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Abstract
In this thesis, we study a particle method for Bayesian deep learning. In particular, we look
at the estimation of the parameters of an ensemble of Bayesian neural networks by means of
this particle method, called Stein variational gradient descent (SVGD). This method iteratively
updates a collection of parameters and it has the property that its update directions are chosen
such that they optimally decrease the Kullback-Leibler divergence. We also study gradient
flows of probability measures and show how gradient flows corresponding to functionals on the
space of probability measures can induce particle flows. We formulate SVGD as a method in
this space. In the regime of infinite particles we show results about convergence of SVGD. An
existing convergence result for SVGD can be extended by showing that the probability measures,
governing the collection of SVGD particles, are uniformly tight. We give conditions under which
this holds.
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Preface
Writing a master’s thesis in applied mathematics is a far from easy journey. Let me compare it
to ascending a snowy mountain in the Alps. It is a long and lonely trip without an easy path that
guides you to the top. In fact, you have to find your own path and explore it: see where it takes
you. During this trip, you will experience many shivering moments, poor visibility and fatigue.
There are only three ingredients that can help you to reach the top: curiosity, determination and
stamina. These factors are not purely intrinsic to me, no. To be able to get to the top, I need
my family and friends. In particular, I want to thank my parents, Carolien and Joep, for always
being there for me, even though I was not always there for them. Furthermore, I would like to
thank my sister, Willemijn, for her sweetness and I want to express my gratitude towards my
grandmother, Ellen. I do not know anyone else who was so interested in this journey and my
experiences throughout. I also want to thank all my friends for making this journey possible,
even though this journey also meant that I could not always attend social events, especially in
Groningen. It was not easy. For giving me valuable feedback I want to thank Chris van Vliet.
Every successful journey has a guiding force and in this case I would like to warmly thank the
supervisor of this trip: prof. dr. A.W. van der Vaart. Without his patience, sharp and clear
view on the way up, the top would not have been reached.

As time progressed, the journey progressed as well. At this moment in time, I have almost
reached the top. At that point, I will finally be able to enjoy the magnificent view from the top
of the mountain and see where this journey led me: looking back is sometimes good to see how far
you have come. However, the best is yet to come: skiing down the mountain, in a rhythmic flow,
determined by the steepness and the curvature of the mountain, as a particle that is smoothly
rolling down. A feeling of enormous joy overtakes your thoughts, your sense of being. In no time
you will be at the foot of the mountain again: the starting point of the journey. This is what
mathematics is all about. A tough and long way up, but then, the hard work pays off and you
get a pulse of pure joy: understanding some minuscule part of the mathematical world. I hope
this thesis takes you on this journey.

Wieger Schipper

Delft, August 2023
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Notation
Below we will introduce the notation used in this thesis.

Notation Description
X Input space
Y Output space
P Probability distribution

E,EP ,EX∼P
Expectation, expectation with explicit dependence on the probability measure P
and expectation for the random variable X with distribution P

D Dataset
M Model set
p Number of parameters
py Dimension of output space Y
N,n Number of datapoints, i.e. sample size
y Output
x Input or realisation of random variable X
θ Parameter
Θ Parameter space
φ Density for a normal distribution
M Number of ensemble members
K Number of classes in classification problems
L Loss function
x 7→ ηθ(x) Regression function
L(θ : D) Log likelihood for parameter θ and data D
|| · ||, || · ||2 General norm and the Euclidean (L2) norm
θ̂(m) Estimates of the M parameters in an ensemble, indexed by m
ϵ Step size
X Random variable on X
k(·, ·) Positive definite kernel function
H,Hd Reproducing kernel Hilbert space (RKHS) and a d-dimensional RKHS
⟨·, ·⟩H Inner product with respect to the space H
f Vector-valued function
∇f Gradient of the real-valued function f
∇f Gradient of the vector-valued function f , also called the Jacobian
sp Score function of density p
Ap Stein operator with respect to p
Q Set of approximating densities
p(·) Posterior density or target density
q(·) Approximating density
T Set consisting of smooth transforms
P2(X ) Wasserstein space on X
W2(ν, µ) Wasserstein-2 distance between µ and ν
⇒ Weak convergence of a measure
f, ϕ.f ,ϕ Real-valued and vector-valued (test) functions
|| · ||∗ Dual norm

C∞
c (X ) Space of compactly supported and infinitely many times

continuously differentiable functions on X
(a)+ Positive part of a ∈ R
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1 Introduction
In this section an introduction is given to the topic of Bayesian deep learning from a mathematical
perspective. A broader view on Bayesian learning is used to motivate why a Bayesian approach
can be beneficial in a deep learning setting.

1.1 A motivation for Bayesian deep learning
The introduction that follows is mainly based on Andrew Gordon Wilson 2020 and Andrew G
Wilson and Izmailov 2020 and we will also use their notation. In both papers an insightful
connection between Bayesian learning and deep learning is made, but let us start this discussion
with an interesting motivating problem for Bayesian learning in general. Consider Figure 1,
which shows data of the number of monthly airline passengers over the years. See Appendix B.1
for an interesting plot to see what happens when you connect the datapoints.

Figure 1: Data for the number of airline passengers per month in the displayed years. Picture
inspired by Andrew G Wilson and Izmailov 2020.

The goal is to find the best fitting curve for this data set, i.e. to find a description of the number
of airline passengers over time. Consider three possible functions fk for k = 1, 2, 3 for the input
x:

x 7→ f1(x) = θ0 + θ1x, x 7→ f2(x) =

3∑
j=0

θjx
j , x 7→ f3(x) =

104∑
j=0

θjx
j . (1)

The {θj} are the function parameters that need to be estimated based on the data. A good
question to pose is the following: what is the correct curve for the data in Figure 1 that represents
our beliefs about the truth in the best possible way? Many people would argue for models 1 and 2
being the correct specifications for the data at hand, due to a more parsimonious explanation of
the data, compared to model 3. This is known as Occam’s razor. It is a well-known principle for

6



aiming towards more parsimonious (scientific) explanations and theories, see e.g. C. Rasmussen
and Ghahramani 2000. According to Occam’s razor, one should look for the most ‘simple’
hypothesis that explains the given data or problem at hand. However, in this setting it is far
from certain that the true model is actually given by f1, f2 or f3. We should observe that f1 and
f2 are special cases of the more general model f3. Hence, f3 is able to describe more phenomena
as it has the ability to form a more flexible curve and hence is a ‘richer’ hypothesis.

To make an analogy with modern deep learning, we can view f1 and f2 as relatively simple
models and f3 as a very sophisticated deep learning model, e.g. a deep neural network with an
incredibly large number of parameters. In fact, a single hidden layer neural network (NN) is
shown to be a universal approximator, see e.g. (Hornik et al. 1989). Informally speaking, this
means that it forms a very powerful and sophisticated function approximator. Another type of
model with universal approximation guarantees are Gaussian processes (GPs), which are non-
parametric models involving infinitely many parameters, see e.g. Williams and C. E. Rasmussen
2006. It is often the case that these GPs output simple predictive distributions. Hence, a large
(or small) number of parameters does not necessarily give information about the generalisation
behaviour of the model (Andrew G Wilson and Izmailov 2020).

In Andrew G Wilson and Izmailov 2020 it is argued from a probabilistic view that generalization
depends on two concepts: the support of a model and the inductive biases of a model. Let us
illustrate and clarify these two concepts by means of an illustration in Figure 2. In Figure 2(a)
we have on the horizontal axis an abstraction of image datasets in order of increasing structure in
the dataset. For example, corrupted CIFAR-10, an image dataset with completely unstructured
random noise pixels (Zhang et al. 2021), has less structure than MNIST (LeCun et al. 1998),
which is an image dataset of handwritten digits from zero to nine. In other words, unstructured
datasets are more towards the left on the horizontal axis, whereas more structured datasets
are on the right on the horizontal axis. On the vertical axis the Bayesian evidence p(D|M) is
depicted, i.e. the probability of a certain dataset D, given some model classM (i.e. a collection
of models). It can be calculated as follows p(D|M) =

∫
Θ
p(D|M, θ)p(θ)dθ, with the first term in

the integrand, p(D|M, θ) being equal to the likelihood when the model with parameters θ is used.
The second term, p(θ) is the prior over the model parameters θ. These parameters θ are coming
from a parameter space Θ. Hence, p(D|M) should be interpreted as the weighted probability
of a model from M with parameters θ, weighted by the prior p(θ) for that specific choice of θ.
The average is then taken over all possible parameters θ ∈ Θ. The support can now be defined
as those datasets D for which we have p(D|M) > 0. It is a property of the model class M and
we can write the support more formally as supp(M) = {D | p(D|M) > 0}. The inductive biases
can then be viewed as the distribution over datasets D, given a certain model class M. This
distribution is specified by p(D|M): the Bayesian evidence. It characterizes which datasets D
are a-priori more likely for a specific model classM. In this way, the inductive bias is depending
on the model classM, but also the underlying data model to calculate the likelihood.

Ideally, a model has a very big support, so that any possible hypothesis can be captured. For
example, the hypothesis that generates the pure noise CIFAR-10 dataset (Zhang et al. 2021)
should not be ruled out. A model should not only have big support, but also inductive biases,
meaning that the model should have certain a-priori ‘preferences’ for certain hypotheses. So,
given a specific problem, the model should favour certain hypotheses for that problem, because
otherwise it does not converge to a particular hypothesis. In other words, inductive bias is the
bias or tendency of a model to favour some hypotheses over others in order to be able to perform
inductive inference. As an example, consider the problem class of images. Our model needs a
preference for hypotheses that have certain statistical properties that are good descriptions of
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images, i.e. the model should have a convolutional structure (Andrew G Wilson and Izmailov
2020).

Let us zoom in on Figure 2(a) to explain this better. The purple curve depicts a model consisting
of linear models, x 7→ f(x) = θ0+θ1x, together with a prior p(θ0, θ1) over the parameters θ0 and
θ1. In turn, this parameter prior induces a prior over functions, as parameters θ0, θ1 are sampled
from the prior and these parameters induce functions x 7→ f(x) = θ0 + θ1x. Observe that the
model consisting of these linear functions has a small support, as higher order functions of x
cannot be represented by it. The marginal likelihood (evidence) p(D|M) has to be normalized
over D and hence all probability mass is given to the datasets D that can be formed by linear
functions from M. This is a very limited amount of datasets and hence the inductive bias is
quite narrow, as is depicted in the figure. The pink curve represents a large and fully-connected
multi-layer perceptron (MLP). This model class is very flexible and can represent many different
datasets, but its structure is not particularly compelling for any specific type of image dataset
and hence its inductive bias is very broad. The green curve, representing a convolutional neural
network (CNN), is a flexible model class and hence has broad support. However, it has a specific
inductive bias for image recognition. In other words, a CNN can represent many hypotheses
(broad support), but due to its very specific model characteristics (its convolutional layers in the
NN) it can model image datasets particularly well. This is the reason that CNNs have a good
inductive bias for image problems.

Let us now focus on Figure 2(b),(c) and (d). For models with a large prior hypothesis space,
i.e. a large support, it is possible that the posterior contracts around the true hypothesis for a
problem. However, if a simple model with a smaller prior hypothesis space is used, then posterior
contraction cannot take place around the true solution, as it is simply not in the support. In (d),
the model under consideration has a large prior hypothesis space, but posterior contraction is
lacking as the model under consideration has weak inductive biases for the given problem. That
means, the model does not have strong preferences for hypotheses and its Bayesian evidence
p(D|M) is too evenly distributed on the large support.
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Figure 2: (a) Illustration of inductive biases for complex, simple and well-specified models for
differently structured image datasets. The performance of a model always depends on the class
of problems under consideration and the inductive biases for each model. For the problem type
of structured image datasets, we see that CNNs have well-calibrated inductive biases, whereas a
fully connected MLP does not have this well-calibrated inductive bias for these type of problems.
Simple linear models also do not have a strong inductive bias for this type of problems. (b)
Graphical interpretation of posterior contraction. The large prior hypothesis space is depicted in
light-green and the dark green region represents the posterior hypothesis space, which contains
the true model. (c) For a misspecified prior hypothesis space, the true model is not in reach
and hence the posterior cannot capture the true model. (d) For a large prior hypothesis space,
the posterior can capture the true model, but its contraction towards the true model is not very
efficient if there are no suitable inductive biases. Picture from Andrew G Wilson and Izmailov
2020.

To come back to the example at the beginning of the section in Figure 1 and the model choice
problem, we can now view it from a different perspective. The higher-order polynomial f3 offers
a bigger support, but the choice of prior is very important to model inductive biases. This is
still a subjective choice and captures the way in which the modeller thinks about a-priori likely
hypotheses. However, what is now more clear is that the choice of model depends on two things:
the support and the inductive bias.

1.2 Types of uncertainty
A distinguishing approach of Bayesian inference is that a solution is marginalized over all pa-
rameters, weighted by the posterior distribution. This is in contrast to non-Bayesian inference,
where a model is formed on the basis of optimization of parameters and not ‘weighted’. This
yields a full bet on one single hypothesis and no probabilistically weighted average of hypotheses.
A neural network is in many cases underspecified by the data, i.e. the number of parameters p is
(much) larger than the amount of observations n. This is also called the high-dimensional setting.
In this setting it is often the case for NNs that completely different parameter values give rise to
different, but also well-performing final networks. In this setting, Bayesian marginalization can
make a lot of difference, as it can combine these models in a principled Bayesian way.

In most cases, the predictive density is of interest, as this gives the probability of a new output y,
given an input x and the available data D. The output y can e.g. be a class label or a regression
value. The input x can for example be an image, the height of a person or the price of a stock.
The weights/parameters of the model f(x; θ) are denoted by θ. In a Bayesian way this predictive
density is calculated as follows:

9



p(y|x,D) =
∫
Θ

p(y|x, θ)p(θ|D)dθ, (2)

with p(y|x, θ) being the likelihood (not depending on D) and p(θ|D) the posterior (not depending
on x). In this formulation it is very clear that the Bayesian predictive density is in fact a Bayesian
model average (BMA). Every possible setting of parameters θ is used and weighted by means of
the posterior p(θ|D). The parameters θ are marginalized out and thus the predictive density no
longer depends on a parameter. The posterior density p(θ|D) itself is calculated as follows:

p(θ|D) = p(θ,D)
p(D)

=
p(D|θ)p(θ)∫

Θ
p(D|θ)p(θ)dθ

∝ p(D|θ)p(θ). (3)

The term
∫
Θ
p(D|θ)p(θ)dθ is often called the normalization constant, as it does not depend on θ

and acts as a normalization term. Observe that this normalization term is, generally speaking,
hard to calculate, as it involves an integral over the complete high-dimensional parameter space
Θ.

On a more philosophical note, this BMA also represents epistemic uncertainty. Epistemic uncer-
tainty is the uncertainty related to the choice of parameters from the model. It is hard to find
exactly which model in M is true, given the data. Epistemic uncertainty is also called model
uncertainty, in contrast to aleatoric uncertainty. Aleatoric uncertainty is the uncertainty inherent
in the measurements itself. Consider for example the linear regression model y = θ0 + θ1x + ε,
with ε ∼ N (0, σ2). The term ε is the error term in the true linear regression model and this is the
aleatoric uncertainty that has nothing to do with the model, but is inherent to the measurement
y. This is boldly stated, because we assume here to be a true model, parameterized by θ0 and
θ1 and for these true parameters there is an aleatoric error term ε involved. Hence, the aleatoric
error term also assumes some true underlying model, which can be confused with epistemic un-
certainty, as it is hard to infer from measurements y where the uncertainty comes from. Is it the
case that we cannot infer the true parameters, based on limited data, and hence have epistemic
uncertainty or is it the (stochastic) uncertainty in ε ∼ N (0, σ2) that we observe? In Figure 3
a predictive model is shown, together with the related epistemic and aleatoric uncertainty. A
true function is shown, together with its aleatoric uncertainty that is due to a stochastic error
term ε that yields the aleatoric uncertainty. This true function, together with its error term also
generated the data points. On the basis of these limited data points, the predictive model has to
form a prediction of the true function, which is shown in orange. There is uncertainty involved
in these predictions of the underlying model and that is shown in shaded orange.
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Figure 3: Illustration of a predictive model and its related epistemic and aleatoric uncertainty.
The true data generating function is shown (in black) with its related stochastic aleatoric un-
certainty in the blue shaded region. A predicted model uses the observed data to infer this true
function. However, on the basis of limited data, uncertainty in the inference for the true data
generating model is inherited in the form of epistemic uncertainty, depicted in the orange shaded
region.

From this perspective there is a big difference between epistemic and aleatoric uncertainty, but it
depends on the perspective. From a data perspective, i.e. when you only have the data y avail-
able, then it is hard to make a clear distinction between the two. In Figure 4 the dependence of
the epistemic and aleatoric uncertainty on the sample size n is depicted. With increasing sample
sizes, more complex models come into play and the epistemic uncertainty related to these models
also changes accordingly. The aleatoric uncertainty is not affected by this, as it is not related to
sample size. This figure illustrates that epistemic uncertainty is intertwined with sample size and
the corresponding model complexity belonging to larger sample sizes. Furthermore, the aleatoric
uncertainty, that cannot be inferred from simply looking at y, is substantially different from the
epistemic uncertainty. The reason we made this distinction is that taking a Bayesian perspective
is quite suitable for representing epistemic uncertainty, as the BMA with its weighted posterior
formalizes this epistemic uncertainty, given the available data.
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Figure 4: Illustration of the true data generating function with related stochastic aleatoric un-
certainty in the blue shaded region. A predictive model is used on the observed data to infer this
true function. However, on the basis of limited data, uncertainty in the inference for the true
data generating model is inherited in the form of epistemic uncertainty, depicted in the orange
shaded region.

1.3 Towards deep learning
A very well-known way of estimating the parameters in classical training procedures is finding a
regularized maximum likelihood (ML) solution:

θ̂ = argmax
θ
{log p(θ|D)} = argmax

θ
{log p(D|θ)+log p(θ)+CD}, for some constant CD ∈ R, (4)

where we have used that p(θ|D) ∝ p(D|θ)p(θ) and that the constant CD can depend on the data,
expressed by the subscript. In a Bayesian setting this procedure is called maximum a-posteriori
(MAP) estimation. This naming is well-chosen as this procedure comes down to finding the
parameter θ that maximizes the posterior. The log likelihood log p(D|θ) is created by means of
linking the output function of our model, denoted x 7→ f(x; θ), to the dataset D. To be able to
make probabilistic statements, it is needed to assume an underlying true statistical model. Let
us give an example to clarify this.

Example 1.1. Consider a regression with Gaussian noise in which we want to model (the mean
of) the regression function. The model is yj = f(xj ; θ)+εj for j = 1, . . . , n with εj

i.i.d.∼ N (0, σ2).
The likelihood is then given as p(D|θ) =

∏n
j=1 p(yj |xj , θ) =

∏n
j=1 φ(yj ; f(xj ; θ), σ

2), with φ
denoting the density of a normally distributed random variable. In this case, the log-likelihood
can be seen as a (scaled) mean squared error (MSE) loss: log p(D|θ) = −n

2 log(2π)− n
2 log(σ2)−

1
2σ2

∑n
j=1(yj − f(xj ; θ))2.

In equation (4) we can view the prior p(θ) as a regularizer on the parameters θ. Compare it
for example to LASSO or Ridge regression (see e.g. Hastie et al. 2009 for more details on these
regression models). The prior determines how much of a ‘penalty’ every value of θ gets in the
sense that a low prior value for some θ (more penalty) results in less contribution to finding θ̂.
A-priori unlikely θ are more unlikely to become θ̂, so in that sense the prior acts as a regularizer.
Observe that MAP estimation is not at all a Bayesian method, as we end up with one single
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estimate θ̂, instead of a distribution over parameters. With MAP estimation the final hypothesis
is simply f(x; θ̂), with θ̂ given by equation (4).

The major conceptual difference between classical and Bayesian approaches is that the latter
generates a probability distribution over the parameters, whereas the classical approach only
generates point estimates. However, the difference between classical and Bayesian approaches
for estimating the parameters also depends on the shape of the posterior, as a more narrowly
peaked posterior more closely resembles MAP estimation due to the fact that it is closer to a
point mass. In contrast, a more evenly distributed posterior is ‘more’ Bayesian in the sense that
it really distributes its mass for different values of θ. This diffuse posterior is then definitely not
properly captured by a single MAP estimate, which is simply a point mass. This makes the
difference between the classical and Bayesian method larger in practice.

In the deep NN setting it is quite often the case that the NN is underspecified by the available
data, i.e. the network has too many parameters and too little data: the high-dimensional setting.
This results in a non-sharply peaked likelihood p(D|θ). Furthermore, in this high-dimensional
setting it is also often the case that different settings of the parameters yield different, but well-
performing networks on the data. This has for instance been observed in Garipov et al. 2018. This
empirical observation about different parameter settings yielding different, but high-performing
neural networks, can be a reason to combine different high-performing neural networks in an
ensemble. In fact, a Bayesian model average naturally gives rise to an ensemble, weighted by the
posterior.

In Lakshminarayanan et al. 2017, an ensemble of deep neural networks is shown to perform very
well and it is a highly cited paper (more than 4000 citations). The ensemble of deep neural
networks is called a deep ensemble. A deep ensemble is formed by estimation of a neural network
model multiple times, where each initial set of parameters is different. Then, after training it is
ideally the case that these different parameter initialisations end up in different (local) minima
of the loss function. This procedure can be seen as an approximate Bayesian model average as
follows. If the prior on the parameters is taken to be a specific normal distribution, then the
estimates of θ given by the minimization of the loss function used to train the neural network
model in Lakshminarayanan et al. 2017 coincide with (local) MAP estimates when this specific
prior is used for θ. Let us consider the case that we takeM neural networks in our ensemble. Each
of these M models will be trained with the loss function, but in this specific case with a normal
prior on θ they form MAP estimates. Hence we end up with M estimates of the parameters of
the NN: θ̂1, . . . , θ̂M . So instead of one single point mass estimate θ̂ in classical training, we now
have M estimates. These estimates form a collection of point masses, with each of them equal to
a MAP estimate. These estimates can be used to form an approximation of the posterior. The
goal is then to approximate the BMA of equation (2), where we now have M MAP estimates
forming an approximation of the full posterior. In this way, an ensemble of neural networks can
be seen as an approximate Bayesian model average. In Section 2 more details are given.

The estimates θ̂1, . . . , θ̂M induce functions f(· ; θ̂1), . . . , f(· ; θ̂M ). It is important that these
functions are diverse in their predictions. This diversity gives a better approximation to the
BMA, as in this integral the terms p(y|x, θ) are being added. Let us explain this. Consider two
parameter settings θ1 and θ2 that are non-equal (and both have positive posterior probability).
In the BMA the terms p(y|x, θ1) and p(y|x, θ2) are added, but if the parameters θ1 and θ2
induce two functions f(· ; θ1) and f(· ; θ2) that yield (very) similar predictions, then their induced
likelihoods p(y|x, θ) will also be very similar for both parameters. Hence, in the BMA these two
different parameters yield two very similar likelihood terms p(y|x, θ) that does not result in a
diverse ensemble of likelihood terms.
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In this way, we can view deep ensembles as an approximate BMA and hereby representing
multiple basins of attraction in the posterior. It is the case that most Bayesian methods in deep
learning focus on the approximation of the posterior in the neighborhood of one single basin of
attraction instead of multiple basins. In Figure 5 an illustration is given to visualize this. In
this figure the difference between deep ensembles, variational inference (VI) and Multi-SWAG is
illustrated. VI is a standard variational single basin approach and Multi-SWAG is a mixture of
Gaussian approximations of the posterior, where each Gaussian is centred on a different basin of
the posterior. In a sense, it is a combination of VI and deep ensembles. This method is proposed
in Andrew G Wilson and Izmailov 2020.

Figure 5: In this illustration the parameter θ is denoted as w. Top: approximation of the
posterior p(θ|D) by deep ensembles, VI and Multi-Swag. Observe that deep ensembles and
Multi-SWAG use different basins, whereas VI is limited to one basin and its neighborhood.
Middle: Given a fixed x, the likelhood p(y|x, θ) is displayed as a function of θ for the three
methods. Observe quite significant changes between the basins. Bottom: The decrease in some
distance metric d between the true density p and the approximating density q is depicted as a
function of representing the posterior by an additional parameter θ, while assuming that the
mode (in green on the top picture) is sampled. Picture and caption (adapted) from Andrew G
Wilson and Izmailov 2020.

The overall interpretation of Figure 5 is that it is beneficial to explore multiple basins for the
approximation of the posterior, as it gives a more faithful approximation of the posterior. The
terms p(y|x, θ) vary quite a lot between different basins and the variety of the terms p(y|x, θ) is
needed to approximate the BMA in equation (2) in a good way. The last panel shows that a
big decrease in dist(p, q) can be made by not only using the mode as an approximation for the
posterior, but also using a second parameter θ. This decrease is especially large when sampling
from other basins (areas in which p(θ|D) is large, see e.g. the places where the blue and green
dots are positioned).
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2 Deep ensembles
This section gives the necessary background on deep ensembles and motivates a different per-
spective on these deep ensembles. In particular, the use of Stein variational gradient descent
(SVGD) for training deep ensembles is motivated.

2.1 Overview and training of deep ensembles
Deep ensembles are introduced in Lakshminarayanan et al. 2017. Neural networks have shown
good performance in a wide range of tasks. However, uncertainty quantification for neural
networks is a challenge, as they are black box predictors. In this paper, an alternative to
Bayesian neural networks (BNNs) is proposed. Currently, BNNs are a state-of-the-art modelling
approach for uncertainty quantification. In a series of experiments, the authors demonstrate that
the proposed deep ensembles produce well-calibrated uncertainty estimates which are as good
as, or better than approximate BNNs. The aim of this section is to introduce deep ensembles.
To this end, we will closely follow the original paper.

It is assumed that a training set D = {(xi, yi) | i = 1, . . . , n} of n i.i.d. datapoints is available
with x ∈ Rd being the d-dimensional features and y being the labels. In classification problems
it is assumed that y ∈ {1, . . . ,K}, i.e. y is in one of the K classes. In regression problems, no
restrictions are imposed on y, i.e. y ∈ Rpy . We mostly consider the case y ∈ R, i.e. py = 1 for a
simple regression setting. Given the inputs x, a neural network is used to model a probabilistic
predictive density function pθ(y|x) for the labels y, given an input vector x. The subscript θ
denotes the parameters of the NN. Let M denote the number of neural networks collected in the
ensemble. The collection of parameters in the ensemble is denoted as {θm}Mm=1.

Following Hoffmann and Elster 2021, let us give the assumed heteroscedastic regression model:

Y |X ∼ N (f(X; θ), σ2
θ(X)I), (5)

with realisations of X being in Rd and realisations of Y taking value in Rpy . Throughout this
section, x 7→ f(x; θ) will be called the regression function. It is often abbreviated as fθ(x) :=
f(x; θ). To be clear, the available data is D = {(xi, yi) | i = 1, . . . , n} and this data is sampled
from equation (5).

Deep ensembles, as defined in Lakshminarayanan et al. 2017, can be seen as a way to perform
approximate Bayesian inference in which the posterior density θ 7→ p(θ|D) of the neural network
parameters θ, given the available data D, is approximated by a family of empirical distributions
in the following sense:

∫
B

p(θ|D)dθ ≈ 1

M

M∑
m=1

δθ̂(m)(B), for any measurable set B, (6)

with δθ the Dirac measure with support {θ}. We also need to assume a distribution for the
network parameters θ, i.e. we need to assume a prior density p(θ). This is done as follows:

θ ∼ N (0, λ−1I), (7)

where λ is the L2 regularization parameter in the loss function of the neural network in the
training phase, see equation (8). For the deep ensembles, we need to train M models, to obtain
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(ideally different) estimates of θ, denoted by θ̂(m) for m = 1, . . . ,M . For each of these M models
an initial random parameter setting is used, following equation (7). These random initialisations
of the parameters are then independently updated as follows. Every neural network parameter
initialisation in the ensemble is independently updated (after a random parameter initialisation)
by a minimization of the following loss function:

θ 7→ L(θ) = −L(θ : D) + 1

2
λ||θ||22, (8)

with L(θ : D) = −1

2

n∑
i=1

(
||yi − fθ(xi)||22

σ2
θ(xi)

+ py log(σ
2
θ(xi))

)
,

where || · ||2 is the standard Euclidean L2 norm and L(θ : D) is the log likelihood for the assumed
statistical model in equation (5) (up to a constant not depending on θ). The estimates for the
parameters are denoted by θ̂(m),m = 1, . . . ,M, for the M neural networks in our ensemble. It
turns out that these obtained parameter estimates are equal to the local MAP estimates of θ
when the prior in equation (7) is used, see Appendix C.1 for a derivation.

In the assumption of the posterior approximation in equation (6) we have the average of M
distributions at local MAP estimates for θ as the approximation of the true posterior. This
yields that the approximation of the posterior predictive density is given as:

p(y|x,D) =
∫
p(θ|D)φ(y; fθ(x), σ2

θ(x)I)dθ ≈
1

M

M∑
m=1

φ(y; fθ̂(m)(x), σ
2
θ̂(m)(x)I), (9)

with φ denoting the density of a normally distributed (vector) random variable. This average in
equation (9) is an average of Gaussian densities. In Lakshminarayanan et al. 2017, the assumption
is made that the ensemble prediction is also Gaussian with mean and variance given by the mean
and the variance of the expression in equation (9). They use this as approximation, as it is never
the case that an average of Gaussian distributions is again Gaussian. The average of Gaussian
densities, denoted 1

M

∑M
m=1 φ(fθm(x), σ2

θm
(x)) is modelled to have a mean and variance as follows:

f∗(x) =
1

M

M∑
m=1

fθm(x), and σ2
∗(x) =

1

M

M∑
m=1

(σ2
θm(x) + f2θm(x))− f2∗ (x).

By doing this ‘extra’ approximation, it is easier to calculate quantiles and predictive probabilities.

Even though the approximation of the posterior of true network parameters by means of an
average of Dirac distributions is very simple, it appears that deep ensembles outperform many
other Bayesian approaches because the deep ensembles are able to explore and find many different
modes of the posterior (Hoffmann and Elster 2021). In a way, it is not fair to call deep ensembles
in this framework a Bayesian method, as the posterior is not computed by means of a combination
of the prior and the likelihood. In fact, a ‘posterior’ is formed by optimizing parameters with
respect to a loss function and combining these parameters by means of an average of Dirac
distributions. It is assumed that this modelled average of Dirac distributions approximates the
true posterior, when a prior is taken over the parameters according to equation (7).
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2.2 Bayesian ensemble training with SVGD
Deep ensembles have been shown to perform well in in terms of predictive performance and
uncertainty estimation, see e.g. Lakshminarayanan et al. 2017. They are the main counterpart
to Bayesian neural networks when it comes to uncertainty estimation. Deep ensembles average
predictive hypotheses, but no guarantees are given for the (functional) diversity between these
hypotheses. Furthermore, deep ensembles are not motivated in a Bayesian probabilistic frame-
work, at least not in the original paper Lakshminarayanan et al. 2017. In D’Angelo and Fortuin
2021, it is shown how a repulsive term between the ensemble members can help to generate
functional diversity by avoiding that the ensemble members end up with the same parameters in
parameter space. This repulsive term is inspired by Stein variational gradient descent (SVGD).
The authors also show how this procedure can be seen as a gradient flow of the Kullback-Leibler
(KL) divergence in Wasserstein space, a space of distributions. The authors argue that this
reformulation of deep ensembles with repulsion is a Bayesian method.

A big problem with NNs, when working in weight space, is that different parameter weights θ1
and θ2 for the NN can induce the same NN function. Hence, ‘diversity’ in parameter space does
not mean diversity in function space. A diverse (parameter) space ensemble is therefore not
guaranteed to be truly diverse in function space. This is what the authors call non-identifiability
of neural networks.

Let g : (x, θ) 7→ f(x; θ) be the mapping that takes a data point x ∈ X and a parameter weight
vector θ ∈ Rd to the corresponding neural network output f(x; θ). Let us denote fi := f(·; θi)
as the neural network output with a certain configuration of weights θi and a certain input x.
Then, for any non-identifiable pair θi, θj ∈ Rd and fi, fj their induced neural network functions:

fi = fj ≠⇒ θi = θj .

Formally, this means that the map g is not injective. In deep learning, the likelihood function
p(y|f(x; θ)) is often considered. A Gaussian regression model or a categorical model for classifica-
tion are examples of such a likelihood function. See e.g. equation (5) for the Gaussian regression
model. This likelihood function is parametrised by the output of the NN, denoted as f(x; θ).
An example would be a neural network outputting the predicted mean and the variance of the
Gaussian regression model in equation (5). In this sense the NN parametrises the likelihood
function. Let us remind ourselves that we have a set of i.i.d. training data which we denote as
D = {(xi, yi)|i = 1, . . . , n}. For BNNs, the posterior distribution is of interest. More precisely,
one is interested in the posterior density:

p(θ|D) ∝
n∏

i=1

p(yi|f(xi; θ))p(θ),

with p(θ) the prior on the NN parameters. As stated before, the quantity of interest in Bayesian
inference is the BMA:

p(y|x,D) =
∫
Θ

p(y|f(x; θ))p(θ|D)dθ.

Ensembles of neural networks are usually trained by means of maximum a posteriori (MAP)
estimation. The non-convexity of the MAP estimation (or optimization) problem is used by the
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deep ensembles to form M independently trained (and ideally also different) parameter solutions.
Consider M parameter weights of NNs in an ensemble, {θm}Mm=1 with θm ∈ Rd ∀m = 1, . . . ,M .
The evolution of the parameters of the ensemble members under the gradient of the log-posterior
gives the following update rule at iteration ℓ ∈ N:

θℓ+1
m ← θℓm + ϵℓϕ(θ

ℓ
m), ∀m = 1, . . . ,M,

with ϕ(θℓm) = ∇θ log p(θ|D)|θ=θℓ
m
,

with (small) step size ϵℓ. In this training procedure there is no constraint imposed to make sure
that different ensemble members cannot converge to the same mode of the posterior and hence
end up with the same parameters. This is problematic, as this means that having more members
in the ensemble does not necessarily mean that the ensemble gets more diverse. The only way
in which parameters will not coincide relies (exclusively) on:

• Random initialisation

• The noise in the estimation of the gradients

• The number of local optima that are reached during gradient descent.

The aim of the paper D’Angelo and Fortuin 2021 is to overcome these pitfalls and make stronger
guarantees to counteract ending up with equal parameter settings for different ensemble members.
Inspired by SVGD (Liu and D. Wang 2016), the authors introduce a repulsive component in the
training of the ensemble members. This repulsive component is integrated by means of a kernel
function that models a repulsive action if two ensemble members are close to each other in weight
space. This prevents that the different ensemble members end up with the same parameters. In
Section 3 we will study SVGD and show how it can be a potential training solution for deep
ensembles.
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3 SVGD
In Bayesian inference the posterior is of main interest. However, computing the posterior may
be hard and intractable, due to the normalization constant in the posterior density (3). Markov
chain Monte Carlo (MCMC) is a popular method to draw samples from this intractable posterior
distribution, see e.g. Brooks et al. 2011. A different type of algorithm, which aims to find
an approximation of the posterior, is called variational inference (VI). The idea with VI is to
approximate the posterior by means of a simpler distribution in some pre-defined distribution
class. The best approximating distribution is found by minimizing the KL divergence between
the true posterior and the approximating distribution.

VI can be computationally more efficient than MCMC methods and in Liu and D. Wang 2016
a new and general VI algorithm is developed, called Stein variational gradient descent (SVGD).
It can be seen as a gradient descent type of algorithm for Bayesian inference. In the algorithm
a set of particles is used to approximate the posterior. A form of gradient descent is applied to
these particles with the goal to minimize the KL divergence and evolve these particles in such a
way that they approximate the posterior distribution.

Let us adopt the preliminaries of Liu and D. Wang 2016 and introduce theirs. We will now not
use θ anymore, but X, a random variable or parameter with support X ⊂ Rd. The data is given
as D and is a set of i.i.d. observations. The Bayesian prior is denoted as p0 and the posterior
density is given by p. We slightly abuse notation by writing p instead of p(·|D). In what follows,
we will continue writing p to denote the posterior density.

We use the convention that X = Rd, unless specifically stated otherwise. We define L2(µ) := {f :
X → X |

∫
||f(x)||2dµ(x) <∞} and denote by ⟨·, ·⟩L2(µ), || · ||L2(µ) its inner product and norm,

respectively. We let k : X ×X −→ R denote a general positive definite kernel function. A function
(x, x′) 7→ k(x, x′) is positive definite if

∑n
i=1

∑n
j=1 aiajk(xi, xj) ≥ 0 for any x1, . . . , xn ∈ X , n ∈ N

and a1, . . . , an ∈ R. A reproducing kernel Hilbert space (RKHS), denoted H, with respect to
the kernel k is the completion (with respect to ⟨·, ·⟩H defined below) of the linear span of kernel
functions, i.e. the completion of the set {f : x 7→ f(x) =

∑n
i=1 aik(x, xi), ai ∈ R, n ∈ N, xi ∈

X}. We equip H with the inner product ⟨f, g⟩H =
∑n

i=1

∑n
j=1 aibjk(xi, xj) for x 7→ g(x) =∑n

j=1 bjk(x, xj). The space Hd is used to denote the space of vector functions f = [f1, . . . , fd]
T

with fi ∈ H∀i = 1, . . . , d. The inner product on Hd is ⟨f , g⟩Hd =
∑d

i=1⟨fi, gi⟩H. All vectors are
assumed to be column vectors, unless stated otherwise. For general vector-valued functions f ,
i.e. functions f : Rd → Rd′

, the gradient (Jacobian) of f , denoted ∇f , is

∇f =


∂f

∂x1
...
∂f

∂xd

 =



∂f1
∂x1

. . .
∂fd′

∂x1
...

. . .
...

∂f1
∂xd

. . .
∂fd′

∂xd

 , (10)

or in short-hand notation ∇f =
[
∂fj
∂xi

]
ij

for i = 1, . . . , d and j = 1, . . . , d′. For a scalar-valued

function f : Rd → R, the gradient of f , denoted ∇f , is simply the conventional column vector.
Throughout this section we will assume that X ⊆ Rd.

We will closely follow Liu, Lee, et al. 2016. Let us first introduce Stein’s operator and the Stein
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class of a density. After that we state Stein’s identity. These are the necessary ingredients for a
thorough understanding of SVGD, which is the aim of this section.

Definition 3.1 (Definition 2.1 from Liu, Lee, et al. 2016). Let p be a continuously differentiable
density with support X . The score function of p is defined as:

sp = ∇ log p =
∇p
p
.

A function ϕ : X → R is in the Stein class of p if ϕ is continuously differentiable and satisfies:

∫
X
∇(ϕ(x)p(x))dx = 0. (11)

The Stein operator of p is a linear operator acting on functions in the Stein class of p. For
scalar-valued functions ϕ, the Stein operator Ap is defined as:

ϕ 7→ Apϕ = spϕ+∇ϕ.

A vector-valued function ϕ = [ϕ1, . . . , ϕd′ ]T is said to be in the Stein class of p if all ϕi for
i = 1, . . . , d′ are in the Stein class of p. If Ap is applied to a vector-valued function ϕ : X → Rd′

,
then Apϕ results in a d× d′ matrix-valued function Apϕ = spϕ

T +∇ϕ.

Remark 3.2. Observe that sp and Apϕ are d× 1 vector-valued functions mapping X to Rd.

Remark 3.3. Let us consider X , a compact subset of Rd with a piecewise-smooth boundary ∂X .
Denote the unit normal boundary vector of ∂X by n. Then, by a consequence of the divergence
theorem it is the case that:

∫
X
∇(ϕ(x)p(x))dx =

∮
∂X

ϕ(x)p(x) ndS(x),

with
∮
∂X dS being the surface integral over ∂X . If ϕ(x)p(x) = 0 for all x ∈ ∂X , then equation

(11) holds. A more general condition would be that
∮
∂X ϕ(x)p(x) ndS(x)=0.

Consider now the case that X = Rd. The divergence theorem needs a compact set to work on.
Let us take Br = B(0, r), i.e. the closed ball in Rd, centred at 0 with radius r. Denote by ∂Br

its boundary, then by the divergence theorem:

∫
Br

∇(ϕ(x)p(x))dx =

∮
∂Br

ϕ(x)p(x) ndS(x).

To get the domain of integration equal to X = Rd, we take limr→∞Br:

lim
r→∞

∫
Br

∇(ϕ(x)p(x))dx = lim
r→∞

∮
∂Br

ϕ(x)p(x) ndS(x).

Hence, if we have that lim||x||→∞ ϕ(x)p(x) = 0, then we get that limr→∞
∮
∂Br

ϕ(x)p(x)ndS(x) =

0, as ||x|| → ∞ is a characterization of limr→∞ ∂Br.
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We now have the theory ready to introduce Stein’s identity.

Lemma 3.4 (Stein’s identity, see e.g. Liu, Lee, et al. 2016). Let p be a continuously differ-
entiable (i.e. smooth) density supported on X ⊂ Rd and let ϕ : Rd → Rd′

, x 7→ ϕ(x) =
[ϕ1(x), . . . , ϕd′(x)]T be a smooth vector-valued function. Stein’s identity comes down to:

EX∼p[Apϕ(X)] = 0, (12)

for any ϕ that is in the Stein class of p.

Proof. Observe that by the product rule for gradients, we have

1

p(x)
∇x(ϕ(x)p(x)) =

1

p(x)
((∇p(x))ϕ(x)T + p(x)∇ϕ(x)) = sp(x)ϕ(x)

T +∇ϕ(x). (13)

Because ϕ is in the Stein class of p, we have
∫
X ∇(ϕi(x)p(x))dx = 0 for all i = 1, . . . , d′. By

this assumption, we can make the term
∫
X p(x)(sp(x)ϕi(x) + ∇ϕi(x))dx equal to zero for all

i = 1, . . . , d′. Hence, EX∼p[Apϕi(X)] = 0 for all i = 1, . . . , d′. We have done this procedure for
all i = 1, . . . , d′ and hence we can conclude that EX∼p[Apϕ(X)] = 0, where this 0 now represents
a d× d′ dimensional matrix.

The interpretation of this lemma is that the Stein operator Ap acts on a function ϕ and yields
an expectation of zero under X ∼ p. For sufficiently regular ϕ, i.e. the function should be in
the Stein class of p, the Stein identity holds. Consider any other smooth density, different from
p. Let us call it q and it also has X as support. Let us look at the expectation of Apϕ(X)
when X ∼ q, i.e. we consider EX∼q[Apϕ(X)]. This quantity is not necessary equal to zero for
general, unconstrained ϕ. In fact, EX∼q[Apϕ(X)] can be used as a defining measure to quantify
the discrepancy between p and q. The bigger |Ex∼q[Apϕ(x)]| is, the more dissimilar p and q are.
This gives rise to the so called Stein discrepancy, by measuring the largest deviation from zero
of Stein’s identity for functions ϕ in some pre-defined function set F .

Definition 3.5. Consider a function set F and two smooth densities p and q. Stein discrepancy
S is defined as:

S(q, p) = max
ϕ∈F
{[EX∼q tr(Apϕ(X))]2}. (14)

A different discrepancy measure for two smooth densities, which is inspired by Stein’s discrepancy,
is kernelized Stein discrepancy (KSD). This KSD is the Stein discrepancy with a special choice
of F . The choice of F is of major importance for Stein’s discrepancy due to the fact that it
determines the discriminative power and computational tractability of it, see e.g. Liu and D.
Wang 2016. KSD considers the functions ϕ in the unit ball of a reproducing kernel Hilbert space
(RKHS). Furthermore, this KSD has a closed form solution. Let us give the formal definition of
KSD:

Definition 3.6. Consider two smooth densities p and q. Consider a kernel (x, x′) 7→ k(x, x′)
of the RKHS H that is in the Stein class of the density q. The Kernelized Stein discrepancy,
denoted S, is defined in the following way:

S(q, p) = max{[EX∼q(tr(Apϕ(X)))]2 | ϕ ∈ Hd, ||ϕ||Hd ≤ 1}. (15)
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A kernel (x, x′) 7→ k(x, x′) is said to be in the Stein class of q if k has continuous second order
partial derivatives and both k(x, ·) and k(·, x) are in the Stein class of q for any fixed x ∈ X .

An analytic result, that gives the function ϕ ∈ Hd with ||ϕ||Hd = 1 for which we have the exact
number S(q, p), is given as follows:

ϕ =
ϕ∗

q,p

||ϕ∗
q,p||Hd

, (16)

with ϕ∗
q,p(·) = EX∼q[Apk(X, ·)]. (17)

This specific choice of ϕ yields the value S(q, p) = ||ϕ∗
q,p||2Hd . Let us formalize these two results

in the following theorem:

Theorem 3.7 (Theorem from Liu, Lee, et al. 2016). Let H be the RKHS related to a positive
definite kernel (x, x′) 7→ k(x, x′) that is in the Stein class of the density q. Denote by x′ 7→
ϕ∗

q,p(x
′) = EX∼q[Apk(x

′, X)]. Then:

S(q, p) = ||ϕ∗
q,p||2Hd , (18)

and the maximum in equation (15) is attained at ϕ =
ϕ∗

q,p

||ϕ∗
q,p||Hd

. Furthermore, it is the case that

⟨ϕ,ϕ∗
q,p⟩Hd = Eq[tr(Apϕ)] for any ϕ ∈ Hd.

Proof. See Appendix A.1.

Another favourable property of S(q, p) is that it is equal to zero if and only if p = q if k is
suitably chosen, i.e. strictly positive definite in a proper sense. See Appendix D.1 for more details.
Because we established the equality S(q, p) = ||ϕ∗

q,p||2Hd , we also have that ϕ∗
q,p is the zero function

(and hence has norm zero) if and only if q = p under the same condition on k. Another useful
property of KSD is that it only depends on the unknown target density p via the score function
∇ log(p). By means of this observation, the score function can be calculated without the need to
know the normalization constant Z for the posterior density x 7→ p(x|D) = p0(x)p(D|x)/Z, with
p0 denoting the prior. More precisely, we have ∇x log p(x|D) = ∇x log(p0(x)p(D|x)), so Z is not
needed.

In variational inference, the goal is to approximate a target density p by using a ‘simpler’ density
q∗ from a set of densities Q = {qj}j∈J , for J some indexing set. The approximating density
q∗ ∈ Q is found by minimizing KL divergence. Let us write the posterior density as p = p̄/Z,
with Z the normalization constant. We have:
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q∗ = argmin
q∈Q

{KL(q||p)} (19)

= argmin
q∈Q

{∫
X
log

(
q(x)

p(x)

)
q(x)dx

}
= argmin

q∈Q

{∫
X
log

(
Z
q(x)

p̄(x)

)
q(x)dx

}
= argmin

q∈Q

{∫
X
(log(q(x))− log(p̄(x)) + log(Z))q(x)dx

}
= argmin

q∈Q
{Eq[log q]− Eq[log p̄] + logZ}

= argmin
q∈Q

{Eq[log q]− Eq[log p̄]}.

Observe that the value of logZ does not influence the choice of q∗, as it does not depend on
q. The choice of the set Q is crucial, as it determines how close q∗ can be to p and how easily
computable this optimization problem above is.

In Liu and D. Wang 2016, the authors focus on those sets Q that are composed of densities
which are smooth transforms of a certain reference density, i.e. Q = {q[T ] |T ∈ T }, with T a set
of smooth transforms. So Q is the set consisting of the densities q[T ], where q[T ] is the density
of Z = T (X) when X has a reference density q0. The functions T : X → X are continuously
differentiable and bijective transforms and come from the set T . The density of Z is given as
follows:

z 7→ q[T ](z) = q0(T
−1(z)) · | det(∇zT

−1(z))|, (20)

for T−1 being the inverse of T and ∇T−1 the Jacobian of T−1, following the notational con-
vention of equation (10). This definition of the density is only valid if the Jacobian ∇T−1 is
nonsingular on its domain. A reason for choosing these specific type of transformed distributions
is that they are computationally tractable, meaning that the expectation of functions of the
random variables Z with density q[T ] can be easily calculated. Let us clarify this. Assume that
we have realisations of the random variable Z: {zi}ni=1 for zi = T (xi) and the xi are realisations
of a random variable X that has a density q0. If an expectation with respect to Z has to be
evaluated, then an empirical average over {zi} yields an approximation of the expectation we are
interested in, i.e. we approximate EZ∼q[T ]

[h(Z)] by 1
n

∑n
i=1 h(zi) =

1
n

∑n
i=1 h(T (xi)), for some

function h.

At this point the choice of transform T ∈ T is not restricted and for computational reasons it
is necessary to make restrictions on T . In Liu and D. Wang 2016 a method is proposed that
iteratively computes transforms in a way that resembles steepest (gradient) descent in a RKHS.
To be able to explain this procedure in detail, some more theory is needed. We will show how
the Stein operator, as in Definition 3.1 can be seen as a derivative of the KL divergence.

The goal is to minimize the KL divergence in equation (19), which enables us to compute q∗.
In order to achieve that goal, let us consider a very specific form of transform which is obtained
by a small perturbation of the identity transform, i.e. x 7→ T (x) = x + ϵϕ(x) for ϕ a smooth
function that gives the direction of the perturbation, given some input x. The magnitude of the
perturbation is given by ϵ ∈ R.
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In the theorem that follows, a connection is made between the Stein operator and a derivative of
the KL divergence with respect to the perturbation magnitude ϵ of the transform x 7→ T (x) =
x+ ϵϕ(x). In the theorem we make the dependence on the function ϕ explicit for T by writing
Tϕ.

Theorem 3.8. Consider x 7→ Tϕ(x) = x+ ϵϕ(x) and let q[T ] be the density of Z = T (X) when
X has density q. Then we have:

∇ϵKL(q[Tϕ] || p)
∣∣∣
ϵ=0

= −EX∼q[tr(Apϕ(X))],

where ϕ 7→ Apϕ = (∇ log p)ϕT +∇ϕ is the Stein operator.

Proof. See Appendix A.2.

The remarkable observation to make now is that ϕ∗
q,p from equation (17) is such that the following

holds:

ϕ∗
q,p

||ϕ∗
q,p||Hd

= argmax
{
−∇ϵKL(q[Tϕ] || p)

∣∣∣
ϵ=0

∣∣∣ ϕ ∈ Hd, ||ϕ||Hd ≤ 1
}
.

In other words, the function ϕ∗
q,p, being the optimal solution (direction) for the KSD, turns out

to be equal to the direction that yields the steepest descent of KL divergence of all functions
ϕ ∈ Hd such that ||ϕ||Hd ≤ 1.

Lemma 3.9 (Lemma from Liu and D. Wang 2016). Assume that the same conditions as in
Theorem 3.7 and Theorem 3.8 hold. Consider every possible perturbation (direction) ϕ in the
ball B = {ϕ ∈ Hd | ||ϕ||2Hd ≤ S(q, p)} in RKHS Hd. The direction of steepest descent in B,
i.e. the direction that maximizes −∇ϵKL(q[T ] || p)

∣∣∣
ϵ=0

is ϕ∗
q,p from equation (17). This choice

of perturbation direction results in the following equality:

∇ϵKL(q[T ∗] || p)
∣∣∣
ϵ=0

= −S(q, p),

where T ∗ is the mapping x 7→ T ∗(x) = x+ ϵϕ∗
q,p(x).

Proof. By definition, we have S(q, p) =
{
[Ex∼q(tr(Apϕ(x)))]

2
∣∣∣ ϕ ∈ Hd, ||ϕ||Hd ≤ 1

}
and

the result of Theorem 3.7 gives a specific value to it: S(q, p) = ||ϕ∗
q,p||2Hd . Furthermore, Theorem

3.7 also gives a useful identity that we are going to use below: ⟨ϕ,ϕ∗
q,p⟩Hd = Eq[tr(Apϕ)] for any

ϕ ∈ Hd. We can apply the result of Theorem 3.8 to all functions in B. This way, ϕ∗q,p ∈ B and
we have:

max
{
−∇ϵKL(q[Tϕ] || p)

∣∣∣
ϵ=0

∣∣∣ ϕ ∈ B} = max {EX∼q[tr(Apϕ(X)) | ϕ ∈ B}

= max
{
⟨ϕ,ϕ∗

q,p⟩Hd | ϕ ∈ B
}
. (21)

For ϕ ∈ B we have by the Cauchy-Schwarz inequality that:
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|⟨ϕ,ϕ∗
q,p⟩Hd | ≤ ||ϕ||Hd ||ϕ∗

q,p||Hd ≤
√
S(q, p)||ϕ∗

q,p||Hd .

Let us pick ϕ̃ =
ϕ∗
q,p

√
S(q,p)

||ϕ∗
q,p||Hd

. This gives ⟨ϕ̃,ϕ∗
q,p⟩Hd = ||ϕ∗

q,p||Hd

√
S(q, p). Hence, we have upper

bounded the maximum in equation (21) and also attained this upper bound. The maximum is
therefore equal to the upper bound. This gives:

max
{
−∇ϵKL(q[Tϕ] || p)

∣∣∣
ϵ=0

∣∣∣ ϕ ∈ B]} =
√
S(q, p)||ϕ∗

q,p||Hd

=
√
S(q, p)

√
S(q, p)

= S(q, p).

Lemma 3.9 can be used to construct a procedure to transform a reference density q0 to the
target density p, as the lemma gives the direction of steepest descent in B, i.e. the direction
that maximizes −∇ϵKL(q[T ] || p)

∣∣∣
ϵ=0

. This direction is given by ϕ∗
q,p. After every iteration

of the transformation function T , using ϕ∗
q,p to create this transformation function T , the KL

divergence between q and p shrinks. The goal is to let q resemble p as closely as possible.

The procedure is as follows:

Algorithm 1 Iterative procedure for the transformation of densities
Input: A target density p, an initial density q0 and a sequence of step-sizes {ϵℓ}ℓ≥0.
Output: A sequence of densities {qℓ}ℓ≥0 that becomes an approximation of the density p.

1: for ℓ = 0, 1, 2, . . . do
2: Compute ϕ∗

qℓ,p
using equation (17).

3: Compute T ∗
ℓ (x) = x+ ϵℓϕ

∗
qℓ,p

(x).
4: Let qℓ+1 = qℓ[T ∗

ℓ ]
, according to equation (20).

5: end for

The idea behind this procedure is as follows: the initial density q0 induces an initial transform
x 7→ T ∗

0(x) = x + ϵ0ϕ
∗
q0,p(x). In turn, this transformation induces a new density q1 = q0[T 0].

This transformation approximately reduces KL divergence between q1 and p by ϵ0S(q1, p) for a
small step-size ϵ0. To continue, a new transformation is created as x 7→ T ∗

1(x) = x+ ϵ1ϕ
∗
q1,p(x).

As before, this transforms q1 into q2 and (again) approximately decreases the KL divergence
between q2 and p by ϵ1S(q1, p). This procedure results in a sequence of densities {qℓ}ℓ≥1 for
iterations ℓ = 1, 2, . . . . Ultimately, it all revolves around

qℓ+1 = qℓ[T ∗
ℓ ]
, (22)

with x 7→ T ∗
ℓ (x) = x+ ϵℓϕ

∗
qℓ,p

(x), (23)

for small enough perturbation sizes {ϵℓ}ℓ≥1. The ideal scenario of this iterative scheme is to
eventually converge to the target density p. This would mean that ϕ∗

q∞,p is the zero map and
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T ∗
∞ is equal to the identity map. It should be remembered that q = p if and only if ϕ∗

q,p is the
zero map, see e.g. equation (18) and the explanation below Theorem 3.7.

Almost all ingredients are now available to introduce Stein variational gradient descent, but first
it is necessary to study how the iterative scheme of equations (22) and (23) can be approximated.
The reason an approximation is needed is that the expectation to calculate ϕ∗

q,p has to be evalu-
ated and this involves a gradient of the target distribution p. Furthermore, it is computationally
hard to track density functions, as functions are infinite dimensional. Hence, every density qi is
replaced by a sample from it.

Let us first describe the practical steps and then state the algorithm. A set of M particles
is drawn, denoted {x0i }Mi=1 with the superscript denoting that these particles are drawn from
the density q0. Next, the iterative scheme of equations (22) and (23) has to be carried out.
To calculate the necessary ingredients, T ∗

ℓ is needed in the ℓ-th iteration and this requires
ϕ∗

qℓ,p
(·) = EX∼qℓ [Apk(X, ·)]. This is an expectation with respect to qℓ and it is approximated by

an empirical mean over the particles that are available in iteration ℓ, i.e. the set {xℓi}Mi=1.

We can now give the SVGD algorithm in Algorithm 2. Originally, the authors called this method
‘Bayesian inference via variational gradient descent’, but we adopt the naming ‘Stein variational
gradient descent’.

Algorithm 2 Pseudocode for Stein variational gradient descent (Liu and D. Wang 2016)
Input: A target density p, initial particles {x0i }Mi=1 and a sequence of step-sizes {ϵℓ}ℓ≥0.
Output: A set of particles {xi}Mi=1 that resembles the distribution with density p.

1: for ℓ = 0, 1, 2, . . . do
2: for i = 1, . . . ,M do
3: xℓ+1

i ← xℓi + ϵℓϕ̂
∗(xℓi), with ϕ̂∗(x) = 1

M

∑M
j=1[k(x

ℓ
j , x)∇xℓ

j
log p(xℓj) +∇xℓ

j
k(xℓj , x)].

4: end for
5: end for

Remark 3.10. The function ϕ̂∗ is not normalized, as this implementation of SVGD uses the
results presented in Lemma 3.9.

This algorithm gives a way to iteratively transform the initial particles {x0i }Mi=1 in such a way that
the transformed set of particles approximates p. The algorithm acts in the same way as a gradient
descent type algorithm and SVGD can be seen as a gradient descent type algorithm for the KL
divergence functional. The direction of steepest descent can be interpreted as follows. First note
that the algorithm lets the particles move in the direction of ϕ̂∗(x). This ϕ̂∗ is composed of two
gradient terms and that is also the reason it is a gradient descent type of algorithm. The first
term in ϕ̂∗ consists of the gradients of the logarithm of p, weighted by the kernel function. In
fact, it is a kernel weighted average over all particles. This way the kernel smooths the gradients,
but the gradient still points in the direction of areas that increase p. The second term in ϕ̂∗

consists of the gradients of the kernel function with respect to the particles. This term is what
the authors name a repulsive force. Its aim is to prevent the particles to collapse with other
particles in (local) modes of p. Let us give an example from Liu and D. Wang 2016.

Example 3.11. Consider the radial basis function (RBF) kernel function k : X ×X → R given
by (x, x′) 7→ k(x, x′) = exp(− 1

h ||x− x
′||2) for some h > 0. This means that we get the following:
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M∑
j=1

∇xℓ
j
k(xℓj , x) =

M∑
j=1

2

h
(x− xℓj)k(xℓj , x). (24)

The interpretation of this derivative is that points xℓj which are close to x have a higher value of
k(xℓj , x), as for those points ||xℓj −x||2 is relatively small. This means that these points are more
repelled and hence

∑M
j=1∇xℓ

j
k(xℓj , x) acts as a repulsive force.

Another observation can be made by taking the case of a single particle into consideration.
The case M = 1 reduces the algorithm to MAP for any kernel that satisfies the condition that
∇x′k(x′, x) = 0. If we look at equation (24), then for the RBF kernel function this condition
holds.

A big difference with Monte Carlo methods is that these methods rely on a large number M of
particles to get a good approximation of p, as these methods take an average over all the points.
Another difference is that in the presented method a (deterministic) repulsive force is used to get
diverse points instead of using randomization, which is typical in Monte Carlo approximation
methods. In the presented method a repulsive force is used to get non-equal particles which do
not collapse into local modes of p, but Monte Carlo methods rely on randomization to make sure
that particles do not all end up in the same local modes of p.

To conclude the theory, let us look at the computational implementation of Algorithm 2. The
main difficulty in the algorithm is the update to calculate the term ∇ log p for all particles
{xi}Mi=1. This is an even more demanding task if we have a lot of data D = {Dj}nj=1. This is
due to the fact that p(x|D) ∝ p0(x)

∏n
j=1 p(Dj |x) becomes more difficult to handle for larger n,

simply because the product contains more terms. A solution for this is proposed in the form of an
approximation of ∇ log p. By simply using a subset of the original dataset, an approximation for
∇ log p is made, i.e. take Ω ⊂ {1, 2, . . . , n} as a subset of the original dataset, then the following
approximation can be made:

∇ log p(x) ≈ ∇ log p0(x) +
n

|Ω|
∑
j∈Ω

∇xp(Dj |x). (25)

By using this approximation, it is only necessary to consider the data points indexed by Ω and
not the full dataset. The last concern in the algorithm is the evaluation of the kernel function
on {xi}Mi=1. In fact it becomes a kernel matrix {k(xi, xj)}ij and evaluation of this matrix is
O(M2). If it is necessary to use a large M (which in practice is not always necessary, see e.g.
Liu and D. Wang 2016), then a similar technique as for ∇ log p can be used, i.e. subsampling
Ω̄ ⊂ {1, 2, . . . ,M} to approximate the sum

∑M
i=1 k(xi, x) by M

|Ω̄|
∑

i∈Ω̄ k(xi, x).

In the last part of the original SVGD paper Liu and D. Wang 2016, the authors perform a
test of Algorithm 2 on a toy example to show its workings. For the numerical experiments,
the RBF kernel is used with the bandwidth h = med2/ logM , where med is the median of the
pairwise distances between the current points {xℓi}Mi=1 in iteration ℓ. Hence, in every iteration
the RBF kernel kh is changed. In what follows, we describe the Gaussian mixture distribution
experiment. The target density is given as x 7→ p(x) = 1

3φ(x;−2, 1) +
2
3φ(x; 2, 1) and as initial

density x 7→ q0(x) = φ(x;−10, 1) is used, where x 7→ φ(x : µ, σ2) denotes the density of a
N (µ, σ2) random variable. In Figure 6 the evolution of the distribution of particles is shown
after an increasing number of iterations. Initially, the density q0, from which our first M = 100
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particles are sampled, does not resemble the target density. It is the case that after 500 iterations
the evolved particles follow the target density quite closely.

Figure 6: Toy example with Gaussian mixture distribution. The red dashed lines are the target
density function and the solid green lines are the densities of the particles at different iterations of
the SVGD algorithm (estimated using a kernel density estimator). Note that the initial density
is set to have almost zero overlap with the target density, but the method demonstrates the
ability to recover the full target density. M = 100 particles are used. Picture and caption from
Liu and D. Wang 2016.
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4 Repulsive deep ensembles are Bayesian
In this section we continue where we left off in Section 2, namely that we want to to overcome
the pitfalls of deep ensembles in the sense that they have no means to prevent that the ensemble
members end up with the same parameters. Hence, we want to find a way to counteract this
problem. Inspired by SVGD (Liu and D. Wang 2016), a repulsive component in the training
of the ensemble members is introduced. This repulsive component is integrated by means of a
kernel function that models a repulsive action if two ensemble members are close to each other
in parameter space. This prevents that the different ensemble members end up with the same
parameters. We will follow this idea, proposed in D’Angelo and Fortuin 2021.

Let us recall the training procedure for ensembles of Bayesian neural networks. The data is given
as D and is a set of i.i.d. observations. The Bayesian neural networks are usually trained by
means of maximum a posteriori (MAP) estimation. The non-convexity of the MAP estimation
(or optimization) problem is used by the deep ensembles to form M independently trained (and
ideally also different) parameter solutions. ConsiderM parameter weights of NNs in an ensemble,
{θi}Mi=1 with θi ∈ Rd ∀i = 1, . . . ,M . The evolution of the parameters of the ensemble members
under the gradient of the log-posterior gives the following update rule at iteration ℓ ∈ N:

θℓ+1
i ← θℓi + ϵℓϕ(θ

ℓ
i ), ∀i = 1, . . . ,M, (26)

with ϕ(θℓi ) = ∇θ log p(θ|D)|θ=θℓ
i
, (27)

with (small) step size ϵℓ. Assume that we have a stationary kernel k : Rd×Rd → R. A stationary
kernel has the property that k(θ, θ′) = k(θ + a, θ′ + a) ∀a ∈ Rd. In this way, the kernel function
induces a homogeneous notion of distance in input space, meaning that it is independent of the
exact place in input space. See e.g. Remes et al. 2017 for more details. A repulsive term can be
parameterised through the gradient of the kernel:

ϕ(θℓi ) = ∇θℓ
i
log(p(θℓi |D))−R({∇θℓ

i
k(θℓi , θ

ℓ
j)}Mj=1), ∀i = 1, . . . ,M, (28)

with R(·) some general function that captures a repulsive action between the ensemble members
{θi}Mi=1. We will not yet give R(·) a precise form, but we will work towards it. At this point, we
only give its argument: {∇θℓ

i
k(θℓi , θ

ℓ
j)}Mj=1.

Example 4.1. To get a feeling for the repulsive term and the gradients of the kernel function,
let us consider the well-known radial basis function (RBF) kernel:

(θi, θj) 7→ k(θi, θj) = exp

(
− 1

h
||θi − θj ||2

)
, (29)

with length scale h. Its gradient is given by:

∇θik(θi, θj) =
2

h
(θj − θi)k(θi, θj). (30)

This gradient ensures that θi gets ‘repelled’ from neighboring θj ’s. This is due to the negative
exponential and the norm of the difference between the two weights. Let us illustrate this. Points
θj which are close to θi have a higher value of k(θi, θj), as for those points ||θi−θj ||2 is relatively
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small. Consider e.g. θ1 and θ2, with the property that ||θ1 − θi||2 < ||θ2 − θi||2, i.e. θ1 is closer
to θi than θ2 is to θi. This means that k(θi, θ1) > k(θi, θ2) and these factors k(θi, θ1), k(θi, θ2)
magnify the vectors 2

h (θ1 − θi) and 2
h (θ2 − θi), respectively. This way, the kernel term in the

kernel gradient magnifies the vector (direction) (θ1 − θi) more. In this way, a difference in the
distance ||θj−θi||2 is preserved in the gradient of the kernel function ∇θik(θi, θj). This property
can be used to ‘repel’ particles that are close to each other. Observe that in the limit h→ 0 the
kernel function k vanishes and hence the repulsive force also disappears. A similar example is
given in Example 3.11.

To tackle the problem of inducing the same neural network functions from different parameter
settings, equation (28) can be rephrased in function space instead of parameter space (D’Angelo
and Fortuin 2021). Let f : θ 7→ f(· ; θ) be a mapping that maps a parameter weight vector
θ ∈ Θ ⊆ Rd to the corresponding neural network (regression) function. We let f i := f(· ; θi)
denote the same neural network function, but with a certain indexed parameter weight θi. Take
M ‘particles’ in function space {f i}Mi=1 with f i ∈ F . The ‘repulsive’ interaction between these
particles (in function space) is modeled with some positive definite kernel k.

The implicit functional likelihood p(y|x,f) is of interest. This functional likelihood is determined
by the density p(y|x, θ) in weight space and the prior p(f). This prior over f can be defined
separately via e.g. a Gaussian process or it can be modeled as a push-forward measure of the
weight-space measure p(θ). The reason behind this is that the randomness comes from the
parameter weights θ and these parameters induce a NN function via f . These two ingredients
together, the likelihood p(y|x,f) and the prior p(f) yield the posterior p(f |x, y) in function
space. We may abbreviate p(f |x, y) as p(f |D). The update rule at iteration ℓ ∈ N in function
space is:

f ℓ+1
i ← f ℓ

i + ϵℓϕ(f
ℓ
i), ∀i = 1, . . . ,M, (31)

with ϕ(f ℓ
i) = ∇fℓ

i
log p(f ℓ

i |D)−R({∇fℓ
i
k(f ℓ

i ,f
ℓ
j)}Mj=1). (32)

Calculating this update is not tractable in practice, as it involves handling infinite dimensional
functions and updating them. From a numerical point of view, it is preferred to work with finite
dimensional objects. This problem has to be circumvented. The first step tackles the infinite
dimensionality of the function space. A projection from the function space to a subspace is used,
introduced in the following definition:

Definition 4.2. For any A ⊂ X , we define πA : f 7→ πA(f) = {f(a)}a∈A as the canonical
projection onto A.

This projection can help in the sense that whenever the kernel has to be evaluated in function
space, it will instead be evaluated on the projection k(πB(f), πB(f ′)) for B being a subset of the
input space given by a batch of datapoints from our dataset.

The second solution is to project this update in function space into parameter space and update
particles in weight space accordingly. An update step in finite dimensional parameter space is
tractable in practice. Furthermore, we are interested in functions, which are NNs parameterised
by weights, so knowing the parameters suffices. To this end, the Jacobian of the i-th particle
can be used as a projector:

ϕ(θℓi ) =

(
∂f ℓ

i

∂θℓi

)
(∇fℓ

i
log(p(f ℓ

i |D))−R({∇fℓ
i
k(πB(f

ℓ
i), πB(f

ℓ
j))}Mj=1)). (33)
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The rationale behind this projection is as follows. Define the function h as:

h(f ℓ
i(θ

ℓ
i )) := ∇fℓ

i
log p(f ℓ

i |D)−R({∇fℓ
i
k(f ℓ

i ,f
ℓ
j)}Mj=1).

We explicitly write f ℓ
i(θ

ℓ
i ) to make the dependence of f ℓ

i on θℓi more clear. Let us assume that
R({∇fℓ

i
k(f ℓ

i ,f
ℓ
j)}Mj=1) can be written as a gradient with respect to f ℓ

i , i.e. as
∇fℓ

i
R̃({∇fℓ

i
k(f ℓ

i ,f
ℓ
j)}Mj=1), for some function R̃. In this way, we can write

h(f ℓ
i(θ

ℓ
i )) = ∇fℓ

i
(log p(f ℓ

i |D)− R̃({∇fℓ
i
k(f ℓ

i ,f
ℓ
j)}Mj=1)) = ∇fℓ

i
h̃(f ℓ

i(θ
ℓ
i )),

with h̃(f ℓ
i(θ

ℓ
i )) := log p(f ℓ

i |D) − R̃({∇fℓ
i
k(f ℓ

i ,f
ℓ
j)}Mj=1). Now, we can observe a chain rule in

h̃(f ℓ
i(θ

ℓ
i )). By the multivariable chain rule, we have:

∇θℓ
i
h̃(f ℓ

i(θ
ℓ
i )) =

(
∂f ℓ

i

∂θℓi

)
∇fℓ

i
h̃(f ℓ

i) =

(
∂f ℓ

i

∂θℓi

)
h(f ℓ

i).

In this way, we can see that the projection by means of the Jacobian
(

∂fℓ
i

∂θℓ
i

)
on the term h(f ℓ

i)

can be seen as a gradient with respect to θℓi of h̃(f ℓ
i(θ

ℓ
i )). Hence, the update step in equation

(33) can be seen as ∇θℓ
i
h̃(f ℓ

i(θ
ℓ
i )).

The update in equation (33) has the same flavour as the update performed in SVGD, in the
sense that it is a weighted combination of a gradient of the log-posterior and a term depending
on the gradients of a kernel function. Let us recall that a SVGD update step can be written in
parameter space as:

ϕ(θℓi ) =
1

M

M∑
j=1

(
k(θℓi , θ

ℓ
j)∇θℓ

i
log p(θℓi |D) +∇θℓ

j
k(θℓj , θ

ℓ
i )
)
. (34)

The observation to make here is that the gradients are averaged across all particles using the
kernel matrix in the first part of the equation. If the inference in this SVGD update scheme is
moved to function space, then the update rule is given (Z. Wang et al. 2019) as:

ϕ(θℓi ) =

(
∂f ℓ

i

∂θℓi

) 1

M

M∑
j=1

(
k(f ℓ

i ,f
ℓ
j)∇fℓ

j
log p(f ℓ

j |D) +∇fℓ
j
k(f ℓ

i ,f
ℓ
j)
) . (35)

The averaging of gradients using a kernel can be dangerous in high-dimensional settings, where
kernel methods can suffer from the curse of dimensionality. Furthermore, in equation (34) the
gradients of the log-posterior are averaged by by means of a kernel similarity in weight space, but
that might be non-ideal for multi-modal posteriors. Even worse, in equation (35) the gradients of
the log-posterior are averaged according to kernel similarity in function space, but then projected
back using only the i-th function Jacobian. The proposed method in equation (33) does not use
any averaging of the log-posterior gradients and hence aims to come closer to the true particle
gradients for deep ensembles.
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In equation (28) the repulsive term is introduced, but not specified in detail. It was a general
function of the gradient of a kernel. In what follows, the goal is to determine the specific form of
this repulsive term such that the update rule that follows from is equivalent to the discretisation
of the gradient flow dynamics of the KL divergence in Wasserstein space. We need some more
theory for that and we will devote the next chapter to it.
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5 Towards repulsive deep ensembles in Wasserstein space
Let us take a broad starting viewpoint by considering the optimization problem of some functional
F : P2(X ) −→ R, with P2(X ) denoting the set of Borel probability measures on X with finite
second moments, called the Wasserstein space. We will use X = Rd, unless stated otherwise. A
formal definition will be given when more precision is need. An example of such a functional
F can for example be the KL divergence between an approximating measure µ and the target
posterior π, so we take F : µ 7→ F(µ) = KL(µ||π) for π ∈ P2(Rd) assumed to be fixed, but
unknown to us. In this section, our goal is to construct a ‘flow’ of probability measures (µt)t≥0,
starting from some initial µ0 such that µt converges to the minimizer of the KL divergence with
respect to π. More specifically, we model this in the following way:

inf
µt∈P2(Rd)

KL(µt||π). (36)

We assume π ∈ P2(Rd). Observe that the infimum can be attained by µt = π, but π is unknown
and we have to evolve our flow (µt)t≥0 such that it evolves into π and hence minimizes the KL
divergence with respect to π.

Let us make an analogy with a more familiar problem, namely a gradient flow in Rd.

Definition 5.1 (Gradient flow). A gradient flow starting at x0 for a continuously differentiable
function F : Rd → R is a differentiable map x : [0, T ]→ Rd such that the following holds:

{
x(0) = x0,

x′(t) = −∇F (x(t)), if t ∈ (0, T ).
(37)

The dynamics of such a gradient flow problem and the evolution in time of the trajectory t 7→ x(t)
are modeled by the following ODE:

dx

dt
= −∇F (x). (38)

5.1 Wasserstein space
The goal of this section is to work towards the Wasserstein gradient flow (Ambrosio et al. 2008)
and derive a particle update procedure with its theoretical motivation. We first need to set the
scene and give the necessary theory and we will do that in this subsection. The Wasserstein
gradient flow is a flow of measures and in what follows, we will introduce this space of measures
and its corresponding theory. After that, we will focus on the ‘flow’ part. Let us first introduce
the Wasserstein space on Rd in the following definition.

Definition 5.2 (Wasserstein space). The Wasserstein space on Rd, denoted P2(Rd) is the space
of probability measures on Rd with finite second moments, i.e.

P2(Rd) =

{
µ ∈ P(Rd)

∣∣∣ ∫
Rd

||x||2dµ(x) <∞
}
, (39)

where P(Rd) is the set of measures on Rd with the usual Borel sigma algebra on Rd.
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This space can be equipped with the Wasserstein-2 distance W2:

W 2
2 (ν, µ) = inf

s∈Γ(ν,µ)

{∫
Rd×Rd

||x− y||2ds(x, y)
}
, (40)

with Γ(ν, µ) the set of all possible joint distributions on Rd × Rd with marginals ν and µ.

Let us now give a definition of a measure of a measurable mapping T : Rd → Rd:

Definition 5.3. Let µ ∈ P2(Rd) and T : Rd −→ Rd a measurable mapping. The pushforward
measure T# : P2(Rd)→ P(Rd) is a mapping satisfies the following condition

T#µ(B) = µ(T−1(B)), ∀B ∈ B(Rd).

According to this definition, we have that if X ∼ µ, then T (X) ∼ T#µ, i.e. the pushforward
measure determines the distribution of a transformation of a random variable. This definition
puts us in place to state Brenier’s theorem:

Theorem 5.4 (Brenier’s theorem). Let µ, ν ∈ P2(Rd) such that µ≪ Ld, where Ld denotes the
Lebesgue measure on Rd. Then, there exists a measurable mapping T ν

µ : Rd −→ Rd satisfying the
following two properties:

• (T ν
µ )#µ = ν,

• W 2
2 (µ, ν) = ||I − T ν

µ ||2L2(µ) =
∫
||x− T ν

µ (x)||2dµ(x).

The interpretation of this theorem is that a mapping exists, depending on ν and µ such that
the pushforward of T ν

µ w.r.t µ is ν and this mapping is such that the Wasserstein-2 distance
between the two measures ν and µ is equal to the squared L2(µ) norm of the difference between
the identity map and the mapping T ν

µ .

5.2 Towards the continuity equation
We will set the scene to be able to state the continuity equation. Let I = (0, T ), for some T > 0
be our time interval of interest. In what follows, we will introduce a ‘differential structure’ on
P2(X ), with X = Rd in such a way that we can define a gradient at every point on a curve of
measures in P2(X ). To this end, we need smooth curves and a notion of a gradient. We will
start with analysing the property of absolute continuity for curves µt : I → P2(X ). Then, we
will introduce the notion of a metric derivative |µ′

t|. We will show that for absolutely continuous
curves µt : I → P2(X ), the metric derivative coincides with solutions of the continuity equation:

∂tµt +∇ · (vtµt) = 0,

which should be interpreted in a distributional sense. We will make it more precise what it means
for this equation to hold in a distributional sense. Furthermore, we will show what it means to
take a partial derivative of µt and a divergence of vtµt. Let us first give a very general definition
of absolutely continuous curves.

Definition 5.5 (Definition 1.1.1 in Ambrosio et al. 2008: absolutely continuous curves). Let
(S , d) be a complete metric space and let v : I → S be a curve in (S , d). We say that v belongs
to ACp(I;S ), for p ∈ [1,∞], if there exists m ∈ Lp(I) such that
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d(v(s), v(t)) ≤
∫ t

s

m(r)dr, ∀0 < s ≤ t ≤ T. (41)

In the case p = 1, we name the corresponding curves absolutely continuous and we will denote
the corresponding space by AC(I;S ).

Remark 5.6. The Wasserstein space on Rd (where Rd is endowed with the usual Euclidean
metric) with the Wasserstein metric is a complete metric space, see e.g. Proposition 7.1.5 in
Ambrosio et al. 2008.

We can now give a (general) result about the existence of the metric derivative for a curve v in
ACp(I;S ).

Theorem 5.7 (Theorem 1.1.2 in Ambrosio et al. 2008: metric derivative). Let p ∈ [1,∞]. Then,
for any curve v in ACp(I;S ), the limit

|v′|(t) := lim
s→t

d(v(s), v(t))

|s− t|
(42)

exists for L1-a.e. t ∈ I, with L1 denoting the Lebesgue measure. We call |v′| the metric derivative
of the the curve v. Moreover, the function t 7→ |v′|(t) ∈ Lp(I) is an admissible integrand for the
RHS of equation (41) and it is minimal in the following sense: |v′|(t) ≤ m(t) for L1-a.e. t ∈ I,
for each function m satisfying equation (41).

The notion of absolutely continuous curves and a metric derivative can be applied to the complete
metric space (P2(X ),W2), with X = Rd. This puts us in place to make a connection between
the continuity equation and absolutely continuous curves by means of the following theorem.

Theorem 5.8 (Theorem 8.3.1 in Ambrosio et al. 2008: absolutely continuous curves and the
continuity equation). Let I be an open interval in R, let µt : I → P2(X ) be an absolutely
continuous curve (i.e. µ ∈ AC(I,P2(X ))) and let |µ′| ∈ L1(I) be its metric derivative, given by
Theorem 5.7. Then, there exists a Borel measurable vector field v : (x, t) 7→ vt(x) ∈ Rd such that:

vt ∈ L2(µt;X ), ||vt||L2(µt;X ) ≤ |µ′|(t) for L1-a.e. t ∈ I, (43)

and the continuity equation

∂tµt +∇ · (vtµt) = 0, (44)

holds in the sense of distributions, i.e.

∫
I

∫
X
(∂tϕ(x, t) + ⟨vt(x),∇xϕ(x, t)⟩)dµt(x)dt = 0, ∀ϕ ∈ C∞

c (X × I). (45)

Moreover, for L1-a.e. t ∈ I, vt belongs to the closure in L2(µt;X ) of the subspace generated by
the gradients ∇ϕ with ϕ ∈ C∞

c (X ). Conversely, if a weakly continuous curve µt : I → P2(X )
satisfies the continuity equation (in the sense of distributions) for some Borel velocity field v :
(x, t) 7→ vt(x) with ||vt||L2(µt;X ) ∈ L1(I), then µt : I → P2(X ) is absolutely continuous and
|µ′|(t) ≤ ||vt||L2(µt;X ) for L1-a.e. t ∈ I.
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Remark 5.9. Following the convention in section 5.1 of Ambrosio et al. 2008, we say that a
sequence (µn) ⊂ P(X ) is weakly convergent to µ ∈ P(X ) as n→∞ if

lim
n→∞

∫
X
f(x)dµn(x) =

∫
X
f(x)dµ(x),

for every function f ∈ C0
b (X ), the space of continuous and bounded real functions defined on X .

A weakly continuous curve µt can be understood as being continuous with respect to this notion
of weak convergence.

So, given an absolutely continuous curve µt, it is possible to find a time-dependent vector field
vt such that ||vt||L2(µt:X ) ≤ |µ′|(t) for L1-a.e. t ∈ I and such that the continuity equation
holds. Conversely, if a specific µt solves the continuity equation for some specific vector field vt
that satisfies ||vt||L2(µt;X ) ∈ L1(I), i.e.

∫
I
||vt||L2(µt;X )dt < ∞, then the curve µt is absolutely

continuous and we have that ||vt||L2(µt;X ) ≥ |µ′|(t) for L1-a.e. t ∈ I. The take-away from this
is that whenever a curve µt satisfies the continuity equation, we can find a vector field that has
minimal L2 norm. Furthermore, this minimum L2 norm is given by |µ′|. The question is now
whether there is a means to find a unique vector field vt for a given absolutely continuous curve
µt. It turns out that such a selection principle exists. The reason we try to find a unique vector
field for this absolutely continuous curve is to identify this unique vector field as the tangent
vector of the curve µt. In order for a tangent vector to exist, we also need to have the notion
of a tangent plane. In what follows, we will first give the definition of such a tangent plane and
then we will state the proposition that shows the favourable properties of this tangent plane.

Definition 5.10 (Definition 8.4.1 in Ambrosio et al. 2008: tangent bundle). Let µ ∈ P2(X ). We

define the tangent bundle at µ as Tanµ P2(X ) := {∇φ | φ ∈ C∞
c (X )}

L2(µ;X )
, where the overline

means closure.

Now that we have a definition of the tangent bundle (also called tangent plane) at a point
µ ∈ P2(X ), it is interesting to see how it links to the unique vector field vt, found for an
absolutely continuous curve µt in Theorem 5.8. Let us give a proposition that shows that this
unique vector field vt is in the tangent plane of this absolutely continuous curve. In this way, we
can view this vt as being the tangent vector to µt.

Proposition 5.11 (Proposition 8.4.5 in Ambrosio et al. 2008: tangent vector to absolutely
continuous curves). Let µt : I → P2(X ) be an absolutely continuous curve and let vt ∈ L2(µt;X )
be such that the continuity equation holds. Then, vt satisfies equation (43) if and only if vt ∈
Tanµt

P2(X ) for L1-a.e. t ∈ I. The vector vt is uniquely determined L1-a.e. in I by equations
(43) and (44).

Observe that, by definition of the tangent plane, it is the case that our unique tangent vector vt
is in L2(µt;X ).

5.3 Towards the gradient flow formulation
We now focus on functionals on the Wasserstein space, i.e. functions that take measures as
inputs. To properly define a gradient flow on the Wasserstein space, we need certain assumptions
on these functionals. For instance, in the definition of a Fréchet subdifferential, the assumption
is needed that the functional F : P2(X ) → (−∞,∞] is proper and lower semicontinuous, with
D(|∂F|) ⊂ Pr

2 (X ). Here, Pr
2 (X ) denotes the measures in P2(X ) that are regular. In fact, we
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have that Pr
2 (Rd) = P2(Rd). Let us also give the definitions of what it means for a functional to

be proper and semicontinuous. Furthermore, let us also give the meaning of D(|∂F|).

Remark 5.12. A functional F : P2(X ) → (−∞,∞] is called proper if it has a proper effective
domain, meaning that D(F) ̸= ∅, where D(F) is defined as follows:

D(F) := {µ ∈ P2(X ) | F(µ) <∞}.

This functional F is said to be lower semicontinuous in P2(X ) if for all µ ∈ P2(X ):

lim inf
ν→µ

F(ν) ≥ F(µ),

where ν → µ should be interpreted as convergence in Wasserstein distance.

The local slope of F at µ ∈ D(F), denoted as |∂F|(µ), is defined as

|∂F|(µ) = lim sup
ν→µ

(F(ν)−F(µ))+

W2(ν, µ)
,

where we can once again understand ν → µ as converging in Wasserstein distance and (a)+ :=
max{0, a} for a ∈ R.

We define D(|∂F|), in an analogous way as we did for D(F),
namely D(|∂F|) := {µ ∈ P2(X ) | |∂F|(µ) <∞}.

We are now in place to give the definition of a Fréchet subdifferential.

Definition 5.13 (Definition 10.1.1 in Ambrosio et al. 2008: Fréchet subdifferential). Let F :
P2(X ) → (−∞,∞] be a functional that is proper, lower semicontinuous and has. Let µ ∈
D(|∂F|). We say that ξ ∈ L2(µ;X ) belongs to the Fréchet subdifferential ∂F(µ) if

F(ν)−F(µ) ≥
∫
X
⟨ξ(x), T ν

µ (x)− x⟩dµ(x) + o(W2(µ, ν)), as ν → µ,

where T ν
µ refers to the optimal transport map in Theorem 5.4.

We are now ready to formally state what it means to speak about a gradient flow in the Wasser-
stein space.

Definition 5.14 (Definition 11.1.1 in Ambrosio et al. 2008: gradient flows). We say that a map
µt ∈ AC2

loc((0,∞);P2(X )) is a solution of the gradient flow equation:

vt ∈ −∂F(µt), t > 0, (46)

if its velocity vector field vt ∈ Tanµt
P2(X ) belongs to the subdifferential ∂F(µt) from Definition

5.13 of F at µt for L1-a.e. t > 0, meaning that for L1-a.e. t > 0:

F(ν)−F(µt) ≥
∫
X
⟨vt(x), T ν

µt
(x)− x⟩dµt(x) + o(W2(µt, ν)), as ν → µt.
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Remark 5.15. The space AC2
loc((0,∞);P2(X )) is the space of curves that are locally defined,

i.e. µ ∈ AC2
loc((0,∞);P2(X )) if µ ∈ AC2(I;P2(X )) for every interval I = (a, b) with 0 ≤ a < b.

We will consider the interval I = (0, T ), unless specifically stated otherwise.

This definition of a gradient flow is equivalent to the following characterisation: there exists a
Borel vector field vt such that vt ∈ Tanµt

P2(X ) for L1-a.e. t > 0, ||vt||L2(µt) ∈ L2
Loc(0,∞), the

continuity equation

∂tµt +∇ · (vtµt) = 0, (47)

holds in the sense of distributions and the following inclusion of the vector field is needed:

vt ∈ −∂F(µt) for L1-a.e. t > 0. (48)

5.3.1 Exponential decay of the KL divergence

We will work towards a result that shows that under a certain condition on the functional under
consideration we can have exponential decay of the Wasserstein distance for a gradient flow. Let
us first introduce some notation.

Remark 5.16. Following section 7.1 in Ambrosio et al. 2008, the set Γ(µ, ν) is the set of joint
couplings/distributions between µ and ν with marginals µ and ν. The set Γo(µ, ν) ⊂ Γ(µ, ν) is
the convex and weakly compact set of optimal transport plans where the minimum (as in the
definition of the Wasserstein distance, see equation (40)) is attained, i.e.

γ ∈ Γo(µ, ν) ⇐⇒
∫
X 2

||x1 − x2||2dγ(x1, x2) =W 2
2 (µ, ν).

Definition 5.17 (Definition 9.1.1 in Ambrosio et al. 2008: λ-convexity along geodesics). Let
X = Rd and let F : P2(X ) → (−∞,∞]. Given λ ∈ R, we say that F is λ-geodesically convex
in P2(X ) if for every couple µ, ν ∈ P2(X ) there exists an optimal joint distribution µ ∈ Γo(µ, ν)
such that

F(µ1→2
t ) ≤ (1− t)F(µ) + tF(ν)− λ

2
t(1− t)W 2

2 (µ, ν), ∀t ∈ [0, 1],

where µ1→2
t := (π1→2

t )#µ = ((1 − t)π1 + tπ2)#µ, with π1, π2 being the projections onto the
first and second coordinate in X 2, respectively. Specifically, (1− t)π1 + tπ2 is the map (x, y) 7→
(1− t)x+ ty.

Theorem 5.18 (Theorem 11.1.4 in Ambrosio et al. 2008: exponential Wasserstein decay). Let
F : P2(X ) → (−∞,∞] be a lower semicontinuous λ-geodesically convex functional. If µi

t :
(0,∞)→ P2(X ), i = 1, 2, are gradient flows (in the sense of Definition 5.14) satisfying µi

t → µi

as t ↓ 0 in P2(X ), then

W2(µ
1
t , µ

2
t ) ≤ e−λtW2(µ

1, µ2), ∀t > 0.

In particular, for any µ0 ∈ P2(X ) there is at most one gradient flow µt satisfying the initial
condition µt → µ0 as t ↓ 0.
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Hence, when the functional F is λ-geodesically convex, it also enjoys the exponential decay
property of the Wasserstein distance along its gradient flow vt ∈ −∂F(µt), t > 0. It turns out
that for the KL-divergence functional KL(·|π) it is possible to deduce that this functional is
λ-geodesically convex by looking at the target measure π. This property is log-concavity, which
we define below.

Definition 5.19 (Definition 9.4.9 in Ambrosio et al. 2008: log-concavity of a measure). We say
that a Borel probability measure π ∈ P2(X ) on X is log-concave if for every couple of open sets
A,B ⊂ X we have:

log(π((1− t)A+ tB)) ≥ (1− t) log(π(A)) + t log(π(B)).

Let us now state the theorem that shows that log-concavity is equivalent with λ-geodesic con-
vexity of the KL-divergence functional.

Theorem 5.20 (Theorem 9.4.11 in Ambrosio et al. 2008). Let X = Rd and let π ∈ P2(X ).
Then, KL(·|π) is geodesically convex in P2(X ) if and only π is log-concave.

5.4 Continuity equation
In this section, we will work towards the Wasserstein gradient flow. We will follow Korba, Aubin-
Frankowski, et al. 2021 to give more insight in the interpretation of the continuity equation. In
turn, most of what is presented in Korba, Aubin-Frankowski, et al. 2021 is based on Ambrosio
et al. 2008. In particular, we are interested in the link between the continuity equation and its
effect on particles.

We consider the setting of Theorem 5.8, i.e. we let I be an open interval in R and µt : I → P2(X )
is an absolutely continuous curve. Then, we have the existence of a Borel measurable vector field
v : (x, t) 7→ vt(x) ∈ Rd (with certain properties) such that the continuity equation

∂tµt +∇ · (vtµt) = 0, (49)

holds in the sense of distributions, i.e.

∫
I

∫
X
(∂tϕ(x, t) + ⟨vt(x),∇xϕ(x, t)⟩)dµt(x)dt = 0, ∀ϕ ∈ C∞

c (X × I). (50)

The continuity equation is used to provide a framework for sampling from a target distribution π.
The idea is to model a continuous process that transports particles from some initial distribution
µ0 towards particles sampled from π. In another way, this ‘transport model’ can be seen as
finding a family of vector fields (vt)t∈I , with vt : Rd −→ Rd transporting/evolving the measure µt

via the continuity equation.

The family of vector fields (vt)t∈I induces a change in the collection (µt)t∈I . This choice of (vt)t∈I

should make sure that µt evolves into π. The continuity equation ensures that no (probability)
mass gets lost in this process. This continuity equation models the flow of the measures (µt)t∈I .
Every µt governs a distribution of, let us say, M particles/samples at time t, let us denote one
such particle as xt and it is such that xt ∼ µt. If this measure µt changes over time, then the
distribution of the particles also changes. So, consider a collection (xt)t∈I in Rd with an initial
point x0 ∈ Rd such that x0 ∼ µ0 and xt ∼ µt for all t ∈ I. The evolution over time of (xt)t∈I
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is governed by the vector fields (vt)t∈I , with vt ∈ L2(µt) and vt : Rd −→ Rd for all t ∈ I. These
vector fields are such that dxt

dt = vt(xt). Once again, µt, being the law of xt at time t, changes
according to the continuity equation in (49). Let us give a proposition to capture this interplay
between the particles and the continuity equation.

Proposition 5.21. Let X = Rd. Given the (vt)t∈I , suppose that ∀y ∈ Rd there exists a smooth
and measurable solution x(· ; y) (measurable in y as well) satisfying:

{
x′(t; y) = vt(x(t; y)), t ∈ [0, T ],

x(0; y) = y.

To make the dependence on the initial point y explicit, x(· ; y) is written. Let µ0 be a given
measure and let µt be the law of x(t; y) if y has law µ0. Then, it is the case that µt satisfies the
continuity equation for vt, i.e.

∫
I

∫
X
(∂tϕ(x, t) + ⟨vt(x),∇xϕ(x, t)⟩)dµt(x)dt = 0, ∀ϕ ∈ C∞

c (Rd × I). (51)

Proof. Consider a test function ϕ ∈ C∞
c (Rd × I). By the chain rule we have:

d

dt
ϕ(x(t; y), t) = ∇xϕ(x(t; y), t) · x′(t; y) + ∂tϕ(x(t; y), t).

Substitute x′(t; y) = vt(x(t; y)) and integrating over y with respect to µ0 gives

∫
d

dt
ϕ(x(t; y), t)dµ0(y) =

∫
(∇xϕ(x(t; y), t) · vt(x(t; y)) + ∂tϕ(x(t; y), t)) dµ0(y) (52)

=

∫
(∇xϕ(x, t) · vt(x) + ∂tϕ(x, t)) dµt(x), (53)

by the definition of µt as pushforward measure. Observe that the LHS of equation (51) is the
integral over t of the equation in (53). Taking the integral over t on the LHS of equation (52)
and using Fubini’s theorem to justify the change in the order of integration gives that the LHS
of equation (51) is also equal to

∫ ∫ (
d

dt
ϕ(x(t; y), t)

)
dtdµ0(y).

We took the test function ϕ ∈ C∞
c (Rd × I) and hence there exists an interval (a, b) such that

ϕ(x, t) = 0 for all (x, t) ∈ Rd × (a, b)c by its compact support. Similarly, ϕ(x(t; y), t) = 0 for all
(y, t) ∈ Rd × (a, b)c. Hence, for all y ∈ Rd we have

∫
d

dt
ϕ(x(t; y), t)dt = ϕ(x(b; y), b)− ϕ(x(b; y), b) = 0.
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The preceding proposition gives a formal measure-theoretic view on the continuity equation. We
can also consider a specific case in which the measure µt has a continuously differentiable density
mt. This gives that dµt(x) = mt(x)dx. In turn, this gives a very concrete interpretation of the
continuity equation, namely

∂tmt +∇ · (vtmt) = 0,

for ordinary (partial) derivatives ∂tmt and∇·g(x) =
∑

i
∂

∂xi
gi(x), with g(x) = [g1(x), . . . , gd(x)]

T .
In our formulation g = vtmt.

5.5 Wasserstein gradient flow and its particle updates
In this section, we study the Wasserstein gradient flow, following section 10.4 in Ambrosio et al.
2008. We focus on a special form of functionals. Specifically, the functional we will study has
this form:

µ→ F(µ) =

{∫
Rd F (x, ρ(x),∇ρ(x))dx, if µ = ρLd, ρ ∈ C1(Rd)

∞, otherwise,

with Ld denoting the d-dimensional Lebesgue measure and µ = ρLd means that µ admits a
density ρ with respect to Ld. Let us also assume that F : Rd × [0,∞) × Rd → [0,∞) is a C2

function. Furthermore, let us assume that F (x, 0, p) = 0 for every x, p ∈ Rd. We will also only
consider strictly positive densities ρ. We denote the arguments of F as (x, z, p) ∈ Rd × R× Rd.
For this specific form of the functional F , we define the first variation of F by:

x 7→ δF(ρ)
δρ

(x) := −∇ · Fp(x, ρ(x),∇ρ(x)) + Fz(x, ρ(x),∇ρ(x)).

See Appendix D.3 for some motivation behind this definition. Let us now present a theorem that,
for this specific type of functional, gives the form of an element belonging to the subdifferential
∂F of F from Definition 5.13 and that is also in the tangent bundle. Observe that this is exactly
the condition in the definition of a gradient flow in Definition 5.14. Hence, this theorem gives us
a practical way to work with a ‘gradient’ of the functional F .

Theorem 5.22 (Lemma 10.4.1 from Ambrosio et al. 2008). Let µ = ρLd ∈ P2(Rd) with ρ ∈
C2

c (Rd) satisfy F(µ) <∞ and assume w ∈ L2(µ;Rd) belongs to the subdifferential ∂F at µ and
the tangent bundle at µ, i.e. w ∈ ∂F(µ) ∩ Tanµ P2(Rd). Then,

w(x) = ∇δF(ρ)
δρ

(x), for µ-a.e. x ∈ Rd.

Definition 5.23 (Wasserstein gradient). Assume the same conditions as in Theorem 5.22. The
Wasserstein gradient at µ = ρLd ∈ P2(Rd) of the functional F , denoted as ∇W2F(µ) : Rd −→ Rd

is defined as follows:

∇W2F(µ) := ∇
(
δF(ρ)
δρ

)
, (54)
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Definition 5.24 (Wasserstein gradient flow). The family of measures (µt)t∈I satisfying the
continuity equation

∂µt

∂t
= ∇ · (µt∇W2

F(µt)), (55)

with ∇W2F(µ) := ∇
δF(ρ)
δρ ∈ L2(µ) denoting the Wasserstein gradient of F at µ = ρLd ∈ P2(Rd),

is called a Wasserstein gradient flow of F : P2(Rd)→ (−∞,∞].

Observe that the Wasserstein gradient flow is given by the continuity equation with a specific
choice of vector fields, namely vt = −∇W2F(µt). In a sense this is just name-calling and simply
a specific instantiation of our general framework. Hence, also for this specific choice of vector
fields we have that the (µt)t∈I are the laws corresponding to the curve (xt)t∈I with x0 ∼ µ0.
Once again, this curve in Rd changes according to the following ODE:

dxt
dt

= −(∇W2
F(µt))(xt). (56)

Observe that we evaluated the Wasserstein gradient at the point xt ∈ Rd and that this is not a
mistake. The reason for this is that ∇W2

F(µ) := ∇ δF(ρ)
δρ is a mapping from Rd to Rd.

Remark 5.25. Observe that in this formulation we make the convention that we follow the
negative Wasserstein gradient (to decrease F), whereas before we used the convention that
dxt

dt = vt(xt), i.e. we follow the direction in which vt increases.

5.6 The gradient flow for the KL divergence
Let us now show an example that illustrates the theory we have developed before. It is Example
11.1.2 in Ambrosio et al. 2008 and shows how we can use the developed theory for the gradient
flow of Definition 5.14 for a functional F : P2(X )→ (−∞,∞].

We aim to find a nonnegative solution ρ : Rd × (0,∞) → R of a continuity equation of the
following sort

∂tρ−∇ ·
(
ρ∇
(
δF
δρ

))
= 0, (57)

with

x 7→ δF(ρ)
δρ

(x) := −∇ · Fp(x, ρ(x),∇ρ(x)) + Fz(x, ρ(x),∇ρ(x))

defined to be the first variation of the functional F , with the underlying assumption that our F
can be written as follows:

F(ρ) =
∫
Rd

F (x, ρ(x),∇ρ(x))dx, (58)

with a smooth function F = F (x, z, p) : Rd×[0,∞)×Rd → R. See Appendix D.3 for a motivation
of this definition of the first variation. Observe that equation (57) has a very specific structure:

42



∂ρ+∇ · (ρv) = 0, (continuity equation) (59)
ρv = ρ∇ψ, (gradient condition) (60)

ψ = −δF(ρ)
δρ

. (nonlinear relation). (61)

We want to have nonnegative solutions ρ that satisfy the following two constraints:

ρ(x, t) ≥ 0,

∫
Rd

ρ(x, t)dx = 1, ∀t ≥ 0,

that also have the property of giving a finite second moment,

∫
Rd

|x|2ρ(x, t)dx <∞, ∀t ≥ 0.

This way, we can view ρ as a density. Furthermore, this density can be linked to a measure µ as
follows. Let us write ρ(x, t) = ρt(x), then we can identify the measure µt as µt(A) =

∫
A
ρt(x)dx,

for all measurable sets A. i.e. ρt is the density with respect to the Lebesgue measure on Rd.
Furthermore, this identification with measures µt also means that the functional F can be seen
as a functional in P2(Rd). This way, a smooth and positive function ρ satisfying the equations
(59)-(61) can be linked to a solution µ ∈ P2(Rd). In fact, such a smooth and nonnegative function
ρ is a solution of the equations (59)-(61) if and only if the associated measure µ ∈ P2(Rd) is a
solution of the gradient flow equation (46) for the functional F . Observe for instance that the
continuity equation in (59) corresponds to equation (47) in the gradient flow formulation. The
gradient condition (60) is linked to the tangent formulation vt ∈ Tanµt

P2(X ) for the gradient
flow. The nonlinear relation (61) can be linked to the condition vt ∈ −∂F(µt), as stated in
equation (48).

Let us consider the KL divergence as our functional of interest F . In particular, we consider
it with respect to a fixed target measure π ∈ P2(X ), i.e. F(µ) := KL(µ||π). Let us assume
these two measures admit densities with respect to the Lebesgue measure, denoted ρ and p,
respectively for µ and π. This way, we can write F as

µ 7→ F(µ) =
∫
Rd

log

(
ρ(x)

p(x)

)
ρ(x)dx,

where we recognize F (x, ρ(x),∇ρ(x)) = F (x, ρ(x)) = log(ρ(x)p(x) )ρ(x) as in equation (58). We used
the convention that F = F (x, z, p) : Rd × [0,∞) × Rd → R are the arguments of F . Note that
our specific F does not depend on its third argument p. This gives as first variation:
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δF(ρ)
δρ

(x) := Fz(x, ρ(x),∇ρ(x))−∇ · Fp(x, ρ(x),∇ρ(x))

= Fz(x, ρ(x))

= Fz(x, u), substitute u = ρ(x),

=
∂

∂u
log

(
u

p(x)

)
u

= log

(
u

p(x)

)
+ u

p(x)

u

1

p(x)

= log

(
ρ(x)

p(x)

)
+ ρ(x)

p(x)

ρ(x)

1

p(x)
, substitute back u = ρ(x),

= log

(
ρ(x)

p(x)

)
+ 1.

This calculation gives us the precise form of the first variation of F , i.e. x 7→ δF(ρ)
δρ (x) =

log
(

ρ(x)
p(x)

)
+ 1. This way, we can identify the tangent vector v as v = ∇ δF(ρ)

δρ = ∇ log(ρp ). This
forms the gradient flow of the KL divergence.

In what follows, we will show why we put all this effort in Section 5.5 to define a very specific
type of vector field, which we called the Wasserstein gradient and its corresponding Wasserstein
gradient flow. To this end, we will again consider the KL divergence as our functional F :
P2(Rd) → [0,∞). In the terminology of Section 5.5, observe that we have just derived the
Wasserstein gradient of the functional µ 7→ KL(µ||π), denoted as ∇W2KL(µ||π) and that it is
equal to ∇ log

(
ρ
p

)
. Let us formalize this in a proposition:

Proposition 5.26. Let F(µ) = KL(µ||π) and let µ = ρLd ∈ P2(Rd) with ρ ∈ C2
c (Rd) satisfy

F(µ) < ∞. Assume ∇W2
KL(µ||π) ∈ L2(µ;Rd) belongs to the subdifferential ∂F at µ and the

tangent bundle at µ, i.e. ∇W2
KL(µ||π) ∈ ∂F(µ) ∩ Tanµ P2(Rd). Then,

∇W2
KL(µ||π)(x) = ∇ log

(
ρ

p

)
(x) for µ-a.e. x ∈ Rd. (62)

Proof. Result follows from Theorem 5.22, Definition 5.23 and the calculation in Section 5.6 for
the first variation of the KL divergence.

Now that we have a specific form of the Wasserstein gradient for the KL divergence functional,
we can also give the update rule of the particles, i.e. we make the Wasserstein gradient flow in
equation (56) for the KL divergence:

dxt
dt

= −(∇ log

(
ρ

p

)
)(xt). (63)

This ODE now gives a way to evolve the particles in such a way that the measure µt follows
the Wasserstein gradient flow of the KL divergence with respect to the target measure π. In
Theorem 5.18 conditions are given under which exponential convergence towards π is given. In
the setting of Theorem 5.18, we take µ2

t = π for all t. This constitutes a ‘constant’ gradient flow
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in the sense of Definition 5.14. If the KL divergence functional µ 7→ KL(µ||π) is λ-geodesically
convex, then the collection of measures (µt)t≥0 following the Wasserstein gradient flow of the KL
divergence enjoys exponential convergence:

W2(µt, π) ≤ e−λtW2(µ0, π), ∀t > 0.

This property of λ-geodesic convexity of the KL divergence is equivalent to the property of the
log-concavity of the target measure π, by means of Theorem 5.20.

5.7 Particle updates via the Wasserstein gradient flow
We are going back to the setting of Section 4 and we consider a collection {θi}Mi=1 of parameters
θi ∈ Rd, which we call particles and a small step size ϵℓ at every iteration ℓ ∈ N. We use ℓ ∈ N
to denote discrete iteration steps and t to denote continuous time.

Assume that there exist densities with respect to the Lebesgue measure for the approximating
measure µt and the target measure π, denoted as ρt and p, respectively. We would like to
model the Wasserstein gradient flow of the KL divergence functional to drive the evolution of
the parameters of the ensemble members according to this Wasserstein gradient flow of the
KL divergence functional. So we want our collection of parameter particles {θi}Mi=1 to evolve
according to the dynamics, governed by the ODE in equation (63):

dθti
dt

= −∇ log

(
ρt
p

)
(θti), ∀i = 1, . . . ,M,

where we used the superscript t on θti to make explicit that these particles now evolve in contin-
uous time according to the ODE above. We would like to discretize this ODE in time to be able
to simulate the evolution of the parameters in discrete time. A discretization for ℓ ∈ N is given
as follows:

θℓ+1
i = θℓi + ϵℓ(∇ log p(θℓi )−∇ log ρℓ(θ

ℓ
i )), ∀i = 1. . . . ,M. (64)

or, written differently:

θℓ+1
i ← θℓi + ϵℓϕ(θ

ℓ
i ), ∀i = 1, . . . ,M,

with ϕ(θℓi ) = ∇ log p(θℓi )−∇ log ρℓ(θ
ℓ
i ),

where ϕ : Rd → Rd. Remember that we know the analytical form of the gradient for the
target posterior, as the score function can be calculated without knowing the normalization
constant Z for the posterior density p. In general, there is no access to the analytical form of the
gradient, ∇ log ρℓ. The reason for this is that we only have a sample of M particles available and
the theoretical fact that the sequence of measures (µℓ)ℓ∈N evolves according to the Wasserstein
gradient flow of the KL divergence. Hence, we need to approximate the approximating measures
(µℓ)ℓ∈N, their densities (ρℓ)ℓ∈N, or ∇ log ρℓ directly. In D’Angelo and Fortuin 2021, the similarity
between equation (64) and equation (28) is pointed out. Equation (28) in this setting is given
by:

45



ϕ(θℓi ) = ∇ log(p(θℓi ))−R({∇θℓ
i
k(θℓi , θ

ℓ
j)}Mj=1)︸ ︷︷ ︸

repulsive term

, ∀i = 1, . . . ,M, (65)

with R(·) some general function that captures a repulsive action. This equation also governs
an update equation for the particles {θℓi} for all i = 1, . . . ,M and ℓ ∈ N with the inclusion of
a repulsive term. If the repulsive term is an approximation for the gradient of the logarithm of
ρℓ, then the two equations are very similar. In other words, if the following approximation holds
true for all ℓ ∈ N:

R({∇θℓ
i
k(θℓi , θ

ℓ
j)}Mj=1) ≈ ∇ log ρℓ(θ

ℓ
i ), ∀i = 1, . . . ,M,

then the update in equation (28) resembles the discretisation of a Wasserstein gradient flow for
the KL divergence and in this way we can give a strong theoretical motivation for the addition
of a repulsive term R({∇θℓ

i
k(θℓi , θ

ℓ
j)} for the particle update scheme in equation (28). Knowing

that the update rule in equation (64) aims to minimize the KL divergence between the approxi-
mating measures and the target posterior (as it follows the Wasserstein gradient flow for the KL
divergence functional), it also shows that equation (28) can be seen as performing a similar task.

As argued before, there is no access to the analytical form of the gradient ∇ log ρℓ and hence
an approximation is needed. A simple approximation in terms of a kernel function for the
quantity of interest ∇ log ρℓ(θ

ℓ
i ), based on the particles {θℓi}Mi=1 is for instance given by kernel

density estimation (KDE). This KDE method gives an approximation ρ̂ for the density ρ as
x 7→ ρ̂(x) = 1

M

∑M
i=1 k(x, x

ℓ
i), with k : Rd × Rd → R a suitable kernel function. See for instance

Wasserman 2006 for more details on KDE. Using this specific form of KDE, the gradient of the
logarithm of this estimator ρ̂ is given as:

∇ log ρ̂(·) =
∑M

i=1∇k(·, xi)∑M
i=1 k(·, xi)

≈ ∇ log ρ(·).

The latter approximation is because ρ̂ ≈ ρ and hence we also have ∇ log ρ̂ ≈ ∇ log ρ. Using this
KDE approximation in equation (64) yields the following update scheme at ℓ ∈ N:

θℓ+1
i ← θℓi + ϵℓϕ(θ

ℓ
i ), ∀i = 1, . . . ,M, (66)

with ϕ(θℓi ) = ∇ log p(θℓi )−
∑M

j=1∇θℓ
i
k(θℓi , θ

ℓ
j)∑M

j=1 k(θ
ℓ
i , θ

ℓ
j)

. (67)

Comparing this formulation with equation (65), we can observe that the form of the repulsive
form in equation (67) is

θ 7→ R(θ) =
∑M

j=1∇θk(θ, θj)∑M
j=1 k(θ, θj)

= R({∇θk(θ, θj)}Mj=1). (68)

Looking back at equation (28) and identifying the posterior term p(θℓi |D) with p(θℓi ), we see that
we have now identified the repulsive term in that formulation for deep ensembles. This way a
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repulsive term is characterised that aims to model a repulsive force between ensemble members.
See e.g. Example 4.1 for the intuition behind this repulsive force. Asymptotically, when M −→∞,
KDE is able to converge to the true density.

5.8 SVGD as Wasserstein gradient flow
In this section we want to put SVGD in the same perspective as we did with the Wasserstein
flow in equation (56), meaning that we aim to write the (continuous) SVGD particle updates as
a gradient flow problem. We mainly follow Chewi et al. 2020 and Korba, Salim, et al. 2020. Let
us state equation (56) again:

dxt
dt

= −(∇W2F(µt))(xt). (69)

This ODE is the particle version of the Wasserstein gradient flow of the functional F : P2(Rd)→
(−∞,∞]. The part ∇W2

F(µt) models the evolution of (µt)t∈(0,T ), being the laws corresponding
to the curve (xt)t∈(0,T ) with x0 ∼ µ0. This is an exact Wasserstein gradient flow, as we really
deal with the Wasserstein gradient applied to the functional F , evaluated at µt. In equation (69)
this Wasserstein gradient is now used to update the particles (xt)t∈(0,T ). The SVGD Wasser-
stein gradient flow is obtained by replacing the exact Wasserstein gradient by the image of this
Wasserstein gradient under a kernel integral operator. Let us make this more precise.

The setting is as follows. We closely follow Korba, Salim, et al. 2020. We use the convention
that X = Rd. For any µ ∈ P2(X ), we define L2(µ) := {f : X → X |

∫
||f(x)||2dµ(x) < ∞}

and by ⟨·, ·⟩L2(µ), || · ||L2(µ) its inner product and norm, respectively. Let k : X × X −→ R denote
a general positive definite kernel function. A function (x, x′) 7→ k(x, x′) is positive definite if∑n

i=1

∑n
j=1 aiajk(xi, xj) ≥ 0 for any x1, . . . , xn ∈ X , n ∈ N and a1, . . . , an ∈ R. A reproducing

kernel Hilbert space (RKHS), denoted H, with respect to the kernel k is the completion (with
respect to ⟨·, ·⟩H defined below) of the linear span of kernel functions, i.e. the completion of
the set {f : x 7→ f(x) =

∑n
i=1 aik(x, xi), ai ∈ R, n ∈ N, xi ∈ X} and H is equipped with the

inner product ⟨f, g⟩H =
∑n

i=1

∑n
j=1 aibjk(xi, xj) for x 7→ g(x) =

∑n
j=1 bjk(x, xj). The space

Hd is used to denote the space of vector functions f = [f1, . . . , fd]
T with fi ∈ H ∀i = 1, . . . , d.

The inner product on Hd is ⟨f , g⟩Hd =
∑d

i=1⟨fi, gi⟩H, for f , g ∈ Hd. Furthermore, ||f ||2Hd =∑d
i=1 ||fi||2H for f ∈ Hd.

Take some µ ∈ P2(X ). Under the assumption (see Theorem 4.26 in Steinwart and Christmann
2008)

∫
k(x, x)dµ(x) < ∞, we can specify the inclusion ι : Hd → L2(µ) and its adjoint ι∗ :

L2(µ) → Hd, where we have the specific form of the adjoint ι∗ := Sµ. Specifically, this Sµ is a
kernel integral operator, induced by the kernel k and the measure µ as follows:

f 7→ Sµf =

∫
k(x, ·)f(x)dµ(x).

Let us also define Kµ := ι ◦ Sµ : L2(µ) → L2(µ). Observe that Kµ only differs from Sµ in its
range, as Kµ maps to L2(µ) instead of Hd. Consider functions f ∈ L2(µ) and g ∈ Hd. We have
the following chain of equalities:

⟨f , ιg⟩L2(µ) = ⟨ι∗f , g⟩Hd = ⟨Sµf , g⟩Hd , (70)

where the use of the operators ι and its adjoint ι∗ = Sµ are clarified.
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Remark 5.27. Given some µ ∈ P2(X ), by assuming
∫
k(x, x)dµ(x) < ∞ we have that Hd ⊂

L2(µ). Let us remind that ||k(x, ·)||2H = k(x, x). Then, for any f ∈ Hd :

||f ||2L2(µ) =

∫
||f(x)||2dµ(x)

=

∫ d∑
i=1

fi(x)
2dµ(x), f = [f1, . . . , fd]

T ,

=

∫ d∑
i=1

⟨fi, k(x, ·)⟩2Hdµ(x), reproducing property,

≤
∫ d∑

i=1

||fi||2H||k(x, ·)||2Hdµ(x), by Cauchy-Schwarz,

=

∫
||f ||2Hd ||k(x, ·)||2Hdµ(x)

= ||f ||2Hd

∫
k(x, x)dµ(x)

<∞.

Hence, f ∈ L2(µ) and thus Hd ⊂ L2(µ).

In SVGD we replace the Wasserstein gradient at µ ∈ P2(Rd), denoted ∇W2F(µ) : Rd → Rd,
by Kµ∇W2F(µ), with the kernel integral operator Kµ : L2(µ) −→ L2(µ) defined earlier. The
Wasserstein gradient is now not exact anymore, but ‘kernelized’ by a kernel integral operator
Kµ. It leads to a general SVGD gradient flow for some functional F as follows:

dxt
dt

= −(Kµt
∇W2

F(µt))(xt). (71)

This kernel integral operator Kµt is applied to the the Wasserstein gradient∇W2F(µt) to produce
a general SVGD Wasserstein gradient. Remember that ∇W2F(µt) is a function from Rd to Rd.
Let us pick the functional F to be equal to the KL divergence µ 7→ KL(µ||π), because then we
obtain the original SVGD Wasserstein gradient. Furthermore, this also gives a different view on
how SVGD works, as for v ∈ Hd we have the following equality by using equation (70):

⟨Sµ∇W2
KL(µ||π), v⟩Hd = ⟨∇W2

KL(µ||π), ιv⟩L2(µ).

This way, we can link Sµ∇W2
KL(µ||π) with ∇W2

KL(µ||π), i.e. the inner product (in Hd)
of Sµ∇W2

KL(µ||π) with a vector field v ∈ Hd is equal to the inner product (in L2(µ)) of
∇W2KL(µ||π) with the inclusion operator ι applied to the same vector field v ∈ Hd (Korba,
Salim, et al. 2020).

Knowing the precise form of the Wasserstein gradient for the Kullback-Leibler divergence (see
Proposition 5.26) and using the operator Kµt we have that
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Kµt
∇W2

F(µt) =

∫
k(·, x)∇ log

(
ρt
p

)
(x)dµt(x)

= −
∫

(k(·, x)∇ log p(x) +∇xk(x, ·)) dµt(x), (72)

where in the second equality we use a partial integration result using the assumption that
lim||x||→∞ k(·, x)ρt(x) is the zero function. See Appendix C.2 for the derivation. What should
be remarked now is that this kernelized gradient expression is only depending on µt through
its (expectation) integral, i.e. we do not need the full knowledge of the distribution µt, but we
only need to know the expectation of the integrand with respect to µt and that is the key to the
computational feasibility of SVGD. A particle implementation of this kernelized gradient flow
can be given as follows: take M initial particles x01, . . . , x0M as realisations from µ0. Let these
particles follow the (coupled system) ODE:

dxti
dt

= −Kµt∇ log

(
ρt
p

)
(xti), ∀i = 1, . . . ,M, (73)

=

∫ (
k(xti, x)∇ log p(x) +∇xk(x, x

t
i)
)
dµt(x), ∀i = 1, . . . ,M. (74)

The integral on the second line, being an expectation with respect to µt, can be estimated as
an average over all available particles xt1, . . . , xtM at time t. These particles have distribution
µt by definition and hence the empirical average over the available particles approximates the
expectation in the update rule (74). If this continuous time ODE is discretised in time, then it
can be implemented numerically and the SVGD algorithm (see Algorithm 2) is obtained. For
iteration ℓ ∈ N we have:

xℓ+1
i = xℓi +

ϵℓ
M

M∑
j=1

(
k(xℓi , x

t
j)∇ log p(xℓj) +∇xℓ

j
k(xℓj , x

ℓ
i)
)
, ∀i = 1, . . . ,M, (75)

where ϵℓ denotes some small step-size at iteration ℓ ∈ N. In measure space, where µt represents
the pushforward measure of the particle xt at time t (with x0 ∼ µ0), the ODE of equation (73)
(for a single particle) can be discretised in time by a gradient descent-type of approach as follows
for ℓ ∈ N :

µℓ+1 =

(
Id−ϵℓKµℓ

∇ log

(
ρℓ
p

))
#

µℓ,

where µℓ+1 = g#µl denotes the pushforward of the map g : Rd → Rd. We also let Id : Rd → Rd

be the identity map.

5.8.1 Time derivative of the KL divergence along the SVGD flow

We want to show how SVGD can dissipate the KL divergence along its gradient flow. We first give
the time derivative of the KL divergence and then, by using the theory from the previous section,
show the time derivative of the KL divergence for a sequence of measures (µt)t≥0 following the
SVGD gradient flow.
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Proposition 5.28. Let π ∈ P2(Rd) be a target measure with density p. Consider a collection
of measures (µt)t≥0, with an associated collection of densities (ρt)t≥0, satisfying a continuity
equation

∂µt

∂t
+∇ · (µtvt) = 0,

for a collection of vector fields (vt)t≥0. Then,

d

dt
KL(µt||π) = ⟨vt,∇ log

(
ρt
p

)
⟩L2(µt).

Proof. See Appendix A.4.

Let us take a step back and also view SVGD from the point of view of the continuity equation
in the following sense:

∂µt

∂t
+∇ · (µtvt) = 0, with vt := −Kµt∇ log

(
ρt
p

)
.

A well-defined and unique solution to this equation has been shown to exist, under some con-
ditions on the kernel k and the target density p. See e.g. Lu et al. 2019. Let us assume these
conditions are met. The following proposition will show that the KL divergence, along the SVGD
gradient flow decreases.

Proposition 5.29 (Proposition 1 in Korba, Salim, et al. 2020). Let π ∈ P2(Rd) be a target mea-
sure with density p. Consider a collection of measures (µt)t≥0, with a collection of corresponding
densities (ρt)t≥0, satisfying the SVGD continuity equation

∂µt

∂t
+∇ · (µtvt) = 0,

for a collection of vector fields (vt)t≥0 such that vt = −Kµt
∇ log

(
ρt

p

)
for all t ≥ 0. Then we

have

d

dt
KL(µt||π) = −||Sµt∇ log

(
ρt
p

)
||2Hd .

Proof. By Proposition 5.28 we have:

d

dt
KL(µt||π) = ⟨vt,∇ log

(
ρt
p

)
⟩L2(µt)

= −⟨Kµt
∇ log

(
ρt
p

)
,∇ log

(
ρt
p

)
⟩L2(µt)

= −⟨Sµt
∇ log

(
ρt
p

)
, Sµt
∇ log

(
ρt
p

)
⟩Hd

= −||Sµt∇ log

(
ρt
p

)
||2Hd ,
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where in the third line we have used equation (70) with f = ∇ log
(

ρt

p

)
, g = Sµt

∇ log
(

ρt

p

)
and

Kµt
= ιSµt

.
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6 SVGD towards convergence
In this section we work towards a convergence result for SVGD in the limit where the number
of particles goes to infinity and the number of iterations goes to infinity. We will closely follow
section 3 of Liu 2017. We use the same preliminaries as in Section 3.

Let consider the optimal transform x 7→ T µ,p(x) = x + ϵϕ∗
µ,p(x), with x ∈ X = Rd and ϕ∗

µ,p

as in Theorem 3.7. We use p to denote the density of the target distribution νp, to avoid
confusion with the Bayesian target posterior distribution π. Let us also define the following
map Φp : µ 7→ (T µ,p)#µ, with (T µ,p)#µ denoting the pushforward measure of µ through the
(measurable) transform T µ,p. In other words, the function Φp describes the new measure of the
particles after applying the transform T µ,p to the particles. This mapping fully characterizes
the SVGD dynamics, as it yields the empirical measure µ̂M

ℓ at iteration ℓ ∈ N for M particles
by recursively applying this map Φp, starting from our initial measure µ̂M

0 . More formally, Φp

characterizes SVGD in the following way:

µ̂M
ℓ+1 = Φp(µ̂

M
ℓ ), ∀ℓ ∈ N ∪ {0}. (76)

If the measure µ admits a density q and ϵ is small enough such that T µ,p is (locally) invertible,
then the density of the measure µ′ = Φp(µ), denoted q′, is given by the well-known change of
variables formula:

z 7→ q′(z) = q(T−1
µ,p(z)) · | det(∇T

−1
µ,p(z))|. (77)

Remark 6.1. In fact, what is needed to make T µ,p (locally) invertible is that the Jacobian
of T µ,p is nonsingular at a (local) point. Let us use the inverse function theorem to argue
for the invertibility of T µ,p. We have that T µ,p has as Jacobian JTµ,p

= ∇T µ,p at a point
x: JTµ,p

(x) = I + ϵ∇ϕ∗
µ,p(x). If we can bound the spectral radius at a point x of the matrix

∇ϕ∗
µ,p(x) and choose ϵ small enough, then we can make sure that the eigenvalues of ϵ∇ϕ∗

µ,p(x)
are all less than one in absolute value. Hence, the eigenvalues of I+ϵ∇ϕ∗

µ,p(x) are in the interval
(0, 2), as adding the identity matrix shifts all eigenvalues by 1. In this way, if we can bound the
spectral radius of ∇ϕ∗

µ,p(x), the operator T µ,p can locally be be made invertible by choosing ϵ
small enough (depending on the bound of the spectral radius). See Remark 6.8 for a condition
such that ∇ϕ∗

µ,p(x) has a bound on the spectral radius at a point x.

This map Φp is our tool to capture the large sample limit, i.e. the limit of M −→ ∞ for SVGD.
We will also call this the infinite particle limit. Let us assume that our initial empirical measure
µ̂M
0 at iteration 0 and for M particles weakly converges (as M −→∞) to some limit measure µ∞

0 .
This is not a strong assumption, as we are free to choose our initial measure. Let us now turn
our attention to this limiting measure µ∞

0 and apply Φp to it. We obtain the following recursion:

µ∞
ℓ+1 = Φp(µ

∞
ℓ ), ∀ℓ ∈ N ∪ {0}. (78)

If we assume that µ̂M
0 ⇒ µ∞

0 at iteration 0 as M →∞, then it can be expected that µ̂M
ℓ ⇒ µ∞

ℓ

for all iterations ℓ ∈ N ∪ {0} if Φp satisfies some smoothness criterion. We used ⇒ to denote
weak convergence of a measure. A Lipschitz condition, i.e. a condition on the rate of change of
a function seems appropriate, as it bounds the rate at which a function can change for any two
points in its domain. In Liu 2017 the bounded Lipschitz metric is used and let us introduce it
here as well.
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Definition 6.2 (From Vaart and Wellner 2023). Consider two measures µ and ν. Their bounded
Lipschitz (BL) metric is the supremum of the difference in expectations of f with respect to µ
and ν over all bounded, Lipschitz test functions f : Rd → R:

BL(µ, ν) = sup
f
{Eµ[f ]− Eν [f ] | ||f ||BL ≤ 1}, (79)

with ||f ||BL = max{||f ||∞, ||f ||Lip}, where ||f ||∞ = supx |f(x)| and ||f ||Lip = supx̸=y
|f(x)−f(y)|
||x−y||2 .

For a vector-valued bounded Lipschitz function f = [f1, . . . , fd]
T , its BL norm can be defined as

||f ||2BL =
∑d

i=1 ||fi||2BL.

Remark 6.3. It is the case that BL(µM , ν)→ 0 for M →∞ if and only if µM ⇒ ν for M →∞.
Hence, the BL metric metrizes weak convergence. See e.g. Chapter 1 in Vaart and Wellner 2023.

Let us use this strong property of the BL metric and its relation with convergence of measures
by applying it to the SVGD case and the function Φp:

Lemma 6.4 (Lemma 3.1 in Liu 2017). Assuming (x, y) 7→ g(x, y) = (∇ log p(x))k(x, y) +
∇xk(x, y) is bounded Lipschitz jointly in (x, y) with BL norm ||g||BL < ∞, then for any two
probability measures µ and µ′, we have:

BL(Φp(µ),Φp(µ
′)) ≤ (1 + 2ϵ||g||BL)BL(µ, µ

′), (80)

with ϵ equal to the step-size in T µ,p.

Proof. See Liu 2017 for a proof.

This is in fact the workhorse lemma for the following theorem in which we give a condition for
the weak convergence of µ̂M

ℓ towards µ∞
ℓ as M →∞ for any ℓ ∈ N.

Theorem 6.5 (Theorem 3.2 in Liu 2017). Let µ̂M
ℓ be the empirical measure at iteration ℓ for M

particles {xi}Mi=1 evolving according to SVGD. Assume lim
M→∞

BL(µ̂M
0 , µ

∞
0 ) = 0. Then, for µ∞

ℓ as

in equation (78), at any finite iteration ℓ ∈ N it is the case that:

lim
M→∞

BL(µ̂M
ℓ , µ

∞
ℓ ) = 0. (81)

Proof. By applying the bound in Lemma 6.4 ℓ times and using the assumption about the con-
vergence of the BL metric, i.e. lim

M→∞
BL(µ̂M

0 , µ
∞
0 ) = 0, gives the result.

In Remark 6.3 we stated that if the BL metric converges to zero, then the sequence of measures
also converges and that is exactly the implication of Theorem 6.5 for any finite ℓ ∈ N. So for any
finite ℓ ∈ N we have µ̂M

ℓ ⇒ µ∞
ℓ as M → ∞. Now that we have a proper convergence result for

finite ℓ, we are interested in the limit as ℓ → ∞. It appears that the BL metric is not suitable
for this scenario. Let us illustrate this. To be able to have convergence towards zero in the limit
of ℓ → ∞ we need to have a factor α ∈ [0, 1) as follows: BL(Φp(µ),Φ(µ

′)) ≤ αBL(µ, µ′). This
bound is applied ℓ times after ℓ iterations and hence, in the limit we need αℓ→0 as ℓ → ∞ to
be able to have convergence of the BL metric. Starting from µ̂M

0 with fixed M , we have that
BL(µ̂M

ℓ , νp) = O(αl). Observe that O(αℓ)→ 0 as ℓ→∞. This cannot be possible, as this would
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imply that evolving SVGD for a very long time, i.e. in the limit ℓ→∞, would make it possible
for an empirical measure to converge to any other target measure νp. This can in general not
be true, without making more assumptions (on for instance νp). Hence, there does not exist
a constant α ∈ [0, 1) without any further assumptions. This means we should find a different
metric to find out how SVGD evolves in the limit ℓ→∞. It will turn out that the KL divergence
can help us to establish convergence towards the target measure νp.

The useful result of Theorem 6.5 is that we do not have to start with µ̂M
0 , but with µ∞

0 , because
this theorem shows that µ̂M

0 converges to this limiting initial measure µ∞
0 at iteration 0 as

M →∞. We will assume that this limiting initial measure µ∞
0 has a nice density and a finite KL

divergence with respect to νp. In the theorem that follows, it is shown that the SVGD update
scheme in equation (78) monotonically decreases the KL divergence between µ∞

ℓ and the target
measure νp for every iteration ℓ ∈ N. This puts us in the position to establish the convergence
µ∞
ℓ ⇒ νp as ℓ → ∞. However, we cannot do that directly via KL divergence, as we will argue

after having stated the theorem.

Theorem 6.6 (Theorem 3.3 in Liu 2017). 1. Assuming p is a density that satisfies Stein’s
identity (Lemma 3.4) ∀ϕ ∈ Hd, then the measure νp of p is a fixed point of the map Φp in
equation (78).
2. Assume R = supx{ 12 ||∇ log p||Lipk(x, x) + 2∇xx′k(x, x)} <∞, where
∇xx′k(x, x) =

∑
i ∂xi

∂x′
i
k(x, x′)|x=x′ , and the step size ϵℓ at the ℓ-th iteration is no larger than

ϵ∗ℓ := (2 supx ρ(∇ϕ
∗
µℓ,p

+∇ϕ∗T
µℓ,p

))−1, with ρ(A) denoting the spectrum norm of the matrix A. If
KL(µ∞

0 ||νp) <∞ by initialisation, then

KL(µ∞
ℓ+1||νp)−KL(µ∞

ℓ ||νp) ≤ −ϵℓ(1− ϵℓR)D(µ∞
ℓ ||νp)2, (82)

with D(µ∞
ℓ ||νp) defined to be the square root of the KSD.

Proof. See Appendix A.3.

The interpretation of this theorem is that the population SVGD dynamics decreases the KL
divergence when using sufficiently small step sizes, with a decreasing rate upper bounded by the
Stein discrepancy.

Remark 6.7. The notation of the square root of kernelized Stein discrepancy (KSD), D(µ||νp),
used in Theorem 6.6 is different than the one used in Definition 3.6, namely S(q, p). We did this
to explicitly denote the dependence on the underlying measures. So we have

D(µ||νp) := max{Eµ[tr(Apϕ)] | ϕ ∈ Hd, ||ϕ||Hd ≤ 1} =
√
S(q, p).

Remark 6.8. The requirement that the step size ϵℓ should be smaller than ϵ∗ℓ comes from
the necessity (in the proof) that the map T µℓ,p has to be invertible. This can be done by
invoking the inverse function theorem and bounding the spectral radius of ∇ϕ∗

µℓ,p
, see Remark

6.1. Another approach is by using Lemma A.3. Let us define the Jacobian of T µℓ,p as x 7→
JTµℓ,p

(x) = I + ϵ∇ϕ∗
µℓ,p

(x)︸ ︷︷ ︸
:=B

, then by choosing ϵℓ ≤ ϵ∗ℓ := 1
2ρ(B+BT )

, we get |det( I + ϵB︸ ︷︷ ︸
JTµℓ,p

(x)

)| ≥

exp(ϵ tr(B)− 2ϵ2||B||2F ) > 0, provided that tr(B) and ||B||2F are finite. Here, ||B||F denotes the
Frobenius norm of the matrix B. This result makes the Jacobian invertible for a given x, by
requiring that ϵℓ ≤ ϵ∗ℓ . Note that the inverse function theorem only locally guarantees bijectivity.
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The function of interest is then guaranteed to be invertible in a local neighbourhood. However,
the condition for nonsingularity of the Jacobian can be imposed globally. This can for instance
be done by requiring that supx 2ρ(B + BT ) is bounded. Using the fact that ρ(A) ≤ ||A|| for
every square matrix A and every matrix norm || · || and that ||AT ||F = ||A||F , we get that

sup
x
ρ(B +BT ) ≤ sup

x
2||B||F = sup

x
2||∇ϕ∗

µℓ,p
||F ≤ sup

x
2
√
∇xx′k(x, x)D(µℓ||νp), (83)

where the last inequality comes from equation (99) and B = ∇ϕ∗
µℓ,p

(x).

The reason we cannot argue that KL(µ∞
ℓ ||νp)→ 0 as ℓ→∞ in Theorem 6.6 is not only because

D(µ∞
ℓ ||νp) can be zero, but also because the right-hand side in equation (82) may to tend to zero.

Hence, we only know that KL(µ∞
ℓ ||νp) decreases strictly if D(µ∞

ℓ ||νp) > 0, but possibly not to
zero. Furthermore, we arrive at a contradiction for equation (82) if we assume that D(µ∞

ℓ ||νp)
does not converge to zero as ℓ→ 0. For the sake of contradiction, let us assume D(µ∞

ℓ ||νp) does
not converge to zero as ℓ→∞. Then, we can make the right-hand side of equation (82) negative
for infinitely many ℓ ∈ N and hence the KL divergence between µ∞

ℓ and νp becomes negative for
large enough ℓ. This is a contradiction, because the KL divergence is always nonnegative. Hence,
we can conclude that D(µ∞

ℓ ||νp) → 0 as ℓ → ∞ for a sequence of step-sizes ϵℓ, but we cannot
conclude that KL(µ∞

ℓ ||νp)→ 0 as ℓ→∞.

A favourable property of the square root of the kernelized Stein discrepancy would be that
D(µ||νp) = 0 if and only if µ = νp. This property can hold, but assumptions on the richness
of the space H have to be made. In Theorem 6.6 we have that the Stein discrepancy converges
to zero. In this setting, it would be ideal if we could also conclude that the measures converge
(weakly). This has been studied in e.g. Gorham and Mackey 2017. Consider a sequence of
measures {µℓ}∞ℓ=1 and a target measure νp, then D(µℓ||νp)→ 0 as ℓ→∞ implies that µℓ ⇒ νp
as ℓ → ∞ for the measure νp that is distantly dissipative and if a multi-quadric kernel is used.
See Gorham and Mackey 2017 for these specific definitions. We will give more details and show
more general conditions in Section 7.

If we assume that it is the case that D(µ∞
ℓ ||νp) → 0 as ℓ → ∞ =⇒ µ∞

ℓ ⇒ νp as ℓ → ∞,
then Theorem 6.6 shows that for SVGD iterations it holds true that µ∞

ℓ ⇒ νp as ℓ→∞. First,
assume that the conditions in Theorem 6.5 hold and let us use it on the empirical measure µ̂M

ℓ .
This gives that for any finite ℓ ∈ N we have µ̂M

ℓ ⇒ µ∞
l as M → ∞. Then, using Theorem 6.6

gives that µ̂M
ℓ ⇒ νp as first M →∞ and then ℓ→∞. Hence, the two-step procedure of invoking

Theorem 6.5 and then Theorem 6.6 shows the weak convergence of the empirical SVGD measure
µ̂M
ℓ to νp.
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7 Convergence and tightness of SVGD measures
The aim of this section is to present results governing the convergence of SVGD. In particular, we
show that it is beneficial for convergence results for SVGD if the measures, governing the SVGD
particles, are forming a uniformly tight sequence of measures. In this way, a result that states
that KSD metrizes weak convergence can be used and this enables us to generalise convergence
results for SVGD. Furthermore, a result is shown that gives a mild condition under which the
SVGD measures are in fact uniformly tight.

7.1 A motivation for tightness of measures for SVGD
Let us start by giving a motivation for studying the tightness of SVGD measures. A vital
ingredient in some convergence results about SVGD, e.g. in Liu 2017 and Korba, Salim, et al.
2020 is that KSD metrizes weak convergence. As we will show in this section, this is only true
in very limited cases and only holds under strict conditions. For example, it does not even hold
for a very popular kernel as the Gaussian kernel. A workaround would be to show that SVGD
generates a tight sequence of measures (µi)i≥1 that enables SVGD to satisfy the conditions under
which KSD metrizes weak convergence. This result could then open the door for more general
kernel functions and hence generalise convergence results for SVGD, as presented for instance in
Theorem 6.6.

In what follows, we show that work in Gorham and Mackey 2017 makes explicit under which
circumstances KSD is a ‘good’ discrepancy measure. Furthermore, a result is given that shows
that KSD can fail as a discrepancy measure. We work towards a theorem that shows that SVGD,
under certain assumptions, satisfies a property that enables KSD to metrize weak convergence. In
fact, the convergence result of SVGD in Theorem 6.6 crucially depends on this property of KSD.
However, the results in Gorham and Mackey 2017 limit the applicability of this metrizability, as
their results show that it only holds for a limited choice of kernels. In this section, a result is
presented that shows that it is in fact the case that KSD metrizes weak convergence for SVGD.

Let us start by recalling our definition of the (square root of) kernelized Stein discrepancy
D(µ||νp), where p is the density of some target measure νp:

D(µ||νp) = max{Eµ[tr(Apϕ)] | ϕ ∈ Hd, ||ϕ||Hd ≤ 1}.

Remark 7.1. We will also name D(µ||νp) the KSD, while strictly speaking it it is defined as
the square root of the KSD as in Definition 3.6. In Appendix D.2 we give more background and
unite the framework used in Gorham and Mackey 2017 with ours.

The reason we have introduced a discrepancy measure in the first place is to detect how close a
certain measure is to a target measure. A favourable property of discrepancy measures is that
they should also detect non-convergence towards a target measure. The following theorem shows
that the KSD fails to detect when a sequence of measures for dimension d ≥ 3 is not converging
to the target, i.e. in higher dimensions we can have that D(Qi||νp) converges to zero, but the
sequence of ‘approximating’ measures (Qi)i≥1 does not converge to the target measure. We
use the empirical measures as approximating measures, i.e. Qi =

1
i

∑i
j=1 δxj

, for δx the Dirac
measure and x1, . . . , xi ∈ Rd.

Theorem 7.2 (KSD fails with light kernel tails, from Gorham and Mackey 2017). Suppose
k ∈ C(1,1)

b (one time continuously differentiable and uniformly bounded derivatives for both ar-
guments). Define the kernel decay rate:
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γ(r) := sup{max(|k(x, y)|, ||∇xk(x, y)||2, |⟨∇x,∇yk(x, y)⟩|) | ||x− y||2 ≥ r}. (84)

If d ≥ 3, νp = N (0, Id) and γ(r) = o(r−α) for α := ( 12 −
1
d )

−1, then there exist a sequence of
measures (Qi)i≥1 such that D(Qi||νp)→ 0 as i→∞, while it does not imply Qi ⇒ νp as i→∞.

Proof. See Gorham and Mackey 2017 for a proof.

This result is far from ideal, as it limits the choice of kernels and target distributions. Further-
more, the assumptions in the theorem are satisfied by popular kernels as the RBF and Matérn
kernel, see e.g. Gorham and Mackey 2017. It shows that KSD fails to detect non-convergence,
even when the target measure is simply a multivariate Gaussian distribution N (0, Id). The fail-
ure of the KSD is due to its inability to enforce uniform tightness of the sequence of measures
(Qi)i≥1 (Gorham and Mackey 2017).

Definition 7.3. A sequence of (arbitrary) probability measures (µi)i≥1 on Rd is uniformly tight
if for every ϵ > 0 there exists a number R(ϵ) <∞ such that lim supi→∞ µi(||X||2 > R(ϵ)) ≤ ϵ.

The intuition behind this definition is that no mass in the sequence of measures can escape to
infinity. Furthermore, if the kernel k has (fast) decaying tails, while the score function sp still
grows, then the KSD cannot capture probability mass in the tails of the target distribution and
hence it can be made arbitrarily small by a sequence of non-tight probability measures which are
distributing more and more probability mass in the tails. This is the intuition behind what is
happening in Theorem 7.2. Before we state a theorem which shows that, under mild conditions,
KSD can detect non-converge of a sequence of arbitrary approximating probability measures
with distantly dissipative target measure νp, let us state the definition of a distantly dissipative
probability measure.

Definition 7.4 (Distant dissipativity, from Gorham and Mackey 2017). A distribution νp (with
continuously differentiable density p with support Rd) with Lipschitz score function sp := ∇ log p
is distantly dissipative if κ0 = lim infr→∞ κ(r) > 0 for

κ(r) = inf

{
−2 ⟨sp(x)− sp(y), x− y⟩

||x− y||22

∣∣∣ ||x− y||2 = r

}
. (85)

Examples of distributions being distantly dissipative are finite Gaussian mixtures with common
covariance, see e.g. Gorham and Mackey 2017. We are now able to state the theorem that
guarantees, under some conditions, that KSD can detect convergence of a sequence of probability
measures:

Theorem 7.5 (KSD detects tight non-convergence, from Gorham and Mackey 2017). Suppose
νp is a distantly dissipative probability measure and (x, y) 7→ k(x, y) = h(x − y), for h ∈ C2

(twice continuously differentiable) and absolutely integrable. Assume h also has a non-vanishing
generalized Fourier transform ĥ. If (µi)i≥1 is uniformly tight, then D(µi||νp)→ 0 as i→∞ only
if µi ⇒ νp as i→∞.

Proof. See Gorham and Mackey 2017 for a proof.

Remark 7.6. For absolutely integrable functions f : Rd → R, i.e.
∫
|f(x)|dx <∞, the general-

ized Fourier transform of f is defined as ω → f̂(ω) = (2π)−d/2
∫
f(x) exp(−i⟨x, ω⟩)dx.
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It turns out that for a very specific kernel, namely the inverse multiquadric (IMQ) kernel (x, y) 7→
k(x, y) = (c2 + ||x − y||22)β for some β < 0 and c > 0, it is the case that KSD can detect non-
convergence in a broader setting (without the necessity of having tight measures). See Theorem
8 in Gorham and Mackey 2017 for more details. We are interested in a broader setting, as we do
not want to restrict ourselves to solely using the IMQ kernel.

As stated before, a discrepancy measure should also detect convergence of an approximating
sequence of measures (µi)i≥1 towards its target and this property is satisfied by KSD:

Theorem 7.7 (KSD detects convergence, from Gorham and Mackey 2017). If k ∈ C
(2,2)
b

(twice continuously differentiable and uniformly bounded derivatives for both arguments) and
sp = ∇ log p is Lipschitz with Eνp [||sp(X)||22] < ∞, then D(µi||νp) → 0 as i → ∞ whenever
µi ⇒ νp as i→∞.

Proof. See Gorham and Mackey 2017 for a proof.

As argued before, a vital ingredient in some convergence results about SVGD is that it is assumed
that KSD metrizes weak convergence. The preceding results show that this is only true in very
limited cases, i.e. the equivalence

D(µi||νp)→ 0 as i→∞ ⇐⇒ µi ⇒ νp as i→∞, (86)

only holds under strict conditions and it does not even hold for a very popular kernel as the Gaus-
sian kernel. To make convergence results for SVGD hold more generally, we need a workaround.
A possible workaround would be to show that SVGD generates a tight sequence of measures
(µi)i≥1 and then by means of Theorem 7.5 the only if part of this duality is satisfied. This result
could then open the door for more general kernel functions and hence generalise convergence
results for SVGD, as presented earlier in Theorem 6.6.

7.2 Towards a result for the tightness of measures for SVGD
This section explores a potential proof for the tightness of the measures for SVGD. We use the
same notation as in Theorem 6.6 and its proof in Appendix A.3. Furthermore, we also consider
the same setting and assumptions. We slightly alter the notation of the operator T µ,p, where
we make the dependence on the step-size more explicit, i.e. x 7→ T µ,ϵ(x) = x + ϵϕ∗

µ(x). Let us
consider a single particle x at iteration i and denote it as xi. In SVGD, it is updated iteratively
as xi+1 = T µi,ϵi(xi) = xi + ϵiϕ

∗
µi
(xi). We have the following chain of inequalities:

||xi||2 = ||xi−1 + ϵi−1ϕ
∗
µi−1

(xi−1)||2
≤ ||xi−1||2 + ϵi−1||ϕ∗

µi−1
(xi−1)||2, by the triangle inequality,

≤ ||xi−1||2 + ϵi−1

√
k(xi−1, xi−1)D(µi−1||νp), (87)

where in the last inequality we have used the bound ||ϕ∗
µi−1

(x)||2 ≤
√
k(x, x)D(µi−1||νp). See

Lemma 7.8 for a derivation.

Lemma 7.8. Consider the optimal the optimal update direction in T µ,ϵ = x + ϵϕ∗
µ(x), i.e.

ϕ∗
µi

= [ϕ1, . . . , ϕd]
T , with ϕi ∈ H ∀i = 1, . . . , d and ϕ∗

µi
∈ Hd, the d-dimensional RKHS with

reproducing kernel k : Rd × Rd → R. Then, the following inequality holds true for all x ∈ Rd:
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||ϕ∗
µi−1

(x)||2 ≤
√
k(x, x)D(µi−1||νp). (88)

Proof. This proof is based on page 11 of Liu 2017. By Theorem 3.7 we have ||ϕ∗
µi
||2Hd =∑d

i=1 ||ϕi||2H = D(µi||νp)2. By the reproducing property of the kernel in H we have:

ϕi(x) = ⟨ϕi, k(x, ·)⟩H, and k(x, x) = ⟨k(·, x), k(x, ·)⟩H = ||k(x, ·)||2H ∀i = 1, . . . , d and ∀x ∈ X .

This gives the following chain of inequalities below. Consider any x ∈ X , then:

||ϕ∗
µi
(x)||22 =

d∑
j=1

ϕj(x)
2

=

d∑
i=1

(⟨ϕj , k(x, ·)⟩H)2

≤
d∑

j=1

||ϕj ||2H||k(x, ·)||2H, by Cauchy-Schwarz inequality,

= ||k(x, ·)||2H
d∑

j=1

||ϕj ||2H

= k(x, x)||ϕ∗
µi
||2Hd

= k(x, x)D(µi||νp)2.

This leads us to the following lemma, which, under strong assumptions, shows that a SVGD
particle has bounded norm in the iteration limit.

Lemma 7.9. Consider the SVGD particle operator x 7→ T µ,ϵ(x) = x+ ϵϕ∗
µ(x) and assume that

sup
i∈N
{
√
k(xi, xi)D(µi||νp)} <∞. Here, µi denotes the SVGD pushforward measure at iteration i

and xi is a SVGD particle at iteration i. Then, we have

lim
i→∞

||xi||2 <∞. (89)

Proof. Using the inequality in equation (87) repetitively, we can get:

||xi||2 ≤
∑

0≤j≤i−2

ϵj

√
k(xj , xj)D(µj ||νp) + ϵi−1

√
k(xi−1, xi−1)D(µi−1||νp) + ||x0||2

=
∑

0≤j≤i−1

ϵj

√
k(xj , xj)D(µj ||νp)︸ ︷︷ ︸

:=gj

+||x0||2.
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Using the assumption in the lemma that gj <∞∀j ∈ N and choosing ϵj suitably small and such
that ϵj → 0 as j →∞, gives that

∑
0≤j≤i−1 ϵjgj <∞ as i→∞. Let us denote this limit as M .

So we have

||xi||2 ≤
∑

0≤j≤i−1

ϵjgj + ||x0||2 := Bi <∞, as it is a finite sum. (90)

More interestingly, we also have, in the limit of the number of iterations i→∞, the following:

lim
i→∞

||xi||2 ≤ lim
i→∞

∑
0≤j≤i−1

ϵjgj + ||x0||2 =M + ||x0||2 <∞.

This lemma is the workhorse lemma for our proposition that states that the empirical measures
for SVGD form a uniformly tight sequence of measures under strong assumptions.

Proposition 7.10. Given M initial SVGD particles x10, . . . , xM0 , consider the SVGD particle
operator x 7→ T µ,ϵ(x) = x + ϵϕ∗

µ(x) and assume that sup
i∈N
{
√
k(xi, xi)D(µi||νp)} < ∞. Here, µi

denotes the SVGD pushforward measure at iteration i and xi is a SVGD particle at iteration
i. Furthermore, assume that sup

i∈N
Ri(ϵ) < ∞, with Ri(ϵ) = supj=1,...,n{||x

j
i || + δ} for some δ >

0. Then, the empirical measure for SVGD particles generates a sequence of measures that is
uniformly tight.

Proof. Let us denote the empirical measure for SVGD as µ̂M
i = 1

M

∑M
j=1 δxj

i
, at iteration i for

M particles {xji}Mj=1. We would like to prove that this sequence of M -particle SVGD measures
(µ̂M

i )i≥1 is uniformly tight. So we need that ∀ϵ > 0 there exists a finite number R(ϵ) such that
lim sup
i→∞

µ̂M
i (||X||2 > R(ϵ)) ≤ ϵ. As a start, let us try and bound µ̂M

i (||X||2 > Ri(ϵ)) for a suitably

chosen Ri(ϵ). We know that µ̂M
i = 1

M

∑M
j=1 δxj

i
and that ||xji ||2 ≤ B

j
i <∞ by equation (90). So,

if we set Ri(ϵ) = sup
j=1,...,M

{
Bj

i + δ
}

for δ > 0 some small number, then µ̂M
i (||X||2 > Ri(ϵ)) = 0.

Observe that Ri(ϵ) < ∞ ∀i ∈ N. Let us set R(ϵ) = supi∈NRi(ϵ). Using the assumption that
R(ϵ) < ∞ gives that lim sup

i→∞
µ̂M
i (||X||2 > R(ϵ)) = 0 ≤ ϵ for all ϵ > 0. This shows that we have

proven that (µ̂M
i )i≥1 is uniformly tight.

A more general proposition about tightness of SVGD measures is given below. This proposition
can help us in the sense that we can generalise the preceding result to make it work not only
for empirical measures with a finite number of particles, but also in the infinite particle regime
M → ∞ for SVGD. This is for instance the setting of Theorem 6.6. Let us first give the
proposition and then motivate it.

Proposition 7.11. Let S1,S2, . . . be arbitrary measurable maps Si : Rd → Rd such that for
every x ∈ Rd, lim sup

i→∞
||Si(x)|| < ∞. Then, the sequence of measures ((Si)#µ)i≥1 is uniformly

tight.
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Proof. If X ∼ µ, then Si(X) ∼ (Si)#µ by definition. Since supi ||Si(x)|| < ∞ ∀x and Si is
measurable, Y := supi ||Si(X)|| defines a finite random variable. By the inequality ||Si(X)|| ≤
Y ∀i, the uniform tightness of ((Si)#µ) follows from the tightness of Y (in the sense that Y is
finite and hence tight).

We can identify these measurable maps S1,S2, . . . as compositions of the operator T µi,ϵi (which
we abbreviate by T i) in the following sense:

particle iteration measure
x0 µ
x1 = x0 + ϵ0ϕ(x0) = T 0(x0) (T 0)#µ
x2 = x1 + ϵ1ϕ(x1) = T 1(x1) (T 1 ◦ T 0)#µ
...

...
xi = xi−1 + ϵiϕ(xi−1) = T i−1(xi−1) (T i−1 ◦ T i−2 ◦ · · · ◦ T 0)#µ
xi+1 = xi + ϵi+1ϕ(xi) = T i(xi) (T i ◦ T i−1 ◦ · · · ◦ T 0)#µ

Observe that we can now identify Si = T i◦T i−1◦· · ·◦T 0∀i ∈ N∪{0}. In order to use Proposition
7.11, we need lim sup

i→∞
||Si(x)|| < ∞ ∀x ∈ Rd. If we have lim sup

i→∞
||T i(x)|| < ∞ ∀x ∈ Rd, then we

have that this assumption satisfied, as Si is a composition of functions T i,T i−1, . . . .

In Lemma 7.9 we have established that lim
i→∞
||xi||2 < ∞ for an arbitrary SVGD particle xi

at iteration i. Now observe that lim
i→∞
||xi||2 = lim

i→∞
||T i−1(xi−1)||2 = lim

i→∞
||T i(xi)||2. This now

means that lim
i→∞
||T i(xi)||2 < ∞ and thus lim sup

i→∞
||T i(xi)||2 < ∞ for the SVGD particle xi at

iteration i. Because we took the initial particle x0 arbitrary in our derivation and evolved it
according to T 0,T 1, . . . , we can generalize the preceding result to hold for all x ∈ Rd, i.e.
lim sup
i→∞

||T i(x)||2 < ∞ ∀x ∈ Rd. This puts us in place to use Proposition 7.11 to conclude that

((Si)#µ)i≥0 = ((T i◦· · ·◦T 0)#µ)i≥0 is uniformly tight. This implies that the measures produced
by SVGD are uniformly tight in the infinite particle regime M →∞.

The most crucial assumption made in this derivation is that we assumed that
√
k(xi, xi)D(µi||νp) <

∞ ∀i ∈ N. In for instance Korba, Salim, et al. 2020 a similar assumption is made, namely that
∃C > 0 such that D(µi||νp) < C ∀i ∈ N. In a sense this seems to be a strong assumption to
make, as D(µ||νp) is a discrepancy measure between µ and νp and hence assuming this is finite
for all iterations means that we stay ‘finitely’ close to νp. On the other hand, it might also be
seen as a weak assumption, as it only assumes that the KSD does not become infinitely large.

7.3 A different path towards tightness of SVGD measures
In Salim et al. 2022, a different approach is used to show that the SVGD measures are uniformly
tight. In that paper it is assumed that the target distribution satisfies a Talagrand-1 (T1)
inequality. Starting from this assumption, they work towards tightness by means of a result in
Dupuis and Ellis 2011:

Lemma 7.12 (Lemma 1.4.3 in Dupuis and Ellis 2011 (adapted to our needs)). Let (µi)i≥1 be a
sequence in P(Rd) and consider a target distribution νp ∈ P(Rd). Assume that for each α ∈ Rd,

∫
Rd

exp⟨α, x⟩dνp(x) <∞ and sup
i∈N

KL(µi||νp) <∞.

61



Then, (µi)i≥1 is both tight and uniformly integrable in the sense that

lim
C→∞

sup
i∈N

∫
{x∈Rd | ||x||>C}

||x||dµi(x) = 0.

The first condition is an assumption about the target distribution and the second is about the
condition that the KL divergence does not explode along the sequence. With a SVGD descent
lemma for the KL divergence, we can make sure that the latter condition is satisfied, given that
KL(µ0||νp) < ∞. The first condition has to be assumed and the T1 inequality implies this
condition. To be able to show this, we first need a definition:

Definition 7.13 (Talagrand’s inequality T1). The distribution νp satisfies the Talagrand’s in-
equality T1 if there exists a λ > 0 such that for all µ ∈ P(Rd), we have W1(µ, νp) ≤ 2KL(µ||νp)

λ .
Here, W1(µ, νp) denotes the Wasserstein-1 distance between µ and νp.

Remark 7.14. In equation (40) the W2 distance is defined, which differs from the W1 distance.
The W1 distance is defined as:

W1(µ, ν) = inf
s∈Γ(µ,ν)

{∫
Rd×Rd

||x− y||ds(x, y)
}
,

with Γ(µ, ν) the set of all possible joint distributions on Rd × Rd with marginals µ and ν.

The assumption on νp, used in Salim et al. 2022 is a Talagrand-1 inequality, i.e. T1 in definition
7.13. In Villani et al. 2009 (Theorem 22.10) a characterisation is given for a distribution νp to
satisfy the T1 inequality: νp satisfies T1 if and only if there exist a ∈ X and β > 0 such that∫
exp(β||x − a||2)dνp(x) < ∞. This characterisation paves the way to the lemma. We have the

following chain of inequalities. Take any α ∈ Rd and x ∈ Rd, then:

⟨α, x⟩ ≤ |⟨α, x⟩|
≤ ||α|| · ||x||, by Cauchy-Schwarz,

=

(
||α||√
β

)(
||x||

√
β
)

≤ 1

2

1

β
||α||2 + 1

2
β||x||2, because (a− b)2 ≥ 0 ⇐⇒ ab ≤ 1

2
a2 +

1

2
b2,

≤ ||α||
2

2β
+ β(||x− a||2 + ||a||2), as ||x||2 = ||x− a+ a||2 ≤ 2||x− a||2 + 2||a||2.

Note that the last term only depends on x via ||x− a||2. So, if we assume that there exist a ∈ X
and β > 0 such that

∫
exp(β||x− a||2)dνp(x) <∞, then we can make

∫
Rd exp⟨α, x⟩dνp(x) <∞

for all α ∈ Rd in the following way. Take any arbitrary α ∈ Rd, then:
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∫
Rd

exp⟨α, x⟩π(dx) ≤
∫
Rd

exp

(
||α||2

2β
+ β(||x− a||2 + ||a||2)

)
π(dx)

= exp

(
||α||2

2β
+ β||a||2)

)∫
Rd

exp
(
β(||x− a||2)

)
π(dx)︸ ︷︷ ︸

<∞

<∞.

In this way, the T1 inequality can guarantee that
∫
Rd exp⟨α, x⟩π(dx) < ∞ for all α ∈ Rd. This

is what has been done in Salim et al. 2022 to deduce tightness of the measures for SVGD. Let
us now present a theorem that gives the same outcome for the probability measures (µi)i≥1, but
without the need for any condition on the target distribution νp.

Theorem 7.15. Let (µi)i≥1 be a sequence in P(Rd) and consider a target distribution νp ∈
P(Rd). Assume that sup

i∈N
KL(µi||νp) < ∞. Then (µi)i≥1 is both uniformly tight and uniformly

integrable in the sense that lim
C→∞

sup
i∈N

∫
{x∈Rd | ||x||>C} ||x||dµi(x) = 0.

Proof. Note that ∀i ∈ N we have that KL(µi||νp) < ∞. This means that for all i ∈ N, µi is
dominated by νp and hence admits a Radon–Nikodym derivative fi := dµi

dνp
such that

∫
fidνp =

1 ∀i ∈ N. Observe that we can write the following:

∫
fi log fidνp =

∫
log

(
dµi

dνp

)
dµi

= KL(µi||νp).

We will first show uniform integrability and then continue with proving uniform tightness. Let
us introduce two inequalities that we are going to use. The first one is that for any nonnegative
a, b ∈ R and σ ≥ 1 : ab ≤ eσa + 1

σ (b log b − b + 1). This can be derived by noting that
supa∈R{ab − eσa} = b

σ

(
log b

σ − 1
)
≤ 1

σ (b log b − b + 1). In the last inequality we used that
−b log σ ≤ 0 for b ≥ 0 and σ ≥ 1.

We also need the inequality b log b − b + 1 > 0 for all b > 0. This can for instance be shown by
noting that the function b 7→ h(b) := b log b− b+ 1 is a convex function and that b = 1 is a zero
of it and at b = 1 it is the case that h′(b) = 0, so it is the only zero of h by convexity. Now that
we have established the necessary inequalities, let us proceed. Take any C > 0, σ ≥ 1 and an
arbitrary i ∈ N:
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∫
||x||>C

||x||fi(x)dνp(x) ≤
∫
||x||>C

(
eσ||x|| +

1

σ
(fi(x) log fi(x)− fi(x) + 1)

)
dνp(x)

≤
∫
||x||>C

eσ||x||dνp(x) +
1

σ

∫
X
(fi(x) log fi(x)− fi(x) + 1)︸ ︷︷ ︸

≥0

dνp(x)

=

∫
||x||>C

eσ||x||dνp(x)+

1

σ

(∫
X
fi(x) log fi(x)dνp(x)−

∫
X
fi(x)dνp(x)︸ ︷︷ ︸

=1

+

∫
X
dνp(x)︸ ︷︷ ︸
=1

)

=

∫
||x||>C

eσ||x||dνp(x) +
1

σ

∫
X
fi(x) log fi(x)dνp(x)

=

∫
||x||>C

eσ||x||dνp(x) +
1

σ
KL(µi||νp). (91)

In the first line we have used ab ≤ eσa + 1
σ (b log b− b+1) pointwise with a = ||x|| and b = fi(x).

In the second line we used that b log b− b+ 1 > 0 with b = fi(x). Note that it is assumed that
supi∈NKL(µi||νp) < ∞, so for an arbitrary i ∈ N we have limσ→∞

1
σKL(µi||νp) = 0. Because

we took i ∈ N arbitrary and taking the supremum preserves non-strict inequalities, we have:

sup
i∈N

∫
||x||>C

||x||fi(x)dνp(x) ≤ sup
i∈N

{∫
||x||>C

eσ||x||dνp(x) +
1

σ
KL(µi||νp)

}

=

∫
||x||>C

eσ||x||dνp(x) +
1

σ
sup
i∈N

KL(µi||νp).

We also take the limit of C →∞ to deduce that:

lim
C→∞

sup
i∈N

∫
||x||>C

||x||fi(x)dνp(x) ≤ lim
C→∞

(∫
||x||>C

eσ||x||dνp(x) +
1

σ
sup
i∈N

KL(µi||νp)

)

=
1

σ
sup
i∈N

KL(µi||νp).

Note that the left-hand side of this inequality does not depend on σ, whereas the right-hand side
does. Note that limσ→∞

1
σKL(µi||νp) = 0, as supi∈NKL(µi||νp) < ∞. Furthermore, the term

on the left-hand side of the inequality is nonnegative. This gives that:

lim
C→∞

sup
i∈N

∫
||x||>C

||x||fi(x)dνp(x) = 0.

Now note that the fi are the Radon-Nikodym derivatives and that µi ≪ νp for all i ∈ N. This
ultimately gives:
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lim
C→∞

sup
i∈N

∫
||x||>C

||x||dµi(x) = 0.

This shows that the sequence of measures (µi)i≥1 is uniformly integrable.

We will now continue with proving the uniform tightness part. Let us redo the chain of inequal-
ities leading to the inequality in equation (91), but now with ||x|| = 1 in the integrand. This
gives us for an arbitrary i ∈ N, arbitrary C > 0 and arbitrary σ ≥ 1:

∫
||x||>C

fi(x)dνp(x) ≤ eσ
∫
||x||>C

dνp(x) +
1

σ
KL(µi||νp). (92)

This transforms equation (92) into:

µi(||X|| > C) ≤ eσνp(||X|| > C) +
1

σ
KL(µi||νp).

Taking the limit supremum on both sides:

lim sup
i→∞

µi(||X|| > C) ≤ eσνp(||X|| > C) +
1

σ
lim sup
i→∞

KL(µi||νp),

Observe that this bound can be made arbitrarily small by choosing σ and C large enough. In
other words, for all ϵ > 0 we can find constants C, σ <∞ such that lim supi→∞ µi(||X|| > C) ≤ ϵ.
Hence, the sequence (µi)i≥1 is uniformly tight.

This is a strong result, as it can help us in deducing convergence for SVGD measures in the
infinite particle regime. The only condition that is needed is that supi∈NKL(µi||νp) < ∞ and
this gives that (µi)i≥1 is uniformly tight and even uniformly integrable.

This is not the complete story, as we want to work towards convergence. The theorem stating
a descent result for KL divergence was presented in Theorem 6.6, where the KL-divergence
monotonically decreases. However, we could not argue that the KL divergence converges to
zero. Let us denote µ∞

i as the SVGD measure at iteration i in the infinite particle regime. We
made the assumption that D(µ∞

i ||νp) → 0 as i → ∞ =⇒ µ∞
i ⇒ νp as i → ∞. Under this

assumption it is the case that Theorem 6.6 shows that for SVGD iterations it holds true that
µ∞
i ⇒ νp as i → ∞. The problem was that the KSD only metrizes weak convergence under

certain assumptions. In Theorem 7.7 it is shown that KSD can detect convergence whenever
the measures actually convergence. Detecting non-convergence is also a necessary property and
in Theorem 7.5 the conditions are given under which KSD can detect non-convergence. In
particular, it shows that KSD can detect non-convergence if the measures are assumed to be
tight. So, what we need is that the SVGD measures are forming a uniformly tight sequence to
finalise our argument concerning weak convergence of the SVGD measures in the infinite particle
regime. This is exactly what has just been shown in Theorem 7.15.
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8 Discussion
In this thesis, the general topic of study was Bayesian deep learning. In particular, we were
interested in getting insights in the Bayesian paradigm for deep learning. In other words, how
can a Bayesian viewpoint help to tackle problems arising in deep learning. That is quite a general
question but it correctly mimics our initial broad scope of this thesis, as we started with finding
a motivation for Bayesian deep learning.

During this first initial exploration of Bayesian deep learning, it was observed that many methods
were coined ‘Bayesian’, while they are in fact not fully Bayesian in the sense that the posterior
does not directly from a prior and a likelihood. Furthermore, in many deep learning papers it was
hard to find a proper mathematical structure in which the method was explained. For instance,
the deep ensembles paper Lakshminarayanan et al. 2017 contains very little equations, definitions
or theorems. In principle that is no problem, but it makes it harder to do mathematical research
on a mathematical object (the deep ensemble) that still has to be developed. That was also one
of our main tasks in this thesis: finding mathematics in deep learning.

Towards this end, inspiration was found in D’Angelo and Fortuin 2021, where more mathematical
structure was used in a (Bayesian) deep learning setting. That paper also hinted at using the
concept of a gradient flow in Wasserstein space and SVGD, which are the two main topics of
study in this thesis. Uniting SVGD with the concept of Wasserstein gradient flows is particularly
hard. For instance, defining a general gradient flow in Section 5.3 already turned out to be quite
technical for a general functional on the Wasserstein space. To be able to use that framework,
SVGD has to be written as a functional on the Wasserstein space, while we only knew it in terms
of a particle update algorithm. This is what we studied in Section 5.8, where by means of a
kernel integral operator we could transform the Wasserstein gradient for the KL divergence into
a gradient flow corresponding to SVGD. In particular, the discretisation in time of this kernelized
Wasserstein gradient flow brought us the SVGD algorithm. This gives a mathematical viewpoint
on the SVGD algorithm. Furthermore, it also gives us a way to view the evolution of the measures
corresponding to SVGD in Wasserstein space, even though this derivation was slightly informal.
In principle, this framework can be used to construct a Wasserstein gradient flow for a functional
different from the KL divergence. For instance, we could consider a f -divergence, of which the
KL divergence is a concrete example. Then, following the same procedure, we might find a new
algorithm that is a discretisation of this f -divergence.

In Section 6 we studied convergence results for SVGD in the infinite particle regime. More
precisely, we studied a descent result in Theorem 6.6 for the KL divergence from Liu 2017. To be
able to conclude that SVGD could establish weak convergence towards the target distribution,
it was necessary to assume that KSD metrizes weak convergence. However, it turned out that
this only holds in specific cases, e.g. in the case that a very specific kernel was used. To be
able to let the weak convergence result hold in more general scenarios, it would be ideal if we
could show that SVGD generates a tight sequence of measures. This would open the door for
a more general weak convergence result. This was the topic of the last section of this thesis,
Section 7. In this section, we work towards proving uniform tightness of the measures for SVGD
under different assumptions. In the end, a theorem is presented that shows that under the mild
condition that the KL divergence does not explode along the sequence of measures, it is the
case that this sequence is uniformly tight and even uniformly integrable. In turn, under this
condition, KSD metrizes weak convergence (as it deals with a tight sequence of measures) and
together with the KL divergence descent result it shows that SVGD can weakly converge to the
target distribution in the infinite particle regime. However, the KL divergence descent result
needs to have sufficiently small step sizes, which are upper bounded by the inverse of the KSD.
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Hence, if the KSD is unbounded along the iterations, then the descent result does not hold. It is
a-priori hard to check whether this assumption holds and hence has to be assumed. This makes
it hard to verify the assumptions of this result in practice. Ideally, we want a KL divergence
descent result that has a step-size that is independent of any quantity that is not known at the
beginning of running the algorithm.

To conclude, it is good to have one last look at the mountain which is on the cover of this
manuscript. After having read this thesis, the Kitzsteinhorn mountain can in an abstract sense
be seen as representing a gradient flow problem, where a skier follows a gradient flow along the
mountain. This skier might also be the reader of this manuscript, where I sincerely hope that
he or she has gained valuable insights into the Bayesian paradigm for deep learning.
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A Proofs

A.1 Proof of Theorem 3.7
Proof. This proof is from Liu, Lee, et al. 2016, but this version is more elaborate. Let us introduce
a short-hand notation for ϕ∗

q,p, which was the function x′ 7→ ϕ∗
q,p(x

′) = EX∼q[Apk(x
′, X)]. We

will use the short-hand notation β := ϕ∗
q,p Let us start by proving that S(p, q) = ||β||2Hd . Let us

start with a preliminary definition (from Liu, Lee, et al. 2016) of KSD that is more ‘fundamental’
than the definition we gave in Definition 3.6. This can also be skipped if the reader wants to
stick to the definition of KSD as in Definition 3.6, then continue reading with equation (93).

Definition A.1. The kernelized Stein discrepancy (KSD) between densities p and q is defined
as:

S(q, p) = Ex,x′∼q[δp,q(x)
T k(x, x′)δp,q(x

′)],

where δp,q(x) = sp(x)− sq(x) is the difference between score functions of p and q and x, x′ are
i.i.d. draws from the density q.

Using this definition and the reproducing property of kernels in the RKHS: k(x, x′) = ⟨k(x, ·), k(x′, ·)⟩H:

S(p, q) = Ex,x′∼q[(sp(x)− sq(x))
T k(x, x′)(sp(x

′)− sq(x
′))]

= Ex,x′∼q[(sp(x)− sq(x))
T ⟨k(x, ·), k(x′, ·)⟩H(sp(x

′)− sq(x
′))]

= Ex∼q Ex′∼q[

d∑
ℓ=1

(sℓp(x)− sℓq(x))(s
ℓ
p(x

′)− sℓq(x
′))⟨k(x, ·), k(x′, ·)⟩H]

=

d∑
ℓ=1

Ex∼q[(s
ℓ
p(x)− sℓq(x)) Ex′∼q[(s

ℓ
p(x

′)− sℓq(x
′))⟨k(x, ·), k(x′, ·)⟩H]]

=

d∑
ℓ=1

Ex∼q[(s
ℓ
p(x)− sℓq(x))⟨k(x, ·),Ex′∼q[(s

ℓ
p(x

′)− sℓq(x
′))k(x′, ·)]⟩H]

=

d∑
ℓ=1

〈
Ex∼q[(s

ℓ
p(x)− sℓq(x))k(x, ·)],Ex′∼q[k(x

′, ·)(sℓp(x′)− sℓq(x
′))]
〉
H

=

d∑
ℓ=1

⟨βℓ,βℓ⟩H

= ||β||2Hd .

Here we used Lemma 2.3 from Liu, Lee, et al. 2016, i.e. Ex∼q[Apkx′(x)] = Ex∼q[(sp(x) −
sq(x))kx′(x)], as kx′(·) := k(x′, ·) is in the Stein class of q.

Let us now make the connection with the definition that we used for KSD. For any ϕ ∈ Hd we
have:
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⟨ϕ,β⟩Hd =

d∑
ℓ=1

⟨ϕℓ,Ex∼q[s
ℓ
p(x)k(x, ·) +∇xℓ

k(x, ·)]⟩H (93)

=

d∑
ℓ=1

Ex∼q[s
ℓ
p(x)⟨ϕℓ, k(x, ·)⟩H + ⟨ϕℓ,∇xl

k(x, ·)⟩H]

=

d∑
ℓ=1

Ex∼q[s
ℓ
p(x)ϕℓ(x) +∇xℓ

ϕℓ(x)]

= Ex∼q[tr(Apϕ(x))],

where we have used the reproducing property of the kernel and the non-trivial fact that∇xϕ(x) =
⟨ϕ,∇xk(x, ·)⟩H from Zhou 2008.

We will now work towards the equality S(p, q) = max
ϕ∈Hd

{
Eq[tr(Apϕ)]

2 | ||ϕ||Hd ≤ 1
}
. To this end,

we will first establish the following equality ||β||Hd = max
ϕ∈Hd

{⟨ϕ,β⟩ | ||ϕ||Hd ≤ 1}. By Cauchy-

Schwarz we have the following inequality:

|⟨ϕ,β⟩Hd | ≤ ||ϕ||Hd ||β||Hd

≤ ||β||Hd , ∀ϕ s.t. ||ϕ||Hd ≤ 1.

Hence, we have that ⟨ϕ,β⟩Hd ≤ ||β||Hd ∀ϕ such that ||ϕ||Hd ≤ 1. Let us pick ϕ = β
||β||Hd

.

Observe that this function has norm equal to 1. Furthermore, it satisfies the following equality:

⟨ϕ,β⟩Hd =

〈
β

||β||Hd

,β

〉
Hd

=
1

||β||Hd

⟨β,β⟩Hd

= ||β||Hd .

So we have now shown that a maximum is bounded and attained and hence we can state thate
that ||β||Hd = max

ϕ∈Hd
{⟨ϕ,β⟩ | ||ϕ||Hd ≤ 1}. By the previously established equality ⟨ϕ,β⟩ =

Ex∼q[tr(Apϕ(x))] and S(p, q) = ||β||2Hd the result follows.

Also observe that β(·) = Ex∼q[sp(x)k(x, ·) +∇xk(x, ·)] =
∫
x∈X (sp(x)k(x, ·) +∇xk(x, ·))q(x)dx.

We know that (x, x′) 7→ k(x, x′) is in the Stein class of q, i.e. it is smooth and satisfies equation
(11) for any fixed x′:

∫
x∈X
∇x(k(x, x

′)q(x))dx = 0, and
∫
x∈X
∇x(k(x

′, x)q(x))dx = 0.

We now use use the second equality to show that ∇xk(x, ·) is also in the Stein class of q. Take
any arbitrary fixed x′ and then we have:
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∫
x∈X
∇x(q(x)∇x′k(x′, x))dx = ∇x′

∫
x∈X
∇x(q(x)k(x

′, x))dx = 0.

This shows that ∇xk(x, ·) is in the Stein class of q. Let us now show that β is in the Stein class
of q, using that we know that k(x, ·) and ∇xk(x, ·) are in the Stein class of q:

∫
x∈X
∇x(q(x) Ex′∼q[sp(x

′)k(x′, x) +∇x′k(x′, x)])dx =

Ex′∼q

[
sp(x

′)

∫
x∈X
∇x(q(x)k(x

′, x))dx︸ ︷︷ ︸
=0 ∀x′∈X

+

∫
x∈X
∇x(q(x)∇x′k(x′, x))dx︸ ︷︷ ︸

=0 ∀x′∈X

]
= 0

A.2 Proof of Theorem 3.8
We will prove Theorem 3.8, following Liu and D. Wang 2016. To this end, we will first state and
prove a preliminary result in the form of a lemma that the authors also use.

Lemma A.2. Let q and p be two smooth densities (continuously differentiable) and T = T ϵ(x),
T ϵ : X −→ X a bijective transform on X that is indexed by ϵ. Assume T is differentiable with
respect to x and ϵ. Also assume that T−1 is differentiable and its Jacobian is nonsingular in its
domain. Define q[T ] as the density of Z, with Z = T ϵ(X), where X has density q. We denote
the score function of a density p as sp = ∇ log p. Then we have:

∇ϵKL(q[T ]||p) = −Ex∼q[sp(T (x))T∇ϵT (x) + tr(∇xT (x))−1 · ∇ϵ∇xT (x))].

Proof. Let us denote q[T−1] as the density of Z = T−1(X) when X ∼ q, then by the change of
variables formula:

q[T−1](z) = q(T (z)) · | det(∇zT (z))|.

By this change of variables, we also have KL(q[T ]||p) = KL(q||p[T−1]). This is due to the fact
that KL divergence is invariant under parameter transformations:
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KL(q[T ]||p) =
∫
X
log

(
q[T ](x)

p(x)

)
q[T ](x)dx

=

∫
X
log

(
q(T−1(x)) · | det(∇T−1(x))|

p(x)

)
q(T−1(x)) · | det(∇T−1(x))|dx

=

∫
X
log

(
q(y)|det(∇T−1(T (y)))|

p(T (y))

)
q(y)dy, for y = T−1(x),

=

∫
X
log

(
q(y)

p(T (y))|det(∇T (y))|

)
q(y)dy

=

∫
X
log

(
q(y)

p[T−1](y)

)
q(y)dy

= KL(q||p[T−1]),

where we have used a change of variables in the third equality with the introduction of a new
variable y. In the fourth equality we have used a result of the inverse function theorem that the
matrix inverse of the Jacobian for an invertible function is the Jacobian matrix of the inverse
function, i.e. (∇T (x))−1 = ∇T−1(T (x)). We also used the fact that the determinant of a matrix
is equal to the the reciprocal of the determinant of the inverse of that matrix (|A| = 1/|A−1|).

This also yields the following equality:

∇ϵKL(q[T ]||p) = ∇ϵKL(q||p[T−1])

= ∇ϵ

∫
X
log

(
q(x)

p[T−1](x)

)
q(x)dx

=

∫
X
∇ϵ(log q(x)− log p[T−1](x))q(x)dx

=

∫
X
−∇ϵ log p[T−1](x)q(x)dx

= −EX∼q[∇ϵ log p[T−1](X)].

Let us now calculate ∇ϵ log p[T−1](x) :

∇ϵ log p[T−1](x) =
1

p(T (x))|det(∇xT (x))|
∇ϵp[T−1](x)

=
1

p(T (x))|det(∇xT (x))|
(∇ϵp(T (x))|det(∇xT (x))|)

=
1

p(T (x))|det(∇xT (x))|
(|det(∇xT (x))|∇ϵp(T (x)) + p(T (x))∇ϵ|det(∇xT (x))|).

Let us observe now that the derivative with respect to a scalar of a scalar valued function with
vector input is ∂g(u)

∂ϵ = (∇ug(u))
T ∂u

∂ϵ , with u = u(ϵ), for ϵ being a scalar on which u depends.
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Following this fact, we have ∇ϵp(T (x)) = (∇xp(T (x)))T∇ϵT (x). By Jacobi’s formula we also
have the following identity:

∇ϵ det(∇xT (x)) = det(∇xT (x)) tr
(
(∇xT (x))−1∇ϵ∇xT (x)

)
.

Therefore, we have:

∇ϵ |det(∇xT (x))| = det(∇xT (x))

|det(∇xT (x))|
det(∇xT (x)) tr

(
(∇xT (x))−1∇ϵ∇xT (x)

)
= |det(∇xT (x))| tr

(
(∇xT (x))−1∇ϵ∇xT (x)

)
.

Continuing with the derivation of ∇ϵ log p[T−1](x):

∇ϵ log p[T−1](x) =
1

p(T (x))|det(∇xT (x))|
(
|det(∇xT (x))|(∇xp(T (x)))T∇ϵT (x)+

p(T (x))|det(∇xT (x))| tr
(
(∇xT (x))−1∇ϵ∇xT (x)

)
=

1

p(T (x))
(∇xp(T (x)))T∇ϵT (x) + tr

(
(∇xT (x))−1∇ϵ∇xT (x)

)
= (sp(T (x)))

T ∇ϵT (x) + tr
(
(∇xT (x))−1∇ϵ∇xT (x)

)

Now that we have proven this lemma, it is time to prove the theorem:

Proof. In the assumptions of the theorem we have T (x) = x+ ϵϕ(x). This gives that for ϵ = 0:

T (x) = x, and ∇xT (x) = I.

We also have that for T (x) = x+ ϵϕ(x): ∇ϵT (x) = ϕ(x) and ∇ϵ∇xT (x) = ∇xϕ(x).

Hence, using the result of the lemma and evaluating it at ϵ = 0 and filling the terms from above
in yields:

∇ϵKL(q[T ]||p)
∣∣∣
ϵ=0

= −Eq[sp(T (X))T∇ϵT (X) + tr(∇T (X))−1 · ∇ϵ∇T (X))]

= −Eq[sp(X)Tϕ(X) + tr((I)−1 · ∇ϕ(X))]

= −Eq[sp(X)Tϕ(x) + tr(∇ϕ(X))]

= −Eq[tr(sp(X)(ϕ(X))T ) + tr(∇ϕ(X))]

= −Eq[tr((∇ log p(X))(ϕ(X))T ) + tr(∇ϕ(X))]

= −Eq[tr((∇ log p(X))(ϕ(X))T +∇ϕ(X))]

= −Eq[tr(Apϕ(X))],

with Apϕ(x) = (∇x log p(x))(ϕ(x))
T +∇ϕ(x).
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A.3 Proof of Theorem 6.6
We will follow Liu 2017 for this proof and slightly elaborate on it.

Proof. Throughout this proof, we let Sp denote the operator ϕ 7→ Spϕ := sTp ϕ+∇·ϕ, for vector
valued functions ϕ = [ϕ1, . . . , ϕd]

T . Note that this is equal to tr(Apϕ), for the vector valued
ϕ = [ϕ1, . . . , ϕd]

T , where Ap is defined in Definition 3.1.
1. If Stein’s identity, for the density p, is satisfied for all ϕ ∈ Hd, then ϕ∗

νp,p is the zero map and
νp is a fixed point of the pushforward measure Φp.

2. Let us use as notation µl = µ∞
l in what follows. We can rewrite the following term:

KL(µl+1||νp)−KL(µl||νp) = KL((T µl,p)#µl||νp)−KL(µl||νp)
= KL(µl||(T−1

µl,p
)#νp)−KL(µl||νp), by lemma A.2 in Liu 2017,

= −Ex∼µl
[log p(T µl,p(x)) + log det(∇T µl,p(x))− log p(x)]

= Ex∼µl
[log p(x)− log p(T µl,p(x))− log det(∇T µl,p(x))], (94)

where in the last equality we have used that if the measure µ has density q, then the density
of q′ of the measure µ′ = Φ(µ) (Φp : µ 7→ (T µ,p)#µ) is given by z 7→ q′(z) = q(T−1

µ,p(z)) ·
|det(∇T−1

µ,p(z))|. This way we can also get the density of (T−1
µl,p

)#νp in an analogous way,
as every inverse of T should become simply T and vice versa. Let us remind ourselves that
T µl,p : x 7→ Tµl,p(x) = x + ϵϕ∗

µl,p
(x) and let us define xs = x + ϵsϕ∗

µl,p
, ∀s ∈ [0, 1]. We can

bound the term log p(x)− log p(T µl,p(x)) as follows,

log p(x)− log p(T µl,p(x)) =

∫ 1

0

∇s log p(xs)ds, by the Fundamental Theorem of Calculus,

= −
∫ 1

0

(
∇x log p(x)

T
∣∣∣
x=xs

)
(ϵϕ∗

µl,p
(x))ds, by the chain rule,

= −ϵ∇x log p(x)
Tϕ∗

µl,p
(x)

−
∫ 1

0

(∇x log p(x)
T |x=xs

−∇x log p(x))
T (ϵϕ∗

µl,p
(x))ds, adding zero,

≤ −ϵ∇x log p(x)
Tϕ∗

µl,p
(x) + ϵ2||∇ log p||Lip · ||ϕ∗

µl,p
(x)||22

∫ 1

0

sds, by CS,

= −ϵ∇x log p(x)
Tϕ∗

µl,p
(x) +

ϵ2

2
||∇ log p||Lip · ||ϕ∗

µl,p
(x)||22. (95)

In the first equality we have used the fundamental theorem of calculus (FTC) which obvi-
ously holds if p is differentiable, but also if p is only assumed to be weakly differentiable.
By Theorem 3.60 in Hunter 2014 the fundamental theorem of calculus also holds for these
type of functions. In the fourth line we have used the Cauchy Schwarz (CS) inequality as
|∇x log p(xs)−∇x log p(x)|Tϕ∗

µl,p
(x) ≤ ||∇x log p(xs)−∇x log p(x)||2 · ||ϕ∗

µl,p
(x)||2. Furthermore,

we have used that ||xs − x|| = ϵs||ϕ∗
µl,p

(x)|| to get:
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|∇x log p(xs)−∇x log p(x)|Tϕ∗
µl,p

(x) ≤ sup
x ̸=xs

{
||∇x log p(xs)−∇x log p(x)||2

||xs − x||2

}
||xs−x||2||ϕ∗

µl,p
(x)||2.

(96)

In fact, we have used the 2-Lip norm, defined as ||f ||Lip := sup
x ̸=y

{
||f(x)−f(y)||2

||x−y||2

}
for f : Rn → Rm.

Let us now present a useful lemma to bound log |det(∇T µl,p(x))|:

Lemma A.3 (Lemma A.1 from Liu 2017). Let B be a square matrix and denote by ||B||F =√∑
ij b

2
ij its Frobenius norm. Let ϵ be a positive number satisfying 0 ≤ ϵ < 1

ρ(B+BT )
, with ρ(·)

denoting the spectral radius of a matrix. Then it is the case that I+ϵ(B+BT ) is positive definite
and

log |det(I + ϵB)| ≥ ϵ tr(B)− ϵ2 ||B||2F
1− ϵρ(B +BT )

.

Using an even smaller ϵ, i.e. 0 ≤ ϵ ≤ 1
2ρ(B+BT )

we get:

log |det(I + ϵB)| ≥ ϵ tr(B)− 2ϵ2||B||2F .

Proof. See Liu 2017 for a proof.

In this lemma, take B = ∇ϕ∗
µl,p

and the second bound in the lemma for the smallest ϵ, i.e.
ϵ ≤ 1

2ρ(B+BT )
. This yields:

log |det(∇T µl,p(x)︸ ︷︷ ︸
I+ϵB

)| ≥ ϵ tr(∇ϕ∗
µl,p

(x))− 2ϵ2||∇ϕ∗
µl,p

(x)||2F

= ϵ∇ · ϕ∗
µl,p

(x)− 2ϵ2||∇ϕ∗
µl,p

(x)||2F . (97)

Combing the bounds in equations (95),(97) to bound (94) yields:

KL(µl+1)−KL(µl||νp) ≤ −ϵEµl
[Spϕ∗

µl,p
] + ∆

= ϵD(µl||νp)2 +∆, (98)

with ∆ = ϵ2 Ex∼µl
[ 12 ||∇ log p||Lip · ||ϕ∗

µl,p
(x)||22 + 2||∇ϕ∗

µl,p
(x)||2F ]. We can try to bound the

terms ||ϕ∗
µl,p

(x)||2 and ||∇ϕ∗
µl,p

(x)||F . We can take advantage of the fact that we are working
in a RKHS and hence the reproducing property of the RKHS can be exploited. Let us write
ϕ∗

µl,p
= [ϕ1, . . . , ϕd]

T for ϕi ∈ H ∀i = 1, . . . , d, with ϕ∗
µl,p
∈ Hd = H× · · · × H︸ ︷︷ ︸

d times

. We then have

that

ϕi(x) = ⟨ϕi(·), k(x, ·)⟩H0
, ∂xj

ϕi(x) = ⟨ϕi(·), ∂xj
k(x, ·)⟩H0

∀i, j = 1, . . . , d.
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We also use that ||ϕ∗
µl,p
||2Hd =

∑d
i=1 ||ϕi||2H = D(µl||νp)2 by a result from Theorem 3.7.

This gives the following chain of (in)equalities:

||ϕ∗
µl,p

(x)||22 =

d∑
i=1

ϕi(x)
2

=

d∑
i=1

(⟨k(x, ·), ϕi(·)⟩H)2, reproducing property,

≤
∑
i

||k(x, ·)||2H · ||ϕi||2H, Cauchy Schwarz inequality,

= k(x, x) · ||ϕ∗
µl,p
||2Hd , reproducing property,

= k(x, x)D(µl||νp)2.

Let us also give a bound for ||∇ϕ∗
µl,p

(x)||F :

||ϕ∗
µl,p

(x)||2F =

d∑
i,j=1

∂xj
ϕi(x)

2

=

d∑
i,j=1

(⟨∂xj
k(x, ·), ϕi(·)⟩H)2, reproducing property,

≤
d∑

i,j=1

||∂xj
k(x, ·)||2H · ||ϕi||2H, Cauchy Schwarz inequality,

=

d∑
i,j=1

∂xj
∂x′

j
k(x, x′)|x=x′ · ||ϕi||2H

=

d∑
i=1

||ϕi||2H
d∑

j=1

∂xj
∂x′

j
k(x, x′)|x′=x

= ∇xx′k(x, x) · ||ϕ∗
µl,p
||2Hd

= ∇xx′k(x, x)D(µl||νp)2. (99)

In the fourth line we have used that ||∂xjk(x, ·)||2H = ⟨∂xjk(x, ·), ∂xjk(x, ·)⟩H = ∂x′
j
∂xjk(x, x

′)|x′=x.

Now that we have two bounds available for ||ϕ∗
µl,p

(x)||2 and ||∇ϕ∗
µl,p

(x)||F . We can now try to
bound ∆:
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∆ = ϵ2 Ex∼µl

[
1

2
||∇ log p||Lip · ||ϕ∗

µl,p
(x)||22 + 2||∇ϕ∗

µl,p
(x)||2F

]
≤ ϵ2 Ex∼µl

[
1

2
||∇ log p||Lip · k(x, x)D(µl||νp)2 + 2∇xx′k(x, x)D(µl||νp)2

]
= ϵ2D(µl||νp)2 Ex∼µl

[
1

2
||∇ log p||Lipk(x, x) + 2∇xx′k(x, x)

]
= ϵ2D(µl||νp)2R.

Combining this with equation (98) yields:

KL(µl+1||νp)−KL(µl||νp) ≤ −ϵ(1− ϵR)D(µl||νp)2.

A.4 Proof of Proposition 5.28
Proof. We follow Korba, Salim, et al. 2020.

Let us evaluate the time derivative of the KL divergence:

d

dt
KL(µt||π) =

d

dt

∫
log
(µt

π

)
dµt

=
d

dt

∫
log

(
ρt
p

)
ρtdx

=

∫
d

dt
log

(
ρt
p

)
ρtdx

=

∫ (
log

(
ρt
p

)
∂

∂t
ρt + ρt

∂

∂t
log

(
ρt
p

))
dx

=

∫ (
log

(
ρt
p

)
∂

∂t
ρt +

∂

∂t
ρt

)
dx

=

∫
log

(
ρt
p

)
∂

∂t
ρtdx+

d

dt

∫
ρtdx︸ ︷︷ ︸
=1

=

∫
log

(
ρt
p

)
∂

∂t
ρtdx.

We now remind ourselves that (µt)t≥0 satisfies a continuity equation:

∂

∂
µt = −∇ · (µtvt).

Furthermore, using the fact that µt admits the density ρt, we can use ∂
∂tρt = −∇ · (ρtvt). For a

more formal treatment in terms of measures, see e.g. Chapter 10 of Ambrosio et al. 2008.

78



This gives:

d

dt
KL(µt||π) =

∫
log

(
ρt
p

)
∂

∂t
ρtdx

= −
∫ (

log

(
ρt
p

)
∇ · (ρtvt)

)
dx

=

∫
(ρtvt) · ∇ log

(
ρt
p

)
dx−

∮
||x||→∞

log

(
ρt
p

)
(ρtvt) · ndS(x)

=

∫
(ρtvt) · ∇ log

(
ρt
p

)
dx

= ⟨vt,∇ log

(
ρt
p

)
⟩L2(µt),

where in the third line we have used the divergence theorem (or an integration by parts). This
gives the desired result.

B Figures

B.1 Airline passenger data figure

Figure 7: Data for the number of airline passengers, obtained every month in the displayed years.

C Calculations

C.1 Calculation of MAP estimation
We have that θ ∼ N (o, 1

λI) and that Y |X ∼ N (fθ(x), σ
2
θI). This gives the following formulas

for their densities:
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p(θ) =
1

(2π)
dim(θ)

2

(
1
λ

) dim(θ)
2

exp

(
−λ
2
θT θ

)
,

p(y|x, θ) = 1

(2π)
py
2 (σ2

θ(x))
py
2

exp

(
− 1

2σ2
θ(x)
||y − fθ(x)||22

)
.

We also had D = {(xi, yi)}ni=1 where we assume the xi are non-stochastic and the data is
independent and identically distributed according to Y |X ∼ N (fθ(x), σ

2
θI). Hence, p(D|θ) =

p((x1, y1), . . . , (xn, yn)|θ) =
∏n

i=1 p(yi|xi, θ). Let us now try to find the MAP estimate for θ:

θ̂MAP = argmax
θ

{p(θ|D)}

= argmax
θ

{log p(θ|D)}

= argmax
θ

{log p(θ) + log p(D|θ)− log p(D)}

= argmax
θ

{log p(θ) + log p(D|θ)}

= argmax
θ

{
−λ
2
θT θ − dim(θ)

2
log 2π − dim(θ)

2
log

1

λ
+ log p(D|θ)

}
= argmax

θ

{
−λ
2
θT θ + log p(D|θ)

}
, as dim(θ) is fixed,

= argmax
θ

{
−λ
2
θT θ −

n∑
i=1

(
1

2σ2
θ(xi)

||yi − fθ(xi)||22 +
py
2

log σ2
θ(xi) +

py
2

log 2π

)}

= argmax
θ

{
−λ
2
||θ||22 −

1

2

n∑
i=1

(
1

σ2
θ(xi)

||yi − fθ(xi)||22 + py log σ
2
θ(xi)

)}

= argmin
θ

{
λ

2
||θ||22 +

1

2

n∑
i=1

(
1

σ2
θ(xi)

||yi − fθ(xi)||22 + py log σ
2
θ(xi)

)}
.

The term in the minimization is exactly equal to the loss function in equation (8).

C.2 Showing the partial integration for the kernelized SVGD wasser-
stein gradient

We work out the partial integration from equation (72), which was not worked out in either
Korba, Salim, et al. 2020 or Chewi et al. 2020. Denoting the density of µt as ρt and the density
of π as p. Furthermore, we assume that lim||x||→∞ k(x, ·)ρt(x) is the zero function, denoted simply
as 0. Remember that Kµt

∇W2
F(µt) : Rd → Rd. We have the following chain of equalities:
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Kµt
∇W2

F(µt) =

∫
∇ log

(
ρt
p

)
(x)k(·, x)dµt(x)

=

∫
(∇ log(ρt(x)))ρt(x)k(·, x)dx−

∫
∇ log(p(x))k(x, ·)dµt(x)

=

∫
(∇ρt(x))k(x, ·)dx−

∫
∇ log(p(x))k(x, ·)dµt(x)

= ρt(x)k(x, ·)
∣∣∣
||x||→∞

−
∫
ρt(x)∇xk(x, ·)dx−

∫
∇ log(p(x))k(x, ·)dµt(x)

= 0−
∫
∇xk(x, ·)dµt(x)−

∫
∇ log(p(x))k(x, ·)dµt(x)

= −
∫

(∇ log(p(x))k(x, ·) +∇xk(x, ·)) dµt(x).

In the fourth line we have used an integration by parts. This gives the result.

D Complementary information

D.1 Kernelized Stein discrepancy
In this section we will state Definition 3.1 and show Proposition 3.3 from Liu, Lee, et al. 2016 to
prove that KSD is such that under suitable positive definiteness conditions we have S(q, p) ≥ 0
and S(q, p) = 0 if and only if q = p.

We will work with Definition A.1 and give another definition needed to state the result in Propo-
sition D.2.

Definition D.1 (From Liu, Lee, et al. 2016). A kernel (x, x′) 7→ k(x, x′) is integrally strictly
positive definite, if for any function f which satisfies 0 ≤ ||f ||22 <∞,

∫
X
f(x)k(x, x′)f(x′)dxdx′ > 0.

Proposition D.2 (From Liu, Lee, et al. 2016). Define f as x 7→ f q,p(x) = q(x)(sp(x) −
sq(x)). Assume the kernel function k is integrally strictly positive definite and q, p are continuous
densities with ||f q,p|| <∞. Then we have that S(q, p) ≥ 0 and S(q, p) = 0 if and only if q = p.

Proof. Using the definition of KSD: S(q, p) = Ex,x′∼q[δp,q(x)
T k(x, x′)δp,q(x

′)], we have by the
definition of the kernel function k being integrally strictly positive definite that for q ̸= p:

S(q, p) = Ex,x′∼q[δp,q(x)
T k(x, x′)δp,q(x

′)]

=

∫
X
(q(x)(sp(x)− sq(x)))

T k(x, x′)q(x′)(sp(x
′)− sq(x

′))dxdx′

> 0.

If q = p, then S(q, p) = 0, as δp,q = 0.
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D.2 Kernelized Stein discrepancy: different definitions
Let us start with a specific definition of a Stein operator.

Definition D.3 (Definition from Gorham and Mackey 2017). Consider some generic probability
measure µ and a Stein operator T mapping functions ϕ : Rd → Rd from a domain G to real-valued
functions T ϕ such that the following property holds:

EX∼µ[(T ϕ)(X)] = 0, for all ϕ ∈ G.

For any such Stein operator and Stein set G, define the Stein discrepancy as:

S(µ, T ,G) := sup
ϕ∈G
|Eµ[(T ϕ)(X)]|.

Remark D.4. We can connect this definition with a previous result in Lemma 3.4, as the Stein
operator T resembles the ‘earlier’ definition of the Stein operator Ap : ϕ 7→ spϕ

T + ∇ϕ, with
ϕ : Rd → Rd. However, the Stein operator T is a scalar-valued function. Let us use T as follows,
ϕ 7→ T ϕ = sTp ϕ+∇ ·ϕ. In this way it resembles Ap, but now yielding a scalar-valued function.
In this way we have made a Stein operator that maps vector-valued functions to real-valued
functions T ϕ. Furthermore, this Stein set G can be identified with the Stein class of the density
of p.

Definition D.5 (Definition from Gorham and Mackey 2017). The kernel Stein set Gk,||·|| is the
set of vector-valued functions ϕ = [ϕ1, . . . , ϕd]

T with ϕ : Rd → Rd such that each component
function ϕj belongs to the RKHS H with associated reproducing kernel k : Rd × Rd → R and
induced norm || · ||H. The kernel Stein set is given as:

Gk,||·|| = {ϕ = [ϕ1, · · · , ϕd]T | ||v||∗ ≤ 1 for vj = ||ϕj ||H},

with || · ||∗ denoting the dual norm, associated to the norm || · ||. This dual norm is defined as
||a||∗ := sup

b∈Rd,||b||=1

⟨a, b⟩ for vectors a ∈ Rd.

Remark D.6. The dual with respect to the usual Euclidean norm on Rd is again the Euclidean
norm. Let us show this, by considering the usual Euclidean inner product ⟨·, ·⟩ on Rd and the
corresponding norm || · ||2. Take any a, b ∈ Rd with ||b||2 = 1. By the Cauchy-Schwarz inequality,
|⟨a, b⟩| ≤ ||a||2||b||2 = ||a||2, so ||a||∗2 ≤ ||a||2 ∀a ∈ Rd. Let us now show that this upper bound
is achieved. Take b = a/||a||2 (and observe it has a norm of one), then ⟨a, b⟩ = ⟨a, a/||a||2⟩ =
||a||22
||a||2 = ||a||2. Hence, an upper bound is achieved and thus the supremum is equal to it. For the
Euclidean norm we now have that the dual of this norm is equal to itself. Then, ||v||2 ≤ 1 for
vj = ||ϕj ||H is equal to

∑d
j=1 ||ϕj ||2H = ||ϕ||2Hd ≤ 1. In turn, this shows that the set Gk,||·||2 can

be characterised as:

Gk,||·||2 = {ϕ = [ϕ1, · · · , ϕd]T | ϕ ∈ Hd, ||ϕ||Hd ≤ 1}.

From now on we will work with the specific Stein operator ϕ 7→ Tpϕ = sTp ϕ+∇·ϕ for functions
ϕ : Rd → Rd. Together with the kernel Stein set Gk,||·|| this forms the kernel Stein discrepancy
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(KSD), denoted S(µ, Tp,Gk,||·||). If || · || = || · ||2, then it corresponds to the same definition of
KSD as in Definition 3.6, except for a square root.

In fact, this definition of S(µ, Tp,Gk,||·||2) is the same as the definition of D(µ||νp), where p is the
density of some target measure νp. Here,

D(µ||νp) = max{Eµ[tr(Apϕ)] | ϕ ∈ Hd, ||ϕ||Hd ≤ 1} = S(µ, Tp,Gk,||·||2).

D.3 First variation
We defined

x 7→ δF(ρ)
δρ

(x) := −∇ · Fp(x, ρ(x),∇ρ(x)) + Fz(x, ρ(x),∇ρ(x))

as the first variation of the functional F , with the underlying assumption that our F can be
written as follows:

F(ρ) =
∫
Rd

F (x, ρ(x),∇ρ(x))dx,

with a smooth function F = F (x, z, p) : Rd × [0,∞) × Rd → R. Let us motivate this definition
of the first variation. Consider the following:

d

dt
F(ρt) =

∫
(Fz(x, ρt(x),∇ρt(x))∂tρt(x) + Fp(x, ρt,∇ρt(x)) · ∇(∂tρt)(x)) dx

=

∫
(Fz(x, ρt(x),∇ρt(x))−∇ · Fp(x, ρt,∇ρt(x))) ∂tρt(x)dx

=

∫
δF(ρ)
δρ

(x)∂tρtdx.

So we can identify the integrand term between brackets as the first variation, where, loosely
speaking, the first variation δF(ρ)

δρ can be seen as representing the derivative of F in the following
sense:

F ′(ρ)(h) =

∫
δF(ρ)
δρ

(x)h(x)dx,

for any (test) function h and F ′(ρ) informally denoting a derivative of F .
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