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Inspecting structural components of a construction project using laser 

scanning 

Linh Truong-Hong1*, Roderik Lindenbergh1 
1Department of Geoscience and Remote Sensing,  

Delft University of Technology, The Netherlands 
* l.truong@tudelft.nl 

Abstract. In construction projects, inspection of structural components mostly relies on typical 

measurements (e.g. measuring tapes, levelling or total stations). Additionally, with those methods, 

only a few points on the structure can be measured, and resulted inspection may not fully reflect the 

actual, detailed condition. Laser scanning is emerging a remote sensing technology to capture the 

structures’ surfaces in high details accurately and quickly. However, because of complex, massive 

data points acquired from the construction project, in practice, data processing is still manual work 

with support of computer aided program. To improve current workflows, this paper proposes a 

method automatically extracting structural components of the concrete building and subsequently 

inspects them in a term of deformation. The proposed method explores both spatial information of 

a point cloud and contextual knowledge of structures (e.g. orientation or shape). Additionally, based 

on the fundamental design of the structures, component’s boundaries are automatically extracted to 

establish un-deformed surfaces of the components for deformation measurement. 

1. Introduction 

In construction projects, defects of structural components are inevitable. The construction cost 

can be up 16% of the total cost of the project when the defects were fixed at the last stage 

(Burati and Farrington, 1987). The rework costs can be minimized if any defect of the 

component can be identified at an early phase of the project. In current practice, defect 

inspection is mostly manual interpretation of geometric data acquired from measuring tapes, 

levelling or total stations. Therefore, project managers cannot identify the defects timely, 

accurately and objectively. In addition, inspection results in hard copies are cumbersome to use 

digital tools to improve efficiency of the project management. 

A terrestrial laser scanning has ability to capture visible surfaces accurately, quickly and 

efficiently, which has been used at many construction projects in recent years for construction 

progress monitoring, surface defect detection, as-built BIM, and dimensional quality control 

(Bosche, 2010; Kim et al., 2014). As the point cloud represents multiple objects in a scene, a 

point cloud processing is often required to extract the point cloud of each object and/or objects’ 

surfaces, but this is a nontrivial task. In practice, users often use commercial software (e.g. 

Revit, and ClearEdge 3D) to manually extract a point cloud of the components by using 

software functions like crop, segmentation and fitting. That is time consuming and is required 

experience users to handle a massive, complex data set of the construction project.  

Recent effort in automatically extracting the structural components from the point cloud, 

Bosche (2010) mapped a 3D CAD model to the point cloud to extract members of an as-built 

model. Dimitrov and Golparvar-Fard (2015) proposed a region growing based on surface 

roughness estimated for each point by using multi-scale neighborhood to extract building 

objects. The method still had some drawbacks, for example over-segmentation, intensive 

computation demand. Kim et al. (2014) extracted data points of surfaces, and edges and corners 

to determine the dimensions of a reinforced concrete panel, and then as-design model was 

mapped to the point cloud to assess a construction deviation. Additionally, in supporting quality 

assurance and control of reinforced structures, Wang et al. (2017) extracted individual rebars 
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in concrete structures by using one-class support vector machine approach based linearity, 

planarity and red-green-blue colors of the point cloud. Laefer and Truong-Hong (2017) used 

kernel density estimation (KDE) to detect primary surfaces of a steel cross-section to determine 

its shape and dimensions, and subsequently a correct section was identified by comparing the 

standard sections to the point cloud-based section for generating a 3D model of a steel member. 

In extracting structural members of a regular building, Maalek et al. (2019) extracted roughly 

horizontal planes (floor and ceiling)  using a histogram based on points’ elevation and then a 

hierarchical clustering method was segmented based on planar and linear features of each points 

computed from a robust principal analysis. Next, the planar surfaces with normal vectors 

perpendicular to main axes of the building were considered as columns’ surfaces if they make 

to adjacent surface a symmetric section. In summary, existing methods are requirement of an 

as-design model, certain assumption to extract the structural components and time consuming. 

This paper proposes a new method to automatically extract point clouds describing the building 

components and inspect construction quality in a term of deformation. 

2. Proposed method 

The proposed method consists of two parts: extraction and inspection of structural components 

(Fig. 1), in which the first part includes 3 consecutive moduli: (i) floor/ceiling and wall, (ii) 

column and (iii) beam. The algorithm is based on a synergy between a point cloud, and 

contextual knowledge of structures. In a construction project of reinforced concrete buildings, 

structural elements of the story must be inspected before starting a next one. That implies a 

point cloud of one story is input data for the proposed method rather than those of an entire 

building. Moreover, contextual knowledge of the structures used in this method includes: (1) 

floor/ceiling and wall is a planar surface; (2) columns’ orientations are vertical; (3) a beam is 

connected between two columns or a column and wall; (4) the minimum cross-section of the 

column and beam is 0.2mx0.2m while the columns’ height and the beams’ length is 2.0m and 

1.0m, respectively. 

 

Figure 1: Workflow for inspecting structural components in reinforced concrete buildings 

3. Structural component extraction 

3.1 Modulus 1: Floor/ceiling and wall extraction 

Cell-based segmentation method proposes to extract floor, ceiling and wall as they are planar 

surfaces in either horizontal or vertical direction. The method consists of two steps: extract the 

point cloud surfaces’ patches through two-dimensional (2D) cells (Step 1), and segment a point 

cloud of a planar surface (Step 2).  
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Step 1: The algorithm employs a quadtree to recursively subdivide an initial 2D bounding box 

of a point cloud (P = pi  R3) into 2D cells (C = {c1, . . . ci, cN}, i = [1, N]) along the x- and y- 

directions in a Cartesian coordinate system until the cell size is no larger than the predefined 

cell size (cell_size). The cell ci is classified as the “full” cell if it occupied the number of points 

larger than a predefined minimum number of the points (min_ptc), otherwise, it is an “empty” 

cell. Notably, only full cells are used in a further process. As the cell ci may contain a point 

cloud of multiple components (e.g. floor, ceiling, beam or column) in elevation, kernel density 

estimation (KDE) generated from the z-coordinates of the points is used to extract the data 

points affiliated to a surface’s patch ij (Laefer and Truong-Hong, 2017). The points belonging 

to the patch are located within two consecutive valleys of KDE (Fig. 2). 

    

a) Case 1: A cell contains data points of a floor 

and ceiling  

b) Case 2: A cell contains data points of a floor, 

ceiling and beam 

Figure 2: Extracting data points of patches within a 2D cell 

Step 2: Cell-patch region growing (CpRG) is developed to segments patches representing slabs 

of the floor and ceiling. CpRG consists of 3 sub-steps: patch-patch region growing (Step 2.1), 

patch filtering (Step 2.2), and patch-point region growing (Step 2.3).  

Step 2.1: Patch-patch region growing 

First, the proposed method computes salient features of each patch ij, which include a fitting 

plane ij(pij,0, nij), where pij,0 is a centroid of the points pij  ij and nij is a normal vector, and a 

residual value (rij) defined as a root mean square of distances d(pij, ij(pij,0, nij)). Next, patch-

patch region growing starts to segment the patches with an initial seeding patch ij  ci owning 

the smallest residual value to search neighbouring patches (kl  ck). The patch kj is added to 

a region (Rk) if it satisfies Eq. 1 and is added to the seeding patch set for next iterations if its 

residual value rkl is smaller than the residual threshold (r0). The growing process is completed 

when all predefined patches are checked. For details of the patch-patch region growing can 

refer to (Rabbani et al., 2006, Truong-Hong et al., 2018).  

 {
𝑛𝑖𝑗 , 𝑛𝑘𝑙 ≤ 𝛼0

𝑑(𝑝𝑘𝑙,0, 𝜓𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗)) ≤  𝑑0
   (1) 

where 𝑑(𝑝𝑘𝑙,0, 𝜓𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗)) is a Euclidean distance between the centroid of the patch kj to 

ij(pij,0, nij), and 0 and d0 are the angle and distance thresholds. 

However, the patches can contain the data points of other components, and/or points of the 

surface are possessed by unsegmented patches or an adjacent region. These issues can be solved 

in Step 2.2 and Step 2.3, respectively. 
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Step 2.2: Patch filtering algorithm 

For each region, the filtering algorithm extracts a boundary patch (ext,ij) of a region Rm and its 

neighbour interior patches (int,kl). Data points of the patches int,ij are used to estimate a local 

surface (Sij) by using a principal component analysis (PCA). Subsequently, the points pij  ext,ij 

are considered as inlier points pint,ij if the distance 𝑑(𝑝𝑖𝑗, 𝑆𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗))  is no larger than the 

distance threshold d0, and remaining points are eliminated.  

Step 2.3: Patch-point region growing 

The process starts with a boundary patch ext,ij  ci of a region Rm to search adjacent patches 

kl  Rm.  Next, points pkl are added to the region Rm if the distance d(pkl, ij,ext (pij,0, nij)) is less 

than the distance threshold d0. The patch kl is considered as a boundary patch for next 

searching iterations if more than 50% of the points of the patch kl is added to the region Rk.  

Once the data points of the floor and ceiling are extracted, the remaining points cloud are used 

to extract vertical walls by using a similar process, in which the quadtree is used to generate 2D 

cells in the yz and xz planes, respectively. Moreover, details of cell-based segmentation can 

refer to Truong-Hong and Lindenbergh (2020).  

3.2 Modulus 2 - Column Extraction 

After extracting floor, ceiling and wall, 2D cells in xy plane used for extracting the floor and 

ceiling are recalled but the segmented points are discarded out of the cells. The algorithm has 

two main steps (Fig. 3). 

In Step 1, for each cell ci, the cell height (ci), which is computed from z-coordinates between 

the lowest and highest points, and the maximum gap (ci), which is different z coordinates of 

two consecutive points in an elevation are computed. Next, the cells can possess points of the 

column if Hci  H0 and Hci  0.5H0, where H0 is the minimum column height. Subsequently, 

the remaining cells are clustered based on their connectivity and each cluster contains candidate 

points of columns (Fig. 3 a and b).  

In Step 2, a voxel-based growing segmentation (VRG) (Vo et al., 2015) is adopted to segment 

points of a cluster. In this method, the point cloud is subdivided into the small voxel with the 

voxel size is no larger than the threshold (voxel_size), and then a fitting plane is estimate 

through points of the voxel to determine voxel’s features: a normal vector and residual. VRG 

operates similar CpRG, in which the voxels associated with salient features used instead of the 

patches (Fig.3c). 

 

Figure 3: Illustration of Column extraction workflow 

a) Cells  data points b) Candidate points c) VRG d) CSC e) SbF

Step 1: Column extraction-based cell Step 2: Filter-based voxel and surface
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As the cluster in Step 1 may contain points of other components adjoined to the column or may 

not represent to a real column, a connected surface component (CSC) algorithm is proposed to 

determine segmented surfaces are parts of the column (Fig. 3d). This is based on the hypothesis 

is that the component’ surfaces connect together in a form of a close loop. The CSC algorithm 

starts with the initial segment, which is herein the largest surface in a term of an area. Two 

surfaces are connected if the angle between two normal vectors is larger than the angle threshold 

1, and the overlap length is no less than H0 (Fig. 4a). Notably, lines Pi1Pi2 and Pj1Pj2 are 

respectively line segments generated from projected points of the surfaces Si and Sj on the 

intersection line Lij. 

   

a) Surfaces connected b) Case 1: all planes accepted c) Case 2: 2 planes rejected 

Figure 4: Illustrate the CSC algorithm 

Once the connected segments are obtained, their segments are projected on a plane 

perpendicular to the surface of the reference segment. Subsequently, the segments that do not 

make a close loop are rejected (Fig. 4b and c). Finally, the column is considered as the real 

column if they are in a form of at least two surfaces. This criterion is applied to avoid missing 

the column at the building corner. 

Finally, surface-based filtering (SbF) proposes to remove outlier points of the segments, which 

are points of co-planar surfaces of adjacent components including in the segment. This is based 

on an observation that the surface’s points are bounded by intersection lines with the adjoined 

surfaces. For the surface Si, the intersection line Lij divides the points pi  Si into inlier (pinl,i) 

and outlier (pext,i) groups, which is determined based on signs of sign distances d(pi, Lij). The 

outlier group has small number of the points (|pext,i|  <  |pinl,i|), and the outlier points pext,i are 

then discarded (Fig. 3e).  

3.3 Modulus 3 - Beam Extraction 

In a building structure, a primary beam connects between two columns or a column and a shear 

wall, and a beam connects to a side of a column. Moreover, the columns’ shapes are mostly 

rectangular or square, which implies a beam’s width is smaller or equal to the column’s width. 

Notably, in this study, the secondary beam connecting two primary beams, is out of a scope of 

work. Similar the column extraction, the algorithm also consists of two Steps: rough and fine 

extraction of the beam. 

Step 1: From each surface Sij of a column Coli, the fitting plane Sij(pij,0, nij) is estimated using 

PCA, in which a direction of the normal vector is set outward the column (Fig. 5). A beam can 

connect between the column Coli and Colk, if the surface Skl(pkl,0, nkl) of the column Colk 

satisfies Eq.2. The first constrain is to ensure Sij and Skl parallel, the second constrain checks if 

Coli and Colk are on the same grid, and the last one finds Skl is the closest surface of Sij.  
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{
 

 
𝑛𝑖𝑗 , 𝑛𝑘𝑙 ≤ 𝛼1

|𝑑 (𝑝′𝑘𝑙,0, 𝐿𝑖𝑗(𝑝′𝑖𝑗,0, 𝑛𝑖𝑗
′ ))| ≤  𝑆𝑖𝑗. 𝑤

𝑑(𝑝𝑘𝑙,0, 𝑆𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗)) < 0 ∧ |𝑑(𝑝𝑘𝑙,0, 𝑆𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗))| → 𝑚𝑖𝑛

   (2) 

where 1 = 5 degrees is the angle threshold, 𝑝′𝑖𝑗,0, 𝑝′𝑘𝑙,0 and 𝑛𝑖𝑗
′ are projection of 

𝑝𝑖𝑗,0, 𝑝𝑘𝑙,0 and 𝑛𝑖𝑗 on a xy plane, Sij.w is the width of the surface Sij, which is a short side of a 

2D minimum bounding box (mbb) of the points of the surface Sij projected on its fitting surface, 
and the distance is a sign distance. 

Subsequently, candidate points (PBi) of the beam Bi are given in Eq. 3. The first condition is to 

obtain the points between two columns. The second condition is based on the beam’s width no 

larger than the column’s width. Moreover, when the surface Skl is not available, which implies 

the wall supports the beam, the distance 𝑑(𝑝𝑘𝑙,0, 𝑆𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗)) is set as an infinity, and only 

Sij.w is used in the second condition. 

𝑝𝑖 ∈ 𝑃𝐵𝑖 𝑖𝑓 {
0 ≤ 𝑑 (𝑝𝑖, 𝑆𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗))  ∧  𝑑 (𝑝𝑖, 𝑆𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗)) ≤ 𝑑(𝑝𝑘𝑙,0, 𝑆𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗))  

|𝑑(𝑝𝑖, 𝐿𝑗𝑙)| ≤ max(𝑆𝑖𝑗. 𝑤, 𝑆𝑘𝑙. 𝑤) + 𝑡𝑜𝑙
 (3) 

where 𝑑(𝑝𝑖, 𝐿𝑗𝑙) is a sign distance from the points pi to the line Lij = 𝑝′𝑖𝑗,0 𝑝′𝑘𝑙,0, Skl.w is the 

width of the surface Skl, and tol = 0.1m is a tolerance compensating data errors or imperfect 

structures. 

 

Figure 5: Illustration of beam extraction 

Step 2: Similar Step 2 of the column extraction, VRG is to extract points of planar surfaces, 

CSC algorithm is to determine the final surfaces and SbF filters outlier points (Fig. 5). Notably, 

the initial surface for CSC algorithm is the bottom surface defined as the largest surface with 

the smallest angle between its normal vector and a unit vector of the oz axis (nz = [0, 0, 1]). 

4. Structure Inspection 

This section is to inspect main structural components (ceiling slabs, columns and beams) in 

terms of deformations. A deformation is defined as a distance between the point cloud of the 

components’ surfaces to the reference surface (Sref) considering as the un-deformed surface. 

4.1 Ceiling slab deformation 

In concrete buildings, ceiling slabs are often supported by the beams and/or shear walls, and 

the slabs’ edges are fixed. As such, intersection lines (Lint) between the slab’s surface and 
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supported element’s surfaces (SSE) are used to determine the reference surface (Sref). Moreover, 

SSE is perpendicular to the slab’s surface. Thus, the algorithm identifies Lint to determine Sref and 

computes slab’s deformations.  

For each slab Slabi, the algorithm starts with boundary patches (ext,ij  ci  Slabk) to retrieve 

adjacent cells cj sharing an edge with ci. Notably, cj does not possess any patch of the slab Slabi. 

Next, candidate points pi of SSE,i are given in Eq. 4. Subsequently, VRG is employed to segment 

pi  SSE,i, and the final surface of SSE,i is the closest surface , perpendicular to ext,ij.  

𝑝𝑖 = {
(𝑝𝑐𝑖 ∈ 𝑐𝑖) ∧ (𝑝𝑐𝑗 ∈ 𝑐𝑗) 𝑤ℎ𝑒𝑟𝑒 𝑝𝑐𝑖 ∉  𝑆𝑙𝑎𝑏𝑖 ∧ 𝑝𝑐𝑗 ∉  𝑆𝑙𝑎𝑏𝑖

|𝑑 (𝑝𝑆𝑆𝐸𝑖 , 𝜓𝑖𝑗.𝑏𝑜𝑢𝑛𝑑𝑒𝑥𝑡(𝑝𝑖𝑗,0, 𝑛𝑖𝑗))| ≤ 𝑑1
    (4) 

where d1 = 0.3m is the distance threshold.   

An intersection line segment Lint,i between ext,ij and SSE,i is determined, and the middle point 

of Lint,i is considered as the edge point. The reference surface Sref,i(pref,i, nref,i) of Slabi is fitted 

through all edge points using PCA and the deformation of Slabi is expressed in Eq. 5. 

 𝑑(𝑝𝑖 ∈ 𝑆𝑙𝑎𝑏𝑖, 𝑆𝑟𝑒𝑓,𝑖(𝑝𝑟𝑒𝑓,𝑖, 𝑛𝑟𝑒𝑓,𝑖) =
(𝑥𝑖− 𝑥0)𝑛.𝑥+(𝑦𝑖− 𝑦0)𝑛.𝑦+(𝑧𝑖− 𝑧0)𝑛.𝑧

√𝑛2.𝑥+𝑛2.𝑦+ 𝑛2.𝑧
   (5) 

where pref,i = (x0, y0, z0) and nref,i = (n.x, n.y, n.z) is the centroid of the edge points and the normal 

vector, and pi = (xi, yi, zi)  Slabk. 

4.2 Column verticality 

The column verticality is measured as out-of-plumbness of the column against a perfectly 

vertical surface (called the un-deformed surface, Sref) through of the column top. The surface 

Sref is determined through an intersection line Lint between the column’s surface and the surface 

of the connected component (SCC). The column often supports the beams (Case 1) and/or the 

ceiling slabs (Case 2), which can be automatically identify based on results from Modulus 3. 

The algorithm starts to determine Lint and then compute verticality. 

For each surface Sij of the column Coli, PCA is employed to estimate unit vectors (nij – a normal 

vector, tij – a small tangent vector, ttij – a large tangent vector) while the 2D mbb is used to 

determine its width (Sij.w) and height (Sij.h).  

For Case 1, from Modulus 3, if a beam Bk connecting to the column Coli is available, the bottom 

surface Skl of the beam Bk is retrieved. A sub-data set of Skl given in Eq. 6 is representing SCC,kl.  

𝑝𝑖 ∈ 𝑆𝑘𝑙 → 𝑝𝑆𝐶𝐶,𝑖𝑗 𝑖𝑓 0 ≤ 𝑑 (𝑝𝑖, 𝑆𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗)) ∧ 𝑑 (𝑝𝑖, 𝑆𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗)) ≤ 𝑆𝑖𝑗. 𝑤   (6) 

where pij,0 is a centroid of the points of the surface Sij, and the distance here is a sign distance. 

In Case 2, if a ceiling slab Slabk connects the column Coli, only a subset of the slab expressed 

in Eq. 7 is considered to represent SCC,kl. 

𝑝𝑖 ∈ 𝑆𝑙𝑎𝑏𝑘 → 𝑝𝑆𝐶𝐶,𝑖𝑗𝑖𝑓 {
0 ≤ 𝑑 (𝑝𝑖, 𝑆𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗)) ∧ 𝑑 (𝑝𝑖, 𝑆𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗)) ≤ 𝑆𝑖𝑗. 𝑤

|𝑑 (𝑝𝑖, 𝑆𝑖𝑗
𝑡 (𝑝𝑖𝑗,0, 𝑡𝑖𝑗))| ≤ 0.5𝑆𝑖𝑗. 𝑤

 (7) 

Subsequently, the intersection line, Lint,jl(pint,jl, tint,jl) is determined from the surface Sij and SCC,kl. 

Next, the reference surface Sref,ij is defined by a normal vector nref,ij as a cross product of tint,jl 

and nz. Finally, the verticality is distances d(pi  Sij, Sref,ij(pint,jl, nref,ij) as given in Eq. 5. 
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4.3 Beam deformation 

In concrete buildings, the deformation of a beam can express as the distance between the bottom 

surface Sij of the beam Bi and the reference surface Sref,i through the beam supports. That is 

because the beam supports are assumed to be fixed. Moreover, as mentioned above, the end 

beams are supported by column (Case 1) and/or a shear wall (Case 2), which is automatically 

identified based on results of beam extraction in Modulus 3. For the bottom surface Si of the 

beam Bi, unit vectors (nij – a normal vector, tij – a small tangent vector, ttij – a large tangent 

vector) and the surface dimensions (Sij.w - width and Sij.h - height)  are respectively estimated 

by PCA and the 2D mbb. Notably, the direction of nij is the same to one of nz.  

For Case 1, the surface Skl of the column Colk connecting to the beam Bi is extracted, and then 

a sub-data set of the surface Skl is to represent SSE,ij, which is expressed in Eq. 8. 

𝑝𝑖 ∈ 𝑆𝑘𝑙 → 𝑝𝑆𝑆𝐸,𝑘𝑙 𝑖𝑓 − 𝑆𝑖𝑗. 𝑤 ≤ 𝑑 (𝑝𝑖, 𝑆𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗)) ∧ 𝑑 (𝑝𝑖, 𝑆𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗)) ≤ 0  (8) 

where 𝑑 (𝑝𝑖, 𝑆𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗)) is a sign distance 

In Case 2, the walls extracted from Modulus 1 closed to the end of the beam Bi is extracted. A 

sub-data set of the wall Wallk determined based on Eq.9, is used to determine SSE,k. 

𝑝𝑖 ∈ 𝑊𝑎𝑙𝑙𝑘 → 𝑝𝑆𝐶𝐸,𝑘𝑖𝑓 {
−𝑆𝑖𝑗. 𝑤 ≤ 𝑑 (𝑝𝑖, 𝑆𝑖(𝑝𝑖𝑗,0, 𝑛𝑖𝑗)) ∧ 𝑑 (𝑝𝑖, 𝑆𝑖𝑗(𝑝𝑖𝑗,0, 𝑛𝑖𝑗)) ≤ 0

|𝑑 (𝑝𝑖, 𝑆𝑖𝑗
𝑡 (𝑝𝑖𝑗,0, 𝑡𝑖𝑗))| ≤ 0.5𝑆𝑖𝑗. 𝑤

 (9) 

The intersection line, Lint,jl(pint,jl, tint,jl) is determined from the surface Sij and SSE,k, and the 

reference surface Sref,ij is the surface through two intersection lines at the ends, in which the 

direction of nref,ij is the same nz. Finally, the distance d(pi  Sij, Sref,ij(pint,jl, nref,ij)) given in Eq. 5 

is the beam deformation. 

5. Experiments and Results 

To demonstrate the proposed method, a ground storey of a office building on Pham Ngu Lao 

st., Vietnam is selected. The storey is about 18.5m wide x 29.5m long x 3.45m high, and was 

scanned by a Trimble TX8 with a maximum scanning range at 120m and an angular accuracy 

of 8rad in both vertical and horizontal (Trimble, 2020b). A point spacing of 11.3mm at a range 

of 30m and a total of 11 scanning stations was established to capture an interior storey with a 

maximize data coverage (Fig. 6a). The point clouds were registered by the Trimble RealWork 

software v11.2 (Trimble, 2020a) with the registration error about 1.57mm. Finally, 23.5 million 

points with x-, y- and z- coordinates was exported as input data for the proposed  method. 

Notably, parts of a MEP system were installed, which obstructs to capture surfaces of several 

structural elements. 

A set of parameters for the proposed method as following. For 2D cell decomposition, cell_size 

=1.0m and min_ptc = 10 are selected to ensure at least one cell representing the smallest slab 

by 2mx2m. The bandwidth of 0.2m is set for patch extraction by KDE, which allows to separate 

two surfaces of the thinnest component. Moreover, the thresholds 0 = 5 degrees, d0 = 10mm, 

r0 = 10mm and voxel_size = 0.1m are selected for CpRG and VRG. Although the surfaces of 

the building components are almost perpendicular, the small angle threshold is selected to 

prevent points of the MEP components including in the ceiling segments. Notably, the distance 

and residual thresholds can adjust based on data errors and the surface roughness. Finally, the 

selected voxel_size is to ensure one voxel can representing a surface of the column and beam.  



360 

 

  
 

a) Point cloud of a storey b) Extracted floor c) Extracted ceiling slabs 

  
 

d) Wall  e) Column f) Primary beam 

Figure 6: Point cloud of a storey from an internal scan and resulted component extraction 

As a point cloud of one storey captured used as an input data for the proposed method, patches 

belonging to the floor and ceiling are mostly the first and last patches of a cell in the vertical 

direction, respectively. Thus, the first and last patches are respectively set as seeding patches 

for Step 2.1 in floor and ceiling extraction, while all remaining patches use for Step 2.2 and 2.3. 

Once the points are assigned for the components, they are immediately deactivated, and only 

remaining points are used in subsequent steps. Results of the component extraction are shown 

in Fig. 6b-e. That can be seen all surfaces of the components (floor and ceiling slabs, columns 

and beams) are successfully extracted. However, in future work, additional experiemental tests 

and the quantitative elevation including the level of locational deviation, shape similarity and 

positional accuracy are implemeting to give detailed the perfromance of the proposed method.  

Additionally, as only parts of the data sets are used in extracting the components, it shows that 

the proposed method is efficiently accommodates a large data set. For example, with a current 

data set, the processing time is 412.1 seconds including 166.9 seconds for floor and ceiling, 

58.3 seconds for wall, 41.1 seconds for column and 145.8 seconds for beam. An executing time 

of the beam is larger than other components because the voxel size of 0.1m is set for VRG. This 

value can be adjusted based on the actual component size rather than a fixed value. This 

performance is based on an implementation of the proposed method in MATLAB 2019b 

(2019b) and processing on Dell Precision Workstation with a main system configuration as 

follows: Intel(R) Xeon(R) W-2123 CPU @ 3.6GHz with 32GB RAM.  

  
 

a) Ceiling slab deformation b) Column verticality c) Beam deformation 

Figure 7: Results of building component inspection through deformation 
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Resulted inspection of the ceiling slabs, columns and beams are shown in Fig. 7. The slab 

deformations vary in a range from -36.00mm to 42.00mm, but deformations of 99.0% points 

are in a range a mean deformation ()  3 times of a standard deviation () (  3  [-

13.62mm, 10.54mm]. Large hogging deformations occurs around the lift where the point cloud 

of the lift’s wall does not fully eliminate out of the slab segment. For the columns, the report 

shows that 98.0% of the points having the verticality varies in a range from -15.4mm to 14.2mm 

( = −mm and  = mm), where the maximum and minimum verticality are -39.2mm 

and 41.0mm (Fig. 6b). Similarly, the beam deformations also change from -24.9mm to 29.3mm, 

but about 98.9% of the point deformations is in a range -13.35mm to 13.35mm ( = mm 

and  = mm). In several beams, the large deformations are found in edges of the bottom 

surfaces because of an over-segmentation when extracting the points of the bottom surface. 

Thus, these points must be filtered to avoid miss-leading deformation report.  

6. Conclusions 

This paper presents an efficient, automatic method to extract structural components of a 

construction project of a reinforced concrete building. In structural component extraction, the 

proposed method consists of 3 consecutive moduli to extract the building components in a 

sequent order: floors, ceilings and wall, columns and beams, in which both spatial information 

of a point cloud and contextual knowledge about the structures are used. One of advantages of 

this methods is to roughly extract potential data points of components (floors, ceilings, columns 

and beams) before using cell-patch and voxel-based region growing to segment final surfaces 

of the components. As such, the proposed method only processes less complex, small sub-data 

set to extract the components, which makes the method efficient to a big data encountered in 

practice. This can be seen through a report of an experimental test on a 23.5 million points of 

one building storey, in which the proposed method successes to extract all surfaces of the 

building components with an executing time about 412.1 seconds. Moreover, by implementing 

the fundamental design of the structure, the component’s boundaries can be automatically 

identified to establish un-deformed surfaces of the components for deformation measurement. 

In future work, the proposed method is going to test different types, layouts of the buildings 

and quantitative elevation strategy is implementing to give a detailed evaluation report. In 

addition, although the proposed method is developed for structure inspection, it could be 

extended for as-built BIM reconstructions.  
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