The settings for the Discrete crack are shown in Table 26 
Table 26 Discrete crack settings used for experiment 3 

Normal stiffness modulus 1.4e15 N/m3 

Shear stiffness modulus 7e14 N/m3 

Tensile strength 4.5e6 N/m2 

Fracture energy 154 N/m 

 

Truss-bond slip 
For this model, the CEB-Fib bond slip models have convergence issues, for which reason the Doerr 
model is used with the following settings: 
Table 27 Truss-bond slip settings used for experiment 3 

Normal stiffness modulus 3.75e12 N/m3 

Shear stiffness modulus 3.75e11 N/m3 

Parameter c 9e6 N/m2 

Shear slip at plateau 6e-5 m 
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Appendix D. Plasticity approach 
The following tables contain the angles found using the plasticity approach. The base values are 
found in option 2. Only one variable can deviate from the base values at a time. As example, when 
the effect of the shear span a is investigated (for sigma=0), the angles are 22.4°, 16.5° and 13.1° for 
a=2, a=5 and a=10 respectively, while all other variables remain at their base values (found as option 
2).  

Over-reinforced 
Table 28 the effect of changing a single variable on the crack angle of a simply supported beam, in case where sigma =0 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

a [m] 2 5 10 22.4 16.5 13.1 

h [m] 0.2 0.5 1.0 12.0 16.5 20.1 

d [m] 0.135 0.4 0.3 16.5 16.5 16.5 

fc [MPa] 30 60 80 15.9 16.5 16.0 

ρ [%] 1 2 5 17.6 16.5 14.6 

 
Table 29 the effect of changing a single variable on the crack angle of a simply supported beam, in case where sigma = 10 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

a [m] 2 5 10 33.9 19.6 14.0 

h [m] 0.2 0.5 1.0 14.4 19.6 22.2 

d [m] 0.135 0.4 0.3 16.3 19.6 18.3 

fc [MPa] 30 60 80 19.0 19.6 18.4 

ρ [%] 1 2 5 21.7 19.6 16.4 

 
Table 30 the effect of changing a single variable on the crack angle of a simply supported beam (uniform load), in case 
where sigma = 0 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

a [m] 2 5 10 27.9 20.0 15.9 

h [m] 0.2 0.5 1.0 14.5 20.0 24.9 

d [m] 0.135 0.4 0.3 20.0 20.0 20.0 

fc [MPa] 30 60 80 19.3 20.0 19.4 

ρ [%] 1 2 5 21.4 20.0 17.8 

 
Table 31 the effect of changing a single variable on the crack angle of a simply supported beam (uniform load), in case 
where sigma = 10 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

a [m] 2 5 10 53.8 27.4 18.5 

h [m] 0.2 0.5 1.0 20.0 27.4 32.9 

d [m] 0.135 0.4 0.3 20.7 27.4 24.6 

fc [MPa] 30 60 80 27.5 27.4 24.9 

ρ [%] 1 2 5 30.9 27.4 22.2 
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Table 32 the effect of changing a single variable on the crack angle of a continuous beam, in case where sigma =0 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

L [m] 4 10 20 28.0 20.4 16.1 

h [m] 0.2 0.5 1.0 14.9 20.4 24.9 

d [m] 0.135 0.4 0.3 20.4 20.4 20.4 

fc [MPa] 30 60 80 19.6 20.4 19.7 

ρ [%] 1 2 5 21.7 20.4 18.1 

 
Table 33 the effect of changing a single variable on the crack angle of a continuous beam, in case where sigma =10 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

L [m] 4 10 20 54.4 28.2 18.9 

h [m] 0.2 0.5 1.0 20.8 28.2 32.9 

d [m] 0.135 0.4 0.3 21.1 28.2 25.2 

fc [MPa] 30 60 80 28.4 28.2 25.6 

ρ [%] 1 2 5 31.9 28.2 22.8 

 
 
Table 34 the effect of changing a single variable on the crack angle of a continuous beam (uniform load), in case where 
sigma = 0 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

L [m] 4 10 20 28.7 21.4 17.2 

h [m] 0.2 0.5 1.0 15.9 21.4 25.6 

d [m] 0.135 0.4 0.3 21.4 21.4 21.4 

fc [MPa] 30 60 80 20.5 21.4 20.7 

ρ [%] 1 2 5 22.9 21.4 18.8 

 
Table 35 the effect of changing a single variable on the crack angle of a continuous beam (uniform load), in case where 
sigma = 10 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

L [m] 4 10 20 63.1 32.0 21.2 

h [m] 0.2 0.5 1.0 24.4 32.0 35.6 

d [m] 0.135 0.4 0.3 22.5 32.0 27.9 

fc [MPa] 30 60 80 32.7 32.0 28.5 

ρ [%] 1 2 5 36.7 32.0 25.0 
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Not over-reinforced 
Table 36 the effect of changing a single variable on the crack angle of a simply supported beam, in case where sigma =0 for 
a non-over-reinforced beam 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

a [m] 2 5 10 27.2 20.0 15.9 

h [m] 0.2 0.5 1.0 14.6 20.0 24.4 

d [m] 0.135 0.4 0.3 20.0 20.0 20.0 

fc [MPa] 30 60 80 16.5 20.0 21.0 

ρ [%] 1 2 5 26.0 20.0 14.8 

 
Table 37 the effect of changing a single variable on the crack angle of a simply supported beam, in case where sigma =10 
for a non-over-reinforced beam 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

a [m] 2 5 10 48.7 27.1 18.5 

h [m] 0.2 0.5 1.0 20.17 27.1 31.5 

d [m] 0.135 0.4 0.3 20.6 27.1 24.4 

fc [MPa] 30 60 80 20.3 27.1 28.3 

ρ [%] 1 2 5 43.7 27.1 16.6 
 

Table 38 the effect of changing a single variable on the crack angle of a simply supported beam (uniform load), in case 
where sigma =0 for a non-over-reinforced beam 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

a 2 5 10 33.8 24.3 19.3 

h 0.2 0.5 1.0 17.7 24.3 30.2 

d 0.135 0.4 0.3 24.3 24.3 24.3 

fc 30 60 80 20.0 24.3 25.5 

ρ 1 2 5 31.6 24.3 17.9 
 
Table 39 the effect of changing a single variable on the crack angle of a simply supported beam (uniform load), in case 
where sigma =10 for a non-over-reinforced beam 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

a 2 5 10 72.2 39.2 25.3 

h 0.2 0.5 1.0 29.4 39.2 45.8 

d 0.135 0.4 0.3 26.6 39.2 34.0 

fc 30 60 80 29.7 39.2 40.2 

ρ 1 2 5 61.1 39.2 22.5 
 
Table 40 the effect of changing a single variable on the crack angle of a continuous beam, in case where sigma =0 for a non-
over-reinforced beam 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

L [m] 4 10 20 34.0 24.7 19.6 

h [m] 0.2 0.5 1.0 18.1 24.7 30.2 

d [m] 0.135 0.4 0.3 24.7 24.7 24.7 

fc [MPa] 30 60 80 20.4 24.7 25.9 

ρ [%] 1 2 5 32.1 24.7 18.2 
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Table 41 the effect of changing a single variable on the crack angle of a continuous beam, in case where sigma =10 for a 
non-over-reinforced beam 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

L [m] 4 10 20 72.7 40.5 26.0 

h [m] 0.2 0.5 1.0 30.7 40.5 45.8 

d [m] 0.135 0.4 0.3 27.3 40.5 35.1 

fc [MPa] 30 60 80 30.7 40.5 41.4 

ρ [%] 1 2 5 62.7 40.5 23.1 
 

Table 42 the effect of changing a single variable on the crack angle of a continuous beam (uniform load), in case where 
sigma = 0 for a non-over-reinforced beam 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

L [m] 4 10 20 35.0 26.2 21.0 

h [m] 0.2 0.5 1.0 19.4 26.2 31.3 

d [m] 0.135 0.4 0.3 26.2 26.2 26.2 

fc [MPa] 30 60 80 21.4 26.2 27.5 

ρ [%] 1 2 5 34.3 26.2 19.0 
 

Table 43 the effect of changing a single variable on the crack angle of a continuous beam (uniform load), in case where 
sigma = 10 for a non-over-reinforced beam 

Changed 
variable 

Option 1 Option 2 
(base values) 

Option 3 θ1 [°] θ2 [°] θ3 [°] 

L [m] 4 10 20 83.8 47.3 30.1 

h [m] 0.2 0.5 1.0 37.1 47.3 51.6 

d [m] 0.135 0.4 0.3 29.7 47.3 40.2 

fc [MPa] 30 60 80 35.7 47.3 48.0 

ρ [%] 1 2 5 71.6 47.3 25.5 
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Appendix E. Lattice models 
Lattice models were considered as an alternative method of modelling concrete and its cracking 
behaviour. The lattice models used in this chapter are like those found in (Aydin, Tuncay, & Binici, 
2019). Explicit time integration is used, which is inherently stable and will, unlike FEA, not show 
convergence problems.  
 
The model was designed for reinforced concrete and does not have a built-in function to apply 
prestressing. To make it possible to investigate prestressed beams, prestress is added to the model 
as a pair of external axial forces. It should be noted that this is merely an attempt to imitate the 
prestressing behaviour. Due to the nature of the model, the external forces will cause a 2nd order 
effect, causing additional moments. As prestressing is applied externally, the prestressing ‘tendon’ is 
also not loaded and behaves like regular reinforcement. For these reasons it is questioned whether 
the lattice models could be applied to prestressed beams. 
 
Due to the time constraints of this thesis no detailed analysis was performed and only two different 
beams are investigated. The first beam is a fictional, simply supported, rectangular prestressed 
beam. The second beam is based on the experiment done on a prestressed T-beam found in (Huber, 
Huber, & Kollegger, 2018). The capacities found with the lattice models are compared to the shear 
capacity estimated using FprEN 1992-1-1, as well as the experimental value for the second beam. 
The crack patterns are also investigated, as the critical crack location is of high importance in this 
thesis.  
 
The input parameters of the model other than the geometric properties are: The concrete tensile 
strength ft, concrete Young’s modulus Ec, concrete fracture energy GF, steel yield strength fy, steel 
ultimate strength ft, steel Young’s modulus Es, and the ultimate steel strain εu.  
 
The author of this thesis did not create the models himself due to time and copyright constraints. 
Instead, the Lattice Models investigated have been setup by Beyazit Aydin, who shared the results of 
the analysis.     
 

Fictional beam 
Unlike FEM, the lattice model requires that the geometry and reinforcement locations coincide with 
the mesh nodes. This also means that tendons cannot be modelled as a curve. To prevent high 
computational costs, or beam properties that do not coincide with the mesh, a fictional beam was 
modelled with a small span of 4m.  
 
The fictional beam has a span of 4m with a concentrated load in the centre of the beam. The height 
of the beam is 400 mm, and it has a 320 mm width. Longitudinal reinforcement, with Asl,bot=Asl,top= 
760 mm2, is present at both the top and bottom of the beam, located at 40mm from the upper and 
lower fibre of concrete. Central prestressing steel is also added with an area of Ap=300 mm2. The 
amount of shear reinforcement is d6/320. 
 
Table 44 Material properties fictional beam 

Ec     (Youngs modulus concrete) 35220     [Mpa] 
Es     (Youngs modulus steel) 200000   [Mpa] 
fct     (concrete tensile strength) 3.51         [Mpa] 
fy       (steel yield strength) 500          [Mpa] 
ft      (steel ultimate strength) 650          [Mpa] 
Gf     (concrete fracture energy) 141          [N/mm] 
εt      (steel ultimate strain) 5               [%] 
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Three prestressing levels are investigated; P=0 kN, P=300 kN and P=405 kN with a mesh size of 
40mm and external axial prestressing loads. The crack patterns of the models are shown below in 
Figure 111.  
 

 
Figure 111 Crack patterns lattice models P= 0 (top), P=300 kN (middle) and P=405 kN (bottom) for mesh size of 40mm and 
concentrated external prestressing 

It is observed that for the prestressed beams, large horizontal cracks occur instead of the expected 
shear cracks. In an attempt to prevent the unexpected horizontal cracks from forming, the mesh size 
is reduced to 20mm, and the calculations are repeated. The crack patterns of the model with the 
refined mesh size and concentrated prestressing are show in Figure 112. 
 

 
Figure 112 Crack patterns lattice models P=300 kN (top), P=405 kN (bottom) for mesh size of 20mm and concentrated 
external prestressing 

It is found that using a smaller mesh did improve the crack patterns for P=300 kN, but the model 
with P=405 kN still shows unexpected behaviour. For this reason, another change has been made to 
improve the results. As the horizontal cracks are likely caused by the external concentrated 
prestressing loads, a distributed prestressing along the edges of the beam may provide better 
results. Crack patterns found using a distributed prestressing load instead of a concentrated 
prestressing load for P=405 kN are shown in Figure 113. 
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Figure 113 Crack patterns lattice models P=405 kN, for mesh size 40mm (top) and 20mm (bottom) 

It was found that the crack patterns using distributed prestressing are much more realistic and 
clearly show shear cracks. For the most accurate results it is therefore concluded that prestressing 
should be applied in a distributed manner and with a small enough mesh.   
 
The capacities found with the lattice models, have been compared to the capacities found using 
FprEN 1992-1-1 in Table 45. It is found that the FprEN 1992-1-1 predicts lower capacities, which is 
expected as it is a conservative model. The capacities in the table indicated with * are likely 
inaccurate as they are found in the models where the unexpected crack patterns occurred. 
 
Table 45 Shear capacities found with the lattice models and FprEN 1992-1-1 

Load Capacity 
for: 

P=0 P=300 kN P=405 kN P=405 kN 
(distributed) 

Mesh 40 mm 345 kN 375 kN* 310 kN* 360 kN 

Mesh 20 mm 290 kN 300 kN 110 kN* 340 kN 

FprEN 1992-1-1 238  254 260 (260) 

 
The load-displacement curves for a mesh size of 40 mm and with a concentrated axial load are given 
below, in Figure 114. 
 

 
Figure 114 Load-Displacement curves lattice models P=0 (left), P=300 kN (middle), P=405 kN (right) for a mesh of 40 mm 
and concentrated prestressing. 

The load-displacement curves for a mesh size of 20mm with a concentrated axial load are given in 
Figure 115.  
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Figure 115 Load-Displacement curves lattice models P=300 kN (left) and P=405 kN (right) for a mesh of 20 mm 

The load-displacement curves for P=405 kN with a distributed prestressing is shown in the figure 
below, Figure 116. 
 

 
Figure 116 Load-Displacement curves lattice models P=405 kN, mesh size of 40 mm (left), and 20 mm (right) and distributed 
prestressing 

Experiment 2 
To investigate if the lattice models can estimate accurate capacities and crack patterns for 
prestressed beams, an experiment from (Huber, Huber, & Kollegger, 2018) has been modelled. The 
beam properties have been discussed in ‘4.3 Experiment 2 modelling simply supported prestressed 
T-beam’ and are not repeated here. The curved prestressing tendon has been approximated by 
linear elements in the lattice models. 
 
The crack patterns of two models are compared to the cracks found in the experiment. The first 
model uses a distributed prestress along the entire edge of the beam. The second model distributes 
the prestressing forces over the bottom half of the edge. The crack patterns are as shown in Figure 
117. Although similar cracks can be observed between the experiment and the lattice models 
around the load point, the models were unable to find the critical shear crack observed in the 
experiment.  
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Figure 117 Crack patterns experiment (Huber, Huber, & Kollegger, 2018) (top) and lattice models, distributed prestress over 
full edge (middle), distributed prestress over bottom edge (bottom), for mesh size of 20 mm 

The capacities found using the lattice models are compared with the experimental value and the 
estimate from FprEN 1992-1-1 in Table 46. The lattice models seem to perform reasonably well and 
estimate a capacity between the experimental value and the Eurocode estimate. 
 
Table 46 Shear capacities found with the lattice models, FprEN 1992-1-1 and the experiment 

Model Shear capacity 

Lattice model (distributed along full edge) 510 kN 

Lattice model (distributed along bottom half of the edge) 600 kN 

FprEN 1992-1-1 484 kN 

Experiment 709 kN 

 
The load-displacement curves for the lattice models are given below, in Figure 118. 
 

 
Figure 118 Load-Displacement curves lattice models; distributed prestress over full edge (left) and distributed prestress over 
bottom edge (right) for a mesh size of 20mm 

Concluding remarks lattice models 
Although reasonable capacities were obtained using lattice models for prestressed beams, the crack 
patterns found, using distributed or concentrated axial loads as prestress, were not deemed 
adequate for the purpose of this thesis. However, only a limited number of alternatives is 
investigated, and it may be possible to get better results if different assumptions are used. 


