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Summary

Climate change and wind energy are interlinked, with wind energy being crucial for reducing green-
house gas emissions that drive climate change. Conversely, climate change poses a threat to the
wind energy industry due to potential reductions in wind resources in key regions, although it may also
enhance wind resources and profitability in other areas. This interplay underscores the connection be-
tween renewable energy adoption and climate adaptation strategies. The impact of climate change on
wind energy is assessed using climate projections from Global Climate Models (GCMs) and Regional
Climate Models (RCMs). GCMs have resolutions as low as 500 km, while RCMs can achieve resolu-
tions of 10-50 km. To improve the resolution and capture smaller details, the process of downscaling
is used, which can be either statistical (data-driven) or dynamical (physics-based).

This study investigates changes inmeanwind speed variation at nine global sites using non-downscaled
CMIP6 GCMs, statistically downscaled CMIP5/6 GCMs, and dynamically downscaled CMIP5 GCMs
from CORDEX, under climate change scenarios with 4.5W/m2 radiative forcing (RCP4.5 or SSP2-4.5,
depending on data availability at the locations). Additionally, the study compares climate change sce-
narios RCP4.5/SSP2-4.5 and RCP8.5/SSP5-8.5 using the statistically downscaled CMIP GCMs. It
examines impacts on wind resource availability, annual energy yield, sensitivity factor, and capacity
factor, comparing these to historical data. Additionally, the research assesses revenue from Annual
Energy Production (AEP) and compares historical projections from GCMs with reanalysis data, which
integrates historical observations with advanced numerical models.

This research found that the non-downscaled CMIP6 GCMs and statistically downscaled GCMs exhibit
the same trend and produce similar results when predicting the risk of wind speed decline at 8 out of the
9 sites analyzed. For the 9th site, a risk was predicted by 83% of the statistically downscaled GCMs,
with a decline in wind speed variation of 99.9%, indicating a marginal difference. Given these findings,
non-downscaled CMIP6GCMs are effective for predicting wind speed declines and can be reliably used
in place of statistically downscaled GCMs for most sites, eliminating the need for the more resource-
intensive process of statistical downscaling. The CORDEX models indicate a significant influence of
GCMs on mean wind speed projections, as different RCMs coupled with the same GCMs yield similar
results. Consequently, to ensure a reliable analysis, it is recommended to include as many GCMs as
possible.

To assess the impact of wind speed variation, two onshore and two offshore sites were selected. A
larger decrease in AEP and consequently the capacity factor was observed at the onshore sites com-
pared to the offshore sites, primarily due to the complex terrains of the onshore sites, which also resulted
in higher sensitivity factors. The site with more complex terrain demonstrated higher sensitivity com-
pared to the one with less complex terrain. Additionally, the revenue generated was adversely affected
by the terrain, despite high mean electricity prices.

When comparing historical projections from non-downscaledCMIP6GCMs and statistically downscaled
GCMs with reanalysis data, higher percent bias, mean absolute percentage error (MAPE), and lower
correlation were observed for onshore sites. This is primarily attributed to the complex terrains of these
sites. Additionally, an analysis of the distance between GCM grid points and reanalysis data sites in
relation to MAPE revealed no significant correlation, indicating that the metrics do not depend on spa-
tial proximity. Several factors contribute to these discrepancies, including significant differences in the
resolution of the datasets, topographical representation, temporal and spatial averaging, data assimila-
tion processes, and the capture of internal climate variability. These differences lead to unreliable and
inconsistent results when comparing historical data from GCMs with reanalysis data. Therefore, while
GCMs are invaluable for understanding broad climate trends and making future projections, their direct
comparison with reanalysis data for historical periods requires careful consideration. Understanding
the limitations and appropriate methodologies for such comparisons is essential to avoid misleading
conclusions.
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1
Introduction

As per the European Commission, the decade of 2011-2020 has been recorded to be the warmest
decade in the history of time with the global average temperature that reached 1.1 °C above the pre-
industrial levels in 2019. Human activities such as deforestation, burning fossil fuels, and farming live-
stock have been continuously influencing the climate and the earth’s temperature. As a result, large
amounts of greenhouse gases are accumulating in the atmosphere on top of the naturally existing ones
leading to an increase in greenhouse effect and, ultimately, global warming. There is an increasing rate
of 0.2°C per decade in global warming due to human activities in which carbon dioxide is the largest
contributor. The CO2 concentration in the atmosphere rose by 48% as compared to its pre-industrial
levels (before 1750) by the year 2020. Other greenhouse gases like methane and nitrous oxide are
emitted in smaller quantities. There are also natural causes like volcanic activities and solar radiation
that have contributed about ± 0.1 °C to the warming between the years 1890 and 2010 [37].

The 2015 Paris Agreement aims to limit global warming to 1.5°C above pre-industrial levels and prevent
it from exceeding 2 °C. This target is crucial as scientific studies indicate that surpassing it could lead
to severe and irreversible effects on ecosystems and human societies [37]. Potential consequences in-
clude more frequent and intense extreme weather events, rising sea levels, loss of biodiversity, threats
to food security, and disruptions to economic and social systems [54]. Several strategies exist to reduce
greenhouse gas (GHG) emissions including enhancing energy efficiency across all sectors, adopting
low-carbon and renewable energy technologies, utilizing carbon capture and storage, and modifying
land use. Wind energy is becoming increasingly important in the global energy mix due to its environ-
mental benefits, renewable nature, and economic viability. Recognized by the International Energy
Agency (IEA), wind energy is the fastest-growing renewable energy source and contributed about 17%
of global electricity generation in 2021, with this figure expected to rise. Wind energy projects vary in
scale from community-based farms to large offshore installations.

Climate change and wind energy have a bidirectional relationship. Transitioning to wind energy is
essential for reducing greenhouse gas emissions that contribute to climate change. Conversely, cli-
mate change is a threat to the wind energy industry as variations in the global climate might result in
reductions of the wind resource in critical regions of interest [73]. However, it should be mentioned that
variations of the global climate might also result in the increase of the wind resource, increasing the
profitability of wind projects in certain regions[54]. This dynamic highlights the interconnection between
renewable energy adoption and climate adaptation strategies [54].

The impact of climate change on wind energy can be investigated through climate projections obtained
by climate models. Global climate models (GCMs) have a resolution as low as 500km and the Regional
climate models can have a resolution of 10-50km [10]. The resolution of global climate models is often
increased with the help of a process called downscaling which is typically of two types: Statistical and
Dynamical. Statistical downscaling is data driven and uses historical data to establish relationships
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between global climate models and observations/reanalysis data[10, 41]. Dynamical downscaling is
physics based and needs detailed data on topography and land use [4, 80].

This paper studies how these different datasets project the change in mean wind speed variation for 9
different sites across the world. It also presents the impact on Annual energy yield, capacity factor and
electricity prices. A comparison is also made between the historical projections given by the Global
climate models and the reanalysis data that is the integration between historical observations and ad-
vanced numerical models.

The structure of the report is as follows: chapter 2 provides a comprehensive background necessary
to proceed with the research, starting with the effects of climate change on wind energy and detail-
ing various data types used in wind resource assessment. It also covers climate change scenarios,
downscaling methods, and data retrieval sources. Key parameters in wind resource assessment and
fundamental definitions are explained, followed by a review of recent literature on climate change im-
pacts. Chapter 3 outlines the research aims, site selection, data collection, and preparation processes,
including the use of climatemodels and reanalysis data. The design of the experiment and data analysis
methods are described to ensure a thorough evaluation of wind power generation potential, consider-
ing variations in wind speed, energy yield, and electricity pricing. Chapter 4 presents the results and
discussion based on the methodology followed in chapter 3 and lastly, chapter 5 concludes this report.



2
Background

The assessment of the wind resource plays a crucial role in the development and optimization of wind
energy projects. This chapter provides an overview of the essential components involved in wind re-
source assessment. It begins with Section 2.1, discussing the impact of climatically affected meteoro-
logical parameters on wind energy. Section 2.2 details the different types of datasets used in climate
change assessment, including global and regional climate models and reanalysis data. Section 2.3 cov-
ers climate change scenarios and their implications, while Section 2.4 explains downscaling methods
used to refine climate model outputs. Section 2.5 describes the sources for data retrieval. Section 2.6
examines key parameters in wind resource assessment, followed by Section 2.7, which defines funda-
mental concepts and metrics. Section 2.8 reviews recent literature on the impact of climate change on
wind resources. The chapter concludes with a brief discussion on the energy system integration tech-
nologies to tackle the wind energy intermittency. This comprehensive background lays the groundwork
for understanding the methodologies and analyses presented in the subsequent chapters.

2.1. Climate change and wind energy
As per the United nations organisation, climate change is defined as the shift in weather patterns and
temperatures prevailing for long terms either due to natural causes like sun’s activity, substantial vol-
canic eruptions or due to human activities. In fact, because of constant burning of fossil fuels, the latter
has been the main reason for climate change since the 1800s [90]. This has led to increased green
house gas emissions that trap sun’s heat causing the temperatures to rise and resulting in global warm-
ing on the planet [88]. The increased global warming also has impacts on many parameters that link
to wind energy production [73]. For example, changes in wind speed, wind direction, air density, icing,
sea levels and wave heights can affect both production and consumption from wind energy systems
[46].

The impact on wind energy can be negative or positive depending upon the geographical location
since the climate change impacts vary from one region to another [46]. Table 2.1 below provides an
overview of the impacts of various physical parameters on the wind energy production. It describes
how different meteorological changes affect the operational conditions and potential wear of turbines,
which could lead to either an increase or decrease in electricity generation. Factors such as increased
wind speed improve wind conditions and may lead to higher electricity generation, while decreases in
wind speed or adverse changes in wind patterns can worsen conditions and potentially reduce energy
generation. The table also notes that changes in wave and tidal patterns can present challenges for
accessibility and infrastructure stability.

3
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Table 2.1: Overview Climate Change Effects on Wind Energy

Meteorological Change Impact on Wind Energy Re-
sources

Impact on Electricity Genera-
tion

Temperature variations
[75, 74]

Could modify air density and
wind flow, high temperatures
can hinder turbine operations

Possible variation in energy pro-
duction.

Wind speed increase [52,
63]

Generally favorable wind condi-
tions

Potential for enhanced energy
production, barring storms can
decrease energy or lead to shut
downs

Wind speed decline [52,
63] Deterioration of wind conditions Diminished energy production

Variability in wind patterns
[92]

Affects air density and wind pat-
terns

Could either enhance or reduce
energy production

Change in seasonal or
daily distribution of wind
[9, 46]

Uncertain production of wind en-
ergy

Difficulty matching the wind en-
ergy input to grid and daily load
demand.

Increased precipitation
[63]

Potentially speeds up wear on
turbine blades

Does not directly alter energy
output

Reduced precipitation
[63]

Not applicable to wind resource
impact

No direct effect on power gener-
ation

Glacial thawing [74, 64] Relevant only if associated with
flooding

Could disrupt generation if flood-
ing occurs and lead to de-
creased generation

Flooding events [46, 52] Possible equipment damage Potential interruptions in power
supply

Storm surges [46, 52] Possibility of harm to structures,
more downtime

Decreased power availability
due to damage

Oceanic tidal shifts [74] Risk of exposing underwater ca-
bles due to scour increase

Possible disruptions in energy
conveyance

From table 2.1 it can be noticed that whether climate change is a boon or bane for wind energy pro-
duction is not certain. Depending upon the geographical location of the wind farms, the energy yield
can be positively or negatively affected. The estimation of prediction regarding the impacts of climate
change are derived from sophisticated mathematical models like, Global Climate Models (GCMs), Re-
gional Climate Models (RCMs), and reanalysis datasets [70]. These models explore the extent to which
natural causes, human activities or both of them together are responsible for climate change. The find-
ings and future outlooks derived from these analyses offer critical insights that significantly enhance
decision-making processes at various governance levels, including national, regional, and municipal.
This information proves instrumental in guiding strategic planning and policy development across a
broad spectrum of areas including the energy policies [70]. A detailed explanation of these models can
be found in the following sections.
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2.2. Data Types in Wind Resource Assessment
2.2.1. Global climate Models (GCMs)
GCMs are complex instruments that simulate the interactions among the atmosphere, ocean, cryosphere,
and land surface. They are considered the most advanced tools currently available for predicting how
the global climate systemwill respond to rising concentrations of greenhouse gases [51]. GCMs employ
a mixture of mathematical equations that encapsulate the underlying physics governing circulation pro-
cesses, alongside empirical calculations derived from observational data[30]. It should be noted that
investigation of mathematical formulae involved in the modeling of GCMs is out of the scope of this
work.
Because of the complexity and interdisciplinary nature of atmospheric and oceanic circulation phenom-
ena, modeling these processes necessitates making numerous assumptions. This also leads to a large
number of computations required to simulate all relevant processes accurately. Moreover, uncertainty
arises due to the incomplete understanding of various processes involved [30].
Several factors, such as spatial and temporal resolution, as well as the level of detail in representing vari-
ous processes, significantly influence theGCM’s capacity to depict the entire planetary system and, con-
sequently, determine the model’s accuracy and performance across different aspects. Climate models
work by partitioning the Earth globe into a three-dimensional grid composed of cells that correspond to
particular geographic positions and altitudes.

Figure 2.1: Schematic for GCMs: Climate models
represent complex systems of differential

equations derived from fundamental principles of
physics, fluid dynamics, and chemistry.[68].

By design, GCMs estimate numerous variables, including
surface radiation, humidity, temperature, precipitation and
wind speeds at their original spatial and temporal resolu-
tions [30, 51].
Within this framework, each component: the atmosphere,
land surface, ocean, and sea ice, is represented by equa-
tions computed across the global grid for various climate
parameters like temperature, wind speeds. Moreover, be-
yond simply calculating the evolution of each component
over time, these models facilitate the exchange of water,
heat, and momentum fluxes among the different parts. This
allows them to function as a coupled system, with each com-
ponent influencing and being influenced by the others [70].

Model Resolution
GCMs, with spatial resolutions ranging from 100 km to 500
km, incorporate numerous vertical layers to accurately rep-
resent atmospheric and oceanic dynamics[30]. These mod-
els divide the Earth’s surface into a three-dimensional grid
of cells. Within this grid, processes simulated in each cell in-
teract with neighboring cells, enabling the exchange of mat-
ter and energy over time. The resolution of the model is
determined by the size of these grid cells: smaller cells correspond to higher model detail. However,
finer-resolution models require more grid cells, thereby demanding greater computational resources
for their execution [71].

Limitations
While there may be some divergence among climate models, these models are rooted in established
physical principles, whether directly for simulated processes or indirectly for parameterized processes.
The outcomes of model experiments undergo extensive scrutiny from a global community of model-
ers and researchers, such as those associated with the Intergovernmental Panel on Climate Change
(IPCC), which helps mitigate uncertainty[70]. Nevertheless, GCMs have some limitations to them:

• GCMs face challenges in accurately reproducing real-world climate observations due to various
sources of uncertainty, including the magnitude of future greenhouse gas emissions, computa-
tional constraints, incomplete understanding of atmospheric processes, and the inherently chaotic
nature of the atmosphere [34].

• GCMs often have coarse spatial resolution and limited skill in representing daily and monthly
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rainfall and temperature, necessitating additional computational steps before their use in impact
studies or adaptation planning. This post-processing typically involves bias correction to mitigate
known systematic errors and downscaling to generate output with higher spatial and temporal
resolution.

• Temporal downscaling is necessary because GCMs often lack realistic daily climate data. Spatial
downscaling is essential because the coarse resolution of GCMs prevents them from accurately
representing features like topography, land use, and land cover, which influence local climate
[34].

GCMs are limited in their ability to capture the detailed spatial variations in atmospheric and land sur-
face processes that define the unique regional climate patterns. If future large-scale weather patterns
interact differently with local terrain and coastlines compared to current patterns, the resulting changes
at the local level could deviate significantly from the broad-scale projections generated by global models
[13]. This is where regional climate models come into play. A detailed explanation has been provided
in the subsection below:

2.2.2. Regional Climate Models (RCMs)
Regional climate models explicitly simulate the interactions between the large-scale weather patterns
predicted by global models and the specific local characteristics of the region, providing more accu-
rate insights into potential regional climate changes [13]. It is a computational tool used for predict-
ing climate patterns within a specific geographic area. The rationale behind RCMs stems from the
principle of ’downscaling’[69] which is further explained in section 2.4. RCMs operate by simulating
atmospheric and land surface processes, incorporating high-resolution topographical data, land-sea
contrasts, surface characteristics, and other Earth-system components. Thesemodels are driven by lat-
eral and oceanic conditions obtained from either a GCM or observation-based datasets (reanalysis) [1].

Figure 2.2: Schematic for RCMs[91]

Since RCMs are designed to cover limited geo-
graphical domains, they require explicit specifica-
tion of boundary conditions, which are typically
derived from the results of coarser GCMs or re-
analysis datasets. RCMs are initialized with initial
conditions and driven by time-variable conditions
along their lateral-atmospheric boundaries and
lower-surface boundaries. In essence, RCMs
serve to refine and downscale global reanalysis
or GCM simulations, enabling the simulation of
climate variability with greater regional detail[1].

Model Resolution
Regional models are occasionally labeled as thor-
ough, coherent, and physically grounded interpo-
lators or, in more vernacular language, as ”zoom
lenses” and can have a resolution of 10-50 km
[65, 69, 62]. These benefit from being closer in scale to real-world observations, incorporating detailed
information about topography, land cover, and soil types, all of which play significant roles in shaping
the climate system. Consequently, regional climate models can utilize more real-life data compared to
global models, resulting in simulations that are generally more accurate [62].
Figure 2.3 provides a visual to the difference amongst a GCMof resolution of 2° of latitude and longitude,
an RCM with a resolution of 50km in comparison to a satellite image.
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Figure 2.3: Difference amongst the resolution of a GCM, RCM and satellite image [62]

When exploring the capabilities the GCMs and the RCMs, it is crucial to realise the importance of
observational data in validating these models.While these models provide projections based on law of
physics, the observed climate variables help us assess the accuracy of these models and refine them.
Here, the Reanalysis data comes into play. It assimilates large set of observations, from satellites to
weather stations, into a coherent climate model framework and delivers a synthesized estimate of the
state of the atmosphere at different scales [36]. The following section now details the process of making
reanalysis datasets, their applications in climate science, and the role it plays in predictions of GCMs
and RCMs by anchoring them to the reality of observed climate.

2.2.3. Reanalysis Data
Climate reanalyses integrate historical observations with advanced numerical models to produce com-
prehensive time series of diverse climate parameters. Widely embraced across the geophysical sci-
ences, these datasets offer detailed insights into observed climate trends over recent decades [23].
By synthesizing various datasets into a uniformly spaced grid, reanalysis methods facilitate efficient
comparison of observations while preserving the integrity of the original data collection model. This
approach ensures that the historical record remains untainted by artificial factors [67]. Reanalyses rep-
resent the most exhaustive record available of past weather and climate, amalgamating observations
with historical short-range weather forecasts re-run using modern forecasting models. With global cov-
erage and temporal consistency, they are often regarded as ’maps without gaps’, facilitating a thorough
understanding of past climate conditions [36]. A very popular reanalysis data provider is European Cen-
tre for Medium-RangeWeather Forecasts (ECMWF) delivering ERA5 reanalysis hourly data on several
atmospheric, land-surface as well as sea-state parameters together including estimates of uncertainty
[23]. The figure 2.4 depicts the schematic of the reanalysis data.

Figure 2.4: Schematic of Reanalysis process [36]

Reanalysis integrates model data with observations from around the globe, creating a globally complete
and consistent dataset through the application of physics-based principles known as data assimilation.



2.2. Data Types in Wind Resource Assessment 8

This method, akin to that used in numerical weather prediction centers, involves combining previous
forecasts with newly available observations to produce updated estimates of atmospheric conditions,
termed analyses [24]. While similar to daily weather forecasting, reanalysis operates at a reduced res-
olution, enabling the generation of datasets spanning several decades. ERA5 offers global estimates
at an hourly frequency with a horizontal resolution of approximately 31 kilometers and 137 vertical
levels [25]. Unlike timely forecasts, reanalysis allows more time for the collection of observations and
incorporation of improved versions of original data, enhancing the quality of the reanalysis product over
time. Rigorous quality control measures are implemented throughout the reanalysis process to ensure
accuracy, including the comparison of results with those from other organizations.[36].

Reanalysis data use in climate modeling
Reanalysis data plays a crucial role in a lot of aspects as mentioned below:

• High-Resolution Baseline Data: The detailed level of information provided by ERA5 due to higher
spatial and temporal resolution makes it an ideal foundational dataset for examining climate vari-
ability and trends with greater detail than most GCMs can provide [36].

• Bias Correction Reference: ERA5 data serves as a valuable reference for correcting biases in
climate model simulations, particularly for regional climate models (RCMs) or empirical statistical
downscaling methods. By comparing model outputs with ERA5 data, researchers can detect and
adjust systematic biases in temperature, precipitation, and other meteorological variables[1].

• Boundary Conditions for RCMs: In dynamical downscaling approaches, where RCMs are em-
ployed to generate higher-resolution climate projections for specific regions, ERA5 data offers
crucial initial and boundary conditions. These conditions are necessary for driving the RCM sim-
ulations and ensuring consistency with observed global climate patterns [44].

• Evaluation and Calibration: ERA5 data is utilized to assess the performance of downscaling mod-
els by comparing the downscaled data with ERA5’s observed climatic features. This comparison
aids in fine-tuning the downscaling models to enhance their accuracy and reliability.

Despite the wide use of reanalysis data, there are certain drawbacks to it. ECMWF Copernicus identi-
fies four main limitations [21] as mentioned below:

• The observational system: The quality of a reanalysis is inherently tied to the quality and density
of the observational data it relies on. Reanalysis uses a combination of weather models and avail-
able observations to estimate the atmospheric state at specific times. Consequently, a reanalysis
can only extend back to a certain historical point before it becomes unreliable. Typically, reanaly-
ses are most reliable from 1979 onwards due to the extensive data provided by the satellite era,
which began around that time and greatly enhances the quality of reanalysis data. ERA5, for
example, extends back to 1950 because substantial data sources are available from that period.
While some reanalyses extend further back, they rely on fewer observational sources, resulting
in a lower number of well-represented variables.

• The weather model: The quality of the weather model significantly impacts the reanalysis. A
more accurate model requires fewer observations to correct inherent errors. These errors arise
from the model’s simplified representation of reality, which is limited by spatial resolution and
incomplete modeling of all real-world processes and interactions.

• The spatial representation: Reanalysis products are gridded, meaning they provide data for larger
regions rather than specific points like weather stations. For example, ERA5 has a spatial res-
olution of about 30x30 km, so the data for a city within this grid will represent the combined
environment of the entire grid area rather than the city itself. This implies that temperature val-
ues from the reanalysis might not accurately reflect the city’s actual temperature but rather an
average of the grid’s diverse landscapes. Additionally, reanalysis accuracy varies globally, as
observational data becomes sparser further back in time and coverage differs across regions.

• Varying degree of realism depending on the variable considered: Reanalyses generate numerous
output variables, and the quality and representativeness of these measurements vary depending
on the specific variables considered.
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The Climate models are executed across various greenhouse gas emissions scenarios defined by
IPCC, each depicting diverse potential outcomes for the future. In order to proceed further it is beneficial
to take an overview of the climate change scenarios presented in the next section.

2.3. Climate Change Scenarios
Climate change scenarios describe how changes in the atmosphere due to factors like greenhouse gas
emissions, air pollutants, and land use affect the energy balance of the global climate system [50]. The
IPCC’s AR5 report outlines four Representative concentration pathways (RCPs) based on their impact
on the Earth’s energy balance, showing different atmospheric compositions expected by the end of
the 21st century [50]. The latest Assessment Report by IPCC, AR6 introduced the Shared Socioeco-
nomic Pathways (SSPs) which are a further refinement to the RCPs depicting variations in population,
economic growth, education, urbanization, and technological advancement that could influence future
greenhouse gas emissions without even a climate policy [49, 93]. SSPs and RCPs are characterized
by numerical designations such as RCP 4.5 or SSP5-8.5, which signify the anticipated alteration in
radiative forcing from 1750 to the conclusion of the 21st century, in 2100 [49, 48]. Radiative Forcing
is pivotal in dictating the alteration in globally-averaged temperature due to adjustments in the energy
budget, whether induced by natural or human activities [20].An overview of the SSPs and RCPs has
been presented in the table 2.2 and 2.3 below:

Table 2.2: Shared Socioeconomic Pathways as per IPCC Sixth Assessment Report [49]

SSP
Sce-
nario

Description
Approximated
warming
(2041–2060)

Approximated
warming
(2081–2100)

Very likely
range in °C
(2081–2100)

SSP1-
1.9

Very low GHG
emissions: CO2
emissions net zero
by 2050

1.6 °C 1.4 °C 1.0 – 1.8

SSP1-
2.6

Low GHG emis-
sions: CO2 emis-
sions net zero by
2075

1.7 °C 1.8 °C 1.3 – 2.4

SSP2-
4.5

Intermediate GHG
emissions: CO2
stable until 2050,
then fall

2.0 °C 2.7 °C 2.1 – 3.5

SSP3-
7.0

High GHG emis-
sions: CO2 dou-
bles by 2100

2.1 °C 3.6 °C 2.8 – 4.6

SSP5-
8.5

Very high GHG
emissions: CO2
triples by 2075

2.4 °C 4.4 °C 3.3 – 5.7

The SSP-based scenarios have been used in the latest set of climate model experiments, called CMIP6
or Sixth Phase of the Coupled Model Intercomparison Project. CMIP models play a crucial role in
climate change analysis. Their outcomes have given a solid foundation to the AR6 for the robust
evaluations of historical and projected climatic variations [15]. Similarly, RCPs have been incorporated
in the CMIP5 that is the 5th phase of CMIP and aided the climate change assessment in the AR5 of
IPCC [48]. Given below in figure 2.5 is a schematic presenting the equivalence between the SSPs and
RCPs.
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Table 2.3: Representative Concentration Pathways and their Projected Impacts[48]

RCP Forcing Temperature Emission Trend

1.9 1.9 W/m2 ∼1.5°C Very Strongly Declining Emissions

2.6 2.6 W/m2 ∼2.0°C Strongly Declining Emissions

4.5 4.5 W/m2 ∼2.4°C Slowly Declining Emissions

6.0 6.0 W/m2 ∼2.8°C Stabilising Emissions

8.5 8.5 W/m2 ∼4.3°C Rising Emissions

Figure 2.5: Schematic showing Equivalence between SSP and RCP scenarios [91]

The scenario simulation design is categorized into two phases, Tier 1 and Tier 2, based on priority.
Each cell within the design represents a socioeconomic development path along with a corresponding
feasible radiative forcing in the Integrated Assessment Model (IAM). Cells shaded in dark blue denote
the first-phase climate model scenarios, those in light blue denote the second phase, while the brown
cells on the right represent past RCP scenarios devoid of socio-economic elements, serving as a ref-
erence point [47].
In the above sections, the role of General Circulation Models (GCMs) in providing broad-scale climate
projections and the broad capabilities of these models in capturing the essence of climate systems on
a global scale was examined. Moreover, the utility of Regional Climate Models (RCMs) and reanalysis
data for enhancing the understanding of climate dynamics at a regional level was discussed. However,
there exists an imperative to further localize this information for it to be effectively used in local climate
impact studies:Downscaling.

Downscaling techniques serve as a crucial methodological bridge, narrowing the resolution gap by
employing statistical or dynamical methods to produce high-resolution climate data from the relatively
coarser-resolution models [16]. Such detailed climate data are essential for assessing climate change
impacts on localized phenomena. Moreover, downscaling is pivotal in the context of climate change
adaptation and mitigation planning. It provides stakeholders and decision-makers with the detailed
information needed for anticipating changes in climate at scales pertinent to local infrastructure, like
watersheds, cities, and agricultural areas.

The use of downscaling techniques marks the convergence of large-scale patterns delineated by GCMs
and RCMs with the granular details required for a comprehensive understanding and preparation for cli-
mate change at the community level[57]. The following section will explore the concept of downscaling,
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dissecting both the dynamical downscaling approach, which leverages high-resolution RCMs, and the
statistical downscaling approach, which utilizes statistical techniques to refine GCM and RCM outputs
into local climate projections [45].

2.4. Downscaling
The process of deriving local to regional-scale information, typically spanning 10 to 100 kilometers,
from larger-scale modeled or observed data is commonly referred to as downscaling[10].While Global
Climate Models (GCMs) offer valuable scientific insights into climate system dynamics over various
time scales, their raw output may not always meet the interdisciplinary needs of stakeholders. The
spatial resolution of GCMsmay not match the requirements of end-use applications. Various landscape
elements, including mountains, water bodies, infrastructure, land cover, and climate components like
convective clouds and coastal breezes, exhibit scalesmuch smaller than the typical 100–500 kilometers
represented in Global Climate Models (GCMs). These finer-scale heterogeneities hold significance for
decision-makers seeking information on potential impacts at scales ranging from 10 to 50 kilometers[10,
41]. Moreover, GCM output often contains biases compared to observational data, making it unsuitable
for direct use in downstream applications[41].That is why downscaling theGCMs is a sensible approach.

Figure 2.6: Schematic for Downscaling[94]

The downscaling process enhances the coarse out-
put of Global Climate Models (GCMs) by incorporat-
ing additional information to achieve a more realistic
representation at a finer scale. This involves captur-
ing sub-grid scale differences and variations. Down-
scaling can address both spatial and temporal aspects
of climate projections. Spatial downscaling involves
methods to generate finer-resolution spatial climate
data from coarser-resolution GCM output, such as re-
fining from a 500 kilometers grid cell to a 20 kilome-
ters resolution or even specific locations. Temporal
downscaling, on the other hand, focuses on deriv-
ing detailed temporal information from coarser-scale
temporal GCM output, such as extracting daily rain-
fall sequences from monthly or seasonal rainfall data
[10].Figure 2.6 illustrates the schematic of downscal-
ing. The top layer shows the low-resolution grid of
a GCM, which is then refined into a higher-resolution
grid of an RCM, showing an increase in the details. As
the scale is more localized, the models start incorpo-
rating complex features such as hydrology, soil layers,
vegetation, and topography. The process integrates
human social systems and links large-scale climate
processes to local impacts and responses [94]. Down-
scaling is also crucial step in wind resource assess-
ment but the question rises why?
The variability of winds close to the ground in areas
with diverse topography is often significant and localized which the GCMs cannot capture. However,
by using downscaling techniques, it’s possible to predict these complex wind patterns more efficiently
[40]. A multitude of downscaling techniques have been devised to extract local climate change details
from the broad-scale outputs of Global Climate Models[45].
Downscaling Techniques can be broadly divided into two categories: Statistical Downscaling and Dy-
namical Downscaling. The following subsections now discuss these methods in detail.

2.4.1. Dynamical Downscaling
Dynamical downscaling primarily relies on RCMs, which produce higher-resolution output by simulating
atmospheric physics over a specific area [4]. RCMs utilize the large-scale atmospheric data provided by
Global Climate Models at the boundaries and integrate additional factors such as complex topography,
land-sea contrast, surface variations, and detailed physical processes to produce realistic climate data
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at a spatial resolution typically ranging from 20 to 50 kilometers [10]. However, since RCMs are nested
within GCMs, the accuracy of the downscaled output depends on the quality of the large-scale input
from the GCM and any biases it may have [80]. Despite capturing regional-scale features better than
coarse-resolution GCMs, RCM outputs still contain systematic errors and often require bias correction
and further downscaling to achieve higher resolution [10]. In general, Regional Climate Models (RCMs)
excel in spatial downscaling rather than temporal downscaling. They tend to perform better at monthly
or coarser timescales due to significant biases in daily scale outputs [34]. Some advantages and
disadvantages of dynamical downscaling, as highlighted by Mearns et al [61] are given below:
Advantages

• Offers precise spatial and temporal resolution
• Suitable for regions with important meso-scale features like mountain ranges
• Vital for analyzing regional climate, especially in areas with limited observational data

Disadvantages

• Uncertainty exists in sub-grid process parameterization
• Fails to rectify systematic biases inherited from GCMs
• Demands significant computational resources
• Absence of feedback between RCMs and GCMs may impact GCM output
• Often necessitates the application of statistical bias correction techniques

With the completion of the discussion on dynamical downscaling, the next subsection now shifts to
examining another pertinent approach: Statistical downscaling.

2.4.2. Statistical Downscaling
In statistical downscaling, empirical relationships are established between historical or current large-
scale atmospheric conditions and local climate variables. These relationships are then utilized to pre-
dict future local climate variables using projected atmospheric conditions from GCMs. Unlike RCMs,
which are limited to spatial resolutions of 20-50 kilometers, statistical downscaling can generate site-
specific climate projections[10]. However, this approach hinges on the assumption that the relationship
between large-scale circulation and local climate remains consistent under various forcing conditions
of potential future climates[102].
Statistical downscaling methods frequently require bias correction to align GCM output with observed
data effectively. This process usually entails harmonizing monthly or seasonal averages from the GCM
with observed averages. Popular bias correction techniques involve mapping GCM projections (such
as precipitation and temperature) to baseline observations using probability density functions or cumu-
lative distribution functions, including quantile and histogram methods[59, 58].
There is a diverse array of statistical downscaling techniques spanning from basic linear interpolation to
more complex methodologies like Canonical Correlation Analysis (CCA), Principal Component Analy-
sis (PCA), Model Output Statistics (MOS), Perfect Prognosis (PP), Multiple Linear Regression, Artificial
Neural Network (ANN), Multivariate Autoregressive Model, and Conditional Weather Generator. Linear
interpolation stands out as the simplest approach for generating high-resolution climate scenarios by
interpolating large-scale flow anomalies into finer scales, which represent the scale of impact modeling.
Interpolation methods are commonly employed when quick evaluations of numerous climate change
scenarios are necessary[99].
Linear and multivariate regressions are frequently employed in downscaling procedures. In these re-
gression models, the large-scale variables obtained from a GCM run are inputted into the same model
to predict surface variables under a modified future climate scenario. Following this, bias correction
is applied to both the current climate and GCM climate simulations. The disparity between these two
datasets is then added to the observational time series to produce projections under the modified cli-
mate conditions[34]. Given below are a few pros and cons of statistical downscaling are given below:
Advantages of statistical downscaling methods include[34]:

• High spatial and temporal resolutions
• Computational efficiency and flexibility
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• Rapid application to multiple GCMs
• Explicit estimation of uncertainty associated with downscaling

Statistical downscaling also has some drawbacks[34]:

• Dependency on biased inputs from GCMs
• Assumption of stationarity in empirical relationships for future scenarios
• Fluctuating skill levels across different climatic regions
• Requirement for accurate and lengthy data records for predictors

A summerized comparison can be made now using the above descriptions of both dynamical and
statistical downscaling techniques and can be found in the table 2.4 below:

Table 2.4: Comparison between Dynamical and Statistical Downscaling Methods

Criteria Dynamical Downscaling Statistical Downscaling

Computational De-
mand

Requires significant computa-
tional resources.

More computationally efficient
and flexible.

Model Basis
Grounded in physical laws, ne-
cessitating detailed data on to-
pography and land use.

Empirically derived, utilizing his-
torical data to establish relation-
ships.

Application Effective for regions with com-
plex geographic features.

Can be rapidly applied to various
climate models and scenarios.

Parameterization Involves uncertainty in sub-grid
scale processes.

Assumes consistent relation-
ships over time.

Corrections
Needed

Systematic biases from GCMs
require correction.

Requires statistical adjustments
to align with observational data.

Advantages Provides detailed simulation of
physical processes.

Flexible and quick, enabling ex-
plicit uncertainty estimation.

Disadvantages May fail to correct inherited bi-
ases from GCMs.

Skill level varies by region and
depends on robust historical
records.

Often, a combined approach employing both dynamical and statistical methods called dynamical-statistical
downscaling is preferred[10]. This hybrid technique, first utilizes an RCM to downscale the output from
a GCM and then subsequently, statistical equations are applied to further refine the downscaled RCM
output to achieve a finer resolution. By integrating dynamical downscaling with statistical methods,
specific aspects of regional climate modeling are enhanced, providing improved predictors for generat-
ing higher-resolution output through statistical downscaling [42]. This method of Statistical-dynamical
downscaling, while being more intricate, is computationally lighter than dynamical downscaling.This
approach also statistically pre-filters the GCM outputs into a limited number of characteristic states,
which are then utilized in RCM simulations[39]. This approach, however, has not been described in
detail in this report.

2.5. Data sources
Datasets used in this study have been retrieved from the copernicus [22] and provided by RWE offshore
wind. The CDS offers comprehensive information covering historical, current, and projected climate
conditions across the globe. It encompasses diverse data categories such as satellite observations,
on-site measurements, climate model simulations, and seasonal outlooks[22]. The CORDEX data and
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CMIP projections have been retrieved fromCDSwhereas the statistically downscaled CMIP projections
have been provided by RWE offshore wind. This section discusses them in detail.

2.5.1. CMIP6
The CMIP project, under the umbrella of the World Climate Research Programme (WCRP), delivers
climate projections crucial for comprehending historical, current, and future climate shifts. Its data in-
frastructure plays a pivotal role in the assessments conducted by the IPCC and various international
and national climate evaluations [96].
This comprehension involves evaluating model performance across historical periods and assessing
the factors contributing to the variability in future projections. Furthermore, researchers conduct ideal-
ized experiments to enhance their understanding of model responses. Apart from examining long-term
responses, experiments are conducted to explore the predictability of the climate system across differ-
ent time and spatial scales, as well as generating predictions based on observed climate states[97].
The CMIP data consists of historical and climate projection experiments. The historical experiments
include the modern climate observations showing GCM performance for past climate from 1850 to
2014. This data can also be used as reference data for comparison with different future scenarios. On
the other hand, Climate projection experiments follow the SSPs and RCPs and show how climate is
expected to change relation to different scenarios of economic and industrial development [12].

Organization and key Elements of CMIP6
CMIP6 encompasses essential experiments called as the DECK: Diagnostic, Evaluation, and Char-
acterization of Klimaand CMIP historical simulations, serving to maintain coherence and document
fundamental model attributes across CMIP phases[14].
The DECK comprises four foundational experiments: the historical Atmospheric Model Intercomparison
Project (AMIP) simulation, a pre-industrial control simulation (piControl or esm-piControl), a simulation
subjected to an abrupt quadrupling of CO2 (abrupt-4×CO2), and a simulation featuring a 1% annual
CO2 increase (1pctCO2). These experiments ensure consistency across CMIP iterations and deepen
insights into the climate system’s responses to diverse forcings [77].

Figure 2.7: CMIP6 experiments schematic

The CMIP historical simulations (spanning from 1850 to the
near present) endeavor to replicate observed climate vari-
ations throughout the historical era by incorporating exter-
nal forcings like greenhouse gas concentrations, solar ac-
tivity, and volcanic eruptions. These simulations establish
shared standards, coordination mechanisms, and compre-
hensive documentation to streamline model output dissem-
ination and ensemble characterization. Figure 2.7 gives a
schematic of CMIP6 for a better understanding; the cen-
tral circle and the accompanying text outline standardized
aspects common to all CMIP DECK experiments and the
CMIP6 historical simulation. The middle circle highlights
scientific themes unique to CMIP6 addressed by the CMIP6-
Endorsed MIPs, with MIP-specific topics depicted in the
outer circle. This structure is overlaid on the scientific con-
text for CMIP6, represented by the sevenWCRPGrand Sci-
ence Challenges.[55]
CMIP6’s federated structure facilitates a diverse array of ex-
periments customized to address specific scientific inquiries, offering a flexible framework capable of
accommodating the dynamic requirements of the climate modeling community. This approach not only
supports the distribution of tasks across various modeling groups but also aligns them with their scien-
tific interests and priorities[77].

2.5.2. CORDEX
The Coordinated Regional Climate Downscaling Experiment (CORDEX) is an initiative led by theWorld
Climate Research Program (WCRP). It leverages cutting-edge General Circulation Models (GCMs)
from CMIP5 to generate climate projections for diverse global regions. This project employs a dynam-
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ical downscaling methodology using a variety of Regional Climate Models (RCMs). By integrating ad-
vanced GCMs with RCMs, CORDEX aims to enhance the accuracy of regional climate representations,
primarily through increased spatial resolution [35]. CORDEX was developed to assist the international
coordination and transfer of knowledge and and therefore to facilitate easier analysis by scientists and
end-user communities at the local level[10].
CORDEX has developed a downscaling technique aimed at providing high-resolution climate data for
researchers. The datasets used within CORDEX are generated using a dynamical downscaling ap-
proach facilitated by Regional Climate Models (RCMs), also known as limited area models (LAMs).
These models utilize boundary conditions from Global Circulation Models (GCMs) to produce detailed
climate information at a finer scale, typically ranging from 10 to 50 kilometers. The accuracy of simula-
tions relies on both the quality of the RCM and the GCM employed in the process. However, experts
suggest that RCMs have amore significant influence on local variables compared to their driving GCMs,
although the extent of this influence may vary depending on location and season [35].

CORDEX domains
CORDEX activities are organized into domains representing different regions across the globe. There
are currently in total 14 domains of CORDEX as mentioned below[26]:

Africa Europe (EURO) South Asia East Asia

Central Asia North America South America Central America

Arctic Antarctica Australasia Mediterranean(MED)

Middle East North Africa (MENA) South-East Asia (SEA)

Figure 2.8: EURO-CORDEX Domain[27]

In this study, the EURO-CORDEX domain has been uti-
lized when analysing the locations in Europe. EURO-
CORDEX stands out for its superior temporal resolution,
reaching up to hourly intervals, and spatial resolution of
up to 0.11°x0.11° grid, surpassing other CORDEX domains.
The coverage of EURO-CORDEX simulations as shown
in figure 2.8 encompasses the European region, providing
valuable insights for climate research [78].
Along with exploring the valuable insights offered by the
CORDEX datasets and CMIP projections, it’s crucial to aug-
ment the understanding of climate change with additional
sources of data. In this context, RWE offshore Wind GmbH
has provided statistically downscaled data, offering a more
localized perspective on climate projections. This additional
dataset allows for a deeper examination of region-specific
climate trends on a higher spatial resolution as compared
to CORDEX and CMIP6. The following section delves into
the details of this statistically downscaled data.

2.5.3. Statistically downscaled GCMs
The last set of wind speed projection datasets utilized in this study have been provided by RWEOffshore
Wind GmbH. These datasets originate from CMIP simulations and have been statistically downscaled
to achieve a higher resolution of 3 km at several locations. Further details regarding these datasets
are available in the Methodology section of the report (refer to Chapter 3). The downscaling technique
employed here is known as Multivariate Quantile Mapping Bias Correction (MBC). Alex J. Cannon in
his work “Multivariate quantile mapping bias correction: an N-dimensional probability density function
transform for climate model simulations of multiple variables” [7] has presented the algorithm to per-
form the downscaling using this method ([7]). The detailed analysis on this method is out of the scope
of this project.
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It should be noted that modelled climates represented by these simulations fromCMIP6GCMs, CORDEX
and the statistically downscaled CMIP6 GCMS are not synchronized with the real climate, especially
at hourly or daily scales, and a comparison day by day would not be accurate. On a small temporal
scale, the climate simulation results primarily reflect mathematical randomness rather than the physical
processes simulated by the climate models. Thus, the comparison between the dataset of reference
and the climate simulations must be carried out by a statistical study spanning a wide period (over 10
years) that includes climate stimuli [35, 78]

The literature review on climate change and downscaling methods wraps up here, providing a foun-
dational understanding for the ensuing analysis of wind resource assessment. By establishing the
groundwork through an exploration of climate change dynamics, this review now moves to a detailed
examination of the specific parameters utilized in assessing wind resources. These parameters play a
pivotal role in determining the complex interplay between climatic variables and wind energy potential,
thus informing strategic decision-making processes in renewable energy planning and development.
Further details on these can be found in the next section.

2.6. Wind Resource Assessment Parameters
This section outlines the essential tools and parameters used in assessing and managing wind re-
sources for wind farms. It also introduces fundamental definitions necessary for understanding the
methodology and interpreting the results discussed in the subsequent chapters.

2.6.1. Power law
The near surface wind projections that are obtained from CMIP6 and CORDEX are projected for a
height of 10m which needs to be extrapolated to the hub height of the wind turbine. The power law has
been used in many literature for this purpose, even though it does not account for temporal and spatial
variations in surface roughness and atmospheric stability conditions,which can affect the wind speed
profile [78, 31, 43]. The power law is given as the follows:

u(z) = uref

(
z

zref

)α

(2.1)

here, uref is the wind speed at height zref and u(z) is the required wind speed at the desired hub
height z. α is the wind shear exponent and is usually set as 1/7 for neutral stability conditions[78, 81].
Because meteorological conditions fluctuate, the power law exponent changes over time. Often, there
are no long-term wind speed measurements from various heights available, which would enable the
estimation of a time-dependent and spatially explicit power law exponent. That is why, as a result, the
mean of the power law exponent or a constant value of 0.14 is commonly assumed [81].

2.6.2. Wind Power
The power output that can be harnessed from wind can be formulated in the following equation:

P =
1

2
ρAcpu

3 (2.2)

where, P is the power output (in watts)
A = πr2 is the swept area of the wind turbine blades
r is the rotor radius of the wind turbine (in meters, m)
ρ is the air density (in kilograms per cubic meter, kg/m³)
cp is the coefficient of performance (dimensionless), representing the efficiency of the turbine in con-
verting wind power to mechanical power.
u is the wind speed (in meters per second, m/s) The Power of wind turbine can also be visualised using
the Power curve of that turbine. Figure 2.9 represents the power curve of a 5 MW NREL reference
wind turbine [32].
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Figure 2.9: Power curve of NREL 5 MW reference wind turbine [32]

From the power curve it can be interpreted that the wind turbine starts producing Power at cut-in speed
of 3m/s and reaches the maximum or the rated power at the u-rated which can be using the equation
2.2. The wind turbine shuts down or stops generating power once it reaches the cut out speed, u-cut
out at usually 25m/s. The power curve is fundamental when determining the energy yield of the turbine.

2.6.3. Probability distribution function
Probability density functions (PDFs) are typically used to describe wind speed distribution, facilitating
the optimal selection of wind turbines for a specific location and estimating the available energy over
a required period [60]. The choice of PDF is critical in wind energy analysis as wind energy is directly
related to wind speed distribution parameters. An accurately fitting PDF reduces uncertainties in wind
energy output estimates [60]. Numerous studies have utilized various PDFs to characterize wind speed
data [8]. Commonly used unimodal distributions include Weibull, Rayleigh, inverse Gaussian, gamma,
lognormal, normal, inverse Weibull, Pearson type V, kappa, logistic, Gumbel, binomial, and extreme
value type I [29, 3, 53, 100]. Weibull and one-parameter Rayleigh have been the most prevalent in the
field [60] and the former has been employed in this study.
The weibull pdf f(u) is given by the following equation [84]:

f(u) =

(
k

a

)(u
a

)k−1

exp

(
−
(u
a

)k
)

(2.3)

where, k is the shape parameter,
a is the scale parameter,
u is the wind speed in meters per second (m/s)

2.6.4. Annual Energy Yield of Wind Turbine
Once the power curve of the wind turbine and the probability distribution function of the wind speed is
known, the Annual energy yield (AEP) can be easily computed using the following formula:

Ey = 8760

∫ ucut-out

ucut-in

P (u)f(u) du (2.4)

Where, P(U) is the Power generated as wind speed changes (Watt),
f(u) is the PDF of the wind speeds,
ucut−in and ucut−out are the cut in and cut out wind speeds respectively.
Equation 2.4 can also be graphically represented through figure 2.10 given below:
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Figure 2.10: Graphical representation of Energy yield equation 2.4

2.6.5. Capacity Factor
The capacity factor measures the efficiency of an energy source (wind turbine in this case) in generating
power compared to its maximum potential output. Typically evaluated over a year, it provides valuable
insights into the reliability and consistency of the turbine’s availability[87]. It reflects not only the total
number of hours it operated throughout the year but also the percentage of its maximum production
capacity utilized during that time[79]. The capacity factor can be expressed by the equation given
below[11]:

Capacity Factor = Actual Energy Output
Maximum Power Rating x operating hours

× 100% (2.5)

A higher capacity factor, approaching 100%, indicates a more consistently available energy source
throughout the year, highlighting the effectiveness of the turbine’s location and the overall dependability
of the energy source [87].

2.6.6. Likelihood of Outcome
The IPCC uses a scale with five categories to communicate confidence levels in its findings: starting
from the lowest certainty ”very low,” then rising through ”low” and ”medium” to the more certain ”high”
and the highest level ”very high” [49]. The IPCC divides the likelihood of outcomes due to climate
change into the following categories

1. 99–100% probability: virtually certain
2. 90–100% probability: very likely
3. 66–100% probability: likely
4. ∼50% probability: more likely than not
5. 33-66% probability: about as likely as not
6. 0-33% probability: unlikely
7. 0-10% probability: very unlikely
8. 0-5% probability: extremely unlikely

2.6.7. Sensitivity factor
The sensitivity factor used in this work can be defined as the ratio between the relative change in Annual
Energy Production (AEP) and the relative change in wind speed compared to historical values. The
higher the sensitivity factor, the greater the impact of changes in wind speed on AEP. This indicates
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that even small variations in wind speed can lead to significant changes in AEP, reflecting the system’s
sensitivity to wind conditions. The sensitivity factor can be calculated using the following equation:

Sensitivity factor = change in AEP (%)
change in wind speed (%)

(2.6)

2.6.8. Haversine Equation
Haversine formula is used to compute the distance between two points on the surface of a sphere using
the longitudes and latitudes of those points [98]. In this study, this is used to find the distance between
the coordinate points of the GCMs and the reanalysis data.

Given two points on the Earth, (lat1, lon1) and (lat2, lon2), the Haversine formula to calculate the dis-
tance D between these points is given by:

D = 2R×
∣∣arcsin (√a

)∣∣ (2.7)

where

a = sin2
(
∆lat
2

)
+ cos(lat) · cos(lat) · sin2

(
∆lon
2

)
∆lat and ∆lon are the differences in latitude and longitude, respectively:

∆latrad = lat2 − lat1

∆lonrad = lon2 − lon1

lat1, lon1, lat2, and lon2 are the latitudes and longitudes of the two points converted from degrees to
radians and R is the Earth’s radius measured approximately 6371 kilometers.

Having explored the key elements of wind resource assessment, the focus now shifts to the fundamen-
tal definitions that support these concepts. Section 2.6 will provide essential definitions and metrics
that are crucial for a clear understanding of the terms and methodologies used throughout this study.

2.7. Fundamental Definitions
2.7.1. Quantile
An x-quantile (also known as fractile) is the value in a distribution such that x*N observations fall below
it, where 0<x<1 and N is the total number of observations. These can also be computed in percent
when 0%<x<100% . The x-quantile can also be referred as X-percentile, with X=x*100; for instance a
0.30-quantile could be designated as 30-percentile, as well [83].

2.7.2. Mean Wind Speed
The mean of a dataset is defined as the averaging metric that provides the total average. The mean
is calculated by summing up all the values in a dataset, and dividing by the number of observations,
N [38]. This can simply be translated to daily, monthly or annual wind speeds where N would be the
number of hours or days using the following equation:

(ū) =

∑N
i=1 (vu)

N
(2.8)

where, ū is the mean of the wind speeds,
N is the total number of hours/days,
u is the wind speed at each time stamp.
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2.7.3. Median
Themedian is the central value in a data set that is arranged bymagnitude. It separates the data into two
equal halves: one with values greater than or equal to the median, and the other with values less than
or equal to it. The primary advantage of the median is its immunity to extreme values (outliers), since it
is a positional measure rather than one influenced by the magnitude of the values. This characteristic
makes the median a reliable indicator of central tendency [6].

2.7.4. Rolling mean
A rolling mean, also known as a moving average, is a metric used to identify trends over shorter time
periods within a dataset. This technique is beneficial for highlighting long-term trends that may be
obscured by short-term fluctuations. The rolling average is calculated as the sum of data points over
a specified time period divided by the number of time periods [85]. In science and engineering, the
mean is typically calculated from an equal number of data points on either side of a central value to
ensure that mean variations align with data variations, avoiding time shifts [18]. The central moving
mean formula is given by:

X̄t =
1

2a+ 1

a∑
i=−a

Xt+i (2.9)

where, X̄t is the central moving mean at time t,
a is the number of data points on each side of the central value. This determines the window size,
which is 2a+1. For example, if a = 5, the window size is 11 (i.e., 5 points before, the central point, and
5 points after) and ,
Xt+i are the data points within the window centered at t.

2.7.5. Normalisation
Normalisation a dataset involves adjusting values measured on different scales to a common scale,
typically before averaging them. This process creates modified versions of the original statistics by
shifting and scaling them. The goal is to enable meaningful comparisons of normalized values across
different datasets by eliminating the impact of major influencing factors, such as anomalies in a time
series [19].

2.7.6. Error metrics
In this work, the error metrics presented below and the correlation coefficients in the next subsection
have been used to make comparison between the historical wind speed projections given by the re-
analysis data ERA5 and CMIP6 GCMs and statistically downscaled GCMs.

Mean absolute percent error
Themean absolute percentage error (MAPE) evaluates the accuracy of a predictionmodel by averaging
the absolute percentage errors between predicted and observed values. MAPE can be computed by
using the formula [78]:

MAPE =
100

n

n∑
i=1

|pi − oi|
oi

(2.10)

where, n is the number of data points,
oi is the observed value, pi is the predicted value.

Percent Bias (PBIAS)
PBIAS measures whether simulated/predicted values tend to be larger or smaller than observed values
on average. The ideal PBIAS value is 0.0, which indicates perfect accuracy. Lower magnitude values
suggest more accurate model simulations. Positive PBIAS values indicate the model is overestimating,
whereas, the negative values indicate underestimation [72]. The percentage Bias can be calculated
using the following formula [78]:

Bias =
1

n

n∑
i=1

(pi − pi) (2.11)
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2.7.7. Correlation coefficients
The Correlation coefficients are used to determine whether their is a good statistical correlation be-
tween the two datasets. The correlation degree is influenced by factors like terrain complexity, site
location similarity, elevation differences, and primarily, the distance between sites [56]. This study uti-
lizes Pearson’s correlation coefficient and the coefficient of determination to analyze the relationship
between predicted and observed values.

Pearson's correlation coefficient, r
The Pearson correlation coefficient measures how well data points fit a line of best fit.
r=1 indicates a perfect positive linear relationship,
r=−1 indicates a perfect negative linear relationship,
r=0 indicates no linear relationship.
The value of R can be computed using the following formula

r =

∑n
i=1(oi − ō)(pi − p̄)√∑n

i=1(oi − ō)2
∑n

i=1(pi − p̄)2
(2.12)

where, n is the number of data points,
oi is the observed value,
pi is the predicted value,
ō is the mean of observed values,
p̄ is the mean of predicted values
Even though Pearson’s correlation coefficient is useful for identifying relationship between datasets but
it does not reflect the magnitude of data, which may give a false sense of accuracy [76].

Coefficient of determination, r2
The coefficient of determination assesses how well predicted values match observed values, taking
both magnitude and fit into account. Unlike the best fit line, it measures the distance between data
points and the 1:1 line. An r2 value of 1 indicates perfect prediction, 0 indicates random prediction,
and less than 0 indicates predictions worse than random. The closer the points are to the 1:1 line, the
higher the r2 value [76].
According to literature, the correlation between predicted and actual values is rated as follows based
on the correlation coefficient r2: very poor if r2 is below 0.6, poor if it is between 0.6 and 0.7, moderate
for 0.7 to 0.8, good for 0.8 to 0.9, and very good for 0.9 to 1.0 [2].

Having established the fundamental definitions necessary for wind resource assessment in this sec-
tion, the following section 2.7 will now review recent literature on the impact of climate change on
wind resource assessment. This section explores key studies and findings that illustrate the evolving
understanding of how climate change affects wind energy potential.

2.8. Recent literature on climate change impact on wind resource
assessment

This section discusses the extensive research done by various scientists and experts in assessing the
impact of climate change on wind resource assessment for different locations in the world and their
critical findings and suggestions.

Current and future wind energy resources in the North Sea according to CMIP6 [43]

This work investigates the mid-century changes in hub-height wind speed and power density over
northern Europe using an ensemble of CMIP6 model outputs under historical and SSP5-8.5 scenarios.
Hahmann et. al. found that the annual mean values between the past (1995–2014) and the future
(2031–2050) show non-significant differences. However, over 75% of the models predict a decrease
in wind resources during summer in the North Sea and an increase during winter in the Baltic Sea.



2.8. Recent literature on climate change impact on wind resource assessment 22

The accuracy of CMIP6 models in capturing wind resources at levels accessible to current wind tur-
bines has been validated against long-term measurements and reanalysis data. However, using a
constant power law to extrapolate wind speeds to turbine height often exaggerates future changes, as
it does not account for changes in surface roughness and atmospheric stability.

Changes in wind energy production are expected to range between 5% and 10%, which may seem
small but can have significant economic impacts due to higher financing costs and revenue losses for
wind farm operators. Importantly, the predicted decrease in summer wind resources could be mitigated
by solar power, although the overall effects on power system operations require further study. This work
underscores the importance of using a comprehensive set of models and considering simplifications
and numerical imprints on model-generated time series in power system studies.

IJmuiden Ver Wind Farm Zone Wind Resource Assessment report, prepared for Rijksdienst voor On-
dernemend Nederland (RVO) [78]

This report analyzes the impact of climate change on wind resources at a North Sea site near the
IJmuiden Ver measurement point using a EURO-CORDEX multi-model ensemble. They validated the
accuracy of seven CORDEX models against historical wind speed data over a 26-year period, finding
the models reliable for future projections.

Key findings for this work include:

• The analysis used seven validated climate models to construct three ensembles for short (2022-
2045), medium, and long-term (2075-2099) scenarios under RCP4.5 and RCP8.5 pathways.

• Ensemble F projects a 0.55% decrease in mean wind speed and a 1.5% reduction in annual en-
ergy yield for 2022-2045 under RCP8.5. Similar trends were observed in a study for the German
North Sea.

• By 2075-2099, themeanwind speed and energy yield could decrease by 1%and 3%, respectively,
under RCP8.5. The impact is smaller under RCP4.5, with projected decreases of 0.7% in mean
wind speed and 1.7% in annual energy produced.

• Two ensembles indicate a significant reduction in summer wind power density and energy yield
generation under RCP8.5, reaching up to 20% and 25%, respectively, in the long term.

• An overall decline in energy yield and operation hours is expected due to reduced wind speeds
and increased frequency of extreme wind events, particularly under RCP8.5.

The study highlights the need for regional analysis to enhance reliability and acknowledges the lack of
bias correction in the long-term climate projections.

Impacts of climate change on energy systems in global and regional scenarios [101]

This study reviewed about 220 papers on the impacts of climate change on energy systems, with a
focus on renewable energy sources, including wind power. It was found that the impacts of climate
change on wind power potential are mixed, with variations across different regions and studies. In
Europe, both increases and decreases in wind power potential have been reported. Specifically, de-
creases are projected for southern Europe, while slight increases are expected in central and northern
Europe. Some regional studies indicated a low probability of changes in wind power for South Africa,
whereas other studies reported favorable future conditions for wind power in parts of the United States
and Brazil. Additionally, a recent global study indicated an overall increase in wind energy potential in
the Southern Hemisphere.

These findings underscore the need for a consistent multi-model assessment framework to accurately
evaluate the climate impacts on wind energy and support regional and global energy planning. Com-
prehensive studies with harmonized methodologies are essential to reduce uncertainties and improve
comparability. Policymakers should take these mixed impacts into account in their planning to ensure
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the sustainability and resilience of wind energy systems.

Climate change impacts on wind energy generation in Ireland [31]

A multi-model ensemble of high-resolution climate models was utilized in this study to address uncer-
tainties in future wind energy projections for Ireland. The results indicate significant variability among
the climate models, with a general trend of projected wind energy decrease ranging from 0.4% to 2%,
particularly pronounced during the summer months with reductions of up to 6%, while winter months
could see slight increases of up to 1.1%. This variability leads to greater intra-annual fluctuations in
wind energy production, posing challenges for energy system stability, especially with the increased
occurrence of low-power periods during the summer.

The study highlights the frequency and duration of low-power events, particularly offshore, are projected
to increase by the end of the century, necessitating the strategic planning of wind farms across diverse
wind regimes to optimize regional compatibility and maintain a consistent energy supply. Additionally,
the Irish offshore wind energy network, though currently small, could play a crucial role in balancing the
energy system, as offshore wind resources are projected to have longer durations of low-power events
during the summer.

Overall, the projected decrease in wind energy generation underscores the need for a continuously
evolving renewable energy system to ensure a stable and secure electricity supply. The study’s find-
ings, particularly on the projected changes for low- and high-power events, emphasize the importance
of comprehensive planning and development of both onshore and offshore wind resources to balance
the energy supply and mitigate the impacts of climate change on wind energy production.

Climate change impacts on wind power generation for the Italian peninsula [5]

In this study, researchers analyzed the impact of climate change on the availability of future wind
resources using an ensemble of 11 Euro-CORDEX regional climate models and the MERIDA mete-
orological reanalysis at different resolutions. The analysis involved bias correction of wind variables to
ensure accurate wind power production estimates, based on the VESTAS V112—3000 kWwind turbine.
The study assessed wind producibility for both onshore and offshore areas within 40 km of the Italian
coast, across short (2021–2050), medium (2051–2080), and long-term (2071–2100) periods, under
”business as usual” RCP 8.5 and RCP 4.5 scenarios.

They found that Short-term projections show small and unreliable variations in wind producibility with
high uncertainty. Whereas, the Medium and long-term projections for the RCP 8.5 scenario indicate
significant and statistically significant changes, particularly a decrease in wind producibility in the west-
ern offshore areas and the SICI and SARD market areas. Moreover, The eastern plains of the NORD
market area show a reliable increase in wind producibility during the summer season. The RCP 4.5
scenario projects decreases in the west coast, SICI, and SARD market areas, especially in autumn,
and increases in winter wind producibility in Central Italy’s mountainous regions and the NORD market
area.

The study concludes that the impact of climate change on wind producibility will remain small and not
statistically significant in the short term. However, medium and long-term projections suggest that
climate-related changes should be considered in future planning, particularly for new offshore wind
farms. Future installations should focus on areas with lower expected decreases in producibility, such
as the eastern Italian coast and southeast offshore regions. The study also highlights the importance
of considering multi-decadal fluctuations of wind energy linked to internal climate variability, which align
with the average life cycle of wind farms. Future research should investigate intra-daily and inter-annual
variability impacts and explore how different types of wind turbines might affect wind producibility under
climate change scenarios.

Climate change impact on Northwestern African offshore wind energy resources [82]
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This study provides a comprehensive analysis of the impact of climate change on wind resources in the
Northwestern African offshore region, utilizing high-resolution regional climate models. By employing
two REMO-OASIS-MPIOM (ROM) simulations in both uncoupled and coupled modes, alongside a
CORDEX-Africa multi-model ensemble, the study investigates the climate change signal in offshore
wind resources.

The analysis reveals that the Azores high-pressure system, combined with the thermal low over North
Africa, generates persistent alongshore winds, particularly along western North Africa. These winds
create significant annual and seasonal energy density patterns, with the highest wind energy resources
found downstream of Cape Ghir and between Cape Bojador and Cape Blanc. Projections indicate
that while the overall wind energy patterns remain stable, there are notable changes in available wind
resources. For instance, annual wind energy is projected to decrease in the southern offshore areas,
especially under the RCP8.5 scenario. Conversely, increases in wind energy density are expected in
the coastal regions of Morocco and offshore Western Sahara during specific seasons.

The findings suggest that more detailed assessments of wind energy generation in the Northwestern
African offshore region, considering specific turbines and sub-daily output scales, are necessary. Ad-
ditionally, further research on wind model level interpolation and logarithmic extrapolation for energy
density is recommended to enhance the accuracy of wind energy assessments.

The background chapter ends here. It highlighted the critical components and techniques in wind re-
source assessment, emphasizing the importance of accurate climatemodels and downscalingmethods
in predicting wind energy potential under changing climate conditions. Building on this foundation, the
following methodology section will outline the specific aims of this study, the selected sites for analysis,
and the detailed procedures for data collection and preparation, ensuring a thorough examination of
wind power generation potential.



3
Methodology

This chapter details the methodologies employed in this study to address the research questions out-
lined in Section 3.1. Building on the foundational concepts discussed in Chapter 2, this chapter outlines
the sites assessed in this work in section 3.2, the processes of data collection and preparation (Section
3.3), the design of experiments including the different models used in Section 3.4, and the methods
and techniques employed for data analysis (Section 3.5) that lead to the results presented in the next
chapter.

3.1. Research Questions
The interplay between climate change and wind energy highlights the importance of accurately assess-
ing future wind resources. The various data types and sources, along with climate change scenarios,
underscore the complexity of predicting wind speed variations. Additionally, the techniques of down-
scaling and the parameters used in wind resource assessment raise questions about the reliability and
implications of different modeling approaches. The assessment of wind speed variations is critical for
understanding future climate impacts on wind energy production and to ensure efficient planning and
optimization of wind farms.
This study focuses on the methodologies used to project wind speed variations and evaluates their
implications on energy yield and financial outcomes. Specifically, this research aims to address the
following questions:

1. How do the downscaling methods impact the assessment of future variations in mean wind speed
in specific regions under different climate change scenarios ? What implications does it have for
the energy yield, capacity factor and revenue?

2. How do the downscaled and the non-downscaled GCMs perform in projecting historical wind
speed variation in comparison to reanalysis data?

3.2. Sites in Analysis
A total of 7 sites in Europe and 2 sites in North America have been chosen for the analysis of wind
resource in this study. The location coordinates have been anonymized due to a non-disclosure agree-
ment with the data owner. The sites have been labelled with acronyms indicating the country or general
location in figure 3.1 below. Table 3.1 presents an overview of the locations and the respective terrain
type.

Table 3.1: List of sites used in the project

Site name location Terrain type

NS1 North Sea Offshore

25
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NS2 North sea Offshore

FR France Inland, complex

IT Italy Inland, complex

UK1 United Kingdom Inland, complex

UK2 United Kingdom Offshore

UK3 United Kingdom Inland, simple

NA1 North America Onshore

NA2 North America Offshore

(a) Sites in North America (b) Sites in Europe

Figure 3.1: Maps of USA and Europe showing the sites analysed in this report

3.3. Data Collection and Preparation
This section outlines describes the data utilized in this study. It is divided into three subsections, each
discussing data collection practices for different components: Climate Models, Reanalysis Data, and
the Reference Wind Turbine utilized in this report.

3.3.1. Climate models
Three types of datasets have been used in this study namely: dynamically downscaled CMIP5 GCMs
from the CORDEX experiment, non-downscaled CMIP6 GCMs and statistically downscaled CMIP5/6
(depending upon availability) GCMs provided by RWE. The Daily CORDEX projections have been re-
trieved from the Climate data store for the time period of 2006 to 2099. The CMIP6 data is available in
two forms: historical (from 1850 to 2014) and experimental (from 2015-2100) as mentioned in section
2.5.1. Daily near surface wind speed projections have been retrieved separately for these time peri-
ods and combined into one file selecting the common CMIP6 models in both for all the sites. These
projections have been used as raw data or data with lower spatial resolution and no downscaling for
comparison with rest of the datasets. The statistically downscaled daily CMIP6 projections by RWE
are available from year 2000 to 2099. However, since the CORDEX climate change scenario datasets
are only available from 2006 that is why the assessment have been carried out using the wind speeds
from year 2006 to 2023 as reference historical period.
The operational period has been chosen to be from year 2030 to 2060. For the further assessment
three more time periods in the future have been chosen namely: Near, mid and far future. Table 3.2
below provided an overview of the year and the respective labeled period:
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Table 3.2: Time Periods chosen to analyse wind speed variation

year period

2006-2023 Historical

2030-2060 Operational

2031-2050 Near-Future

2051-2070 Mid-Future

2071-2090 Far-Future

Moreover, the near surface wind speed obtained from CMIP6models and CORDEX has been projected
for a height of 10m. In order to proceed with the assessment, it is necessary to translate it to the hub
height of the wind turbine. Therefore, using the power law mentioned in equation 2.1 the wind speeds
have been extrapolated to the hub height of 100m with α= 1/7. The statistically downscaled data pro-
vided by RWE has already been translated to 100m so no adjustment has been made to it.

3.3.2. Reanalysis data
ERA5 hourly data for u and v component of wind has been retrieved for a historical period of 1994 to
2023 at heights 10m and 100m above the surface of the Earth from climate data store [24]. The ’u’
component represents the eastward component of the wind, that is the horizontal speed of air moving
in the east. Whereas, the ’v’ component of the wind is the northward component of wind or the vertical
speed of air moving towards the north [24]. To make use of this reanalysis data, the magnitude of
vector sum of the u and v components of wind is computed using the following formula:

uera5 =
√
u2 + v2 (3.1)

The reanalysis data is gridded at regular lat-lon grid of 0.25 degrees and a sub-region is extracted
for the desired location by providing the limits for longitudes and latitudes. This involves defining the
boundaries to the north, east, west, and south by selecting grid points that are closest to the provided ref-
erence coordinates provided by RWE, ensuring that these points are spaced 0.25 degrees apart. This
approach effectively boxes the reference coordinates within the chosen sub-region. Consequently, a
netCDF file is generated, which includes the u and v components of wind at the four boundary coor-
dinates of the sub-region. From these, the coordinate nearest to the reference point is selected for
subsequent comparisons with climate model outputs. The distance between the two coordinates has
been computed using the haversine formula mentioned in equation 2.7.

3.3.3. 5MW NREL reference wind turbine
A 5MW NREL reference wind turbine has been used in this study to perform the energy yield calcula-
tions. The gross properties of the wind turbine are stated in the table 3.3 below:

Table 3.3: NREL 5MW wind turbine specifications[32]

Rating 5 MW

Rotor Orientation, Configuration Upwind, 3 Blades

Control Variable Speed, Collective Pitch

Drivetrain High Speed, Multiple-Stage Gearbox

Rotor, Hub Diameter 126 m, 3 m
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Hub Height 90 m

Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s

Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm

Peak power coefficient, cp 0.482

Rated Tip Speed 80 m/s

Overhang, Shaft Tilt, Precone 5 m, 5°, 2.5°

Rotor Mass 110,000 kg

Nacelle Mass 240,000 kg

Tower Mass 347,460 kg

Coordinate Location of Overall CM (-0.2 m, 0.0 m, 64.0 m)

3.4. Design of Experiment
This section details the climate change scenarios, number of models for the different datasets that have
been used in this study.
Firstly, figure 3.2 shows the three different data sets with their corresponding climate change scenario
and resolutions. The main focused climate change scenario in this study is RCP4.5 or the SSP2-
4.5 since it is the most probable baseline scenario with carbon emissions falling after year 2050[49].
However, a comparison has been made for the RWE statistically downscaled data between RCP4.5
and RCP8.5 to analyse what implications would this ”worst case” scenario, with continuous rise in
carbon emissions, has on the mean wind speed variation.

Figure 3.2: Datasets used in this work

The CMIP6 climate models have the lowest resolution data ranging from 100-200km. On the other
hand, the statistically (RWE) and dynamically downscaled CMIP models have a resolution of 3 km and
12.5 km respectively. Figure 3.3 given below presents the number of models used in each dataset for
each site. Colour coding has been done to show the CMIP model used. CMIP 5 models use the cli-
mate change scenario RCP4.5 whereas the CMIP6 models incorporate the SSP2-4.5 scenario. Both
the scenarios are primarily the same in terms of Radiative forcing. The SSP scenarios also further
include the underlying socio-economic parameters as mentioned in chapter 2.
The CORDEX data has not been assessed for the NA sites due to lack of data.

More information on the choice of models is presented in the subsection 3.4.1 below.
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Figure 3.3: Number of models utilised for each dataset and site under different climate change scenarios

3.4.1. Model ensembles
From the literature, it has been understood that there are different sets of models that provide climate
projections based on laws of physics. For simplicity CMIP6 models, statistically downscaled CMIP6
models provided by RWE and CORDEXmodels that consist of CMIP6 downscaled models using RCMs
have been called dataset 1, 2 and 3 respectively from now on in this section.
It is worthwhile to note that these models for each case are not used individually but in an ensemble.
This implies that a multi-model approach has been used in order to strengthen the reliance of outcomes.
Multi-model approach has been proved to be good when dealing with climate modeling limits due to
various reasons. A few of them have been stated below:

• Each climate model represents an incomplete picture of reality as it is not possible that all spatial
and temporal scales are captured because of the computational resources. Climate processes oc-
cur on large time and spatial scales that can range from centuries to hourly and 10KM to 1000Km
to below 1KM respectively [35, 28].

• Certain climate processes and interactions, such as turbulent exchanges in stable conditions and
the life cycles of aerosols, have not been completely understood yet. [78]

• Each climate model operates on certain assumptions that can shape the outcomes, highlighting
the importance of comparing and integrating various models when analyzing climate change.

• RCP scenarios, which force the climate simulations also rely on future assumptions and account
for the natural variability within the climate system.

Therefore, using just one model might conceal compensating errors, but employing multiple models
can mitigate this issue. A multi-model strategy helps cancel out potential errors and diminishes the
impact of natural climate variability, offering a clearer insight into climate change effects [35, 28, 66].
All the available models for CMIP6 have been utilised in order to strengthen the confidence on the
results. A detailed description of these models for each dataset is given below:

CMIP6 model ensemble
The CMIP6 models have been used to get near surface wind speed projections which are serving as
raw data or the data with no downscaling in this investigation. Table 3.4 presents the models along
with their resolution and developer institution and countries.
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Table 3.4: CMIP6 models used in this report for raw data projections

CMIP6 Model Institution Country Resolution
(KM) Citation

ACCESS-
CM2

CSIRO-ARCCSS CSIRO and
Austr. Res. Council Centre of
Excellence for Climate System
Science

Australia 140 Dix et al. (2019a)

BCC-CSM2-
MR

BCC Beijing climate centre,
china China 100 Xin et al. (2018)

CESM2 NCAR National Center for Atmo-
spheric Research (USA) USA 100 Danabasoglu (2019f)

CMCC-CM2-
SR5

CMCC Centro Euro-
Mediterraneo sui Cambiamenti
Climatici (Italy)

Italy 100 Gopinathan et al. (2019a)

CMCC-ESM2
CMCC Centro Euro-
Mediterraneo sui Cambiamenti
Climatici (Italy)

Italy 100 Lovato and Peano (2020a)

GFDL-ESM4 Geophysical Fluid Dynamics
Laboratory (USA) USA 100 Krasting et al. (2018b)

HadGEM3-
GC31-LL

MOHCMet Office Hadley Centre
(UK) UK 140 Ridley et al. (2018a)

IITM-ESM
Centre for climate change Re-
search,Indian Institute of Tropi-
cal Meteorology India

India 170 Gopinathan et al.(2019a)

INM-CM4-8 INM Institute of Numerical Math-
ematics (Russia) Russia 150 Volodin et al. (2019a)

INM-CM5-0 INM Institute of Numerical Math-
ematics (Russia) Russia 150 Volodin et al. (2019d)

IPSL-CM6A-
LR

Institut Pierre Simon Laplace
(France) France 160 Boucher et al. (2018c)

KACE-1-0-G

National Institute of Meteorologi-
cal sciences, Korea meteorolog-
ical administration, Republic of
Korea

Republic of Korea 140 Byun et al. (2019b)

KIOST-ESM Korea Institute of Ocean Sci-
ence & Technology Republic of Korea 190 Kim et al. (2019a)

MIROC-ES2L

Japan Agency for Marine-Earth
Science and Technology, Atmo-
sphere and Ocean Research In-
stitute and National Institute for
Environmental Studies

Japan 250 Hajima et al. (2019a)

MIROC6 Japan Agency for Marine-Earth
Science and Technology Japan 250 Tatebe andWatanabe (2018)

MPI-ESM1-2-
LR

MPI-M Max Planck Institute for
Meteorology Germany 170 Wieners et al. (2019b)

MRI-ESM2-0 MRI Meteorological Research In-
stitute Japan 100 Yukimoto et al. (2019e)

NorESM2-LM NCC Norwegian Climate Centre Norway 190 Seland et al. (2019a)

https://doi.org/10.22033/ESGF/CMIP6.2281
https://doi.org/10.22033/ESGF/CMIP6.1725
https://doi.org/10.22033/ESGF/CMIP6.2185
https://doi.org/10.22033/ESGF/CMIP6.44
https://doi.org/10.22033/ESGF/CMIP6.1362
https://doi.org/10.22033/ESGF/CMIP6.1407
https://doi.org/10.22033/ESGF/CMIP6.419
https://doi.org/10.22033/ESGF/CMIP6.44
https://doi.org/10.22033/ESGF/CMIP6.1422
https://doi.org/10.22033/ESGF/CMIP6.1423
https://doi.org/10.22033/ESGF/CMIP6.1534
https://doi.org/10.22033I
https://doi.org/10.22033/ESGF/CMIP6.1922
https:doi.org\10.22033/ESGF/CMIP6.902
https://doi.org/10.22033/ESGF/CMIP6.881
https://doi.org/10.22033/ESGF/CMIP6.742
https://doi.org/10.22033/ESGF/CMIP6.621
https://doi.org/10.22033/ESGF/CMIP6.502
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NorESM2-
MM NCC Norwegian Climate Centre Norway 100 Bentsen et al. (2019b)

UKESM1-0-
LL MOHCMet Office Hadley Centre UK 140 Tang et al. (2019)

The number of models used per site in this report varies according to the availability of data (see figure
3.3). For example, in the analysis of site HKW all CMIP6 models mentioned in the table above have
been utilized except the ACCESS-CM2 and MIROC-ES2L. And in site analysis of Oklahoma onshore
wind farm, the model: IITM-ESM is absent.

CORDEX model ensemble
CORDEX downscales CMIP5 models using the RCMs. In the table 3.5 given below, the CMIP5 models
have been presented with the corresposing RCMs that they have been downscaled using.

Table 3.5: CMIP6 and corresponding RCM models used in CORDEX downscaling

CMIP model CMIP Institute CMIP
Country

RCM RCM Institute RCM
country

EC-EARTH EC: Earth Consortium Europe CCLM4_8_17 CCLM: Climate Limited
Area Modelling Commu-
nity

Europe

EC-EARTH EC: Earth Consortium Europe REMO2015 GERICS and MPI: Cli-
mate Service Center and
Max Planck Institute

Germany

EC-EARTH EC-Earth Consortium Europe RACMO22e KNMI: Royal Nether-
lands Meteorological
Institute

Netherlands

IPSL-CM5A-
MR

IPSL: Institut Pierre Si-
mon Laplace

France WRF381p CRC: Center for Re-
search on Preservation

France

IPSL-CM5A-
MR

IPSL: Institut Pierre Si-
mon Laplace

France RCA4 SMHI: Swedish Meteoro-
logical and Hydrological
Institute

Sweden

HadGEM2-
ES

MOHC: Met Office
Hadley Centre

UK HIRHAM5 DHI: Danish Meteorologi-
cal Institute

Denmark

HadGEM2-
ES

MOHC: Met Office
Hadley Centre

UK REMO2015 GERICS and MPI-CSC:
Climate Service Center
and Max Planck Institute

Germany

HadGEM2-
ES

MOHC: Met Office
Hadley Centre

UK RCA4 SMHI: Swedish Meteoro-
logical and Hydrological
Institute

Sweden

MPI-ESM-LR MPI: Max Planck institute
for Meteorology

Germany RCA4 SMHI: Swedish Meteoro-
logical and Hydrological
Institute

Sweden

NorESM1-M NCC: Norwegian Climate
Centre

Norway REMO2015 GERICS and MPI-CSC:
Climate Service Center
and Max Planck Institute

Germany

NorESM1-M NCC: Norwegian Climate
Centre

Norway RCA4 SMHI: Swedish Meteoro-
logical and Hydrological
Institute

Sweden

https://doi.org/10.22033/ESGF/CMIP6.506
https://doi.org/10.22033/ESGF/CMIP6.1569
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RWE Statistically downscaled CMIP model ensemble
The CMIP6 and CMIP 5 GCMs have been statistically downscaled using the MBC method and bias
corrected with ERA 5 at resolution of 3 km. The phase of CMIP used varies for sites depending on the
availability. Complete list of the models used is presented in Appendix A.1.1.

3.5. Data Analysis
This sections presents the methods followed in this study to evaluate the mean wind speed variation,
its impact on annual energy yield and revenue and to compare the GCMs with reanalysis data.
For evaluation the mean wind speed variation, all nine sites have been utilized to assess the perfor-
mance and behavior of different datasets and models in projecting wind speed. This comprehensive
analysis allowed for a broader understanding of the variability and reliability of wind speed projections
across diverse geographical locations.

For the estimation of AEP and comparison of GCMs projections with ERA5 historical data, a selective
approach has been employed, focusing on four specific sites. This selection was driven by the need to
provide a detailed and representative analysis of both onshore and offshore wind energy potential. The
chosen sites include two onshore locations with varying terrain complexities—FR (a site with moderate
terrain complexity) and IT (a site characterized by highly complex mountainous terrain) and additionally,
two offshore sites, NS1 and NS2.

3.5.1. Annual wind speed variation
Daily wind speed projections from all the datasets have been to converted to annual mean wind speeds
simply by taking the per year mean for all the models for each site. The variation in wind speed has
been calculated by normalising the yearly wind speeds with the historic wind speed period of 2006 to
2023. The detailed steps of the procedure are mentioned below:

1. The long term historical mean wind speed has been calculated by taking the mean of all the
annual wind speeds from year 2006 to 2023 for the ensemble of models.

2. All annual mean wind speeds are then divided by this reference mean historical wind speed from
the corresponding model and simply multiplied by 100 to get the percent variation. This provides
the variation shown by each model for the future or operational period with respect to the historical
period.

3. A rolling mean with a window of 10 years has been calculated for the entire time series for each
model. This is done by taking an average from 5 years before the year x to five years after year
x where x ranges from year 2006 to 2090. However, since there is no possibility of going five
years before for the years 2006 to 2010, a looking forward window of 10 years is used where the
average is calculated for the x+10 years.

4. In the next step, the median of the rolling averages of all the models is obtained. This helps
observe the trend of wind speed variation over the years. The median is preferred since it is not
affected by the extreme outliers or non-symmetric distributions. However, to make this plot more
meaningful, rolling mean of the normalised wind speeds is taken.

5. Long term statistics of the wind speed variation are also computed in the following way: the me-
dian of the normalised long-term mean wind speeds given by all models (from step 2) is obtained
for the operational period of 2030 to 2060 simply by averaging out the normalised annual mean
wind speed for this period and taking then median value of the models.

6. Similarly he median of the historical long-term mean wind speeds given by all models is also
obtained in order to perform comparison analysis. This is done by taking the time slice of nor-
malised mean wind speed from 2006 to 2023 and taking median just as done in step 4. Since the
historical mean wind speeds have been normalised by themselves the long term historical mean
wind speed variation is simply 1 or 100%. This is used as a reference line to compare the change
projected for the long term operational period.

7. However, this long term median only tells the variation in mean wind speed that the 50% of
the models are predicting. So to rely completely on these statistics does not strengthen the
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confidence on the assessment. Therefore, ± 33% quantiles are also calculated as per the IPCC
Risk threshold guidelines. These quantiles are calculated using the long term mean wind speed
projection given by each model and taking the 50+33= 83% quantile or 83rd percentile and the
50-33=17% quantile or 17th percentile in other words.

8. The quantiles basically tell the wind speed variation predicted by 17% and 83% of the models.
When considering a risk to wind resource assessment, the 83% quantile is taken into account.
This means that if 83% of the models show a decline or increase in the wind speed variation in
the operational period as compared to the historic reference period, then a risk to wind resource
is taken into account.

This procedure has been carried out for all the datasets and different scenarios for operational period,
near, mid and far future using the programming language python in Visual Code Studio.

3.5.2. Annual Energy Yield
The annual energy yield calculations have been performed for four European sites (NS1, NS2, FR, IT)
using the ERA5 reanalysis data and the 5MW NREL reference wind turbine for the operational period.
Step by step procedure is as follows:

1. The first step involves obtaining the Power curve for the 5 MW NREL wind turbine. Based on
the wind turbine specifications (table 3.3) and using the wind power formula the following power
curve is obtained:

Figure 3.4: Power curve of 5MW NREL reference wind turbine[32]

2. The next step is to plot the historic weibull curve. ERA5 Hourly wind speed projections , uera5,
at 100m from year 2004 to 2023, as mentioned in section 3.3.2 are translated to the hub height
of 90m using the power law and plotted into a histogram. The histogram is fitted using a weibull
distribution and the weibull parameters: shape (k) and scale (a) factors are obtained.

3. Using the Shape and scale factors the probability distribution function for each site is calculated
with dU= 0.1m/s with equation 2.3.

4. Ultimately the AEPhistoric is calculated using the equation 2.4.
5. To observe the change in AEP due to change in wind speeds, a decrement of 1%,3%,5% and

10% is applied to the uera5 by simply multiplying the wind projections by 0.99, 0.97, 0.95 and 0.90
respectively. These specific percentages are chosen to systematically assess the sensitivity of
AEP to variations in wind speed. By evaluating a range of small to moderate decreases, the study
aims to understand how fluctuations in wind speed affect energy yield at specific sites. Moreover,
it is assumed that the distribution does not change over time.

6. Step 2 is repeated again with the new decreased wind speed and weibull curve is plotted. An
expected outcome is change in the scale factor as the wind speeds decrease now as shown in
figure 3.5.
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Figure 3.5: Shift in the Weibull curve upon decreasing the wind speed by a constant factor

7. Using the new weibull curve, the shape and scale factors are re-calculated and and step 3 and 4
are repeated, yielding new values of AEP.

8. Relative percentage variation of the new AEP with respect to the historic AEP is calculated.
9. Sensitivity factor is measured as well for all the sites.

3.5.3. Capacity factor
The capacity factor of the wind turbine is calculated using the equation 2.5 mentioned in chapter 2 and
the relative change is capacity factor with respect to historic period is calculated.

3.5.4. Impact on Revenue of electricity
Literature says that in short term electricity market, when there is a shortage in the electricity genera-
tion, the price of electricity increase as the supply decreases while the demand stays constant or even
increases. When there is an increase in the generation, the prices usually tend to go down [86, 95]. As
a result, utilities may need to buy extra energy from more expensive backup sources, which results in
higher costs being passed on to consumers. Furthermore, the limited availability of electricity increases
competition for the existing supply, driving prices even higher.
The impact of wind speed variation affects the AEP which subsequently alters the price [17].

For long term future, it is more complex to predict how the electricity market would react to the changes.
To proceed with this analysis, a 10 year average of power purchase agreement prices or the whole sale
prices of electricity for the locations have been retrieved [33] and the total revenue has been calculated
simply by multiplying the Eur/MWh electricity price with the energy produced in the future. A 50MW
wind farm consisting of 10 5MW NREL reference wind turbines has been assumed for this evaluation
and the total AEP of the farm is calculated using the AEP calculated in 3.5.2.
This method provides a quantitative evaluation of how variations in AEP induced due changes in wind
speed influence electricity prices. However, this is simply an approximation and there are several
factors that can influence the costs [17, 89]:

• Factors like electricity market structures, taxes, Supply chain issues, transmission and distribution
systems etc. have a strong influence on the prices[89, 17].

• Availability of alternative sources of generation (eg. hydro,solar,etc.).
• Interventions by regulators or market operators can mitigate price spikes.
• Seasonal variations and time of the day affects the generation which can influence the prices.
• There is a possibility of consumers responding to the spike in prices by reducing their consumption
which can stabilize or reduce the prices again.

Real-world models are more complex and require detailed analysis at each step considering factors
like supply and demand curves, regulatory policies based on the region or country. For estimations
with higher accuracy a detailed analysis on economics of energy markets of the regions is necessary
which is out of the scope of this project.
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3.5.5. GCMs comparison with Reanalysis data
This section outlines the methodology used to compare wind speed projections from the two datasets:
GCMs from CMIP6 and statistically downscaled CMIP GCMs, both under the RCP4.5/SSP2-4.5 sce-
nario. These projections are evaluated against the ERA5 reanalysis data for the four sites in Europe
as mentioned in previous sections at a height of 10m.

The approach for this analysis is adapted from the methodology employed by the Rijksdienst voor
Ondernemend Nederland (RVO) in their wind resource assessment report for the IJmuiden Ver wind
farm zone in the North Sea [78]. Historical experiments are chosen for the comparison to avoid getting
the influence of climate change scenarios. Table gives an overview of the datasets used:

Table 3.6: Datasets used for comparison with reanalysis data

Dataset Time period

CMIP6 1994-2014

Statistically downscaled CMIP
GCMs 2006-2020

Both the datasets are compared with the daily ERA5 projections obtained by taking the daily mean of
hourly uera5 calculated using equation 3.1 for their corresponding historical period.
To initiate the comparison, for each model in the datasets, a new representative year of 358 days is
built where wind speed at each date is the long term average of wind speed at that date occurring in
the entire historical time series. For instance, daily mean wind speed projection on 1st January of this
representative year is the mean of all the daily mean wind speeds that occur on 1st January from year
1994 to 2014 (in case of ERA5). This approach has been adapted because, as mentioned in chapter
2, the absolute values from the simulations by the GCMs are not synchronised with real time and day
by day comparison of these would not be accurate. Therefore, the GCMs should only be used for long
term statistics spanning over 10 years [78, 35]. For simplicity and consistency the 358 days representa-
tive year is constructed with 30 days in months from March to January and 28 days in February aligning
with the use of 30 days in a month by GCMs.

After getting this representative year for the datasets, the comparison has been conducted by measur-
ing the following error metrics: Bias (%), Mean absolute percent error (%) and correlation coefficients:
Pearson’s correlation coefficient (R) and Coefficient of Determination (R2).
Further analysis of the results involves measuring the distances between the coordinates of the GCMs
and the ERA5 dataset using the haversine formula once again (see equation 2.7), examining the terrain
of the locations, and estimating how the MAPE varies with distance and terrain type.

The chapter on methodology employed in this study concludes here. The comprehensive approach
outlined herein forms the foundation for the subsequent analysis. In the following chapter, the results
derived from these methodologies will be presented and discussed in detail. The analysis will include
a thorough examination of the data, interpretation of findings, and evaluation of the implications that
would lead the reader to the answers of the research questions.



4
Results and Discussion

This chapter presents the key findings of this work answering the research questions mentioned in the
methodology. The first section details the outputs from the mean wind speed variation analysis per-
formed for 9 sites and a special analysis on CORDEXmodels followed by a discussion on annual energy
yield and sensitivity and capacity factor. Later in the chapter revenue from thr AEP is presented. The
chapter ends with a detailed discussion on comparison of reanalysis data with CMIP6 non-downscaled
and statistically downscaled CMIP5/6 GCMs.

4.1. Mean wind speed variation
This section presents the mean wind speed variation obtained for each site from CMIP6, Statistically
downscaled CMIP and CORDEX CMIP5 projections.
The time series plots (normalised wind speed vs year) are computed using the methodology given in
3.5.1 in the previous chapter. The error bar graphs compare all the datasets in one graph for operational
period and near, mid and far future. Similar to the time series plot, the error bars indicate the range
from the 17% to the 83% quantiles. The filled circles indicate the 50% quantiles. The numerical values
used to build the plots are tabulated in Appendix XX. PUT APPNEDIX Summary tables for this section,
providing an overview of the sites and datasets where a decline in wind resource poses a risk can be
found at end of this section . A risk is reported when at least 83% of the GCMs show a decline in
the wind speed variation as compared to the historic wind speed projections. Similarly, an opportunity
is reported when at least 83% of the models predict an increase in the long-term mean wind speed.
For the evaluated locations When the 17% to 83% quantile range is not showing either an increase or
decrease of the mean wind speed, no risk is reported, as reliable conclusions cannot be drawn due to
the poor agreement across the models. The detailed results and discussion of wind speed variation for
each site and each dataset is now presented in the upcoming subsections.

4.1.1. NS1
Figure 4.1 displays the normalized mean wind speed from the historical period through the operational
period for the four datasets of NS1. The plots can be interpreted as follows: the Operational mean-83%
quantile represents the 83% quantile of the long term mean normalised wind speeds predicted by var-
ious models. Similarly, The Operational mean-17% quantile represents the 17% quantile of the long
term mean normalised wind speeds predicted by the models and Operational mean-median is the 50%
quantile or the median. The 10 year rolling mean- median is the median of rolling mean calculated for
normalised annual mean wind speed projections by all the models. The boundaries of the light blue
shaded region represent the 83% quantile and the 17% quantile of the 10-year rolling mean of the nor-
malised annual mean wind speeds. And lastly, the grey dotted line represents the reference historic
period.

Under climate change scenario SSP2-4.5, the CMIP6 (figure 4.1a) and statistically downscaled CMIP5
projections (figure 4.1c) indicate that the 83% quantile is above the historic reference period at 101.2 %

36
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and 101.433 % respectively. This implies that the long term mean normalised wind speed projections
from 83% of the models fall below these percentages signifying that the projections are too scattered
to determine any significant decline in wind resources, suggesting no reported risk from these two
datasets. At the same time, the 17% quantile is beneath the historic reference, so that the opportunity
of an increase in wind speed cannot be predicted either.

(a)Wind speed projections by 20 CMIP6 GCMs under SSP2-4.5 (b)Wind speed projections by 11 CORDEX models under RCP 4.5

(c) Statistically downscaled wind speed projections by 19 CMIP5
GCMs under RCP 4.5

(d) Statistically downscaled wind speed projections by 21 CMIP5
GCMs under RCP 8.5

Figure 4.1: Normalised mean wind speed from the year 2006 to 2060 at Site: NS1

For the CORDEX dataset under RCP4.5 (figure 4.1b), the 83rd percentile falls below the historic ref-
erence period at 99.8%, indicating a decline in long-term mean normalised wind speed projections by
83% of the models. According to IPCC guidelines for the likelihood of outcomes, this decline signifies
a reported risk.

The 10-year rolling mean- median, along with their respective confidence intervals, illustrate the trend in
wind speed variations over time. The spread of the confidence intervals is a measure of the uncertainty
in the projections. A narrow confidence interval in the historical period represents low uncertainty. Since
the datasets are bias corrected using the ERA5 reanalysis data, they are more aligned causing lower
uncertainty.

• For CMIP6 projections, as the projections extend further into the future, uncertainties accumulate,
leading to broader confidence intervals. Since the CMIP6 models operate at a coarser resolution,
they capture large-scale processes well but may miss finer regional details, leading to higher
uncertainty. Moreover, the presence of a diverse ensemble of models from various institutions,
increasing variability and uncertainty. Furthermore, along the future, the transitioning effects to
SSP2-4.5 become more prominent also adding to the increases uncertainty.

• For Statistically downscaled CMIP5 projections the uncertainty is initially similar to the raw CMIP6
models due to reliance on the same historical data. Moreover, as the statistical downscaling
relies on GCM outputs, and any uncertainties in these models propagate through the downscaling
process. While statistical downscaling improves spatial resolution, it may not always accurately
capture all local processes, leading to retained or increased uncertainty. Lastly, presence of a
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diverse ensemble of models , yet again, increases the variability and broadens the confidence
intervals.

• Unlike the CMIP6 and statistically downscaled CMIP5 projections, the CORDEX dataset exhibits
a declining trend in wind speeds between years 2022 and 2042, followed by a slight increase
towards the end of the period. The dynamical downscaling used in CORDEX incorporates high-
resolution regional data from RCMs, , which allow for a more accurate evaluation of small-scale
characteristics, increasing the impact of local conditions on the model predictions.

Figure 4.1d illustrates the statistically downscaled CMIP5 projections under the RCP8.5 scenario. Sim-
ilar to the CMIP6 and statistically downscaled CMIP5 projections under RCP4.5, no risk is reported for
this site, with the 83rd percentile at 101.28%. The rolling mean-median projections indicate minimal
variation over the years, and although wind speeds decline towards the end of the period, the long-term
83rd percentile remains above the historic reference period, indicating no significant risk.

Future periods have been classified as near, mid, and far future as mentioned in chapter3, and nor-
malised wind speed projections for these periods are presented through the error bar graph in figure
4.2 for the RCP 4.5/SSP2-4.5 scenario. Additionally, a comparison between the RCP 4.5 and RCP 8.5
scenarios has been made for the statistically downscaled CMIP projections, as shown in Figure 4.3.
This dataset was selected due to its high resolution of 3 km.

Figure 4.2: Normalised wind speed projections for different future time periods under RCP 4.5/SSP2-4.5 at site: NS1.
Confidence intervals show the 83% and 17% quantiles, point in between shows the median of the models

From figure 4.2, no risk is reported by statistically downscaled CMIP5 and the raw CMIP6 projections
for all time periods. The statistically downscaled projections exhibit a higher spread of confidence inter-
vals compared to the CMIP6 projections during the operational period and near future. However, this
spread becomes almost the same towards the mid and far future. Additonally, the CORDEX dataset
indicates a decline in wind speed in both the near and far future periods.

Figure 4.3 below presents the comparison between RCP 4.5 and RCP 8.5 scenarios for the statisti-
cally downscaled CMIP projections. Both the scenarios indicate no risk across the time periods. The
difference in magnitude of 83% quantile between the two scenarios shows the variation in the spread
of model projections rather than the extent of wind speed increase.
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Figure 4.3: Comparison between normalised wind speed projections under climate change scenarios RCP 4.5 and RCP 8.5
for different future time periods at site: NS1. Confidence intervals show the 83% and 17% quantiles, point in between shows

the median of the models
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4.1.2. NS2
Figure 4.4 displays the normalized mean wind speed from the historical period through the operational
period for the four datasets at site NS2. Under climate change scenario SSP2-4.5, the CMIP6 (fig-
ure 4.4a) and statistically downscaled CMIP6 projections (figure 4.4c) indicate that the 83% quantile
is above the historic reference period at 100.57% and 100.92% respectively. Since the projections
are too scattered to determine any significant decline in wind resources, no risk is reported these two
datasets.
For these two datasets, the 10-year rolling mean- median, along with their respective confidence inter-
vals, indicate a declining trend in wind speed variations over time with CMIP6 models showing higher
decline that the statistically downscaled CMIP6. A heightened uncertainty can be seen again for the
future periods.

(a)Wind speed projections by 19 CMIP6 GCMs under SSP2-4.5 (b)Wind speed projections by 11 CORDEX models under RCP 4.5

(c) Statistically downscaled wind speed projections by 20 CMIP6
GCMs under SSP2-4.5

(d) Statistically downscaled wind speed projections by 20 CMIP6
GCMs under SSP5-8.5

Figure 4.4: Normalised mean wind speed from the year 2006 to 2060 at Site: NS2

For the CORDEX dataset under RCP4.5 (figure 4.4b), the 83rd percentile falls below the historic refer-
ence period at 99.94%, indicating a slight decline in long-term mean normalised wind speed projections
by 83% of the models. Therefore it has been reported as a risk. Similar to the the CMIP6 and statis-
tically downscaled CMIP5 projections, the CORDEX dataset also exhibits a declining trend in wind
speeds,however, an increase is seen at the end of the operation period around year 2052. The confi-
dence interval however, is higher in the middle of the operational period. This can be attributed to the
finer regional details in the climate picked by the high resolution RCMs used in the process of dynamical
downscaling.

Figure 4.1d illustrates the statistically downscaled CMIP6 projections under the SSP5-8.5 scenario.
Similar to the CMIP6 and statistically downscaled CMIP6 projections under SSP2-4.5, no risk is re-
ported for this site, with the 83rd percentile at 100.38%. The rolling mean-median projections indicate
a decline in wind speed as they move along the period.

Figure 4.5 shows the normalisedwind speed in further divided future time periods under SSP2-4.5/RCP4.5.
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In the near future, all the datasets show the 83% quantile above the historic reference so no risk can
be predicted. Moreover, statistically downscaled CMIP6 and the raw CMIP6 projections also do not
show any risk in mid and far futur. However, 83% of the CORDEX models do show a decline in the
wind speed, indicating a risk.

Figure 4.5: Normalised wind speed projections for different future time periods under RCP 4.5/SSP2-4.5 at site: NS2.
Confidence intervals show the 83% and 17% quantiles, point in between shows the median of the models

Figure 4.7 below presents the comparison between SSP2-4.5 and SSP5-8.5 scenarios for the sta-
tistically downscaled CMIP projections. Under SSP2-4.5 no risk is reported for all the time periods.
However, under SSP5-8.5 in the mid-fututre the 83% quantile is below the historic reference, indicating
a risk.

Figure 4.6: Comparison between normalised wind speed projections under climate change scenarios SSP2-4.5 and SSP5-8.5
for different future time periods at site: NS2. Confidence intervals show the 83% and 17% quantiles, point in between shows

the median of the models
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4.1.3. FR
Figure 4.7 displays the normalized mean wind speed from the historical period through the operational
period for the four datasets at site FR. Under climate change scenario SSP2-4.5, the CMIP6 (figure
4.7a) and statistically downscaled CMIP6 projections (figure 4.7c) indicate that the 83% quantile is
above the historic reference period at 101.05% and 100.70% respectively. Therefore, as per the expla-
nation provided in 4.1.1, no risk is reported these two datasets.
For the CMIP6 projections, the 10-year rolling mean- median, shows a declining trend in wind speed
variations over time. The statistically downscaled CMIP6 projections, on the other hand, decline around
year 2038. A higher uncertainty is present in the CMIP6 projections as compared to its statistically
downscaled version.

(a)Wind speed projections by 20 CMIP6 GCMs under SSP2-4.5 (b)Wind speed projections by 11 CORDEX models under RCP 4.5

(c) Statistically downscaled wind speed projections by 19 CMIP6
GCMs under SSP2-4.5

(d) Statistically downscaled wind speed projections by 20 CMIP6
GCMs under SSP5-8.5

Figure 4.7: Normalised mean wind speed from the year 2006 to 2060 at Site: FR

For the CORDEX dataset (figure 4.7b), the 83rd percentile falls below the historic reference period
at 99.70%, indicating a decline in long-term mean normalised wind speed projections by 83% of the
models. Therefore it has been reported as a risk. The rolling mean shows a steep decline in wind
speed around year 2033 until 2048 when it starts to rise again. The confidence interval however, is
very broad in the middle of the operational period indicating high uncertainty and then narrows down
after 2040. This can be attributed to the finer regional details in the climate picked by the high resolution
RCMs in the middle years used in the process of dynamical downscaling. These details can introduce
short-term variability that models may capture differently, leading to a temporary increase in uncertainty.

Figure 4.7d illustrates the statistically downscaled CMIP6 projections under the SSP5-8.5 scenario.
Similar to the CMIP6 and statistically downscaled CMIP6 projections under SSP2-4.5, no risk is re-
ported for this site, with the 83rd percentile at 100.77%. The rolling mean-median projections indicate
a slight decline in wind speed as they move along the period.

Figure 4.8 shows the normalised wind speed in further divided future time periods under SSP2-4.5.
No risk is reported by statistically downscaled CMIP6 and the raw CMIP6 projections for all time peri-
ods. The CORDEX dataset indicates a decline in wind speed in both the near and mid future periods
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but not in the far-future.

Figure 4.8: Normalised wind speed projections for different future time periods under RCP 4.5/SSP2-4.5 at site: FR.
Confidence intervals show the 83% and 17% quantiles, point in between shows the median of the models

Figure 4.9 below presents the comparison between SSP2-4.5 and SSP5-8.5 scenarios for the statisti-
cally downscaled CMIP projections. Both the scenarios indicate no risk across the time periods

Figure 4.9: Comparison between normalised wind speed projections under climate change scenarios SSP2-4.5 and SSP5-8.5
for different future time periods at site: FR. Confidence intervals show the 83% and 17% quantiles, point in between shows the

median of the models
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4.1.4. IT
Figure 4.10 displays the normalized mean wind speed from the historical period through the operational
period for the four datasets at site IT. under the climate scenarios using a radiative forcing of 4.5W/m2,
SSP2-4.5 and RCP4.5 all the datasets: the CMIP6 (figure 4.7a), CORDEX (figure 4.10b) and statisti-
cally downscaled CMIP6 projections (figure 4.7c) indicate that the 83% quantile is below the historic
reference period at 98.72%, 98.41% and 99.46 % respectively. Therefore, the risk of a reduction in the
wind resource is reported by all the datasets.
For the CMIP6 and statistically downscaled CMIP6 projections, the 10-year rolling mean exhibits a
steep declining trend in wind speed variations over time. In contrast, the CORDEX projections show a
decline around 2030, followed by a slight increase after 2041. However, these projections still remain
below the wind speeds observed during the historical period.

(a)Wind speed projections by 20 CMIP6 GCMs under SSP2-4.5 (b)Wind speed projections by 11 CORDEX models under RCP 4.5

(c) Statistically downscaled wind speed projections by 19 CMIP6
GCMs under SSP2-4.5

(d) Statistically downscaled wind speed projections by 19 CMIP6
GCMs under SSP5-8.5

Figure 4.10: Normalised mean wind speed from the year 2006 to 2060 at Site: IT

Figure 4.10d illustrates the statistically downscaled CMIP6 projections under the SSP5-8.5 scenario.
Similar to the projections under SSP2-4.5, this scenario also reports a risk for this site under SSP5-8.5,
with the 83rd percentile at 98.63%. The rolling mean also indicates a steep decline in the wind speed
projections over time.

Figure 4.11 shows the normalised wind speed in further divided future time periods under SSP2-4.5.
A risk is reported by statistically downscaled CMIP6 and the raw CMIP6 projections for all time peri-
ods. The CORDEX dataset indicates a decline in wind speed in both the near and mid future periods
and shows very high scatter also for the mid future. In in the far-future no risk is reported which can
explained as due to larger uncertainty for the far future combined with the lower number of available
models from CORDEX.
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Figure 4.11: Normalised wind speed projections for different future time periods under RCP 4.5/SSP2-4.5 at site: IT.
Confidence intervals show the 83% and 17% quantiles, point in between shows the median of the models

Figure 4.12 below presents the comparison between SSP2-4.5 and SSP5-8.5 scenarios for the sta-
tistically downscaled CMIP projections. Both the scenarios show a decline in wind speed projections
therefore indicating risk across the time periods.

Figure 4.12: Comparison between normalised wind speed projections under climate change scenarios SSP2-4.5 and
SSP5-8.5 for different future time periods at site: IT. Confidence intervals show the 83% and 17% quantiles, point in between

shows the median of the models
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4.1.5. UK1
Figure 4.13 displays the normalized mean wind speed from the historical period through the operational
period for the four datasets at site IT. Under climate change scenario SSP2-4.5, all the datasets: the
CMIP6 (figure 4.13a), CORDEX (figure 4.13b) and statistically downscaled CMIP6 projections (figure
4.13c) indicate that the 83% quantile is above the historic reference period at 100.53%, 101.38% and
100.64%respectively. Therefore, no risk to wind resource is reported from all the datasets.
For the CMIP6 and statistically downscaled CMIP6 projections, the 10-year rolling mean shows a de-
cline in wind speed variations over time. In contrast, the CORDEX projections show a an increase from
around year 2041.

(a)Wind speed projections by 20 CMIP6 GCMs under SSP2-4.5 (b)Wind speed projections by 11 CORDEX models under RCP 4.5

(c) Statistically downscaled wind speed projections by 20 CMIP6
GCMs under SSP2-4.5

(d) Statistically downscaled wind speed projections by 20 CMIP6
GCMs under SSP5-8.5

Figure 4.13: Normalised mean wind speed from the year 2006 to 2060 at Site: UK1

Figure 4.13d presents the statistically downscaled CMIP6 projections under the SSP5-8.5 scenario.
Similar to the projections under SSP2-4.5, this scenario also reports no risk for this site under SSP5-
8.5, with the 83rd percentile at 100.004%. The rolling mean however, indicates a decline in the wind
speed projections over time.

Figure 4.14 shows the normalised wind speed in further divided future time periods under SSP2-4.5.
In the near and the far future, all datasets indicate no risk. In contrast, in the mid-future scenario, the
CMIP6 and statistically downscaled CMIP6 projections indicate a risk whereas CORDEX projections
do not.
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Figure 4.14: Normalised wind speed projections for different future time periods under RCP 4.5/SSP2-4.5 at site: UK1.
Confidence intervals show the 83% and 17% quantiles, point in between shows the median of the models

Figure 4.15 below presents the comparison between SSP2-4.5 and SSP5-8.5 scenarios for the statis-
tically downscaled CMIP6 projections. Both the scenarios show a decline in wind speed projections in
mid and far future therefore indicating risk across these time periods. No risk reported in near future.

Figure 4.15: Comparison between normalised wind speed projections under climate change scenarios SSP2-4.5 and
SSP5-8.5 for different future time periods at site: UK1. Confidence intervals show the 83% and 17% quantiles, point in

between shows the median of the models
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4.1.6. UK2
Figure 4.16 displays the normalized mean wind speed from the historical period through the operational
period for the four datasets at site UK2. Under climate change scenario RCP 4.5, all the datasets: the
CMIP6 (figure 4.16a), CORDEX (figure 4.16b) and statistically downscaled CMIP5 projections (figure
4.16c) indicate that the 83% quantile is above the historic reference period at 100.34%, 100.46% and
100.38% respectively. Therefore, no risk to wind resource is reported from all the datasets.
For the CMIP6 and statistically downscaled CMIP5 projections, the 10-year rolling mean shows a de-
cline in wind speed variations over time. A higher decline is projected by CMIP6 GCMs as compared
to downscaled CMIP5 GCMs. For CORDEX projections, initially, the wind speed remains stable with
narrow confidence intervals. Around 2030, a significant decline in mean wind speed is observed, with
increased uncertainty. From 2040 onwards, wind speeds begin to stabilize but remain below historical
levels, with confidence intervals narrowing, indicating reduced uncertainty. By the end of the timeline,
a slight increase is seen, but wind speeds do not fully return to historical levels,

(a)Wind speed projections by 20 CMIP6 GCMs under SSP2-4.5 (b)Wind speed projections by 11 CORDEX models under RCP 4.5

(c) Statistically downscaled wind speed projections by 20 CMIP5
GCMs under RCP 4.5

(d) Statistically downscaled wind speed projections by 21 CMIP5
GCMs under RCP 8.5

Figure 4.16: Normalised mean wind speed from the year 2006 to 2060 at Site: UK2

Figure 4.16d presents the statistically downscaled CMIP5 projections under the RCP 8.5 scenario.
Similar to the projections under RCP 4.5, this scenario also reports no risk for this site, with the 83rd
percentile at 101.12%. The rolling mean shows a decline in the wind speed projections by the end of
the operational period from around year 2040. A higher uncertainty is induced around 2025 as one
move towards the future.

Figure 4.17 shows the normalised wind speed in further divided future time periods under RCP 4.5. In
the near future scenario, all datasets indicate no risk. Moving further towards the mid-future, CMIP6
and statistically downscaled CMIP5 projections indicate a decline in the wind speed, whereas, from
CORDEX projections no risk can be observed. Lastly, in the far-future scenario, the CMIP6 and
CORDEX projections indicate a risk whereas tatistically downscaled CMIP5 projections do not.
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Figure 4.17: Normalised wind speed projections for different future time periods under RCP 4.5/SSP2-4.5 at site: UK2.
Confidence intervals show the 83% and 17% quantiles, point in between shows the median of the models

Figure 4.18 below presents the comparison between RCP 4.5 and RCP 8.5 scenarios for the statistically
downscaled CMIP5 projections. Both the scenarios show no risk to the wind resource in near and far
future. However in mid-future, under RCP 4.5, the wind speed projections are lower than the historic
projections, thereby indicating a risk.

Figure 4.18: Comparison between normalised wind speed projections under climate change scenarios RCP 4.5 and RCP 8.5
for different future time periods at site: UK2. Confidence intervals show the 83% and 17% quantiles, point in between shows

the median of the models
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4.1.7. UK3
Figure 4.19 displays the normalized mean wind speed from the historical period through the operational
period for the four datasets at site UK3. Under climate change scenario RCP 4.5, the datasets: the
CMIP6 (figure 4.19a)and statistically downscaled CMIP5 projections (figure 4.19c) report a risk with the
83% quantile being below the historic reference period at 98.94% for both. In contrast, 83% quantile of
the CORDEX projections is above the historic projections, indicating no risk can be predicted (4.19b).
For the CMIP6 and statistically downscaled CMIP5 projections, the 10-year rolling mean exhibits a
declining trend in wind speed variations over time with uncertainty rising on moving towards the future
years. The CORDEX projections show a considerable width of the uncertainty band in the middle years
indicating notable variability, reflecting possible changes in wind patterns or other influencing factors.
However, the trend is consistent enough to suggest that significant deviations from the current wind
speeds are not expected, apart from occasional peaks and troughs within the broader stable trend.

(a)Wind speed projections by 20 CMIP6 GCMs under SSP2-4.5 (b)Wind speed projections by 11 CORDEX models under RCP 4.5

(c) Statistically downscaled wind speed projections by 20 CMIP5
GCMs under RCP 4.5

(d) Statistically downscaled wind speed projections by 21 CMIP5
GCMs under RCP 8.5

Figure 4.19: Normalised mean wind speed from the year 2006 to 2060 at Site: UK3

Figure 4.19d presents the statistically downscaled CMIP5 projections under the RCP 8.5 scenario. Un-
like to the projections under RCP-4.5, this scenario reports no risk for this site, with the 83rd percentile
at 100.58%. The rolling mean shows a decline in the wind speed projections by the middle of the op-
erational period from around year 2035. A higher uncertainty is also visible from around 2025 as one
move towards the future.

Figure 4.20 shows the normalised wind speed in further divided future time periods under RCP 4.5. In
the near future, all datasets indicate no risk. Moving further towards the mid-future, from CMIP6 and
statistically downscaled CMIP5 projections, no risk can be reported. Whereas, the CORDEX projec-
tions indicate a decline in the wind speed. Lastly, in the far-future scenario, the CMIP6 and CORDEX
projections indicate a risk whereas statistically downscaled CMIP5 projections do not.
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Figure 4.20: Normalised wind speed projections for different future time periods under RCP 4.5/SSP2-4.5 at site: NS2.
Confidence intervals show the 83% and 17% quantiles, point in between shows the median of the models

Figure 4.21 below presents the comparison between RCP 4.5 and RCP 8.5 scenarios for the statistically
downscaled CMIP5 projections. Both the scenarios show no risk to the wind resource in the near future.
However inmid and far future, the wind speed projections are lower than the historic projections, thereby
indicating a risk under both RCP 4.5 and RCP 8.5 scenarios.

Figure 4.21: Comparison between normalised wind speed projections under climate change scenarios RCP 4.5 and RCP 8.5
for different future time periods at site: NS2. Confidence intervals show the 83% and 17% quantiles, point in between shows

the median of the models
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4.1.8. NA1
Figure 4.22 displays the normalized mean wind speed from the historical period through the operational
period for the three datasets at site NA1. Under climate change scenario RCP 4.5, for the datasets:
the CMIP6 (figure 4.19a) and statistically downscaled CMIP5 projections (figure 4.19c) 83% quantile is
above historic reference projections, at 102.17% and 101.39% respectively. So no risk can be reported
from these datasets. For CMIP6 projections, the 10-year rolling mean-median stays stable over time
with uncertainty increasing significantly after 2040, reflecting greater variability and less confidence in
long-term projections. For statistically downscaled CMIP5 projections as well, wind speeds are mostly
stable, with slight fluctuating 100% over the projection period. The 10-year moving mean-median line
shows minor variations but no significant long-term trend. The uncertainty, represented by the shaded
area, is moderate, indicating consistent projections with some variability. This suggests a stable outlook
for wind speeds under this scenario, with a moderate level of confidence.

(a)Wind speed projections by 19 CMIP6 GCMs under SSP2-4.5
(b) Statistically downscaled wind speed projections by 19 CMIP5

GCMs under RCP 4.5

(c) Statistically downscaled wind speed projections by 21 CMIP5
GCMs under RCP 8.5

Figure 4.22: Normalised mean wind speed from the year 2006 to 2060 at Site: NA1

Under RCP 8.5, the downscaled CMIP5 projections also do not report any risk (figure 4.22c). The
Wind speeds show more fluctuation compared to the other projections but remain around the 100%
mark overall. The 10-year moving mean-median line shows periods of increase and decrease, indicat-
ing variability in short-term trends. The shaded area, representing uncertainty, is wider than in Figure
4.51, especially towards the end of the period, indicating higher variability and less confidence in these
projections. This suggests that while wind speeds are generally stable, there is more uncertainty com-
pared to other scenarios.

Figure 4.23 shows the normalised wind speed in further divided future time periods under RCP 4.5.
For both the datasets, the 83% quantile is above the historic wind speed projection in all the future
scenarios therefore, no risk can be predicted from these datasets.
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Figure 4.23: Normalised wind speed projections for different future time periods under RCP 4.5/SSP2-4.5 at site: NA1.
Confidence intervals show the 83% and 17% quantiles, point in between shows the median of the models

Figure 4.24 below presents the comparison between RCP 4.5 and RCP 8.5 scenarios for the statistically
downscaled CMIP5 projections. Again, under both the climate change scenarios, the 83% quantile is
above the historic wind speed projection in all the future scenarios therefore, no risk can be predicted
from these datasets.

Figure 4.24: Comparison between normalised wind speed projections under climate change scenarios RCP 4.5 and RCP 8.5
for different future time periods at site: NA1. Confidence intervals show the 83% and 17% quantiles, point in between shows

the median of the models
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4.1.9. NA2
Figure 4.25 displays the normalized mean wind speed from the historical period through the operational
period for the three datasets at site NA2. Under climate change scenario RCP 4.5, for the datasets:
the CMIP6 (figure 4.19a) and statistically downscaled CMIP5 projections (figure 4.19c) 83% quantile is
above historic reference projections, at 100.17% and 99.92% respectively. So a decline in wind speed
is reported from the statistically downscaled CMIP5 GCMs.

For CMIP6 projections, the 10-year rolling mean declines around year 2025 till 2033 after which it
stabilizes to stay below the historic projections. The uncertainty increases significantly after 2045,
suggesting greater variability and less confidence in the projections over the long term. The Statistically
downscaled CMIP5 projections also show a decline from year 2020 and it goes on until the end of the
operational period. The uncertainty, in this case, is moderate, reflecting consistent projections with
some variability, suggesting a stable outlook for wind speeds under this scenario with a moderate
level of confidence. It’s worth commenting that the statistically downscaled data shows a risk with
83% quantile just below 100 while the CMIP6 do not report a risk with 83% quantile just above 100%.
Therefore, it could be stated that this site ”is on the edge” and more accurate investigations should be
conducted to evaluate whether there is a risk of decline in the wind resource or not.

(a)Wind speed projections by 20 CMIP6 GCMs under SSP2-4.5
(b) Statistically downscaled wind speed projections by 19 CMIP5

GCMs under RCP 4.5

(c) Statistically downscaled wind speed projections by 21 CMIP5
GCMs under RCP 8.5

Figure 4.25: Normalised mean wind speed from the year 2006 to 2060 at Site: NA2

Under RCP 8.5, from the downscaled CMIP5 projections no risk can be reported as the 83% quantile is
above the historical projections (100.19%, figure 4.25c). Wind speeds showmore fluctuation compared
to other projections but remain around the 100%mark overall until 2030, after which a decline becomes
visible. The uncertainty in the dataset is wider than in the corresponding RCP 4.5 cases, especially
towards the end of the period, indicating higher variability and less confidence in these projections. This
suggests that while wind speeds are generally stable, there is more uncertainty compared to the RCP
4.5 scenario.

Figure 4.26 shows the normalized wind speed projections for different future time periods under RCP
4.5. Both datasets indicate a risk in the near and far future, as wind speed projections are lower
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than historical levels. However, in the mid-future, the statistically downscaled CMIP5 projections again
suggest a risk. In contrast, the CMIP6 projections for the mid-future exhibit a wider spread among
the models, making it a case where ”no risk can be predicted” due to the increased variability and
uncertainty in the projections. Again, these results from the future scenarios analysis show that this
site is ”on the edge”

Figure 4.26: Normalised wind speed projections for different future time periods under RCP 4.5/SSP2-4.5 at site: NA2.
Confidence intervals show the 83% and 17% quantiles, point in between shows the median of the models

Figure 4.27 below illustrates the differences betweenRCP 4.5 andRCP 8.5 scenarios for the statistically
downscaled CMIP5 projections. In the near future, under RCP 4.5, 83% of themodels indicate a decline
in wind speed. Additionally, under both climate change scenarios (RCP 4.5 and RCP 8.5) for the mid
and far future, the 83rd percentile of projections falls below historical wind speed levels. This consistent
trend suggests a significant risk of reduced wind speeds over time.

Figure 4.27: Comparison between normalised wind speed projections under climate change scenarios RCP 4.5 and RCP 8.5
for different future time periods at site: NA2. Confidence intervals show the 83% and 17% quantiles, point in between shows

the median of the models
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4.1.10. Results Summary
Table 4.1 presents the overview of risk assessment of sites using different datasets during operational
period (2030-2060) under RCP4.5/SSP2-4.5

Table 4.1: Risk assessment based on 83% quantile for different sites under various climate models

CMIP5

CMIP6
83% Quantile

site CMIP6 (SSP2-4.5) CMIP downscaled
(RCP4.5/SSP2-4.5)

CORDEX
(RCP4.5)

NS1 No risk No risk 99.825

NS2 No risk No risk 99.944

FR No risk No risk 99.702

IT 98.723 98.405 99.456

UK1 No risk No risk No risk

UK2 No risk No risk No risk

UK3 99.943 99.940 No risk

NA1 No risk No risk n/a

NA2 No risk 99.921 n/a

Based on the table 4.1, the following conclusions can be drawn:

• The CMIP6 and statistically downscaled CMIP GCMs show an agreement in the results with
each other for 88.89% of the sites, i.e., 8 out of 9 sites. Both datasets report a risk in IT and UK3.
Whereas, there is no agreement for the site NA2 as the downscaled CMIP GCMs report a risk
of wind speed decline as opposed to CMIP6 GCMs,for no risk can be predicted due to the large
scatter of the models.

• On the other hand, CORDEXmodels show an agreement with both CMIP6 and downscaled CMIP
GCMs for 3 out of 7 sites (42.86%). The dataset predicts a decline in wind speed for the sites
NS1, NS2, FR and IT while the other two datasets report no risk for the first three sites. The three
datasets agree with each other at sites UK1 and UK2 where no decline can be predicted and at
site IT where all datasets report a risk of wind speed decline.

Table 4.2 presents a comparison made between the climate change scenarios RCP4.5/SSP2-4.5 and
RCP8.5/SSP5-8.5 for the risk assessment of sites using statistically downscaled CMIP GCMs during
operational period (2030-2060).
It is observed that under RCP4.5/SSP2-4.5, the statistically downscaled CMIP GCMs predict a risk at
3 out of 9 sites (IT,UK3 and NA2) and under RCP8.5/SSP5-8.5, only at site IT there is a wind speed
decline reported.
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Table 4.2: Comparison between climate change scenarios RCP4.5/SSP2-4.5 and RCP8.5/SSP5-8.5 for the risk assessment
using statistically downscaled CMIP GCMs during operational period (2030-2060). A risk is reported when 83% of the GCMs

show a decline in the long term wind speed variation with respect to the historic projections.

CMIP5

CMIP6
83% Quantile

site CMIP downscaled
RCP4.5/SSP2-4.5

CMIP downscaled
RCP8.5/SSP5-8.5

NS1 no risk no risk

NS2 no risk no risk

FR no risk no risk

IT 98.405 98.628

UK1 no risk no risk

UK2 no risk no risk

UK3 99.940 no risk

NA1 no risk no risk

NA2 99.921 no risk

The future years have been divided into near future from year 2031-2050, mid future from 2051 to
2070 and far future from 2071-2090 as mentioned in chapter 3. Figure 4.3 presents the overview of
risk assessment of sites using different datasets during these periods under RCP4.5/SSP2-4.5. The
mark ’x’ represents a reported risk and d1, d2, d3 represent the datasets: CMIP6 ensemble, Statistically
downscaled CMIP emsemble and CORDEX model ensemble respectively.

Table 4.3: Risk assessment for different future periods and datasets

near future mid-future far-futureFuture-Period
(2031-2050) (2051-2070) (2071-2090)

d1 d2 d3 d1 d2 d3 d1 d2 d3site | dataset
x x

NS2 x x

FR x x

IT x x x x x x x x

UK1 x x x x x

UK2 x x x x

UK3 x x x x

NA1

NA2 x x x x x

Under the climate change scenario RCP4.5/SSP2-4.5, the following conclusions can be drawn:

• In the near future (2031-2050), which is part of the operational period, the CMIP6 GCMs and
statistically downscaled CMIP GCMs are in complete agreement, predicting a decline in wind
speeds for IT and NA2, with no risk for the other sites. CORDEX models concur with these
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datasets for 71.14% of the sites (5 out of 7), indicating a decline in wind speed at NS1, FR, and
IT.

• In the mid-future (2051-2070), CMIP6 and statistically downscaled CMIP GCMs agree on 7 out
of 9 sites (77.78%), predicting a decline in wind speed at IT, UK1, and UK2. Additionally, the
downscaled GCMs also show a risk at UK3 and NA2. CORDEX models align with CMIP6 and
statistically downscaled CMIP GCMs at 42.86% and 28.57% of the sites, respectively, predicting
wind speed declines at NS2, FR, and IT.

• For the years 2071-2090 (far future), there is strong agreement between CMIP6 and statistically
downscaled CMIP GCMs at 8 out of 9 sites. Both models indicate a risk of declining wind speeds
at IT, UK1, UK3, and NA2, with CMIP6 also predicting risk at UK2. Comparing CMIP6 with
CORDEX, 4 out of 7 sites show similar results, with CORDEX models reporting risk at NS1, NS2,
UK1, UK2, and UK3. However, when comparing CORDEX with statistically downscaled CMIP
GCMs, there is agreement at only 2 out of 7 sites.

At the sites that present risks only for mid or far future, the climate change is going to affect the wind
resource only the very long term and that is not therefore relevant for wind projects currently under
development. Additionally, having risk only in the short and mid future, but not in the long, could be
due to an increase of the uncertainty in the distant future.

Figure 4.4 presents a comparison made between the climate change scenarios RCP4.5/SSP2-4.5 and
RCP8.5/SSP5-8.5 for the risk assessment of sites using statistically downscaled CMIP GCMs in the
near,mid and far future. The mark ’x’ again represents a reported risk and d2a and d2b, represent the
climate change scenarios RCP4.5/SSP2-4.5 and RCP8.5/SSP5-8.5 respectively.

Table 4.4: Comparison between climate change scenarios RCP4.5/SSP2-4.5 and RCP8.5/SSP5-8.5 for the risk assessment
using statistically downscaled CMIP GCMs in near, mid and far future. The mark ’x’ represents a reported risk, d2a:

RCP4.5/SSP2-4.5 and d2b: RCP8.5/SSP5-8.5.

Near future Mid-future Far-futureFuture-Period
(2031-2050) (2051-2070) (2071-2090)

d1 d2 d3 d1 d2 d3 d1 d2 d3site | dataset
x x

NS2 x x

FR x x

IT x x x x x x x x

UK1 x x x x x

UK2 x x x x

UK3 x x x x

NA1 n/a n/a n/a

NA2 x x n/a x n/a x x n/a

From table 4.4, the following information has been derived:

• In the near future, under both the scenarios, risk of wind speed decline is predicted at site IT.
Additionally, under RCP4.5, there is risk prediction at NA2.

• In the mid-future, under both scenarios, sites IT,UK1, UK3 and NA2 are under risk of wind speed
decline. Moreover, under RCP4.5, UK2 is also subjected to risk and under RCP8.5/SSP5-8.5,
risk is predicted for NS2 and NA2 as well.

• In the far future, sites IT, UK1, UK3 and NA2 are predicted to be under risk of wind speed decline
under both the scenarios. Furthermore, under SSP5-8.5 NS2 is also subjected to the risk.
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From the wind speed analysis results discussed above, it was observed that CORDEX models tend
to disagree in many cases with the CMIP6 and statistically downscaled CMIP GCMs. For example,
during the operational period, an agreement is noted only for 3 out of the 7 sites, i.e., 42.86% of the
sites. Therefore, the wind speed projections from CORDEX models were further analysed.

4.1.11. CORDEX models analysis
The long term mean wind speeds for the operational period obtained from all the CORDEX models
were plotted individually against the time. Figure 4.28 presents these wind speeds for plotted for the
seven sites. Individual plots for these can be found in appendix B.

Figure 4.28: Long term mean wind speed during operational years by 11 CORDEX models under RCP4.5. Wind speeds with
same colour represent same GCM used by different RCMs

In figure 4.28, the wind speeds plotted with same colours represent the common GCM that has been
used as the boundary condition for the RCM plotted by different shapes. This color coding allows for
easy identification of trends in the models. Grouping between the GCM-RCM coupled-models having
common GCMs is visible. For example, the ichec-ec-earth CMIP5 model by Earth Consortium is has
been paired with 3 different RCMs: CCLM-8-17, REMO2015 and RACMO22e. Despite of having differ-
ent RCMs, mean wind speed projections by the coupled-models is visible to be heavily influenced by
the common GCM having values 99.97%, 99.93% and 99.90% respectively at site NS2. This influence
can be seen in all the sites present in figure 4.28 as well as the other models that use the same GCMs.
In this research, a total of eleven CORDEX models have been used in which one there are only five
GCMs being paired with different RCMs. Therefore, in order to have confidence in the wind speed
projections by CORDEX models, the author recommends to have as many GCMs as possible, since
different RCMs coupled with the same GCMs give similar results.

This sections ends here. The next section moves to the results obtained for the annual energy yield
and capacity factor in the operational period for the four sites: NS1, NS2, FR, IT in Europe. It also
discusses the sensitivity factors and factors influencing them.

4.2. Annual Energy yield and Capacity factor
According to the methodology described in the section 3.5.2 of chapter 2, the Annual energy yield by
a 5MW NREL reference wind turbine at two offshore sites: NS1 and NS2 and two onshore sites: IT
and FR has been calculated for the operational period based on different percentages of wind speed
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decline (-1%, -3%, -5%, -10%) and the absolute values are presented in table 4.5.

Table 4.5: AEP based on variation in wind speed (GWh)

Site | Percent change Historic -1% -3% -5% -10%

NS1 25.58 25.29 24.69 24.07 22.40

NS2 23.64 23.36 22.76 22.14 20.51

FR 13.89 13.60 12.99 12.38 10.87

IT 6.40 6.24 5.91 5.59 4.82

Using the historic AEP and the new predicted AEP from table 4.5, the relative percent change in AEP
is calculated and is tabulated in 4.6.

Table 4.6: Relative change in AEP based on variation in wind speed

Site | Percent change -1% -3% -5% -10%

NS1 -1.14 -3.48 -5.92 -12.45

NS2 -1.23 -3.75 -6.36 -13.27

FR -2.18 -6.56 -10.93 -21.79

IT -2.58 -7.66 -12.66 -24.70

The table 4.6 indicates that as wind speed decreases, there is a corresponding negative impact on
AEP at all sites. The impact is more pronounced with greater declines in wind speed. For instance,
a 10% decrease in wind speed results in the most significant AEP reduction, with IT experiencing the
highest relative decline, followed by FR, NS2, and NS1. This highlights the sensitivity of wind energy
production to changes in wind speed and therefore, the sensitivity factor under these wind conditions
is calculated using the formula 2.6.

Table 4.7: Sensitivity Factor based on decrease in wind speed variation

Site | Percent change -1% -3% -5% -10%

NS1 1.14 1.16 1.18 1.25

NS2 1.23 1.25 1.27 1.33

FR 2.18 2.19 2.19 2.18

IT 2.58 2.55 2.53 2.47

Table 4.9 shows that sensitivity factors are consistent across different levels of wind speed decline
for each site. Sites like FR and IT have higher sensitivity factors, indicating that their AEP is more
significantly affected by wind speed reductions compared to NS1 and NS2. This can be attributed to
NS1 and NS2 being offshore sites as the wind speed distribution for these sites has a higher probability
of high wind speeds. Whereas, for onshore sites like IT and FR, the occurrence of lower wind speeds
is more. This can be seen in figure 4.29 which shows the probability distribution function for sites NS1
and IT for historical and operational periods (refer to appendix B.2 for PDFs of NS2 and FR). Assuming
a constant shape factor, for a decrease of 10% in the wind speed in operational period, the scale
factor also decreases by 10% in this case for both the sites. This implies that the probability of high
wind speed increases at offshore site NS1 and at onshore site IT, the probability of low wind speeds
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(a) PDF for wind speeds at site NS1 (b) PDF for 10% lower wind speeds at site NS1

(c) PDF for wind speeds at site IT (d) PDF for 10% wind speeds at site IT

Figure 4.29: PDF for wind speeds at site NS1 and IT before and after 10% decline

increases resulting in a higher higher sensitivity factor at onshore site. The above done analysis can
be done for to the actual wind speed projections given by the GCMs. From the summary tables 4.1 and
4.2, it is seen that at site IT, each dataset has predicted a risk in wind speed decline. Therefore, for the
Italian site the AEP and sesnitivity factor are calculated based on wind speed projections by different
datasets in table 4.8:

Table 4.8: Summary of relative changes in wind speed variation, AEP, and sensitivity factor by different datasets under
different scenarios for site in Italy

Parameter Statistically down-
scaled CMIP6
(SSP2-4.5)

CMIP6 (SSP2-4.5) CORDEX CMIP5
(RCP4.5)

Statistically down-
scaled CMIP6
(SSP5-8.5)

Relative change in
wind speed (%)

-1.59 -1.28 -0.54 -1.37

AEP (GWh/year) 6.14 6.19 6.31 6.18

Relative change in
AEP (%)

-4.10 -3.29 -1.40 -3.53

Sensitivity factor 2.57 2.57 2.58 2.57

The relative change in AEP shows a significant decline in the statistically downscaled CMIP6 (SSP2-
4.5) scenario at -4.10%, followed by the CMIP6 (SSP2-4.5) at -3.29%, the statistically downscaled
CMIP6 (SSP5-8.5) at -3.53%, and the CORDEX CMIP5 (RCP4.5) at -1.40%. The sensitivity factors
are quite similar across all scenarios, ranging from 2.57 to 2.58, indicating a consistent sensitivity of
AEP to changes in wind speed.
The last topic of this section is the capacity factor. Using the equation 2.5, the capacity factor for 5MW
NREL reference wind turbine is calculated for different percentages of wind speed decline and is given
in the table below:
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Table 4.9: Capacity Factor based on decrease in wind speed variation

Site | Percent change in wind speed Historic -1% -3% -5% -10%

NS1 0.58 0.58 0.56 0.55 0.51

NS2 0.54 0.53 0.52 0.51 0.47

FR 0.32 0.31 0.30 0.28 0.25

IT 0.15 0.14 0.13 0.13 0.11

For NS1, the capacity factor remains stable at 0.58 for a 1% decline but drops to 0.51 with a 10%
decline. NS2 follows a similar trend, decreasing from 0.54 under historic conditions to 0.47 with a 10%
decline. FR’s capacity factor reduces from 0.32 to 0.25, and IT from 0.15 to 0.11 as wind speeds decline
by 10%.
Since capacity factor is a function of AEP, the relative percentage change in capacity factor is same as
the relative percentage change in AEP, as mentioned in table 4.10 below:

Table 4.10: Relative change in Capacity factor based on variation in wind speed

Site | Percent change -1% -3% -5% -10%

NS1 -1.14 -3.48 -5.92 -12.45

NS2 -1.23 -3.75 -6.36 -13.27

FR -2.18 -6.56 -10.93 -21.79

IT -2.58 -7.66 -12.66 -24.70

Onshore sites FR and IT have larger decrease in capacity factors as compared to the offshore sites NS1
and NS2. These results highlight the significant impact of even modest reductions in wind speed on the
capacity factor, which directly affects the efficiency and output of wind energy production. The substan-
tial declines in capacity factor across all sites underscore the vulnerability of wind energy resources to
variations in wind speed. Accurate projections and mitigation strategies are crucial to maintain energy
production levels in the face of potential climate-induced changes in wind patterns. This analysis em-
phasizes the need for robust modeling and comprehensive planning to ensure the resilience of wind
energy infrastructure.
The capacity factor for site IT has been computed using on AEP based on wind speed decline predicted
by different datasets and is presented below:

Table 4.11: Summary of relative changes in wind speed variation, AEP, and capacity factor under different scenarios for site in
Italy

Parameter Statistically down-
scaled CMIP6
(SSP2-4.5)

CMIP6 (SSP2-4.5) CORDEX CMIP5
(RCP4.5)

Statistically down-
scaled CMIP6
(SSP5-8.5)

Relative change in
wind speed(%)

-1.59 -1.28 -0.54 -1.37

AEP (GWh/year) 6.14 6.19 6.31 6.18

Capacity factor (%) 0.140 0.141 0.144 0.141

Based on the changes in wind speed predicted by different datasets at site Italy, the capacity factor
seems to be consistent for all the datasets under both the climate change scenarios. The table high-
lights that while there are variations in wind speed projections, the impact on capacity factor remains
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relatively minimal.
The next section now evaluates the revenue that would be obtained as per the wind speed decline in
the operational period.

4.3. Revenue
In order to evaluate the revenue, a 50MW wind farm with 10 5MW NREL reference wind turbine is
assumed to be built at the locations. A 10 year mean of wholesale electricity price for each country is
obtained [33] and using the predicted AEP (table 4.5) and this price, the revenue is estimated and is
presented in table 4.12.

Table 4.12: Revenue (million Eur/year) based on decline in wind speed

Site mean electricity price

(Eur/MWh)

decline in wind speed (%)

1 3 5 10

Revenue (million Eur/year)

NS1 64.44 16.30 15.91 15.51 14.43

NS2 75.11 17.54 17.09 16.63 15.40

FR 79.89 10.86 10.38 9.89 8.68

IT 95.13 5.93 5.62 5.32 4.59

NS2 consistently generates the highest revenue under all wind speed decline scenarios, which can be
attributed to its high mean electricity price and favorable wind conditions that result in higher AEP. NS1
follows closely in revenue generation but with a slightly lower mean electricity price than NS2.
FR and IT show lower revenues compared to NS1 and NS2. This is particularly evident in IT, which
despite having the highest mean electricity price, generates the lowest revenue due to lower AEP as a
consequence of lower wind speeds.
Based on wind speed decline and AEP reported by all the datasets in table 4.8, the revenue generated
has been also estimated in the following table:

Table 4.13: Revenue (million Eur/year) generated at site IT based on decline in wind speed predicted by different datasets

Parameter Statistically down-
scaled CMIP6
(SSP2-4.5)

CMIP6 (SSP2-4.5) CORDEX CMIP5
(RCP4.5)

Statistically down-
scaled CMIP6
(SSP5-8.5)

Relative change in
wind speed(%)

-1.59 -1.28 -0.54 -1.37

AEPwindfarm

(GWh/year)
61.4 61.9 63.1 61.8

Revenue (Million
Eur/year)

5.84 5.89 6.01 5.88

The revenue generated at site IT, as shown in Table 4.13, is ranging from 5.84 million Eur/year to 6.01
million Eur/year. There can be significant impact on the revenue based on the dataset that is used.
Therefore, it is necessary to have reliable GCMs when assessing the wind resource.

The next sectionmoves to the comparison of historical data fromERA5 reanalysis data with the datasets
used in this research.
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4.4. Climate Models comparison with ERA5
This section presents the comparison of historical wind speed projections at 10m between a. the ERA5
and CMIP 6 GCMs (1994-2014), b. ERA5 and statistically downscaled CMIP GCMs (2006-2020) un-
der SSP2-4.5/RCP4.5 using the methodology mentioned in section 3.5.5 of chapter 3. It should be
noted that this analysis is not a check for accuracy of the GCMs and just the comparison between the
datasets. As mentioned in the chapter 2, the climate models are not synchronized with the real cli-
mate and climate simulations are carried out by a statistical study spanning a wide period to study the
relative change predicted compared to the historical predictions. Therefore, comparison of absolute
values fromGCMswith the reanalysis data to perform accuracy or reliability check is not recommended.

4.4.1. ERA5 and CMIP6 GCMs
Percent Bias and mean absolute percentage error are calculated with ERA5 as observed and CMIP 6
projections as predicted data. The figure 4.30 highlights significant variability in wind speed projections
from different CMIP6 models across various sites in comparison to ERA5. Percent bias and MAPE
metrics indicate that some models consistently underestimate or overestimate wind speeds, with IT
showing the highest errors.

(a) Percent Bias (%) (b) Mean absolute percent error(%)

Figure 4.30: Error metrics calculated between historical ERA5 reanalysis data and historical wind speed projections from
CMIP6 GGCMs for NS1, NS2, FR and IT

From figure 4.30a showing percet bias, the following is observed:

• NS1: The models show a negative bias, indicating an underestimation of wind speeds in compar-
ison to ERA5. The bias ranges significantly, with pe-MIROC-ES2L having the highest negative
bias (-59.49%) and pe-KACE-1-0-G showing the least (-15.52%).

• NS2: Bias is less extreme than NS1 but still predominantly negative, indicating underestimation.
36.8% of the models however, show a positive bias showing overestimation as well.

• FR: The GCMs show varied bias with 16 out of 20 models showing an overestimation and 4
showing large underestimation in comparison to ERA5.

• IT: Models display a significant overestimation as high as 142.09% and as low as 2.40%.

For further clarity, MAPE is plotted in figure 4.30b and the following key points for each site are observed:
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• NS1: Most models exhibit moderate to high error rates, with MAPE values ranging from approxi-
mately 10% to nearly 60%. Notable high error rates are observed in models such as pe-MIROC-
ES2L (59.49%) and pe-KIOST-ESM (51.67%).

• NS2: The error rates for this site are generally lower, with most models showing MAPE values
between 10% and 20%. Models like pe-MIROC6 (39.88%) and pe-KIOST-ESM (41.73%) stand
out with higher errors.

• FR: Similar to NS2, the error rates are moderate, with pe-CESM2 (15.12%) and pe-HadGEM3-
GC31-LL (10.99%) showing relatively low MAPE values. However, pe-IPSL-CM6A-LR (28.11%)
and pe-KACE-1-0-G (51.56%) exhibit higher errors.

• IT: This site has the highest error rates, with several models exceeding 100% MAPE, indicating
poor accuracy in projections. Models such as pe-MPI-ESM1-2-LR (142.09%) and pe-KACE-1-0-
G (128.62%) show the highest errors, indicating substantial overestimation.

Before analysing the possible causes for large bias and mape, Pearson’s correlation coefficient and
coefficient of correlation are also plotted and presented below:

(a) Pearson’s correlation coefficient, r (b) Coefficient of determination, r2

Figure 4.31: Correlation metrics calculated between historical ERA5 reanalysis data and historical wind speed projections from
CMIP6 GGCMs for NS1, NS2, FR and IT

Figures 4.31a and 4.31b present correlation metrics calculated between historical ERA5 reanalysis
data and historical wind speed projections from CMIP6 GCMs for four sites: NS1, NS2, FR, and IT.
Pearson’s correlation coefficient (r) measures the linear relationship between the projected and actual
wind speeds. Values close to 1 or -1 indicate a strong linear relationship, while values close to 0 indicate
a weak linear relationship. From the plots of Pearson’s correlation coefficient, r, the following key points
are observed for each site:

• NS1: Most models show moderate positive correlations, with values ranging from 0.47 to 0.55.
• NS2: High positive correlations are observed, with values between 0.69 and 0.85, indicating
strong linear relationships.

• FR: Moderate to high positive correlations are seen, with values between 0.50 and 0.74.
• IT: Correlation values are lower, ranging from 0.28 to 0.53, suggesting weaker linear relationships.

The coefficient of determination (r2) measures how well the regression predictions approximate the
real data points. Higher values indicate better model performance. From the figure 4.31b, the following
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key points are observed for each site:

• NS1: r2 values range from 0.22 to 0.30, indicating low to moderate explanatory power of the
models.

• NS2: Higher r2 values are observed, ranging from 0.47 to 0.72, suggesting better model perfor-
mance.

• FR: r2 values range from 0.25 to 0.55, indicating moderate explanatory power.
• IT: Lower r2 values are seen, ranging from 0.28 to 0.43, indicating weaker model performance.

The comparison of CMIP6 GCM models against ERA5 in projecting historical wind speeds varies sig-
nificantly across different sites. The models, at site NS2, show strong linear relationships and high
explanatory power. However, these metrics are moderate at sites NS1 and FR, and relatively poor at
site IT.
To investigate the possible causes for these results, the distance between the grid points of the GCMs
models and ERA5 is calculated and plotted against the MAPE and fitted using a linear fit in the figure
4.32. The data points for the plot are present in appendix B.3.

Figure 4.32: Scatter plot of distance vs MAPE calculated for CMIP6 wind speed projections at sites FR, NS1, NS2 and IT.

Even though the linear fit suggests a potential relationship between the distance and MAPE, the scat-
ter of MAPE values is too high to confirm this relationship reliably. The calculated r2 values of the
correlation between the MAPE and the distance shown by the regression lines of figure each site are
as follows: NS1: 0.06, NS2: 0.001, FR: 0.001, IT: 0.25. These values indicate a very poor correlation
between distance and MAPE, with r2 values close to zero for most sites. Specifically:
NS1 (0.06): Indicates a very weak correlation, suggesting that distance explains only 6% of the vari-
ance in MAPE.
NS2 (0.00): Shows no correlation, indicating that distance has no explanatory power for MAPE vari-
ance.
FR (0.00): Similar to NS2, there is no correlation between distance and MAPE.
IT (0.25): While slightly higher, it still indicates a poor correlation, with distance explaining only 25% of
the variance in MAPE.
These results suggest that there is no meaningful relationship between distance and MAPE across the
sites. The high scatter in MAPE values further reinforces the conclusion that distance is not a reliable
predictor of MAPE. Therefore, despite the linear fit, the data does not support establishing a relation-
ship between distance and MAPE and distance cannot be reliably used to predict the reason for large
MAPE and extreme bias for the given sites.
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Given the high MAPE and poor correlation observed in the previous analysis, the next logical step
is to investigate the terrain characteristics of the sites. Due to confidentiality reasons, the terrain im-
ages for the sites cannot be shared. However, upon examination, several important observations were
made.

The site with the highest MAPE, IT, is characterized by a very complex terrain. This complexity poses
a significant challenge for GCMs, which are unable to capture the small-scale details, resulting in poor
correlation and overestimated bias. Similarly, site FR has a complex terrain, although it is not as com-
plex as IT. This also contributes to significant bias and correlation issues, albeit to a lesser extent.

In contrast, NS1 and NS2 are offshore sites where one would expect less extreme bias. However,
the investigation revealed that many GCMs have their grid points located inland. This inland position-
ing influences the wind speed projections, as the GCMs’ wind data are affected by land characteristics
rather than offshore conditions. This inland bias leads to discrepancies in the data for these sites.

Additionally, it is crucial to consider the difference in resolution between the datasets. The ERA5 re-
analysis data has a resolution of 25 km, whereas the GCMs used in this analysis have resolutions as
low as 100-200 km. The disparity in resolution means that GCMs may not capture small-scale climatic
features and local weather patterns as well as the topographic details. In the following subsection now
the ERA5 has been compared with the downscaled CMIP GCMs that have a higher resolution than
ERA5.

4.4.2. ERA5 and Statistically downscaled CMIP GCMs
This section compares the historical wind speed data from year 2006-2020 obtained from ERA5 re-
anaylsis and Statistically downscaled GCMs. 4.33 shows the error metrics Percent Bias and MAPE for
sites NS1, NS2, FR and IT. For the latter three sites CMIP6 is used and for NS1 CMIP5 and therefore
the GCMs used are different. Even though the heatmap colour is same for all the sites, the intensity is
different so attention should be paid to the scale.

(a) PBias (%) (b) MAPE (%)

Figure 4.33: Error metrics calculated between historical ERA5 reanalysis data and historical wind speed projections from
statistically downscaled CMIP GGCMs for NS1, NS2, FR and IT

From figure 4.33a the following key-points can be noted:

• NS2: Models exhibit a range of biases, from negative biases (e.g., CanESM5 with -1.22) to pos-
itive biases (e.g., IITM-ESM with 2.98). The majority of models show positive biases, indicating
an overestimation of wind speeds.

• IT: Higher biases are observed, with values ranging from -0.18 to 30.06. The highest biases are
seen in MRI-ESM2-0 (30.06), BCC-CSM2-MR (29.90), and CMCC-CM2-SR5 (30.94), indicating
significant overestimations.

• FR: Biases range from 6.44 to 10.08. Most models show moderate positive biases, suggesting
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overestimation but to a lesser extent than IT.
• NS1: The biases range from -0.16 to 2.43. Models show a mix of positive and negative biases,
indicating both overestimation and underestimation of wind speeds.

Figure 4.33b highlights the following points:

• NS2: MAPE values range from 10.38% to 11.97%, indicating relatively low error rates. Most
models show MAPE values around 11%.

• IT: IT exhibits the highest MAPE values among all sites, with values ranging from 29.67% to
34.69%. This indicates significant errors in wind speed projections for this site, likely due to its
complex mountainous terrain.

• FR: MAPE values for FR are moderate, ranging from 12.33% to 14.57%. The errors are higher
than NS2 but much lower compared to IT.

• NS1: MAPE values are relatively uniform and low, ranging from 10.94% to 12.06%.

(a) Pearson’s correlation coefficient, r (b) Coefficient of determination, r2

Figure 4.34: Correlation metrics calculated between historical ERA5 reanalysis data and historical wind speed projections from
statistically downscaled CMIP GGCMs for NS1, NS2, FR and IT

Figure4.34a presents the Pearson’s correlation coefficient, r across four sites. At site NS2, r values
range from 0.71 to 0.75, indicating strong positive correlations between downscaled GCMs and ERA5.
In contrast, site IT exhibits lower r values, ranging from 0.50 to 0.56, reflecting moderate correlations.
Site FR shows moderate to strong correlations, with r values between 0.59 and 0.67 and for site NS1,
r values range from 0.60 to 0.74, showing strong positive correlations.
Figure 4.34b presents the coefficient of determination, r2. For site NS2, r2 values range from 0.44 to
0.56. At site IT, r2 values are even lower, ranging from 0.26 to 0.33. For site FR, r2 values range from
0.34 to 0.45 and at site NS1, r2 values range from 0.36 to 0.55. These values are considered very poor
and signify that the regression does not explain any of the variability of the wind speed data around its
mean.
As discussed in the previous subsection as well, the terrain of the sites is playing a crucial role which
can be verified by the plots. IT being an onshore site with very complex terrain shows the highest
MAPE followed by FR and lower errors are reported for offshore sites. This can also be attributed to
the high risk of wind speed decline predicted at IT.
The GCMs have same grid point at each site and the distance between that and ERA5 grid point is
given in the table below:
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Table 4.14: Distances from Reference Point for Different Sites

Site Distance from refer-
ence point (km)

NS1 8.94

NS2 12.79

FR 11.60

IT 5.00

From the table 4.14, yet again, for this datasets as well it can be seen that since distances from the
point of reference are not too large, therefore distance is not playing a role in the large error metrics.
Overall, the analysis reveals significant variability in models across different sites, this highlights the
importance of considering site-specific factors, the inherent complexities of the terrain and resolution
of models when evaluating model performance. Moreover, the data assimilation processes, and the
capture of internal climate variability is different for both the datasets. GCMs are play a crucial role in un-
derstanding broad climate trends and making future projections, their direct comparison with reanalysis
data for historical periods requires careful consideration.

This chapter on results and discussion ends here. The subsequent chapter will present the conclusions
derived from this work, summarizing the key findings and their implications. Additionally, it will discuss
the broader impact of the research and recommendations for future work.



5
Conclusion

This study aimed to assess wind speed projections at nine different locations using three climate model
ensembles: non-downscaled CMIP6 GCMs, statistically downscaled CMIP5/6 GCMs, and dynamically
downscaled CMIP5 GCMs. Projections for the operational period and near, mid, and far future were
analyzed to evaluate the risk of wind speed decline and its impact on parameters like AEP, capacity
factor, sensitivity factor, and revenue for the operational period. Additionally, historical wind speed
projections from CMIP6 GCMs and statistically downscaled CMIP5/6 GCMs were compared with ERA5
reanalysis data. By identifying the limitations and strengths of various modeling approaches, the study
provides valuable insights for optimizing wind resource assessments and energy planning. The findings
contribute to improving the reliability and efficiency of wind energy systems. Based on the research
conducted, the following conclusions and their contributions to the wind energy system have been
drawn:

• The statistically downscaled CMIP5/6 GCMs and the non-downscaled CMIP6 GCMs agree with
each other when predicting the risk in wind speed decline. For example, in the operational period
at 8 out of 9 sites, the results for the two datasets were similar. In the one case where they do
not agree, statistically downscaled GCMs had the 83% quantile value of 99.94%, which is ”on the
edge” of being a risk.
Therefore, it can be concluded that the non-downscaled CMIP6 GCMs can be used without down-
scaling since the same trend is observed in both datasets. This has practical implications for sim-
plifying climate impact studies and reducing computational costs. If non-downscaled GCMs can
provide sufficiently accurate projections, they can streamline the integration process by offering
a quicker and more cost-effective method for assessing wind resources.

• The CORDEXmodels showed a different trend as compared to the CMIP6 GCMs and statistically
downscaled CMIP GCMs at 4 out of 7 sites. The wind speed projections by GCM-RCM couples
used in the dynamically downscaled dataset CORDEX were highly influenced by the GCMs and
therefore are not reliable. There should be as many GCMs as possible to couple with the RCMs
in order to obtain diverse and more reliable results. This implies that relying on a limited set
of GCMs could lead to skewed projections, which might affect the planning and optimization of
wind energy systems. Ensuring a broad representation of GCMs in downscaled models can
enhance the reliability of wind resource assessments, leading to better-informed decisions in
energy planning and infrastructure development.

• AEP of a wind farm depends significantly on the wind resource of the site. A high sensitivity
factor is observed at onshore sites where the wind speed is low and the terrain is complex, and
a lower sensitivity factor is obtained at offshore sites with high wind speeds and smooth terrain.
This finding emphasizes the need for site-specific assessments that account for local topography.
Detailed terrain analysis should be prioritized by planners and engineers to optimize wind farm
placement and design, thereby maximizing AEP and ensuring more reliable energy outputs.

• GCMs, when compared to reanalysis data, are highly biased by the complexity of terrain. Onshore
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sites with complex terrain yield high errors and low correlation, with higher errors at more complex
terrain. Offshore sites show better correlation and lower errors.

• GCMs play a crucial role in understanding broad climate trends and making future projections.
However, directly comparing GCM outputs with reanalysis data is not advisable due to differ-
ences in resolution, data assimilation techniques, and representation of local terrain and climatic
phenomena. Even the statistically downscaled GCMs, which have a higher resolution, are de-
signed to improve local-scale accuracy by leveraging historical data but may not capture large-
scale atmospheric dynamics as effectively. Therefore, it is essential to understand the limitations
and apply appropriate methodologies for such comparisons to avoid misleading conclusions and
ensure the reliability of the analysis.

The author recommends the following topics for future research:

• For future research, the effect of variability in the resolution of input data for downscaling methods
on wind speed projections can be studied. Subsequently, the influence on critical aspects of wind
energy applications can be analyzed. This would involve downscaling the GCM projections and
comparing the results with the already downscaled GCMs.

• The author also recommends using CORDEX datasets with a variety of GCMs, when available,
to obtain a diverse range of GCM-RCM couples for research. A similar analysis as done in this
work should be performed to observe the behavior of the models in projecting wind speed in
comparison to other datasets like CMIP6 GCMs.

• Since the downscaling technologies of dynamically downscaled GCMs are different from those
for statistically downscaled GCMs, a similar comparison analysis as done in this work can be
carried out between the CORDEX models and the reanalysis data. This will help study how the
models respond in projecting historical wind speeds in comparison to the reanalysis data.
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A
Appendix A

A.1. Models list
The GCMs have been statistically diwnscaled to a resolution of 3km.

A.1.1. Downscaled CMIP6 GCMs
Given below is the list of the downscaled CMIP6 models that have been used in this study as the
statistically downscaled GCMs for Sites NS2,FR,IT,UK1 for SSP2-4.5 and SSP5-8.5 with exceptions
given after the table.

Table A.1: List Downscaled CMIP 6 models used in this report

CMIP 6Model Institution Country Resolution
(km) Citation

ACCESS-
CM2

CSIRO-ARCCSS CSIRO and
Austr. Res. Council Centre of
Excellence for Climate System
Science

Australia 140 Dix et al. (2019a)

BCC-CSM2-
MR

BCC Beijing climate centre,
china China 100 Xin et al. (2018)

CESM2-
WACCM

NCAR National Center for Atmo-
spheric Research (USA) USA 100 Danabasoglu (2019s)

CMCC-CM2-
SR5

CMCC Centro Euro-
Mediterraneo sui Cambiamenti
Climatici (Italy)

Italy 100 Gopinathan et al. (2019a)

CMCC-ESM2
CMCC Centro Euro-
Mediterraneo sui Cambiamenti
Climatici (Italy)

Italy 100 Lovato and Peano (2020a)

CanESM5 CCCMa Canadian Centre for Cli-
mate Modelling and Analysis Canada 250 Swart et.al. (2019d)

EC-Earth3 EC-Earth Consortium Europe 80 EC-Earth Consortium (EC-
Earth) (2019a)

FGOALS-g3 CAS Chinese Academy of Sci-
ences China China 190 Li (2019a)
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https://doi.org/10.22033/ESGF/CMIP6.2281
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https://doi.org/10.22033/ESGF/CMIP6.44
https://doi.org/10.22033/ESGF/CMIP6.1362
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GFDL-CM4

NOAA-GFDL National Oceanic
and Atmospheric Administration,
Geophysical Fluid Dynamics
Laboratory USA

USA 100 Guo et.al. (2018a)

GFDL-ESM4 Geophysical Fluid Dynamics
Laboratory (USA) USA 100 Krasting et al. (2018b)

IITM-ESM
Centre for climate change Re-
search,Indian Institute of Tropi-
cal Meteorology India

India 170 Gopinathan et al.(2019a)

INM-CM4-8 INM Institute of Numerical Math-
ematics (Russia) Russia 150 Volodin et al. (2019a)

INM-CM5-0 INM Institute of Numerical Math-
ematics (Russia) Russia 150 Volodin et al. (2019d)

MIROC6 Japan Agency for Marine-Earth
Science and Technology Japan 250 Tatebe andWatanabe (2018)

MPI-ESM1-2-
HR

MPI-M Max Planck Institute for
Meteorology Germany 80 Jungclaus et.al. (2019a))

MPI-ESM1-2-
LR

MPI-M Max Planck Institute for
Meteorology Germany 170 Wieners et al. (2019b)

MRI-ESM2-0 MRI Meteorological Research In-
stitute Japan 100 Yukimoto et al. (2019e)

NorESM2-LM NCC Norwegian Climate Centre Norway 190 Seland et al. (2019a)

NorESM2-
MM NCC Norwegian Climate Centre Norway 100 Bentsen et al. (2019b)

TaiESM1
AS-RCEC Research Center
for Environmental Changes,
Academia Sinica Taiwan

China 100 Lee and Liang (2019)

Exception: GCM IITM-ESM has only been used in NS2,FR SSP5-8.5, UK1.

A.1.2. Downscaled CMIP5 GCMs
Given below is the list of the downscaled CMIP5 models that have been used in this study as the statistically
downscaled GCMs for Sites NS1, UK2, UK3, NA1 and NA2 under RCP4.5 and RCP8.5 with exceptions given
after the table.

Table A.2: List of downscaled CMIP5 Models used in this study

CMIP5 Model Institution Country Resolution (degrees)

ACCESS1-0
Commonwealth Scientific and In-
dustrial Research Organisation -
Bureau of Meteorology

Australia 1.25° x 1.875°

CMCC-CESM Centro Euro-Mediterraneo sui
Cambiamenti Climatici Italy 3.75° x 3.75°

CMCC-CM Centro Euro-Mediterraneo sui
Cambiamenti Climatici Italy 3.75° x 3.75°

CMCC-CMS Centro Euro-Mediterraneo sui
Cambiamenti Climatici Italy 3.75° x 3.75°

https://doi.org/10.22033/ESGF/CMIP6.1402
https://doi.org/10.22033/ESGF/CMIP6.1407
https://doi.org/10.22033/ESGF/CMIP6.44
https://doi.org/10.22033/ESGF/CMIP6.1422
https://doi.org/10.22033/ESGF/CMIP6.1423
https://doi.org/10.22033/ESGF/CMIP6.881
https://doi.org/10.22033/ESGF/CMIP6.741
https://doi.org/10.22033/ESGF/CMIP6.742
https://doi.org/10.22033/ESGF/CMIP6.621
https://doi.org/10.22033/ESGF/CMIP6.502
https://doi.org/10.22033/ESGF/CMIP6.506
https://doi.org/10.22033/ESGF/CMIP6.9684
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CNRM-CM5

Centre National de Recherches
Météorologiques - Centre Eu-
ropéen de Recherche et Forma-
tion Avancée en Calcul Scien-
tifique

France 1.4° x 1.4°

CSIRO-Mk3-
6-0

Commonwealth Scientific and In-
dustrial Research Organisation
- Queensland Climate Change
Centre of Excellence

Australia 1.865° x 1.875°

CanESM2 Canadian Centre for Climate
Modelling and Analysis Canada 2.8125° x 2.8125°

GFDL-CM3 Geophysical Fluid Dynamics
Laboratory USA 2.5° x 2°

GFDL-
ESM2G

Geophysical Fluid Dynamics
Laboratory USA 2.5° x 2°

GFDL-
ESM2M

Geophysical Fluid Dynamics
Laboratory USA 2.5° x 2°

HadGEM2-
AO Met Office Hadley Centre UK 1.875° x 1.25°

HadGEM2-
CC Met Office Hadley Centre UK 1.875° x 1.25°

HadGEM2-
ES Met Office Hadley Centre UK 1.875° x 1.25°

IPSL-CM5A-
LR Institut Pierre-Simon Laplace France 3.75° x 1.875°

IPSL-CM5A-
MR Institut Pierre-Simon Laplace France 3.75° x 1.875°

IPSL-CM5B-
LR Institut Pierre-Simon Laplace France 3.75° x 1.875°

MIROC5 Model for Interdisciplinary Re-
search on Climate Japan 1.4° x 1.4°

MPI-ESM-LR Max Planck Institute for Meteo-
rology Germany 1.875° x 1.875°

MPI-ESM-MR Max Planck Institute for Meteo-
rology Germany 1.875° x 1.875°

MRI-CGCM3 Meteorological Research Insti-
tute Japan 1.125° x 1.125°

inmcm4 Institute of Numerical Mathemat-
ics Russia 2° x 2.5°

Exception: CMCC-CESM and HadGEM2-AO were used under climate change scenario RCP8.5.
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Results

B.1. CORDEX analysis
The plote below represent the long term mean wind speed during operational years by 11 CORDEX models under
RCP4.5. Wind speeds with same colour represent same GCM used by different RCMs.

NS1

Figure B.1: Mean wind speed projected by 11 CORDEX models at site: NS1
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NS2

Figure B.2: Mean wind speed projected by 11 CORDEX models at site: NS2

FR

Figure B.3: Mean wind speed projected by 11 CORDEX models at site: FR
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IT

Figure B.4: Mean wind speed projected by 11 CORDEX models at site: IT

UK1

Figure B.5: Mean wind speed projected by 11 CORDEX models at site: UK1
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UK2

Figure B.6: Mean wind speed projected by 11 CORDEX models at site: UK2

UK3

Figure B.7: Mean wind speed projected by 11 CORDEX models at site: UK3
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B.2. PDF for wind speeds at site NS2 and FR

(a) PDF for wind speeds at site NS2

(b) PDF for 10% lower wind speeds at site NS2

(c) PDF for wind speeds at site FR

(d) PDF for 10% wind speeds at site FR

Figure B.8: PDF for wind speeds at site NS1 and IT before and after 10% decline
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Table B.1: Scale and shape factor and AEP values based on decline in wind speed

Parameter NS1 NS2 FR IT

% change 1% 1% 1% 1%

k 2.32 2.20 2.33 1.75

a 10.88 10.30 7.49 5.13

AEP 25.29 23.36 13.59 6.24

% change 3% 3% 3% 3%

k 2.32 2.20 2.33 1.75

a 10.66 10.09 7.34 5.03

AEP 24.69 22.76 12.99 5.91

% change 5% 5% 5% 5%

k 2.32 2.20 2.33 1.75

a 10.44 9.89 7.19 4.93

AEP 24.07 22.14 12.38 5.59

% change 10% 10% 10% 10%

k 2.32 2.20 2.33 1.75

a 9.89 9.37 6.81 4.67

AEP 22.40 20.51 10.87 4.82

historic

k 2.32 2.20 2.33 1.75

a 10.99 10.41 7.57 5.19

AEP 25.58 23.65 13.90 6.40
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B.3. Distance vs MAPE values
Table B.2: Comparison of Distance and Bias for Wind Speed Change Factors across Different Sites

Site NS1 NS2 FR IT

GCM Distance
(km)

MAPE
(%)

Distance
(km)

MAPE
(%)

Distance
(km)

MAPE
(%)

Distance
(km)

MAPE
(%)

pe− accesscm2 81.27 44.65 75.40 10.74 47.40 16.20 50.08 37.72

pe−BCC − CSM2−MR 43.50 34.89 71.48 10.14 19.55 57.57 41.87 91.46

pe− CESM2 25.01 30.43 49.63 14.56 30.42 15.12 2.77 58.39

pe− CMCC − CM2− SR5 25.01 31.49 49.63 10.80 30.42 27.01 2.77 27.06

pe− CMCC − ESM2 25.01 33.32 49.63 9.59 30.42 26.93 2.77 29.35

pe−GFDL− ESM4 36.14 44.04 50.52 11.21 52.91 22.30 61.83 15.30

pe − HadGEM3 − GC31 −
LL

81.27 37.38 75.40 10.20 47.40 10.99 50.08 42.85

pe− IITM − ESM 16.87 34.23 41.15 20.38 92.14 16.68 56.64 103.74

pe− INM − CM4− 8 15.44 48.60 58.06 13.75 77.23 17.78 59.87 90.18

pe− INM − CM5− 0 15.44 48.99 58.06 16.89 77.23 14.16 59.87 95.86

pe− IPSL− CM6A− LR 55.09 34.47 99.80 10.27 96.60 28.11 123.62 85.89

pe−KACE − 1− 0−G 81.27 16.15 75.40 31.73 47.40 51.56 50.08 128.62

pe−KIOST − ESM 58.15 51.67 95.81 41.73 55.87 33.01 43.60 65.72

pe−MIROC6 69.32 51.50 40.08 39.88 11.51 25.97 31.22 25.97

pe−MPI−ESM1−2−LR 72.80 40.81 45.55 10.68 57.47 37.08 122.81 142.09

pe−MRI − ESM2− 0 43.50 45.14 71.48 12.08 19.55 16.44 41.87 55.30

pe−NorESM2− LM 42.44 35.52 111.01 13.14 103.01 39.79 115.89 46.45

pe−NorESM2−MM 25.01 31.30 49.63 12.72 30.42 16.70 2.77 36.46

pe− UKESM1− 0− LL 81.27 41.92 75.40 10.92 47.40 13.52 50.08 46.39

pe−MIROC − ES2L 114.34 59.49 45.55 10.68 136.25 16.53 54.54 34.72
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