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ABSTRACT

This thesis develops a structure-preserving discretisation for modelling hyperelastic flow in a fully Lagrangian and
variational flat space-time in R3 (two-dimensional in space, and one-dimensional in time) via the Mimetic Spectral
Element Method (MSEM). Continuum mechanics is used as the primary modelling framework, and its links to
differential geometry and duality are made explicit with examples. Deformations are treated as smooth mappings
between configurations, with stress, and hence strain, measures understood as metric-dependent mappings. The
natural construction of MSEM additionally transfers the symplectic nature of the governing equations onto a high-
order discrete mesh, such that Noether invariants, i.e. conservation laws, present in the continuous formulation are
upheld at the discrete level.

A generalised, isotropic hyperelastic formulation is constructed as a non-linear, deformation-dependent discrete
Hodge operation. Extensions to multiple discrete space-time elements in a spatial sense are formulated through means
of hybridisation. Anderson acceleration for fixed-point iterations is utilised as a robust, super-linearly-convergent
alternative to stock fixed-point solvers for highly non-linear problems. Numerical experiments demonstrate convergent
and conservative behaviour on non-curved geometries under linear mappings, as well as strongly-prescribed and weak
boundary conditions. Additionally, the time-dependent solver admits a steady limit, which is used to validate the
Hodge operation through the Cook’s Membrane benchmark in plane-strain. These results support the notion that
hyperelastic flow can indeed be modelled in a structure-preserving and multi-symplectic manner using a Lagrangian
formulation on space-time manifolds in R3.

Keywords: Finite Element Method, Structure-Preserving Discretisations, Mimetic Spectral Ele-
ment Method, Differential Geometry, Non-Linear Elasticity, Continuum Mechanics, Solid Mechanics, La-
grangian Methods, Hamiltonian Mechanics, Non-Linear Dynamics, Variational Methods, Multi-Symplectic,
Space-Time Finite Elements
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INTRODUCTION

Elasticity - the ability of a material body to deform under load and then
recover its original configuration when the load is removed - is a founda-
tional concept in the world of continuum mechanics. In many engineering
applications, the simplifying assumption of Robert Hooke’s Law on elas-
ticity pays dividends in reducing the modelling complexity of deformable
matter [Hooke, 1678]. It is a rather accurate first-order, linear approxi- .
mation of the elastic response of bodies undergoing small deformations, Figure 1.1: The force F'; a spring

i.e. relative to the body itself. exerts on an object is related to the
. o spring’s change in length from
ut tensto, sic vis equilibrium AX: F, = —k A% [Khan
("as the extension, so the force”) Academy, 2025]
- Robert Hooke

Nevertheless, many real-world materials and applications violate these assumptions. Consider rubber seals,
biological tissue [Holzapfel and Ogden, 2025], metal subjected to high amounts of work [Jung-Ho and Noboru, 1985],
or cloth & membrane deformation [Ando, 2024] are just a few to name. The deformation gradients experienced by
the body are therefore no longer considered "small-enough", rotations may become significant, and the deformed
configuration may depart substantially from the initial, "reference" configuration. Hooke’s Law begins to break down.
And so, more generally non-linear constitutive laws of elasticity can be formulated to capture the aforementioned
effects [Fu and Ogden, 2001]. These, as a subset, may incorporate higher-order or discontinuous terms, compressibility,
plasticity, dissipation, material-specific non-linearities, and their combinations [Khaniki et al., 2023] [Dastjerdi et al.,
2022al.

(a) The 70.5 ft diameter parachute that delivered NASA’s (b) The Japanese cheesecake (A7 L F— X7 — ) is

Perseverance Rover to the Martian surface [Airborne lighter in texture than its New York counterpart and is
Systems, 2020] known for its jiggle’ [Phil and Mama, 2020]

Figure 1.2: Examples of highly-deformable media that do not satisfy Hooke’s Law

In finite-strain or non-linear elasticity, deformations can no longer be treated as small perturbations but as large,
smooth "mappings" between reference and deformed configurations. This naturally supports a more geometric view of
the problem, where deformation gradients define how lengths, areas, and orientations evolve under motion. Stress
and strain thus arise as measures of change within geometry, capturing the distortion of the body’s metric rather than
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just algebraic quantities [Yavari, 2008]. Moreover, by framing elasticity in geometric terms, one uncovers the intrinsic
structure of the governing equations, revealing conservation laws and symmetries that persist even in the non-linear
regime. A closely related viewpoint arises in the Lagrangian specification of flow fields, where material points are
tracked as they move and deform through space-time. By expressing the governing equations in the reference frame,
stresses or fluxes computed in the deformed configuration can be related back to their material origins. This treatment
provides a consistent geometric foundation for continuum flow, facilitating the development formulations across
multiphysics settings such as fluid—structure interaction [Demoures and Gay-Balmaz, 2022]. This recognition forms
the basis for modern, structure-preserving numerical methods that seek to replicate these geometric and topological
properties at the discrete level, ensuring stable and physically meaningful simulations of complex deformations.

Now, computational modelling has understandably been become invaluable for studying the complexity of elasticity
and its application to the real-world [Marsden et al., 1984]. However, many traditionally-used discretisations fail
to respect the aforementioned geometric and variational structure inherent to the numerical solution of partial
differential equation systems [Arnold et al., 2010]. When energy and momentum are not properly conserved,
simulations may exhibit artificial modes, energy drift, or non-physical deformations, in the context of elasticity.
This recognition forms the basis for structure-preserving numerical methods that seek to uphold most properties -
symmetries, topological identities, conservation laws, etc. - at the discrete level.

Specific to this thesis are the use of so-called mimetic (compatible) numerical discretisation methods, which
extend geometric ideas into the discrete domain by "mimicking" the physics [Gerritsma, 2012]. They transfer notions
of differential geometry and algebraic topology onto discrete meshes, and satisfy topological identities of vector
calculus through the association of physical quantities to the geometry of the problem. Rather early on, Emily
Noether presented that if a system has a continuous symmetry, then there are corresponding quantities whose values
are conserved in time [Noether, 1918] - which Hamiltonian integration schemes are built upon, i.e. symplecticity
[Hairer et al., 2013]. Multi-symplectic formulations generalise the symplectic nature of Hamiltonian integrators to
space—time manifolds, given a Lagrangian formalism [Stern and Desbrun, 2006]. When combined with high-order
spectral element techniques, these principles yield the mimetic spectral element method which bring in geometric
intuition and high-order discretisations [Palha and Gerritsma, 2015]. Consequently, this thesis explores a locally
space-time-embedded mimetic spectral element approach to solving Lagrangian hyperelastic flow in R3.!

1.1. PRIOR WORK

This section briefly highlights contributions to computational modelling and discretisations, the mimetic methods, and
non-linear elasticity. These do not just serve to understand the material presented in either an intuitive or rigorous
perspective, but can also be inspiration for future extensions and applications in this thesis.

1.1.1. DISCRETISATION: FROM MODELS TO APPLICATIONS

Partial differential equations (PDEs) constitute the mathematical backbone of physical modelling. They appear across
virtually every branch of physics and engineering; from the Poisson equation [Palha et al., 2014], hyperbolic problems
[Shrestha, 2022] [Georgi, 1993], electromagnetism [Griffiths, 2017], quantum mechanics [Griffiths and Schroeter,
2018], magnetohydrodynamics [Hu and Xu, 2017], and fluid dynamics [Versteeg and Malalasekera, 2007] [LeVeque,
2002] [Kreeft and Gerritsma, 2013]. These governing equations express fundamental relationships between quantities
that characterize matter, energy, and geometry in motion. Broadly speaking, they consist of two types of relations:
constitutive relations, which define the material-specific behaviour of physical quantities, and topological relations,
which encode conservation laws that are regarded as universal.

Constitutive relations describe empirical links between conjugate variables - for example, stress and strain in
elasticity, heat flux and temperature gradient in heat transfer, or flow velocity and potential in porous media - through
material parameters such as stiffness, conductivity, or permeability. These relationships, while experimentally
determined, inherently carry uncertainty. In contrast, topological relations express exact conservation principles, such
as the conservation of energy, mass, or charge, and are typically independent of material properties. A representative
example is the Poisson equation:

~V-(kVe) = f (1.1)

This can be written in mixed form as
u=~kVep (1.2)
Vu=-f (1.3)

Here the first equation represents a constitutive law (relating flux to potential) and the second expresses a topological
conservation law. Depending on the physical context, these relations correspond to Fourier’s law in heat diffusion,
Darcy’s law in porous media [Jain et al., 2020a], or analogous statements of local balance. The topological relation

1Two-dimensional in space, and one-dimensional in time



1.1. PRIOR WORK 3

ensures that the net flux through a control volume equals the total source or sink within it - a fundamental principle
across scales.

Analytical solutions to such PDEs are generally unattainable for realistic geometries or boundary conditions,
requiting the use of numerical methods. Classical discretisation approaches - including finite difference [Gedney,
2011], finite volume [Versteeg and Malalasekera, 2007], and finite element methods [Zienkiewicz et al., 2006] [Ciarlet,
2002] - approximate field quantities by piecewise polynomials or local averages over a discrete mesh. While these
methods achieve impressive accuracy in many settings, they rarely preserve fundamental structural properties of
the governing equations. For instance, in a standard mixed finite element discretisation of the Poisson problem,
the computed flux field u” ~ u satisfies V-u® = 0 only approximately, introducing small but cumulative violations
of mass or energy conservation. This inconsistency can manifest as artificial sources or sinks in the simulation -
numerical artifacts that degrade stability and physical realism. As a result, traditional discretisations may reproduce
the appearance of the solution without maintaining its essential physics.

To mitigate such issues, structure-preserving or mimetic methods have been developed, designed to replicate at
the discrete level the geometric, topological, and variational identities that underpin the continuous theory. These
methods ensure that discrete operators - divergence, curl, and gradient - satisfy exact analogues of their continuous
identities, such as V-(V x A) =0, or discrete forms of the Gauss and Stokes theorems. By encoding integral forms
of conservation laws directly into the discrete formulation, mimetic methods preserve invariants such as energy,
momentum, and mass, and maintain compatibility between adjacent physical quantities [Bochev, 2003].

1.1.2. THE ADVENT OF GEOMETRIC PERSPECTIVES

In the 1960s, staggered-mesh methods models were introduced to motivate discrete conservation of mass and
momentum [Harlow and Amsden, 1968] [Lilly, 1966], i.e. the start of physics-compatible thinking. Tonti provided
a rigorous theoretical framework for this intuition by formalizing the correspondence between physical quantities
and geometric entities [Tonti, 1975] [Tonti, 1971]. Drawing from algebraic topology [Hatcher, 2002] and differential
geometry [Frankel, 2011], he also introduced the notion that physical variables reside on geometrical supports -
points, lines, surfaces, and volumes - corresponding to oriented k-cells in a cellular complex. These k-cells form chains,
and their dual entities, cochains, represent discrete physical quantities such as fluxes or potentials. This revealed
connections between different physical theories and provided a geometric classification of the variables and operators
involved in conservation laws [Tonti, 2013].

Parallel developments emerged from geometric integration theory. Whitney [Hassler, 1957] introduced an
interpolation between cochains and differential forms, later used in discrete Hodge theory [Lohi and Kettunen, 2021].
These Whitney forms serve as a bridge between continuous and discrete representations of differential forms, forming
the foundation of mixed finite element spaces. In the 1970s and 1980s, Brezzi, Raviart, Thomas, Nédélec, and Douglas
[Brezzi, 1974] [Raviart and Thomas, 1977] [Nédélec, 1980] [Brezzi et al., 1985] developed mixed finite element methods.
These were later recognized as equivalent to Whitney forms in finite element settings by Bossavit - in his "Japanese
Papers" collection [Bossavit, 1988] [Bossavit, 1999]. He built these ideas from computational electromagnetism,
employing differential forms and Whitney elements to achieve physically consistent simulations.

1.1.3. MODERN GEOMETRIC FRAMEWORKS

By the late 1980s, a more explicit formalization of mimetic discretisation emerged with the development of mimetic
finite differences. Hyman and Scovel [Hyman and Scovel, 2005] first proposed a mimetic finite difference scheme based
on analogies between algebraic topology and differential forms, emphasizing that discrete differential operators must
preserve identities such as symmetry and self-adjointness. Their work, and later extensions established a consistent
mimetic framework for discrete differential operators [Hyman et al., 1997] [Lipnikov et al., 2006]. Bochev and Hyman
proposed a unifying framework for mimetic discretisation that applied across finite difference, finite volume, and
finite element contexts [Bochev and Hyman, 2006]. At its core are two key operations: reduction, mapping k-forms to
k-cochains a simplicial complex; and reconstruction, which recover approximate differential forms from their discrete
analogues.

Discrete Exterior Calculus (DEC) provided a geometric and algebraic framework for defining discrete analogues of
the exterior derivative, codifferential, and Hodge star [Hirani, 2003] [Desbrun et al., 2005]. DEC embodies the same
spirit as the mimetic framework but emphasizes a differential-geometric perspective rooted in simplicial complexes
and discrete manifolds. Related to is Finite Element Exterior Calculus (FEEC) which formalised these concepts within
the finite element setting [Arnold et al., 2006] [Arnold et al., 2010]. Another is the Mimetic Spectral Element Method
(MSEM) [Gerritsma, 2012] [Gerritsma, 2011] [Gerritsma et al., 2014] which integrates the high-order accuracy of
spectral elements with structure-preserving benefits. It provides a natural setting for formulating structure-preserving
solvers in elasticity, fluid mechanics [Zhang et al., 2022] [Kreeft and Gerritsma, 2013], and other continuum systems
where both topology and geometry must be respected [Palha et al., 2014]. Lastly, work on melding multi-symplectic
variational principles and structure-preservation [Hairer et al., 2013] [Stern and Desbrun, 2006] [Leok and Ohsawa,
2011] sought to allow time and space to be treated symmetrically, leading to local conservation of symplectic forms in
multiple dimensions [Demoures et al., 2013] [Palha and Gerritsma, 2015].
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A recommendation is also made to course notes developed by Crane at Carnegie Mellon, for an intuitive and
applied introduction to computational geometry [Crane et al., 2013].

1.1.4. TOWARDS GEOMETRIC ELASTICITY

This thesis assumes the use of continuum mechanics in modelling elastic media, i.e. bodies described as a continuous
body rather than discrete particles. In a nutshell, the subject provides a framework for describing geometry, kinematics,
and material behaviour amidst deformation across scales. The reader is referred to [Reddy, 2013] for a simple
yet rigorous explanation of the subject and an extensive overview of applications beyond elasticity. A special
recommendation is made to the freely-accessible set of open-access lecture notes provided by Massachusetts Institute
of Technology (MIT), that covers the subject’s mathematical preliminaries and finite elasticity applications [Abeyaratne,
2006] [Abeyaratne, 2012] [Abeyaratne, 2022].

In the context of geometry in continuum mechanics (sometimes referred to as "geometric continuum mechanics"),
differential geometry is used to form a unifying framework [Rashad et al., 2023]. An elastic body is represented as
an embedding of a material manifold into physical space - replacing coordinate-based descriptions with intrinsic
mappings, where deformation, strain, and stress emerge from pullback and pushforward operations between the body
and its configuration [Truesdell et al., 1966] [Marsden et al., 1984]. The principle of intrinsicality created the basis for
distinguishing between Eulerian and Lagrangian in a geometric sense [Noll, 1974]. Within this setting, strain can
be defined as the pullback of the ambient metric, making each deformation a point on the manifold of Riemannian
metrics [Rougée, 2006], while stresses and rates of deformation naturally reside in its tangent and cotangent spaces.

From a topological perspective that separates metric-dependent relations from metric-free ones, quantities such as
mass, momentum, and stress power are expressed as differential forms integrated over material or spatial manifolds
[Frankel, 2011]. It was noted that these fields would be best represented using bundle-valued differential forms,
which distinguish between a “form leg” - encoding the integration domain - and a “bundle-value leg” - encoding the
physical quantity itself [Kanso et al., 2007]. This distinction separates spatial and material representations, where a
de Rham complex can be associated, i.e. the topological foundation for FEEC and DEC [Desbrun et al., 2005] [Arnold
and Winther, 2001]. Geometric discretisations of elasticity have been developed for crystalline materials [Ariza and
Ortiz, 2005], finite-deformation solids [Yavari, 2008] [Angoshtari and Yavari, 2013], and Riemannian 3D elasticity
[Ciarlet and Li, 2008]. Extensions have also been made to variational problems to provide more unified perspectives of
Lagrangian and Hamiltonian mechanics [Marsden et al., 2001] [Demoures et al., 2013] [Demoures and Gay-Balmaz,
2022].

With regards to MSEM, recent developments have extended it towards elasticity applications, demonstrating
pointwise conservation properties and providing a structure-preserving framework compatible with continuum
mechanics [Olesen et al., 2018] [Zhang, 2022]. Application to linear elasticity and planar barotropic flow have been
studied extensively, in addition to efforts towards non-linear problems with bundle-valued forms [Zhang et al., 2021]
[Mahadev, 2025] [Sharma, 2023]

1.1.5. CONSTITUTIVE MODELS IN ELASTICITY

Constitutive models of elasticity describe how materials store and transmit energy under deformation through
relations between stress and strain. For small deformations, Hooke’s law adequately relates stress and strain, but at
large strains or rotations, this linear assumption fails. Non-linear elasticity instead distinguishes between reference
and current configurations via finite strain measures to capture large-deformation behaviour. These naturally lead to
non-linear stress-strain relations [Dastjerdi et al., 2022a]. Classical contributions by Beatty [Beatty, 1996], Ogden
[Fu and Ogden, 2001], and Pedregal [Pedregal, 2000] established foundational models and variational formulations
for such behaviour, viewing non-linear elasticity as an extension of linear theory that incorporates geometric and
material non-linearities [Reddy, 2013]. For materials exhibiting highly non-linear responses, hyperelasticity offers a
more accurate framework: stresses are derived from a strain energy density function defined in terms of invariants of
the Cauchy—Green deformation tensor [Hackett, 2018] [Boyce and Arruda, 2000]. Various hyperelastic models have
been proposed, including the Neo-Hookean [Treloar, 1943], Mooney—Rivlin [Mooney, 1940][Rivlin, 1948], Gent [Gent,
1996], and Ogden [Ogden, 1973] formulations, along with numerous extended and generalized versions [Horgan, 2021]
[Anssari-Benam and Bucchi, 2021] [Pucci and Saccomandi, 2002]. These models have been extensively applied to
simulate large-strain behaviour in beams [Mylapilli and Udwadia, 2017] [Lubbers et al., 20171, plates [Breslavsky
et al., 2014], and shells [Alijani and Amabili, 2014] [Dastjerdi et al., 2022b].

1.2. SCOPE AND OUTLINE

Given the current trend of expanding applicability of MSEM in physics, this thesis consequently aimed to investigate
the following question:
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Could hyperelastic flow be modelled in a multi-symplectic and structure-preserving manner, using a
Lagrangian and variational approach in space-time?

To this end, the following sub-questions were also formulated, to provide a step-by-step map towards an answer to
the primary goal above.

I Research Question 1 I

Can the tensorial subject of continuum mechanics be reimagined from a differential geometry
perspective and in the framework of the Mimetic Spectral Element Method?

I Research Question 2 I

To what extent does the derived method preserve symmetries, i.e. uphold conservation laws,
present in the continuous statement of the problem, and amidst the application of essential
and natural boundary conditions

I Research Question 3 I

Can the derived method illustrate convergent solutions on arbitrary, non-curved space-time
geometries in R3?

| Research Question 4 |

Are the discrete hyperelastic constitutive and metric-dependent operations physically repre-
sentative, under the premise of refinement?

Given this schematic and these target objectives, the structure of the thesis has holistically arranged. The current
Chapter 1 builds rationale for the thesis’ objectives and contains reference reading material on a varity of topics
(Section 1.1). Chapter 2 provides a short background to the used Mimetic Spectral Element Method (Section 2.5) from
a physical problem’s standpoint and duality in Section 2.1, relevance of differential geometry and forms in Section 2.3,
and discrete mathematics via algebraic topology in Section 2.4. Chapter 3 introduces continuum mechanics as a
framework to modelling hyperelastic flow, by firstly introducing kinematics in Sections 3.1, 3.2, and 3.3. Hyperelastic
modelling is noted in Section 3.4, followed by an important link to differential geometry in Section 3.5. In Chapter 4,
the discrete, variational form is posed and the construction of discrete operators (Section 4.3). The discrete system and
its symmetries are stated in Section 4.4 and Section 4.6, respectively. Chapter 5 presents a short selection of notable
results in steady (Section 5.3) and unsteady (Section 5.2) hyperelasticity, through a non-linear solution technique
described in Section 5.1. Finally some conclusions on the work are given in Chapter 6, with some "food for thought" on
shortcomings and possible, future ventures in Chapter 7.






MATHEMATICAL PRELIMINARIES FOR
MIMETIC SPECTRAL ELEMENT
METHOD

This chapter provides the mathematical background to understanding the Mimetic Spectral Element Method (MSEM).
MSEM is then introduced in a concisely with a physics-driven perspective in Section 2.1 and the dual nature of
variables in 2.2.The foundations of differential geometry and operations on its fundamental "form" objects are in
Section 2.3, with algebraic topology as its discrete counterpart in Section 2.4. Special note is given to the pullback
procedure (Subsection 2.3.4) and treatment of bundle-valued forms (Subsection 2.3.5). Finally, MSEM is introduced as
well as its general implementation in Section 2.5. The reader is advised to read [Palha, 2013] [Gerritsma, 2012], for
more in-depth forewords on the fundamentals of MSEM.

2.1. INTRODUCTION TO MIMETIC DISCRETISATIONS

Continuum physics is concerned with measurable quantities, such as displacement, velocity, traction and flux, and
how these observables evolve across space and time. While standard vector calculus notes these as scalars or vectors,
that classification alone hides the geometric setting in which each quantity is naturally evaluated. A scalar potential
¢(x,y,2) is intrinsically a pointwise value; a velocity field u(x, y,z) can be sampled along paths; and a flux like u-ndA is
accumulated over surfaces. As highlighted in Tonti’s perspective [Tonti, 1975], reducing everything to “field variables”
tends to blur this geometric character - an effect that is amplified when moving to differential formulations via limiting
processes.

Example 2.1.1

Mass conservation offers a familiar illustration. For a fixed control volume V € R? with boundary dV, the total
mass is fV pdV. The balance statement asserts that changes in the mass of V are caused solely by the net
mass flux through 6V:

t+At
[Vp(t+At)dV—j;7p(t)dV+ft /avp('r)u(‘r)-ndeT =0 2.1)

By the mean value theorem, the flux term equals A¢ [5y, p(t)u(r) -ndS for some 7 € [¢,¢+ Atl. Dividing by At¢,
taking At — 0 (so that T — ¢), and using the divergence theorem converts the boundary integral into a volume
integral,

ot
and, since this holds for every sufficiently smooth V, we obtain the local form

fa—pdV+f V-(pu)dV = 0 2.2)
Vv 14

dp

—+V- =0 2.3

5 TV (ow) @23)
The transition from the global balance (2.1) to the local expression (2.3) is mathematically sound, but it
suppresses the original geometric meaning: p is fundamentally volumetric, and the driving term is a surface
flux-facts no longer explicit once the limit is taken.

Now a more geometry-aware view keeps these roles visible from the start. More generally and structurally putting
the above example, let E(V) denote the conserved quantity contained in V', and let @(0V) be the net inflow across dV'.

7
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The transition from global to local statements can be posed as:

0 Oe
Py E(V) =Q(V) ﬁ Fri V-q (2.4)
where e is the density (per unit volume) and q the flux (per unit area per unit time). The right-hand identity
in the equation (2.4) is Gauss’ divergence theorem in differential form. In IR3, the fundamental theorem of calculus
(values on the endpoints of a curve L) and Stokes’ theorem (circulation along some boundary of a surface S induced
by a rotation in S), are also examples whereby conservation relates a global quantity attached to a object to a global
quantity attached to its boundary. These connections reveal that physical variables are associated to points, curves,
surfaces, and volumes; i.e. geometric objects.

Once a model is rewritten purely in local form, this geometric structure is easy to lose sight of. Traditional
discretisations - finite differences and nodal finite elements - represent unknowns exclusively with nodal interpolants,
which can trigger instabilities or subtly violate balance laws. Simulation therefore requires more than just function-
space approximations. The relations among spaces induced by the integral balance laws should be reflected as well.
Recognising that different variables live on the discrete versions of those different objects enables a setting where the
discrete laws are exactly met.

By assigning discrete quantities to vertices, edges, faces, and volumes in a mesh, one can obtain exact matrix
realizations of grad, curl, and div that satisfy the fundamental identities VxV=0and V-(Vx)=0

Discrete Exterior Calculus (DEC) [Hirani, 2003], Finite Element Exterior Calculus (FEEC) [Arnold et al., 2006],
and the Mimetic Spectral Element Method (MSEM) [Gerritsma, 2012] pursue this goal. They expose the common
geometric and topological foundations shared by physical theories and build discretisations that commute with
fundamental operators. The resulting "mimetic" spaces preserve the integral theorems at the discrete level, yielding
stability and consistency by design. Moreover, integral conservation becomes basis-independent (polynomial or
otherwise), regardless of mesh resolution or curvature.

2.2. ORIENTATION OF ENTITIES

Continuum physics is most naturally described in terms of global quantities measured over finite geometric objects,
rather than solely in terms of pointwise fields. For instance, Mass, momentum or energy are obtained by integrating
densities over volumes, circulation is the integral of a velocity along a path, and fluxes measure how much of a quantity
crosses a surface. These global variables attach to geometric objects of increasing dimension (for e.g. OD points, 1D
curves, 2D surfaces and 3D volumes) and reflect how measurements are actually made with finite resolution, i.e.
discretisation.

Not all global quantities play the same role. One distinguishes configuration variables (e.g. displacements or
potentials), source variables (forces, loads, stresses), and intermediate variables (strains, fluxes) that mediate between
them [Tonti, 2013]. From these arise three classes of governing relations: definition equations express intermediates
as derivatives of configurations (potentials); balance equations encode conservation laws (momenta, energy, helicity,
etc.); and constitutive equations tie intermediate quantities together or to the sources via material properties (e.g.
stress-strain laws). A point in this construction is that every geometric entity carries an orientation, and physical
variables must respect this. Two kinds of orientation occur:

1. An Inner orientation picks a direction within the object. For a curve it selects the "forward" direction; for a
surface it determines the cyclic order of its boundary; for a volume it induces orientations on its bounding faces.
Quantities like displacements, rotations measured on a surface, or strains along a fibre use inner orientation
and do not change sign when the ambient orientation is reversed.

2. An Outer orientation orients an object relative to the ambient space-an outward normal on a surface or a choice
of "positive" volume. Fluxes, forces and other source variables are outer-oriented, and their signs flip when the
orientation of the ambient space is reversed; hence they are sometimes called pseudo-scalars, pseudo-vectors or
pseudo-tensors.

Example 2.2.1: Inner-oriented quantities

Temperature or the position of an object’s centre of mass are pointwise quantities, strain is associated with
a curve, work done is the integral of a force along a path; and the rotation of a solid body can be measured
over a surface without reference to an external normal. None of these would change sign if we reverse the
orientation of space.
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Example 2.2.2: Outer-oriented quantities

Mass flux through a surface, electric charge (as a source variable in generating a magnetic field [Tonti, 2000])
or energy contained in a volume, and traction forces on a surface all require an outward normal; reversing that
normal reverses the sign of the measurement. Likewise, circulation of a vortex filament in electromagnetism
(Biot—Savart law) depends on the chosen direction around the filament.

( Outer Orientation w

3]

Point Line Surface Volume

E Some notion of metric... \a

Volume Surface Line Point

W

NSNS

Inner Orientation

Figure 2.1: The metric connection between orientations, and the topological relation between geometries
within an orientation. The 0 operation refers to the boundary of the geometric object.

This orientation framework distinguishes between topological and constitutive laws. Balance equations such as
conservation of mass or momentum are topological: they depend only on how geometric objects fit together and are
entirely metric-free. Constitutive relations, on the other hand, are metric-dependent: they relate variables on dual
geometric objects (e.g. stress and strain, viewed as inner- and outer-oriented variables) via material parameters, and
they rely on notions of length, area, and volume (see Figure 2.1). And thus, there exists a natural emergence of a dual
orientation of space-time dependent fields.

Remark 2.2.1

The association of physical quantities with inner or outer orientations is not rigid; what matters is that
the choice is made consistently throughout the formulation. For instance, in mixed formulations of Stokes
flow, velocity may be represented either on curves (inner orientation) or on surfaces (outer orientation).
The circulation of a velocity field around a closed surface, for example, represents rotation or vorticity
(inner orientation), while the total flux of velocity through a surface or volume represents divergence (outer
orientation). In solid or fluid mechanics, displacement plays a role analogous to velocity: it may be integrated
along a line in the inner orientation or over a surface in the outer orientation. Interpretations are valid so
long as the corresponding balance and constitutive relations respect the induced orientations.

Furthermore, this association is not limited to a single geometric representation. A more general approach-
used in most modern formulations assigns each vector component to distinct geometric entities. In R, this
results in n outer-oriented cell complexes and n corresponding inner-oriented complexes, one per vector
component. This leads to a vector-valued representation, where each vector component (e.g. uy and uy in
R2) is attached to the same point or cell, forming what are called fibres of the field. These fibres can also be
linked to higher-order quantities such as stress tensors in the elasticity complex, where individual vector
(or any geometrical object as a matter of fact, e.g. a tensor) components correspond to fluxes across specific
surfaces, i.e. a multi-linear map. In this way, the divergence of stress for each component can be evaluated
as the sum of fluxes through the associated surfaces, maintaining both geometric consistency and physical
interpretability.
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The subjects of differential geometry and algebraic topology together offer a language to connect global, integral
descriptions of physical laws with their local, pointwise representations. By emphasizing orientation, connectivity, and
the use of discrete cell complexes, they bridge physical measurements with the underlying geometric and topological
structure of space, ensuring that both the integral and local perspectives remain consistent. When finite regions are
gradually reduced to infinitesimal size, as in classical calculus, this limiting process reveals how changes measured
across extended regions become variations described along smaller geometric elements through what differential
geometry formalizes as successive differentiation.

In computation, however, these infinitesimals are replaced by finite, discrete elements that partition space and
time into a network of a cell complex. A primal complex is formed by points, edges, faces, and volumes, while its
dual counterpart is offset and oriented so that each dual element intersects the corresponding primal element of
complementary dimension. Within algebraic topology, these discrete building blocks, i.e. 0-cells, 1-cells, 2-cells, and
3-cells, form the foundation for expressing global variables as combinations of oriented cells (chains) or as numerical
values assigned to them (cochains). The relationships between these cells capture how physical quantities associated
with boundaries connect to those contained within the enclosed regions, reflecting the same logic as the continuous
differential relations but in a fully discrete, algebraic form. From this perspective, one can directly construct an
algebraic system suited for computation, while still recovering the continuous behaviour of the fields.

2.3. DIFFERENTIAL GEOMETRY: THE LANGUAGE OF FORMS

This section summarily presents foundational concepts from differential geometry and algebraic topology that serve
as the skeleton for mimetic discretisation methods. It begins by defining manifolds and the objects on them, and then
introduces differential forms along with their principal operations. Lengthier descriptions are given to connections in
continuum mechanics in the following chapter.

2.3.1. DIFFERENTIABLE MANIFOLDS

Definition 1 (Differentiable manifolds). A k-dimensional manifold comprises a topological space M along with a
countable collection of open subsets {Uy,U1,...} (coordinate charts), whereby each point of M exists in at least one
of these U; (so that M =UguU1U--+). Moreover, there exists bijective coordinate maps ¢y, : U; — R* such that

oy, Ui e R* are open and connected.

A manifold is described as a space where one can locally apply calculus in roughly the same manner in Euclidean
space. Thus, a manifold motivates the idea of calculating on general coordinate systems, such as considering straight
or curved objects like surfaces belonging to R*. The topological nature of the space M maintains that there is no
natural measure of distances between points, nor a measure of angles on a manifold - i.e. it is a metric-free concept.

2.3.2. OBJECTS ON MANIFOLDS

Definition 2 (Tangent space and tangent bundle). Let M c R* be open and let P € M. The tangent space to M at P
is the vector space R* regarded as vectors based at P; we denote it by Tp M. The tangent bundle of M is the product
TM = M xR* whose elements are pairs (P, V) with base point P € M and tangent vector V € R at P. The projection
7:TM— M, n(P,V) =P, maps a tangent vector to its base point.

Definition 3 (Tangent vector at a point). Let P be a point on a k-dimensional manifold M and let f be a real-valued
smooth function defined in a neighbourhood of P. Given a vector V = V... vk with components expressed in
coordinates {X*} at P, the directional derivative of f along V at P is

of
ox« |P

k
Vp(f) = Y VO @.5)
a=1
A tangent vector at P is any linear operator Vp : C®°(M) — R that acts on smooth functions and in local coordinates
has the form
k a
— a
Vp=>1V axalp (2.6)

a=1

Essentially, a tangent vector is a vector equipped with a base point. Once T'p M is defined, one equips it with
coordinates by using the chart coordinates on M and standard coordinates on R". In the case where M is an open
subset of R®, this is rather trivial: Points of M are denoted X and coordinate systems are written {X%}. The same
ideas extend to general manifolds by using local charts (U;,¢y,) and transporting the above constructions via the

coordinate maps ¢y, : U; — RE.

Definition 4 (Cotangent bundle on the dual space). For a k-dimensional manifold M and P € M, the dual space at
P is the vector space of all linear functionals on Tp M. Elements of T;,./\/l are covectors (or 1-forms). The disjoint union

"M = || T;SM (2.7)
PeM
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is the cotangent bundle, equipped with the projection w: T* M — M, n(P,w)=P.

Definition 5 (Dual basis). The dual basis of Tl”_f,./\/l is the collection
0
1 k a _ sa
dXYp,...,dX*|p}, defined by dX (_axﬂ |p)‘5ﬁ 2.8)

Every covector w € T;M therefore admits a unique expansion

k
_ a
w= a;wa dx (P 2.9)

A tangent vector is a direction with a base point; a covector is, informally-put, a "measuring stick" that assigns a
real number to such a directed object according to some measure. Their interaction is a duality pairing

k
@,Vp) = w(Vp) = Y wgV® € R (2.10)

a=1

that is a scalar that depends only on the geometric objects at P, not on the chosen coordinates. Under a change of chart
X — X, the components V¢ transform contravariantly (like column vectors), whereas the components w, transform
covariantly (like row vectors), so that their pairing remains invariant.

In this thesis, contravariant vectors are referred to as "vectors", while covariant ones are referred to as
"covectors". Vectors and covectors live in dual spaces attached to the same base point, and their pairing
(annihilation) is a real-valued number. Because the tangent basis at P is {6/0X%|p}, the canonical covectors
{dX%|p} form the cotangent basis, often written as [d X 1 ...,dX"*]. These satisfy the Kronecker delta property
above and are the building blocks for general differential 1-forms used throughout calculus on M.

2.3.3. DIFFERENTIAL FORMS
Note that this subsection provides a very brief primer into some fundamental operations of differential geometry. For a
more thorough and complete explanations, with examples, of the concepts below, the reader is pointed to the following
resources [Frankel, 2011] [Palha, 2013]. Nevertheless, emphasis in terms of descriptiveness is given to operations that
are crucial to the novelties in this thesis.

Differential forms provide a unified framework for analysis and integration on n-dimensional manifolds in a
coordinate-free context, in contrast to multivariable calculus.

Definition 6. A differential k-form on an n-dimensional manifold M is a multilinear; antisymmetric map w: vk R
In local coordinates (x1,...,x™), a k-form is written as o = Yii<o<ip Fiy.i,®)dx' L A+ Adx't where the functions
fiy...i,, are smooth on M.

FUNDAMENTAL OPERATIONS

Definition 7 (Wedge product). The wedge product A combines differential forms in a multilinear, associative, and
distributive manner. If w is a k-form and n is an ¢-form, then their product w A1 is a (k + ¢)-form and satisfies
antisymmetry o A1 = (-1)k! nAw.

Definition 8 (Exterior derivative). The exterior derivative is linear operator that increases the degree of the form
defined on a smooth manifold by one, or d: AR(M) — AR (M)

The operator d generalises differential operators from vector calculus. In R3, d for a 0-form represents V; for a
1-form, Vx (Curl in R3 or Rot in R2); and for a 2-form, V-. A fundamental property of the exterior derivative
is nilpotency: dod = 0. This is equivalent to vector calculus identities such as Vx (Vf)=0and V-(Vx A)=0.

Definition 9 (Generalised Stokes Theorem). Integration of an (k — 1)-form 0®=D on an k-dimensional oriented

manifold M is well-defined and coordinate-independent via the generalised Stokes theorem. It relates the boundary of
an k-dimensional manifold to the exterior derivative:

fM do®=D = faM RS @.11)
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Remark 2.3.3

Integration can be viewed as a duality pairing between differential forms and geometric objects called
chains. A k-chain is a formal linear combination of oriented %2-dimensional submanifolds (or simplices) with
real coefficients. The space of k-chains, denoted Cp(M), forms a vector space where addition and scalar
multiplication are defined:

Cl+52:ZaiMi+zij'7 ACZZ(Aai)Mi. (2.12)
i J

i
Integration then defines a pairing between n-forms and n-chains:

) AMM) X Co(M) =R, (@™, M) :fM o™, (2.13)

which is linear in both arguments.

Definition 10 (Inner product on k-forms). On an n-dimensional oriented Riemannian manifold (M, g), the metric g
induces a symmetric, bilinear mapping and defines the inner product:

;) ARM) x AR(M) — AO(MD). (2.14)

(k

For two k-forms a® and ﬁ(k) with coordinate representations a;,. i, and fj,  ;,, this inner product is given by

contracting with the inverse metric tensor components gij :
(Uc(k),ﬁ(k)] =gltt... gtk Aiyooiy ﬁj1...jk' (2.15)
Definition 11 (Hodge star). The Hodge star operator *: AR(M) — A" R(M) is the unique linear operator satisfying

a® pxp® = (o®, p®) oM, (2.16)
for all a(k),ﬁ(k) € A*(M), where o™ is the standard volume form defined as 0™ := \ /Idet(g.’ij)ldx:l A---Adx™.

The Hodge * satisfies x x a® = (—l)k(”’k)a(k) and is metric-dependent, unlike the exterior derivative. It encodes
the distinction between inner and outer orientations (Figure 2.1), playing a crucial role in mimetic discretisation
methods by mapping between configuration and source spaces. The metric dependence of the Hodge star arises
explicitly from its fundamental relationship with the inner product structure on differential forms. The explicit
appearance of the metric tensor components in Equation (2.15) reveals why the Hodge star operator, which intertwines
the inner product with the wedge product, must necessarily depend on the metric.

The volume form ™ itself depends on the metric tensor’s components (it involves /detg in local coordinates,
which can be seen as an n-dimensional volume scaling), providing another perspective on the metric dependence
appearing in the Hodge Star (note that x1 = w™). To facilitate integration over manifolds, a global inner (L2 product
is constructed by integrating the local scalar-valued inner product over the entire manifold. This yields an n-form,
which is precisely what can be integrated over the n-dimensional manifold M:

fM (a(k), ﬁ(k)) o™ = fM o® A xp® = (@® pB) 5 0 ©.17)

Definition 12 (de Rham complex). A de Rham complex is a cochain complex of differential forms on a smooth manifold
M related via the exterior derivative. For a smooth n-dimensional manifold M without boundary, the de Rham
complex is

R >— AOM) —35 Aty 4 s ArM) — 0 (2.18)

Remark 2.3.4

For manifolds with boundary, the treatment is more involved as boundary conditions must be incorporated
into the dual complex structure. The presentation here restricts to manifolds without boundary for simplicity.

When a metric is associated, a double de Rham complex can be constructed to relate primal and dual orientations
via the Hodge star operator. For a smooth manifold M without boundary, the double complex in R3 takes the form:

R >— AOM) — ATM) 255 AZM) Y5 AB(M) — 0

I I I I (2.19)

0 «— ABM) «¥— R2(M) 2 AL M) < AOM) «— R
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Example 2.3.1

Polynomial basis functions mimic Sobolev spaces in FEEC [Arnold et al., 2010]: In R3, 0-forms correspond to
H 1-conforming elements, 1-forms to H(curl)-conforming elements, 2-forms to H(div)-conforming elements,
and 3-forms to L2(M). Therefore, the FEEC double complex is

R HY(M) —V3 H(curl, M) -2 H(div; M) —V L2(M) —3 0

*I *I *I *I (2.20)
0 +— HYM) <Y H(curhb M) <2~ H(div; M) <> LZ(M) +— R

where the tilde notation (If) denotes the dual orientation obtained via the Hodge star.

Remark 2.3.5

Extending the above operators to bundle-valued differential forms allows one to handle objects whose
components each behave like forms but collectively transform as sections of a vector bundle. More precisely,
such objects have two distinct "legs": a form leg (on the base manifold) and a bundle-value leg. Operations such
as pullback and pushforward (see the following subsection) act only on the form leg, leaving the bundle-value
leg untouched. [Kanso et al., 2007]

2.3.4. PULLBACKS OF FORMS

It is important to know how forms transform against one another given a mapping between two manifolds. Such
transformations are either convenient, such as in finite element methods where computations may be performed on a
reference element; or as part of the description of the kinematic behaviour, as how Hooke’s Law requires the notion
of comparing deformed media and its undeformed state to compute intrinsic forces. Let us begin by considering a
general change of variables. Suppose we are given a transformation between two coordinate systems:

u=u(x,y,v) x=x(u,v,w)
v=uv(x,y,2) =< y=y(u,v,w) (2.21)
w=w(x,y,z) z=2z(u,v,w)

To understand how differential forms transform, consider a 1-form AV =Adx+Bd y+Cdz expressed in (x,y,2)
coordinates. When we transform to (u,v,w) coordinates, each differential dx, dy, and dz must be expressed in terms
of du, dv, and dw using the chain rule. The complete transformation is given as:

O0x 0 0z 0x 0 0z O0x 0 0z
@ _ y y y
A = A—au +B—au +C_0u)du+(A_6v +B—av +C_6v)dv+(A_6w +B_6w +C_6w dw. (2.22)

The equation (2.22) indicates how coefficients (vector proxies) of a 1-form transform under the mapping (x,y,z) —
(u,v,w). The transformation is governed by the Jacobian matrix of partial derivatives, which encodes how displace-
ments as dual functionals in one coordinate system relate to those in another. Note that the coefficients A, B and C,
are generally functions of (x, y,z) also need to be transformed in («,v,w). While the explicit calculations above provide
valuable insight, there exists a more systematic way to describe transformations of differential forms: the pullback
operator. This operator formalises the idea that a differential form defined on a target manifold can be "pulled back"
to the domain manifold via a smooth mapping.

Definition 13 (Pullback operator). Consider a manifold M of dimension m, a manifold N of dimension n, and a
smooth mapping between them, ¢: M — N, such that local coordinates & in M are mapped onto local coordinates
@EL,...,&™) in N. Then the pullback, ¢*, of a k-form a'® € AR(N') (where k < m) is a mapping: ¢*: AE(N') — AR (M)
defined by its action on tangent vectors:

@ (@P)@1,...,0) = BN @1),..., 04} (2.23)

where @+ (U) denotes the pushforward of a vector U under the mapping ¢. The pushforward is ¢« of a tangent vector
V €T, M at point p is the linear map ¢+ : Tp M — T(/,(p)./\/ , that maps tangent vectors on M to tangent vectors on N.

In the context of this thesis, the pullback operator is nothing more than a coordinate-free approach to vector
calculus’ change of variables. The pullback operator is related to integration theory through the following formulation:
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Definition 14 (Pullback integration). The integral of a differential k-form a® over a k-dimensional manifold M is

(k) _ -1\* (k)
fMa = fN[q) ) @) (2.24)

where ¢~ 1: N cR® — M represents the inverse of the coordinate chart mapping from M to N c R,
4 P pping

defined as:

This definition makes precise the notion that integration of forms is coordinate-independent. When we integrate
over a manifold, we must first parametrise it using local coordinates, which amounts to "pulling back the form to some
Euclidean domain where standard integration techniques apply.

Example 2.3.2

Taking differentials:

Now we compute the pullback of the 2-form:

18:

traditional multivariable vector calculus.

Consider the basic 2-form w =dx A dy on R2 and the polar coordinate transformation ¢: R2 — R2 given by:
@(r,0) =(rcosf,rsinf) (2.25)

We wish to compute the pullback ¢*(dx A dy) and show that it equals rdr A d6. Let us begin by calculating
the pullback explicitly. Under the transformation (2.25), we have:

x =rcosf

y=rsinf

dx =cosOdr—rsinfdo
dy=sinfdr+rcosfdf

@*(dxAdy)=(cosOdr—rsinfd0) A (sinddr +rcos6 do)
=rcos?0dr ndO-rsin®0dO ndr
=rcos?0dr nd6 +rsin?0dr nd (2.28)
= r(cos2 6 + sin? 0)dr ndO

=rdrndo

We can verify this result by computing the Jacobian determinant of the transformation. The Jacobian matrix

0x .
== cosf —rsinf
Jp=|9 = 2.29
v (g—i’ ) (sin@ rcos6 ) 6 )
Computing the determinant:
det(Jp) = rcos?6 +rsin?0 = r (2.30)
Therefore, we confirm that:
@*(dxndy)=rdrndd=(detdy)dr AdO (2.31)

as expected from the well-known change of variables from Cartesian to polar coordinates mapping formula in

(2.26)

(2.27)

When we consider a mapping ¢ between manifolds and ask how integration behaves under this mapping, we
obtain a fundamental relationship that captures the essence of the pullback operation. Specifically, if we integrate a
form over the image ¢(M), this is equivalent to integrating the pulled-back form over the original domain M:

f(M)a(k):fM 0*a® = @® p(M) = (p*a®, M). 2.32)
(4

Remark 2.3.6

geometry:

The pullback operator possesses several fundamental properties that make it an indispensable tool in

0*@® +D) = p*@®) + ¢*®?V) (Linearity) (2.33)
(p*(a(k) AbDy = (p*(a(k)) A (p*(b(l)) (Algebra homomorphism) (2.34)
(p2091)" = @] op; (Composition) (2.35)
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Properties (2.34) and (2.35) demonstrate that the wedge product is a canonical, coordinate-independent operation.
The preservation of the wedge product under pullback (2.34) ensures that geometric relationships encoded in the
exterior algebra are maintained under coordinate transformations. The composition property (2.35) shows that
pullbacks compose in the "opposite" direction to mappings, which is characteristic of contravariant functors. Most
importantly for our purposes, the pullback operator commutes with the exterior derivative: ¢* (da(k)) =d ((p*a(k)).
The commutation property is essential as it establishes that the exterior derivative is a coordinate-free, intrinsic
geometric operation. Regardless of how we transform our manifold, the fundamental differential relationships
captured by d remain unchanged.

2.3.5. TREATING BUNDLE-VALUED FORMS

When discretizing PDEs, it is useful to consider not just scalar-valued differential forms but also vector-valued forms.
If w is a k-form on M and £ is a vector bundle over M, then an £-valued k-form is a multilinear, antisymmetric map
that assigns to each k-tuple of tangent vectors an element of the fibre £, which is useful for the representation of
physical quantities such as displacement fields, stress tensors in terms of differential geometry. The theory of fibre
bundles comes essential for defining such mathematical objects. A fibre bundle is a space that locally resembles a
product space but may have a different global topological structure. The relationship is encoded through a continuous,
surjective map n: £ — M, called the projection, where M is the base space and the fibres are the preimages a1 p)
for p € M. A section of £ is a map from the base space to £ that assigns one element from each fibre, satisfying
mos=1Idy,.

From a global perspective, one collects all tangent spaces T, M into the tangent bundle T M, and all cotangent
spaces T;./\/l into the cotangent bundle T* M. A vector bundle is, in general, any smooth family of vector spaces (one
for each point p € M) that "fit together" over M. A section of a vector bundle picks out one vector from each fibre, so a
classical vector field on M is precisely a section of T M.

Example 2.3.3

In two-dimensional Cartesian space, any vector or covector-valued physical quantity has two components
(one in the x-direction and another in the y-direction). Instead of treating these as separate scalar fields, a
bundle-valued form stores both components together as a single mathematical entity, reflecting the intrinsic
geometry. When discretising vector or covector fields in finite element methods one often places degrees of
freedom on k-cells. Treating the field as a bundle-valued form naturally associates all vector components
to the same mesh elements, simplifying both the assembly of system matrices and the enforcement of PDE
constraints or boundary conditions.

Remark 2.3.7

In the case of a flat ambient space with no curvature, one has a one-to-one relation among all the tangent
spaces of M. The same also holds for the tangent spaces of M itself. A consequence of that is one can identify
all the tangent spaces by a unique vector space making the vector bundles trivial. As a consequence, one can
then consider differential forms with values in this single vector space, i.e. unique and trivial. However, doing
so requires incorporating these maps between the different tangent spaces in the formulation, which could be
complicated for curvilinear coordinates - which could be alleviated by using the more generic vector bundle
structure. This thesis makes use of such ¢rivial fibre bundles, i.e. a rank n vector bundle is trivial if and only
if it has n linearly independent global sections [Rashad et al., 2023]. In the trivial case, the total space is
isomorphic to the product of the base space and the fibre, and the projection is just the projection onto the first
factor.

J

From the above remark in the trivialisation of £, one can also define the previous metric-free differential geometry
operations for vector-valued forms as a bundle. More specifically, by considering the fibre bundle as a set whose
fibres represent smooth, linear maps that correspond to their scalar analogues. For the pullback operation this is
given below, but it can be shown for the wedge product, as a tensorial Kronecker product ® of forms; and the exterior
derivative, but acting component-wise relative to any basis of the vector space.

Definition 15 (Pullback bundle). A pullback bundle or induced bundle is the fibre bundle that is induced by a map of
its base space. Given a fibre bundle n: £ — M and a continuous map f: M — M, one can define a “pullback” of £
by f as a bundle f*& over M. The fibre of f*E over a point p € M is just the fibre of € over f(p). Thus f*& is the
disjoint union of all these fibres equipped with a suitable topology.

Definition 16 (Pullback of vector-valued forms). The pullback of an £-valued form on M by a smooth map ¢: M — M
is an (¢* E)-valued form on M, where ¢*E is the pullback bundle of £ by ¢. The formula is given just as in the ordinary
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case. For any E-valued p-form w on M, the pullback ¢*w is given by
(9" 0)x(1,...,0p) = V() (@5 V1), ..., 5 (V) (2.36)
where x € M and v1,...,vp € Ty M.

Although the above 2.36 is draws similarities to the scalar-valued case 2.23 the operation here is more involved. In
the context of bundle-valued forms, one could essentially pull back the form component (leaving the fibres untouched),
pull back the fibre values (leaving the form component untouched), or perform both operations. The definition above
corresponds to the first case: the action on the tangent vectors is handled by the pushforward ¢, effectively pulling
back the form component, while the fibre values are simply re-indexed to the pullback bundle ¢*&.

2.4. ALGEBRAIC TOPOLOGY: TO DISCRETE COMPUTATION

The framework of differential geometry provides powerful tools for expressing physical laws in a coordinate-
independent manner on smooth manifolds. In moving from continuous theory to practical numerical computations,
we must discretise the underlying geometric structures. Algebraic topology provides the mathematical language for
rigorously describing discrete approximations of continuous geometric objects while preserving their fundamental
topological and algebraic properties. This section is purely meant to summarise the fact that the subject, in the context
of MSEM is a discrete perspective of differential geometry. The reader is pointed to the following resources for a more
rigourous set of definitions [Gerritsma, 2012] [Hatcher, 2002] [Arnold et al., 2010] [Hyman and Scovel, 2005].

The idea in using algebraic topological concepts is to partition differentiable manifolds into a collection of non-
overlapping subspaces called cells, such that their union reconstructs the entire manifold under study. This partitioning
yields a discrete representation of the manifold in terms of a finite number of simple building blocks: points (0-cells),
line segments (1-cells), surface patches (2-cells), volumetric regions (3-cells), and their higher-dimensional analogues.
A formal weighted sum of k-cells within such a partition is called a k-chain, and these chains serve as the discrete
analogues of the geometric domains over which we integrate differential forms.

Several fundamental structures emerge from this cellular decomposition, but in MSEM there is a particular
emphasis on quadrilaterals and their generalizations to higher dimensions (singular k-cubes) [Palha et al., 2014]. The
algebraic topology framework also introduces the notion of duality: one can define objects dual to the original cells
and construct a dual partition, known as the dual complex. Associated with these cellular structures is the boundary
operator, which acts on chains to extract their boundaries. This operator serves as the dual to the coboundary operator,
i.e. the discrete counterpart to the exterior derivative in differential geometry. These dual entities and operators play
a key role in the discretisation of physical quantities, particularly in distinguishing between configuration and source
variables as discussed earlier.

Cell Complex

Manifold

2-cells 3-cells
H * e '. .
s .

\ J

Figure 2.2: Sample R? cell complex partitioned into a collection of points, lines segments, surfaces and
volumes (k-cells). The union of all the cells tiles the manifold with compatible orientations [Palha, 2013]

After having defined a discrete representation of the manifold in terms of k-chains, we can assign values to the
various spatial elements by defining the dual space of the chains, called the space of k-cochains. The duality pairing
between chains and cochains provides a natural way to introduce discrete operations on cochains as formal adjoints of
operations on chains. In this manner, operations on k-cochains naturally mimic the operations on k-forms discussed
in the context of differential geometry. This is the foundation upon which mimetic discretisation methods are built,
such that discrete analogues of differential operators preserve properties such as nilpotency of the exterior derivative
and the structure of de Rham complexes, i.e. continuous physical laws [Frankel, 2011].

Remark 2.4.1

Throughout this thesis, it is assumed that the dimension of all manifolds is finite, i.e. dim(M) = n.
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INCIDENCE MATRICES
While we do not extensively go through the definition used from algebraic topology [Hatcher, 2002], a notable one
is outlined here for its emphasis in MSEM. On a cell complex, the continuous exterior derivative d is represented
discretely by incidence matrices. These matrices represent the oriented adjacency between k-cells and (% + 1)-cells, i.e.
the discrete boundary operator.

Definition 17 (Incidence matrix). Let C}, be the vector space spanned by oriented k-cells of a finite cell complex. The
boundary operator 0p,1: Cp1 — C}, maps each oriented (k+1)-cell to a formal sum of its oriented boundary k-cells. The
matrix representation of 03,1 with respect to a chosen ordering of cells yields the incidence matrix Ek+LE) ¢ gVE+1xNg),
where Ny, denotes the number of k-cells. Its entries are

+1, ifthe j-th k-cell is a face of the i-th (k + 1)-cell with the same orientation

[Eglje.ﬂ’k) =< -1, ifitis a face with opposite orientation (2.37)

0, else

This incidence matrix acts on discrete k-cochains (lists of integral values on k-cells) to produce discrete (& + 1)-
cochains, mimicking the exterior derivative. This corresponds to the coboundary operator 5, which is the discrete
analogue of the exterior derivative. It is related to the boundary operator 0 by the discrete analogue of Stokes theorem:

@®, 6y 1cp41) = Gra® cpir). (2.38)

The topological identity that "the boundary of a boundary is zero" implies § 0§ = 0, captured by the algebraic relation
Ek+2E+DEER+LE) — 0 vE which encodes discrete versions of V x (V) = 0 and V- (V xu) = 0.

2.5. MIMETIC SPECTRAL DISCRETISATION

In MSEM, a domain Q € R? is discretised into a mesh subdivided into primal cells (representing the physical geometry)
and dual cells. In R2, the primal mesh has points, lines, and surfaces corresponding to 0-, 1- and 2-cells. The dual
mesh interchanges these roles so that each primal £-cell corresponds to a dual (d — k)-cell. Degrees of freedom for
scalar fields (0-forms) live in primal vertices, while integral values of vector fields (1-forms) live along edges and fluxes
of 2-forms live on faces. Dual degrees of freedom correspondingly live on dual cells [Gerritsma, 2012].

Definition 18 (Reduction operator). For each degree p €{0,...,d} let {Cgp )} denote the oriented p-cells of the mesh. The
reduction operator R maps a smooth p-form a'P) € Q to a p-cochain through (R aP )),- =/ c® a'P), assigning to each

13
p-cell the integral of the form over that cell. It satisfies the commutation property Rd = 6 R, where § is the discrete
coboundary represented by incidence matrices.

Definition 19 (Reconstruction operator). Let {qbgp )} be a chosen basis for discrete p-forms. The reconstruction operator

I takes a p-cochain ¢ = (c;) to an approximate p-form by I(c)=Y; cid)gp). It is a left inverse of R in the sense that
R oI =1dentity on p-cochains, and to ensure compatibility with differentiation it is required that dI =106. Together
these properties imply that I o R approximates the identity on sufficiently smooth forms.

2.5.1. MIMETIC BASIS FUNCTIONS

Tensor-product Gauss-Lobatto-Legendre (GLL) nodes {{g,...,{n} € [—1,1] serve as collocation (integration) points for
the spectral elements in this thesis. These are used to construct the scalar and vector form bases: nodal and edge
bases, respectively.

Definition 20 (Nodal basis). The nodal (Lagrange) basis functions h;(¢), i =0,...,N, are the unique polynomials of
degree N satisfying hi({;)=0;j. They can be written explicitly as

&—¢;
hi@) = H J (2.39)
0<j=N¢i—¢j
J#i

and reconstruct a scalar field from its nodal values ®; via ©p (&) = Z]i\i 0 D;h; (&), where ®; denote 0-form degrees of
freedom.

Definition 21 (Edge basis). The edge basis functions e;(£), i =1,...,N, represent line-integral quantities and satisfy
f; J . e;(§)d&=06;;. They are constructed from the nodal polynomials as,
s
i-1 dh
ei@=-Y —*

k=0 ¢
yielding polynomials of degree (N — 1) associated with 1-form degrees of freedom [Gerritsma, 2011].

(2.40)
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(a) Nodal polynomial basis (b) Edge polynomial basis

Figure 2.3: 1D basis functions for N =6

2.5.2. MULTI-DIMENSIONAL BASES

These one-dimensional bases can be used as building blocks when extend to higher dimensions by a tensor product. In
d dimensions a k-form basis is built by selecting % factors of edge polynomials and (d — &) factors of nodal polynomials.
In any case, these tensor-product bases maintain the pointwise and integral Kronecker delta properties from their
1D building blocks, such that the expansion coefficients represent nodal values, edge fluxes, face fluxes, or volume
integrals. Hence, the discrete degrees of freedom match physical quantities, making this construction mimetic, or
compatible.

Example 2.5.1

For instance, a discrete O-form in 2D has one component

v ) = % % T, i [hi(©) @ A
AL ijlhi I (2.41)
i=0,=0

A discrete 1-form in 2D has two components

N N
v m=Y \ngj) le; (&) ® ()] (2.42)
i=1;=0
i) J & m
LONGIEDIDIE HALEGERFC) (2.43)
i=0j=1 "~

Each coefficient represents the integral of the field along the corresponding mesh edge.

2.5.3. DISCRETE HODGE
The Hodge * operator on a Riemannian manifold relates &-forms to (n — k)-forms by combining metric and orientation.
In the discrete setting, a weighted mass matrix M) plays the role of the Hodge star applied to degrees of freedom.

Definition 22 (Discrete Hodge operator). Let {U/Ek)}i be a basis for discrete k-forms and {1/73." _k)} j its dual basis defined
via inversion of the mass matrix. The discrete Hodge operator %y, is the mapping on cochains given by

xp: o = Yyt — g = Y gt R (2.44)
2 J

where the cochain components satisfy f = M® g with M(il;) = fo wgk) A *u/g.k), and = wal.

The discrete Hodge is metric-dependent and changes both the degree and orientation type of a cochain, and they
are generally built from the polynomial bases as seen before. These matrices map coefficients of inner-oriented discrete
k-cochains to coefficients of outer-oriented (n—k)-cochains via §, = H® ¢ 1, generalising = M®q. In mimetic spectral
element methods the weighting w is often chosen so that H®) coincides with the mass matrix, but the flexibility to
incorporate material or geometric factors is one of the strengths of the discrete Hodge operator. Using the discrete
Hodge, one may formulate discrete weak forms of partial differential equations (note that this is not strictly defined to
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be a Galerkin projection). Given a linear, first-order differential operator L acting on a & — 1-form 0®~D the weak
form seeks wﬁz ) in a finite space such that

(k-1) (k) (k)
L|w A * =0, V testk-forms (2.45)
JoLloft 2T nens] P

Substituting expansions in primal and dual bases and assembling the resulting integrals leads to algebraic systems
involving incidence matrices and weighted mass matrices.

2.5.4. DUAL BASIS FUNCTIONS

In mimetic and spectral element formulations, constructing dual basis functions is essential for defining discrete dual
operators. While primal bases k) represent £-forms on the primal grid, their dual counterparts P(n=k) are defined
such that they are bi-orthogonal to the primal basis with respect to the L2 inner product. This bi-orthogonality is
achieved through a transformation involving the mass matrix, via the discrete Hodge operator [Jain et al., 2020b].

Definition 23 (Dual basis transform). Given a primal basis wk) the corresponding dual basis is obtained as Pln-k) —
k) [M(k)] _1, where M®) denotes the k-form mass matrix, defined through the L2 inner product MEI;) =fo ‘I"gk) A *‘I’;.k).

The dual nodal basis functions lNLi(f ) are associated with the nodes of the dual grid and are dual to the primal
gdge functions e;(¢) defined on the edges of the primal grid. In one dimension, these functions are related through
7(&) = e(©)IMD]71, where the edge-based mass matrix is given by

) Si ]
MY = ej(®e(6)d¢, i=1,2,...,N (2.46)
Y $i-1 /

Similarly, the dual edge basis functions €;(¢) are defined on the edges of the dual grid and are dual to the primal nodal
functions £ ;(¢). They are expressed as e(¢) = h(«f)[M(O)]_l, with the nodal mass matrix defined by

i
0 .
Mﬁ.j)zf hi@©hj©dE,  i=0,1,...,N (2.47)
i1
251
1.25
1.00
0.75
—0.501
&
= 0251 \
0.00 = ‘ <
~0.251
0Py = T :
—0.501 ‘ ~X J —= v\‘
~1.00 —0.75 —050 —0.25 0.00 025 050 075 1.00 ~1.00 —0.75 —050 —025 000 025 050 075 1.00
¢ ¢

(a) Dual nodal polynomial basis (b) Dual edge polynomial basis

Figure 2.5: Dual of the 1D basis functions for N = 6. Note that we utilise the notation 0 to indicate
functions in the dual space

The above dual bases are unweighted. However in this work, the introduction of discrete pushforward and
pullback maps introduce a weighting on the basis functions. To see how such weighted dual basis functions
are drawn up, refer to Section 4.5.




20

2. MATHEMATICAL PRELIMINARIES FOR MIMETIC SPECTRAL ELEMENT METHOD

(a) 0-form basis from (2.41)

(b) 1-form basis from (2.42)

Figure 2.4: Sample 2D tensor-product basis functions for N =2



CONTINUUM MECHANICS
FORMULATION

This chapter establishes the continuum mechanics framework for non-linear hyperelasticity, emphasizing connections
to differential geometry developed in Section 2.3. We adopt a Lagrangian description wherein material points are
tracked from a reference configuration through their deformation in space and time. The presentation follows the
geometric viewpoint of Marsden & Hughes [Marsden et al., 1984], recognising configurations as smooth manifolds and
deformation as smooth mappings (flowmap) that induce natural transformations of geometric and physical quantities.
An introduction to motion and configurations in given in Section 3.1, followed by the various variables used in their
definitions (Sections 3.2 and 3.3). Rationale for finite-strain, hyperelasticity formulations are given in Section 3.4.
Lastly, one interpretation on the geometry of elasticity is given in Section 3.5, with the continuous Lagrangian equation
in Section 3.6.

3.1. CONFIGURATIONS AND KINEMATICS

First it its important to discuss how to generally describe bodies undergoing some motion such that induced (finite)
strains and/or rotations are also large enough to invalidate assumptions inherent in linear strain theory. In such a
case, the undeformed and deformed configurations of the continuum are quite different.

3.1.1. MATERIAL AND SPATIAL DESCRIPTIONS

Consider a continuum body B undergoing deformation in three-dimensional Euclidean space R%. Unlike discrete
mechanical systems, continuum bodies consist of a continuous distribution of matter, requiring a careful mathematical
description of how material points move through space and how their relative positions change under deformation
[Reddy, 2013].

Definition 24 (Configurations). A continuum body BB occupies different regions in R3 as it deforms over time. The
reference configuration Qg c R is a fixed, known domain serving as the baseline for measuring deformation,
where each material point (particle) is identified by its position X € Qq. The current configuration (or deformed
configuration) Q; R3 is the region occupied by the body at time t, where the material point originally at X is now
located at spatial position x € Q.

The distinction between material coordinates X and spatial coordinates x is fundamental. Material coordinates
serve as time-independent labels identifying which particle we are tracking, analogous to names for individuals.
Spatial coordinates identify where in space we are observing at a given instant. This dual description gives rise to
two complementary viewpoints: the Lagrangian (material) description expresses field quantities as ¢(X, ¢), following
specific material particles through their motion, where the material time derivative ¢ = d¢/0t|x measures the rate
of change experienced by a particle; while the Eulerian (spatial) description expresses field quantities as I1(x,?),
observing what happens at fixed spatial locations, where the material time derivative requires the chain rule
d/dt = 0¢/dt|x +v -V to account for both local changes and convection. For solid mechanics, the Lagrangian
description is preferred because material points undergo bounded displacements, boundary conditions are naturally
specified on material surfaces, and constitutive models relate stress to material strain measures [Zienkiewicz et al.,
2006].

3.1.2. FLOWMAP: MATERIAL COORDINATES

Definition 25 (Flowmap). The motion of the body is described by a smooth, invertible mapping ¢ : Qg x[0,T]— R3
with x = (X, t), assigning to each material point X and time t its current spatial position x. The mapping must
satisfy smoothness (@ € CZ(QO x [0,T]) at least), invertibility (@(-,t): Qg — Q; is bijective for each t), and orientation
preservation (det(Voe) > 0 everywhere).

21
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The initial condition typically specifies @(X,0) =X when the current configuration and an initial configuration
Qy, coincide. When the current configuration and initial configuration do not coincide, the initial condition is
instead specified by ¢(X, tg) = ¢((X), where ¢ is a known mapping from the reference configuration to an arbitrary
initial configuration at time ¢g > 0. The displacement field u(X,#) = (X, ) — X measures how far each particle has
moved from its reference position. This is illustrated in Figure 3.1. For a fixed particle X, the trajectory ¢t — (X, t)
traces its path through space, with velocity and acceleration obtained by differentiation: v(X,t) = d¢/dtIx = ¢ and
a(X,t) = % /ot%Ix = p.

ai

Figure 3.1: Sketch of the relation between different material configurations, such as in a reference,
initial, and current state, for a body B (i.e. they can be used for maps in space and/or time). The flowmap
@ accordingly acts to form a sequence map, as well as an associated inverse. A displacement can also be

used to describe differences in the maps.

3.1.3. DEFORMATION GRADIENT
Definition 26 (Deformation gradient). The deformation gradient tensor quantifies local deformation: F(X,t) = V@ =
0@/0X, with components F;j = 0x;/0X7 (spatial index i, material index I). Equivalently, F =1+ Vgu.

The deformation gradient is a two-point tensor, mapping material tangent covectors to spatial tangent covectors via
dx =F -dX. This relation states that if two material points are initially separated by a covector dX, after deformation
they are separated by dx = F - dX. The deformation gradient thus encodes local stretching, rotation, and shearing
of material line elements. The Jacobian determinant J = detF relates volume elements via dV = J dVj, and the
condition JJ > 0 ensures orientation preservation, preventing self-intersections or volume collapse. Mass conservation
for a material element gives pgdVy = pdV, implying p = po/J, where pp(X) is the reference density and p(x,t) is the
current density.

Remark 3.1.1

When the physical domain differs from the computational reference domain (e.g., Cook’s membrane geometry
versus the reference square [-1, 1]2), an additional geometric transformation is required. The stress tensor
Pg,, computed in the reference configuration (g, must be pulled back to the computational domain via the
mapping ¢q :[-1, 112 - Qo with deformation gradient F = V¢¢. This yields the computational stress:

Peurr = |detFo| Po, - Fo T (3.1)

where |detF| accounts for the volume scaling between domains and FaT transforms the stress covector
components from reference to physical/current coordinates.

3.1.4. A DIFFERENTIAL GEOMETRY PERSPECTIVE

From the differential geometry viewpoint introduced in Section 2.3, the flowmap ¢ is a smooth diffeomorphism
between manifolds Q¢ and Q; (viewed as submanifolds of [RS), which induces natural linear transformations between
tangent spaces, cotangent spaces, and tensor bundles [Marsden et al., 1984].
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The deformation gradient F = ¢, is precisely the pushforward map (also called the tangent map or differential):
P, T)*(Qo — T3 Q; with dx = ¢, (dX) = F - dX. The pushforward is a linear isomorphism between cotangent

spaces at corresponding points, with inverse F -1- (" L.

The pullback operation @™ acts in the opposite direction, transforming differential forms from the current to the
reference configuration. For cotangent vectors (1-forms), the pullback preserves the natural pairing with tangent
vectors. If @ € T5Q; is a spatial covector, the pulled-back covector satisfies (¢* a)x(dX) = ax(@,dX) = axdx. The
pullback extends to differential forms of all degrees, and the transformation of volume forms is particularly important:
@*(dx1 Adxo Adxg) = J(dX1 AdX9 AdX3), recovering the familiar relation dV = J dVj from the geometric viewpoint.
Oriented surface elements transform according to Nanson’s formula, which can be derived from the requirement that
the volume element formed by three line elements transform consistently: ndI' = J FT -ngdlg, where ng and n are
outward unit normals in the reference and current configurations. This formula is useful for transforming surface
tractions and deriving relationships between stress measures.

3.2. MEASURES OF DEFORMATION

The deformation gradient F contains information about both rotation and stretching. To isolate pure deformation from
rigid body motions, we construct strain measures that vanish for all rigid translations and rotations (also follows from
the polar decomposition of F = RU where R is a rotation matrix and U is the right, symmetric Cauchy stretch tensor).

3.2.1. RIGHT CAUCHY-GREEN TENSOR

Definition 27 (Right Cauchy-Green deformation tensor). The right Cauchy-Green tensor is defined as C =F T.F, a
symmetric, positive-definite material tensor with all indices referring to the reference configuration.

The geometric significance of C is that it measures the change in squared length of material line elements:
ldx|2 =dx-dx=(F-dX)-(F-dX)=dX-C-dX. Thus, C acts as a Riemannian metric on the reference configuration
induced by the deformation, with component form [|dx|2 = C; jdX;dX;. C ~1 is then is the pullback of the metric is
spatial coordinates to the material coordinates. For a rigid body motion @(X,¢) = a(¢) + Q(¢)- X (where Q is a rotation
matrix), we have F = Q and thus C = QT -Q =1, and conversely C =1 implies rigid motion. This shows that C filters
out rotations, depending only on stretching and shearing. The right Cauchy-Green tensor also determines changes in
angles between material fibres. For two initially orthogonal line elements dXD and dX@, the angle O between their
deformed images satisfies

-1
cos® = (dX(l) .C- dx<2>) (\/ dXD.C-dXDVdx@ .C. dx<2)] (3.2)

Expressing C in terms of displacement yields C = (I + Vou)T -(I+Vou)=I+Vou+ (Vou)T + (Vou)T -Vou, illustrating
the non-linearity in the deformation gradient.

3.2.2. GREEN-LAGRANGE STRAIN TENSOR

Definition 28 (Green-Lagrange strain tensor). The Green-Lagrange strain tensor is E = %(C -I)= %(FT -F-1),orin
terms of displacement, E = % Vou + (Vou)T + (Vou)T -Voul|.

The factor of 1/2 is chosen so that E reduces to the classical covector-valued strain tensor for small deformations.
The Green-Lagrange strain vanishes for all rigid body motions (E = 0 & C =1I), making it an ideal measure of pure
deformation [Reddy, 2013]. The change in squared length relates directly to E via ||dx||2 - ||dX||2 =2dX-E-dX. For
a material fibre initially in direction M (unit vector), the stretch ratio A = ||dx||/||dX]|| satisfies A = V1+2M-E-M.
The structure of E reveals the distinction between linear and non-linear theories: the linear part %[Vou + (Vou)T]
is the symmetric deformation gradient representing covector-valued strain, while the quadratic term %(Vou)T -Vou
captures geometric non-linearity and becomes significant when [|[Vou| %« 1. When deformation gradients are small
IVou|l <« 1, the quadratic term can be neglected to give E = € = %[Vou + (Vou)T] (covector-valued strain), recovering
linear elasticity where the distinction between reference and current configurations vanishes and governing equations
simplify dramatically.
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Example 3.2.1: Uniaxial extension

Consider uniform extension in the X1-direction with x1 = 1X{, x9 = X9, x3 = X3 for stretch A. Then F =
diag(1,1,1), C = diag(12,1,1), and E11 = (A2 —=1)/2. For small elongation A = 1+¢ with € < 1, we have
Eqq1 =11+ 6)2 —-112=¢+ €2/2 ~ €, recovering linear strain. For large elongation A = 2 (100% extension), we
get E11 =(4-1)/2 =1.5, whereas linear theory gives €11 = 1. The 50% difference illustrates the necessity of
geometric non-linearity.

Example 3.2.2: Simple shear

1 v O
For simple shear x; = X1 +yX9, x9 = X9, x3 = X3, the deformation gradient is F = |0 1 0] and the
0 0 1
0O vy2 0
Green-Lagrange strain is E = |y/2 y2/2 0. For small shear, E19 = y/2 dominates, but for large shear, the
0 0o 0

non-linear normal strain E9g = 72/2 becomes significant, coupling shear and extension in a purely non-linear
effect absent in infinitesimal-strain theory.

Example 3.2.3: Rigid rotation

cosf —sinf O
For rotation about X3 by angle 6, the deformation gradientis F = [sinf cosf 0], givingC=Iand E =0,

0 0 1
correctly showing zero strain for any 0. In contrast, covector-valued strain & # 0 unless 6 is very small.

3.3. STRESS MEASURES

Multiple stress measures arise when formulating equilibrium equations in different configurations, because areas in
the reference configuration differ from areas in the current configuration in both magnitude and orientation [Marsden
et al., 1984]. This necessitates the definitions of different stress tensors depending on which configuration is used for
forces and areas (see Figure 3.2).

Figure 3.2: Schematic of stress measure quantities. A material surface element dI'y on Qg with normal
ng in the reference configuration deforms to dI" on QQ with normal n in the current configuration.
Tractions ty and t result in forces dfy and df. The deformation gradient F and Jacobian J = detF govern
the transformation.
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3.3.1. CAUCHY STRESS TENSOR

Definition 29 (Cauchy stress tensor o). The physical stress in the current configuration relates traction to surface
normal via t = o-nand df = o-ndT. The Cauchy stress is a symmetric spatial tensor (¢ = o'L), with symmetry following
from balance of angular momentum.

The Cauchy stress is the natural measure of stress, hence what is actually experienced by the material and
measured in experiments. This is what is used to indicate phenomena like failure, damage, plasticity, and other physics-
oriented observations. Its diagonal components 011,092,033 represent normal stresses (positive for tension, negative
for compression), while off-diagonal components 012,013,023 represent shear stresses. However, for Lagrangian
formulations where equations are derived in the reference configuration, working directly with ¢ is inconvenient
because the geometry of the current configuration is unknown (it’s part of the solution), motivating the introduction of
stress measures that relate quantities between configurations.

3.3.2. PIOLA-KIRCHHOFF STRESS TENSORS

Definition 30 (First Piola-Kirchhoff stress P). A two-point tensor relating current force to reference area via df =
P -nydly. Using Nanson’s formula ndI = JFT ‘ngdlg, we find P=dJa FTaonda=J 1P -FT.

The first PK stress P has one spatial index (force direction) and one material index (surface orientation), making
it a two-point tensor that is generally non-symmetric because it relates different coordinate systems. The name "Piola
transformation” refers to the relation P = Jo-F~1 accounting for area change and normal rotation. The equilibrium
equations in the reference configuration involve Vg - P, making P natural for variational formulations in the total
Lagrangian framework, and moreover P is energy-conjugate to F with stress power per unit reference volume given
by P=P:F.

Definition 31 (Second Piola-Kirchhoff stress S). A symmetric material tensor obtained by pulling back both force and
area: dfy=F1.df=ST -ngdTly, giving S=F 1.P=JF .- FTando=J 'F-S-FT.

The second PK stress S is a purely material tensor (all indices refer to the reference configuration) and is
symmetric (S =S Ty, with this symmetry inherited from o and reducing independent components from nine to six.
Crucially, S is objective (frame-indifferent): under superposed rigid rotations, its components remain unchanged,
making it ideal for constitutive modeling. The second PK stress is energy-conjugate to the Green-Lagrange strain via
P =8 : E, and this work-conjugacy is fundamental for hyperelastic constitutive models.

Remark 3.3.1

From the differential-geometric perspective, stress measures arise naturally from pullback/pushforward
operations. Geometrically, the Cauchy stress o is a covector-valued surface form; its usual representation in
TxQ; ® TxQ; comes only after identifying surfaces with vectors via the metric, and therefore should not be
interpreted as acting on a direct product of tangent vectors. The first Piola-Kirchhoff stress P is the pullback
of the area-form part of o to the reference configuration, leaving the force-valued leg spatial (symbolically
written as TxQ; ® T)*(QO to indicate this mixed character). The second Piola—Kirchhoff stress S is the full

pullback to material space. The relations P =F -S and 0 =J~ 1F.S-FT follow from applying pushforward
and pullback to the form-leg only, as emphasised in [Kanso et al., 2007].

Table 3.1: Properties of stress tensors. Notice how each stress measure serves a specific purpose: o for
physical interpretation, P for variational formulations, and S for constitutive modelling.

Stress Configuration Symmetric Objective Conjugate to

o Spatial Yes Yes d
P Two-point No No F
N Material Yes Yes E

3.4. HYPERELASTIC CONSTITUTIVE RELATIONS

Having established kinematic (strain) and kinetic (stress) measures, we now address the constitutive relation-the
material-specific law connecting stress to deformation - without which the balance laws are underdetermined.
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3.4.1. HYPERELASTICITY

Definition 32 (Hyperelastic material). A material is hyperelastic if there exists a strain energy density function
W(E) or W(C) such that stress derives from a potential: S = OW/OE = 20W/0C. The total deformation energy is
Eger= fQo WX, C)dVy, where W may depend on position X for inhomogeneous materials [Fu and Ogden, 2001].

The factor of 2 in S8 = 20W/AC arises from the chain rule via E = %(C —I). Hyperelasticity ensures several important
properties: thermodynamic consistency through the rate of energy storage equaling stress power (W =S : E), path-
independence where stress depends only on current deformation and not on history, conservative behaviour where
work done over closed deformation paths vanishes (no dissipation), and automatic symmetry of stress since S derives
from the scalar W, and the fact that E and C are symmetric by construction.. The choice of W characterizes the
material, with different functional forms describing rubber (neo-Hookean), soft tissues (Fung), foams (Ogden), and
other materials. Naturally, the challenge in constitutive modelling is defining W such that it best approximates
physical behaviour while remaining mathematically tractable and thermodynamically admissible.

3.4.2. ISOTROPIC HYPERELASTICITY
Definition 33 (Material isotropy). A material is isotropic if its response is independent of material orientation:
W(C)=W(QT -C-Q) for all Q€ SO(3).

By the Rivlin-Ericksen representation theorem, isotropic W depends only on the principal invariants of C:

1
L) =tr(€©) = AT +A5+15  I2(C) = [(trC)? —tr(C?)] = 4713 + A3A5 + AZAF 53
I3(C) = det(C) = J% = 131313

where 11,19, 13 are principal stretches (eigenvalues of U in the polar decomposition F = R-U, U2 = C). Thus
W(C)=W(I,I2,13), and stress is computed via chain rule

oW ol; owWaolyg oW 613)
—9 2 ON O3 3.4
(011 ac "I, oC T al; oC @4
Using the derivatives 011/0C =1, 019/0C =111 - C, and 013/0C = I3 C_l, we obtain
oW . oW ow 4
S=2|—I+—U1I-C)+ —1I3C 3.5
(011 t o, O+ G I8 ) 3.5

This formulation reduces constitutive modelling from specifying a function of six components of C to specifying a
scalar function of three invariants and thus greatly simplifies constructing S via some strain energy density function
W (which may be material physics-dependent).

Remark 3.4.1: Linearization and Connection to Linear Elasticity

For small deformations || Voul| < 1, hyperelastic materials reduce to linear elasticity through Taylor expansion
of W(E) about E =0: W(E) = W(0) + %—gIEZO E+ %E g af"_a“;ﬂE:O :E +O(|E|3). Assuming the reference
configuration is stress-free so that S(0) = 0W/0E|g_¢ =0, and choosing W(0) = 0, we obtain W(E) = %E :C:E
and S = C: E, where C is the fourth-order elasticity tensor. For isotropic materials, C;jx7, = A01 70K, +
wOrrd L, + 0110 K), giving Hooke’s law S = Atr(E)I+2uE. The Lamé parameters A,y relate to Young’s
modulus E and Poisson’s ratio v via u = E/[2(1+v)] and A = Ev/[(1+v)(1—-2v)]. The corresponding strain
energy is W(E) = Artr(E)2 + [JtI‘(Ez), i.e. linear elasticity is the first-order approximation to hyperelasticity
near the undeformed state.

. 7

3.4.3. SAINT VENANT-KIRCHHOFF MODEL

Definition 34 (Saint Venant-Kirchhoff model). The simplest hyperelastic extension of linear elasticity uses the
quadratic energy function W(E) = %[‘cr(E)]2 + ,utr(Ez), giving the constitutive relation S = 0OW/0E = Atr(E)I+2uE =C:
E.

The Saint Venant-Kirchhoff (SVK) model retains Hooke’s linear stress-strain relation but uses the full non-linear
Green-Lagrange strain including the quadratic term (Vou)T -Vou, thus capturing geometric non-linearity (finite
rotations, large displacements) while maintaining material linearity. Advantages include using material Lamé
parameters A,u (or E,v) from linear elasticity, reducing to linear theory for small deformations, computational
efficiency, and handling finite rotations exactly. Limitations include non-physical behaviour under large compression
where the quadratic W is not bounded from below and can become negative, lack of polyconvexity potentially causing
non-existence of solutions for extreme loads, and less accuracy for very large stretches since real materials typically
stiffen while SVK does not [Bernd Sautter et al., 2022]. Despite these limitations, SVK is widely used for moderate
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deformations in structural mechanics, such as large deflections of beams/plates/shells [Khaniki et al., 2023], buckling
analysis, and flexible multibody dynamics.

Example 3.4.1: SVK versus geometrically linear elasticity

For 100% uniaxial extension (1 = 2), the SVK model gives E1; = 1.5 and stress S11 = (241 +2wE 1 = (21 +
2u)(1.5), versus linear theory with €11 = 1.0 and stress Ullli‘ = (21 +2u)(1.0). The 50% difference in strain
translates to 50% error in stress prediction, demonstrating the necessity of geometric non-linearity.

Remark 3.4.2

For applications requiring very large strains or strong material non-linearity, more sophisticated models
should be used, such as Neo-Hookean with W = ’21(1 1 —3), Mooney-Rivlin with W =C1(I1—-3)+Co(I9 —3), or
Ogden models with strain-stiffening [Ogden, 1973] [Rivlin, 1948]. These can be readily incorporated into the
MSEM framework by changing W while retaining the overall formulation.

3.4.4. PLANE STRAIN FORMULATION FOR TWO-DIMENSIONAL PROBLEMS

While the framework developed above is formulated in three-dimensional space, many practical problems can
be effectively modelled in two dimensions under appropriate assumptions. For the numerical implementation of
hyperelastic MSEM, we restrict attention to two-dimensional problems under the plane strain assumption [Zienkiewicz
et al., 2006].

Definition 35 (Plane strain). A deformation is in plane strain if the out-of-plane displacement component vanishes
(ug =0) and all in-plane quantities are independent of the out-of-plane coordinate (0(-)/0Xg = 0). This assumption is
valid for bodies with one dimension much larger than the other two (e.g., long cylinders, dams, retaining walls) when
loading and geometry are uniform in the long direction.

Under plane strain, the flowmap reduces to x = @(X, ) with x1 = (pl(Xl,Xz, t), xo = (p2(X1,X2, t), and xg = X3. The
deformation gradient becomes

0x1 0x1
ax; 9%, O Fi1 Fi2 0

F= g% % 0f=|Fo1 Fg2 O (3.6)
0 0 1 0 0 1

with Jacobian J = detF = F11F9g — F19F91. The Green-Lagrange strain tensor similarly reduces to

Ein Eip O
E=|E19 E92 O 3.7
0 0 0

where the in-plane components are computed from the in-plane displacement gradients via E jy = % g )Lg] + guT:; + guTIf g;‘(e";

for I,J € {1,2}, with the summation over K restricted to in-plane indices. For the SVK constitutive model in plane
strain, the strain energy density becomes

A A
W(E) = 5[tr(E)]2 +ptr(E%) = S En +E99)? + W(E2, + E2, +2E%,) 3.8)
and the corresponding second Piola-Kirchhoff stress has non-zero in-plane components
S11=ME11+E9)+2uE11, Soa=ME11+E2)+2uEg, Si12=2uE12 3.9

The out-of-plane stress component S33 = A(E 11 +E22) is non-zero but does not enter the in-plane equilibrium equations.
The strain tensor - in Voigt notation - is represented as a vector E = (E11,E99,2E12)T € R3, where the factor of 2 in
the shear component is the engineering shear strain convention. The constitutive relation then takes the matrix form
S = CE, where C € R3*3 is the plane strain elasticity matrix

z 1 v 0
C= 2 v 1 0 (3.10)
) "
0 0 5*

expressed in terms of Young’s modulus E = 4u(A + w)/(A +2u) and Poisson’s ratio v = A/(2(A + ). The stored energy can
be written in a more convenient form poW(E) = ET CE.
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Remark 3.4.3

The plane strain assumption differs from plane stress (appropriate for thin plates), where out-of-plane stress
vanishes rather than out-of-plane strain. The choice between these assumptions depends on the geometry
and loading of the physical problem. Plane strain is appropriate when the third dimension is constrained
or when the body is very long in one direction with uniform cross-section and loading. In plane stress,
033 =013 = 023 = 0 for the out-of-plane direction (i.e. axis "3"). It can be intuitively put as on a free surface, a
local state of plane stress holds, since this is exactly the boundary condition.

3.5. GEOMETRIC STRUCTURE OF ELASTICITY

The elasticity complex above possesses a rich geometric interpretation that connects naturally to the framework of
differential forms developed in Chapter 2. This section opens the connection to geometry as in [Marsden et al., 1984]
and developments in structure-preserving discretisation [Kanso et al., 2007] [Angoshtari and Yavari, 2013] [Yavari,
2008] [Marsden et al., 2001] [Rashad et al., 2023].

3.5.1. STRESS, A COVECTOR-VALUED TWO-FORM

In the space-time formulation employed in this work, the first Piola-Kirchhoff stress P is naturally described as a
covector-valued 2-form in space-time-a 1-form in space and a 1-form in time-belonging to the dual space 7\(2)(./\/1),
where M is the three-dimensional space-time manifold (two spatial dimensions plus one temporal dimension).

Definition 36 (Stress form). The stress form is an element of TyS ® A2(S), where TxS is the cotangent bundle
(dual space) and A2(S) is the space of 2-forms. For two-dimensional plane strain, a general stress form has the local
representation.:

t=dx? ®tg, (3.11)

where tq are 2-forms in space-time. In the spatial (Eulerian) description, the stress form t is related to the Cauchy
stress tensor o through
t=%90, (3.12)

where x9 denotes that the Hodge star operator acts on the second "leg” (the area-form part) of the stress tensor,
transforming it into a 2-form while leaving the covector (force direction) unchanged.

For our Lagrangian formulation, however, we work directly with the first Piola-Kirchhoff stress P, which already
possesses the structure of a covector-valued 2-form on the reference configuration [Kanso et al., 2007]. This tensor
naturally lives in the dual space 1~\(2)(M0), relating forces in the current configuration to oriented surface elements in
the reference configuration via df =P -ngdAy.

The sign convention for recovering the Cauchy stress from the stress form, o = — %9 t, arises from the
orientation of the space-time manifold and ensures consistency with the standard definition of traction forces
as t(x,t;n) = o(x,¢)-n.

The geometric formulation of stress naturally expresses the work done by internal forces. Consider a material
body occupying a space-time region M = Qg x [0, T']. The stress, upon pairing with the deformation gradient, provides
a form that is ready to be integrated over a space-time region.

Definition 37 (Stress power). For a deformation gradient F € ADM) (@ primal 1-form in space) and stress P €
A@DM) (a dual 1 -form in space and 1-form in time), the work done by stress over an oriented space-time region R < M
is:

wP = f P,F) (8.13)
R

where the angle brackets (:,-) denote the pairing between the primal 1-form in space and the dual 1-form in space
(contained in P), producing a 3-form that integrates naturally over the space-time region R.

In traditional notation, this recovers the expression:

T
szf <P,F>=f f P:FdAdt (38.14)
R 0 JQo

where P : F denotes the double contraction of the first Piola-Kirchhoff stress tensor with the deformation gradient.

The advantage of the covector-valued 2-form perspective is that it naturally incorporates orientation. Changing
the orientation of a spatial curve (part of the boundary of Q) automatically changes the sign of the integrated quantity,
which is the physical behaviour we expect from stress [Kanso et al., 2007].
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The momentum field, like stress, naturally lives in the dual space as a covector-valued form. In local coordinates
(¢,n,7) on our space-time manifold, the momentum 2-form has the representation:

2@ = (dx e 2P, 0,0 +dy e nP(E,n,0)dé ndr, (3.15)
where n§2) and 7., are the components of momentum density as 2-forms in space (and 0-forms in time), and (x,y)
denote spatial coordinates in the current configuration. The differentials dx and dy indicate that the momentum
values lie in the spatial cotangent space, while d¢ A dn shows that the form itself is expressed in reference coordinates.

It is integrated over spatial regions to give total momentum, and it pairs with velocity (a primal 1-form in time) to
produce twice the kinetic energy density.

(2)

3.5.2. PIOLA TRANSFORMATION AS A PULLBACK
Recall from Subsection 3.3.2 that the first Piola-Kirchhoff stress P and Cauchy stress o are related through the Piola
transformation:

Jo=PFT (3.16)
This relation has a geometric interpretation in terms of stress-forms. We can define the material stress form p
analogously to t:

p=%oP 3.17)

where now p € T)*(QO ® AZ(MO) lives on the reference configuration space-time manifold Mg = Qg x [0, T]. The Piola
transformation (3.16), when written in terms of the stress-forms t and p, reads as:

p=¢ @t (3.18)

where ¢*@ is the pullback operation acting on the 2-form (area) part of the stress form, leaving the covector (force)
part unchanged.

The geometric interpretation is now transparent: p is the pullback of the area-form part of t that does
nothing to the covector-valued part. This is precisely the content of the Piola transformation, which transforms
surface areas from the current to reference configuration via ¢* while keeping force directions in the current
(spatial) configuration.

To see this explicitly, note that for a surface element dA in Q¢ with normal N, Nanson’s formula gives:
ndl'=JF T .Nda, (3.19)

which in the language of differential forms is the statement that:
b
0 (*dxb) =J (F‘l)B *dXB. (3.20)

3.5.3. TOWARDS MSEM

In the MSEM framework developed in Chapter 2, configuration variables live in primal spaces while force-like
quantities live in dual spaces. This distinction becomes particularly clear in the geometric stress formulation:

* The flowmap ¢ € A(O)(./\/l) is a primal, vector-valued 0-form.

* The velocity Ve A(l)(./\/l) is a primal, vector-valued 1-form in time.

* The deformation gradient F € ADM)isa primal, vector-valued 1-form in space.

* The momentum 7 € 7\(2)(./\/!) is a dual, covector-valued 2-form in space and a 0-form in time.

* The stress Pe A (M) as a dual, covector-valued 1-form in space and 1-form in time.

The discrete Hodge operator connects between these primal and dual representations through the weighted mass
matrices M®), In the continuous setting, the Hodge star x9: T*S® T*S — T*S ® A2 (M) transforms the Cauchy
stress tensor to create the stress form t = x90 in the spatial description. However, in our Lagrangian formulation,
we work directly with the first Piola-Kirchhoff stress P, which already naturally lives in the dual space A(Q)(MO)
as a covector-valued 2-form on the reference configuration. This choice eliminates the need to explicitly apply x9 to
create the stress form-P is inherently the appropriate object for our weak formulation. In the discrete setting, the

Hodge operator appears as precomputed tensors that implement the pairing between primal basis functions pk)
(representing flowmap derivatives) and dual basis functions PGB ~%;

H = f g A k) (8.21)
12 Mt J
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where * : A®(M) — AB=A)(M) is the three-dimensional space-time Hodge star mapping primal k2-forms to dual
(83— k)-forms. At each space-time quadrature point, the stress components P;; are contracted with precomputed Hodge
tensors. This contraction implements the discrete analogue of:

P:v(© )dth=f d(o¢), P, (3.22)
[ pevmavar- [, asoe

where d(d¢) € A(l)(./\/l) is the spatial exterior derivative (a primal 1-form) and the stress is represented through
Pe AD(M).

The discrete exterior derivative, the coboundary operator, acts on dual stress variables. The discrete Hodge
operation links these through the mass matrices and precomputed bases for the Hodges, ensuring that conservation
laws follow from the mimetic discretisation.

3.6. LAGRANGIAN VARIATIONAL FORMULATION FOR HYPERELASTICITY

The equations governing hyperelastic dynamics are derived through Hamilton’s principle. This requires finding the
configuration for which the action integral, formulated from the Lagrangian representing the system’s kinetic and
strain energy, is stationary. This variational approach (outlied in detail in [Demoures and Gay-Balmaz, 2022][De-
moures et al., 2013]) provides a natural framework for structure-preserving discretisation methods such as MSEM
[Mahadev, 2025]. The Lagrangian density of a hyperelastic body evaluated on a configuration map ¢(¢,X) is

1
L(p,p,Vop) =L, p,Vop)dVodt = 3P0(P,9) - poW(C)— poIl(p) | dVydt (3.23)

where po(X) is the reference density, W(C) is the strain energy density function (constitutive model) depending on
the right Cauchy-Green tensor C = FT.F, and [(¢) represents potential energy contributions such as body forces
or gravitational potential (these forces are not considered in this thesis, but the terms are mentioned for sake of
completeness). The dependence on the material coordinates X and time ¢ is implicit.

Hamilton’s principle states that the action integral is stationary:

T
) f f L(p,p,Vo@)dVodt =0 (3.24)
0 JQo

for variations d¢ of the body configuration map with ¢ =0 at ¢t =0,T. Applying the Euler-Lagrange equations from
variational calculus yields

d 0L oL _ oL (3.95)
dtog dp  °oF :
together with the natural boundary conditions
L
o nép®=0 ondQg (3.26)
for the allowed variations d¢ at the boundary, where F = V¢ is the deformation gradient.
For the Lagrangian density above, we compute
oL ow oL
=—2p0F% ——=-F%S7! je. —=-F.S 3.27
oFe = PONIoc, T M GF 27

where S = 20W/0C is the second Piola-Kirchhoff stress tensor derived from the strain energy function. The Euler-
Lagrange equations (3.25) then give the equations of motion for a hyperelastic body as

oIl
po@=Vo-(F-S)—po—— (3.28)
o
Recognizing that P = F-S is the first Piola-Kirchhoff stress and introducing the canonical momentum s = dL/6¢ = po e,
equation (3.28) can be recast in the conservation form:

0
T VP +1 (3.29)
ot
where fo = —p0I1/0¢ represents body forces per unit reference volume. This formulation naturally separates inertial
effects (left-hand side) from internal elastic forces and external loads (right-hand side), providing the foundation for

the space-time weak formulation employed in the MSEM discretisation described in subsequent sections.

Remark 3.6.1

The variational structure ensures that conservation laws follow from Noether’s theorem: invariance of the
Lagrangian under time translations yields energy conservation, spatial translations yield linear momentum
conservation, and rotations yield angular momentum conservation. The MSEM discretisation preserves these
symmetries at the discrete level through the mimetic properties of its operators.




DISCRETE VARIATIONAL
FORMULATION

The following chapter provides a concrete discrete framework for the implementation of the multi-symplectic, La-
grangian hyperelastic with a MSEM discretisation procedure. The strong form of the partial differential equation
system is given firstly in Section 4.1, with the chosen orientation of variables for discretisation in Section 4.2. The
discrete weak formulation is given in Section 4.3, and its assembly into a system of equations with boundary conditions
(Section 4.4). A generalisation to multiple spatially-connected elements is noted in Subsection 4.4.5. Discrete, linear
mappings (pushforward and pullbacks, as previously remarked throughout Chapter 3) are described in Section 4.5. A
thorough derivation of the continuous and discrete forms of linear momentum, angular momentum, energy, and mass
are given in Section 4.6.

4.1. STRONG FORM

In the previous chapter, we derived the strong form of the hyperelastic problem and its governing equations. Neglecting
the gravitational potential term, the resulting strong form in the spatial configuration (as denoted by gradient V) is:

po@+Vo-(P)=0 (4.1)

where ¢ is the flow map, pg is the reference density (assumed constant in this thesis), P is the first Piola-Kirchhoff
stress tensor, and F = V¢ is the deformation gradient with Jacobian J = det(F'). The above equation can be rewritten
to classify and separate the system into Balance, Constitutive, and Definition equations as follows:

0
a—]: -Vo-(P)=0 Balance Equation
O o .
T = poa—t Constitutive Equation
P=F-S() Constitutive Equation (4.2)
S= 2% Definition Equation
F=Vyp Definition Equation

Recall that the Constitutive equations are also where the approximations (*-involved quantities) occur. Here, 7 is
the linear momentum density, P is the first Piola-Kirchhoff stress tensor, and S(C) is the second Piola-Kirchhoff stress
tensor derived from the strain energy function W(C) via S = 20W/6C, where C = FT.F is the right Cauchy-Green
deformation tensor. These four sets of equations respectively represent the local form of momentum balance, the
constitutive relationship between momentum s and velocity ¢, the constitutive relationship for stress P (made
generalisable through the strain energy function) [Demoures and Gay-Balmaz, 2022], and the definition of the
deformation gradient.

4.2. DISCRETE VARIABLE REPRESENTATION

The discrete variables are associated with specific geometric entities on the primal and dual grids as summarized in
Table 4.1, where N denotes the polynomial degree in space and Ny in time. The overbar notation () indicates discrete
degrees of freedom (integral quantities), reconstructed using appropriate basis functions.

Each physical quantity is expanded using tensor-product basis functions appropriate to its geometric association.
Let £ ;(¢) denote nodal (Lagrange) basis functions, e;(¢) edge basis functions, and €;(¢ ),k (&) their dual counterparts,

31
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Table 4.1: Geometric association of physical variables on the primal and dual grids in R3. "DoFs" refer to

Degrees of Freedom
Integral Quantities / DOFs Geometry Grid Number of DoFs per Element
I Nodes Primal (N; + 1)(N +1)?
F Spatial Edges Primal 2(N;+1)N(N +1)
\% Temporal Edges Primal NN +1)?
T Spatial Faces Dual NN +1)2
P Spatio-Temporal Faces  Dual 2(N; +1)N(N +1)

as introduced in Section 2.5). The spatial reference coordinates are (¢,n) € [-1, 112 and temporal reference coordinate
is T €[-1,1] [Mahadev, 2025].

Flow Map ¢ € AO(M): Associated with primal nodes, expanded as

N N N;

PREND=Y Y Y Paijnhi@©h;mhy(@), acix,y). 4.3)
i1=0j=0k=0

Deformation Gradient F € AV(M): Associated with primal spatial edges, expanded as

Fi‘ﬁ(f,n,f) = iJZ FopijhWapi®Wapjmhp(0), a,pelxyl (4.4)

where 44 ; = e; if the component differentiates in that direction, else 2; (with summation from 1 to N for
edges, 0 to N for nodes).

Velocity V € AD(M): Associated with primal temporal edges, expanded as

2

N N, _
VEEnD=Y Y Y Vaiinhi@©hjmer@), acix,yh .5)
i=0;7=0k=1

Momentum 7 € A (M): Associated with dual spatial surfaces, expanded as

N N

Nt -
e =Y Y Y faipne@©e;mhp), acixy. (4.6)
i=17=1k=0

First Piola-Kirchhoff Stress P € A®(M): Associated with dual spatio-temporal surfaces, expanded as

Ply&n,1)= JZ PopijeVapi©Wap,Mer@), a,felx,y), @

where U/, B,i = Ei if the stress component is perpendicular to that direction, else e; (with appropriate summation
ranges).
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Remark 4.2.1

The summation indices in the discrete expansions reflect the geometric association: edge basis functions e;
have indices from 1 to N (corresponding to N edges between N + 1 nodes), while nodal basis functions A; have
indices from 0 to N (corresponding to N + 1 nodes). The dual basis functions &;,%; follow the same conventions
but are orthogonal to their primal counterparts with respect to the L2 inner product weighted by the discrete
Hodge operator.

For the R® grid, basis functions are constructed at Gauss-Lobatto-Legendre (GLL) collocation points ¢ =

§0s---»N+1,M=10,---,NN+1> T = T0,---,TN,+1 using tensor products of one-dimensional basis functions:

Primal Nodal Basis. ¥, =A(¢)® () ® h(t) belongs to A%O)(B x T)c H(B x T, with index expansion
Wo = hi(Oh j@hy@) for i,j=0,...,N,k=0,...,Ny.

Primal Edge Basis. The edge basis belongs to AEZD(B x T)< H(curl; B x T):

e(&)® h(n) ® h() 0 0
Y= 0 h(©)®e(n)®h(r) 0 , (4.8)
0 0 h(&)®h(n) ®e(r)

yielding ‘I"; = ei(é’)hj(n)hk(r) fori=1,...,N,j=0,...,N, k=0,...,N; (and analogously for 1 and 7 directions
with appropriate index ranges).

Dual Surface Basis. The dual surface basis belongs to K;LQ)(B x T) < H(grad; B x T):

R ®en) ®e(r) 0 0
¥, = 0 &) e hn) ee(r) 0 (4.9)
0 0 é)®en) ® h(r)

with components ‘f’g =h i(§)ej(mey(r) (and similarly for other directions, following the pattern: nodal basis
perpendicular to the surface, edge basis parallel to it).

4.3. WEAK FORMULATION
On a continuous domain, the momentum balance equation for hyperelastic materials, in terms of differential bundle
forms, is
d;x'? —ap® =o, (4.10)

where d; and d denote temporal and spatial components of the exterior derivative acting as divergence operators.
Here, a2 e A@(M) is the momentum 2-form and P® € A@ (M) is the first Piola-Kirchhoff stress 2-form.

Testing the strong form with the test form n(o) e AOA) (Hodge dual of an arbitrary test form *n(3) e AB(M))
and integrating over M = Qg x [0,T1] yields:

fM @ A — fM AP Ap©® =0, vy©@ e AO) 4.11)

4.3.1. DISCRETE WEAK FORMULATION
In the discrete setting, choosing test function 17(0) eH 1(QO x T') and applying integration by parts with the divergence

theorem gives:
- f -dn@ 4+ f (-n)n@ + f Pvon? =o, (4.12)
MxT O[MxT] MxT
where n; is the outward temporal normal. Integration by parts transfers derivatives to test functions, yielding the
weak form in inner product notation:

- <7r,dm(0)> =0. (4.13)

+<7t-nt,77(0)> MxT

+ <P, Von(0)>

MxT M xT]

4.3.2. DISCRETE MOMENTUM-VELOCITY CONSTITUTIVE RELATION

The momentum-velocity constitutive relation is tested with v € (H 1xL2; Qg x T') (a mixed function space, with H Lin
space and L2 in time):

. op _
SdM 9% GaM=0 4.14
anvM fMpoatvM : (4.14)
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which discretizes component-wise to:

o =HpE"%,, aclx,y (4.15)

where Hp, is the (constant) density-weighted Hodge matrix mapping primal temporal edge DOF's (velocity) to dual
spatial surface DOF's (momentum).

4.3.3. DISCRETE MATERIAL LAW
Substituting discrete expansions and using orthogonality of primal/dual basis functions, the discrete momentum
balance for arbitrary test functions ¢, (« € {x,y}) involves the full tensor structure of the stress operator. Unlike
scalar-valued forms, the hyperelastic formulation requires contracting all components of the stress tensor P, resulting
in both diagonal and off-diagonal coupling terms.

For the x-momentum equation:

1,07 - _ (1,07 xy (1,00 1,07 yx(1,0)] -
E, nx+N,,nx+([Ex HITEy " —Ey " HTE, " | @,

T T
+ ([Eﬁ}"” HIE g0 H{;‘[ES’O)) @, =0. (4.16)

For the y-momentum equation:

(1,07 _ _ 1,07 xy (1,00 (L0T yx (1,0)) -
E, ny+|\|nny+(r£x HISE," —Ey " HYSE:"" | @y

1,07 xy (1,00 (1,07 yx(1,00) - _
+([Ex Moy By —Ey " HyoE: " | @, =0. 4.17)

where Ny is the connectivity matrix mapping temporal boundary DOF's (trace matrix), and I]-I]ny are the components of
the tensor-valued stress Hodge operator. Each momentum equation contains four terms: two diagonal terms (Hy1 for
x-equation, Hoo for y-equation) coupling each flow component to itself, and two off-diagonal terms (H1g) providing
cross-coupling between x and y components through the stress tensor structure. Defining stress operators for compact
notation:

xx _ (L,0)T xy (1,0) | (1,007 yx(1,0) xy _ (L0077 oy (1,00 (1,007 yx (1,0)
D¥ = —F,"" HE; " +Ey HGE,, DY =E;" H]JE," —E;" H7E;, (4.18)
yr __LOT xy (1,00 (1,07 yx(1,0) yy _ 0T xy (1,00 (1,07 yx(1,0)
DY =—F, " HyEy " +Ey HE:, DY =E; HE," —E HygE: ", (4.19)

the final system can be written more compactly as:

1,07 _ - Xy ~ XX - 1,07 - - vy = VX -
B, #x+Npiy-DY ¢, -D"¢, =0, B, &y +Ngay —D, -0, =0. (4.20)

4.3.4. TENSOR-VALUED STRESS HODGE OPERATOR
For hyperelastic materials, the first Piola-Kirchhoff stress P is computed directly from the deformation gradient via:
ow
P=-F-SC), C=FT.F, S=25. (4.21)
where S is the second Piola-Kirchhoff stress derived from the strain energy function W(C). Again, when physical
geometry differs from computational domain, a pullback transformation is applied:

P =|detFo|Pq, FyT, (4.22)

and F T transforms the stress components from reference configuration back to the physical configuration, and
|detF | accounts for volume scaling. The stress-weighted Hodge operator is a tensor-valued operator encompassing
the stress state at integration points. To account for its bundle-valued nature, each component of P is contracted with
basis function products:

b = fM P;; [\yf]T\lﬂl M, (4.23)
with a similar construction for [I-[Ily]x (swapping ¢ and n basis functions). Here, P;; denotes the (i,j) component of
the stress tensor, and the integration is performed over all space-time quadrature points. The stress tensor P
depends non-linearly on the flow map degrees of freedom ¢ through the deformation gradient, necessitating iterative
solution methods. This formulation thus directly uses the first Piola-Kirchhoff stress P, avoiding intermediate Cauchy
stress computation. The discrete operators D**, DY, DY* DYY encode non-linear material response, capturing the full
tensorial nature of the hyperelastic constitutive relation.
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Remark 4.3.1: Computational Cost and Non-Linearity

The evaluation of the tensor-valued stress Hodge operators [I-I]’L.Q' and I]-I]?’ * constitutes the primary computational

expense in the hyperelastic formulation and is the source of non-linearity in the discrete system. At each sub-
iteration, these operators must be recomputed by evaluating P at all space-time quadrature points, requiring
the calculation of deformation gradients F from current flow map degrees of freedom, computation of the right
Cauchy-Green tensor C = FTF, evaluation of the strain energy derivative 0W/AC for the specific material
model, and assembly of the first Piola-Kirchhoff stress via (4.21). For high-order spectral elements with (p +1)2
spatial quadrature points per element and n; temporal quadrature points, this requires O(n¢(p +1)%n;) stress
evaluations per iteration, where n, is the number of spatial elements. The non-linearity arises because P
depends on ¢ through the composition P(F({p)), making the discrete operators Dep configuration-dependent.
This configuration-dependence necessitates iterative solution strategies and reassembly of the Jacobian matrix
at each iteration, distinguishing from linear elasticity where the stress operators can be precomputed.

4.4, BOUNDARY CONDITIONS AND SYSTEM ASSEMBLY

4.4.1. INITIAL CONDITIONS AND TEMPORAL COUPLING
The discrete system derived in Section 4.3 must be augmented to handle initial conditions and temporal continuity
between successive "time-slabs", i.e. spatial domains extruded in the time direction. As a result, the system being
solved can be noted as a "time slab", whereby coupling between the slabs allow for variational integration in local
space-time. At the initial time ¢ = ¢(, both the flow map ¢(X,¢p) = X and the initial momentum 7z (X,tg) = 7o(X)
are prescribed. The initial momentum enters the system by moving the corresponding degrees of freedom to the
right-hand side. Let frff) denote the initial momentum in direction « € {x, y} at time ¢y. The columns of the system
matrix corresponding to these known values are extracted and multiplied by z'ts,?), then moved to the right-hand side.
The modified right-hand side becomes:

f=fo- Y Alzl" (4.24)

ae{x,y}

where Agﬁ denotes the column block of the original system matrix associated with initial momentum in direction «,
and f represents other forcing terms (such as traction). The initial flow map ¢@(X,¢¢g) = X is prescribed by directly
setting the corresponding entries in the right-hand side. For each spatial node with reference coordinates (X;,Y;), we
impose: ) )

£,=x; 1=y (4.25)

where the superscript (i,0) indicates node i at time level #g.

TIME-SLAB CONTINUITY

The space-time discretisation treats each temporal interval [£s,f5.1] as an independent spectral element. To maintain
continuity of the solution across time slabs, Lagrange multipliers pu enforce matching conditions between the final
state of slab s and the initial state of slab s+ 1. Let (p(s’N t) denote the flow map at the final temporal node of slab s,
and (p(“l’o) the flow map at the initial node of slab s+ 1. The continuity constraint in weak form is:

fQ pe [N - gl 1L0] gvp =0 (4.26)
0

In the discrete setting, this introduces purely topological connectivity matrices l\ls(pm“”t and N%nd that couple the
flow map degrees of freedom at temporal boundaries. The augmented system includes rows enforcing:
NEtart D - Nendp® g e fa, ) (4.27)
Similarly, momentum continuity is enforced via:
nstart 7 G D —nend g g e fa, ) (4.28)
4.4.2. SPATIAL BOUNDARY CONDITIONS

Spatial boundary conditions are imposed on the domain boundary 6Q)(, which is partitioned into strongly prescribed
(essential) and natural boundaries: 0Qg=I'p UI'y with I'p NI'y = @.

NATURAL BOUNDARY CONDITIONS
On the natural boundary I'py, prescribed tractions tpy = P -n enter the weak form as:

f ty - pdOM) (4.29)
T x[0,T1
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This contribution is added directly to the right-hand side. The discrete traction force at boundary nodes is
computed via quadrature:

FN:f tydOM)~ Y ty(Xg,tg)wg (4.30)
Tnx[0,T] ol

where Qp denotes the set of quadrature points on I'y, and w, are the corresponding weights including both spatial
and temporal measures. The traction force Fj; is distributed to the flow map equation rows corresponding to boundary
nodes:

fq, <—f¢+FN (4.31)

STRONGLY-PRESCRIBED BOUNDARY CONDITIONS VIA LAGRANGE MULTIPLIERS

On the strongly-prescribed boundary T'p, the flow map is prescribed as ¢lr, = ¢p. Rather than eliminating
constrained degrees of freedom, we enforce this condition weakly using Lagrange multipliers A. This approach
preserves the system structure and allows computation of reaction forces. The constrained weak form augments
equation (4.13) with:

f A-(p—@p)d(OM) =0. (4.32)
I'px[0,T1]

Let I'p consist of np spatial nodes. For each direction « € {x, y} and each time level £ =1,...,N; (excluding the initial
time k£ = 0 which is already prescribed), we enforce:

§P Z P yiery (4.33)

a a,D’

In implementation, the prescribed values on I'py are often held fixed relative to their initial configuration. For

example, to fix the west boundary (¢ = —1), we require quf’k) = (b(ai’o) for all £ > 0 and all i on the west edge.The discrete

constraint matrix B € R4« encodes these conditions, where nj = 2np(N; — 1) is the number of Lagrange multipliers
(two directions, np nodes, N; — 1 time levels after initial time), and n, is the dimension of the reduced system after
moving initial conditions to the right-hand side. The constraint takes the form:

Bu=g, (4.34)

where u contains the primary unknowns and g specifies the constraint values. For the common case of homogeneous
strongly-prescribed conditions (no displacement from initial position), we have:

IR — @l —0, vieTp,k=1,.,N, (4.35)
which gives g =0.

4.4.3. BOUNDARY AUGMENTED SADDLE-POINT SYSTEM

Incorporating spatial strongly-prescribed constraints via Lagrange multipliers yields the saddle-point system:

A BT
B 0

u_
A=

f] (4.36)
g

where A € R« *"u ig the base system matrix (after removing initial condition columns), u € R”* contains the primary
unknowns [Ty, 7Ty, (i)x,ti)y]T, and A € R (n, as the number of primal degrees of freedom to be constrained) contains
the Lagrange multipliers enforcing strong boundary conditions. The base system matrix A has the block structure:

-1 (1,0)
] o -E 0
1 (1,0)
al| ? oo ° (4.37)
I P2 ¥ pw '
t

o EM" pr pw

corresponding to the discrete weak forms from equations (4.15) and (4.16)-(4.17). The right-hand side f includes
contributions from initial conditions (4.24), initial flow map (4.25), and natural boundary tractions (4.31).
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4.4.4. COMPLETE SYSTEM MATRIX STRUCTURE

For a single time slab with temporal coupling and spatial strongly-prescribed constraints, the system before removing
initial condition columns takes the form:

7
Hyl o B 0 0o 0o o offa| [o
o Hl o -EY 0o 0o o oflg] |0
L0 p* Dp¥ o N o Nl |0 458
o EM" pr py N o N o2 |o '
0 ) N ) 0 0 o0 o]]|a @
0 0 0 N 0 o0 o offa% [&9]
:—:5

where 74 € R"mom are the momentum edge degrees of freedom, @, € R™low are the flow map nodal degrees of freedom,
7'13,7'1}; € R™space represent initial and final momentum states, and (i)g € R™space contains the flow map values from

the previous time slab. The operator N, € R™space*™flow extracts the initial temporal slice of the flow map, while

N, N,}: € R™flow*Tspace embed initial and final momentum values into the flowmap equation rows.

The columns corresponding to 7’1'2 are eliminated by moving their contributions to the right-hand side, yielding
the condensed system:

w0 EM 0 0 o[ 0

0 Myl o - o o|a 0

O R I . .
0 [E(tl’O)T pr 0w o No| @] [-NI#D+Firac, :
0 0 N 0 o of|al @°

0 0 0 Ny 0 oA @

where Fipac o € R™low contains the integrated traction forces applied to the boundary.

For example, to incorporate spatial strongly-prescribed boundary conditions on the western boundary, this system is
augmented with Lagrange multipliers via a saddle-point formulation. The constraint matrices By, B, € R constraints *7low
enforce that the flow map at constrained nodes remains fixed across temporal slices within the slab. For n(;,. temporal
nodes and nyegt constrained spatial nodes, there are nqonstraints = (P time — 1) X Pwest constraints per direction. The
constraints enforce:

Ba@o=0 © @F, 90, =0 VieTyest, k=1,...,n4ime—1 (4.40)

where Zyest denotes the set of west boundary node indices. The augmented saddle-point system becomes:

o w0 £Y 0 0o o of|s °

[E(tl’O)T 0 Drx D*Y N,’; o Bl 0|, ~Npag+ Ftrac.x
o EM" px  py o N o BY | |@y]  [-NO#)+Firac, (4.41)
0 0 Ny 0 o o o of|al| % .
0 0 0 Ny O 0 0 O 7_1'§ ‘i’?/
0 0 B, 0 0 0 0 o], 0
0 0 0 By 0 0 0 0]l °

where Ay, A, € R"constraints are the Lagrange multipliers enforcing spatial fixity. The zero vectors on the right-hand
side of the constraint equations enforce homogeneous strongly-prescribed conditions. The Lagrange multipliers A4
represent the reaction forces at spatially constrained boundaries required to maintain fixity. Upon solving (4.41),
these multipliers provide diagnostic information about the force distribution at boundaries. This complete system is
solved using direct factorization methods at each non-linear iteration step, with the stress-divergence operators Deh
updated based on the current deformation state as described in Section 4.3. Table 4.2 also gives an overview of some
notable properties that are important for numerical implementation.
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Table 4.2: Properties of operators in the discrete system (4.41). Linear indicates that the operator does
not need to be updated each inner iteration.
*: So as long the material constitutive equation can be assumed to not depend on local density, e.g. as
relevant in porous media modelling.

Operator Structure Nature
|]-[|;01 Dense Linear*
IEgl’O) Sparse Linear

D** DY, DY*,DYY Dense Non-linear
N,); N\ Sparse Linear
N, Sparse Linear
B, B, Sparse Linear

4.4.5. SPATIAL HYBRIDIZATION FOR MULTI-ELEMENT DOMAINS

The formulation presented thus far describes the discrete system for a single spectral element in space coupled
with a temporal discretisation. For problems defined on domains that cannot be efficiently represented by a single
element, the spatial domain Qg must be decomposed into multiple non-overlapping spectral elements Qg = UZS;‘“ Qg.
The resulting multi-element discretisation requires enforcing continuity of the flow map and momentum across
inter-element boundaries,

INTERFACE CONTINUITY VIA LAGRANGE MULTIPLIERS
At inter-element boundaries, the flow map degrees of freedom from adjacent elements must be constrained for

!
continuity of the solution. Consider two adjacent elements QE)E) and ng’) sharing a common interface Fgfl’te ). Let

! !
Ii(s’e ) denote the set of node indices on this interface. For each shared node i € Ii(relf ), the flow map degrees of freedom

from both elements must coincide. This continuity constraint is enforced weakly via interface Lagrange multipliers
(e,e’)

!
. . . . . e,e :
T In discrete form, the interface continuity matrices CEX’ ) & RMint XM flow enforce:
)

e - el =0, acixy (4.42)

where C(Of) extracts the interface degrees of freedom from element e, zpff) € R™ow are the flow map nodal degrees of

!
freedom for element e, and nj,; = IIi(Iel’te )I X Nime accounts for all temporal slices within the space-time slab. The
interface Lagrange multipliers p;p; , represent the traction forces transmitted across element boundaries, ensuring

force equilibrium at interfaces.

HYBRID GLOBAL SYSTEM
For a domain decomposed into n¢)en, spatial elements, the global system takes a block-diagonal structure augmented
with interface constraints:

AL o 0 c T L «D
0 A® 0 c@" c@” u® £2
0 : : (4.43)
0 0 Alreem) Cgcnelem)T Cg,” dem)” | | w(Pelem) f(nelem)
Cgcl) CSCZ) Cgcnelem) 0 0 Hint,p, 0
e @ c{petem) 0 0 Hint,p, 0

where A(® is the element-level system matrix from (4.41) for element e, u® contains all unknowns for that element
(momentum J'tfxe), flow map <i)(;), and local boundary Lagrange multipliers for spatial strong boundary conditions), d,f)

extracts interface flow map degrees of freedom from element e, and Mintg, are the interface Lagrange multipliers
enforcing continuity of the flow map. The right-hand side vectors £ include element-specific forcing terms and initial
conditions as described in (4.24). The zero blocks in the constraint rows enforce homogeneous interface continuity
conditions similar to (4.27).
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Remark 4.4.1: Static Condensation

The block structure of (4.43) can be exploited via a Schur complement reduction, based on non-overlapping
domain decomposition. The element-level matrices A can be factored independently, and the global interface
problem involving only p;,; can be formed by eliminating interior degrees of freedom. This yields a reduced
system:

Siint =g (=0, 1n this case) (4.44)
where S is the Schur complement matrix and p;,; = [piTI;t’(px, ”i{ltmy’ ”iyrlt,nx’ FiTI;t’ny]T collects all interface
multipliers. Once the interface constraints are computed, the local element solutions are recovered via
independent linear solves. This approach is particularly advantageous for parallel implementations, as
the Schur complement method decouples the local element problems, with communication required only at
interface degrees of freedom.

4.5. DISCRETE MAPPINGS & TRANSFORMATIONS

Discrete operations for the transformation of forms between configuration spaces also need to be defined. Mappings
are also used in order to calculate physical "stretches and stresses" which are useful in defining the deformation
gradient in terms of an initial configuration that may be not be in static equilibrium even amidst zero external forcing
or imposed boundaries, or purely for post-processing in figuring whether the domain is undergoing failure for instance.

4.5.1. PULLBACK OF CONFIGURATION VARIABLES

The mimetic spectral element method operates on some computational domain Q =[-1, 112 with coordinates (¢ ,m. A
mapping ¢ : 2 — Qg transforms to the physical reference configuration:

0xX X
| XG,m _ _|9&  on B
@&, n)= YEn Fo=Vepy= E g Jo = det(Fp) (4.45)
3 o

The Jacobian determinant /g scales volume elements: dVj = Jyd&dn. The inverse mapping transforms gradients:

Y  oX
_ a_1|lam on
_p-T 1_1] on n
Vo=Fo'Ve Fol=7-| Gy ox (4.46)
€ o

The material deformation gradient F = V(¢ is computed from computational coordinates via the chain rule, F =
(Vep)-Fy 1. For the identity initial configuration (X, ¢¢) =X, this yields F(¢¢) =1

Example 4.5.1

Cook’s membrane is a tapered trapezoid with corners (0,0), (48,44), (0,44), (48,60). The bilinear mapping
from [-1, 112 is:

X(¢m=241+O1+mn), Y(E,n)=37+15n+4¢+44n. (4.47)
The deformation gradient, Jacobian, and inverse are:
15+4¢ 24(1+¢)
_ 24(1+n) 24(1+¢&) Jo = 264(1+7) F51 _ | 2641 +7n) 264(1+mn) (4.48)
4(1+n) 15+4¢ 1 1
66 11

In the discrete implementation, the flow map gradient with respect to (£,n) is expanded using edge and nodal
basis functions:

N, Z?’:O((px,ij —@x,i-1,j)€i (O (1) Zf‘io Zév:l(‘Px,ij = ¢x,i,j-1hi(e j(1)

i

N N @y = 9yi-1ei@hjm) TN TN (905 0y j-1Rie jm)

h

Vel = (4.49)

Then F" = (Vgtph) Fy 1 is evaluated at GLL quadrature points for integration.
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4.5.2. PULLBACK OF DISCRETE STRESS
The first Piola-Kirchhoff stress P € A@(M) is pulled back to the computational domain:

PcomszoFgl-P, so that fQ P:VypdVy = fQ Peomp : Vepdédn (4.50)
0

Componentwise, the pullback is:

(Pcomp)11 = Jo [(F51)11P11 + (F51)12P21] s (Peompl12 =Jo [(F61)11P12 + (F61)12P22] ) (4.51)

(Peomp)21 = Jo [(F51)21P11 +(F{,1)22P21], (Pcomp)22 = Jo [(F61)21P12 +(F61)22P22]- (4.52)

The metric tensor gg = Fg Fo with det(gg) = Jg acts as an additional weighting on the discrete Hodge matrices. The
stress-weighted Hodge operators from (4.23) now integrate the pullback stress (Pcomp);; over the computational

domain. The transformation to physical gradients is included in this pullback, so the discrete operators DY from (4.18)-
(4.19) correctly represent physical divergences in Q.

4.5.3. PUSHFORWARD OF DEFORMATION GRADIENT
At each non-linear iteration, the material deformation gradient is updated using the current flow map solution. The

discrete flow map degrees of freedom Py, P, are differentiated using the incidence matrices [Egcl’O),[Eg,l’O) to obtain
gradients in computational coordinates:
(1,0) - (1,0) -
BT _ E g
Ve = | (10 x] . Vedy=| (10,7 |- (4.53)
By ¢y By @y

These are then reconstructed at quadrature points using the edge basis functions ‘I’{,‘I’Tll. A chain rule transforms
these to physical coordinates:

J¢ - o _ A _ o _
b L ) L e e b R A L (454
0 0 0 0

From F, the right Cauchy-Green tensor C = FTF and Green-Lagrange strain E = %(C —1I) are computed. The second
Piola-Kirchhoff stress S is then evaluated from the constitutive relation, and the first Piola-Kirchhoff stress is P = F-S.
The pullbacks (4.51) and (4.52) yield Pcomp, which enters the stress-weighted Hodge operators for the next iteration.

4.5.4. PUSHFORWARD OF CAUCHY STRESS IN PHYSICAL COORDINATES
For a more physical stress output, the Cauchy stress ¢ can be computed in the current (physical) configuration. The
Cauchy stress relates to the first Piola-Kirchhoff stress via:

1y pr_1 T
oc=—P-F' =—F-SF 4.56
7 7 ( )
where J = det(F) is the Jacobian determinant of the material deformation gradient. This requires transforming the
deformation gradient back to physical reference coordinates using (4.54)-(4.55) at visualisation points. Once F is
known in physical coordinates, the second Piola-Kirchhoff stress is computed from the strain energy, then:

1

o11= 7 [F11(811F11 +812F21) + F12(S12F11 + S22F21)] (4.57)
1

o12=7 [F11(S11F12 +S12F22) + F12(S12F12 + S22F22)] (4.58)
1

O22=7 [F21(S11F21 +S12F22) + Foa(S12F21 +S22F22)] (4.59)

Remark 4.5.1

Note that 091 = 019 due to symmetry of S. This transformation from reference to current configuration is
necessary only for post-processing; the variational formulation and discrete operators work entirely in the
reference configuration using the pullback stress Pcomp.
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4.6. DISCRETE SYMMETRIES AND CONSERVATION PROPERTIES

The mimetic spectral element method preserves the variational structure of the continuous problem at the discrete
level. This preservation is that Noether’s theorem applies to the discrete system: symmetries of the discrete action
correspond to discrete conservation laws. For non-dissipative hyperelastic materials, the Lagrangian density depends
on the deformation map ¢(X,?), its time derivative ¢, and its spatial gradient Vo, often through the deformation
gradient F = V. The stored energy function W(F') and kinetic energy combine to define the Lagrangian:

1
Lip,,Vop) = §po|¢|2 -W(Vop) (4.60)

The action functional over the space-time domain M = Qg x [0, T1] is:

T
Algl = fo fQ L@, Yop)dVodt 4.61)
0

This section covers the continuous and discrete treatment of conservation laws for the differentiable Noether
symmetries present in the variational structure of a locally space-time spectral mimetic element. Moreover, if it can
be shown that the local problem is conservative, then the global problem follows suit.

4.6.1. CONSERVATION OF LINEAR MOMENTUM
CONTINUOUS FORM
To check that total linear momentum is conserved, a test function representing a rigid-body translation of the flow

map is chosen. Let (73 eH 1(QO x [0,T1]) be a constant vector field:
oX, t)=¢c (4.62)

where ¢ € R? is a constant test vector (e.g.,c= (1,0)T or (0, 1T in 2D). Substituting (7) = ¢ into the weak form (4.13)
with traction contributions leads to:

3
—f x- 2 avydt+ (7t~nt)~cdS+f P :VoedVydt
Qox[0,T] Ot Qo x0[0,T] Qox[0,T]
—f ty-edAdt=0 (4.63)
Ty x[0,T]

where ty represents prescribed tractions on the natural boundary I';. Because ¢ is constant in space-time, we have
Voe =0 and de¢/dt = 0, so the first and third terms (time derivative and stress) vanish, leaving:

f (r-ng)-edS = ty-cdAdt (4.64)
Qo x0[0,T" 'y x[0,T
Evaluating the temporal boundary term at ¢ =0 and ¢ = T' with outward normaln; =-1lat¢t=0andn;=+1lat¢t=T:
T
c~f n(T)dVo—c-f n(O)dV():c-f f tydAdt (4.65)
Qo Qo 0 I'nv

Since ¢ is arbitrary, we can define the total impulse from traction forces:

T
Jirac :f f tydAdt (4.66)
0 JI'y
The linear momentum balance then becomes:
f x(T)dVy —f 7(0)dVy = Jirac (4.67)
Qo Qo

The above relation shows that the change in total linear momentum equals the impulse from traction forces. If no
tractions act on the boundary (ty = 0), then J 5. =0 and:

f 2(0)dVp = f ATV (4.68)
Qo Qo

demonstrating that the total linear momentum of the system is constant in time.
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DISCRETE FORM
To verify discrete conservation of linear momentum, we test the system with a constant vector field representing a
rigid-body translation. The discrete test function is chosen from the primal nodal space of 0-forms:

PLeVOM), $h=Li1, aclxy (4.69)

where L; € R is the temporal extent of the space-time slab, 1 € R™flow is a vector of ones, and V}(lo)(./\/l) is the discrete

space of primal nodal 0-forms. This corresponds to the variational test used in the continuous Noether argument, but

now projected into the compatible discrete basis. We do not pre-cancel terms to verify implementation correctness.
For the x-direction, testing the discrete momentum balance (4.16) with the constant test function gives:

T
Ang=LT [[E(tl’m ap -kl + 70

T 1,007 xy(1,0) - 1,007 | yx(1,0) - 1,007 xy(1,0) - 1,007 yx(1,0) -
L1 |-Ey 7 HE, V@, +Ey HISE. @, +Ey HITE, @, —Ey H{TE, @

y

f

where 7, € R"space denotes the final momentum state and ) € R™space denotes the initial momentum state. The

temporal incidence matrix [E?’O) € R™mom X flow defines the discrete time derivative, and the Hodge matrices I]-Hij ,I]-I]g’;.c €

R™edges *"edges encode the stress tensor components. Since the spatial incidence matrices satisfy [Egcl’o)l =0 and
[Eg,l’o)l = 0 (the discrete gradient of a constant function is zero), the entire stress term vanishes. This mimics the
continuous case where Vye = 0. With boundary tractions tp; on 'y, the impulse in the x-direction is:

Nmom
Jtracx = ITFtrac,x = Z Firacyx,i (4.70)
=

1

where Firqc x € R?mom contains the discrete traction forces from (4.30) evaluated at momentum degrees of freedom
(dual 2-form locations). The momentum balance is:

Amty — Jirace =0 4.71)

Similarly for the y-direction:

T
Ay =Lea” [EMY 7y -7l + 7
T 1,007 xy(1,0) - 1,007 yx(1,0) - 1,07 xy(1,0) - 1,007 yx(1,0) -
L1 | By HG By @+ HSE: " @, +Ey 7 HIJE, @~y HE " @y

with balance:
Nmom

Aty = Jirac,y =0 where Jipacy = lTFtrac,y = Z Ftrac,y,i (4.72)
=1

Each term corresponds to a discrete pairing between the constant test function and contributions from momentum

T
fluxes and internal stress. The temporal incidence matrix [E(tl’o) maps momentum from temporal edges to nodes. All
operations are local, and the resulting quantity should vanish up to floating-point precision if conservation is achieved
in the absence of external tractions: Amy =0, Amy = 0. If no external tractions act on the domain, there is no source of

net momentum gain or loss, confirming discrete conservation of linear momentum componentwise.

4.6.2. CONSERVATION OF ANGULAR MOMENTUM

CONTINUOUS FORM

To check if angular momentum is conserved in the hyperelastic formulation, we test the weak form (4.13) against a
skew-symmetric rotation-type test function. Since the choice of test function is arbitrary (the momentum equation
must hold for all variations), we choose a test function (/[) eH 1(Qo x [0,T]) corresponding to a rigid-body rotation of the
flow map:

b=|"" (4.73)
Px
Substituting into the weak form gives:
P - -
—f ﬂ-—dV()dt+f (ﬂ-nt)-([)dS+f P :VopdVydt=0 (4.74)
Qx[0,T1 Ot Q0 x0[0,T1 Q0 x[0,T]
The first integral involves:
0 |-y _ . .
— T-— dVodt=- (—mtx@y +mypy)dVodt (4.75)
Qox[0,T1 Ot | ¢y Qox[0,T1
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The third term involves the contraction of the first Piola-Kirchhoff stress P with the gradient of the rotated test
function:

. |-0¢@,/0X -0¢,/0Y
Vop=| % by (4.76)
0 /0X 0¢p/0Y
The stress contribution is:
~ 0y Oy 0y 0y
P :VypdV; dt:f (—P —— —Pi9g—= +P91— +P —) dVpdt 4.77)
fQox[O,T] 0pdVy 010,71 1155 1255 2155 P25y 0

For hyperelastic materials with the specific structure of the mimetic discretisation, this stress integral evaluates such
that its net contribution to the angular momentum balance becomes zero when properly integrated. The boundary
term becomes:

[ mr
Qo x0l0,T']

Combining all terms and simplifying:

Py

X

dS:fQO(—nx(py+ny<px)’t:TdV0—fQO(—nx<py+7ry<px) t:OdVO (4.78)

Vo (4.79)
t=T

(r - ) dVy = f ( - )
fQo xPy ~TyPx =0 0 0 xPy —TyPx
which confirms that the total angular momentum is conserved in time, provided no other external torques act over the
domain. Moreover, it can also be shown that this leads to a natural symmetry in the Cauchy and second Piola-Kirchhoff
stress tensors.

DISCRETE FORM
To verify angular momentum conservation in the discrete hyperelastic formulation, we use a skew-symmetric test
function constructed from the current flow map. The discrete test function is chosen from the primal nodal space of
0-forms:

FreV M), Gr=-k, BV, By =0, (4.80)
The rotation test vectors are constructed from the flow map degrees of freedom Py € R™flow . The flow map is
organized with ngpace spatial nodes and njye temporal nodes, where ngqoy = nspace X 2tjme- For temporal edges (when
Ntime > 1), the test function values at edges are sampled from adjacent nodal values:

~ 1/~ ~
baik = 3 (qb};,i + ([)]Z;l) for edge £ =0,...,n{jme — 2 at spatial location i = 1,...,ngpace (4.81)

where the superscript denotes the temporal node index. The angular momentum change is computed by testing the
momentum balance with this rotation field. The inertial contributions are:

T Nflow T Nflow
1,007 - - 1,007 - _ 1,007 - - 1,007 _ _
L= (60" o= 3 [0 5] o 1=[81" 7)) 8, X (60 8,) g s
=1 12 i=1 i

The slab boundary contributions from initial and final states are:
T ¢ T AT ¢ (T~
Ee=(a}) - [ng) # E,= [n§) # - (712) S (4.83)

where the superscript f denotes the final temporal state and 0 denotes the initial temporal state. The internal stress
contributions are:

_ T | @07 xy(1,0) - 1,07 yx(1,0) 1,07 2y (1,0) 1,07 yx(1,0)
Sy =(d,) [—[Ex HIZEy @y +Ey " HIgE: " @, +Ey 7 HTTE, @, —Ey" HITE @, (4.84)

AT 07 xy (1,0) - 1,07 yx(1,0) 1,07 xy(1,0) - 1,07 yx(1,0)
Sy:((py) [—[Ex HyyEy " @, + By HYSESVp, + BV HIES Vg, £S5 HYES @, (4.85)

The angular momentum change is:
AL=Ix+Iy-Eyx—-Ey-Sx—-Sy (4.86)

With applied tractions evaluated at edge points Firac x, Firac,y € R"¢des, where Nedges denotes the number of temporal
edges times the number of spatial nodes, the applied torque is:

~ \T ~\T
Ttrac = (‘px)edges Firacx + (‘Py)

cages Firacy (4.87)

where the subscript "edges" denotes the test function values obtained from (4.81). For strongly-prescribed boundary
conditions enforced via Lagrange multipliers Ay, Ay € R™* on boundary nodes Zp c{1,...,ngspace}, the reaction torque
is:

Treaction = Z [’lx,i (—(P§ DtAyi <p£ i] (4.88)
i€lp ’ ’
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The angular momentum balance is:
AL + Ttrac + Treaction = 0 (4.89)

This should be approximately zero (to floating-point precision) if angular momentum conservation is achieved and
no other non-traction-induced torque contributions act on the system.

4.6.3. CONSERVATION OF ENERGY

CONTINUOUS FORM
Conservation of energy can be shown by taking the material velocity evaluated at the primal nodes as the choice of
test function. Let (7) eH 1(QO x [0, T1]) be the material velocity:

op

b=-L =g 4.90
] prial 4 (4.90)
which is the time derivative of the flow map. Substituting this into the weak form (4.13) gives:
0@ . .
- x-—dVydit+ (r-ng) - @dS + P :VopdVydt=0 (4.91)
Qox[0,T]  Of Q0%0[0,T1 Qox[0,T1
Using the momentum-velocity relationship 7t = pg@, the first integral becomes:
od
- f p0#- 2 avydt (4.92)
Q0 x[0,T1 ot
Rewriting using the product rule for the scalar product:
) op ) 10
S w-ar=2(? . 9 o=-2(pq 4.93
5t P (at "’) = 5?5509 “-93)
the kinetic contribution becomes:
1 0 0 (1
- —po— (¢ @) dV, dt:—f —(- ||'||2)dV dt (4.94)
fQOX[O’lepoat (@) dVo ogeio.7 9% (27019 0

which is precisely the negative of the integral of the rate of change of kinetic energy density in the material
configuration (assuming pg is constant and Qg is the reference domain). For the stress contribution, we have:

)
P :VypdV, dt:f P:—(Vop)dVydt (4.95)
fQoX[O,T] 0P Qox[0,T]  O¢ opIaTo

For hyperelastic materials, the first Piola-Kirchhoff stress is derived from a stored energy potential W(F') where
F =Vy:
ow P OF oW(F)

P=— — = 4.96
oF ot ot (4.96)
where the chain rule gives 0W/dt = (OW/OF) : (0OF /0t). Thus:
oF oW (F
f P:—dVOdtzf ( )dngt (4.97)
Qox[0,T] Ot Qox[0,T] 0t
Combining the kinetic and internal energy contributions with the temporal boundary term:
0 (1 9 .
—f — | =poll@l® +W(F) dVodt+f (mr-ny)-pdS=0 (4.98)
Qox[0,T] 0¢ \ 2 Qox4[0,T]

Integrating the first term over time and evaluating the boundary term yields:

oot W) avo [ (Goota®e W], avo [ Geomo-ali)
- — +W(F dVy+ — +W(F dVy+ . . dVy=0
fgo(Zpolltpll ®)|_pavo+ [, (Geolor® W] avo [ [x-no-ali avo

The temporal boundary term represents the momentum flux through the temporal boundaries. For a closed time
interval with consistent boundary conditions, this ensures the total energy (kinetic plus internal) at the beginning
equals the total energy at the end:

1 9 _ 1 9 )
fgo(zponzpu +W(F))‘t:0dV0—fﬂo(zpoll(pll +WF) |t:TdVO (4.99)

demonstrating energy conservation in the absence of boundary work.
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DISCRETE FORM
In the discrete formulation, we choose the test function to be the material velocity (primal, nodal):

_ 1
$reVOM) ¢h= L—t[E(tl’O)fpa aeix,y) (4.100)

i.e., the time derivative of the flow map, where L; € R is the temporal extent of the space-time slab. The velocity at
temporal edges is computed via the temporal incidence operator [Eil’O), which maps nodal 0-forms to edge 1-forms. Let

Vg € R™mom denote the velocity at edge locations:

1
E", (4.101)

Vg = th

Since momentum lives at nodal locations while velocity is naturally defined at edges, we must sample adjacent

edge velocities to obtain nodal values. For each spatial location i = 1,...,nspace and temporal node & =0,...,n4jme — 1,

the nodal velocity is computed by sampling the velocities at the adjacent temporal edges. Let v, € R™flow denote the

sampled nodal velocity vector, where ngqy = space X time- Additionally, let \'rg € R™space gnd “75 € R™space denote the

nodal velocities at the initial and final temporal slices, respectively. The discrete change in kinetic energy in each
direction is:

r \T T T
AKEx:([Egl’O) ﬁx) v (af) oL+ (2Y) 9 (4.102)
(4.103)

AKE,, = ([E(tl’O)Tﬁy)Tvy - (ﬁg)Tvg + (ﬁg)TV?,

where ﬁé,ﬁg € R™space gre the momenta at the final and initial temporal nodes. The total kinetic energy change is:
AKE = AKE, + AKE, (4.104)

The work done by internal stress over the space-time domain is evaluated using the stress-divergence operators. The
nodal velocity vector is paired with the discrete stress-divergence operations:

_7 [ (1,07 2y (1,0) - (1,007 | %y (1,0 - 1,07 yx(1,0) - (1,007 | yx,(1,0) -
Wintx =V [[Ex |]-|]131'[Ey @, —Ey HI%'[Ey ¢, -y |]-|]31V1[Ex @, +Ey u—u{ztEx Py

g -7 _
Wint,y =Vy 125y Py~ Py

T T T T
ELOT g0y g7 g0, L0700, | 10 Hg;[E;Lm_x]

The change in internal strain energy is the negative of the total internal work:
AU = _(Wint,x + Wint,y) (4.105)

For systems with boundary tractions, the work done is computed using the edge velocities, since traction forces
are naturally applied at edges where they are integrated. Let Firac x, Firac,y € R*™™ denote the discrete traction force
vectors at edge locations. The traction work is:

Wirac = Vthrac,x + VZ;Ftrac,y (4.106)

The total, discrete energy balance is:
ATE = AKE + AU = Wiy =0 (4.107)

Combining the kinetic and internal energy changes with traction work gives the net energy change over the time
slab, which should sum to zero (up to numerical precision) when all contributions are properly accounted for: ATE = 0.
If external tractions are present, the energy balance becomes AKE + AU = Wiy, representing energy input from
boundary forces. The distinction between using edge velocities for traction work and nodal velocities for kinetic energy
reflects the proper geometric placement of these quantities in the discrete formulation.

4.6.4. CONSERVATION OF MASS

CONTINUOUS FORM

For hyperelastic materials, mass conservation follows from the kinematic constraint. The reference density pg € R>o
is constant in the material configuration Qg. The current density in the spatial configuration transforms as p(x,¢) =
po/J (X, 1), where J = det(F) is the Jacobian determinant. Total mass is:

M) = fQ p0dVy = po|Qpl = constant (4.108)
0

which is independent of deformation since integration is over the fixed material domain.
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DISCRETE FORM
The discrete mass at time ¢ is computed via quadrature over the reference configuration:

h Nquad,x Mquad,y
M*@t)= Z Z wiijO,ijPO (4.109)
i1 =

where w;,w; € R>( are GLL quadrature weights and /g ;; € R>¢ is the discrete Jacobian of the material deformation
at quadrature point (i, j), which can be calculated as

h (1,0) - (1,0) - (1,0) - (1,0) -

IO =[([E79,0)0 ()7 0,0) - (£ V0.0) o[£V, 0)] (4.110)
where o denotes element-wise (Hadamard) product and subscript ij indicates evaluation at quadrature point (i, ).
The mass change is:

AM" = MMt p) - MP(29) = 0 (4.111)
For the identity initial configuration ¢(X,tg) =X, we have J Lf‘j(to) =1 for all i,j. In the discrete formulation, mass

is exactly conserved up to the accuracy of the quadrature rule. Any deviation AM' h 40 indicates numerical errors in
computing the discrete Jacobian or integration weights.



NUMERICAL TESTING

This chapter presents numerical experiments to validate the mimetic spectral element formulation developed in the
preceding chapters. Before getting to the results, Section 5.1 briefly describes the how the non-linear system is solved
in robust fashion. Section 5.2 investigates the solutions of the space-time discretisation, demonstrates p-convergence
in spatial and temporal polynomial orders, and tracking the evolution of discrete conservation. Section 5.3 examines
steady-state benchmarks to verify the constitutive modelling and geometric mapping framework by comparing against
analytical and established numerical solutions, while also confirming discrete conservation.

Additionally, the author acknowledges the use of computational resources and the continuous advocation of High
Performance Computing for educational use by the DelftBlue supercomputing cluster and its support team, provided
by Delft High Performance Computing Centre [Delft High Performance Computing Centre, 2024].

5.1. NON-LINEAR SOLUTIONS

The non-linear system arising from the hyperelastic formulation requires iterative solution methods due to the
configuration-dependent stress-divergence operators DP. This section describes the non-linear solution strategy
based on Anderson acceleration, a technique that provides super-linear convergence while maintaining robustness for
highly non-linear problems.

5.1.1. GENERAL TECHNIQUES

A discrete non-linear system can be written abstractly as a fixed-point problem, u = G(u), where u contains all
unknowns, and G is constructed by solving the system with stress operators evaluated at the current iterate, i.e. a
linearisation point. The non-linearity then enters through the deformation gradient F = V¢, which determines the
stress tensor P(F) and hence the operators D*P. Given an initial guess u®, a standard fixed-point iteration generates
the sequence u®*D = Gu®) until convergence. However, such iterations exhibit only linear convergence and may be
slow for highly non-linear problems. Newton-Raphson methods offer quadratic convergence near the solution but
require assembly and factorization of the Jacobian matrix at each iteration, and may fail to converge when the initial
guess is far from the solution or when the Jacobian is ill-conditioned.

5.1.2. ANDERSON ACCELERATION

Definition 38 (Anderson Acceleration). Given a fixed-point iteration u = G(u), Anderson acceleration is a method to
accelerate the convergence of the fixed-point sequence [Walker and Ni, 2011]. Define the residual g(u) = Gu)—u, and
denote f; = Ga™) and 8= g(u(k)). Given an initial guess u® and an integer parameter m = 1, the method can be
formulated as follows:

u® = Q(u(o)); VEk=1,2,...
mp =min{m,k} Gp=I[gp_m, - &l

my,
aj, = arg min |G ally, where, Ay = az(ao,...,amk)eRmk+1:Zaizl
acAy i=0

my
uwt D = Y (@i fhmy+i (5.1)
=0

where the matrix-vector multiplication G a = Zﬁ%(a)igk_mkﬂg and (@); is the ith element of a.
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Remark 5.1.1

The idea behind Anderson acceleration is to find a linear combination of recent iterates whose residuals, when
combined, are as small as possible [Anderson, 1965]. This extrapolation strategy uses a heuristically recent
iteration history to predict a better update direction than the standard fixed-point map alone. Intuitively-put,
a history-aware fixed-point iterative scheme. The method has been found to converge faster than standard
fixed-point iteration and to be more robust than Newton-Raphson for highly non-linear problems, in some
cases even avoiding divergence of the fixed-point sequence [Evans et al., 2019].

\ 7

In practice, this is done via the constrained least-squares problem in (5.1), which is solved by introducing a small
regularization parameter € > 0 and forming the system:
GlGy+el 1

17 0

ap

y_l

= 0] (5.2)

where 1€ R™¢*1 is a vector of ones, and {4 is an auxiliary variable. The regularization prevents ill-conditioning when
residual vectors become nearly linearly dependent. Optionally, a relaxation parameter § € (0,1] can be introduced to
blend the Anderson-accelerated update with the standard fixed-point update:

mp
ut D = B3 (@) fromy +i + 1 - PGP (5.3)
=

1

where =1 corresponds to pure Anderson acceleration, and smaller values provide additional stabilization for highly
non-linear problems. The mixing depth m controls the number of previous iterates used in the acceleration. Larger
values of m can improve convergence but increase memory requirements and the cost of solving (5.2).

5.1.3. CONVERGENCE IN CONTINUUM FLOW

Convergence is assessed by monitoring changes in the deformation gradient invariants between successive iterations.
Let J®) = det(F(k)) denote the Jacobian determinant at iteration %, and tr(C(k)) = tr((F(k))TF(k)) the trace of the right
Cauchy-Green tensor. The relative changes are defined as:

||J(k+1) —J(k)"oo ||tr(C(k+1))—tr(C(k))||oo
= tr =
max(|J® o, 1)’ 7 max(tr(C®) ] o0, 1)

(5.4)

The iteration is considered converged when both AJ < 7¢, and Aty < Tyo), Where Ty is a prescribed tolerance.
These provide a physical measures of convergence: AdJ reflects changes in volumetric deformation, while A, captures
changes in total strain energy density. A maximum iteration count 2max of 50 is imposed to prevent indefinite cycling
in cases where convergence stalls over 7). Per time step, the iteration history is reset and the converged solution from
the previous time step provides the initial guess for the current step. Material inversion is detected by consistently
checking min(J®)) > 0.

5.2. UNSTEADY HYPERELASTICITY

This section gives a selection of "unit", single spatial element cases used to assess the implementation. Firstly, a free
identity domain subject to angular momentum (Subsection 5.2.1); secondly, identifying physical behaviour under a
mapping and strong boundary conditions (Subsection 5.2.2); and and lastly, convergence testing on a simple case with
strong boundaries under refinement in space and time order (Subsection 5.2.3).

5.2.1. INDUCING ANGULAR MOMENTUM

The first test considers unsteady rigid body rotation, with the reference - a square of [-1, 112 m?2 - and initial spatial
configurations trivially-related by the identity map, just to avoid the additional complexity of an added mapping, but
to also observe physical symmetries in the solution. This test serves to also verify that the numerical scheme correctly
maintains angular momentum, energy, and linear momentum over extended time periods for a system with a known
analytical solution under limits, i.e. a rigid, conservative system (without dissipation) keeps rotating given some
angular momentum.

The initial conditions are prescribed as a state of pure rigid body rotation with clockwise angular velocity w = 0.5
rad/s about the domain centre (0,0). The identity flowmap ¢(xq,0) = x¢ is imposed initially, while the momentum field
is set to induce rotation. For a rigid rotation, the velocity field is given by v = wr', where r = x— ¢ is the position vector
relative to the rotation centre and r+ = (- y,x)T represents the perpendicular direction. The continuous momentum
density field follows as:

—(y—cy)
(x—cy)

—pwy
pwx

(X)) = pv = pw (5.5)
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where cy = cy =0 for the domain center.

To discretise this initial momentum field via (4.24), an L2 projection onto the space of primal, nodal basis functions
is employed. For each spatial degree of freedom in the momentum space 7%, the projected coefficient is obtained
through the L? inner product: '

13

nx,in = (ﬂx,¢i>L2(Q), n;/,in = <ﬂy,¢i>L2(Q), (5.6)

where ¢; are the tensor-product Lagrange basis functions defined on the Gauss-Lobatto nodes. The L2 inner product
(f,8)r2q) = Jo fx)g(x)dx is evaluated exactly using Gauss-Lobatto quadrature:

f.8r2q) = Z f(xg)g(xg)wg, wq,, 5.7
qx,qy

where x4 are the tensor-product Gauss-Lobatto quadrature points and wq, ,wq, are the corresponding one-dimensional
quadrature weights. This projection on (4.24) ensures that the discrete momentum field preserves the correct total
angular momentum L, = Y ;(r; x ;) at the initial time.

Material properties follow the St. Venant-Kirchhoff hyperelastic model with Lamé parameters A = 20 Pa and
=10 Pa, and material density p =1.25 kg/m3. No external forces or boundary tractions are applied; all boundaries
are free. The simulation runs for a total time of 7'=10.0 s. The spatial discretisation uses polynomial order N =5
with Gauss-Lobatto quadrature of order Ny =7, while temporal discretisation employs N; = 2 within each space-time
slab of length A¢ =0.01 s. Anderson acceleration with depth m =4 is used for the non-linear solver, with no mixing
and no regularisation.

(a) t=0.005s (b) t=1.98 s (e)t=3.99s (d)t=6.0s (e)t=8.0s ) t=10.0s

Figure 5.1: Flowmap evolution for A =20 Pa and u = 10 Pa, with reference solution plotted

Figure 5.1 depicts snapshots of the simulated domain along with the reference, analytical solution taken as the
same initial domain under the same angular velocity w = 0.5 rad/s and centre of rotation (0,0), for comparison. The
simulated flowmap (in black) and the reference solution’s flowmap reference grid (in green), with the von Mises
stress (5.13) of the simulation coloured. A trace of the northeast corner of the domain over time is also given for
visual clarity and reveals a trajectory that almost approximates a circular path, almost consistent with the analytical
solution for rigid body rotation at w = 0.5 rad/s. Rather, a slight, but symmetric deviation from perfectly circular
rotation is noted, indicating the presence of small elastic deformations superimposed on the dominant rotational
motion in Figure 5.2a. This is also seen from the pulsing of the von Mises stress field, indicating a non-zero internal
stress. This pulsating behaviour suggests that the domain experiences internal elastic stresses that arise implicitly
from the prescribed rotational motion, given the structure-preserving nature of the simulation, being in translational
equilibrium, and void of external forcing or fixed boundaries. The first point being reinforced by conservation balance
laws being respected throughout time, with no visible drift nor increase, as seen in Figure 5.2h.
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Figure 5.2: Diagnosing the A =20 Pa, u =10 case

To further investigate the influence of material stiffness on the observed elastic deformations, a more compliant
membrane with Lamé parameters A =2 Pa and p =1 Pa (ten times lower than the previous case) was examined. The
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results are presented in Figure 5.3 and Figure 5.4. As anticipated, the reduced stiffness leads to more pronounced
elastic oscillations on the rigid rotation, with radial deviations increasing by approximately ten times compared to
the stiffer configuration (Figure 5.4a). This more evidently appears on the snapshot of the final time in Figure 5.3f,
especially compared to Figure 5.1f. The trace also indicates that the simulated case has now undergone a lower total
rotation over time. Additionally, the frequency of these oscillations reduces by v/10, which matches the proportionality
f o< VE/m for mass-spring systems [[Haberman, 2013] when recalling St. Venant Kirchhoff as the linear extension of
Hooke’s Law (Subsection 3.4.3), as k& o< E(A, u). Despite these more significant elastic deformations, the conservation
laws remain well-preserved throughout the simulation (Figure 5.4b), demonstrating the robustness of the mimetic
discretisation amidst larger deformations.

(a) t=0.005s (b)t=1.98s () t=3.99s (d)t=6.0s (e)t=8.0s ® ¢t=10.0s

Figure 5.3: Flowmap evolution for A =2 Pa and u =1 Pa, with reference solution plotted
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Figure 5.4: Diagnosing the 1 =2 Pa, u=1 case

The observed internal stresses arise from the centrifugal, fictitious force inherent to the Lagrangian description.
When formulating the problem in the material frame, where particles are tracked in the material (body-fixed) frame.
For some material point at position r = x — ¢ relative to the rotation centre, the centrifugal force per unit volume acts
radially outward:

fr= pw2r, (5.8)

where for the two-dimensional case with rotation perpendicular to the plane, this reduces from the expression
f. = —pw x (w xr). Unlike a truly rigid body (as mimicked by the reference solution) - where internal forces exactly
balance centrifugal effects without inducing strain - an elastic continuum must deform to develop the resisting stresses,
yielding radial oscillations superimposed on the mean rotational motion.

Interestingly, the reduction in overall rotation for the lowered-stiffness case (Figure 5.3) is reminiscent of classical
pirouette problem in mechanics. When a spinning ice skater, with their arms retracted, extends their arms they do
work towards the centrifugal force pulling radially outward; which is also observed with the positive deviation in
Figure 5.4a. This work is then converted into internal strain energy from kinetic energy, reducing angular velocity
while still conserving angular momentum. In this test, a similar and more complex energy exchange occurs with the
strain energy stored in the deformed configuration exchanges with kinetic energy as the body pulsates. Replication of
such dynamics is still complicated since the distribution of mass evolves with shape and quantifying rotation becomes
vague as the body morphs continuously [Cline, 2017]. Nevertheless, the presence of physical dynamics in the mimetic
discretisation, without explicitly requiring closed-form expressions for the coupled rotation-deformation, dynamics is
notable.

5.2.2. PRESCRIBING BOUNDARY CONDITIONS

In considering a more application-like test case, a highly scaled - in terms of material parameters - domain of Cook’s
membrane (see Figure 5.15 and Subsection 5.3.1) is considered. This serves to primarily test the discretisation
amidst a non-identity mapping, the application of non-trivial boundary conditions, and the upholding of conservation
laws over extended periods of time and cyclic, large deformations. A vertical traction of 0, = —200 Pa is applied
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over the east boundary, while the western boundary is clamped with a fixed flowmap ¢ in both x and y directions.
Material properties follow the St. Venant-Kirchhoff hyperelastic model with Lamé parameters 1 = 30 Pa and =20
Pa, corresponding to a Young’s modulus E = p(31 +2u)/(A + p) = 52 Pa and Poisson’s ratio v = A/(2(1 + p)) = 0.3, with
material density p = 1.25 kg/m® (unit thickness). The simulation employs plane strain conditions and runs for a total
time of T'=40.0 s. The spatial discretisation uses polynomial order N = 7 with Gauss-Lobatto quadrature of order
Ny =9, while temporal discretisation employs N; = 2 within each space-time slab of length At =2 x 1073 s. Anderson
acceleration with m =4 depth is used for the non-linear solver, without regularisation nor mixing.

The following analysis presents the evolution of key physical fields-stress components and derived quantities at
select time instances throughout the deformation process. Figure 5.5 shows the temporal evolution of the normal
stress component oy, Figure 5.6 presents the von Mises equivalent stress distribution, and Figure 5.7 depicts the
velocity magnitude field. Finally, Figure 5.8 displays the conservation diagnostics ensuring the structure-preservation
of the discrete system throughout time.
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Figure 5.5: Evolution of Cauchy stress component o, at selected time instances
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Figure 5.6: Evolution of von Mises stress oy at selected time instance
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Figure 5.7: Evolution of velocity magnitude ||v| at selected time instances

Note that the domain does go through several periods in the extent of its deformation despite the selected time
instances. This is more visible in Figure 5.9. The Cauchy stress field oy, in Figure 5.5 reveals the primary loading
direction and demonstrates the tensile stress experienced along the bottom of the membrane, with the top being under
compression. The stress concentration near the clamped western boundary is clearly visible, with gradients smoothly
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propagating through the deformed mesh structure. The von Mises stress distribution in Figure 5.6 provides insight
into the yielding potential and overall stress magnitude, showing peak values near the sharp gradient northwestern
and evolving spatial patterns as the membrane undergoes large deformation. The velocity field in Figure 5.7 captures
the dynamic response of the structure, with maximum velocities observed during transient phases and diminishing as
the system approaches the extent of its deformation.
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Figure 5.8: Discrete conservation laws over time

The conservation law diagnostics in Figure 5.8 validate that conservation is held at a discrete level. The residuals
remain low throughout the simulation, confirming that mass, linear momentum, angular momentum, and energy
are conserved and bounded. The energy balance plot demonstrates that the change in total energy (kinetic plus
internal) is balanced by the external work from applied tractions, with residuals remaining consistently below 10710 g,
Similarly, the linear and angular momentum balances show that momentum changes are correctly accounted for by
the applied impulses and torques, respectively.

To assess the influence of material constitutive relations and stiffness parameters on the Cook’s membrane
response, simulations were conducted with two hyperelastic models - Ciarlet and St. Venant-Kirchhoff - and two
sets of Lamé parameters: (1 =15 Pa,u =10 Pa) and (1 = 30 Pa, u = 20 Pa). Both models share the same general form
for the strain energy density (see Section 3.4) but differ in their treatment of geometric nonlinearity. The Ciarlet
formulation enforces polyconvexity and is typically better-behaved under large deformations [Ciarlet, 2002] [Khaniki
et al., 2023], whereas the St. Venant Kirchoff model, while simpler, may exhibit unphysical behaviour at higher
strains. All simulations employed identical setups as before (N =7, Ny =2, At =2x 1073 s) and were also run for
T =40 s under plane strain conditions with a vertical traction of 0, = —200 Pa. Figure 5.9 presents the evolution of
flowmap and stress quantities at characteristic domain locations for the four setups. Note that conservation was still
shown to hold for these cases.
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Figure 5.9: Comparison of flowmap trajectories and stress evolution for Ciarlet and St. Venant Kirchoff
material models

In the vertical displacement ¢, (Figure 5.92), both models exhibit oscillatory behaviour with the same dominant
frequency, though the Ciarlet formulation shows slightly larger amplitudes, particularly at higher stiffness (1 = 30,
1 =20). The horizontal displacement ¢, (Figure 5.9b) also indicates the Ciarlet model producing larger lateral
motion, particularly for the less stiffer parameter. This difference could reflect the artificial stiffening inherent in
the St. Venant Kirchoff formulation compared to real material behaviour, which is better approximated by more
generalised hyperelastic functionals such as Ciarlet’s polyconvex formulation [Bernd Sautter et al., 2022]. The stress
component o, at the northwest corner (Figure 5.9¢) exhibits the most pronounced material dependence, with the
Ciarlet model generating higher peak stresses for the first few periods compared to St. Venant Kirchoff. Increasing
the Lamé parameters consistently reduces stress magnitudes and displacement ranges across both models, as well as
increasing frequency of the oscillations, aligning with the observations also seen in Subsection 5.2.1. Overall, the
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Ciarlet formulation produces sightly higher deformations that are more representative of physical elastic behaviour,
whereas the St. Venant Kirchoff model exhibits artificial stiffening that constrains the deformation response under
the applied loading.

5.2.3. ESTABLISHING CONVERGENCE

The convergence analysis involves the identity (square), spatial domain [-1, 112 subjected to a normal stress of o, =15
Pa (towards the west) and vertical traction of g, = 0 Pa over the east boundary. The western boundary has a strongly
fixed flowmap in x and y (see example boundary conditions in Subsection 4.4.2), as with the previous test. Material
properties are characterised by Lamé parameters A = 75 Pa and p =75 Pa, with p =1 kg/m3. The total simulation time
is T'=4.0 s and over-integration in the spatial direction is used with N +2 order of quadrature on a Gauss-Lobatto grid,
as well as a solver tolerance of 1 x 10~2. To an extent, the problem can be interpreted as a membrane - or mass-spring
system - problem undergoing cyclic deformation due to a constant, directional load. To also evaluate convergence
in a numerical fashion, the L2 error in the flowmap solution at the north-eastern corner of the domain is used and
is relatively compared against a baseline reference solution of N = 8, N; = 3, At =4 x 107°. The L2 norm itself is
calculated through reusing the Gauss-Lobatto points over space-time slabs and is formally calculated as:

T
lo— (pref”LZ(o’T) = \/f() (p(t) — pref(t)? dt, (5.9)

where ¢ represents the flowmap component (x or y) at a select point, and the relative error is defined as:
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Figure 5.10: Time evolution of ¢, at the northeast corner for select discretisation parameters
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Figure 5.11: Time evolution of ¢, at the northeast corner for select discretisation parameters

As the traction is in the x-direction, the primary deformation is seen in ¢, as seen in Figure 5.10a, in contrast
to Figure 5.11a. We also note that lower N leads to a "lag" in material response, which is also supported by the
lower Cauchy stresses 011 in Figure 5.14a. Despite the out-of-phase behaviour from N =1 the amplitude of the
primary mode is still well-resolved. A larger variation is seen in Figure 5.11a, where the magnitude decreases due
to the Poisson effect. As per the effect of time discretisation with order N; and interval A¢, their effects are quite
minimal in terms of the general evolution. Nevertheless, as still seen in Figure 5.11c, a finer discretisation does aid
with maintaining stability over extended time periods. Furthermore, while not immediately explicit, sufficient time
discretisation is still important for the overall stability bound of the system.
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Figure 5.13: Convergence nature using relative L? error in ¢, of northeast corner with respect to space
and time order

Interestingly the relative L2 error plots in Figures 5.12 and 5.13 depict a non-monotonic reduction with N. In
particular that regardless of At, the Lo error for ¢, for N =7 is nearly the same - in contrast to other values of
N (Figure 5.122a). An explanation in the form of an interplay between time and spatial resolution can be partially
observed from the behaviour in Figures 5.12b and 5.13b. Until N =5, spatial resolution errors appear to dominate,
and when the time discretisation improves at and beyond N =5, the error drops again - and so on. Otherwise it may
still seem that N; appears to not play a major role in reducing the error beyond N; = 2, although it is still fruitful
to see the higher rate of convergence with number of timesteps for N; > 1 in Figures 5.13c and 5.12¢, which gives
confidence in at least resolving the amplitudes of the modes (but not so much telling on the phase errors seen in the
flowmap evolutions). It is expected that the finer and higher discretisation in time is able to better resolve elastic
waves within the space-time domain, especially as seen in the variance of ¢, across different time discretisations
towards 7'=4 in Figure 5.11.
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Figure 5.14: Evolution of Cauchy stress at the northwest corner of the domain, for N =1,2,4,8 at N; =2
and At=2x10"%s

From Figure 5.14, it becomes quite clear that, increasing the polynomial degree N improve the spatial resolution
of the simulation. The element can therefore represent sharper gradients, i.e. stress concentrations, and elastic modes.
This behaviour is especially visible in the stress-time histories at the north-west corner: for N =1 and N = 2 the curves
are relatively smooth nearly periodic but miss part of the oscillatory nature of elastic media [Ogden, 1973], whereas
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for N =4 and N = 8 the signals exhibit more pronounced modes. From a physical standpoint, the clamped-traction
configuration excites a range of elastic waves that reflect between the fixed and loaded ends of a 2D, elastic membrane
[Haberman, 2013]. The continuous problem supports infinitely many eigenmodes; low-order polynomials can only
capture the lowest modes, while high-order polynomials can incorporate several modes within the same element. As
the curves obtained tend to cluster together indicates that the stress is converging with higher N.

5.3. STEADY HYPERELASTICITY

To validate the constitutive modelling and spatial discretisation independent of temporal dynamics, we first examine
the steady-state limit of the formulation. In this regime, inertial effects vanish and the problem reduces to non-linear
elastostatics governed by the balance of internal stress and external loading. This is formulated by considering a
single space-time slab with temporal extent At =1 and enforcing zero momentum at the final time. Recall the system
from (4.41). For the Hamiltonian formulation underlying the space-time discretisation, both initial and final conditions
must be specified. In the steady limit, we set the initial momentum &, = 0 and enforce the final momentum ﬁé =0,
reflecting the physical requirement that all time-dependent terms vanish in equilibrium. This constraint shows
up in the momentum-velocity relation: with &4 = pgo@,, zero momentum corresponds to zero velocity, eliminating
inertial contributions. The system then reduces to a spatial boundary value problem where the flow map ¢, adjusts to
balance internal stress (integrated in D*F) with applied tractions Firac o and boundary constraints. This steady-state
formulation provides a check of the material constitutive modelling by comparing against numerical benchmarks for
hyperelastic formulations.

Additionally, to improve robustness for problems involving large deformations or high loads, we also use load
stepping: The applied traction is linearly increased from zero to the target value over a sequence of load increments.
At each load step, the converged solution from the previous step serves as the initial guess, allowing the non-linear
solver to navigate the deformation path gradually.

5.3.1. COOK’S MEMBRANE BENCHMARK

Cook’s membrane is a classical benchmark problem for testing finite element formulations under combined bending
and shearing deformations. Originally introduced by [Cook, 1974], it features a tapered cantilever beam subjected to a
uniform upward shear on its free edge. Figure 5.15 illustrates the domain.

The membrane occupies a trapezoidal domain with unit thickness in 2D in the initial configuration, with
dimensions illustrated in Figure 5.15. The left edge (at x = 0) is clamped, enforcing zero displacement in both x and y
directions. two-dimensional plane-strain problem with unit thickness. A uniform shear traction pg is applied in the
positive y-direction along the right edge (at x = 48 mm), while the top and bottom edges remain traction-free. The
geometry tapers from a height of 44 mm at the left edge to 16 mm at the right edge, creating a non-uniform stress
distribution that acts as good test for bending and shearing. The vertical deformation u, of reference point A at the
top-right corner (coordinates (48,60) mm in the initial configuration) serves as the primary diagnostic location.
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Figure 5.15: Geometry and boundary conditions for Cook’s membrane benchmark, with all dimensions in
mm. Point A at the top-right corner is used to report vertical displacement for comparison with reference
solutions [Schroder et al., 2020]

For the hyperelastic analysis, we adopt a polyconvex strain energy function, whereby the material is characterised
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by Lamé parameters A and y, which relate to the Young’s modulus E and Poisson’s ratio v via:

B Ev _ E
Tarna-2v FToa+wy

(5.11)

Following the reference benchmark [Schrioder et al., 2020], we use the material parameters listed in Table 5.1.
These parameters correspond to a nearly incompressible material with Poisson’s ratio v = 0.3333. Ultimately, it seen
that for a fine mesh and plane-strain, u, of A approaches 10.569528994 mm. It is noted that the benchmark utilises a
series of tetrahedral meshes with refinements close to an observed stress concentration on the north-western corner of
the membrane, whereas this formulation uses quadrilaterals for the individual elements that are doubly-uniform in
the h-sense on the reference domain of [-1,1]2.

Table 5.1: Material parameters and applied traction for Cook’s membrane benchmark.

Parameter A (MPa) u(MPa) po(MPa)

Value 432.099 185.185 20

The second Piola-Kirchhoff stress tensor S is derived from the strain energy function via S = 20W/0C, where
C=FTF:

S = g(J2—1)C_1+p(I—C_1) (5.12)

where J = detF is the Jacobian determinant.

5.3.2. RESULTS ON A COARSE MESH

To illustrate the mesh and deformation, we first present results for a coarse discretisation consisting of 2 x 2 spatial
elements with a Gauss Lobatto Legendre (GLL) basis. Each element employs 5th-order polynomial basis functions
(N =5), with 8th-order integration also on a GLL basis. Note that the mesh is created over a reference x,y € [-1, 1]
configuration. Figure 5.16 presents the results on deformation for the 2 x 2 configuration at full load. The deformation

at point A is found as 10.58316 mm, which is already close to the benchmark despite the low number of degrees of
freedom.
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Figure 5.16: Deformation results for Cook’s membrane using a 2 x 2 element mesh for NV = 5.

The von Mises stress, commonly used in design criteria for ductile materials, is computed as:

OyM = \/U%x+0§,y —OxxOyy +30’%y (5.13)

This measure provides a useful scalar of stress for failure prediction under the von Mises yield criterion. However, 0,31
does not distinguish between regions in tension and compression. To differentiate these loading modes, we also provide
the principal stresses (component-wise Cauchy stress terms), which identify the maximum tensile and compressive
stress magnitudes and their directions. Figure 5.17 shows these measures. Once again, note that gy = gy by
upholding conservation of angular momentum, hence only one of these cross-terms is shown.
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Figure 5.17: Stress results for Cook’s membrane using a 2 x 2 element mesh for N = 5.

In the steady-state limit, the conservation laws derived in Sections 4.6 reduce to balance equations that must be
satisfied pointwise across the spatial domain. Since there is no temporal evolution (9/0¢ = 0), the discrete test functions
for symmetries yield equilibrium rather than conservation statements across time slabs. For linear momentum,
the translation test function (7)3 = L;1 applied to the steady problem produces the force equilibrium residual. The
temporal incidence contributions vanish, and the discrete balance (4.71)-(4.72) reduces to:

Rina= Y (Finta,i ~Fext,i) =0, acfx,y (5.14)

i¢Zp
where the summation excludes Dirichlet-constrained nodes Zp. This quantity measures discrete force equilibriums in
x ¥ and should vanish to solver tolerance for a converged solution. For angular momentum, the rotation test function

@2 =—@y, @;‘ = @, yields the moment equilibrium residual. In the absence of temporal derivatives, the balance (4.89)
becomes:

Rang = Z ((Px,iRy,i - (py,in,i) =0 (5.15)
i¢Ip
where R ; = Fint o ; — Fext,a,i 1S the nodal force residual. This confirms moment equilibrium of the discrete system.

For energy, the velocity test function (7)2 = (l/Lt)[Egl’O)(i)a becomes the displacement field itself in the steady limit. The
energy balance (4.107) reduces to a work-energy:

Ren = Z (‘Px,in,i + (py,iRy,i) =0 (5.16)
i¢Zp
representing the total work done by residual forces, which vanishes at equilibrium. For mass, (4.111) still evaluates
how accurately the discrete deformation gradient determinant </ h g computed. Since mass conservation is embedded
in the Lagrangian formulation through integration over the fixed reference domain Qg , deviations indicate the
precision in evaluating (4.110) rather than physical mass loss.

Figure 5.18 visualises the spatial distribution of these balance residuals for the converged Cook’s membrane
solution. The local values are extremely low (10712 -1024), with the overall global residuals computed to machine
precision of = 10714, Note that this is not truly machine precision due to iteration errors in computing the solution to
the algebraic system, such as, for instance, the logarithm of the condition number of the system (albeit low) being an
approximation of the digits lost in a finite representation and still affecting the net solution accuracy.
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5.3.3. hp-CONVERGENCE

To validate the accuracy of the mimetic spectral element formulation, we compare the computed vertical displacement
uy at point A against established benchmark values from the literature. The convergence behaviour is assessed by
uniformly refining both the polynomial order N and the number of elements in each direction. Figure 5.19a shows
the convergence of the computed displacement to the reference benchmark value as the discretisation is refined.
It is remarkable to note that the mimetic discretisation is able to have a lower error for a lower order and coarser
discretisation, especially considering that the benchmark solution utilises a series of non-uniform refinements to
resolve the stress concentration in the northwestern corner (see Figure 5.17d).
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Figure 5.19: hp-refinement for Cook’s membrane showing convergence of displacement components

To characterize the convergence properties of the spatial discretisation, we conduct two sets of refinement studies:
h-refinement (increasing the number of elements N, N, at fixed polynomial order) and p-refinement (increasing
the polynomial order N at fixed element count). These studies quantify both horizontal and vertical displacement
components at point A to assess the overall accuracy of the deformation prediction. Figure 5.19 presents the A-
refinement results, showing the convergence of 1, and u, as the mesh is refined from coarse to fine resolutions
while maintaining a fixed polynomial order. Over-integration is also performed with a Gauss-Lobatto grid with order
N + 3. Figure 5.20 presents the p-refinement results. Multiple curves corresponding to different element counts and
polynomial orders illustrate the spectral convergence efficiency of p-refinement for smooth solutions. In particular one
can notice from the logarithmic plot in Figure 5.20c¢, that for about the same number of degrees of freedom, which is
indicative of the computational cost associated with the problem, solving at higher N does enable lower errors. As
per the large descent in error for N = 8, it is likely due to the relative error taken with the same solution order. The
convergence studies confirm that MSEM can accurately reproduce the benchmark solution for a hyperelastic Cook’s
membrane. Both A- and p-refinement exhibit high convergence rates, with p-refinement providing higher rates for
the same increase in degrees of freedom. It is noted that for Cook’s membrane, there exists a sharp gradient in the
stress field at the top left corner, which may attribute to the p-convergence not being exponential. The computed
displacements are shown to converge to the reference value for sufficiently refined discretisations, validating the
implementation of the generalised isotropic hyperelasticity constitutive model, with spatial discretisation.
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Figure 5.20: Convergence of relative vertical displacement error for zp-refinement



CONCLUSIONS

On the premise of structure-preservation as a route to more physically reliable simulations, this work has investi-
gated whether hyperelastic flow can be modelled in a multi-symplectic and variational manner on space-time. The
resulting formulation combines a mimetic spectral element method (MSEM) to construct a Lagrangian framework for
hyperelastic flow in R3 (two-dimensional in space and one-dimensional in time.). Large deformations are treated as
smooth configuration maps between reference and deformed configurations, with stresses and strains interpreted as
geometric measures of how the underlying metric is distorted. Special attention was given to the tensorial nature of
continuum mechanics, and to the associated pullback procedure for configuration-dependent variables, to distinguish
between various configuration spaces and to enable computation on arbitrary geometries under linear transforms.
Additionally, continuum mechanics was revisited from a differential-geometric perspective, making explicit the links
between classical kinematics, balance laws and stress measures, and their representation in terms of configuration
maps, deformation gradients and bundle-valued differential forms.

Within this setting, the governing equations of hyperelasticity were reformulated in terms of configuration maps
and their gradients, and the various stress measures were cast as objects tied naturally either to the reference or to
the deformed configuration. Piola-type transformations provide the bridge between these descriptions and clarify how
stresses and fluxes should be transferred between configurations. This is compatible with a mimetic spectral element
discretisation in space-time, where degrees of freedom are associated with nodes, edges and faces in a way that reflects
physical structures. The construction of discrete Hodge operators and metric-dependent maps then provide a means of
computing inner products, work terms and hyperelastic stresses at the discrete level. Numerical experiments indicate
that these discrete constitutive and metric operations behave in a physically representative manner under refinement.

Conservation properties were addressed by starting from a Lagrangian variational principle on a locally space-
time-embedded domain. In this framework, local conservation laws for mass, energy, linear momentum and angular
momentum were derived, including the contributions of both natural and strongly-prescribed boundary conditions.
Numerical demonstrations confirm that the corresponding discrete conservation laws are upheld to a high degree
of accuracy. Total mass, energy sums, and linear and angular momentum residuals remain bounded to within
floating-point precision with minor deviations due to solution tolerances and linear solver errors - even in the presence
of non-trivial loading and constraints.

The proposed formulation was tested on a collection of steady and time-dependent hyperelastic problems on
non-curved space-time geometries. For the time-dependent solutions, convergence with refinement was investigated
in the spatial polynomial order p, as well as in both A and p in the temporal direction, the latter corresponding to
higher-order implicit time integration schemes. These simulations exhibit physically meaningful and conservative
behaviour throughout the evolution, in line with the derived conservation laws. In the steady limit, the formulation
compares very well with the plane-strain Cook’s membrane benchmark, showing close agreement in the deformation.
Together, these findings support an answer to the main question posed at the outset: within the class of problems
considered here, Lagrangian hyperelastic flow can indeed be modelled in a multi-symplectic, mimetic spectral element
framework on space-time grids;in a way that respects the geometric and variational structure of continuum mechanics.
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LOOKING AHEAD

Towards scalable, structure-preserving computation. 10
The main recommendation is to adapt the present structure-
preserving framework towards faster and more scalable computa-
tion, especially under extreme deformations and highly non-linear 1084
mappings. Future work should develop dedicated preconditioners
[Kolev et al., 2008] [Phillips et al., 2018] and iterative solvers
[Bochev et al., 2006] that exploit the block structure and local cou-
plings of the mimetic discretisation, with an eye towards parallel
computing. As the number of space-time elements and polynomial 10°
degree and geometric complexity increase, the cost of forming and

10°4

1074

FLOPs

10°+

105 N
solving the resulting systems grows rapidly. This could be im- !
proved by better exploiting tensor-product structure through spe- 103 =

c 9 . . C . 1 2 3 4 5 6 7 8 9 10

cialised linear algebra routines or optimising compute hardware. N
Tensor-product-formed operations with edge bases, in contrast to
purely nodal, can be thought of operating with data structures Figure 7.1: Scaling of naive and
whose values "add up to one", as opposed having ones (i.e. inte- optimised material Hodge evaluation

grated bases [Gerritsma, 2011]). This naturally leads to far more
dense data structures.

A key example is the evaluation of the internal energy Hodge operator and its associated high-order, dense
tensor contractions, as recalled in (4.23). These currently represent a significant portion of the overall cost, especially
at higher polynomial degrees in space-time. The naive evaluation strategy treats this as a single, 7-index tensor
contraction with all indices contracted simultaneously with O(N7) complexity - where N represents the cumulative
quadrature order in space. But a consider a more optimised, three-step contraction sequence: Contract Jacobian
determinant with stress tensor with operation order O(N 5),

pcde _ pede yede
Pij _Pij JE, (7.1)

producing an intermediate tensor indexed by quadrature points and stress components. Contract with weighted
¢-edge basis with operation order O(N 6),

= 3R @
c,d,e

contracting over all quadrature indices with the first basis dimension while preserving spatial-temporal structure.
Finally, contract with 7-edge basis with operation order O(N7),

WP = Y Mgdeawide, (7.3)

c,d,e

where the final step is structured as a now trivially-threadable matrix-matrix multiplication.

While this reduces the operation count by a factor of approximately 2 as per Figure 7.1, for asymptotically
large N both paths still scale as O(N7), Nevertheless sequence achieves lower costs, as the largest intermediate
tensor contains O(V®) elements compared to the naive path’s O(N ) memory footprint. Once again, note that this
operation is performed at every inner Anderson iteration and would only scale greater in R?* and for multi-element
domains. Future work should therefore focus on reducing these sorts of complexities while retaining the geometric
and variational properties that motivate the MSEM approach in the first place. In addition, this would make the
validation of time-dependent benchmarks and computation of larger, more-resolved problems more feasible [Roth,
2025].
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Viscoelasticity and richer constitutive models. In general, the formulation developed in this thesis
has been restricted to purely isotropic, hyperelastic materials. In many applications, however, phenomena such as
plasticity, directionality, damage, viscosity, etc. play a role in better presenting real materials [Beatty, 1996]. In
particular material viscosity leads to physical damping terms in the formulation [Jung-Ho and Noboru, 1985] and
additional rigour its conservation laws. This would provide a testbed for viscoelastic modelling, with an explicit energy
balance separating conservative and dissipative parts [Boyce and Arruda, 2000]. Extending the bundle-valued and
pullback-based framework to such constitutive laws, would test how far the current discretisation can be pushed
beyond purely elastic response while maintaining its advantages [Abeyaratne, 2022].

As proof of concept on viscoelasticity, this thesis did shortly explore implementing a non-linear, velocity-dependent
damping mechanism. This is done via operator splitting, a sort of dimensional splitting where the damping is explicitly
treated as a resulting source term [LeVeque, 2002]. However, integrating this dissipative effect into conservation
law derivations was deemed out-of-scope. Nevertheless, a sample can be found in Figure 7.2 that bodes well with the
general solutions of an underdamped, forced, non-linear mass-spring-damper system, i.e.

mX)X +cX,0)x+EX,t)x=F(X,1), where ¢>0. (7.4)
651 104 — Undamped
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Figure 7.2: Northeast corner of Cook’s membrane as in Subsection 5.2.2, though A =50, u=25. A
damping coefficient of 25 s~! is used for the damped case

Extension to R*. The present implementation is limited to two spatial dimensions and one temporal dimension.
A direct extension to the R%, three-dimensional space with a one-dimensional time, manifold would broaden the
applicability of the method. This only requires more book-keeping, thanks to the already tensor-product oriented
approach to constructing discretisations. However assessing the scaling in computational cost becomes even more
relevant.

Coupling, contact, and complex geometries. Another promising direction is to extend the framework to
problems with non-physically-uniform domain coupling and generally non-linear geometric mappings - to compute on
domains that extend beyond "toy" problems [Kamensky et al., 2015] [Demoures and Gay-Balmaz, 2022] [Ando, 2024].
In particular, fluid—structure interactions could be treated by introducing interfaces and contact methods that respect
the mimetic structure on either side of the interface [Mahadev, 2025].
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