Deep Generative Design

Deep reinforcement learning for performance-based design assistance

by: Jair Lemmens 4645448

Consultants

The rational mind is a faithful servant

Albert Einstein

We can learn from example

How can deep learning be used to assist in creating performanceinformed floor plans? How can a collaborative, performance aware deep learning system overcome data scarcity and the creativity gap?

What are the heuristics of floorplan design?

What can we extract from these plans?

Representing the graphs

1	1	0	0	0
1	1	1	1	0
0	1	1	0	1
0	1	0	1	0
0	0	1	0	1

Graph extraction

Assigning composition score

 $score_{graph} = mean(clip((graph_{reference} - graph_{design})^2, 0, 1))$

Adding areas

1	1	0	0	0
1	1	1	1	0
0	1	1	0	1
0	1	0	1	0
0	0	1	0	1

Adding areas

5	1	0	0	0
1	12	1	1	0
0	1	2	0	1
0	1	0	30	0
0	0	1	0	20

Assigning area score

Which floorplan is better?

They will be differentiated by daylight satisfaction

A 3D model is needed

Check daylight for Breeam compliance

We can now assign scores to these variants

How can the machine create a symbolic floorplan?

Using reinforcement learning

Mellor, et al (2019) unsupervised doodling and Painting with improved spiral $^{\rm 32}$

Baker, et al (2019) Emergent tool use from multi-agent autocurricula

Why?

Data scarcity

Controllability

Differentiability

One agent per space

They can claim space by sequentially making moves

Which move should be made?

Have a look at these samples

Represent score through colour

Score

What do the good samples have in common?

Score

Which will be best?

Which will be best?

Answering this question requires three steps

Observation

Interpretation

Prediction

Observation: Auto Encoder

Observation: Auto Encoder

Interpretability of latent space

Irhum Shafkat (2018), Intuitively understanding variational autoencoders

Interpretation: LSTM vs Transformer

LSTM

Interpretation: LSTM vs Transformer

F Masked self attention >0.2 0.2 > 0.7 0.2 0.7 ⇒0.5 0.5 0.2 0.7 →0.3

0.5

0.2

0.7

0.3

LSTM

Transformer

Interpretation: LSTM vs Transformer

LSTM

Interpretation: LSTM vs Transformer (with VAE)

Mean error ±30%

Mean error ±20%

Prediction model: VQ-VAE + Transformer

Prediction: VQ-VAE + Transformer

What do the good samples have in common?

Score

If we want to improve this sample, what change should be made A,B or C?

If we want to improve this sample, what change should be made A,B or C?

Original A B C

If we want to improve this sample, what change should be made A,B or C?

Original A

С

Action: Proximal Policy Optimization

Advantage

Advantage = $score_{t+1} - score_t$

Reward

Advantage ₁ =0.15-0.1=0.05

Advantage 2 = 0.3-0.15=0.15

Adding PPO

Computing advantage

Training transformer

Increasing probability of advantageous actions

Action current policy

Increasing probability of advantageous actions

Increasing probability of advantageous actions

One sample is disadvantageous
Increasing probability of advantageous actions

One sample is advantageous

Increasing probability of advantageous actions

Process visualization

How does this work?

We again assign scores.

Attention.

Average attention

Attention is not score

Average attention

Scores

Attention map

Attention sample 1

Attention sample 45

Alterations

What were we doing again?!?!

Application to samples with multiple channels

Constructing floorplans from samples

Concatenate

Softmax

Prioritize large coherent areas

Optional mask

Assigning a suitable façade.

Let us design a small building.

10			1	1	1
	12	1			1
	1	28	1		
1		1	28		
1				2	
1	1				10

What can it do without user input?

Generating building geometries.

Generating building geometries.

Floorspace in yellow.

Roofs in white.

Generate solutions for daylight.

Insufficient lighting

Trade-off.

Trade-off.

Generate five floorplans.

10			1	1	1
	12	1			1
	1	28	1		
1		1	28		
1				2	
1	1				10

This one is nice.

10			1	1	1
	12	1			1
	1	28	1		
1		1	28		
1				2	
1	1				10

Why stop there?

Thanks, Diederik!

Future work.

Future work.

Thank you!

