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ABSTRACT 

 
Under in-plane compressive load conditions, the growth of a delamination initially 

induced by an impact can be followed by a fast growth after a threshold level, which 
leads to a catastrophic failure in composite structures. To avoid reaching this critical 
level, it is essential to uncover the delamination size and growth pattern in real time. 
Ultrasonic Guided Waves (UGW) have a strong capability to interrogate and monitor 
the structure in real-time and thus track the growth of damage, which may occur during 
the flight cycles. Although various types of damage affect the monitored UGW signals, 
it is challenging to determine from the UGW signals what types of damage and at what 
rate of growth are occurring within the structure. UGW signals can be acquired at 
defined intervals and then analysed to possibly detect different types of damages, such 
as delamination, and to quantify the rate of damage growth over fatigue cycles. 
However, correlating the UGW-based Damage Indicators (DIs) with the specific type 
of damage, such as delamination, and damage growth is a challenging task as the 
relation between these DIs and the actual damage state is very complex. Therefore, in 
this study, a supervised Deep Neural Network-based (DNN) prediction model is 
proposed aiming to diagnose the delamination size of the composite structure by 
correlating the UGW-based DIs with the quantified time-varying delamination size. 
UGW data is collected through a network of permanently installed piezoelectric 
transducers (PZTs). The delamination size is obtained through ultrasonic C-Scan 
technique at defined cycles. DIs are extracted in time, frequency, and time-frequency 
domains and used as the input for the DNN-based regression model. Each sensor- 
actuator path is considered as an independent set of indicators, which are separated for 
training, validation, and testing purposes. The effect of the different paths on the 
delamination size prediction is presented along with the model performance on 
measured delamination growth in woven type composite sample. 
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INTRODUCTION 
   

In aerospace industry, composite materials have initiated major transformation in 

terms of bringing lighter and more fuel-efficient designs due to composite’s high 

stiffness-to-weight ratio and fatigue resistance. The advantages of composite materials 

results in less environmental impact and less operational cost. Despite their numerous 

advantages, composites are anisotropic materials with complicated damage 

accumulation processes. Besides that, their vulnerability to out-of-plane loading 

conditions, such as impact, can cause a damage initiation, which may evolve 

stochastically over the lifetime of the aircraft due to fatigue. Therefore, to maintain the 

safe operation, evaluating the integrity of a composite structure at the time that aircraft 

in operation is crucial.  

In the lifetime of composite structures, various damage mechanisms may occur 

depending on the operational and environmental conditions. Delamination is one of 

damage types, which has a critical role, especially in aircraft components that are 

subjected to complex loading conditions. Delamination initiation and propagation rate 

are affected by various factors such as layup orientation and loading conditions. 

Compressive loading conditions can lead to delamination, which grows very quickly 

after reaching a threshold level, which in turn may cause a failure [1, 2]. To diagnose 

and predict the delamination growth in composite structures are important tasks to allow 

aircraft to continue its safe operations. Considering condition-based maintenance 

strategy, UGW based structural health monitoring (SHM) can be applied to examine the 

structure and address the structural damage in the sense of diagnosis and prognosis [3]. 

Owing to their characteristic scattering and mode conversion phenomena originated at 

structural discontinuity produced by the damage, damage related information can be 

extracted from UGW signals [4, 5]. DIs can be obtained from GW signals through signal 

processing techniques in time, frequency, and time-frequency domain. Yet, obtained 

DIs may not reflect the actual damage size as UGWs interact with damage in a very 

complex way.  

In this study, to predict the delamination growth in woven type carbon fiber 

reinforced polymer (CFRP), a regression model has been developed by using DNN. In 

the experimental phase, delamination is first initiated by an impact and then it is 

subjected to compressive fatigue loading which is explained in the section of 

compression-compression fatigue experiment. Ultrasonic C-scans have been used to 

label the delamination length at discrete data acquisition steps and related steps are 

described at delamination quantification with ultrasonic c-scan section.  DNN model is 

trained by using UGW based DIs as input where the target set contains the measured 

delamination length. DI extraction process is explained in ultrasonic guided wave based 

damage indicators section. The prediction model is tested by using the sensor-actuator 

paths, which are not involved in training phase, and the accuracy and sensitivity of these 

paths are tested on model. The section of regression model with deep neural network 

contains the DNN architecture hyper-parameters and input matrix properties. The 

results show that different paths show different sensitivities to the delamination growth 

and the related accuracy values are presented with the delamination length prediction 

results. 

 

 

 



 

COMPRESSION-COMPRESSION FATIGUE EXPERIMENT 
   

Composite structures have high stiffness-weight ratio which results in high fatigue 

resistance. A damage induced by out-of-plane load can reduce the strength of the 

structure drastically and lead a failure unless it is replaced or repaired. Therefore, in this 

study, to investigate the delamination growth under compressive loading condition, 

compression after impact (CAI) experiment has designed according the ASTM D7136 

[6] for the CFRP samples obtained from one main plate-like structure. The sample 

dimension is 100 mm wide, 150 mm long with 5.5 mm thickness which is in accordance 

with the standard. On each sample, a PZT network was glued on its surface which 

enables to collect UGWs signals throughout the fatigue cycles. In Figure 1, the 

experimental setup is presented with the anti-buckling fixture and the PZT network 

installed. The UGW signal acquisition has been done for healthy state, impacted state, 

and cycle 0, which refers to impacted samples in clamped condition and from cycle 1 

to cycle 70000 at each 10000 cycle steps. The fatigue force is applied with 5Hz 

frequency and the ratio of maximum applied force to minimum force is 10. Fatigue 

loading continued until the final failure occurred. At the final failure stage, no data 

acquisition could be applied because PZTs were debonded and broken. 

 

 

DELAMINATION QUANTIFICATION WITH ULTRASONIC C-SCAN 
   

To label the damage size of the sample under fatigue loading, ultrasonic C-scan 

measurements have been carried out at the same time steps as UGW acquisition. A 

pulse-echo ultrasonic transducer has been used which has 8 MHz centre frequency with 

128 x 128 transducer elements and with 30 mm x 30 mm probe size. In Figure 2, 

ultrasonic C-scan measurement results are introduced. The measured length of 

delamination is the maximum length in the growth direction, which is perpendicular to 

the loading direction. The measured length information is organised as the target set in 

the prediction model.   

 

Figure 1. Photos of (a) fatigue testing setup, (b) anti-buckling fixture and (c) 

composite sample with PZTs with an indication of the path between PZT 3–PZT 4. 

  



 

 

ULTRASONIC GUIDEDWAVES BASED DAMAGE INDICATORS 
   

UGW acquisition has been performed at defined intervals. GW excitation signals 

are 2 cycle tone-burst signals in the frequency range of 100 kHz, 120 kHz, 140 kHz, 

160 kHz and 180 kHz. A network of PZTs is already attached on the surface for exciting 

and sensing the UGWs within the structure, which is the active approach where one 

PZT acts as an actuator and the rest of the network as sensors. The thickness of the PZT 

transducer is 0.5 mm and the diameter is selected as 8 mm. The signal is collected with 

the sampling frequency at 5MHz in the pitch-catch mode. GW based DI extraction 

process have been conducted by following multiple signal processing steps. At the first 

stage the crosstalk in the signal is removed. A denoising procedure is applied to clear 

the noise effects in the signal which contains a band-pass filtering and a discrete wavelet 

filter (DWF). Band-pass filter range is determined considering the excitation signal’s 

frequency range. The DWF is applied by verifying and selecting the best signal-to-noise 

ratio for different wavelets which are namely Haar, Daubechies, Symlets, Biorthogonal, 

Morlet, Coiflets wavelets. In Figure 3, denoised GW signals at different frequency and 

different cycles are presented both in time and frequency domain.  

 After the denoising step, DIs are determined using cross correlation (CC), 

envelope energy, power spectral density (PSD) and signal average power (SAP). CC is 

applied to time domain signals, considering the GW signal acquired from the impacted 

state under clamped-loaded condition as the reference state, and later growing cycle 

signals are compared with the reference signal, where the change in maxima of CC is 

determined as the CC based DI. The envelope energy of the signal is calculated in the 

time domain after Hilbert transform within a time window where the envelope has its 

maximum in the first arriving wave packet. PSD based DI is defined by calculating the 

change in the PSD spectrum by comparing the PSD of the reference signal with the PSD 

spectrum of the growing cycle signals. The total power change in the spectrum is 

assigned as the PSD based DI. SAP-based DI is defined in the time-frequency domain, 

where the SAP is calculated at each time step after the Continued Wavelet Transform 

(CWT). For SAP based DI, a time window is applied to the reference signal where the 

SAP has its maxima and the area of later SAPs from higher cycles is calculated and 

compared with the SAP area of the reference state. As a result of the DI extraction 

process, a matrix containing the DIs obtained for all paths and frequencies is prepared 

for the training and testing purposes of the DNN-based regression model. In Figure 4, 

four DIs are presented for the paths between PZT3 (actuator) to PZT 4, 5 and 6 (sensors) 

and for the frequencies of 100 kHz, 140 kHz and 180 kHz. 

 

 

REGRESSION MODEL WITH DEEP NEURAL NETWORK 
   

DNN model is designed to correlate UGW-based DIs with measured delamination 

length and then predict the delamination length by using the DIs based on excluded 

actuator-sensor paths. The target set of the model consists of measured delamination 

lengths at 8 different cycle steps. The input dataset size for training at one cycle equals 

to 15x20, which contains 15 paths from 5 actuator to 3 different sensors where feature 

number is 20, 4 different types of DI domain with 5 different frequency. The model 

consists of 4 layers that contain 360, 240, 60, 40 neurons, respectively, apart from the 



 

input layer which has 20 neurons whereas the output layer has 1 neuron. Activation 

function for the first layer is tanh function, for the second layer is sigmoid function,  

third and fourth layers is ReLU and the last layer is linear activation function. 

Optimization of the model has been done with Adam optimizer. The dataset is separated 

into training, validation, and testing sets. The testing set is selected as one actuator to 

three sensors paths and the training step is repeated for 6 times for 6 different dataset 

which contains different actuator-sensor paths at each training step. In Figure 5 and 

Figure 6, the prediction results are presented. The prediction intervals are provided by 

random re-initiation of weights and for repeated training process. In Table I, mean 

squared error values (MSE) are shown for predicted delamination length vs. measured 

delamination length. 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3. Denoised GW signal in time domain and PSD spectrum for a) b) 100 kHz, 

c) d) 140 kHz and e) f) 180 kHz at Cycle 10000 and Cycle 60000. 

Figure 2. (a) Ultrasonic C-scan result for delamination quantification at 60000th 

cycle (b) measured delamination length vs cycles. 



 

Figure 4. Four DIs for 100 kHz, 140 kHz and 180 kHz for PZT 3 – PZT 4,5,6 

 
 

 

   

   

   
Figure 5. Delamination length prediction by using sensor paths after removing the 

actuator paths: 1, 2, 3, respectively. 



 

 

 

 
Figure 6. Delamination length prediction by using sensor paths after removing the 

actuator paths: 4, 5, 6, respectively. 

 

 

 

 

TABLE I. PERCENTAGE VALUE OF CALCULATED MSE PER ACTUATOR-

SENSOR PATH. 
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MSE  

Values 

Actuator Mode 

PZT1 PZT 2 PZT3 PZT4 PZT5 PZT6 

PZT 1 - - - 7.19 7.25 7.55 

PZT 2 - - - 6.94 6.92 7.49 

PZT 3 - - - 7.16 6.01 7.60 

PZT 4 7.25 7.15 6.40 - - - 

PZT 5 7.48 7.37 6.61 - - - 

PZT 6 7.22 7.27 6.95 - - - 



 

DISCUSSION AND CONCLUSION 
   

Predicting the increasing delamination length under compressive fatigue condition 

is critical for the application of condition-based maintenance strategies in aerospace 

industry. In this study, woven type composite samples are subjected to the compression-

compression fatigue loading and the delamination length is quantified by ultrasonic C-

scan. A DNN-based regression model is trained using four different DIs calculated for 

UGW signals recorded at specific fatigue cycle steps. The model is tested with actuator-

sensor paths, which are not included in training process. The results show that some 

paths are slightly more sensitive to the delamination growth than the others. Among all 

actuator-sensor pairs, PZT 3 – PZT 4, 5, 6 present minimum MSE values; 6.40, 6.61, 

and 6.95, respectively, which demonstrates higher sensitivity to delamination growth. It 

should be noted that there has been significant increase in the delamination growth rate 

from cycle step 6 to cycle step 7, which indicates 60000th to 70000th cycle, and the 

model has limited capacity to capture that sudden change. Therefore, the main source 

of the error is originated from the prediction at the last cycle step. However, it is 

important to be able to capture drastic changes in delamination growth, as it can be 

considered as the threshold level in terms of the delamination length. Consequently, the 

results show that the presented UGW based DIs methodology is effective to predict 

growing delamination length under compressive fatigue loading and proposed 

supervised DNN based regression model is capable to predict delamination length with 

presented accuracy levels.  
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