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Automatic Spectral Analysis With Time Series
Models

Piet M. T. Broersen

Abstract—The increased computational speed and develop-
ments in the robustness of algorithms have created the possibility
to identify automatically a well-fitting time series model for
stochastic data. It is possible to compute more than 500 models
and to select only one, which certainly is one of the better models,
if not the very best. That model characterizes the spectral density
of the data. Time series models are excellent for random data if
the model type and the model order are known. For unknown
data characteristics, a large number of candidate models have to
be computed. This necessarily includes too low or too high model
orders and models of the wrong types, thus requiring robust
estimation methods. The computer selects a model order for
each of the three model types. From those three, the model type
with the smallest expectation of the prediction error is selected.
That unique selected model includes precisely the statistically
significant details that are present in the data.

Index Terms—Covariance estimation, identification, order selec-
tion, parametric model, spectral estimation.

I. INTRODUCTION

T IME series analysis uses estimated models to compute the
spectral density and the covariance function of stochastic

observations. This parametric approach is a modern perspective
for the nonparametric approach with windowed periodograms
[1]. Spectral analysis with tapered and windowed periodograms
has been the main practical tool for a long time. It can be de-
scribed as squared Fourier transforms of data, or as a trans-
form of biased lagged-product covariance estimates [1]. Both
descriptions can lead to the same spectral estimate.

Time series models are to be preferred for spectral estimation
if the true model type and model order of the process under in-
vestigation are known, because only sample covariances
of an process are efficiently estimated with lagged
products [2]. Therefore, the covariance estimates for higher lags
are not efficient; often, they may be very inefficient. However,
periodogram estimates for the spectral density are, at least par-
tially, based on those high lag covariance estimates. Using only
the few efficient covariance estimates certainly produces heavily
biased spectral estimates.

The increased speed of the computations has recently created
the possibility to compute a large number of candidate time se-
ries models for one given set of data. The preferred model type
and model order for the data are automatically selected with sta-
tistical criteria [3], [4]. From that single selected model, the co-
variance and the spectral density can be computed. The accuracy
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of the parametric spectrum is typically better than the best of
all possible periodogram estimates, and the Cramér-Rao lower
bound is often approached in simulations [4]–[6].

So far, time series identification, or the selection of the model
type, has not been discussed in the literature. Recently, an auto-
matic selection algorithm for the model type has been proposed
[3]; the single selected AR, MA, or ARMA model is denoted
the ARMAsel model. This paper describes some historical de-
velopments that finally resulted in robust algorithms that can be
used in the automatic identification of the model type and order.

II. HISTORICAL OVERVIEW

Spectral estimation has a long history where the progress
has been influenced alternately by theoretical and by compu-
tational developments. Mainlystationarystochastic processes
are studied theoretically. This seems to be a severe mathemat-
ical restriction for measured random data. In practice, however,
the definition of stationarity can be treated very loosely. For ex-
ample, data like speech often can be considered as stationary
enough over small intervals, and their spectra have useful in-
terpretations. A clear computational influence was the use of
the FFT algorithm of Cooley and Tukey for Fourier transforms
[7]. The reduced computer effort enabled the routine analysis
of extensive sets of data with periodogram analysis. Therefore,
nonparametric spectral analysis with tapered and windowed pe-
riodograms has been the main practical tool for spectral analysis
for a long time.

Some historical developments in spectral estimation show
the combined growth of both parametric and nonparametric
methods. More than a century ago, Schuster [8] used peri-
odogram analysis to find hidden periodicities. In 1927, Yule
published an article about autoregressive models [9]. Throwing
peas on the pendulum, thus giving a physical introduction to
autoregressive modeling, supposedly causes deviations from a
pure harmonic motion in a pendulum. The first description of
real data with moving average models is attributed to Slutsky;
it was translated in 1937 but written ten years earlier [10]. Time
and frequency domain considerations were united for stochastic
processes by the independent contributions of Wiener in 1930
[11] and Khintchine in 1934 [12].

Maximum likelihood is a reliable principle to derive efficient
estimators in ordinary linear regression problems. Mann and
Wald [13] proved in 1943 that it isfor large justified to use the
same AR data both as dependent and as independent variables
in regression theory and to apply the maximum likelihood prin-
ciple. This was a reason for Whittle to state in 1953: “it is by no
means obvious that these(ML) properties are conserved when
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the sample variates are no longer independent, e.g., in the case
of a time series” [14]. He also showed that using only the first
two sample covariances to estimate the MA(1) model is very in-
efficient, although all higher true covariances are zero. The ef-
ficiency loss is a factor 3.6 for and more than 100 000
for . Under rather mild conditions, the maximum like-
lihood estimator of a function of a stochastic variable is equal
to the function of the maximum likelihood estimate of the vari-
able itself [15]. Hence, spectra of the MA(1) process, obtained
with lagged-product covariance estimates are far from efficient.
The covariance can be estimated much more accurately from
the MA(1) model [2], [14]. Arato [16] showed in 1961 that the
first lagged products are asymptotically a sufficient esti-
mator for an model. This is no longer true for other types
of processes. In fact, sample covariances are
asymptotically efficient in an process [2]. Hence,
lagged- products are not efficient covariance estimates and the
periodogramcan be nothing but a “quick and dirty” estimator
of the spectral density.

Maximum likelihood estimation is a nonlinear operation for
MA and for ARMA. That gives problems with convergence and
invertibility of models, especially in small samples. Different
computationally efficient algorithms have been derived by using
approximations to the likelihood. Durbin introduced in 1959 an
algorithm for MA estimation from a long estimated AR model
[17]. A year later, Durbin [18] used the long AR model to recon-
struct estimated residuals to be used in ARMA estimation and
an additional alternating update of the MA and the AR param-
eters. Burg [19] described in 1967 a very robust AR estimator
that estimates one reflection coefficient at a time from forward
and backward residuals. Meanwhile, after 1965 [6], the FFT
caused a revival of periodogram-based spectral estimation. The
book of Box and Jenkins [20] in 1970 showed how time series
models could be estimated from practical data. Pioneering work
on order selection has been done by Akaike, who, in 1974, intro-
duced the celebrated selection criterion AIC [21]. Parzen [22]
discussed the relation between time series models and predic-
tion. Also, the physical and econometrical modeling of a truly

process with finite order AR approximations is treated.
Priestley [1] described in 1981 the situation of the parametric
and nonparametric spectral estimators in a mathematically ac-
cessible style. Kay and Marple [23] conclude after an extensive
survey of different algorithms for time series models that “when
the model is an accurate representation of the data, spectral es-
timates can be obtained whose performance exceeds that of the
classical periodogram.” In other words, if model type and model
order are knowna priori, time series models give the best solu-
tion. It would be until about 2000 before a successful and robust
attempt was reported to select the model type and order from
stochastic data with unknown characteristics [3]. The key for
this solution was to incorporate finite sample selection criteria
in the software.

III. FACTS ABOUT PERIODOGRAMS

Periodograms can be characterized as “quick and dirty” for
stochastic data. Despite all efforts to construct efficient spectral
estimators, the best or optimal spectral window can only be de-

termined if the true spectrum is known a priori [1]. The ”quick”
part of periodograms is due to the application of the FFT [6].
The inevitable characterization “dirty” has more or less coherent
reasons.

• Each periodogram can be considered as the transform of
a finite length of estimated covariances and as such is the
MA model. Comparison of this periodogram with directly
estimated MA models shows that the accuracy of the pe-
riodogram is less than the accuracy of estimated and se-
lected MA models [5].

• Only estimated sample covariances are
asymptotically efficient in an process [2].
More than estimated covariances are always required
to estimate the periodogram. The inefficient extra sample
covariances can only produce inefficient periodogram es-
timates for the spectral density.

• In order to obtain a positive semi-definite covariance esti-
mate, the mean-lagged-product estimator has a triangular
bias, using as estimator for lagged
products [1].

• FFT computations treat all data as periodical and produce
artifacts by treating the first and the last observation as
neighbors.

• To reduce the triangular bias and this latter artifact, data
have to be tapered or multiplied by a data window before
the Fourier transform is computed, thus introducing a dis-
tortion at the ends of the data.

• The Fourier transform of a stationary stochastic process
does not exist, because the infinite sum of the absolute
values of a realization of a stochastic process is not finite
[1]. Hence, taking more observations does not converge to
a better approximation, and statistical rules about what is
a better estimate cannot be derived from the asymptotical
properties of that nonexisting transform of infinite length.

• A priori knowledge of the true spectrum is required to
determine the optimal variance reduction window.

Those restrictions show that windowed and tapered peri-
odograms cannot be accurate estimators of the spectral density
of stochastic processes. They remainquick and dirty. Peri-
odograms may give very good spectra for periodic processes,
but not for stochastic.

IV. TIME SERIESDEFINITIONS

Three types of time series models can be distinguished, au-
toregressive or AR, moving average or MA and the combined
ARMA type. An process can be written as [1]

(1)

where is a purely random process, thus a sequence of in-
dependent identically distributed stochastic variables with zero
mean and variance . This process is purely AR for and
MA for . Any stationary stochastic process with a con-
tinuous spectral density can be written as a unique or

process. The roots of

(2)
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are denoted the poles of the process, and the roots
of

are the zeros. Processes and models are called stationary if all
poles are strictly within the unit circle, and they are invertible if
all zeros are within the unit circle. The power spectrum of
the process is for frequencies between and
given by [1]

(3)

The covariance function of the process is defined as the inverse
continuous Fourier transform of (3). It can be approximated as
the inverse discrete Fourier transform of (3) by sampling .
This sampling causes aliasing in the time domain if the covari-
ance function is longer than half the number of samples used.
However, direct methods to exactly derive the covariance from
the parameters exist and are given in the time se-
ries literature [1], [24]. They use the well-known Yule-Walker
relations for the AR covariance and lagged parameter products
for the MA part [1], [23].

A measure for the difference between two processes or be-
tween two estimated models is the model error ME. In simu-
lations, it is a measure for the accuracy of estimated models by
comparing the estimated model with the true process. The ME is
defined as a scaled transformation of the one step ahead squared
error of prediction PE. With a process given by (1) and ,

denoting the estimated model, ME is defined as [24]

(4)

where is the number of observations used in estimating the
model parameters. For unbiased models, the asymptotical ex-
pectation of ME is the number of estimated parameters.

V. REQUIREMENTS FORTIME SERIESALGORITHMS

Some remarks and requirements are given for algorithms that
can automatically estimate parameters of many AR, MA, and
ARMA models for all sorts of data and select the best model
type and order for stochastic data.

• It must be possible to find a good spectral estimate
without the requirement that users are aware of details of
the method or have to make important choices; of course,
they must be able to interfere if they want.

• An algorithm is necessarily a compromise; it cannot be
the very best for all possible kinds of random data, but it
must always give acceptable results, not too far from the
Cramér-Rao boundary.

• The algorithm must be capable of computing very high
model orders, higher than 1000 forand in (1).

• Onlystationaryandinvertiblemodels are acceptable. Any
method thatcan produce roots of estimated polynomials
outside the unit circle is not suitable; so far, this includes
all not constrained least squares algorithms.

• In finite samples, maximum likelihood estimation is less
accurate than some robust methods [25].

• Many algorithms converge asymptotically to the same re-
sult, but have a different finite sample behavior; therefore,
preferences are mostly based on finite samples and cannot
be based only on the asymptotical theory.

• Adding zeros before and after the data causes the re-
sult that several popular estimation methods yield
exactlythe same parameters. Hence, the asymptotical re-
sults for ever increasing sample sizewill be the same.
Burg’s method [19] is chosen as the best for AR estima-
tion, with small bias and small finite sample variance [4].
The Yule-Walker method has too much bias [26]; least
squares methods cannot guarantee stationarity and have
a greater variance; and, finally, full ML solutions are less
accurate in finite samples.

• It is necessary to use a finite sample criterion for AR order
selection if the maximum order is greater than [4];
such high AR orders are often necessary as intermediate
models for MA or ARMA estimation [27].

• Durbin’s MA method has for a long time been consid-
ered as inaccurate because a wrong choice for the long
AR order was used; but, the recently described new fi-
nite sample choice for the intermediate AR order [27] im-
proves the accuracy until close to the Cramér-Rao bound
for many examples. So far, Durbin’s method is the only
method known to the author that can calculate MA models
of very high orders, say MA(1000) and at the same time
guarantee invertibility.

• Also, Durbin’s ARMA methods were not accurate enough
until the discovery of a better choice for the intermediate
AR order [27]. The estimated models are always invertible
and stationary for one specific variant of Durbin’s method
[28], which allows very high ARMA orders.

• Asymptotic order selection criteria can be used for MA
and ARMA estimation, but the penalty factor for addi-
tional parameters should be 3 instead of the penalty 2 used
in AIC. The higher penalty gives a better compromise be-
tween underfit with too few parameters and overfit with
too many [29]. The use of consistent order selection cri-
teria is discouraged because the underfit error can become
large, especially if consistent criteria are applied to data of
the wrong type where the “true” order will be infinite.

• All algorithms must perform well on all types of data. MA
and ARMA algorithms must also give reliable results for
AR data. In the selection stage, it will turn out that those
models give a poor fit to AR data and are not selected at
the end.

• For reduction of the computing time, the ARMA es-
timation has been limited to only the hierarchical

models. This also improves the quality
of order selection because the selection becomes easier
and better if less competitive candidates are available.

• A measure for the quality of models is necessary for a
qualification “better” and “worse.” The best model has the
smallest prediction error or ME and is at the same time the
model with a white residual spectrum. This means that
all frequencies are equally important in estimating that
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model. In other words, that model optimizes the relative
error in the frequency domain, which is the same as the
absolute error in the logarithm of the spectrum [24].

• Problems can always be expected if the length of the mea-
sured data is too short. This means shorter than the impulse
response, shorter than the correlation length or shorter
than the inverse correlation length, but those problems are
probably present in all general applicable methods.

• The algorithm must be able to select type and order, but
also to calculate the , or
model with prescribed and/or .

VI. ROBUST TIME SERIESALGORITHMS

A. AR Estimation

This model type is the backbone of time series analysis in
practice. Burg’s method, also denoted maximum entropy, es-
timates the reflection coefficients [19], [23], thus making sure
that the model will be stationary, with all roots of within
the unit circle. Asymptotic AR order selection criteria can give
wrong orders if the candidate orders are higher than . The
finite sample criterion is defined as [4]

(5)

The order with the smallest value is selected. CIC
uses a compromise between the finite sample estimator for the
Kullback–Leibler information [30] and the optimal asymptotic
penalty factor 3 [4], [29].

B. MA Estimation

Durbin’s method for MA estimation guarantees invertibility
with all zeros inside the unit circle [17]. Theoretically, the

model is equivalent with the model, by using
. Durbin’s method uses theestimatedparam-

eters of a long AR model to approximate the MA model. Of
course, the order of that long AR model has to be fi-
nite in estimation. The true MA process and the approximating
long AR representation are given by

(6)

Substitution of in the second equation yields the result

(7)

The MA parameters are computed by minimizing the sum
of squares ofall powers of in (7), from 0 to ;
the coefficient of in this series expansion becomes

(8)

where the estimated parameteris always taken to be 1. The
performance of Durbin’s algorithm has been improved by se-
lecting a better order for the intermediate AR model [27]. That

order is chosen, with a sliding window algorithm, as twice the
AR order which is selected for the data with plus the
number of MA parameters to be estimated. The MA orderis
selected with the asymptotical criterion , defined as
[4]

(9)

is the residual variance that can be computed by fil-
tering the original observations of the process with the in-
verse of the estimated MA model . Applying the inverse of
the MA model is the same as using an AR filter with the param-
eters of that MA model.

C. ARMA Estimation

ARMA models can be computed with Durbin’s methods [18].
The first ARMA method of Durbin uses reconstructed residuals

and previous observations as regressors in a least squares
solution. The ARMA process is given by

(10)

The residuals are reconstructed from by using a long
AR model . If the order of would be infi-
nite and the parameters would exactly be the series expansion
of , the residuals could be perfect. Durbin’s first
method estimates the parameters by minimizing

(11)

This ARMA solution is not efficient, and not guaranteed to be
stable and invertible. Using the AR parameters of Durbin’s first
ARMA method as initial conditions, sequential updates of the
MA parameters and AR parameters can be made with Durbin’s
second method. For updating the MA parameters, an adaptation
of Durbin’s MA method is used. Substitution of from the
first equation into the second part of (10) and replacing true by
estimated parameters give

(12)

A sliding window choice for the order of the intermediate AR
model has been described for models
[27]. It is three times the AR order as selected with plus
the number of parameters that has to be estimated. By using
the long AR model divided by the initially estimated from
(9), the MA parameters are estimated from the quotient

in (12), like they were in (8) from .
Having obtained this new estimate for the MA parame-
ters, the initial estimate obtained with (11) is updated with
a new representation of (12)

(13)
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The solution can be written as

(14)

This solution for the parameters in can also be inter-
preted as equating the covariance function of to the first
terms of the covariance generated by the right-hand side product
of (13), or to the first reflection coefficients of that product.
The Yule–Walker relations [23] can be used to calculateAR
parameters from covariances, using the reflection coefficients.
The accuracy of the second method of Durbin is very much de-
pendent on the proper choice of the order of . However,
taking the long order too high is much less detrimental than
taking the order too low. After computing the model parame-
ters, the residuals can be computed by filtering the data with the
inverse of the estimated ARMA model. Like in (9), the penalty
factor 3 can also be used for selection of the parameters
of the model, so .

D. Automatic ARMAsel Identification

The ARMAsel algorithm [28], [31] computes models
with and selects a single best AR model
with CIC (4). Generally, the highest candidate orderis lim-
ited to 1000 for , but that is not necessary. Also

models are calculated with , with an
upper limit 400, and the best MA model is selected from those
candidates with of (9). The maximum MA order that
is considered for computation is much lower than the maximum
AR order, but practical data generally do not have very high MA
orders. Moreover, a high AR order model is used as interme-
diate for the estimation of MA models. Also,
models are estimated for with the maximum
200 and the best ARMA order is selected, which has the smallest
value for the criterion . Finally, having selected
the best model, the best model and the best

model, the prediction error of those three re-
sulting models is estimated with the given data [3]. For MA and
ARMA models this is given by

(15)

where is the number of estimated parameters in the model.
For models, the expression is given by the finite sample
expression [3]

(16)

which differs only significantly from (15) if the number of esti-
mated parameters is greater than . The model type with the
smallest estimate for the prediction error is selected. In this way,
a single time series model, with selected type and order, can be
determined for the given observations: it is called the ARMAsel
model. The spectral density or the covariance can be computed
from its estimated parameters, and that gives the best represen-
tation of the second-order characteristics of the measured data.

The new ARMAsel algorithm has many applications and is
an example of intelligent signal processing. Its use does not re-

quire a profound knowledge of the user. All theoretical elements
have been integrated in the Matlab toolbox ARMASA [31], with
main routine ARMAsel. Of course, the experimenter can over-
rule many choices that are made automatically in the algorithm.
It returns the parameters of the selected model, and the infor-
mation of a number of additional models is also available from
the algorithm upon request.

VII. A PPLICATIONS

With present-day computers, it is feasible to apply this au-
tomatic time series identification to measured data if an accu-
rate spectral estimate is desired. It takes less time to compute
tapered and windowed periodogram estimates, but those can
never compete in accuracy with the unique automatically se-
lected ARMAsel model. This has been proved theoretically, and
it has been demonstrated in numerous simulations. As far as
the author is aware, the algorithm of Section VI is the first suc-
cessful attempt to automatically identify a time series model for
measured observations without interaction from the user. The
Matlab program ARMAsel needs only the observations as input,
and it gives the AR and the MA parameters of the selected model
as output. The algorithm is freely available [31].

A number of applications of the automatic ARMAsel algo-
rithm have been studied already or are under study.

• Detection of methacholine from lung sounds[32];
• detection of objects in radar clutter[33];
• detection of the flow regime in turbulent flow;
• spectral representation of irregularly sampled data [34];
• spectral estimation with missing data;
• spectral representation of meteorological data;
• improved estimate for the accuracy of the estimated mean

value, with this accuracy computed from the sum of esti-
mated covariances [35];

• comparison of different spectral models with the single
number ME (model error (4)) that is calibrated;

• extracting the statistically significant peaks from data;
• giving a brief description of the statistically significant

details, which diminishes the number of bits that have to
be transmitted in a remote sensing;

• improving the accuracy of most applications that select
time series models with neural networks, by using the AR-
MAsel model that has statistically optimal properties and
does not require learning sets with all kinds of problems
about which sets to use for learning;

• monitoring the rotating and vibrating equipment;
• in general, monitoring to detect statistically significant but

unmodeled and unexpected changes in the process be-
havior in a stochastic environment.

The example in Fig. 1 shows the automatically selected es-
timated ARMAsel spectra for and for
of some AR(21,20) process. Both spectra are rather close to the
best achievable accuracy for that, given by

. Clearly, more observations give better results. If initial or
standard model parameters are available, newly selected AR-
MAsel spectra are an excellent process characterization to be
used for monitoring and detection by looking for changes with
the model error ME.
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Fig. 1. True spectrum and two estimated ARMAsel spectra.

VIII. C ONCLUDING REMARKS

It is feasible to estimate AR models, MA models
and, ARMA models from measured observations
and to select automatically a single good model. To reduce
the computation time, it may be advisable to restrict those
upper boundaries for greater than 500 or 1000. First, order
selection is applied separately to the three model types AR,
MA, and ARMA. The prediction errors of the selected ,

, and models are used for selection of
the model type with the ARMAsel algorithm.

Use of robust algorithms is necessary for the automatic iden-
tification. Observed differences can be attributed only to statis-
tical variations as a function of the model order. The accuracy
of the model with selected type and order is slightly worse than
the accuracy of the model that could be estimated if type and
order woulda priori be known. For small samples, the accuracy
may even be better.

ARMAsel is freely available [31]. Hence, it is easy to verify
or to falsify the qualities of the ARMAsel algorithm by com-
paring the single ARMAsel spectrum with the result of one’s
own favorite spectral estimator.
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