## Deep Generative Design



Engineer




Consultants




## Design Stage






## The rational mind is

 a faithful servantAlbent Einstein



## How can deep learning be used to assist in creating performanceinformed floor plans?

## How can a collaborative,

 performance aware deep learning system overcome data scarcity and the creativity gap?

What are the heuristics of floorplan design?


## What can we extract from these plans?



## Representing the graphs



|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

## Graph extraction



## Assigning composition score


score $_{\text {graph }}=\operatorname{mean}\left(\operatorname{clip}\left(\left(\operatorname{graph}_{\text {reference }}-\operatorname{graph}_{\text {design }}\right)^{2}, 0,1\right)\right)$

## Adding areas



|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | 1 | 0 | 0 | 0 |
|  | 1 | $\mathbf{1}$ | 1 | 1 | 0 |
|  | 0 | 1 | $\mathbf{1}$ | 0 | 1 |
|  | 0 | 1 | 0 | $\mathbf{1}$ | 0 |
| 0 | 0 | 1 | 0 | $\mathbf{1}$ |  |

## Adding areas



|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{5}$ | 1 | 0 | 0 | 0 |  |
|  | 1 | $\mathbf{1 2}$ | 1 | 1 | 0 |
|  | 0 | 1 | $\mathbf{2}$ | 0 | 1 |
| 0 | 1 | 0 | $\mathbf{3 0}$ | 0 |  |
| 0 | 0 | 1 | 0 | $\mathbf{2 0}$ |  |

## Assigning area score



Steepness $=4$
Skew = 4

$$
\text { score }_{\text {area }}=\frac{2}{e^{\text {steepness } * \text { error }}+e^{- \text {skew } * \text { steepness } * e r r o r}}
$$

## Controllability




0

0.43

$$
\text { score }_{\text {similarity }}=\frac{\text { Drawing }_{\text {architect }} \cap \text { Drawing }_{\text {machine }}}{\text { Drawing }_{\text {architect }}}
$$



1

## Which floorplan is better?



## They will be differentiated by daylight satisfaction



## A 3D model is needed



## Check daylight for Breeam compliance

$$
\text { score }_{\text {daylight }}=\text { clip }\left(\frac{\text { sum }}{25}\right.
$$

We can now assign scores to these variants


How can the machine create a symbolic floorplan?


## Using reinforcement learning

Mellor, et al (2019) unsupervised doodling and Painting with improved spiral


## Why?



Data scarcity


Controllability

$$
x^{2} \frac{d y}{d x}+y^{2}=x y
$$

Differentiability

## One agent per space



They can claim space by sequentially making moves


Which move should be made?


Have a look at these samples


Represent score through colour


What do the good samples have in common?


Which will be best?


Which will be best?


## Answering this question requires three steps



## Observation



## Interpretation



## Prediction



## Observation: Auto Encoder



## Observation: Auto Encoder



## Interpretability of latent space



AE


VAE

## Observation: VAE vs VQ-VAE



Mean error $\mathbf{\pm 2 0 \%}$



Mean error $\pm 10 \%$

## Interpretation: LSTM vs Transformer



## Interpretation: LSTM vs Transformer



## Interpretation: LSTM vs Transformer



## Interpretation: LSTM vs Transformer (with VAE)



## Prediction model: VQ-VAE + Transformer



## Prediction: VQ-VAE + Transformer



What do the good samples have in common?


# If we want to improve this sample, what change should be made A,B or C? 



## Original

If we want to improve this sample, what change should be made A,B or C?


Original
A
B
C

If we want to improve this sample, what change should be made A,B or C?


Original A
(B)

C

## Action: Proximal Policy Optimization



## Advantage



Advantage $=$ score $_{t+1}-$ score $_{t}$

## Reward



## Adding PPO



## Computing advantage



## Training transformer



Increasing probability of advantageous actions


Increasing probability of advantageous actions


## Sample action stochastically

Increasing probability of advantageous actions


Increasing probability of advantageous actions


Increasing probability of advantageous actions


## Process visualization



## How does this work?



We again assign scores.
?

## Attention.



## Attention is not score



## Attention map



Attention sample 1


Attention sample 45

## Alterations

## What were we doing again?!?!



Application to samples with multiple channels


## Constructing floorplans from samples





## Concatenate



## Softmax



## Prioritize large coherent areas



## Optional mask



## Assigning a suitable façade.



Kitchen


Bath


Living

## Let us design a small building.



|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 |  |  | 1 | 1 | 1 |  |
|  |  | 12 | 1 |  |  | 1 |
|  |  | 1 | 28 | 1 |  |  |
| 1 |  | 1 | 28 |  |  |  |
| 1 |  |  |  | 2 |  |  |
| 1 | 1 |  |  |  | 10 |  |



## What can it do without user input?



## Generating building geometries.



Generating building geometries.


Floorspace in yellow.

Roofs in white.

## Generate solutions for daylight.



Insufficient lighting


Trade-off.


## Trade-off.



## Generate five floorplans.



This one is nice.






## Why stop there?



## Thanks, Diederik!



Future work.


Future work.


Thank you!


