
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

CAS-2021-00

M.Sc. Thesis

Sound-recognition using Spiking Neural
Networks

Randy Prozée

Abstract

The development of the Spiking Neural Network (SNN) offers
great potential in combination with new types of event-based sensors,
by exploiting the embedded temporal information. When combined
with dedicated neuromorphic hardware it enables ultra-low power
solutions, and local on-chip learning. This work implements and
presents a viable architecture and training methodology to detect and
classify audio data using Spiking Neural Networks.

The architecture consist of two core components: the first com-
ponent is an auditory front-end which performs low level feature ex-
traction. The second component is the SNN classifier supported by
the spike encoder and decoder. The results show that the encoder has
a major impact on the overall performance of the network. The tem-
poral based network is trained with help of common training methods,
both supervised and unsupervised. The performance of the network
is validated under both clean and different levels of noisy conditions.
The impact on classification performance is analyzed and compared
with traditional non-spiking Artificial Neural Networks. This in terms
of classification accuracy, estimate energy consumption and latency of
inference.

The proposed architectures achieve a max accuracy of 97.0% un-
der ideal conditions. This is comparable to other non-spiking artificial
neural networks, which require significantly more energy for inference.
The implementation demonstrates that the architecture is a viable so-
lution for detecting and classifying audio data.

Sound-recognition using Spiking Neural Networks
My Subtitle

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Embedded Systems

by

Randy Prozée
born in Nieuwegein, The Netherlands

This work was performed in:

Circuits and Systems Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright c© 2021 Circuits and Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty of
Electrical Engineering, Mathematics and Computer Science for acceptance a thesis en-
titled “Sound-recognition using Spiking Neural Networks” by Randy Prozée
in partial fulfillment of the requirements for the degree of Master of Science.

Dated: 26-02-2021

Chairman:
prof.dr.ir. T.G.R.M van Leuken

Advisor:
dr.ir. S.S. Kumar

Committee Members:
prof.dr.ir.z Z. Al-Ars

dr. A. Zjajo

iv

Abstract

The development of the Spiking Neural Network (SNN) offers great potential in com-
bination with new types of event-based sensors, by exploiting the embedded temporal
information. When combined with dedicated neuromorphic hardware it enables ultra-
low power solutions, and local on-chip learning. This work implements and presents a
viable architecture and training methodology to detect and classify audio data using
Spiking Neural Networks.

The architecture consist of two core components: the first component is an auditory
front-end which performs low level feature extraction. The second component is the
SNN classifier supported by the spike encoder and decoder. The results show that the
encoder has a major impact on the overall performance of the network. The temporal
based network is trained with help of common training methods, both supervised and
unsupervised. The performance of the network is validated under both clean and
different levels of noisy conditions. The impact on classification performance is analyzed
and compared with traditional non-spiking Artificial Neural Networks. This in terms
of classification accuracy, estimate energy consumption and latency of inference.

The proposed architectures achieve a max accuracy of 97.0% under ideal condi-
tions. This is comparable to other non-spiking artificial neural networks, which require
significantly more energy for inference. The implementation demonstrates that the
architecture is a viable solution for detecting and classifying audio data.

v

vi

Acknowledgments

First, I would like to express my gratitude to dr.ir. T.G.R.M van Leuken for giving
me the opportunity to work on this project. The opportunity to work on innovative
technologies was inspiring and highly educational, as I gained a tremendous amount of
knowledge.

I would like to thank my daily supervisor dr.ir. S.S. Kumar for the support and his
continued availability for discussions and collaboration. Without his and dr. A. Zjajo
guidance and feedback, I would not have been able to write this report.

To my colleagues at Innatera, CAS group members and fellow master students for
creating a pleasant work environment. Highly appreciated at a time when contact was
mostly virtual due to the global outbreak of COVID-19. Your support and fellowship
pulled me through the tough moments.

The completion of my thesis was not possible without the support of my family and
friends. Their continuous love and encouragement helped me through my entire aca-
demic journey.

To all, thank you!

Randy Prozée
Delft, The Netherlands
26-02-2021

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Problem statement . 1
1.2 Thesis objective . 2
1.3 Contributions . 2
1.4 Thesis outline . 3

2 Background 5
2.1 Use-case description . 5
2.2 Artificial Neural Networks . 7
2.3 Spiking Neural Networks . 8

2.3.1 Biological Neurons . 8
2.3.2 Neuron Model . 10
2.3.3 Synapse . 11

2.4 Information encoding . 11
2.4.1 Rate encoding . 12
2.4.2 Temporal encoding . 13

2.5 Training methods . 13
2.6 Spiking Neural Network simulations . 14
2.7 Auditory front-end . 14

3 Architectural design 17
3.1 Architecture . 17

3.1.1 Auditory front-end . 18
3.1.2 Spike encoding . 20
3.1.3 Spiking Neural Network . 22
3.1.4 Spike decoder . 23

3.2 Enhancements . 24
3.2.1 SOM layer encoding . 24
3.2.2 Dedicated noise class . 27

3.3 Non-spiking neural networks . 27

4 Training methodology 29
4.1 Temporal spike training . 29

4.1.1 Process flow . 30
4.1.2 Complications . 31

4.2 Speech data . 32
4.2.1 Dataset candidates . 32

4.3 Testing for robustness . 33

ix

5 Results 35
5.1 Impact of network size . 35

5.1.1 Population Threshold encoding 35
5.1.2 SOM layer encoding . 37

5.2 Impact of noise . 39
5.2.1 Population Threshold encoding 39
5.2.2 SOM layer encoding . 41

5.3 Non-spiking neural network performance 43
5.4 Distinguish between speech and noise 45
5.5 Power consumption & latency . 47

6 Conclusion 53

7 Future work 55

A Parameters settings 61
A.1 Cochlear filter bank parameters . 61
A.2 Leaky integrate-and-fire model settings 62
A.3 Tempotron parameter settings . 62

B Classification results 63
B.1 Network size testing . 63

B.1.1 Number of thresholds for PTA-SNN architecture (Clean) 63
B.1.2 Dimensions for SOM-SNN architecture (Clean) 63

B.2 SNR noise testing . 64
B.2.1 PTA-SNN architectures . 64
B.2.2 SOM-SNN architectures . 65

B.3 Distinguish between speech and noise 66
B.3.1 PTA-SNN architecture with NO dedicated noise class (Noise only) 66
B.3.2 PTA-SNN architecture with dedicated noise class (Noise only) . 67
B.3.3 PTA-SNN architecture with dedicated noise class (Speech only) 67
B.3.4 SOM-SNN architecture with dedicated noise class (Noise only) . 68
B.3.5 SOM-SNN architecture with dedicated noise class (Speech only) 68

C Power and latency calculations 69
C.1 CNN . 69
C.2 LSTM* . 70
C.3 RNN* . 71
C.4 SOM . 72

x

List of Figures

2.1 Visual representation of the voice-triggered tail gate action, powered tail
gate open or close. 6

2.2 General visualization of an Artificial Neural Network. 7

2.3 Anatomy of a neuron, highlighting the three main components, the soma,
dendrites and axon. 8

2.4 Illustration of an action potential, showing the various phases that occurs
as stimuli effect the neuron’s cell body. 9

2.5 Illustration of the synaptic connection between two neurons and to the
right a more in-depth view of the synapse. 11

2.6 Rate encoding versus temporal encoding of information. Demonstrating
the sparse and reduced frequency of the temporal spike trains. 12

3.1 Proposed architectural overview. The architecture consist of four main
parts, the auditory front-end, encoder, SNN classifier and decoder. . . . 17

3.2 Example of a 20 channel filter bank on a Mel-Scale with a frequency
range of 0 to 4 kHz. 18

3.3 An illustration of audio waveforms and there corresponding spectrogram.
The audio samples contain the utterance of spoken digits 0 to 2. . . . 19

3.4 Population threshold encoding: (a) the varying signal crossing the set
of linearly spaced thresholds, (b) the resulting temporal spike trains
corresponding to each crossing. The red labeled spike correspond to
crossing from underneath and the blue labeled refer to crossing from
above. 20

3.5 Overview of audio spectrogram and the corresponding spike trains ob-
tained by population threshold algorithm (PTA) encoding. For this ex-
ample 15 uniformly distributed threshold values are used, resulting in
600 sparse temporal spike trains. Like in Figure 3.3 the audio samples
contain the utterance of spoken digits 0 to 2. 22

3.6 Architectural overview of the SNN classifier. The size of the input layer is
fully dependent on the number of spike trains presented to the network.
The output layer has a fixed size, one for each output class. 23

3.7 An example scenario in which the First-time-to-spike decoder is applied
to a set of spike trains. 24

3.8 Architectural overview of the initial population Threshold encoded ar-
chitecture and the SOM enhanced architecture. The latter utilizing the
SOM for mid-level feature representation of each acoustic spectrogram. 25

3.9 A high-level representation self-organizing map (SOM). The neuron
most similar to the input vector is identified as the Best Matching-Unit
(BMU). The weight vectors for each neuron in its proximity, highlighted
by the green zone, are adapted to the input vector. 26

xi

3.10 A visual comparison between the resulting spike trains for Population
Threshold algorithm (PTA) and self-organizing map (SOM). The result-
ing low-level features by the SOM are distinct, and requires less spike to
represent the same data. 26

3.11 Architectural overview of the Spiking Neural Network with the added
noise class, depicted in red. The output layer has a fixed size, one for
each output class, plus the one dedicated to noise. 27

4.1 Step 1: Data preprocessing of the speech data, resulting in a set con-
taining each spectrogram. 30

4.2 Step 2: Training the network model with help of the Tempotron learning
rules. 31

4.3 Step 3: Testing network performance with help of the simulation toolbox. 31
4.4 Process flow diagram where a random section of background noise is

added to a clean speech signal, based on desired SNR value. 34

5.1 Overview of the performance impact, in terms of classification accuracy,
when different amounts of thresholds are applied to encode the input
data. The number of threshold and the corresponding neuron count can
be found in Table 5.1. The exact results can be found in Appendix B.1.1. 36

5.2 The performance impact, in terms of classification accuracy, for a variety
of SOM dimensions used to encode in the input data. An overview of
the exact dimensions and the required amount of input neurons can be
found in Table 5.2. The exact results can be found in Appendix B.1.2. . 38

5.3 The performance results obtained for the architecture utilizing popu-
lation threshold encoding. Specific SNR levels are tested and aim to
mimicking real-world environments. It illustrates the performance im-
pact for variety of noise levels, where lower dB values correspond the
harsher conditions. The exact results can be found in Appendix B.2.1. 40

5.4 The performance results obtained for the SOM enhanced architecture.
Specific SNR levels are tested and aim to mimicking real-world environ-
ments. It illustrates the performance impact for variety of noise levels,
where lower dB values correspond the harsher conditions. The exact
results can be found in Appendix B.2.2. 41

5.5 An overview of the classification performance for traditional ANN archi-
tectures. These results are obtained in a variety of conditions including;
clean and SNR levels of added background noise. 43

xii

List of Tables

3.1 Keras network model settings used for the three selected non-spiking
implementations. The size and type of each layer are depicted, as are
the total parameters of each design. The softmax activation function
is used for each final dense layer. *For the Conv2D layers in the CNN
implementation, a kernels size of 3x3 combined with the relu activation
function is used. 28

5.1 Overview of the range of thresholds applied, including the total neurons
required for the input layer of the SNN classifier, which are split into on-
set and offset neurons 3.1.2. The numbers are based on the spectrogram
frame size, which are composed of 20 frequency bins. 36

5.2 An overview of the exact SOM dimension tested with the enhanced
network architecture, previously described in 3.2.1. These dimensions
are used to verify the improved network performance against the initial
threshold encoding architecture. 37

5.3 The specific SNR levels applied to the clean speech samples. Used for
testing robustness of the proposed architectures. 39

5.4 An overview of the impact of background noise on the threshold encoded
spike trains. The average spike count highlights the alterations due to
the noise sensitivity of the threshold encoder. Due to the limited fil-
tering capabilities of the low depth SNN, this increased amount of less
important spikes deteriorates the network performance. 40

5.5 An overview of the impact of background noise on the SOM encoded
spike trains. The more constant average spike count indicates less dras-
tically altered spike trains produced by the SOM. This steady behavior
will reduce the workload of the subsequent SNN classifier, as can be seen
by the improved classification accuracy in Figure 5.4. 42

5.6 The overall classification accuracy of the tested network models trained
with matched condition training. For the spiking implementations the
top performing threshold architecture (PTA-SNN) with a total popu-
lation size of 600 (15 threshold values) and the SOM 18x18 enhance
architecture (SOM-SNN) are selected. 44

5.7 Results obtained with added white Gaussian noise. For the spiking
implementations the top performing threshold architecture (PTA-SNN)
with a total population size of 600 (15 threshold values) and the SOM
18x18 enhance architecture (SOM-SNN) are selected. 45

5.8 Confusion matrix for the SOM-SNN architecture when only background
noise is presented to the network. Since the network is trained to classify
the speech samples, no response from the system is desired as any output
activity corresponds to a speech class. However, this is not the case, as
all samples results in misclassification of speech instead of noise. 46

xiii

5.9 An overview of the initial and enhanced network performance, when only
noise is applied to the both architectures. 46

5.10 Confusion matrix for the SOM-SNN architecture when only background
noise is presented to the network. The added class 10 corresponds to
the noise, and it highly detected. The overall classification accuracies
obtained can be found in 5.9. The confusion matrix when audio samples
are presented can be found in Appendix B.3.5. 47

5.11 An comparison in classification performance between the initial archi-
tecture and the addition of a dedicated noise class. The difference in
classification accuracy is given by the performance Delta.
*The same architecture but with the addition of a dedicated noise class. 47

A.1 The 20-channel cochlear filter bank parameters used. The lower cut-off
frequency and higher cut-off frequency of each band-pass filter are listed. 61

A.2 Leaky integrate-and-fire (LIF) model parameter settings used for train-
ing and testing network performance. These values correspond to the
latest design of the neuromorphic hardware. 62

A.3 Parameters settings used to train the spiking parts of the architecture.
Where τ = RC and τs is set close to zero, this since the synaptic time
constant is not part of neuron model in the simulator. The settings for
the Threshold much lower than the LIF neuron settings, as otherwise
the output spike activity is too strong. The set value is found iteratively. 62

B.1 Raw testing results, for a variety of set number of thresholds. Input
size is the number of required input-layer neurons of the SNN network.
*Meaning the size of the input layer of the SNN architecture, output is
fixed to corresponding number of classes. 63

B.2 Raw testing results, for a variety of SOM dimensions. Input size is the
number of required input-layer neurons of the SNN network. *Meaning
the size of the input layer of the SNN architecture, output is fixed to
corresponding number of classes . 63

B.3 Raw SNR noise testing results, for a select number of promising PTA-
SNN architectures. 64

B.4 Raw SNR noise testing results, for a select number of promising SOM-
SNN architectures. 65

B.5 Confusion matrix for the PTA-SNN architecture when only background
noise is presented to the network. Since the network is trained to classify
the speech samples, no response from the system is desired as any output
activity corresponds to a speech class. However, this is not the case, as
most samples results in misclassification of speech instead of noise. . . . 66

B.6 Confusion matrix for the PTA-SNN architecture when only background
noise is presented to the network. The added class 10 corresponds to the
noise, and it highly detected. 67

B.7 Confusion matrix for the PTA-SNN architecture when clean audio is
presented to the network, with addition of the dedicated noise class. . 67

xiv

B.8 Confusion matrix for the SOM-SNN architecture when only background
noise is presented to the network. The added class 10 corresponds to the
noise, and it highly detected. 68

B.9 Confusion matrix for the SOM-SNN architecture when clean audio is
presented to the network, with addition of the dedicated noise class. . 68

xv

xvi

Introduction 1
In recent years, the deep learning revolution has become increasingly evident. Voice-
activated personal assistants such as Sire and Alexa are influencing our daily lives.
These breakthroughs are possible thanks to the use of artificial neural networks (ANN).
These complex structures are often multiple layers deep, where intelligence is provided
by learning techniques typically based on backpropagation. This supervised algorithm
requires tremendous amounts of labelled training data to achieve an impressive classi-
fication accuracy, sometimes even exceeding human abilities. However, these advance-
ments often consume large amounts of energy and thus limits its applicability. Spiking
Neural Networks (SNNs) can be seen as next generation of Neural Networks, and hold
the potential to overcome the energy obstacles. It performs brain-inspired information
processing, passing and processing asynchronous spike potentials (binary signals), all
highly parallel. Unlike traditional ANNs, Spiking Neural Networks incorporate tempo-
ral information into their operating model, meaning the concept of time. This neuron
model is thus more biologically realistic than ANNs, carrying over one of most favorable
characteristic of the brain, energy efficiency. When combined with purposely designed
neuromorphic hardware, SNNs based solution can obtain Ultra-low power consumption,
low latency for inference and potentially allow for local on device learning.

1.1 Problem statement

Automatic speech recognition (ASR) solutions have become prominent in our everyday
life. An increasing number of smart devices have a voice interface, e.g. mobile devices
and smart appliances. This surge in voice-controlled devices is made possible by recent
advances in Neural Networks. Here complex network models are trained to perform
speech recognition tasks. These large network structure require immense amount of
computational operations, thus also increasing the power requirements. This obstacle
has led to the utilization of cloud computing, where the processing load is transferred
off device to external servers. However, this solution is far from ideal since sensitive user
data is shared, leads to increased latency and requires a robust internet connection.

The goal of this work is to develop an algorithm/pipeline that enables on-device
ASR using Spiking Neural Networks. The focus is on compact network architectures
that allow for local on-device processing. Spiking Neural Network provide an attractive
platform, especially for event-driven temporal information. Its favorable characteristic
in terms of latency and power consumption could enable always-on speech recognition,
which is highly desired. When viable, this solution could highlight the SNNs’ potential
and applicability to a broad market.

1

Research questions To guide the research, overarching research questions have been
formulated as follows:

• How does the size of the Spiking Neural Network architecture affect overall per-
formance, particularly classification accuracy?

• How do different quantities of background noise affect the classification accuracy?

• How does the Spiking Neural Network implementation compare to more tradi-
tional non-Spiking Neural Networks, in terms of classification accuracy, power
consumption and latency of inference?

1.2 Thesis objective

The main objectives of this work are as follows:

• Develop a Spiking Neural Network architecture capable of classifying audio data
with high accuracy.

• Enhance the network architecture to perform more robust classification under
different levels of background noise.

• Research or develop an auditory front-end capable of encoding acoustic data into
sparse spatio-temporal spike trains.

1.3 Contributions

The main contributions of this work are listed below:

• An efficient auditory front-end, inspired by the human auditory system, that
results in low-level feature extraction.

• A baseline temporal-based Spiking Neural Network architecture that is highly
capable of speech classification, which is inspired by the current state-of-the-art.

• An enhanced Spiking Neural Network architecture optimized for noise robustness,
capable of performing under different levels of background noise.

• A software framework that utilizes a supervised learning method capable of train-
ing a temporal-based Spiking Neural Network.

• A tool capable of adding background noise to a clean speech signal, where the
signal-to-noise ratio can be configured by the end user. It offers great control over
the amount of noise subjected to the network, and allows for thorough analysis
and verification on the impact of noise.

• An analysis of the robust speech classification network performance and the ben-
efits compared to more traditional non-Spiking Neural Networks.

• A full system analysis that shows the proposed architecture can be a viable solu-
tion for robust speech recognition with Spiking Neural Networks.

2

1.4 Thesis outline

The thesis is structured as follows:

Chapter 2 provides background knowledge regarding Neural Networks. It explains
the difference between typical Artificial Neural Networks and Spiking Neural Net-
works. The neuron and synaptic models on which the networks are build, the
learning methods, simulation tools and a description of the Auditory front-end.

Chapter 3 contains an in depth description of the proposed network architecture.
All the components of architecture are disclosed together with the enhancements
made for improved robustness to noise.

Chapter 5 discussed the obtained results. Here, performance comparison are made
of different sized networks, the gains of the enhancements and the impact of
background noise.

Chapter 6 describes the overall outcome of this research. Based on the performance
results the strengths and weaknesses of the architecture are uncovered.

Chapter 7 concludes the thesis and provides a list of possible future research topics
to extend the current solution.

3

4

Background 2
In this chapter, background information is provided with regard to Spiking Neural Net-
works and neuromorphic hardware in general. It tries to answer the following questions.
What is the definition of a Spiking Neural Network, and how to they compare to more
common artificial neural networks? Which tools are available to simulate the network’s
behavior? What kind of encoding is required, so the input data can be processed by a
Spiking Neural Network? How do biological systems encode and process audio infor-
mation? Before going into more detail, a more in depth description of the use-case is
given. This since the use-case plays a crucial part in the direction of this research.

2.1 Use-case description

Within the automotive industry, there is a need for on-board speech recognition solu-
tions which can be deployed on embedded devices. This is especially relevant to enable
vehicle access via voice (e.g. unlocking the car) from inside or outside the car. To
support the vehicle access via voice, an array of microphones is mounted in critical
locations.

The proposed solution, speech recognition with neuromorphic computing on em-
bedded devices, has the potential to solve these issues. As described, the combination
with Spiking Neural Networks exhibit favorable properties could meet the critical re-
quirements. Other than the power requirements, other critical requirements are:

• High accuracy, since a large amount of miss-classification would make the solu-
tion unreliable.

• Works in noisy environments as for both the interior and exterior space back-
ground noise is expected.

• Low latency for inference, this because a slow response time would hurt the user
experience.

5

Use-case examples
In a general sense, speech recognition systems utilized in the automotive industry aim
to remove distractions and improve the user experience. The industry is exploring
various modes for vehicle access, e.g. trigger action of the vehicle by voice from outside
the car. In Figure 2.1 one of the important scenario is Illustrated, the two important
voice triggered actions being;

• Lock/unlocking the vehicle

• Open/close tail gate (powered)

As described in future enhancements, ultra-low power speech recognition offers a
great amount of new opportunities. This is certainly the case for interior space, where
its use could be extended to the secondary controls of the vehicle. Voice activated
secondary controls allow the user to easily operate the lighting, windows, wipers etc,
while safely keeping both hands on the steering wheel.

Figure 2.1: Visual representation of the voice-triggered tail gate action, powered tail gate
open or close.

6

2.2 Artificial Neural Networks

Artificial Neural Networks (ANN), as the “neural” portion of the name implies, are
compute models inspired by biological neural networks. The computational model was
created by the neurophysiologists Warren McCulloch and the logician Walter Pits in
1943 [1]. At present, ANNs have gained significance in artificial intelligence with the
advent of a training algorithm called backpropagation [2]. This technique enables arti-
ficial neural network to adjust its behavior when its predicted solution doesn’t match
with was expected. It enables researchers to create self-adjusting networks that can
modify the connection strength between neurons, and thus increases the overall accu-
racy in networks. Unlike typical computer programs, which always execute according
to the commanding of the programmer, it learns from examples and experiences not
from predefined lines of commands. As a result, it enables computers to solve complex
problems which are not know to humans more efficiently. For example, in the field of
Computer Vision and Natural Language Processing.

Figure 2.2: General visualization of an Artificial Neural Network.

As illustrated in Figure 2.2, the network consist of an input and output layer. In
most cases, a hidden layer is applied to convert the input into a usable form for the
output layer. The network is formed by a set of artificial neurons, which are also knows
as nodes. The function the nodes perform can be different per layers, as they have a
specific value which is transmitted to all connected nodes. Connected nodes compute
their value by some non-linear function of the sum of its inputs. Weights control the
connection strength between the nodes and can be increase or decrease. These weights
are usually adapted during the learning stage, which is where the intelligence of an
ANN originates.

7

2.3 Spiking Neural Networks

Compared to traditional ANNs, Spiking Neural Networks (SNNs) more strongly mimic
the information processing in biological Neural Networks. Like the brain, neural activity
is represented by so-called spike trains, which are sequences of event potentials (spikes).
These events are processed by the neurons and communicates with other neurons via
specialized connections called synapses. The neuron in a SNN only fires if the sum of
integrated inputs reaches a threshold, unlike the bounded propagation cycle of typical
multi-layer perceptron networks [3]. When a neuron elicits a spike, this potential will
be relayed to all connected neurons, affecting the potential of these neurons. The
timing of the arrival of each spike is of great importance, in order to propagate the
signal. Unlike more classical artificial neural networks, the temporal placement (time)
is thus incorporate into the model. Similar to the brain, it’s capable of continuous event-
driven information processing in massive parallel fashion. All these characteristics make
SNNs extremely suited for efficient modeling of temporal data. The biggest advantage
of Spiking Neural Networks is their theoretically ultra-low power consumption when
combined with specialized neuromorphic hardware [4]. The ability to solve complex
problems very power efficiently offers new opportunities. The creation, simulation and
training methods available are outlined in the following subsections.

2.3.1 Biological Neurons

In the brain, a neuron (nerve cell) is fundamental for all communication in the nervous
system. Each neuron is composed of the cell body, which includes the soma, large
branching axons and smaller branching dendrites, see Figure 2.3. The soma is the
main excitable cell that accumulates incoming event potentials received through the
dendrites. Whenever a neuron elicits a spike, the axon relays the outgoing potential to
other neurons through the synapse. All together these form the neural circuits which
can perform complex functions. To exemplify, the human brain consists of billions of
neurons with trillions of synaptic connections [5][6][7].

Figure 2.3: Anatomy of a neuron, highlighting the three main components, the soma, den-
drites and axon.

8

The process of exchanging information between transmitting neurons can be outline
in three main phases. Initially, the transmitting neuron generates an electrical pulse
also known as an action potential or spike. This potential is released from the cell
body and travels along the axon to the terminal endings. The dendrite of the receiving
neuron is connected to a branch of the axon terminals via a synapse. This connection
allows neurons to interact and transmit information from one to the other. This process
only starts when a neuron receives sufficient stimuli, from one or multiple sources, as
the incoming electrical energy is accumulated raising the membrane potential at the
neuron’s cell body. When sufficient energy is accumulated in a small time-interval, a
certain threshold is exceeded, causing the neuron to produce its own action potential, or
outgoing spike. This and the following phases of the neuron’s behavior are illustrated
in Figure 2.4. The action potential will be relayed to all other connected neurons.
The accumulated energy in the transmitting neurons cell body will reset to its resting
potential and the neuron will enter a refractory period. In this temporary state the
neuron will not respond to incoming stimuli nor will it produce new spikes. In case
of failed initiation (meaning insufficient stimulation of the neuron), the accumulated
energy in the neuron cell body will slowly decrease until the resting state, since the cell
membrane isn’t a perfect insulator.

Figure 2.4: Illustration of an action potential, showing the various phases that occurs as
stimuli effect the neuron’s cell body.

9

2.3.2 Neuron Model

To exploit the computational potential of a neuron, a model is needed to recreate or
simulate its behavior. The most famous being the biologically-inspired Hodgkin–Huxley
model proposed in 1952 [8]. This comprehensive model describes the behavior of the
biological neuron in great detail, included the generation, diffusion and accumulation
of action potentials. The model is derived from biological experiments, by measuring
actual cerebral activity. The electrical characteristic of the neuron are described by
a set of nonlinear differential equations, shown in [8]. While this model represents
a neuron with high biological plausibility, its implementation cost have shown to be
prohibitive [9]. It did, however, lay the groundwork and initiate the development of
many other less complex neuron models. Driven by efficient implementation cost the
simplistic integrate-and-fire model emerged [10]. In this model neurons are viewed as
integrators, which elicits an output spike only when its accumulated potential crosses
the set threshold. Following the release of the potential, the neuron will enter its resting
state. Due to the simplicity of the model, basic circuit consisting of a capacitor (C)
can model this behavior. As highlighted by Equation 2.1, the neuron model is simply
the derivative of the self capacitance of a conductor. Albeit its simplistic nature, the
model is still wide used for analyzing neural network behavior.

I(t) = Cm
dVm(t)

dt
(2.1)

The leaky-integrate-and-fire (LIF) model is an extension of the previously described
integrate-and-fire model. The addition of the leak term models the behaviour of the
membrane potential more closely, as it’s not the perfect insulator. It solves the memory
problem of Equation 2.1, where the accumulated potential is not discharged over time.
This added complexity can be easily implemented in hardware by the addition of a
discharge resistor (R), allowing the membrane potential to return to its resting state.
This extended model shown in Equation 2.2.

I(t)− Vm(t)

Rm

= Cm
dVm(t)

dt
(2.2)

Here Rm is the membrane resistance, modeling the discharge characteristic of the
membrane potential. This work utilizes the LIF model due to the hardware driven
nature of the use-case. This level of abstraction is most suitable for the purpose of this
work, since the efficiency and the implementation cost is significantly more important
than the biological plausibility of the neuron model.

10

2.3.3 Synapse

The synaptic connections permit a neuron to pass signals to other neurons. These large
structures are needed to form a network capable of handling complex tasks. An action
potential is relayed from the cell body through the axon, which branches into multiple
terminal ends. Each terminal end making various connections with the dendrites of
receiving neurons via a synapse. Likewise, a single neuron may receive action poten-
tials from numerous neurons through its dendrites. The exact arrival times of these
action potential determine if a subsequent potential is generated. Figure 2.5 depicts
the described synaptic connection.

Figure 2.5: Illustration of the synaptic connection between two neurons and to the right a
more in-depth view of the synapse.

In simple terms, the axon terminals of a sending neuron contains neurotransmitter
molecules. In case of an action potential, these neurotransmitters are released into the
synaptic cleft, the small gap between the pre- and postsynaptic neuron. The molecules
will diffuse across the synaptic cleft on the postsynaptic cell and forms a chemical
transmission. It enables the receiving neuron to generate its own postsynaptic events,
which in turn will serve as the stimuli for the next receiving neuron. These synaptic
connects are a critical component of neural networks yet, the biological model of the
synapses is very complex. A simplified model is required in order to realize a cost-
efficient implementation. This is achieved by the use a current-based synaptic model
for both the simulator and neuromorphic hardware platform. The model adds a pre-set
amount of current on the postsynaptic side, only in case of a presynaptic event. The
specific amount of added current is defined by variable called a weight. By changing
the synaptic weight between neurons, the behavior of the network can be altered and
allows for networks with complex behavior.

2.4 Information encoding

Within Spiking Neural Networks, information is represented and communicated by
spikes. These binary events result in a sequence of spikes, called spike trains, con-
taining the information based on the encoding scheme applied. The encoding scheme
used to encode external information plays a critical part in the functioning and perfor-
mance of the network. Neural information coding are still actively research [11], since
there is no universal solution has been found. Therefore, numerous coding options are

11

Figure 2.6: Rate encoding versus temporal encoding of information. Demonstrating the sparse
and reduced frequency of the temporal spike trains.

available. These encoding options can be split into two main categories, namely rate
encoding and temporal encoding. The encoding type used in the networks depends on
the application and the training method used. Specific for this use-case, where tem-
poral audio information needs to be processed, a temporal encoding methods seems
the obvious choice. This since temporal encoding schemes fully exploit the acoustic
temporal information leading to more sparse spike trains. A more detail description,
including both the benefits and cons, will be given in Section 2.4.1 & 2.4.2.

2.4.1 Rate encoding

With Rate-based information encoding the frequency or rate of the spikes depends on
the intensity of the input stimuli. As the intensity increases, the neurons firing rate will
increase accordingly. It assumes that all stimuli information is contained in the firing
rate of the neuron, thus neglected any temporal information possibly encoded by the
timing of the spikes. This form of encoding is often used static applications, like [12],
where pixel-based inputs with no temporal information are processed. Furthermore,
recent experimental studies have provided evidence that a straightforward firing rate
concept may be too simplistic to describe brain activity [13]. Another drawback of
rate encoding is the large amount of spikes needed to encode the signal. When the
input value approaches the maximum intensity value, the output will also have spike
frequency close to its maximum. This large amount of spikes will negatively impact
the power-efficiency of the network.

12

2.4.2 Temporal encoding

In contrast to spike rate encoding, where information is encoded based on the firing
rate, temporal encoding is based on the precise timing of the spikes. Due to its sparsity
of resulting spike trains, as is illustrated in Figure 2.6, each spike and its exact timing
is of great importance. A wide range of temporal encoding strategies exist, with the
disadvantage that they increase the complexity of training the network. As is demon-
strated by the Tempotron learning rule, see Section 2.5, as its only capable of training
single network layer at a time. Nevertheless, temporal encoding schemes greatly reduce
the amount of spikes processed by the network, as each spike contains more information
[14]. This will positively impact the power-efficiency as each spike increases the power
requirements. A comparison between the spike trains obtained by rate encoding and
temporal encoding is shown in Figure 2.6.

2.5 Training methods

Spiking Neural Network have the potential to outperform current Neural Network with
regard to latency and power efficiency per inference. Research has shown [15] that
SNNs theoretically can obtain the same level of computational complexity as traditional
ANNs. However, in practice SNNs have often not reach the same level of performance.
The theoretical potential is often hampered by the absence of powerful training methods
that allow for deep SNN structures. This obstacle is caused by non-differentiable spikes
used for information processing, which is fundamental for using error backpropagation
techniques. Training methods based on this technique enables deep ANN structures,
modeling complex behaviors. Numerous solutions have been proposed that workaround
the obstacle of non-differentiability. Often inspiration is taken from unsupervised bi-
ological learning processes. Available training options for SNNs can be divided into
three classes: unsupervised learning, indirect and direct supervised learning.

Unsupervised learning methods are often inspired by biology. A popular method
for unsupervised learning is Spike Timing Dependent Plasticity (STDP) [16]. Here
the weight are adjusted based on the correlations between pre- and postsynaptic spike
events. This form of Hebbian learning [17][18] is often summarized as “Cells that fire
together wire together”. For interested readers, more detailed information can be found
in [19][20][21]. Achieving high accuracies with training methods that employ Hebbian
learning is often challenging and time-consuming without global supervision.

Indirect supervised learning is a more recent approach, where different data repre-
sentation between training and processing are used. Within this process a traditional
ANN model is trained and translated into a SNN equivalent. The intensity values used
in the ANN computations are converted into firing rates for the spiking neural model
[22][23]. The mapping from an ANN to SNN is not without drawbacks, given that
there may be a performance loss for the SNN. The resulting rate-based SNN is often
applied to static classification tasks where the loss of temporal details is less relevant
(see Section 2.4). However, in this work temporal acoustic information is processed,
any loss in temporal information will thus negatively impact the overall performance.
In addition, the temporal benefits of the SNN will not be fully exploited. If anything,

13

it would be a missed opportunity to highlight SNN’s favorable temporal event-driven
characteristics.

Numerous direct supervised learning methods have been proposed, ranging from
fairly simple to extremely complex learning rule. A popular lightweight option is the
Tempotron [24] learning rule. This powerful learning rule is directly applied to spatio-
temporal encoded spike trains. Like other learning rules that operate directly on the
spike trains, limiting its training capabilities to single network layers. It is therefore
very difficult to train deep SNN structure, as it’s not applicable to hidden layers. This
learning is discussed in more detail in Chapter 4 due to its extensive usage. Other
more capable options include, Spikeprop [25] and ReSuMe [26]. Both workaround the
obstacle of non-differentiability and thus are capable of training hidden layers. However,
the increased capabilities come at the expense of added complexity. Thus making in
more complex to implement, test and verify its functionality.

2.6 Spiking Neural Network simulations

The neuromorphic hardware platform that implements the leaky integrate-and-fire
model is currently still under active development. Since this hardware platform is
currently unavailable, experiments can only be performed by simulating the behavior
of the Spiking Neural Network. Initial experience, with creating and testing Spiking
Neural Network, was gained with the widely used Brain2 simulator [27]. This simulator
is capable of testing a broad range of neuron and synaptic models which are defined by
a set of differential equations. For example, the Hodgkin and Huxley, Izhikevich and
the leaky integrate-and-fire models can easily be implemented with Brain2. Due to its
popularity, an excessive amount of documentation and examples is available.

In the more advanced stage of the project the decision was made to use the pro-
prietary in-house simulator. The main advantage of this simulator is its efficiency
and speed in comparison with Brian2. Furthermore, it’s fully applicable to the future
neuromorphic hardware implementation currently in development. This is of great im-
portance due to the specific use-case of the project. Here the ultimate goal is to demon-
strate the functionality of both the network architecture and neuromorphic hardware
platform itself.

All described results are obtained with the in-house simulator, which tries to meet
the specific requirements and limitations of the intended hardware platform.

2.7 Auditory front-end

The auditory front-end is an important component of any speech recognition system.
Its task is to decompose the incoming audio stream into distinct features. These fea-
tures are critical for the performance of the subsequent classifier, as low-quality features
can become the limiting factor. It is therefore important to provide qualitative acoustic
features to ensure the success of this work. To achieve the objective, it is important
to seek inspiration from biology, as evolution resulted in effective and efficient auditory

14

systems. E.g. the human auditory system performs extremely well for speech recogni-
tion, as so, it has served as the basis for most speech recognition systems. In simplified
terms, the auditory system can be seen as a frequency analyzer [28, p. 289]. These
actions are mostly handle by the cochlea, which contains the sensory organ of hearing.
Its functionality can be emulated by non-linearly scaled filter banks which mimic the
logarithmic filter behavior of the cochlea. This proven form of frequency decomposition
is commonly used in both the ANN [29] and SNN [30] [31] domain. The aim here is
to capture the spectral and temporal features by framing the output of the filter bank,
resulting in a two-dimensional spectrogram. The spectrogram captures the frequency
spectrum of the incoming autistic signal, as the signal varies with time. Next, all key
acoustic feature embedded in the spectrogram need to be encoded into temporal spike
trains.

A potentially more energy-efficient alternative is to encode the output of the filter
bank directly. However, this solution is very experimental and high performance is
not guaranteed. Because of the complexity and time constraints of this work, it was
decided to focus on proven methods. If time permits, other solutions will be explored.

15

16

Architectural design 3
This chapter offers an overview and in-depth analysis of the architectural design. First,
a global outline is provided, after which each component is examined in greater depth.
The architecture consist of four main parts:

• Auditory front-end

• Spike encoding

• Spiking Neural Network

• Spike decoder

Each of these components plays a critical role in the functioning and performance
of the architecture. The reasoning and exact function of each component is elaborated
in the following sections.

3.1 Architecture

A high-level overview of the proposed architecture is depicted in Figure 3.1. The sensory
audio data received is processed by the auditory front-end which mimics the human
auditory system. It decomposes the sensory data in a set of frequency components
used for low-level feature extraction. The temporal information of these frequency
components are captured by splitting the signal into short frames. For each frame the
spectral energy is calculated, thus obtaining the strength of each frequency component
over time. The visual representation of the resulting output is called a spectrogram, see
Section 3.1.1 for a more detailed description. In the next stage, the encoder converts
the information embedded in the spectrogram into sparse temporal spike trains. This
encoding step is necessary so that the information can be processed by the Spiking
Neural Network, which acts as a classifier. In the final stage, the output of the SNN
classifier is interpreted by the decoder and the corresponding label is selected.

Figure 3.1: Proposed architectural overview. The architecture consist of four main parts, the
auditory front-end, encoder, SNN classifier and decoder.

17

3.1.1 Auditory front-end

Automatic speech recognition (ASR) systems are used extensively in, e.g. mobile
phones, and has guided the design of many useful speech processing algorithms. State-
of-the-art speech recognition systems [32] [33] rely on fixed, handcrafted features such
as mel-filterbanks to preprocess the audio waveform. The constantly changing audio
signal passes through a cochlear filter bank, decomposing the signal into multiple com-
ponents, each carrying a single frequency sub-band of the original signal. The cochlear
filter bank is designed to emulate the human auditory system. The nonlinear perception
of sound is replicated through the use of the Mel-Scale, it being more discriminative in
the lower frequency ranges. The filter bank parameters are in Mel (m) and Hertz (f)
are calculated with help of the subsequent equations:

m = 2595 log10(1 +
f

700
) (3.1)

f = 700
(
10m/2595 − 1

)
(3.2)

The filter bank consist of a set of triangular filter, with a response of 1 at each mel-
scaled centre frequency. An overview of the exact response of each filter is illustrated in
Figure 3.2. The use of Mel-Scale offers great flexibility, as the number of filter channels
and the active frequency range in Hz are given as parameters. This flexibility is of
great value since it doesn’t limit the input audio characteristics. In contrast to fixed
predefined filter parameters, which are purposely designed for a given audio signal.
Based on performance results form other research [32] [33], an 20-channel filter bank is
applied as these settings have shown strong results for similar applications. The exact
filter parameter can be found in Appendix A.1. The filter bank is implemented by a set
of analog band-pass filters, omitting the needs for the more computational expensive
Fast-Fourier transform. This to minimize the energy requirements of the architecture.
In case a more flexible generalizable architecture is desired, the use of Fast-Fourier
transform is recommended.

Figure 3.2: Example of a 20 channel filter bank on a Mel-Scale with a frequency range of 0
to 4 kHz.

18

Figure 3.3: An illustration of audio waveforms and there corresponding spectrogram. The
audio samples contain the utterance of spoken digits 0 to 2.

The analog filters are implemented following the Butterworth design. This filter
design is chosen for its flat as possible frequency response in the pass-band. These
characteristics are desirable as the passed frequency components at the output of the
filter will be left mostly unaltered. The 20-channel signal output of the filter bank is
framed into 20ms windows. In general a windows sizes in the range of 20-40ms is applied
for speech applications. A much shorter windows size will lead to an unreliable spectral
estimate due to insufficient samples, if longer the signal changes within the frame are
not captured. Furthermore, a stride size of 10ms is applied resulting in a typical 50
percent overlap of the frames. After slicing the signal into frames, a Hamming window
is applied to reduce the spectral leakage due to windowing.

19

In the following step the spectral energy of each frame is calculated. This step
mimics the human cochlea (see Section 2.7) which identifies the frequencies present in
the incoming sound. The spectral energy (logE) is computed following Equation 3.3,
where N is the frame length and F is the frame content. The logarithmic part of the
Equation 3.3 emulates the non-linearity of the biological auditory system.

logE = ln

(
N∑
i=1

F (i)2
)

(3.3)

The output of the auditory front-end is a two-dimensional spectrogram which con-
tains spatio-temporal information. A number of example spectrograms are shown in
Figure 3.3, the 20 rows represent the frequency bins used to decompose the signal.
The unique features embedded in each waveform are captured and highlighted by each
spectrogram. These features play a cricial role in speech recognition, and enable the
subsequent stages to classify the incoming audio data. Note that each spectrogram is
normalized in preparation for the following encoding stage.

3.1.2 Spike encoding

The audio information processed by the Spiking Neural Network has a strong temporal
nature. Furthermore, sparse spike trains are desirable for a greater power-efficiency
and fast inference. Due to these characteristics a form of temporal encoding called
population threshold algorithm (PTA) is utilized in this work. The population contains
a set of encoding neurons, each with a unique set threshold. In this case each threshold is
linearly spaced within the normalized range of each spectrogram, thus between 0 and 1.
Each time the incoming signal crosses a threshold, a peak is generated, thus translating
each spectrogram into the spiking domain. The results shown in [32] highlights the
efficient performance of this encoding methods. Compared to other common encoding
options, this method achieves the lowest average spike rate, while performance is similar.
In some cases even outperforming them, as is the case for latency and phase coding.

(a) (b)

Figure 3.4: Population threshold encoding: (a) the varying signal crossing the set of linearly
spaced thresholds, (b) the resulting temporal spike trains corresponding to each crossing.
The red labeled spike correspond to crossing from underneath and the blue labeled refer to
crossing from above.

20

Threshold-based encoding models generate a spike only when the incoming signal
crosses a certain threshold. Instead of using a single neuron to encode the signal,
multiple neurons (a population) are used to encode the signal, each having their own
specific threshold value. These values must be in range of the input signal as they define
the selectivity of the neuron population. As illustrated in Figure 3.4, a distinction is
made between crossing from underneath and above. This approach omits the need of
inhibitory (negative) spike, as both onset and offset spike trains are fed into the SNN.
It doubles the amount spike trains required, in this example 10 thresholds leads to 20
spike trains. The varying signal in Figure 3.4a crosses a set of thresholds, depicted by
the dotted lines. For each crossing a spike is generated, resulting in temporal encoded
spike trains. The simplified pseudocode for this type of population threshold encoding
is depicted below by Algorithm 1.

The described method is used to encode the spectrogram in a set of sparse temporal
spike trains. The conversion from a real spectrogram to spikes is illustrated in Figure
3.5. In this case 15 uniformly distributed thresholds values, within the normalized
range of 0 to 1, have been applied to each spectrogram. The resulting 600 spike trains
contain the speech features in a more abstract from. In the next stage the spike encoded
information stream is processed by the Spiking Neural Network.

Algorithm 1: Population Threshold Encoding algorithm pseudo-code

Data: signal → a T-length vector containing the signal values
thresholds → a H-length vector containing the thresholds

Result: onset spikes → a T*H-sized matrix containing temporal onset spikes
offset spikes → a T*H-sized matrix containing temporal offset spikes

memory(1 ... H) = false;
onset spikes = zeros;
offset spikes = zeros;
foreach T → t do

foreach H → h do
if memory = false AND signal(t) > thresholds(h) then

onset spikes(t, h) = 1;
memory = true;

else if memory = true AND signal(t) < thresholds(h) then
offset spikes(t, h) = 1;
memory = false;

21

Figure 3.5: Overview of audio spectrogram and the corresponding spike trains obtained by
population threshold algorithm (PTA) encoding. For this example 15 uniformly distributed
threshold values are used, resulting in 600 sparse temporal spike trains. Like in Figure 3.3
the audio samples contain the utterance of spoken digits 0 to 2.

3.1.3 Spiking Neural Network

The architectural design of the Spiking Neural Network is strongly affected by external
factors. In this particular case, the use of a temporal-based network has implications
on the training options. Training methods capable of training these type of network
are often limited to single network layers, or become extremely complex when capable
of training multiple layers. At the start of the project, the simulation toolbox did not

22

include a training option for temporal-based network. This obstacle has been overcome
by the implementation of Tempotron learning rule. More about this relatively simple
supervised learning method can be found in Section 2.5. The use of this learning method
adds a constraint, as it is only capable of training single network layers. Due to this
limitation, a network architecture that is only a single layer deep is implemented. A
fully connected network structure is implemented containing only an input and output
layer, thus no hidden layers. An illustration of the network architecture is shown in
Figure 3.6. The size of the input layer is fully dependent on the number of spike trains
presented to the network. For example, a PTA with 15 threshold values requires an
input layer size of (2 · 15 thresholds · 20 bins =) 600. The output of the network has a
fixed size which corresponds to the number of classes used. Different sized input layers
have been explored and the performance impact has been studied. The observations
made, like classification accuracy and robustness to noise, are described in Chapter 5.

The exact parameters for neuron simulation can be found in A.2. These parameters
are based on the neuromorphic hardware platform itself, thus comparable hardware
classification accuracies are expected.

Figure 3.6: Architectural overview of the SNN classifier. The size of the input layer is fully
dependent on the number of spike trains presented to the network. The output layer has a
fixed size, one for each output class.

3.1.4 Spike decoder

The raw SNN output is still in spike format, with help a decoder these spike trains are
interpreted. Within the simulator toolbox a variety of decoder options are available.
The optimal decoder was found to be the First-time-to-spike method, due to the sparse
output of the network caused by the Tempotron learning rule. The frequency-based
decoders suffer from ambiguous classification due to the low amount of output spike. For
example, in case two output both only have a single spike output, the spike frequency
is equal, leading to misclassification as the decoder cannot distinguish them.

As demonstrated in Figure 3.7, the First-time-to-spoke decoder selects the output
with the earliest response. In the case Figure 3.7 label 1 is selected as its output had the

23

Figure 3.7: An example scenario in which the First-time-to-spike decoder is applied to a set
of spike trains.

fastest response. In contrast to the frequency-based decoders, this method is capable
of classifying spike outputs which contain on single spikes. The only drawback with
this approach is that it’s receptive to noise. When an early unwanted output spike is
generated because of noise, a misclassification will occur. The frequency-based method,
which often requires much more spiky output, is potentially less receptive to unwanted
spikes. This since, unwanted spikes are less likely have a significant impact on the spike
frequency and thus its classification.

3.2 Enhancements

In this section improvements made to the architecture will be discussed. This in terms
of classification performance, network size, number of spikes, and noise robustness. The
impact of the improvements are described in Chapter 5.

3.2.1 SOM layer encoding

With this enhancement, an unsupervised self-organizing map (SOM) is used for repre-
senting the frequency content captured by the auditory front-end. The spike encoder,
discussed in Section 3.1.2, is replaced by the unsupervised SOM which generates an
effective and sparse mid-level representation of the embedded features. Other research
[34] made the observation that existing SNN temporal training rules cannot effectively
discriminate latency or population encoded filter banks. Therefore, an SOM based solu-
tion is proposed to form low-level feature representation of each spectrogram. In Figure
3.8 the architectural chances are depicted. The red color highlights the trainable com-
ponents of each architecture. The enhanced architecture is a multi-layer network where
the SNN input layer forms a hidden layer. Self-organizing map is capable of dimension-
ality reduction but also reduces the effects of noise (variance) and redundancy (highly
correlated variables). These characteristics combined with low-level spectral features
extraction of each frame, allow the SNN classifier to be more robust to background
noise, as is demonstrated in Chapter 5.

24

Figure 3.8: Architectural overview of the initial population Threshold encoded architecture
and the SOM enhanced architecture. The latter utilizing the SOM for mid-level feature
representation of each acoustic spectrogram.

The unsupervised SOM is implemented with help of the MATLAB Neural Network
Toolbox. The SOM maps the input vector onto a dimensional space, where the weights
in the feature map can be seen as coordinates. This spatial translation presumes that
closely connected neurons and inputs share similar properties. Figure 3.9 demonstrates
a small fully connected SOM network of (4 · 4 =) 16 neurons. Unlike typical artificial
networks which apply error-correction learning (e.g. backpropagation), the SOM uses
competitive learning. A given frame of the spectrogram is presented to the SOM, the
similarity compared to each weight vector in the feature map is calculated with help
of the Euclidean distance. The neuron which most closely resembles the input vector
is selected, this neuron is called the Best Matching-Unit (BMU). The weight vector of
the BMU and the neurons in its proximity are adapted to more closely represent the
input vector. The scale of this adjustment is based and on the distance to the BMU,
and also decreases per epoch. The BMU within the SOM are activated over time as
the spatio-temporal input data is encoded into tonotopically organized feature maps,
where each sparsely activated BMU represent a spiking neuron. The spikes triggered
over the duration of an audio sample result into spatio-temporal spike trains, which are
processed by the SNN and are classified as one of the audio classes.

In Figure 3.10 a comparison is made between the spike trains obtained with the
population Threshold algorithm (PTA), and the output of the SOM. In case of the
SOM implementation, its output clearly shows the low-level feature extraction of the
audio data. These low-level features are not as pronounced with the Threshold encoded
signal. They are encoded in a more abstract form and require more spikes to represent
the same input data. This is an important side note, as each elicit spike will increase
the power consumption of the network.

25

Figure 3.9: A high-level representation self-organizing map (SOM). The neuron most similar
to the input vector is identified as the Best Matching-Unit (BMU). The weight vectors for
each neuron in its proximity, highlighted by the green zone, are adapted to the input vector.

Figure 3.10: A visual comparison between the resulting spike trains for Population Threshold
algorithm (PTA) and self-organizing map (SOM). The resulting low-level features by the SOM
are distinct, and requires less spike to represent the same data.

26

3.2.2 Dedicated noise class

An important characteristic of any robust ASR system is its capability to distinguish
speech from background noise. As shown in Chapter 5, the proposed network archi-
tecture performs poorly in tests where only background noise is presented. This is a
result of the binary classification applied to the output of the network, where each class
has its own dedicated output neuron. Due to the limited depth of the network, no hid-
den layers, there is a high likelihood that a noise fragment will elicit an output-spike.
Causing a high amount of misclassifications where the noise fragments are identified as
speech classes.

Figure 3.11: Architectural overview of the Spiking Neural Network with the added noise class,
depicted in red. The output layer has a fixed size, one for each output class, plus the one
dedicated to noise.

In the ideal case, no output spikes occur when only noise is presented to the network.
This behavior is difficult to recreate due to the limited depth of the network. A similar
type of behaviour can be obtained by adding a dedicated noise class, and thus output,
to the network architecture. An illustration of the addition of a dedicated noise class is
depicted in Figure 3.11. This enhancement allows the output-spikes, as a result of the
noise fragments, to be directed towards a dedicated output neuron. This architectural
enhancement, in combination with added noise only samples, dramatically improves the
networks capabilities to distinguish speech from noise, as is discussed in more detail in
Chapter 5.

3.3 Non-spiking neural networks

For the purpose of demonstrating the performance of the proposed SNN architectures,
their performance is benchmarked against non-spiking ANN solutions. These network
models are process the same spectrogram data as the proposed SNN implementation.
Three common network architectures have been selected, namely the Convolutional
Neural Network (CNN), the Recurrent Neural Network (RNN) and the Long Short-
Term Memory (LSTM) [35]. All network models are implemented using the Keras

27

open-source library for artificial neural networks [36]. This selection of neural networks
covers a broad variety of use-cases. For example, the CNN is often used for static image
processing [37], whereas the RNN are used for temporal processing [38] and the LSTM
are highly suited to Natural Language Processing (NLP). The exact network architec-
tures used are shown in Table 3.1. For a fair comparison, all ANN architectures are
compact in design, as this is the case for the proposed SNN architecture. This restric-
tion impacts the overall performance and power consumption of each implementation
and therefore leads to a more honest assessment. It’s worth noting that limited time is
devoted to optimization the ANN networks, e.g. search for the most optimal number
of parameters, as the exploration of the SNN networks was already time-consuming.

Network model CNN RNN LSTM

Network layers

Conv2D layer 32* LSTM layer 30 (Recurrent) LSTM layer 30
Conv2D layer 16* Dropout layer 0.1 Dense layer 10

Flatten layer LSTM layer 15
Dense layer 10 Dense layer 10

Total parameters 97114 11440 8830

Table 3.1: Keras network model settings used for the three selected non-spiking implemen-
tations. The size and type of each layer are depicted, as are the total parameters of each
design. The softmax activation function is used for each final dense layer. *For the Conv2D
layers in the CNN implementation, a kernels size of 3x3 combined with the relu activation
function is used.

28

Training methodology 4
In this chapter, a description of the training methods applied to the proposed archi-
tecture is given. The parameters, process flow and complications of the methods are
highlighted. Furthermore, the underlying philosophy behind the chosen speech data is
discussed.

4.1 Temporal spike training

The use of a temporal-based SNN has strong consequences for the applicable training
methodologies. As discussed in Section 2.5, it prohibits the utilization of ANN to
SNN conversion. A technique frequently used to create deep SNN architecture capable
of performing complex tasks. Due to the time constraints, a feasible option is that
cloud be implemented in time is the Tempotron [24] learning rule. Other more capable
training methods are significantly more complex to implement, which could jeopardize
the timeline. Tempotron is a supervised synaptic learning rule that enable neurons
to efficiently discriminate different spatio-temporal spike patterns. Powerful, when
applied to temporal spike trains where information is encoded in the exact timing of
the spikes [24][39]. Like other learning rules that operate directly on the spike trains, the
training capabilities are limited to single network layers. The Tempotron learning rule
incorporates the leaky integrate-and-fire (LIF) model, for which the total membrane
potential is described by Equation 4.1:

V (t) =
∑
i

wiAi(t) + Vrest (4.1)

where wi described the weight of the i-th synapse and Vrest the resting potential
of the neuron. The neurons total membrane potential is the weighted summation of
the postsynaptic potentials (PSP) from all synapses. The accumulated PSP of the i-th
synapses is described by Equation 4.2:

Ai(t) =
∑
ti<t

K(t− ti)) (4.2)

where K is the normalized PSP kernel when an input spike is received at time ti.
It describes the postsynaptic potential elicited by the incoming spike with parameters
τ and τs denoting decay time constants of the membrane integration and synaptic cur-
rents, see Equation 4.3. The factor V0 is used for the normalization of the postsynaptic
potential kernel. When the potential exceed the threshold Vth, the neuron will enter its
resting state by shunting all incoming spikes.

K(t− ti) =
{
V0 [exp (− (t− ti/τ)− exp (− (t− ti/τs)))] t ≥ ti

0 t < ti
(4.3)

29

The binary classification of the input patterns is performed with the following out-
come; a pattern which should elicit at least one postsynaptic action potential, or a
pattern which should have no response accordingly. Initially, the neuron has no knowl-
edge of which spike pattern belongs to which classification and has to learn it iteratively.
This learning process is performed by adapting the synaptic weights wi. In the first
scenario, a spike pattern is presented which should lead to at least a postsynaptic po-
tential, but the postsynaptic neuron did not fire, in this case all synaptic efficacies are
increased by delta wi. The next scenario, where a pattern should lead to no response
but is followed with a postsynaptic response, in this case leads to a decrease of the
synaptic efficacies by ∆wi. ∆wi can be described by Equation 4.4 where tmax is the
time instance at which the postsynaptic potential V (t) obtained its peak value, and λ
specifies the learning rate.

∆wi = λ
∑

ti<tmax

K (tmax − ti) (4.4)

4.1.1 Process flow

The Tempotron learning rule is implemented external to the simulation toolbox, re-
ducing development complexity and time. As a result, extra operation are required to
insert the trained model into the simulator. Each of the required steps to complete the
training process flow are described in this section.

Figure 4.1: Step 1: Data preprocessing of the speech data, resulting in a set containing each
spectrogram.

In first step, the speech data is preprocessed to minimize the simulation time of
the model. Here the auditory front-end, where the audio is filtered and framed, results
in set of spectrograms. See Section 3.1.1 for a more in depth description. The data
is split into two parts, a train- and test set where the latter contains 20 percent of
the entire dataset. Before the Tempotron learning rule can be applied, the training
data must first be encoded into temporal spike trains. To ensure proper operation, the
encoding settings used for Tempotron training need to be identical to the ones used
in the simulator. After this additional step, the training data is in the spike format
required for the learning stage.

30

Figure 4.2: Step 2: Training the network model with help of the Tempotron learning rules.

In the second step, the training data is fed to the Tempotron learning method. Based
on the included label the learning methods is capable of training the SNN model. The
user specifies the learning-rate, epoch and dimension of the network layer. The training
stage results in a weight file which contains the syntactic weights of each connection
of the network. Furthermore, the acquired training accuracy is shown which can give
some indication of performance.

Figure 4.3: Step 3: Testing network performance with help of the simulation toolbox.

In the third and final step, the weight file is inserted into the simulation toolbox.
Accompanied by network config files and the preprocessed training data. The config-
uration files include the neuron parameters, network partitions and dimension. Based
in the provided data, the behavior of the SNN is simulated and interpreted by the
decoder. This results in a performance figure of the architecture, including classifica-
tion accuracy, latency of inference and number of spike processed by the network. The
performance metrics described are used to evaluate the network’s performance. The
analyses of these metrics can be found in Chapter 5.

4.1.2 Complications

It is worth noting that the stand-alone application of the Tempotron learning rules
presents a minor complication. The Tempotron rules is defined following continuous
operation of the neurons and spike signals. These characteristics are thus also present
in implemented training framework. In comparison, the simulation toolbox utilizes a
discrete approach for computation efficacy. These two different approaches can there-
fore have negative effects on the obtained simulation performance. For example, the
exact temporal placement of the spike could slightly differ between the two and thus

31

impact the performance. However, these problems will not occur when applied to the
neuromorphic hardware itself since it operates in the continuous domain.

The ultimate objective is to incorporate the Tempotron learning rules fully into the
simulation toolbox. By merging the implementations the opportunity arises to align
both approaches, thus eliminating the described complication. Furthermore, it will
simplify the workflow as the manual steps described in Section 4.1.1 can be integrated.

4.2 Speech data

Following the given requirements, an appropriate dataset needed to be selected which
would mimic real-world conditions. The speech recordings thus include both clean and
noisy data-samples. In order to verify the noise robustness of the proposed architecture,
control over the amount of noise is beneficial. This enables the effects of certain amounts
of noise to be thoroughly investigated.

4.2.1 Dataset candidates

Due to the infancy stages of the project, the philosophy to start small and slowly expand
the complexity of the system is followed. This philosophy is reflected speech data used
within the project, as dataset with a relative low complexity are explored. This type of
audio data will provide a good starting point from which useful experience and insights
can be extracted. The main dataset candidates are discussed in more detail below.

4.2.1.1 TIDIGITS

This large dataset has been collected to designing and evaluating algorithms for speaker-
independent recognition of spoken digits (’0’-’9’,’oh’). It contains a large amount of
speakers (326) spread over a wide variety of categories like age and gender. The vast
majority of the dataset consists of digit sequences of varying lengths, but more im-
portantly it also contains more than 7,000 isolated utterances each collected in a quit
environment and digitized at 20 kHz. This fraction of the dataset of mainly used in
the current state-of-the-art, e.g. [32][33][34]. This is beneficial since direct performance
comparison can be made. The main drawback of dataset is its availability, since li-
censing and costs are involved. Furthermore, the dataset only contains clean speech
samples which don’t mimic real-world conditions.

4.2.1.2 Free Spoken Digit Dataset (FSDD)

Like the TIDIGTS dataset structure, the Free Spoken Digit Dataset (FSDD) [40] also
consist of recorded spoken digits (’0’-’9’). FSDD is an open dataset, which means it
will continue to grow over time as data is contributed. At time of this research, the
dataset contains 2,000 recording spread over 4 speakers, thus per speaker 50 recordings
of each digit. All samples are digitized at 8 kHz, recorded in ideal conditions where
minimal background noise is present. The recordings contain only the spoken digits
with the silence parts prior to and after trimmed. This dataset was selected because

32

it mimics the structure of the TIDIGIT dataset but is freely available, which allowed
prompt progress of the project. Like TIDIGITS, it only contains speech samples with
minimal background noise. This is solved by adding real-world background noise to
the clean speech recordings, this process is described in more detail in Section 4.3.

The restricted size of the dataset shouldn’t impose a problem since the long-term
goal is to use a more use-case specific dataset, i.e. actual speech commands. Due to
the infancy of this project, the aim of this project is to lay the foundation, thus the
research of more use-case specific datasets is beyond the scope of this project.

4.2.1.3 Speech Commands

Taking the long-term objectives into account, some research has been carried out into
datasets with higher complexity. A strong candidate is the Speech Commands dataset
[41] which is composed of more meaningful speech recordings (35 words) including
spoken digits (’0’-’9’). This large dataset contains 64,727 utterances from 1,881 speakers
digitized at 16 kHz. The recordings reflect real-world condition including background
noise, poor quality recording equipment and people talking in a natural, chatty way.
This aspect can sadly not be configured, making it difficult to research the robustness
under different noise levels. Given that this is an integral part of this research, it was
decided not to use this dataset.

4.3 Testing for robustness

The selected dataset is recording under ideal condition with limited background noise.
In order to research the effects of background noise, different levels of noise are added
to the clean speech samples. Due to the specifics of the use-case, an audio clip which
contains actual real-world background noise is added to the clean speech signals. In this
case, restaurant background noise is selected as it covers similar noise characteristics.
The original (clean) signal samples are altered with noise of varying signal-to-noise
ratios (SNR) and are used to evaluate the performance of the proposed architecture.
This method gives great control and flexibly over the amount of background noise that
is exposed to the system so its effect can be thoroughly analyzed. The signal-to-noise
ratio specifies the power ratio between the acoustic signal and ambient noise:

SNRdb = 10log
(
Psignal

Pnoise

)
= 10log

(
RMS2

signal

RMS2
noise

)
(4.5)

where P is the average power. Since the speech samples are discrete signals, the
average power of both signals can be calculated using the alternative root means square
(RMS) formulation. Based on the desired SNR value, a required RMS value for the
noise signal can be found.

33

The noise audio clip is then modified so its RMS equals the previously obtained
RMSrequired. This is achieved by multiplying the whole signal (element-wise) by a
constant a, which can be found using the following equation:√∑ (a ∗ ni)2

n
= a ∗RMSnoise = RMSrequired (4.6)

The modified noise audio clip can now be added to the clean speech signal, re-
sulting in an audio clip that contains the desired SNR amount of background noise.
To prevent that each audio clip contains the same background noise, a random sec-
tion of background noise is selected. This is possible since the restaurant background
noise recording has a duration of more than 45 seconds. This process prevents that
the network to learns the exact noise signal which would result in unrealistic network
performance. The flow diagram of the whole process is depicted in Figure 4.4.

Figure 4.4: Process flow diagram where a random section of background noise is added to a
clean speech signal, based on desired SNR value.

34

Results 5
In this chapter the performed experiments and the results obtained are discussed in
detail. The performance of the architecture and training methods applied are ana-
lyzed. The exact neuron parameters used for all simulation can be found in A.2, which
are based on intended neuromorphic hardware platform. In the first part, the over-
all classification performance of the network is analyzed under ideal condition, thus
including hardly any background noise. Different network sizes are explored and the
performance impact is discussed. In the second part, the impact of background noise
is studied, here specific levels of SNR background noise are used. At last, a compari-
son with traditional non-spiking neural networks is conducted. Important performance
metrics like classification performance, power requirements and time to inference are
analyzed.

5.1 Impact of network size

To find the optimal architecture, in terms of the balance between performance and
size, network architectures of different sizes are examined. Since the network size is
fully dependents on the encoder used, this part is split in two parts. In the first part
population threshold encoding is utilized, where a variety of population sizes (threshold
values) are analyzed. In the second part, the enhanced SOM encoded architecture is
examined. The network size depends on the size of the SOM layer. All tests are
conducted on the unmodified clean dataset [40], which represent the ideal conditions.

5.1.1 Population Threshold encoding

In this first implementation, a population threshold encoder is used to encode each
frame of the spectrogram into a spike pattern. The critical parameters is the size of the
population, and thus the number of threshold values used. The linearly scaled threshold
values are used to encode the incoming information stream, each values resulting its own
spike train. For proper functioning, a sufficient amount of threshold values is required
to capture features embedded in the input data. In order to find the optimal value, a
broad range of thresholds sizes is explored. In Table 5.1 the exact threshold sizes used
for testing are shown, including the required number of neurons for the input layer of
the Spiking Neural Network. Each spectrogram frame fed into the encoder contains 20
frequency bins and is encoded by both the onset and offset neurons. This leads to the
specified required amount of neurons needed for the input layer of the Spiking Neural
Network. The specific test sizes are used to verify the performance of the subsequent
SNN in terms of classified accuracy. This performance metric is used to determine the
optimal number of thresholds used to encode the incoming acoustic data.

35

#Encoder thresholds #Onset neurons #Offset neurons #Neurons in input layer

3 60 60 120
6 120 120 240
9 180 180 360
12 240 240 480
15 300 300 600
18 360 360 720
21 420 420 840

Table 5.1: Overview of the range of thresholds applied, including the total neurons required
for the input layer of the SNN classifier, which are split into onset and offset neurons 3.1.2.
The numbers are based on the spectrogram frame size, which are composed of 20 frequency
bins.

In Figure 5.1 the performance impact over a wide range of threshold size is depicted.
The effects of an insufficient amount of threshold is eminent, as the performance suffers
greatly with deficient population sizes. For example, the encoder with only 3 thresholds
(120 input neurons) is unable to capture all important features embedded in the vari-
ations of the input signal, and thus the classification performance is deteriorating. In
addition, significant performance gains made by simply doubling the population size.
This finding confirms the need for sufficient thresholds, due to the major impact on
performance.

Figure 5.1: Overview of the performance impact, in terms of classification accuracy, when
different amounts of thresholds are applied to encode the input data. The number of threshold
and the corresponding neuron count can be found in Table 5.1. The exact results can be found
in Appendix B.1.1.

36

Furthermore, the results shows that no performance gains are made after 15 thresh-
olds (600 input neurons) as the classification accuracy converges to around 86%. The
performance under ideal conditions (limited background noise) no longer scales with the
population size. Continuing to increase the sensitivity of the encoder does not provide
new temporal information that is of use for the SNN classifier. That is under the ideal
conditions, it could potentially help improve the performance under noisy conditions
as is explored in 5.2. The performance convergence may be due to the SNN’s inabil-
ity to filter out lesser important features, as they still negatively effect the outcome.
Deeper SNN architecture cloud improve the filter capabilities of the network, as the
architecture is currently limited two layers (a fully connected input and output layer).

The tests carried out in the Section 5.1.2 aims to verify the need for a filtering stage,
allowing the subsequent SNN classifier to focus on the more important features, as
feature reduction can improve performance.

5.1.2 SOM layer encoding

As previously discussed in 5.1.1, the classification accuracy converges as increasing the
sensitivity of the threshold encoder is only effective up to a certain point. This is
due to properties of the encoder utilized, as it tries to capture all features. In case
of high sensitivity, the balance between important and less important features shifts
as more minor features are captured. This shift negatively impacts the performance
of the subsequent SNN classifier. The limited depth of the SNN classifier lowers its
filtering capabilities and thus the performance gains halting. To support these claims
an enhanced architecture is researched, which employs a SOM for feature encoding.
The SOM provides filtering capabilities useful for feature reduction. The reduced space
facilitates the task of the SNN classifier, as it decreases the load of the classifier.

SOM dimensions #Neuron in input layer SOM dimensions #Neuron in input layer

2x2 4 14x14 196
4x4 16 16x16 256
6x6 36 18x18 324
8x8 64 20x20 400

10x10 100 22x22 484
12x12 144 24x24 576

Table 5.2: An overview of the exact SOM dimension tested with the enhanced network
architecture, previously described in 3.2.1. These dimensions are used to verify the improved
network performance against the initial threshold encoding architecture.

A wide variety of dimension for the SOM layer is explored and its performance
impact is studied in order to find the optimal network configuration. In terms of clas-
sification accuracy and network size. To limit the research scope, only the quadratic
dimensions of the SOM are explored. The exact dimension used for testing the clas-
sification performance can be found in Table 5.2. All test results shown in Figure 5.2
are obtained under ideal conditions where little no background noise is present in the

37

input data. The results shown that significant performance gains are made when a suf-
ficiently sized SOM layer is utilized. As with previous architectures, the classification
accuracy converges, but in this case at a much higher boundary of 97%. This boundary
is reached starting from 324 neurons (18x18 SOM) as marginal gains are obtained by
larger sized SOM implementations. As a side note, the tests are conducted under ideal
conditions, the larger sized SOM implementations could potentially help improve the
performance under noisy conditions as is explored in Section 5.2.

Figure 5.2: The performance impact, in terms of classification accuracy, for a variety of SOM
dimensions used to encode in the input data. An overview of the exact dimensions and the
required amount of input neurons can be found in Table 5.2. The exact results can be found
in Appendix B.1.2.

The performance gains made shows that the SNN classifier benefits from a reduced
feature space, allowing it to focus on the more important features. A gain of 11% is
achieved when compared to the initial threshold encoded architecture. It highlights the
effectiveness of the SOM layer to form low-level feature representations. Furthermore,
the required number of neurons in the input layer of the SNN is greatly reduced. The
threshold encoded architecture requires at minimum 600 input neurons to reach it per-
formance boundary of 86%. In contrast, the SOM encoded architecture requires only
324 input neurons to reach its boundary at 97%. However, the input size reduction
of the SNN classifier comes at a computational cost. This due to the utilization of
a non-spiking SOM, where even for inference a large amount of computations is re-
quired to find the BMU. The added computational load negatively impacts the power
requirements of the whole architecture, as is show in Section 5.5. The use of a non-
spiking SOM is only studied to see if the network would benefit from this additional
layer. Other studies [42] [43] have demonstrated the viability of a Spiking SOM, which
mimics the competing behavior of an ordinary non-spiking SOM. This solution allows
for a fully spiking architecture where the SOM layer is retained, but its computational
load is omitted. This promising direction isn’t fully explored due to time constraints,
a more detailed description is given in Chapter 7.

38

5.2 Impact of noise

In the previous section, the classification accuracies of the proposed network architec-
tures is analyzed, focussing only on clean speech samples. These samples represent the
best case scenario where a minimum amount of background noise is present. An impor-
tant requirement for a robust ASR system is its performance in more realist conditions,
where different level of background may be present. In this section, the robustness to
background noise of each architecture is studied. A range of SNR level of background
noise are added to the input signals and the performance impact is analyzed, see Table
5.3 for the specific values.

SNR [dB] Description

20 Low, slight addition of noise
10 Medium, more speech than noise present
0 High, equal amount of speech and noise present
-5 Severe, more noise than speech present

Table 5.3: The specific SNR levels applied to the clean speech samples. Used for testing
robustness of the proposed architectures.

The impact of each SNR level of background noise is tested separately, and thus
gives an indication of performance in different noisy conditions. The results are obtained
with help of two types of training strategies, namely:

• Mismatched conditions (MM), where the network is trained with clean speech
samples only representing ideal condition where minimal background noise is
present. In contrast, the data used for testing does contain samples with selected
levels of background noise.

• Matched conditions (MC), both the training and testing data contain noisy
speech samples. This method better prepares the network to handle background
noise and helps counteract the negative impact on performance.

5.2.1 Population Threshold encoding

In this section the robustness to noise is studied for the threshold based architectures.
The three top performing threshold based architecture are selected, each reaching the
performance boundary under ideal conditions (clean of background noise). Specifically,
the included architectures require 600 (15 thresholds), 720 (18 thresholds) and 840
(thresholds) input neurons. As shown in 5.1.1, marginal performance gains are made
after utilizing more than 15 threshold values. The two larger designs are included
to discover the potentially beneficial impact under noisy conditions. In Figure 5.3
the performance under different SNR levels is depicted. In addition, the previously
obtained results under the ideal condition are included. The results shown the impact
of background noise on the overall classification accuracy of the network.

39

Figure 5.3: The performance results obtained for the architecture utilizing population thresh-
old encoding. Specific SNR levels are tested and aim to mimicking real-world environments.
It illustrates the performance impact for variety of noise levels, where lower dB values corre-
spond the harsher conditions. The exact results can be found in Appendix B.2.1.

The performance gains made when training the network with matched conditions
(MC) is immediately apparent, in some cases doubling the performance for miss-
matched conditions (MM). The performance impact already notable when only a low
amount of background noise (20 dB) is present, showing a deterioration of 10%. At
higher levels of background noise the deterioration becomes more eminent. This out-
come is related to specific properties of the threshold encoder, as it requires a sufficient
amount of thresholds to properly capture the features embedded in the input signal.
Here, a high amount of thresholds leads to a heightened degree sensitivity. This prop-
erty negatively impacts the robustness of the architecture, as the resulting spike trains
are susceptible to alterations due to noise. In Table 5.4 the alterations of the spike
trains are highlighted by the average spike count per sample.

Architecture
Average spike count per sample

Clean 20 dB 10 dB 0 dB -5 dB

600 464 487 529 628 668
720 563 592 644 761 810
840 663 697 756 896 950

Table 5.4: An overview of the impact of background noise on the threshold encoded spike
trains. The average spike count highlights the alterations due to the noise sensitivity of
the threshold encoder. Due to the limited filtering capabilities of the low depth SNN, this
increased amount of less important spikes deteriorates the network performance.

40

The balance between important and less important features is shifted, increasing
the workload of the SNN classifier. This combined with the limited filtering capabilities
of the SNN, due to the low depth of neural network, hinders its performance in more
difficult conditions. Furthermore, like the results obtained under ideal conditions, little
to no performance gains are made by the larger sized networks. Based on results, the
architecture with 15 thresholds (600 input neurons) has proven to be optimal in terms
of network size and classification performance. This since the performance boundary
is met in both clean and noisy conditions and the classification accuracy is equivalent
to much larger sized network iterations.

5.2.2 SOM layer encoding

The same procedures, as previously discussed in 5.2.1, are applied to the enhanced
network architectures which utilize a SOM for encoding. The four top performing ar-
chitecture are selected, each reaching the performance boundary under ideal conditions
(clean of background noise). Specifically, the included architectures require 324 (18x18
SOM), 400 (20x20 SOM), 484 (22x22 SOM) and 576 (24x24 SOM) input neurons. As
shown in 5.1.2, marginal performance gains are made when increasing the dimension of
the 18x18 SOM. However, these larger designs are included to discover the potentially
beneficial impact under noisy conditions. In Figure 5.4 the performance results under
different SNR levels is depicted. In addition, the previously obtained results under
ideal condition are included.

Figure 5.4: The performance results obtained for the SOM enhanced architecture. Specific
SNR levels are tested and aim to mimicking real-world environments. It illustrates the per-
formance impact for variety of noise levels, where lower dB values correspond the harsher
conditions. The exact results can be found in Appendix B.2.2.

41

The results once again emphasize the performance gains achieved when the network
is trained based on the matched conditions. Like under clean conditions, enhanced
performance figures are obtained under noisy conditions. For example, the performance
under 20 dB of noise is greatly improved with these network architectures. In this case
only a performance drop of 4% is observed, compared to the 10% drop observed for
the threshold encoded network design. The improved classification accuracy is assisted
by the SOM, as the spike trains are less severely altered by the background noise. As
shown in Table 5.5, the average spike count is consistent under each noise level. These
properties reduce the (filtering) load on the SNN classifier, thus improving the overall
performance.

Architecture
Average spike count per sample

Clean 20 dB 10 dB 0 dB -5 dB

324 SOM (18x18) 423 424 431 439 446
400 SOM (20x20) 421 423 429 440 447
484 SOM (22x22) 419 422 429 440 448
576 SOM (24x24) 418 422 428 440 447

Table 5.5: An overview of the impact of background noise on the SOM encoded spike trains.
The more constant average spike count indicates less drastically altered spike trains produced
by the SOM. This steady behavior will reduce the workload of the subsequent SNN classifier,
as can be seen by the improved classification accuracy in Figure 5.4.

It is important to note that no gains are made under the severely noisy conditions of
-5 dB. The classification accuracy obtain under these conditions are in the same range
as the threshold encoded architecture. Based on human observation, the conditions of
-5 dB are described as hard to classify. The low performance under this condition can
therefore be attributed to this high level of difficulty. The use of an array of microphone
in these conditions will significantly help the performance under these conditions. It
allows the utilization of noise-cancelling techniques which improve the robustness of
the implementation. This solution is of interested in future works as they are beyond
the scope of this research project.

42

5.3 Non-spiking neural network performance

All results obtained by them self have minimal meaning without directly comparing
them with more traditional ANN architectures. The more mature and widely used
ANN architectures offer a perspective in terms of achievable performance. The in-
cluded commonly used network architectures are the Convolutional Neural Network
(CNN), Recurrent Neural Network (RNN) and the Long Short-Term Memory (LSTM).
The exact parameters and network layers used are discussed in 3.3. All networks are
trained on exactly the same data, meaning the spectrogram of each audio sample. The
classification accuracies obtained for each of the network architectures are shown in
Figure 5.5.

Figure 5.5: An overview of the classification performance for traditional ANN architectures.
These results are obtained in a variety of conditions including; clean and SNR levels of added
background noise.

Similar to the spiking domain, the benefits of training the networks with help of
matched conditions (MC) is eminent. As the SNR level decreases, the effectiveness of
this method increases as significant gains are achieved in these conditions. The uti-
lization of matched conditions is thus highly effective for both spiking and non-spiking
neural networks. Just like the spiking implementations, the classification accuracy
starts to decreasing from 10 dB onwards. This effect applies to a lesser extent to the
CNN architecture, since its performance is less hindered in these conditions. The per-
formance degradation becomes more evident from 0 dB onwards. This is especially
the case for both the LSTM and RNN networks. As demonstrated by the CNN, the
temporal information is less critical compared to spatial information. This is mostly
due to the set limitations of the dataset applied. As for this project, the initial fo-
cus is set on single word classification. This leads to a reduced amount of temporal
information, the more static properties of the dataset allows the CNN to shine. The

43

performance difference between the LSTM and RNN are in most cases negligible, but
in the extreme condition of -5 dB the RNN outperforms the LSTM. In addition, the
performance differences can be related to the network size. This since the CNN is
significantly larger in terms of trainable parameters, in some case by a factor of 10 (see
Table 3.1). Larger sized LSTM and RNN architectures are tested, but did not result in
groundbreaking performance leaps. Thus, in terms of classification accuracy, the CNN
architecture achieve the best performance under tested all conditions.

In Table 5.6, the obtained classification results for both spiking and non-spiking
architecture is given. It includes only the results obtained by applying the matched-
condition training method, as it achieve a higher classification performance. For the
spiking architectures, the network designs with minimum dimensions that reaches the
top performance boundary are selected. Specifically, the threshold architecture (PTA-
SNN) with a total population size of 600 (15 threshold values) and the SOM 18x18
enhance architecture (SOM-SNN). When comparing all network architectures, it can
be seen that in the clean and less harsh conditions of 20 dB and 10 dB SNR, the
SOM-SNN produces results comparable to the top performing CNN architecture. The
SOM encoder with the subsequent SNN classifier (SOM-SNN) outperforms the LSTM,
RNN and PTA-SNN implementations. The low-level feature extraction significantly
boost performance, as in all cases it outperforms the PTA-SNN implementation. In
the more harsh conditions, the CNN is still outperforming all other network designs. In
these conditions, better classification accuracies are obtained by larger sized SOM-SNN
architecture. For example, the SOM 20x20 implementation achieve and accuracies of
35.25% in the most extreme conditions of -5 dB SNR, bringing its performance in range
of the LSTM architecture. All things considered, the results show that the spiking
implementation can reach CNN like performance in terms of classification accuracy,
especially in more forgiving conditions. This while its network size is relatively small
compared to the CNN architecture.

SNR CNN LSTM RNN PTA-SNN SOM-SNN

Clean 98.25% 93.50% 94.00% 86.50% 97.00%
20 dB 97.00% 89.25% 90.75% 78.50% 93.50%
10 dB 94.75% 81.75% 81.75% 71.25% 87.75%
0 dB 79.00% 65.25% 66.25% 50.75% 61.25%
-5 dB 58.00% 39.25% 44.50% 30.00% 32.50%

Table 5.6: The overall classification accuracy of the tested network models trained with
matched condition training. For the spiking implementations the top performing threshold
architecture (PTA-SNN) with a total population size of 600 (15 threshold values) and the
SOM 18x18 enhance architecture (SOM-SNN) are selected.

The results in Table 5.6 shows that all architectures perform poor under the extreme
conditions of -5 dB. This could be the results of the method to used add background
noise to the audio samples, described in 4.3. A random section of the background
noise recording is selected, this signal is not stationary and may contain different noise
levels. The average SNR is calculated of the selected section, which could affect the

44

actual SNR level. These effects will be most notable under harsh conditions and may
negatively impact performance. More precise tests are performed by adding white
Gaussian noise to the audio samples, where the noise has uniform power across the
frequency bands. The results obtained are shown in Table 5.7. As suspected, the
performance indeed improves under the more harsh conditions. The outcome however
is still identical as the CNN implementation still outperforms all other implementations.
The SOM-SNN is still in proximity of the CNN performance under clean and less noisy
conditions. In all other conditions is performance is in the same proximity is the
LSTM and RNN architectures. It is suspected that the relatively simple decoders hurt
the performance of both SNN architectures. Due to the shallow SNN utilized, noise can
easily alter the output with only a single added spike. Thus changing the first arrival
of a spike, or output frequency which will lead to misclassification. More capable
decoders, possibly small ANN classifiers could significantly improve performance under
noisy condition. However, this increase in performance will have a negative impact on
the power requirements of each solution.

SNR CNN LSTM RNN PTA-SNN SOM-SNN

Clean 98.25% 93.50% 94.00% 86.50% 97.00%
20 dB 95.35% 89.25% 89.75% 81.50% 92.75%
10 dB 94.00% 82.25% 83.50% 75.25% 84.35%
0 dB 83.00% 74.50% 74.50% 53.00% 65.25%
-5 dB 71.25% 58.75% 58.25% 36.75% 54.75%

Table 5.7: Results obtained with added white Gaussian noise. For the spiking implementa-
tions the top performing threshold architecture (PTA-SNN) with a total population size of
600 (15 threshold values) and the SOM 18x18 enhance architecture (SOM-SNN) are selected.

5.4 Distinguish between speech and noise

In this section, the ability of the network to distinguish speech and background noise
is studied. This important characteristic is tested by feeding only background noise
to the network. For this analysis the two top performing network architectures are
selected, this in terms of classification accuracy and effective network size. To be more
specific, these are the threshold architecture (PTA-SNN) with a total population size of
600 (15 threshold values) and the SOM 18x18 enhance architecture (SOM-SNN). Both
network architecture perform poor when only noise is presented to the network, and is
unable to distinguish speech from background noise. This behaviour is illustrated in
Table 5.8, which contains the confusion matrix obtained for the SOM-SNN architecture.
The confusion matrix for the PTA-SNN architecture, and for its enhanced state can be
found in Appendix B.3.

45

Predicted
0 1 2 3 4 5 6 7 8 9 X

A
ct

u
al

0 1 0 1 0 37 1 0 4 0 0 0
1 4 2 1 0 37 0 0 3 0 0 0
2 3 3 1 0 31 3 0 6 0 0 0
3 3 0 1 0 36 2 0 2 0 0 0
4 7 0 0 0 33 3 0 2 0 0 0
5 2 2 0 0 34 3 0 3 0 0 0
6 5 1 0 0 31 4 0 2 0 0 0
7 4 0 2 0 34 3 0 3 0 0 0
8 7 1 1 0 33 1 0 1 0 0 0
9 7 1 2 0 30 4 0 2 0 0 0

Table 5.8: Confusion matrix for the SOM-SNN architecture when only background noise is
presented to the network. Since the network is trained to classify the speech samples, no
response from the system is desired as any output activity corresponds to a speech class.
However, this is not the case, as all samples results in misclassification of speech instead of
noise.

As the network is trained to only classify selected speech features, no spike activity at
the network output is desired. However, this is not the case, as a large amount of output
spikes results in misclassification. It is suspected that the frequency components in the
noise samples are highly active in a certain bin, which the subsequent network recognizes
as a key feature of class 4. This is caused by the network design where each output is
associated with a specific speech class. This obstacle is overcome by adding a dedicated
noise class to the SNN classifier, as is discussed in 3.2.2. This relatively simple addition
to the network architecture significantly improves performance, as shown in Table 5.9.
In both cases, the enhanced network architectures (added noise class) are highly capable
of distinguishing between speech and noise. See Table 5.8, which contains the improved
confusion matrix obtained for the SOM-SNN architecture.

Furthermore, the performance penalty of the added class is minimal as the classi-
fication accuracy under clean conditions is nearly identical. For both architectures, a
decrease in performance of 0.5 percent or less is noted. The insignificant impact on the
clean network performance is encouraging, but doesn’t represent the system as a whole.
In order to get the full picture, its impact under noisy conditions is as critical. The
same approach used in 5.2 is applied, where different SNR level of background noise
are presented to the network. An overview of the performance impact is depicted in
Table 5.11. In order to make comparison more manageable, only the results obtained
with matched-conditions training are included.

Conditions
Original Added noise class

PTA-SNN SOM-SNN PTA-SNN SOM-SNN

Clean 86.50% 97.00% 86.25% 95.50%
Noise detection 1.25% 0% 99.00% 100%

Table 5.9: An overview of the initial and enhanced network performance, when only noise is
applied to the both architectures.

46

Predicted

0 1 2 3 4 5 6 7 8 9 10 X

A
ct

u
al 0/9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 400 0

Table 5.10: Confusion matrix for the SOM-SNN architecture when only background noise is
presented to the network. The added class 10 corresponds to the noise, and it highly detected.
The overall classification accuracies obtained can be found in 5.9. The confusion matrix when
audio samples are presented can be found in Appendix B.3.5.

In general a negative performance impact is observed when the distinct noise class
is added to the network. However, the affect are marginal in case of 20 dB and 10
dB SNR. In the more harsh conditions, especially in the 0 dB case, the effects are
more pronounced. In some instances, the network classifies the noise corrupted speech
samples as noise itself. However, this disadvantage is minor and the resulting benefits
are of greater importance. It allows a continuous stream of audio data to be processed
with little to no response when only noise is present, as shown by the results.

SNR PTA-SNN PTA-SNN* Delta SOM-SNN SOM-SNN* Delta

20 dB 78.50% 77.25% -1.25% 93.50% 94.25% -0.75%
10 dB 71.25% 70.00% -1.25% 87.75% 86.75% -1.00%
0 dB 50.75% 45.50% -5.25% 61.25% 57.75% -3.50%
-5 dB 30.00% 28.25% -1.75% 32.50% 30.50% -2.00%

Table 5.11: An comparison in classification performance between the initial architecture and
the addition of a dedicated noise class. The difference in classification accuracy is given by
the performance Delta.
*The same architecture but with the addition of a dedicated noise class.

5.5 Power consumption & latency

– Section removed due to confidentiality –

47

– Section removed due to confidentiality –

48

– Section removed due to confidentiality –

49

– Section removed due to confidentiality –

50

– Section removed due to confidentiality –

51

52

Conclusion 6
In this work, two promising SNN based architectures are proposed capable to detect
and classify audio data. The architectures include an auditory front-end, feature rep-
resentation learning and temporal classification. The key difference between the two
architectures is the encoding method applied to convert the input data into temporal
spike trains. The resulting temporal spike trains are fed to the subsequent single layer
SNN classifier. In order to train the temporal SNN classifier effectively, an existing
training method was selected and implemented. The supervised Tempotron learning
rules are used to obtain the weights which are utilized by the SNN classifier. Fur-
thermore, the training method has been successfully applied to other in-house research
projects [44].

The incoming acoustic signal is preprocessed using a biologically inspired auditory
front-end, performing low-level feature extraction. This process mimics the functional-
ity of the human cochlea. A mel scaled filter is used to emulate the non-linearity of the
human perception of sound, as it decomposes the incoming audio signal into different
frequency bins. The signals in each frequency bin are divided into (overlapping) frames,
after which the power spectrum of each frame is calculated. This process results in a
spectrogram which is normalized to a set range. Before each spectrogram is fed to the
subsequent SNN classifier, an encoder is needed to translate all embedded information
into temporal spike trains. Two promising encoding options are explored, a commonly
used population based threshold encoder and a self-organizing map (SOM). The latter
improving feature separation by clustering data in an unsupervised fashion. Further-
more, it performs feature reduction as each spectrogram frame only results in a single
output spike, thus achieving sparse spatio-temporal spike trains.

The potential of each SNN architecture is verified based on the classification accu-
racy, power consumption and latency for inference. For additional validity, the results
obtained are benchmarked against commonly used ANN architectures. The results
show that the SNN based architecture can closely match the top performing ANN
models, especially under ideal conditions where a classification performance of 97% is
achieved. This all while achieving significantly low power consumption. The utilization
of a SOM has show to improve the overall classification performance, however due to
its non-spiking characteristics it has a significant negative impact on the power con-
sumption and latency. Other studies [42] [43] have demonstrated the feasibility of the
spiking-SOM, which would overcome these obstacles.

In order to test for robustness, the impact of a wide variaty of background noise
levels is studied. Here, audio samples recorded under ideal condition with minimal
background noise are corrupted to a set SNR. In most cases, the SNN-based archi-
tectures can compete with the included ANN models. However, in extremely noisy
conditions the shallow depth of the SNN classifier becomes more apparent as the clas-
sification performance suffers compared to deeper ANN architectures. It is suspected

53

that the relatively simple decoders hurt the performance SNN classifier. Combined
with the shallow depth of the SNN classifier, noise can easily alter the output with only
a single added spike. Thus changing the first arrival of a spike, or output frequency
which will lead to misclassification. More capable decoders, possibly small ANN clas-
sifiers could significantly improve performance under noisy condition. However, this
increase in performance will have a negative impact on the power requirements of each
solution.

54

Future work 7
The obtained results demonstrate that the proposed architectures are highly capable
of performing speech classification tasks. Nevertheless, potential improvements could
be of interest and push the solution to the next level.

At this time, only the viability of a non-spiking SOM is studied. The power and
latency estimations have also uncovered the negative properties of the non-spiking
SOM. Other studies [42] [43] have demonstrated the viability of a Spiking SOM. When
coupled with an appropriate encoding method, the behavior of traditional SOM can be
mimicked. This eliminates the high computational load of the current implementation
while retaining the favorable characteristics.

An important next step is to study or develop methods that are capable of training
deep temporal SNNs. The current SNN classifier contains only an input and output
layer, thus no hidden layer. The limited depth of the network could hamper its ability
to perform more complex recognition tasks. It would potentially also improve the
robustness of the solution, since in its current form, noise can easily alter the output
of the network, reducing the classification accuracy.

In other important direction is the creation of a use-case specific dataset. This
dataset should include useful speech recordings, for example spoken keywords that
fit the intended application domain. By creating this data set, a setup with multiple
microphones could be easily achieved. The use of a multiple microphone setup will open
up new opportunities like noise cancellation, speaker localization, etc. These additional
features make the solution more attractive to a broader market.

Subsequently, the realization of a hardware based auditory front-end is of great
importance. This since the result are obtained with no hardware constraints. In the real
world, restrictions do apply to the auditory front-end, which could affect its behaviour.
A highly performing low power solution should be studied, and the functionality when
combined with the subsequent SNN classifier needs to be verified.

Furthermore, it would be interesting to examine the classification performance when
applied to a sequence of words. Due to the initial stage of this work, the focus has
been on relatively simple classification tasks. The next step would be to increase the
complexity of the classification task. A sequence of spoken words would be the ideal
candidate, since the processing of temporal information should highlight the favorable
properties of a Spiking Neural Network.

55

56

Bibliography

[1] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” Bull. Math. Biophys., 1943, issn: 00074985. doi: 10.1007/BF02478259.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” Nature, 1986, issn: 00280836. doi: 10.1038/323533a0.

[3] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A Stochastic Computational Multi-
Layer Perceptron with Backward Propagation,” IEEE Trans. Comput., 2018, issn:
00189340. doi: 10.1109/TC.2018.2817237.

[4] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine intelligence with
neuromorphic computing,” Nature, 2019, issn: 14764687. doi: 10.1038/s41586-019-
1677-2.

[5] S. Herculano-Houzel, The remarkable, yet not extraordinary, human brain as a scaled-up
primate brain and its associated cost, 2012. doi: 10.1073/pnas.1201895109.

[6] D. B. Tower, “Structural and functional organization of mammalian cerebral cortex: The
correlation of neurone density with brain size. Cortical neurone density in the fin whale
(Balaenoptera Physalus L.) with a note on the cortical neurone density in the Indian
elephan,” J. Comp. Neurol., 1954, issn: 10969861. doi: 10.1002/cne.901010103.

[7] F. A. Azevedo, L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti, R. E.
Leite, W. J. Filho, R. Lent, and S. Herculano-Houzel, “Equal numbers of neuronal and
nonneuronal cells make the human brain an isometrically scaled-up primate brain,” J.
Comp. Neurol., 2009, issn: 00219967. doi: 10.1002/cne.21974.

[8] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and
its application to conduction and excitation in nerve,” J. Physiol., 1952, issn: 14697793.
doi: 10.1113/jphysiol.1952.sp004764.

[9] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings,
T. Delbruck, S. C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwen-
berghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wi-
jekoon, Y. Wang, and K. Boahen, Neuromorphic silicon neuron circuits, 2011. doi:
10.3389/fnins.2011.00073.

[10] L. F. Abbott, Lapicque’s introduction of the integrate-and-fire model neuron (1907),
1999. doi: 10.1016/S0361-9230(99)00161-6.

[11] L. de Gelder, “Population Step Forward Encoding,” PhD thesis, 2021.
[12] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using spike-timing-

dependent plasticity,” Front. Comput. Neurosci., vol. 9, no. AUGUST, pp. 1–9, 2015,
issn: 16625188. doi: 10.3389/fncom.2015.00099.

[13] R. B. Stein, E. R. Gossen, and K. E. Jones, Neuronal variability: Noise or part of the
signal? 2005. doi: 10.1038/nrn1668.

[14] N. K. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artifical In-
telligence. 2019, isbn: 9783662577134.

[15] W. Maass and H. Markram, “On the computational power of circuits of spiking neu-
rons,” J. Comput. Syst. Sci., 2004, issn: 00220000. doi: 10.1016/j.jcss.2004.04.001.

[16] Y. Dan and M. M. Poo, Spike timing-dependent plasticity of neural circuits, 2004. doi:
10.1016/j.neuron.2004.09.007.

57

https://doi.org/10.1007/BF02478259
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/TC.2018.2817237
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1073/pnas.1201895109
https://doi.org/10.1002/cne.901010103
https://doi.org/10.1002/cne.21974
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1016/S0361-9230(99)00161-6
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1038/nrn1668
https://doi.org/10.1016/j.jcss.2004.04.001
https://doi.org/10.1016/j.neuron.2004.09.007

[17] R. Kempter, W. Gerstner, and J. L. van Hemmen, “Hebbian learning and spiking neu-
rons,” Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., 1999,
issn: 1063651X. doi: 10.1103/PhysRevE.59.4498.

[18] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian learning through spike-
timing-dependent synaptic plasticity,” Nat. Neurosci., 2000, issn: 10976256. doi: 10.
1038/78829.

[19] Y. Dan and M. M. Poo, Spike timing-dependent plasticity: From synapse to perception,
2006. doi: 10.1152/physrev.00030.2005.

[20] G. Q. Bi and M. M. Poo, “Synaptic modifications in cultured hippocampal neurons: De-
pendence on spike timing, synaptic strength, and postsynaptic cell type,” J. Neurosci.,
1998, issn: 02706474. doi: 10.1523/jneurosci.18-24-10464.1998.

[21] A. Morrison, M. Diesmann, and W. Gerstner, “Phenomenological models of synaptic
plasticity based on spike timing,” Biol. Cybern., 2008, issn: 03401200. doi: 10.1007/
s00422-008-0233-1.

[22] Y. Cao, Y. Chen, and D. Khosla, “Spiking Deep Convolutional Neural Networks for
Energy-Efficient Object Recognition,” Int. J. Comput. Vis., 2015, issn: 15731405. doi:
10.1007/s11263-014-0788-3.

[23] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu, and M. Pfeiffer, “Fast-classifying,
high-accuracy spiking deep networks through weight and threshold balancing,” in Proc.
Int. Jt. Conf. Neural Networks, 2015, isbn: 9781479919604. doi: 10.1109/IJCNN.2015.
7280696.

[24] R. Gütig and H. Sompolinsky, “The tempotron: A neuron that learns spike timing-based
decisions,” Nat. Neurosci., 2006, issn: 10976256. doi: 10.1038/nn1643.

[25] S. M. Bohte, H. L. Poutré, and J. N. Kok, “{SpikeProp}: Error-Backpropagation for
Networks of Spiking Neurons,” in Proc. Eur. Symp. Artif. Neural Networks (ESANN
2000), 2000.

[26] F. Ponulak, “ReSuMe-new supervised learning method for Spiking Neural Networks,”
Inst. Control Inf. Eng. Pozn. Univ., 2005, issn: 1530-888X.

[27] M. Stimberg, D. F. Goodman, V. Benichoux, and R. Brette, “Brian 2 - the second
coming: spiking neural network simulation in Python with code generation,” BMC Neu-
rosci., 2013, issn: 1471-2202. doi: 10.1186/1471-2202-14-s1-p38.

[28] D. Purves, G. Augustine, D. Fitzpatrick, L. Katz, A.-S. LaMantia, J. McNamara, and M.
Williams, Neuroscience. 2nd edition: Autonomic Regulation of Cardiovascular Function,
2001. arXiv: NBK10799.

[29] O. Abdel-Hamid, A. R. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu, “Con-
volutional neural networks for speech recognition,” IEEE Trans. Audio, Speech Lang.
Process., 2014, issn: 15587916. doi: 10.1109/TASLP.2014.2339736.

[30] A. Tavanaei and A. S. Maida, “A spiking network that learns to extract spike signatures
from speech signals,” Neurocomputing, vol. 240, pp. 191–199, 2017, issn: 18728286. doi:
10.1016/j.neucom.2017.01.088. arXiv: arXiv:1606.00802v3.

[31] M. Holmberg, D. Gelbart, U. Ramacher, and W. Hemmert, “Automatic speech recog-
nition with neural spike trains,” 9th Eur. Conf. Speech Commun. Technol., pp. 1253–
1256, 2005.

[32] Z. Pan, J. Wu, M. Zhang, H. Li, and Y. Chua, “Neural Population Coding for Effective
Temporal Classification,” Proc. Int. Jt. Conf. Neural Networks, vol. 2019-July, 2019.
doi: 10.1109/IJCNN.2019.8851858. arXiv: 1909.08018.

58

https://doi.org/10.1103/PhysRevE.59.4498
https://doi.org/10.1038/78829
https://doi.org/10.1038/78829
https://doi.org/10.1152/physrev.00030.2005
https://doi.org/10.1523/jneurosci.18-24-10464.1998
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1038/nn1643
https://doi.org/10.1186/1471-2202-14-s1-p38
https://arxiv.org/abs/NBK10799
https://doi.org/10.1109/TASLP.2014.2339736
https://doi.org/10.1016/j.neucom.2017.01.088
https://arxiv.org/abs/arXiv:1606.00802v3
https://doi.org/10.1109/IJCNN.2019.8851858
https://arxiv.org/abs/1909.08018

[33] Z. Pan, Y. Chua, J. Wu, M. Zhang, H. Li, and E. Ambikairajah, “An Efficient and
Perceptually Motivated Auditory Neural Encoding and Decoding Algorithm for Spiking
Neural Networks,” Front. Neurosci., vol. 13, pp. 1–23, 2020, issn: 1662453X. doi: 10.
3389/fnins.2019.01420. arXiv: 1909.01302.

[34] J. Wu, Y. Chua, M. Zhang, H. Li, and K. C. Tan, “A spiking neural network framework
for robust sound classification,” Front. Neurosci., vol. 12, no. NOV, pp. 1–17, 2018,
issn: 1662453X. doi: 10.3389/fnins.2018.00836.

[35] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., 1997,
issn: 08997667. doi: 10.1162/neco.1997.9.8.1735.

[36] F. Chollet, “Keras: The Python Deep Learning library,” Keras.Io, 2015.
[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convo-

lutional neural networks,” in Adv. Neural Inf. Process. Syst., 2012, isbn: 9781627480031.
doi: 10.1061/(ASCE)GT.1943-5606.0001284.

[38] A. Graves, Supervised Sequence Labeling with Recurrent Neural Networks. 2013, isbn:
2000201075. doi: 10.1145/2661829.2661935. arXiv: arXiv:1308.0850v1.

[39] Q. Yu, H. Tang, K. C. Tan, and H. Li, “Precise-Spike-Driven synaptic plasticity:
Learning hetero-association of spatiotemporal spike patterns,” PLoS One, 2013, issn:
19326203. doi: 10.1371/journal.pone.0078318.

[40] Z. Jackson, C. Souza, J. Flaks, Y. Pan, H. Nicolas, and A. Thite, “Jakobovski/free-
spoken-digit-dataset: v1.0.8,” Aug. 2018. doi: 10.5281/ZENODO.1342401. [Online].
Available: https://zenodo.org/record/1342401.

[41] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary Speech Recogni-
tion,” Apr. 2018. arXiv: 1804.03209. [Online]. Available: http://arxiv.org/abs/
1804.03209.

[42] T. Rumbell, S. L. Denham, and T. Wennekers, “A spiking self-organizing map combin-
ing sTDP, oscillations, and continuous learning,” IEEE Trans. Neural Networks Learn.
Syst., 2014, issn: 21622388. doi: 10.1109/TNNLS.2013.2283140.

[43] H. Hazan, D. Saunders, D. T. Sanghavi, H. Siegelmann, and R. Kozma, “Unsupervised
Learning with Self-Organizing Spiking Neural Networks,” in Proc. Int. Jt. Conf. Neural
Networks, 2018, isbn: 9781509060146. doi: 10.1109/IJCNN.2018.8489673. arXiv:
1807.09374.

[44] M. V. Wezel, “A robust modular spiking neural networks training methodology for
time-series datasets,”

59

https://doi.org/10.3389/fnins.2019.01420
https://doi.org/10.3389/fnins.2019.01420
https://arxiv.org/abs/1909.01302
https://doi.org/10.3389/fnins.2018.00836
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001284
https://doi.org/10.1145/2661829.2661935
https://arxiv.org/abs/arXiv:1308.0850v1
https://doi.org/10.1371/journal.pone.0078318
https://doi.org/10.5281/ZENODO.1342401
https://zenodo.org/record/1342401
https://arxiv.org/abs/1804.03209
http://arxiv.org/abs/1804.03209
http://arxiv.org/abs/1804.03209
https://doi.org/10.1109/TNNLS.2013.2283140
https://doi.org/10.1109/IJCNN.2018.8489673
https://arxiv.org/abs/1807.09374

60

Parameters settings A
A.1 Cochlear filter bank parameters

Cochlear filter index Lower cut-off frequency (Hz) Higher cut-off frequency (Hz)

1 106.78 254.21
2 177.40 337.74
3 254.21 428.59
4 337.74 527.38
5 428.59 634.83
6 527.38 751.67
7 634.83 878.75
8 751.67 1016.96
9 878.75 1167.26
10 1016.96 1330.71
11 1167.26 1508.48
12 1330.71 1701.81
13 1508.48 1912.06
14 1701.81 2140.72
15 1912.06 2389.39
16 2140.72 2659.84
17 2389.39 2953.95
18 2659.84 3273.82
19 2953.95 3621.68
20 3273.82 4000.00

Table A.1: The 20-channel cochlear filter bank parameters used. The lower cut-off frequency
and higher cut-off frequency of each band-pass filter are listed.

61

A.2 Leaky integrate-and-fire model settings

Fixed parameter values

C 100f
R 1G

Tref 0m
Vthresh 400m

Ibias 0

Table A.2: Leaky integrate-and-fire (LIF) model parameter settings used for training and test-
ing network performance. These values correspond to the latest design of the neuromorphic
hardware.

A.3 Tempotron parameter settings

Parameter Value

Time step 1u
Learning rate 1e-17; 1e-18

V rest 0
τ 1E-4
τs 3.3E-7

Threshold 4E-14

Table A.3: Parameters settings used to train the spiking parts of the architecture. Where
τ = RC and τs is set close to zero, this since the synaptic time constant is not part of
neuron model in the simulator. The settings for the Threshold much lower than the LIF
neuron settings, as otherwise the output spike activity is too strong. The set value is found
iteratively.

62

Classification results B
B.1 Network size testing

B.1.1 Number of thresholds for PTA-SNN architecture (Clean)

Thresholds Input size* Accuracy [%] Bad unique class [%] Avg. # spikes per sample

3 120 34.00 23.00 47.61
6 240 74.50 14.00 160.61
9 360 81.00 12.25 264.28
12 480 84.00 10.50 364.08
15 600 86.50 7.75 464.23
18 720 85.75 8.00 563.95
21 840 86.25 8.00 663.96

Table B.1: Raw testing results, for a variety of set number of thresholds. Input size is the
number of required input-layer neurons of the SNN network. *Meaning the size of the input
layer of the SNN architecture, output is fixed to corresponding number of classes.

B.1.2 Dimensions for SOM-SNN architecture (Clean)

SOM dimensions Input size* Accuracy [%] Bad unique class [%] Avg. # spikes per sample

2x2 4 26.25 35.5 426.68
4x4 16 74.00 15.75 426.53
6x6 36 81.75 9.75 425.13
8x8 64 85.75 8.50 427.04

10x10 100 90.25 7.25 427.24
12x12 144 93.00 3.75 425.99
14x14 196 94.00 3.50 425.73
16x16 256 95.25 2.25 424.87
18x18 324 97 2.25 424.14
20x20 400 96.75 2.75 421.74
22x22 484 96.25 3 419.79
24x24 576 97.5 1.25 418.46

Table B.2: Raw testing results, for a variety of SOM dimensions. Input size is the number of
required input-layer neurons of the SNN network. *Meaning the size of the input layer of the
SNN architecture, output is fixed to corresponding number of classes

63

B.2 SNR noise testing

B.2.1 PTA-SNN architectures

Architecture Network structure Accuracy [%] Bad unique class [%] Avg. # spikes per sample

P-TA15 CLEAN 600;10 86.00 7.25 464.24
P-TA15 CLEAN 600;10 86.5 7.75 464.23
P-TA15 SNR 20 MM 600;10 68.00 21.00 487.24
P-TA15 SNR 20 MC 600;10 78.50 14.50 487.01
P-TA15 SNR 10 MM 600;10 47.75 36.50 529.88
P-TA15 SNR 10 MC 600;10 71.25 22.75 529.29
P-TA15 SNR 0 MM 600;10 26.25 69.00 628.74
P-TA15 SNR 0 MC 600;10 50.75 38.00 626.55
P-TA15 SNR -5 MM 600;10 15.00 81.75 668.43
P-TA15 SNR -5 MC 600;10 30.00 59.50 665.58

P-TA18 CLEAN 720;10 85.75 8.00 563.95
P-TA18 SNR 20 MM 720;10 67.75 21.25 592.41
P-TA18 SNR 20 MC 720;10 79.00 13.50 592.07
P-TA18 SNR 10 MM 720;10 49.5 35.75 644.07
P-TA18 SNR 10 MC 720;10 70.00 21.50 643.23
P-TA18 SNR 0 MM 720;10 24.25 71.00 762.15
P-TA18 SNR 0 MC 720;10 51.75 37.75 760.03
P-TA18 SNR -5 MM 720;10 13.75 83.00 810.63
P-TA18 SNR -5 MC 720;10 29.25 57.00 807.78

P-TA21 CLEAN 840;10 86.25 8.00 663.96
P-TA21 CLEAN 840;10 87.00 7.75 663.93
P-TA21 SNR 20 MM 840;10 68.75 20.75 696.78
P-TA21 SNR 20 MC 840;10 78.00 14.00 696.6
P-TA21 SNR 10 MM 840;10 51.50 32.50 756.36
P-TA21 SNR 10 MC 840;10 69.75 21.25 755.89
P-TA21 SNR 0 MM 840;10 28.35 67.50 897.37
P-TA21 SNR 0 MC 840;10 49.50 41.00 895.68
P-TA21 SNR -5 MM 840;10 14.50 83.50 951.85
P-TA21 SNR -5 MC 840;10 32.25 55.75 949.55

Table B.3: Raw SNR noise testing results, for a select number of promising PTA-SNN archi-
tectures.

64

B.2.2 SOM-SNN architectures

Architecture Network structure Accuracy [%] Bad unique class [%] Avg. # spikes per sample

SOM12x12 CLEAN 144;144;10 93.00 3.75 427.61
SOM12x12 SNR 20 MM 144;144;10 71.25 19.75 427.55
SOM12x12 SNR 20 MC 144;144;10 92.00 4.75 427.6
SOM12x12 SNR 10 MM 144;144;10 49.00 35.75 425
SOM12x12 SNR 10 MC 144;144;10 84.50 10.25 430.1
SOM12x12 SNR 0 MM 144;144;10 23.50 58.75 421.5
SOM12x12 SNR 0 MC 144;144;10 57.75 29.50 435.73
SOM12x12 SNR -5 MM 144;144;10 13.75 64.50 422.49
SOM12x12 SNR -5 MC 144;144;10 23.75 50.00 444.21

SOM18x18 CLEAN 324;324;10 97 1.25 423.58
SOM18x18 SNR 20 MM 324;324;10 79 15 424.31
SOM18x18 SNR 20 MC 324;324;10 93.5 4 425.68
SOM18x18 SNR 10 MM 324;324;10 51.75 34.75 419.54
SOM18x18 SNR 10 MC 324;324;10 87.75 7.75 431.48
SOM18x18 SNR 0 MM 324;324;10 21.75 58.75 415.35
SOM18x18 SNR 0 MC 324;324;10 61.25 31.5 427.45
SOM18x18 SNR -5 MM 324;324;10 14.25 73.25 414.82
SOM18x18 SNR -5 MC 324;324;10 32.5 43.00 447.03

SOM20x20 CLEAN 400;400;10 96.75 2.75 421.74
SOM20x20 SNR 20 MM 400;400;10 86 9.5 420.01
SOM20x20 SNR 20 MC 400;400;10 95 2.75 423.95
SOM20x20 SNR 10 MM 400;400;10 58.5 30.25 415.66
SOM20x20 SNR 10 MC 400;400;10 87 7.75 429
SOM20x20 SNR 0 MM 400;400;10 23 52.25 412.86
SOM20x20 SNR 0 MC 400;400;10 62.25 25 440.53
SOM20x20 SNR -5 MM 400;400;10 13.5 65 412.01
SOM20x20 SNR -5 MC 400;400;10 35.25 40.25 447.12

SOM22x22 CLEAN 484;484;10 96.25 3 419.8
SOM22x22 SNR 20 MM 484;484;10 86.75 7.25 417.97
SOM22x22 SNR 20 MC 484;484;10 94.5 3.5 422.83
SOM22x22 SNR 10 MM 484;484;10 58.75 28 413.83
SOM22x22 SNR 10 MC 484;484;10 88.25 6.75 429.84
SOM22x22 SNR 0 MM 484;484;10 27.25 54.5 411.31
SOM22x22 SNR 0 MC 484;484;10 63.75 21.25 440.78
SOM22x22 SNR -5 MM 484;484;10 14.25 70.25 410.28
SOM22x22 SNR -5 MC 484;484;10 34 40.75 448.65

SOM24x24 CLEAN 576;576;10 97.5 1.25 418.46
SOM24x24 SNR 20 MM 576;576;10 87 8.25 416.67
SOM24x24 SNR 20 MC 576;576;10 95.25 3.75 422.52
SOM24x24 SNR 10 MM 576;576;10 59 25.75 385.48
SOM24x24 SNR 10 MC 576;576;10 89 7 428.54
SOM24x24 SNR 0 MM 576;576;10 26.75 55.25 408.16
SOM24x24 SNR 0 MC 576;576;10 63.25 22.25 440.06
SOM24x24 SNR -5 MM 576;576;10 13.75 66.25 407.14
SOM24x24 SNR -5 MC 576;576;10 35 42 447.45

Table B.4: Raw SNR noise testing results, for a select number of promising SOM-SNN archi-
tectures.

65

B.3 Distinguish between speech and noise

B.3.1 PTA-SNN architecture with NO dedicated noise class (Noise only)

Predicted

0 1 2 3 4 5 6 7 8 9 X

A
ct

u
al

0 0 4 0 0 31 5 0 0 0 0 0

1 0 0 3 0 31 5 0 0 0 0 1

2 0 3 0 0 29 3 0 3 0 0 2

3 1 2 1 0 26 7 0 3 0 0 1

4 0 0 1 0 35 3 0 2 0 0 0

5 1 0 0 0 32 5 0 2 0 0 0

6 0 0 2 0 33 3 0 2 0 0 1

7 0 1 0 0 36 2 0 1 0 0 0

8 0 0 0 0 37 2 0 1 0 0 0

9 0 2 1 0 31 5 0 1 0 0 0

Table B.5: Confusion matrix for the PTA-SNN architecture when only background noise is
presented to the network. Since the network is trained to classify the speech samples, no
response from the system is desired as any output activity corresponds to a speech class.
However, this is not the case, as most samples results in misclassification of speech instead of
noise.

66

B.3.2 PTA-SNN architecture with dedicated noise class (Noise only)

Predicted

0 1 2 3 4 5 6 7 8 9 10 X

A
ct

u
a
l

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 3 0 0 0 0 0 396 1

Table B.6: Confusion matrix for the PTA-SNN architecture when only background noise is
presented to the network. The added class 10 corresponds to the noise, and it highly detected.

B.3.3 PTA-SNN architecture with dedicated noise class (Speech only)

Predicted

0 1 2 3 4 5 6 7 8 9 10 X

A
ct

u
al

0 37 0 0 0 0 0 0 0 0 1 0 0

1 0 33 0 0 0 1 0 0 0 1 0 0

2 0 0 37 2 0 0 0 0 0 0 0 0

3 0 0 0 37 0 0 1 0 0 2 0 0

4 0 0 0 0 37 0 0 0 0 0 0 0

5 0 2 0 0 0 37 0 0 0 1 0 0

6 0 0 1 6 0 0 25 1 1 0 0 0

7 0 0 0 0 0 0 0 39 0 0 0 0

8 0 0 0 2 0 0 2 0 34 0 0 0

9 1 0 0 0 0 1 0 0 0 35 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0

Table B.7: Confusion matrix for the PTA-SNN architecture when clean audio is presented to
the network, with addition of the dedicated noise class.

67

B.3.4 SOM-SNN architecture with dedicated noise class (Noise only)

Predicted

0 1 2 3 4 5 6 7 8 9 10 X

A
ct

u
a
l

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 400 0

Table B.8: Confusion matrix for the SOM-SNN architecture when only background noise is
presented to the network. The added class 10 corresponds to the noise, and it highly detected.

B.3.5 SOM-SNN architecture with dedicated noise class (Speech only)

Predicted

0 1 2 3 4 5 6 7 8 9 10 X

A
ct

u
al

0 37 1 1 1 0 0 0 0 0 0 0 0

1 0 39 0 0 0 0 0 1 0 0 0 0

2 0 0 39 0 0 0 1 0 0 0 0 0

3 1 0 0 39 0 0 1 0 1 0 0 0

4 0 0 0 0 40 0 0 0 0 0 0 0

5 0 2 0 0 0 38 0 0 0 0 0 0

6 0 0 0 1 0 0 38 0 2 0 0 0

7 0 0 0 0 0 0 1 40 0 0 0 0

8 0 0 0 1 0 0 0 1 40 0 0 0

9 0 2 0 0 0 0 0 0 0 38 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0

Table B.9: Confusion matrix for the SOM-SNN architecture when clean audio is presented
to the network, with addition of the dedicated noise class.

68

Power and latency calculations C
C.1 CNN

– Section removed due to confidentiality –

69

C.2 LSTM*

– Section removed due to confidentiality –

70

C.3 RNN*

– Section removed due to confidentiality –

71

C.4 SOM

– Section removed due to confidentiality –

72

	Abstract
	Acknowledgments
	Introduction
	Problem statement
	Thesis objective
	Contributions
	Thesis outline

	Background
	Use-case description
	Artificial Neural Networks
	Spiking Neural Networks
	Biological Neurons
	Neuron Model
	Synapse

	Information encoding
	Rate encoding
	Temporal encoding

	Training methods
	Spiking Neural Network simulations
	Auditory front-end

	Architectural design
	Architecture
	Auditory front-end
	Spike encoding
	Spiking Neural Network
	Spike decoder

	Enhancements
	SOM layer encoding
	Dedicated noise class

	Non-spiking neural networks

	Training methodology
	Temporal spike training
	Process flow
	Complications

	Speech data
	Dataset candidates

	Testing for robustness

	Results
	Impact of network size
	Population Threshold encoding
	SOM layer encoding

	Impact of noise
	Population Threshold encoding
	SOM layer encoding

	Non-spiking neural network performance
	Distinguish between speech and noise
	Power consumption & latency

	Conclusion
	Future work
	Parameters settings
	Cochlear filter bank parameters
	Leaky integrate-and-fire model settings
	Tempotron parameter settings

	Classification results
	Network size testing
	Number of thresholds for PTA-SNN architecture (Clean)
	Dimensions for SOM-SNN architecture (Clean)

	SNR noise testing
	PTA-SNN architectures
	SOM-SNN architectures

	Distinguish between speech and noise
	PTA-SNN architecture with NO dedicated noise class (Noise only)
	PTA-SNN architecture with dedicated noise class (Noise only)
	PTA-SNN architecture with dedicated noise class (Speech only)
	SOM-SNN architecture with dedicated noise class (Noise only)
	SOM-SNN architecture with dedicated noise class (Speech only)

	Power and latency calculations
	CNN
	LSTM*
	RNN*
	SOM

