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Abstract

The main objective of this thesis is to contribute to the existing knowledge of unsteady
flow effects over airfoils. This is done by first obtaining experimental wind tunnel data for
a harmonically pitching airfoil and for an oscillating trailing edge flap. Additionally, the
goal is to validate two numerical methods by means of comparing them to the experimen-
tally obtained wind tunnel data. The unsteady pressure measurements are conducted in
two different wind tunnels using two airfoils and two motion types. The used numerical
methods are a viscous-inviscid interaction code [4] and the computational fluid dynamics
solver OpenFOAM.

A theoretical background on the basis of the two numerical methods is presented first.
Next the experimental methodology is described for both measurement campaigns with
different types of wind tunnels, airfoils and motions. Then a more model-specific and in
depth discussion of the two models is given, highlighting that the viscous-inviscid model
uses a Lagrangian description of the flow whilst the CFD model, in principle, approaches
the flow from a Eulerian point of view.

The results focus on the unsteady lift loops and the comparison between experimental
and numerical data. The unsteady pitching airfoil motion at Re = 4.2 · 105 was well
captured by Q3UIC but OpenFOAM had more difficulties in successfully capturing the
flow behaviour around the stall angle of attack.
The flap measurements at Re = 106 showed more satisfying outcomes in the case of
OpenFOAM. Apart from a steady-state offset, the loops are all captured accurately. Only
at the highest angle of attack of 18◦ the results show some dissimilarities due to large
separation regions and the shedding of many vortices into the wake.
Q3UIC shows good results for the lower angle of attack range, but around the stall angle of
attack, attached and separated flow conditions are not simulated accurately with respect
to the measurements. The OpenFOAM results only consist of boundary layer simulations
where transition is forced. A fully working free transition model can not be implemented
until the forced transition model is validated, which is also part of this study.
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Chapter 1

Introduction

This introductory chapter gives a short background of the thesis topic at hand. A moti-
vation on why this study is undertaken is outlined together with a description of the main
objectives and the methodology that is used. At the end, a detailed overview is given on
the structure of this thesis where all the chapters are addressed.

1.1 Morphing wings

Birds have the ability to continuously adapt their wings into the most efficient and effec-
tive form that satisfies a large range of flight conditions [8]. Unfortunately, this smooth
and seamless form adaptation can not be found in many contemporary aircraft wings or
rotor blades. The vast majority of these large scale structures is rigid. On a smaller scale
though, in the world of UAV’s for instance, the number of potential morphing technolo-
gies is larger due to the lower aerodynamic loads that act on the structure [9]. Through
millions of years of evolution, nature has had the chance to optimise bird flight to a great
extent. In that respect it is not surprising that engineers and designers would like to
reproduce bird-like wings as closely as possible. However, due to technical incapabilities
this is not yet entirely possible.
The use of conventional flaps, or control surfaces such as ailerons or elevators, has proven
to work well throughout history and is therefore applied globally with great success [10].
The ease and simplicity of this system is part of its success. In the past, this solution has
been chosen because early technologies did not provide the means to design and manu-
facture complete morphing wings on large scale. This is where complications arise, which
are mainly structural problems as described in [11]. In the field of small scale UAV’s,
morphing wings are widely applied due to the low weight, ease of small scale production,
simple control mechanisms and smart materials [12]. On a larger scale, the penalty of
weight and size rises and the challenge of how to implement morphing into these large
structures becomes apparent [13].

1



2 Introduction

The benefits of morphing structures are numerous and are therefore analysed extensively
with many ongoing research projects. In contrast to multi element airfoils, trailing edge
flaps with morphing configurations do not have the benefits of e.g. the fresh boundary
layer effect or the circulation effect. These effects are commonly found in multi element
airfoils [10]. An important disadvantage of multi element airfoils however, is that with
the increase in lift also a substantial drag rise occurs, reducing the low lift to drag ratio
of the airfoil. This disadvantage is not present with morphing flaps because the entire
airfoil consists of a single element capable of assuming various configurations. With the
technological advancements of today and more to come in the future, it is becoming in-
creasingly more attainable to reproduce morphing wings as they occur in nature, more
closely.

In the wind energy sector, morphing wings, or in this study, wings with a morphing
trailing edge flap region, can be used to reduce loads and vibrations caused by turbulent
inflow of the wind velocity field. A harmonically oscillating flap can act in phase or out of
phase with the wind to cancel out, or reduce unwanted loads and vibrations. By doing so
in the long run, the lifetime of the blades and of the turbine as a whole can be extended
since there is less exposure to fatigue loads and less stress on vital internal parts such as
bearings, shafts and components of the electrical system.

1.2 Motivation and objectives

Technologies, like many other things, evolve over time. In this study, the effects of un-
steady flow on morphing airfoils, in particular in the trailing edge region, are addressed.
As this morphing manner of shape adaptation is key to improved aerodynamic and struc-
tural characteristics of airfoils, the relevance and motivation to investigate airflows exper-
imentally and numerically, arises. For wind turbine applications, flexible trailing edges
can be used to reduce the loads and vibrations on the rotor blades. For aircraft and
automotive applications, the possibilities of morphing aerodynamic structures can even
be applied more extensively.
The main research question of this project is stated as follows:

How accurate are existing numerical/ computational tools in predicting aero-
dynamic behaviour of harmonically pitching airfoils with a seamlessly morph-
ing trailing edge flap region?

With subquestions:

• Where do the numerical models differ the most from the experiments and
what are the most likely causes for this difference?

• How can the discrepancies between simulations and experiments be re-
duced?

In order to answer these questions the primary objective of this thesis is to:
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Contribute to the existing knowledge of unsteady effects over airfoils by per-
forming wind tunnel measurements on a harmonically pitching airfoil and an
oscillating trailing edge flap. With these results, the validity and accuracy of
two numerical models is examined.

Given the motivation, research questions and objectives, and previous studies related to
this topic, a clear idea becomes visible on why a continuation on this study is relevant.
For instance in [14], a comparison is drawn between different simulation methods, but
without an experimental validation. The present study also includes the latter.

1.3 Methodology and thesis outline

Having given the general project description, it is now stated how to go about setting up
the experiments, which variables are of interest and how everything should be monitored,
processed and analysed.

The theoretical framework of this project consists of a combination of different approaches.
First the researcher is familiarised with the fundamental theories of morphing and pitch-
ing airfoils and unsteady flow, together with the newest trends in numerical approaches
that simulate aerodynamic behaviour of airfoils. Use is made of a computational model
that goes by the name of Q3UIC, designed and written by Ramos Garćıa [4]. This is
a panel method based on the viscous-inviscid interaction of the flow and is used for the
analysis of unsteady flow around the pitching airfoil. To run this code the programming
language Fortran is used, together with Matlab to analyse the wind tunnel data and com-
bine and compare the data between the two. Alongside the viscous-inviscid model, CFD
simulations are performed using the open source CFD tool OpenFOAM. These numerical
methods are discussed in more detail in Chapter 4.

Alongside the two numerical tools described above, this study consists of experimentally
obtained data from wind tunnel measurements at Denmark Technical University (DTU)
and TU Delft. Both experimental campaigns are performed using pressure measurements,
a detailed description of the wind tunnel experiments can be found in Chapter 3.

Before the experimental set up and results are discussed, this thesis starts with a theoreti-
cal background of Q3UIC and OpenFOAM, in Chapter 2. After all the needed information
is provided, the results of both experiments and simulations are provided and analysed
in Chapters 5 and 6. Finally this study ends with conclusions and recommendations for
future work in Chapter 7.
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Chapter 2

Theoretical background

The theory in this chapter serves as an introduction to the physics of the numerical
models described in Chapter 4. A short overview of the theoretical basis behind concepts
as velocity potential and the relation between circulation and lift is presented. Unsteady
flow characteristics are described subsequently with a short discussion on dynamic stall.
Next, a discussion on viscous flow is given including a description of the boundary layer
and the unsteady Kutta condition. Finally a brief discussion is given on the general theory
behind the Navier-Stokes equations and Computational Fluid Dynamics.

2.1 Velocity potential and vortex flow

The continuity equation states that for incompressible flow, the relation ∇ ·V = 0 holds.
If, in addition to that, the flow is inviscid and irrotational, it follows that the circulation
per unit area, or vorticity is zero: Ω = ∇ × V = 0. Such a flow is characterised by
the velocity potential Φ, stating that the velocity at some point can be obtained as the
gradient of the velocity potential.

∇Φ = V (2.1)

Combining (2.1) and the expressions above, it is shown that the velocity potential satisfies
Laplace’s equation:

∇2Φ = 0, (2.2)

which is a statement of the incompressible continuity equation for an irrotational fluid.
The velocity field for an incompressible inviscid irrotational flow can be obtained by
solving Laplace’s equation for the velocity potential. In order to do so, an important
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boundary condition is imposed forcing the velocity component normal to the body surface
to be zero.

∇Φ · n = 0 (2.3)

An additional boundary condition states that in the far field, as the distance r goes to
infinity r →∞, the influence that the moving body exerts on the flow tends to zero.

lim
r→∞

∇Φ = 0 (2.4)

The two-dimensional velocity potential for a source flow can be defined as an integration
of the separate source strengths along a path.

Φ(x, y) =

∫ b

a

λds

2π
ln r, (2.5)

where a and b are the start and end point of the integration path, s the path location
and λ the source strength per unit length.

In order to create lift, there has to be circulation. The total circulation Γ around a closed
contour and over any surface is given by:

Γ = −
∮
C
V ds = −

∫∫
S

(∇× V ) dS (2.6)

This expression relates circulation to vorticity using Stoke’s theorem. For vortex flow,
which is irrotational at every point except the origin where the vorticity approaches
infinity, the strength of a vortex sheet per unit length can be defined as γ = γ(s). In this
case the circulation is expressed by:

Γ =

∫ b

a
γds (2.7)

Following from this expression, the total lift per unit span is obtained using the Kutta-
Joukowsky theorem:

L′ = ρ∞V∞Γ (2.8)

This theorem shows the direct proportionality between lift and circulation.

2.2 Unsteady aerodynamics and dynamic stall

A harmonic motion of a pitching airfoil is an example of a body immersed in an unsteady
flow. The aerodynamic properties change with every time step as the position of the
airfoil is continuously shifting. Unsteady aerodynamics can be divided into two parts:
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Figure 2.1: Dynamic and static lift coefficients.

the Theodorsen effect and dynamic stall [15]. Very basically the Theodorsen effect can
be described as a delayed lift effect in conditions of attached flow, and dynamic stall, a
delayed lift effect during separated flow.
In the attached flow region, during the up-stroke of a pitching airfoil, a lower lift than
in the static case is experienced because the flow is delayed and requires some time to
reach the new steady state value. In the down-stroke, the opposite effect occurs, leading
to higher lift values than in the static case, as is shown in the left, counter clock-wise loop
of Figure 2.1.
The dynamic stall direction of the lift behaviour is opposite to that of the Theodorsen
effect. Here the direction of the loop is clock-wise see Figure 2.1, experiencing higher lift
for increasing angle of attack in the up-stroke and lower lift in the down-stroke. This is
because not only the air loads are delayed, but also the separation point, which has an
opposite delayed effect on the lift. The suction effect of a growing vortex is generally the
cause of higher lift values for increasing angles of attack. After the vortex has reached
past the trailing edge and the flow fully separates, lift values drop below the static case. In
contrast to steady static stall, dynamic stall is influenced by a larger range of parameters,
making it more difficult to model and analyse [16].

A rapid change in angle of attack can lead to the formation of a separation bubble where
a vortex is being formed at the leading edge and the flow reattaches again due to adverse
pressure gradients not being strong enough to maintain separated flow. As α increases,
the adverse pressure gradient grows, pushing the flow reattachment point downstream
towards the trailing edge. This vortex creates an additional lift until it reaches the trailing
edge, after which it is shed into the wake, causing an abrupt decrease in lift. After a low
enough angle of attack is reached, the flow reattaches and the loop starts over again. This
process is visualised in Figure 2.2.

In steady flow, the velocity at any point Up, is composed of the free stream velocity U∞
and the body induced velocity uind. For unsteady flow an additional term uw is added,
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Figure 2.2: Dynamic stall explained [5].

representing the influence of the wake.

Up = U∞ + uind + uw (2.9)

The wake influence is most pronounced at the trailing edge region of the airfoil and its
strength is strongly dependent on the frequency of the body movement. Higher frequencies
result in increased unsteady effects characterised by a larger size of, for instance the Cl(α)
loops.

An important quantity that is commonly used to describe the motion is the reduced
frequency k. It is derived from the angular frequency ω, in the harmonic equation of
motion for the angle of attack.

α = αm + αA · sin(ωt− ϕ), (2.10)

where αm is the mean angle of attack, αA the amplitude and ϕ the phase shift. The
relation between angular frequency and reduced frequency gives the final expression for
k.

k =
ωb

U∞
=

2πfb

U∞
=
πfc

U∞
, (2.11)

where b = c/2 is the semi-chord. The reduced frequency is often used as a measure to
define the steadiness of a flow as shown in Table 2.1.

Too high frequencies will often result in rapid and large differences in circulation between
panels and large pressure distributions between upper and lower airfoil surface. In some
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Table 2.1: Flow states as function of reduced frequency.

Flow type Range

Steady k = 0
Quasi-steady 0 < k ≤ 0.05
Unsteady 0.05 < k ≤ 0.2
Highly unsteady k ≥ 0.2

numerical models this can eventually lead to a slow numerical convergence. That is to
say, if a converging solution is to be reached, there is a limit to which the frequency of
the harmonic airfoil movement can be increased as the influence of the wake grows and
the addition of viscous effects are added into the potential flow model [4].

2.3 Viscous flow

Viscosity plays an important role close to a body surface and is intrinsically related to
the Reynolds number:

Re =
ρU∞c

µ
=
U∞c

ν
, (2.12)

where µ and ν are the dynamic and kinematic viscosities respectively. Their relation to

each other is given by by the air density ρ through ν =
µ

ρ
. c is a length scale, which in

this study is the chord of the airfoil, and U∞ the free stream velocity of the flow. The
Reynolds number is a non dimensional quantity defined by the ratio of inertial and viscous
forces. From (2.12), by looking at the ratio, it can be deduced that for low velocities the
relative importance of the viscous forces increases. This is the case close to the body
surface where frictional forces are present.
The way in which the boundary layer behaves is highly influenced by the Reynolds number.
As Re increases, viscous effects become less important and the boundary layer thickness
decreases. In result, due to the thinner boundary layer, the onset of separation is delayed.
An increase in Re also leads to a build-up of laminar instabilities and strong adverse
pressure gradients. This then results in advancement of the transition to a turbulent
boundary layer.

Figure 2.3 illustrates the displacement thickness δ∗ as being part of the boundary layer
thickness δ. Looking at the relation between inviscid and viscous flow, δ∗ is the distance
by which streamlines are shifted from the surface to obtain the same flow rates for both
types of flow.

A decrement in mass flow due to the presence of the boundary layer is a possible inter-
pretation of the displacement thickness which is described mathematically by the relation
below.

δ∗ =

∫ δ

0

(
1− u

ue

)
dy (2.13)

, where u is the boundary layer velocity and ue the BL edge velocity. A measure for the
loss of momentum of the viscous flow due to presence of the boundary layer is defined
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Figure 2.3: Displacement thickness δ∗ [2].

by the momentum thickness θ. It is also related to the integral drag of a surface and the
rate of increase can be seen as a measure for the local skin friction.

θ =

∫ δ

0

u

ue

(
1− u

ue

)
dy (2.14)

The shape factor provides information about the nature of the flow and is defined as the
ratio between the displacement and momentum thickness. Inserting Equations (2.13) and
(2.14) into this ratio yields:

H =
δ∗

θ
=

∫ δ
0

(
1− u

ue

)
dy∫ δ

0
u
ue

(
1− u

ue

)
dy

=

∫ δ

0

u

ue
dy (2.15)

Where low values of H are representative for turbulent boundary layers and higher values
are found in laminar boundary layers. The boundary layer thickness δ does not have an
influence on the shape factor, its value is solely based on the displacement and momentum
thickness. A visualisation of the relation between these quantities is shown in Figure 2.4.

The wall shear stress, that is significantly higher for turbulent than for laminar flow is
given by:

τw = µ
∂u

∂y
(2.16)

A higher wall shear stress means that close to the surface, the gradient of the velocity
profile ∂u/∂y is steeper than for a laminar one.

2.4 Boundary layer equations and transition process

The Navier-Stokes (NS) equations (2.17) are capable of describing general fluid motion
in great detail, but at the same time they are time demanding to solve for a sufficient
accuracy. The two-dimensional boundary layer equations for steady incompressible flow,
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Figure 2.4: Relation between shape factor, displacement thickness and momentum thickness [3].

are a simplification of the NS-equations. A more detailed discussion on the NS-equations
is given in Section 2.6.

ρ′u′
∂u′

∂x′
+ ρ′v′

∂u′

∂y′
= − 1

γhM2
∞

∂p′

∂x′
+

1

Re

∂

∂y′

[
µ′
(
∂v′

∂x′
+
∂u′

∂y′

)]
, (2.17)

where a prime ′ denotes that the variable is non-dimensionalised, i.e. ρ′ =
ρ

ρ∞
.

After some simplifications and rearrangements, the two-dimensional boundary layer equa-
tions are outlined in (2.18), assuming δ � c, and large Reynolds numbers in the order of
Re = 1/δ2.

Continuity : ρ
∂u

∂x
+ ρ

∂v

∂y
= 0

x–momentum : ρu
∂u

∂x
+ ρv

∂u

∂y
= −dp

dx
+

∂

∂y

(
µ
∂u

∂y

)
(2.18)

y–momentum :
∂p

∂y
= 0

The boundary conditions imposed at the surface and at the boundary layer edge state
that

At surface : y = 0 u = 0 v = 0 (2.19)

At boundary layer edge : y = ∞ u = ue (2.20)

The region close to the body surface is viscous and is governed by the simplified NS–
equations which are parabolic rather than elliptic as in the full version. This classification
follows from the form of standard second-order PDE’s:

auxx + buxy + cuyy = f(x, y;ux, uy), (2.21)

where the mathematical character of the equations is determined by the determinant
D = b2 − 4ac:

b2 − 4ac =


< 0 elliptic
= 0 parabolic
> 0 hyperbolic

(2.22)

Because of this parabolic nature, there is no upstream influence, meaning the boundary
layer development is determined in downstream direction from an initial station.
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A weakness of the classical boundary layer computations is that there is a singularity
near separation named after Goldstein, caused by the stable parabolic direction of the
equations which changes in reversed flow regions. For mild separation and moderate an-
gles of attack, this singularity can be overcome by applying a strong interaction through
transpiration velocity between the inner viscous and the outer inviscid flow [4].

Figure 2.5: Boundary layer transition process [2].

A boundary layer usually starts off laminar with streamlines parallel to the surface.
Changes in stream-wise position on a body surface, an increase in Reynolds number
or surface roughness and pressure gradients can result in the flow becoming increasingly
unstable. This is where the laminar flow transitions into a turbulent state, where shear
stresses and skin friction are high. The flow is turbulent once the transition point is
passed, see Figure 2.5. Upstream of this point the flow is treated as laminar, despite the
instability waves of the boundary layer, because they do not affect the mean flow until
after the transition point.
In some cases it is desirable to maintain laminar flow because of lower skin friction drag
values. On the other hand, turbulent flow has the advantage of keeping the flow attached
to the surface longer, which delays the onset of separation and a dramatic increase in
pressure drag. It depends on the application which flow type is preferred. In glider air-
craft, wings are made extremely smooth to maintain laminar flow as long as possible and
hence reduce skin friction drag. In the case of, for example, a golf or tennis ball, turbulent
flow is preferred because separation is delayed, resulting in a narrower wake and lower
pressure drag.

Figure 2.6: Pressure gradients and resulting velocity profiles [3].

When adverse pressure gradients become too large, the flow starts to reverse direction,
leading to flow separation, see Figure 2.6. Due to their chaotic nature where mixing
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is facilitated, turbulent boundary layers are better in transferring energy at the edge
between inner and outer flow, preventing the flow from separating.

2.5 Kutta condition

The Kutta condition in short can be summarised by two basic statements. First, it is
stated that the flow must leave the trailing edge (TE) smoothly. The second statement
depends on the shape of the TE. For a finite TE angle, the tangential upper and lower
surface velocities must be zero at the TE. Because physically, there can be no two different
velocities with different directions at the same point. So for a finite angle, the trailing
edge is a stagnation point. If, on the other hand, the trailing edge is cusped, the upper
and lower velocities are equal and finite and leave the trailing edge smoothly parallel to
each other as shown in Figure 2.7.

Figure 2.7: Kutta condition for finite TE angle and cusped TE [1].

When the flow leaves the airfoil at the trailing edge, a starting vortex is generated which
is a measure for the lift as defined by the Kutta-Joukowsky theorem in (2.8). The Kutta
condition expressed in pressure difference and vortex sheet strength at the trailing edge
yields:

∆p(TE) = 0 and γ(TE) = 0 (2.23)

For unsteady flow however, the condition ∆p(TE) = 0 does not hold. In order to maintain
zero loading at the trailing edge, a starting vortex is shed into the wake which is equal
and opposite in sign to the change in bound vorticity on the airfoil as shown in Figure 2.8.

A discussion on the unsteady Kutta condition is given in [17], where it is stated that for
panel methods, a proper Kutta condition specification is more important than any other
numerical detail [18]. A more detailed discussion on the unsteady Kutta condition and
the numerical implementation into Q3UIC is given in Chapter 4.
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Figure 2.8: Bound airfoil circulation and starting vortex being shed into the wake [2].

2.6 Navier-Stokes

This section first focusses on the governing equations that describe fluid motion and then
discusses the model that is used for solving the equations. There are basically three ways
of solving the NS equations, DNS, LES and RANS. A brief discussion on DNS and LES
follows after which RANS is explained in a bit more detail in Section 2.6.2.

DNS

The most accurate and simple way to solve and simulate the NS equations is with Direct
Numerical Simulation (DNS). All spatial and temporal scales of turbulence are resolved
without the use of turbulence models. The direct nature of this method makes it the
most accurate method but also computationally the most expensive. The number of cells
is approximated by (2.24), where L is the characteristic length of the biggest turbulent
eddy, and η the Kolmogorov length scale.

N ≈
(
L

η

) 3
4

(2.24)

Kolmogorov showed that:
L

η
∼ Re

3
4 (2.25)

Following from this, DNS requires a number of mesh points N3:

N3 = Re
9
4 (2.26)

High Reynolds number flows are not practical to solve because the computational power
requirements exceed the capabilities of the most powerful computers that are currently
available. Even for low Re simulations, computers that are considered among the most
powerful currently available, have their shortcomings.

LES

A bit more manageable method from a computational time point of view, is Large Eddy
Simulation (LES). Here a function is used to filter out smaller scales of the solution (sub-
grid fluctuations) and to model them while the larger vortices are computed directly. By
doing so, the computational time decreases and more complex geometries can be resolved.
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Neither of these methods are applicable for this study, mainly because of their computa-
tional expense.

2.6.1 Governing equations

A different approach to describe fluid motion around an object is by solving the Navier-
Stokes (NS) equations. The common way of solving these complex equations is by using
computational fluid dynamics (CFD), an accurate but computationally expensive method.

Conservation laws

The derivation of the Navier-Stokes equations is realised by applying the conservation
laws of mass, momentum and energy to a moving fluid:

Mass : ρ

(
∂

∂t
+∇ · u

)
= 0 (2.27)

Momentum : ρ

(
∂u

∂t
+∇ · (uu)

)
= ∇σ (2.28)

Energy : ρ

(
∂e

∂t
+∇ · (eu)

)
= ∇ · (σu)−∇q + ρQ (2.29)

Mass conservation follows from the continuity equation and the physical principle that
mass can be neither created nor destroyed. Momentum conservation is based on Newton’s

second law F =
d

dt
(mu) = ma, which in its more general form relies on the principle that

force equals the time rate of change of momentum. The body forces are omitted in the
momentum equation above. The stress tensor σ represents:

σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 (2.30)

Finally the conservation of energy entails that energy can change in form but without the
possibility of being created or destroyed, known as the first law of thermodynamics. The

total specific energy e [J kg−1] comes from the more general fluid enthalpy h = e +
p

ρ
,

q [W s−1] is the heat flux vector and Q [J m3 kg−1] the energy generation. The stress
tensor defined by normal and viscous stresses on the surface:

σ = −pI + T, (2.31)

where I is the identity matrix and T the deviatoric stress tensor: T = A(∇u) with A,
being a viscosity tensor. Now T can be expressed as:

T = 2µE + µ′′∆I, (2.32)

where

E =
1

2

(
∇u +∇uT

)
(2.33)
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is the rate of strain tensor and ∆ = ∇u the expansion rate of the flow. Now with
2µ+ 3µ′′ = 0, the deviatoric stress tensor is expressed as

T = 2µ

(
E− 1

3
∆I

)
(2.34)

Finally substituting (2.34) and (2.33) into (2.31) gives the expression for the stress tensor:

σ = −pI + T = −pI + 2µ

(
1

2

(
∇u +∇uT

)
− 1

3
∆I

)
(2.35)

= −
(
p+

2

3
µ∇u

)
I + µ

(
∇u +∇uT

)
The stress tensor in (2.35) is one of the required constitutive relations to close this set of
equations. To close the energy equation, the perfect gas law is used: p = ρRT , and finally
Fourier’s law relates the heat variables to each other as: q = λ∇T , where λ [W m−1 K−1]
is the heat conductivity.

Incompressible

Considering the airspeed of 25 m s−1 used in this study, the Mach number of 0.3 from
where flow is assumed compressible, is not reached. This simplifies the NS equations to
the unsteady, incompressible form where there is no more need for the energy equation:

∇ · u = 0 (2.36)

Inertia︷ ︸︸ ︷
∂u

∂t︸︷︷︸
Unsteady

acceleration

+ ∇ · (uu)︸ ︷︷ ︸
Convective

acceleration

=

Divergence of stress︷ ︸︸ ︷
ν∇2u︸ ︷︷ ︸

Viscosity

− ∇p
ρ︸︷︷︸

Pressure

gradient

(2.37)

Non-dimensional

To reduce the number of parameters and to have better comparing abilities, the next
step is to non-dimensionalise the unsteady, incompressible NS-equations. This is done by
division of a variable by its reference variable. An example of how the velocity is made
dimensionless is shown in (2.38).

u′ =
u

Uref
(2.38)

By doing so for each variable, the dimensionless form of the incompressible, unsteady
Navier-Stokes equations is expressed as:

∇ · u′ = 0 (2.39)

St
∂u′

∂t
+∇(u′u′) = −∇p+

1

Re
∇2u′, (2.40)

where the dimensionless Strouhal and Reynolds numbers emerge, adjoining the temporal
and viscous term respectively.
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2.6.2 RANS

Finally, the least expensive but also the least accurate method is the Reynolds-Averaged
Navier-Stokes (RANS) equations, where the NS quantities are decomposed into a time-
averaged and a fluctuating part.
This simplification leads to additional terms, the so-called apparent, or Reynolds stress
components ρu′iu

′
j . An option for a closure model is to prescribe the fluid another prop-

erty: turbulent viscosity. Additionally there is a need to link this to the turbulent kinetic
energy and the length scales of turbulence taking into account the flow history.
In order to solve the set of equations, a closure model is needed to account for the
transport of turbulent quantities: kinetic energy and the dissipation thereof. There are
different models for this, among which the k-ω and k-ε are most common. They repre-
sent the turbulent kinetic energy k [m2 s−2], the dissipation rate of the turbulent kinetic
energy ε [m2 s−3] and the specific dissipation ω [s−1]. The turbulent kinetic energy k,
is a measure of the kinetic energy per unit mass of the turbulent fluctuations in a flow.
The dissipation ε, the rate at which k is converted into thermal energy. And finally the
specific dissipation ω indicates at which rate k is converted into thermal energy per unit
volume and time, sometimes also referred to as mean frequency of the turbulence.
The relation between these parameters is shown in (2.44) and the turbulence models are
discussed in more detail in Section 4.2.1.

k =
3

2
(UI)2 (2.41)

ε =
k

3
2

l
(2.42)

ω =
k

1
2

l
(2.43)

ε = knωm (2.44)

where, I the turbulence intensity [=] and l the turbulent length scale [m].

Compared to the more accurate DNS and LES models, RANS can fail in proper predic-
tion of the turbulent kinetic energy in the wake region [19].

In short, the choice for the most suitable solver depends heavily on the characteristics
of the problem that has to be simulated. In this study the RANS approach is chosen
because of its low computational expense.
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Chapter 3

Experimental methods

The present chapter describes the experimental methods that are used to study the aero-
dynamic behaviour of a pitching NACA 64-418 airfoil and a DU 95-W-180 airfoil with
a morphing trailing edge flap. The experiments are performed in an open return wind
tunnel of DTU Lyngby and a closed return low turbulence wind tunnel at TU Delft.

3.1 DTU measurements on a pitching airfoil

This section gives an overview of the DTU experimental set-up. First, it is described
how the wing, wind tunnel and other instrumentation are prepared for testing. Next, a
description is given of how the measurements are carried out and which test cases are
investigated. Considered are steady and unsteady flow conditions and a free and tripped
boundary layer transition for a variety of angles of attack and reduced frequencies.

3.1.1 NACA 64-418

For the experiments, a carbon fibre wing with a NACA 64-418 airfoil is used. The first
digit indicates that the airfoil belongs to the NACA 6–series. The chord-wise location of
the minimum pressure is 0.4c and is given by the second digit. The design lift coefficient
at zero angle of attack is 0.4, shown by the third digit, and the last two digits describe
the maximum thickness t/c = 18%.
The wing has a 0.5 m span and a chord of 0.25 m, see Figure 3.3. Prior to the experiments
the wing had to be prepared. All pressure tabs, on one end connected to small holes on
the suction and pressure sides of the wing, are connected to a designated position on
the pressure scanner seen in Figure 3.1. The distribution of the pressure holes which are
located at 45% of the wing span is shown in Figure 3.2. The two pressure scanners are
connected to a data acquisition system which in turn, is connected to a computer that
analyses and processes the data using LabVIEW.

With all the pressure tubes connected, a linear motor to control the flap angle was
mounted.

19
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Figure 3.1: Instrumentation inside of the wing: pressure scanners, flap linear motor, and
tubing.
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Figure 3.2: NACA 64-418 airfoil showing the pressure tab distribution located at a span wise
position of 45%.

Figure 3.3: Closed wing as used during measurements.
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3.1.2 Open-return wind tunnel

The open return wind tunnel of DTU is of the open-return type with test section dimen-
sions: l × w × h = 1.3 m × 0.5 m × 0.5 m. The boundary layer parameters and turbu-
lence intensity of the wind tunnel were measured in previous experiments conducted by
Bartholomay. For a more detailed description, the reader is referred to [6]. Figure 3.4
shows the layout and dimensions of the open return tunnel.

Figure 3.4: Layout and dimensions of wind tunnel in meters [6].

This type of tunnel has the disadvantage that the flow quality in the test section is rel-
atively low compared to a closed return wind tunnel. In this tunnel, four screens at the
inlet are used to reduce the turbulence intensity and hence improve the quality of the
flow. A close-up photograph of the test section with the wing fitted inside the test section
is shown in Figure 3.5. The hinge axis of the wing at the bottom, is connected to a
servomotor which controls the harmonic motion through a voltage generator that relates
voltage to the desired angle of attack amplitude. The wind tunnel velocity is measured
using a Pitot tube placed at the beginning of the test section.

The previously measured turbulence intensity (TI Equation (3.1)) of the wind tunnel is
obtained for a range of 15 < U∞ < 55, showing a decrease with increasing flow velocity
and ranging from 0.221% < TI < 0.164% [6].
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(a) Wing inside test section. (b) Wind tunnel test section.

Figure 3.5: Experimental set-up DTU wind tunnel.

In another publication, for a lower velocity range, TI increases with velocity as:
2.5 m s−1 < U∞ < 20 m s−1 and 0.32% < TI < 0.45% [20].
Based on the ratio between the root mean square of the turbulent velocity fluctuations
and the Reynolds averaged mean velocity and in (3.1) it can be calculated what value TI
takes on.

TI =
urms
umean

, (3.1)

where rms represents the root mean square.

3.1.3 Instrumentation

The instrumentation used in the experiments consists of the following devices.

• Pressure scanner.

– The pressure scanner senses the pressure as result of fluctuations in flow ve-
locity over the airfoil surface.

– There are two pressure scanners with 32 ports each and a measuring accuracy
of ±0.03% [21]. One is mounted on the pressure side of the wing and one on
the suction side.

• Linear motor.

– The linear motor is used to control the motion of the trailing edge flexible flap.

– Technical issues prevented the use of the flap during measurements.
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• Servomotor.

– The servomotor is used for the harmonic motion of the main airfoil.

– A prescribed motion is fed to the controller through a voltage generator result-
ing in a near sine motion, see Figure 3.6.

• Data acquisition system.

– The pressure from the scanners is fed to the acquisition system.

– This, in turn sends it to a computer where various graphs can be made visible
on the monitor using LabVIEW.

• Voltage generator.

– The voltage generator enables the user to set the frequency and amplitude of
the desired motion.

– In order to obtain the wanted motion, the generator is connected to the servo-
motor.

• Wind tunnel control system.

– An on/off switch to start up or shut down the wind tunnel.

– A control to set the tunnel velocity.

• Computer.

– MacTalk to control the servomotor.

– LabVIEW to obtain and process the pressure readings.

– LinMot for the flap movement (not used).

3.1.4 Test cases

After preparing and fitting the wing in the wind tunnel, all tasks were completed to start
the measurement campaign. Measurements are done for different mean angles of attack,
amplitudes and reduced frequencies summarised in Table 3.2.

Before actually starting to measure all the test cases, the servomotor motion is bench-
marked against a perfect sine motion. From Figure 3.6 it can be seen that the motion
resembles a sine function closely, except for some minor deviations at the extremities.

It must be noted that with increasing angle of attack, the blockage effect of the tunnel
increases. Since the tunnel velocity is not linked to the blockage, the tunnel velocity
decreases for high angles of attack. The effect of this on the experimental data is discussed
in Chapter 5. Since the test section is actually too small for the size of the wing, the walls
exert an influence on the streamlines around the wing. This is compensated in Q3UIC
by modelling the wind tunnel walls as source panels with a constant distribution. The
influence of the walls is reduced for smaller wings, in this case the wing could not be
manufactured smaller because of the internal instrumentation.
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Figure 3.6: Servomotor motion translated to α(t) benchmarked against a sine function.

Prior to the measurements of the unsteady behaviour, a set of steady measurements are
carried out for angles of attack: −10◦ < α < 25◦. Considering a free transition of the
boundary layer and a boundary layer that is tripped to a turbulent state. The boundary
layer is tripped using small metal strips close to the leading edge of the wing, as shown
in Figure 3.7.

Figure 3.7: Trip wires used to force an early boundary layer transition at x/c ≈ 5%.

All the test cases that are analysed are summarised in Tables 3.1 and 3.2. The mean
angles of attack and the amplitudes are chosen in such a way to cover the main part of
the lift polar; in the unsteady loops ranging from −8◦ < α < 20◦. The reason for choosing
the frequencies is because of the maximum attainable frequency of the servo motor of 2 Hz
or k = 0.0628, which is just in the unsteady regime. For an easy and scalable comparison
the other frequency is chosen to be half of the maximum value.

The results of the measurements are discussed in detail in Chapter 5.
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Table 3.1: Steady test cases NACA 64-418.

Transition state Angle of attack range

Free transition −10◦ < α < 25◦

Tripped transition −10◦ < α < 25◦

Table 3.2: Unsteady test cases, NACA 64-418 pitch measurements.

Boundary layer transition

Frequency Free transition Tripped transition

k and f Mean αm[◦] ∆α[◦] Mean αm[◦] ∆α[◦]

0 4 0 4

8 8

4 4 4 4

k = 0.0314 8 8

f = 1 Hz 8 4 8 4

8 8

12 4 12 4

8 8

0 4 0 4

8 8

4 4 4 4

k = 0.0628 8 8

f = 2 Hz 8 4 8 4

8 8

12 4 12 4

8 8
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Figure 3.8: Trailing edge flap and servo motor on the DU 95-W-180 experimental model.

3.2 TU Delft measurements on a morphing flap

This section gives an overview of the experimental study conducted in the LTT of TU
Delft (Low speed, low Turbulence wind Tunnel) using a DU 95-W-180 airfoil with a
morphing trailing edge flap region hinged at x/c = 0.8.

3.2.1 DU 95-W-180

For the experimental study a DU 95-W-180 airfoil is used with a morphing trailing edge
flap. The wing is designed for Re = 3 · 106 and is fabricated in fibre-glass composite with
a polished polyester gel coat surface with a surface deviation that lies below 0.1 mm [22].
The term morphing should be clarified, because the skin is not actually morphing. The
difference with a conventional flap is that there is no gap between the main airfoil and
the trailing edge flap; as illustrated in Figure 3.8, the gap is sealed of as if the two parts
were actually one.
The wing has a Delft University (DU) airfoil, from the year 1995 (95), used for wind
energy applications (W) with a thickness to chord ratio t/c of 18% (180). The model has
a chord of 0.6 m and a span of 1.25 m, designed to fit in the wind tunnel test section in
vertical direction. The trailing edge is thin in order to avoid excessive boundary layer
noise and the trip wire for forced transition measurements is located at approximately
0.05x/c.
Pressures are measured through orifices distributed over the wing surface and by a wake
rake system in the wake of the wing, see Figure 3.10a. The method of data acquisition is
further discussed in Section 3.2.3.

3.2.2 Low-Speed Low-Turbulence Wind Tunnel (LTT)

The LTT is of an atmospheric closed single-return type with a total length of 72.7 m and
a contraction ratio of 17.8:1. The test sections are removable and are octagonally shaped.
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A 25 k W DC motor drives a fan with six blades giving a maximum velocity of 120 m s−1

and a maximum Reynolds number of Re = 3.5×106. Exact dimensions of the test section
and characteristics of the tunnel are summarised in Table 3.3 and a complete overview of
the tunnel is illustrated in Figure 3.9.

Figure 3.9: LTT characteristics and components [7].

Table 3.3: LTT characteristics and dimensions.

Maximum velocity 120 m s−1

Turbulence Intensity 0.02 – 0.1%
Test section l × w × h 2.60 × 1.80 × 1.25 m
Contraction ratio 17.8 : 1

3.2.3 Instrumentation

The flap actuation is done using two servo motors JR DS8711HV, supplied by a voltage
of 7.4 V and controlled by a varying pulse width signal of 50 Hz. One servo mounted
on top and the other at the bottom of the flap. In order to get the real flap deflection,
the voltage drop over the internal potentiometer is measured, after having calibrated the
relation between flap deflection and voltage.

For the pressure measurements, the DTC Initium system is used with six ESP pressure
scanners and LabVIEW. Four scanners are designated to the pressure tabs on the airfoil
surface and two for the wake rake. A rectangular trigger signal of 300 Hz was used to
trigger measurements of the six scanners. Sampling of the scanners is done simultaneously
while the sampling per channel of a scanner in series.

The voltage of the servo and the trigger signal were logged with a sample rate of 10 kHz.
Correlating the servo position, i.e. the flap deflection and the pressure is done by checking
at which point the pressure sampling starts in relation to the trigger pulse.



28 Experimental methods

(a) Wing and wake rake inside test
section.

(b) Wind tunnel test section and inlet.

Figure 3.10: Experimental set-up LTT.

3.2.4 Test cases

The measurements were performed at a wind speed of 25 m s−1, which translates to

Re =
ρU∞c

µ
=

1.2 · 25 · 0.6
1.81 · 10−5

= 106 (3.2)

During the measurements Re is steadily kept at one million by adjusting the wind tunnel
velocity as it decreased slightly with increasing angles of attack. The steady polars are
measured for angles of attack: −15◦ < α < 18◦. Above 18◦, readings are not considered
to be of much interest due to the large blockage effect.

Table 3.4 summarises all the unsteady test cases that are measured. The considered
frequencies range from:

• k = 0.01: Nearly steady

• k = 0.05: Intermediate stage, quasi–steady

• k = 0.1: Unsteady

The selected angels of attack are chosen based on:

• α = 0◦: Should show little, if any deviations in unsteady behaviour; test case.

• α = 8◦:

(
L

D

)
max

• α = 18◦: Cl,max



3.2 TU Delft measurements on a morphing flap 29

Table 3.4: Unsteady test cases, DU 95-W-180 flap measuerements.

Boundary layer

Frequency Free transition Forced transition

k and f α[◦] ∆β[◦] α[◦] ∆β[◦]

0 5 0 5

10 10

8 5 8 5

k = 0.01 10 8

f = 0.1326 Hz 18 5 18 5

10 10

0 5 0 5

10 10

8 5 8 5

k = 0.05 10 10

f = 0.6631 Hz 18 5 18 5

10 10

0 5 0 5

10 10

8 5 8 5

k = 0.1 10 10

f = 1.3263 Hz 18 5 18 5

10 10
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Finally, the choice is made to measure for the maximum attainable flap deflection of the
experimental model ∆β = 10◦ and half the maximum flap angle ∆β = 5◦.

The results for both steady and unsteady as well as for a free and forced boundary layer
transition are discussed in detail in Chapter 5.



Chapter 4

Numerical methods

In this chapter an overview is given on Q3UIC and the open source CFD tool Open-
FOAM. The structure and theory behind the tools is described in order to get a clear
understanding of the differences and similarities of both models.

4.1 Q3UIC – Lagrangian approach

This section describes the basic theories and structure behind the viscous-inviscid inter-
active code that is used to analyse harmonically pitching airfoils in unsteady flow. The
essence of this approach is based on a Lagrangian description of the flow field, where
individual fluid particles are followed through space and time.

4.1.1 Theory

Q3UIC is a computational tool capable of, amongst other, modelling the aerodynamic
behaviour of an airfoil in unsteady flow. It does so through a strong interaction between
the viscous boundary layer close to the airfoil surface and the inviscid outer flow far
away from the surface. A strong coupling method has the advantage of a solid numerical
stability and a good capability to solve the boundary layer equations after separation
takes place. The viscous and inviscid flows are coupled by the transpiration velocity wT
(4.1). The normal velocity at the surface is forced to have a non-zero value as opposed to
the conventional Neumann type boundary condition which assumes zero normal velocity
at the surface, also referred to as the ‘no-penetration condition’.

wT =
1

ρi

∂

∂s
(ρiuiδ

∗
i ) (4.1)

If a fast solution and low computational costs are desired, a viscous-inviscid interaction
method can be used as an alternative to CFD methods, where the full Navier-Stokes equa-
tions are solved. By continuously solving the NS equations, CFD methods can become
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computationally very expensive. In contrast to this, a viscous-inviscid solver is faster
because there is no need to make extensive time consuming meshes of the surroundings
and it is not required to solve the full NS equations.

The inviscid part is modelled using a 2D potential panel method, whereas the viscous part
is calculated with the integral form of the boundary layer equations discussed in Section
2.4. Because the outer inviscid flow is treated as a potential flow, the calculations are
straightforward, facilitating the computations on that part.
More effort and time is needed to solve the viscous part, since the integral form of the
boundary layer equations are derived from the full Navier-Stokes equations. The compu-
tational advantage comes from the parabolic nature of the partial differential equations;
as the full Navier-Stokes equations are of an elliptical form and are therefore increasingly
complicated and time demanding to solve.

4.1.2 Structure and solving procedure

As previously mentioned, Q3UIC models aerodynamic properties through the interaction
between viscous and inviscid flow. A 2D panel method is used for a proper modelling of the
inviscid flow. In this code, 140 panels are used to discretise the airfoil surface, following
a cosine distribution. This results in smaller panels in the vicinity of the leading and
trailing edges, and larger panels in between. As such, it is possible to capture important
flow fluctuations and pressure peaks, which take place near the edges, more accurately.
Using a cosine distribution, a total of 140 panels means that both upper and lower surface
consist of 70 panels. The number of chord-wise panels divides the semicircle as ∆β = π/70.
The chord-wise position of a point can be obtained using:

x =
c

2
· (1− cosβ) (4.2)

In the center of each panel there is a control point, starting from the trailing edge of the
lower surface (1) and moving clockwise towards the trailing edge of the upper surface (N),
see Figure 4.1.

(a) Airfoil discretisation from [23]. (b) Airfoil discretisation from [4].

Figure 4.1: Airfoil surface discretisation in panels using cosine distribution.
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In order to resolve the boundary layer, Q3UIC uses the integral boundary layer equations,
where the laminar attached BL equations are covered by Thwaites method which solves
the Kármán momentum integral equation in terms of a parameter λ. This parameter is
discussed and derived in [4] together with the whole process of how the equations are
solved and discretised.

Q3UIC makes use of the single wake model to simulate the flow around an airfoil. The
final solution of the velocity distribution around the airfoil for one time step is obtained
through a superposition of separate solutions as shown in (4.3).

U = U∞ + σUtrans + ΓUrot + wT + uw + uwalls (4.3)

The first term is the free stream flow and σ creates a constant panel sources distribution
around the airfoil influencing the translating flow Utrans. Urot (rotating) is dependent
on the circulation Γ around the airfoil and the parabolic vorticity distribution. The
transpiration velocity wT represents the influence of the viscous flow on the inviscid part.
The last two terms are the influence of the inviscid wake and wind tunnel walls. The
latter is modelled using a constant strength distribution of source panels.

The viscous integral boundary layer equations are solved using the stream-wise momen-
tum. The code is also capable of simulating quasi 3D effects in the radial direction, but
these are not considered in this discussion. In order for the code to converge and to
solve the entire set of equations several closure conditions and relations are implemented,
including the unsteady version of the Kutta condition discussed in Section 2.5. Closure
relations contain the displacement- δ∗, momentum- θ and boundary layer δ thicknesses,
the shape factor H and skin friction coefficient Cf . All these parameters are discussed in
Chapter 2. An additional model to calculate the transition point is also present and is
based on the e9 model.

The formulation and implementation of a proper unsteady Kutta condition as touched
upon in Section 2.5 and studied by [17] [18], is of great importance for a proper solution
and modelling of the flow at the trailing edge. Q3UIC has three formulations implemented,
of which the first is based on the bound vorticity [24], and the third on the wake vorticity.

Basu & Hancock v1 = U2
1 − U2

n + 2 · dΓb/dt (4.4)

Basu & Hancock v2 = U2
1 − U2

n − 2 · dΓb/dt (4.5)

Katz, Fage & Johansen = U2
1 − U2

n − 2 · dΓw(Npan + 1)/dt, (4.6)

where subscript (b) represents the bound vorticity around the airfoil (w) the wake vorticity,
(1) the first lower TE panel and (n) the last upper one as illustrated in Figure 4.1. A
suitable Kutta condition basically accounts for viscosity effects in an essentially inviscid
numerical model. In unsteady flow conditions, the notion of a zero pressure difference
does not hold. A discussion on the effects of a finite pressure difference at the trailing
edge on lift is given in [17].

To come to a solution, all equations of the in panels discretised airfoil are placed in one
Jacobian matrix, and are calculated in one Newton iteration. Each panel has its own sub
matrix which in turn consists of panel method equations, boundary layer equations, the
relevant closure models and a model for calculating transition. Additionally the influence
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of panels on each other, together with the transpiration velocity and the Kutta condition
are also placed in this sparse matrix which is solved iteratively. For every time step, the
whole set of equations is solved and updated every Newton iteration using:

xn = xn−1 + ω∆x (4.7)

where x is a system variable and ω its relaxation factor. If the maximum number of
iterations is exceeded, the solution at that particular time step does not converge and the
solver moves on to the next time step.

4.1.3 Flap deflection

The deflection of the flap as it is done in Q3UIC is illustrated in Figure 4.2 [6]. The
trailing edge (TE) point is translated in x- and y-direction by:

dxTE = uTEdt = vr · sin(θ)dt = Ωr · sin(θ)dt (4.8)

dyTE = vTEdt = −vr · cos(θ)dt = Ωr · cos(θ)dt, (4.9)

where Ω is the angular frequency, vr the trailing edge point velocity and θ the angle
between the hinge- and trailing edge point. The deflection between these points is dis-
tributed linearly as:

xi,j = xi−1,j + dxTE ·
(
xi−1,j − xi−1,FP

xi−1,TE − xi−1,FP

)
(4.10)

yi,j = yi−1,j + dyTE ·
(
xi−1,j − xi−1,FP

xi−1,TE − xi−1,FP

)
, (4.11)

where FP are the fixed points and relate panel numbers j to the hinge point of the flap, i
the current time step. As shown in Figure 4.2, the pressure side deflects linearly and the
suction side follows a polynomial. In steady conditions Q3UIC uses a spline to rebuild
this shape but for unsteady motions, a spline results in a length change of the panels,
which would result in incorrect panel velocities. Therefore, the flap is deflected linearly
in unsteady conditions. The difference between the two deflections is relatively small as
shown in Figure 4.2. Deviations occur only on the suction side in the near vicinity of the
hinge.

4.1.4 Inputs

In this study, primarily the subroutine INPUTS.f90, is used to match the Q3UIC inputs
to the experimental data. The main variables are reduced frequency k, mean angle of
attack αm and harmonic amplitude around the mean angle of attack αA. The nature of
the transition can be adjusted by specifying the panels on which there is a free boundary
layer development. In case of a forced transition this is ±5% from the leading edge and
for a free developing boundary layer this is increased to around 60% of the chord to make
sure that the development of the boundary layer is not obstructed. In order to compare
experimental wind tunnel data, Q3UIC has the option to model the wind tunnel walls
using panels with a source distribution. This is important considering the blockage effect
for relatively high angles of attack.
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Figure 4.2: Linear and polynomial flap deflections [6]. Q3UIC uses linear deflection for
unsteady flap motion.
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4.2 OpenFOAM – Eulerian approach

In contrast to the Lagrangian approach which follows fluid particles in space and time,
the Eulerian description of the flow measures the fluid particle characteristics as it passes
through a cell with a fixed location in space. However, when meshes are not fixed but
cells deform or move with the motion of the airfoil, the Lagrangian and Eulerian methods
are combined into the Arbitrary Lagrangian-Eulerian (ALE) method. The CFD software
used for this is OpenFOAM (Open Field Operation and Manipulation), written in C++

and utilising the finite volume method for solving partial differential equations on any
grid. After a grid is made and boundary conditions are set, the equations are solved and
finally the fields can be viewed and analysed.

Based on previous studies [14] [25], the CFD simulations in Chapters 5 and 6, are per-
formed with the k-ω SST turbulence model, which has proven to be the most appropriate
for problems as those discussed in this thesis.

4.2.1 Theory and turbulence models

The finite volume approximation of the dimensional NS-equations from Equation (2.37)
that is used in OpenFOAM is described next, together with a short mentioning of dis-
cretisation schemes and the linear eddy viscosity turbulence models k-ω and k-ε.

Discretisation schemes

OpenFOAM operates using implicit and semi–implicit time stepping. Implicit in this case
means that the discretised time derivative is evaluated at at a future time:

ϕn+1 − ϕn

∆t
= F

(
ϕn+1

)
⇒ (4.12)

⇒ ϕn+1 = ϕn + ∆t · F
(
ϕn+1

)
, (4.13)

where the derivative
∂ϕ

∂t
(x, t) = F (ϕ) is discretised like

ϕn+1 − ϕn

∆t
= F (ϕ). Because of

the implicit nature of the time stepping in OpenFOAM, the CFL condition of Co ≤ 1
does not have to be satisfied.

OpenFOAM provides users with the choice of various numerical schemes – e.g. interpo-
lation, time, gradient, divergence – to choose from in the system/fvSchemes directory.
Interpolation between cells can be done using centred or upwind schemes, where upwind
schemes are further subdivided. The time schemes’ numerical behaviour of the derivative
∂/∂t can be specified first or second order. The choice of schemes and their behaviour can
have a big influence on the results regarding stability, errors and convergence and should
be chosen with care. For instance, a first order accurate upwinding scheme, increases the
error but it will also tend to stabilize the resulting set of equations.

The solvers for the schemes can be specified in fvSolution, where there is a choice
between linear solvers; divided in PBiCG (Preconditioned (Bi–) Conjugate Gradient)
and GAMG (Generalised Geometric–Algebraic Multig–Grid). Dependent on the variable



4.2 OpenFOAM – Eulerian approach 37

of interest a choice is to be made which solver is the proper one to use. Differences
are found in how the solution is initialised, mapped and treated during the calculation
process.

Navier-Stokes finite volume approximation

Integrating the momentum equation over a control volume VC gives rise to (4.14) with
the classification of the terms depicted underneath.∫

VC

∂u

∂t
dV︸ ︷︷ ︸

Temporal

+

∫
VC

∇ · (uu)dV︸ ︷︷ ︸
Convective

−
∫
VC

∇ · (ν∇u)dV︸ ︷︷ ︸
Diffusive

=

∫
VC

∇p
ρ
dV︸ ︷︷ ︸

Pressure

(4.14)

Each of the terms shown in (4.14) is solved using the PISO (Pressure Implicit with Split-
ting of Operators) method in OpenFOAM. Reformulating Equation (4.14) using Gauss’
theorem and grouping the results of the discrete finite volume terms of the momentum
equation together with the discretised continuity equation, results in the pressure equa-
tion of the PISO method. A more extensive explanation can be found in [26]. The PISO
algorithm uses the pressure of the current time to determine the velocity at the new time
and after the pressure based on the new velocities is calculated, the velocity can be up-
dated. Finally, using the updated velocity, the cell face flux is calculated. The transient
solver PIMPLE is a combination of the PISO algorithm and the steady state solver SIM-
PLE (Semi–Implicit Method for Pressure–Linked Equations). Due to this semi–implicit
nature, some values are dependent on previous time steps and extra iterations are required
to correct the initial solution.

Moving meshes

In case of moving meshes, Equation (4.14) requires an additional term that specifies the
velocity of the mesh movement um. The new equations are referred to as the Arbitrary
Lagrangian-Eulerian (ALE) Navier-Stokes equations and the ALE momentum equation
is found in (4.15), where the convective and temporal term have changed compared to
(4.14).

∂

∂t

∫
VC

udV +

∮
VC

n · (u− um)udS −
∫
VC

∇ · (ν∇u)dV =

∫
VC

∇p
ρ
dV (4.15)

This modification adds a new requirement called the Discrete Geometric Conservation
Law (DGCL) stating that the change in volume of a cell must equal the volume swept by
the faces of the cell.

Turbulence models

This section is dedicated to set out the main difference between the k-ε and k-ω tur-
bulence models. k-ε is the more widely used model for relatively simple flow problems
that need no accurate modelling of the boundary layer and complex viscous effects. It
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performs poorly for separated flow conditions with adverse pressure gradients [27].
The k-ω model however, does allow for a more accurate near wall boundary layer treat-
ment and performs better under adverse pressure gradients in separated flow conditions.
A downside is that k-ω requires more computational power in comparison to the k-ε
model. A combination of both the k-ω and the k-ε model, namely k-ω SST (Shear Stress
Transport) is used in this study. Near the wall k-ω is used and further away a blending
function ensures the transition to k-ε. Due to the inclusion of the transport of turbulent
shear stress, the near wall treatment is enhanced allowing the onset and amount of flow
separation under adverse pressure gradients to be modelled more accurately. Additionally
there are turbulence models that sustain the turbulent inflow parameters more strongly
and also models which are more suited for lower Reynolds number problems. These are
not further addressed but can be found in [28] and [29].

4.2.2 Model specific inputs

In order to conduct a successful research it is imperative to know how to translate theory
into practice. The coordinate axes are fixed to the airfoil which moves about its quarter
chord point as result of a specified amplitude and frequency. The mean angle of attack
however, is not controlled by the pitch motion of the airfoil but by a change of inflow
angle of the air flow. For the comparison with experiments and Q3UIC, the x and y
components of the force coefficients are recalculated to actual lift and drag values using
the relations in (4.16). The forces are calculated by integrating the pressure and shear
stress over the airfoil surface.

Cl = Cy cos(α)− Cx sin(α) (4.16)

Cd = Cy sin(α) + Cx cos(α)

4.2.3 Mesh topology and deformation due to flap deflection

The computational domain in both the NACA and the DU airfoil case was made using
the same approach. First an initial cell size is determined based on the y+ = 1 condition.
With a suitable growth rate, the adjoining cells are extruded for the boundary layer
region. Special care is taken of the trailing edge region to avoid cells with high aspect
ratios or large skewness. The rest of the O-mesh is extruded into the far field radius of
approximately 90 chord lengths. The exact numbers and characteristics corresponding to
the two test cases are provided in the results chapters 5 and 6.

The mesh deformation due to deflection of the flap for the Du 95-W-180 case is illustrated
in Figure 4.3. The flap is hinged at x/c = 0.8 and mainly deforms the cells in the vicinity
of the hinge. Where one column of cells is elongated in the direction parallel to the
surface while the two adjacent columns are slightly compressed. This effect weakens as
the distance from the hinge increases.

4.2.4 Mesh independence

To ensure that the results are independent of a change in mesh density, it is needed to
perform a mesh independence study. In general, as the number of cells grows, i.e. if
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(a) Maximum negative flap deflection β = −10◦. (b) Detailed view of cell deformation near hinge at
β = 10◦.

Figure 4.3: Mesh deformation at maximum flap deflection.

the mesh becomes finer, the solution should increase in accuracy. Once the solution does
not change to within a predefined value, the solution can be considered converged with
respect to the mesh. This can be done by means of the Richardson extrapolation.

Richardson extrapolation

The general idea of the Richardson extrapolation is to generate high accuracy results by
using simple formulae. Based on the step size h, it is possible to predict outcomes without
actually knowing them. After having taken an initial step size, the next iteration is done
with half the initial step size. With each iteration the accuracy is improved and the error
decreases.
In this study this extrapolation method is used for the mesh study, of which a more
detailed description is given in [30]. Eventually the method uses the equations listed in
Table 4.1 to obtain a mesh with an infinite number of cells and its corresponding value.
A numerical example is used to illustrate this procedure. Figure 5.7a shows the steady
state vertical force coefficient values for the three meshes, and by applying the steps from
Table 4.1, the final value is extrapolated from the three already known values. As the
mesh density increases the value should converge towards the final extrapolated value.
Now to make a choice on which mesh is most suitable a trade-off has to made between
accuracy of the outcome and computational time. It is common to allow a maximum
deviation of 1% from the extrapolated ‘infinite’ value. From Table 4.2 it follows that the
middle and the finest mesh both comply to this criterion.
However, as this example is based on a steady state solution, the middle mesh may be too
coarse with respect to unsteady simulations. So regardless of the 1% criterion it may still
be unsuitable for further use. The basic idea of a mesh study can be done in this way, but
when considering unsteady simulations additional mesh studies can yield more accurate
results. In principle, a case in the separated region with an angle of attack around 12
degrees requires a considerably finer mesh (and time step) than a simple, low angle of
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attack case. That is why in some cases, this method needs additional criteria to define a
mesh that is sufficiently dense.

Table 4.1: Richardson extrapolation to find Cy value for a mesh with an infinite number of cells.

Simulated Cy N1 (h/2) +
N1 (h/2)−N1(h)

3
N2 (h/2) +

N2 (h/2)−N2(h)

15
N1(h) = 0.8695

N1(h/2) = 0.8119 N2(h) = 0.7927
N1(h/4) = 0.8058 N2(h/2) = 0.8037 Cy,∞ = 0.8045
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Figure 4.4: Determination of suitable mesh using Richardson extrapolation.

Table 4.2: Mesh size and percentage difference between the different meshes and final
extrapolated Cy value.

N Cy % difference Cost [s]

2048 0.8695 8.1% 90
8192 0.8119 0.9% 373

32768 0.8058 0.16% 1163

4.2.5 Turbulent inflow parameters

In order to get the turbulence properties of the surrounding flow, the proper parameters
need to be defined and set as initial conditions. In this study, the k-ω SST turbulence
model is used where SST stands for turbulent shear stress transport. Following the
description given in [29], Equation (4.17) shows how the wall and far field values for k
and ω are approximated.
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U∞
c

< ωfarfield < 10
U∞
c

(4.17)

10−5 U
2
∞

ReL
< kfarfield < 0.1

U2
∞

ReL
(4.18)

ωwall = 10
6ν

β1(∆d1)2
(4.19)

kwall = 0 (4.20)

where the constant ν is obtained from constant/transportProperties as ν =
U∞L

Re
,

β1 = 0.075 and d1 is the initial cell size based on the calculation of y+ =
u∗y

ν
= 1 using flat

plate boundary layer theory as described by White [3], where Uf is the friction velocity
at the nearest wall, y is the distance to the nearest wall and ν the kinematic viscosity.
Following White, using the skin friction coefficient, Re and the chord it is possible to
approximate the initial cell size with Equation (4.21).

d1 =
y+ · µ
Uf · ρ

, (4.21)

with : Uf =
τwall
ρ

; τwall =
CfρU

2
∞

2
; Cf =

0.026

Re1/7
, (4.22)

where Uf is the friction velocity, τwall the wall shear stress and Cf the skin friction
coefficient.

4.2.6 Time step

Once the steady state is considered it is time to take a look at the unsteady part, where
the time step in which things are being solved is of importance. The idea is to examine
convergence, i.e. if the time step (or Courant number) is decreased, the periodic solutions
of e.g. Cl(α) should show less deviations from each other. This can be obtained easily by
performing a check on the outcomes of the different time steps. By plotting the periods
of for instance Cl(α) on top of each other for the simulated time steps, the deviations
can be observed and analysed quantitatively. The choice for the proper time step should
be based on the difference between the solutions being relatively small while at the same
time sufficiently efficient with regards to computational time. A trade-off has to be made
between high accuracy (smaller time step) and low computational time (larger time step).
In other words, the time step should be chosen as large as possible, while maintaining
sufficiently accurate solutions. This can be done either by qualitatively examining the
features or by looking at percentage difference in CPU time and final solutions.

The choice of a proper time step ∆t in CFD is related to the Courant–Friedrichs–Lewy
(CFL) condition. Which in an explicit sense means that a moving particle is not allowed
to travel a larger distance than the size of the mesh element that momentarily contains it.
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Mathematically this is expressed in (4.23) by the dimensionless Courant number which is
not allowed to exceed the value of 1.

Co =
u∆t

∆x
≤ 1, (4.23)

where ∆t is the time step, ∆x the length interval (mesh element dimension) and u the
magnitude of the travelling particle’s velocity.
However, for implicit time stepping used in OpenFOAM there is no need to satisfy this
condition because the discretised time derivative is evaluated at a future time as described
in Section 4.2.1. This is in contrast to explicit time stepping where the current time is
used to evaluate the time derivative.



Chapter 5

Results – Pitching airfoil

This chapter first shows the experimental results of wind tunnel measurements conducted
at DTU. A harmonically pitching NACA 64-418 airfoil in an open return wind tunnel is
analysed for various pitching frequencies and amplitudes. Afterwards these results are
compared to Q3UIC and OpenFOAM simulations. Some conclusive remarks and main
findings are addressed at the end of the chapter.

5.1 Experimental results of the NACA 64-418 airfoil

In this section the measurements are shown which were carried out as described in Chapter
3. It must be noted that due to the blockage effect, the wind tunnel velocity, hence
the Reynolds number, and also the reduced frequency, decrease with increasing angle of
attack. This has an effect on the experimental data in a sense that most aerodynamic
characteristics such as lift curve are lower than they should be. To account for this
effect in the Q3UIC simulations, a constant strength source distribution is placed on the
wind tunnel walls using 60 panels. It is imperative to keep this in mind while comparing
measurements to simulations for high angels of attack. Unfortunately no wall corrections
were applied in OpenFOAM.

5.1.1 Steady measurements

Figure 5.1a shows the steady lift polars for free and tripped boundary layer transitions.
The two curves are almost identical up until the stall angle of attack of the tripped mea-
surements which is close to 8 degrees. From here on, the lift curve stalls and evens out.
The maximum lift coefficient and maximum angle of attack are higher for the free mea-
surements, implying that a laminar boundary layer shows higher lift values. Theory states
that a laminar boundary layer in general has lower drag values, which is not confirmed
by the measurements in Figure 5.1b. It may be said that the acquisition method is not
accurate judging by the drag values in the attached flow region up to 8 degrees. The

43
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Figure 5.1: NACA 64-418, measured steady lift polars for free and tripped transition.

tripped, hence turbulent, drag values remain lower up until the stall angle for tripped
transition. Lower drag values are supposed to be mainly related to a lower skin friction
coefficient. Equation (5.1) gives an idea of the difference between laminar and turbulent
skin friction coefficients [31].

Cf,laminar ≈
0.664

Re0.5
(5.1)

Cf,turbulent ≈
0.0583

Re0.2

The theoretical expression of the skin friction coefficient is obtained by the ratio of wall

shear stress, density and velocity: Cf =
2τw
ρU2

.

Pressure coefficient

During both the steady and the unsteady measurements the stagnation pressure was
found to have a physically incorrect value of Cp = 1.2. Following Bernoulli’s equation for
incompressible flow where ρ = ρ∞, this raises questions.

Cp =
p− p∞
1
2ρU

2
∞

=
1
2ρ(U2

∞ − U2)
1
2ρU

2
∞

= 1−
(
U

U∞

)2

(5.2)

As equation (5.2) shows, Cp at the stagnation point, where the velocity U is zero, must
be equal to one. To trace down this error, the experimental set-up was checked after the
measurements. It was found that a misalignment of the Pitot tube with the incoming
airflow was the cause of this offset in pressure distribution. To compensate for this, the
entire distribution is shifted upwards by +0.2 in order to get the stagnation pressure equal
to unity and have a fair comparison with the simulations. The effect of this shift on the
integral loads is found to be negligible.

An additional error discovered after the measurements was that five pressure tabs on the
suction side near the trailing edge had been switched during the preparation of the wing.
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The five tabs are highlighted with a black circle in Figure 5.9a and 6.7a. For the upper
surface trailing edge measurements to make more sense, the order of the tabs from left to
right has to be switched.

5.1.2 Unsteady measurements

The experimental unsteady Cl(α) loops are visualised in Figures 5.2 to 5.5. The left
hand side figures represent a tripped boundary layer and the figures on the right a free
transition.

Angle of attack: α = 0◦

In Figure 5.2, the difference between free and forced transition is rather small, as it is in
the steady lift polars in Figure 5.1a. The forced transition measurements have slightly
wider loops, indicating that the unsteady effects are larger.

Angle of attack: α = 4◦

Again, Figure 5.3, shows no remarkable difference between free and forced transition
apart from the afore mentioned effect. What can be clearly seen, however, is that the
free flow reattaches about one degree earlier in the down stroke. Additionally the earlier
reattachment point corresponds to a higher Cl value of approximately 0.1. An increase
in frequency shifts the reattachment point backwards by approximately half a degree.

Angle of attack: α = 8◦

For the mean angle of attack plots corresponding to the stall angle in Figure 5.4, the same
can be said as before. An additional effect is that the loops stop being linear and start
to curve, this can clearly be seen for the lower plots with an amplitude of 8 degrees.

Angle of attack: α = 12◦

The highest mean angle of attack of 12 degrees shows fully separated flow loops in Fig-
ure 5.5. A noticeable difference is the slope of the loops for the free and forced cases,
following the steady polars in Figure 5.1a, where the free polar shows a steeper slope.
Again the loops are wider for forced transition and lift values are lower. However, in
the case of 8 degrees amplitude, going up to a maximum angle of attack of 20 degrees,
this difference reduces and the loops are much alike, especially for the higher reduced
frequency k = 0.0628.

5.2 Simulations

This section is divided into steady results and unsteady results, a free boundary layer tran-
sition and a forced transition. The CFD results are only simulated for a forced boundary
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(a) Forced α = 0◦, ∆α = 4◦, k = 0.0314.
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(b) Free α = 0◦, ∆α = 4◦, k = 0.0314.
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(c) Forced α = 0◦, ∆α = 4◦, k = 0.0628.
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(d) Free α = 0◦, ∆α = 4◦, k = 0.0628.
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(e) Forced α = 0◦, ∆α = 8◦, k = 0.0314.
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(f) Free α = 0◦, ∆α = 8◦, k = 0.0314.
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(g) Forced, α = 0◦, ∆α = 8◦, k = 0.0628.
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(h) Free, α = 0◦, ∆α = 8◦, k = 0.0628.

Figure 5.2: Experimental Cl(α) for α = 0◦, ∆α = 4◦, 8◦, k = 0.0314, 0.0628.
Forced transition left and free transition right.
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(a) Forced α = 4◦, ∆α = 4◦, k = 0.0314.
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(b) Free α = 4◦, ∆α = 4◦, k = 0.0314.
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(c) Forced α = 4◦, ∆α = 4◦, k = 0.0628.
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(d) Free α = 4◦, ∆α = 4◦, k = 0.0628.
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(e) Forced α = 4◦, ∆α = 8◦, k = 0.0314.

−4 −2 0 2 4 6 8 10 12

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

AoA [°]

C
l [

−
]

 

 

Measurements

Mean

(f) Free α = 4◦, ∆α = 8◦, k = 0.0314.
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(g) Forced α = 4◦, ∆α = 8◦, k = 0.0628.
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(h) Free α = 4◦, ∆α = 8◦, k = 0.0628.

Figure 5.3: Experimental Cl(α) for α = 4◦, ∆α = 4◦, 8◦, k = 0.0314, 0.0628.
Forced transition left and free transition right.
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(a) Forced α = 8◦, ∆α = 4◦, k = 0.0314.
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(b) Free α = 8◦, ∆α = 4◦, k = 0.0314.
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(c) Forced α = 8◦, ∆α = 4◦, k = 0.0628.
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(d) Free α = 8◦, ∆α = 4◦, k = 0.0628.
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(e) Forced α = 8◦, ∆α = 8◦, k = 0.0314.
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(f) Free α = 8◦, ∆α = 8◦, k = 0.0314.
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(g) Forced α = 8◦, ∆α = 8◦, k = 0.0628.
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(h) Free α = 8◦, ∆α = 8◦, k = 0.0628.

Figure 5.4: Experimental Cl(α) for α = 8◦, ∆α = 4◦, 8◦, k = 0.0314, 0.0628.
Forced transition left and free transition right.
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(a) Forced α = 12◦, ∆α = 4◦, k = 0.0314.
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(b) Free α = 12◦, ∆α = 4◦, k = 0.0314.
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(c) Forced α = 12◦, ∆α = 4◦, k = 0.0628.
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(d) Free α = 12◦, ∆α = 4◦, k = 0.0628.
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(e) Forced α = 12◦, ∆α = 8◦, k = 0.0314.
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(f) Free α = 12◦, ∆α = 8◦, k = 0.0314.
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(g) Forced α = 12◦, ∆α = 8◦, k = 0.0628.
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(h) Free α = 12◦, ∆α = 8◦, k = 0.0628.

Figure 5.5: Experimental Cl(α) for α = 12◦, ∆α = 4◦, 8◦, k = 0.0314, 0.0628.
Forced transition left and free transition right.
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layer transition because a working transition model has not yet been implemented into
the used OpenFOAM version. First it is required to validate the simpler forced transition
model, which partly, is the aim of this study.

All Q3UIC and OpenFOAM simulations are performed with a flap angle of β = −3◦

because during the post processing of the data and after checking the set-up it was found
that the flap had not been set to a zero deflection angle. Remarkable is that, for Q3UIC,
the free transition measurements compare well with the applied flap correction whereas
for the tripped transition measurements the flap correction seems to make Q3UIC under
predict all lift values. The reason for this remains unclear. An overview of the Q3UIC
input parameters that are used for the simulations is given in Table 5.1.

Table 5.1: Q3UIC main inputs parameters.

Input Free transition Tripped transition

Re 4.18 · 105

Lower transition 37 59

Upper transition 110 82

Turbulence intensity 0.0022

dtU 0.4

Kutta condition (1): U2
1 − U2

n + 2dΓ/dt

Boundary layer trip OFF ON

Reduced frequency [0.0314, 0.0628]

Mean AoA [0, 4, 8, 12]

AoA amplitude [4, 8]

Flap angle -3

Tunnel walls ON

IBL flag ON

In the Q3UIC version that is used for the simulations in this chapter, there was a bug
in the way the pressure drag is calculated, it was using the same approach as for a wind
direction change instead of using changes in the airfoil motion. Therefore, any form of
analysis and fair comparison based on drag could not be done.

5.2.1 Convergence study

For the OpenFOAM simulations, convergence studies are performed in order to get a
appropriate mesh and time step.

Mesh

From Cx and Cy in Figure 5.7, it is clearly visible that the mesh study shows convergence
for the two latter meshes of 40 and 80 thousand cells. The right most point is the mesh
with 20 thousand cells and it can be deduced from the large difference of the steady state
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value that the mesh is too coarse to resolve the flow. Finally the mesh with N = 80000
cells is chosen to do the simulations, primarily based on high mesh density requirements
to successfully capture the flow behaviour for high angles of attack. For a visualisation
of the meshes, see Figure 5.6.

(a) N = 80008 cells. (b) N = 41780 cells. (c) N = 22144 cells.

(d) TE region N = 80008 cells. (e) TE region N = 41780 cells. (f) TE region N = 22144 cells.

Figure 5.6: Sparsity of meshes used for mesh convergence study on NACA 64-418.

Table 5.2 summarises the variables that were changed in order to perform a systematic
mesh convergence study. The main varying parameters are the number of surface points
on the airfoil and the growth rate of the cells. The initial cell size for the grid generation
tool Pointwise is calculated using a standard chord of 1 m. This cell size is larger than the
one used for the simulations in OpenFOAM. Since the chord of the experimental model
was 0.25 m, the cell size – keeping Re the same – changes. The outcome is obtained using
the y+ calculator [32] and the equations have been discussed in Section 4.2.5.

Special care is taken to match the form and size of the cells at the transitions between the
different domains. As shown in Table 5.2 the mesh is split into three domains to reduce
the amount of high aspect ratio cells with high skewness.

• Boundary layer domain: from the first cell to the edge of the farfield domain.
Fine cells are needed to resolve the boundary layer.

• Trailing edge domain: This region is generated to get a good mesh quality and
to serve as a bridge between the boundary layer and farfield domain.

• Farfield domain: From the edge of the boundary layer and trailing edge domain
to the outer edge of the circular domain with a radius of approximately 80 chords.
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Figure 5.7: Values of steady Cy and Cx components for meshes with
N ≈ [2e4; 4e4; 8e4; ∞] cells.

Table 5.2: Mesh variables NACA 64-618 used for convergence study in Pointwise.

Number of cells N N=80008 N=41780 N=22144

General Surface points 2×128 2×64 2×32
TE & LE spacing 0.00075 0.0015 0.003
Initial cell size 5× 10−5 m 5× 10−5 m 5× 10−5 m
Growth rate 1.05 1.1 1.2
Farfield radius 79c 86c 85c

BL domain Steps 50 40 30
Growth rate 1.05 1.1 1.2

TE domain Steps 7 6 3
Growth rate 1.05 1.1 1.2

Farfield domain Initial cell size 0.006 0.0018 0.009
Steps 181 90 43
Growth rate 1.05 1.1 1.2
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Time step

In order to obtain the most suitable time step for running the simulations, first variable
time steps were studied by specifying a maximum Courant number and letting the solver
decide which time step is needed within the specified range. An initial time step is
specified together with a maximum Courant number which is not be exceeded. This
method is more efficient because larger time steps can be used where the flow behaviour
is less complex, reducing computational time. However, for post-processing and stability
reasons it is chosen to work with a fixed time step. Despite the fact that it is less efficient
in terms of computational time, the benefits of this method outweigh the drawbacks.

Based on previous runs, an approximate suitable time step was known and the simulations
were done for 4× 10−5 s, which – in a particular case – proved not to be accurate enough
in terms of capturing flow oscillations in the separated region. The 2.5× 10−5 s time step
showed better results and was chosen to run the simulations with.

5.2.2 Steady results

During the experimental stage, the steady lift curves are obtained for an angle of attack
range of −10◦ < α < 25◦. It was found that Q3UIC had convergence problems and
crashed slightly above α = 20◦, so that is where the simulations were stopped.

Free boundary layer transition, Q3UIC

From Figure 5.8a it follows that the lift curves show good agreement in the linear region
up to α = 9◦, where Cl,max is reached and slightly over predicts the lift value at that an-
gle. The simulated curve stalls earlier and shows large deviations from the experimental
data until α = 20◦. After stall, the lift curve stays almost constant from 12◦ to 20◦. This
under prediction is probably caused by an improper calculation of the exact locations
where transition and separation occur, see Figure 5.8b. The relation between the stall of
the lift curve and the upstream movement of the separation location after approximately
α = 9◦ becomes apparent by studying Figure 5.8.
For increasing α, the transition location on the suction side moves upstream from a initial
chord–wise location of approximately 60%, the rate at which this happens may be off by
an inaccurate prediction of the boundary layer thickness. An alternative explanation may
be related to the applied wall correction.

Comparing the pressure distributions in Figure 5.9 it is visible that the deviations are
relatively large. This is believed to be caused by a misalignment of the Pitot tube with
the incoming flow. Despite the fact that the entire experimental curve is shifted upwards
by 0.2, the distributions still do not match as they should. For each of the shown angles of
attack, Q3UIC seems to under predict continuously. For the comparison, the same angles
of attack are chosen as the ones used to investigate the hysteresis loops in the unsteady
flow measurements: α = [0◦, 4◦, 8◦, 12◦].
For the highest α in Figure 5.9d, an almost constant pressure is observed in the mea-
surements starting roughly at x/c = 0.6. Simulations show something close to a constant
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pressure from x/c = 0.7 onwards. The pressure difference between upper and lower sur-
face is slightly smaller. As the difference between upper and lower surface pressure is a
measure for the lift, an under prediction is obtained in this aft region. In Figure 5.9c the
pressure peak is over predicted whereas Figure 5.9d shows an under prediction. Although
the absolute values do not match, the overall shape and tendency of the curves seems to
be in agreement.
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Figure 5.8: Steady free boundary layer comparisons between lift, separation and transition.

Forced boundary layer transition

Contrary to the free transition, the comparison in this section also includes the Open-
FOAM simulations.

For Q3UIC, the tripped boundary layer measurements show similar results to the free
boundary layer transition with regards to under-prediction of the steady lift curve as
shown in Figure 5.10a. The maximum relative difference between measurements and
simulations is smaller but the lift curve shows a continuous under-prediction except for
negative α around –3◦ where the curves intersect.
In the simulations, the slope of the separation location curve in Figure 5.10b is more
gradual than for the free transition case in Figure 5.8b. This is to be expected since the
boundary layer is turbulent, hence less prone to sudden separation due to more mixing
with the outer inviscid flow. For Cl, this translates into a curve that gradually grows
without a sudden drop in lift as can be observed in Figure 5.8a. However, the absolute
lift value is lower due to an early transition and less efficient lift caused by an over
prediction of the boundary layer thickness.

OpenFOAM’s steady lift curve shows an almost identical behaviour to Q3UIC up to
the point that Q3UIC starts to stall at approximately 8 degrees. Beyond this angle, the
Q3UIC slope levels out while OpenFOAM does not meet its stall angle before 10 degrees.
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(c) Pressure distribution at α = 8◦
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(d) Pressure distribution at α = 12◦

Figure 5.9: Pressure coefficient over airfoil for α = [0◦, 4◦, 8◦, 12◦] and a free boundary layer
transition.
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Based on the slopes and deviation beyond 8 degrees of the numerical polars, it can be
said that the way in which the experimental boundary layer is tripped can have a large
influence on the resulting polar. Most probably, a more sophisticated trip wire, would
have yielded a more gradual slope, resembling the numerical solutions more accurately.

Figure 5.11, shows an under-prediction for nearly all angles of attack shown. However,
for α = 12◦ in Figure 5.11d, Q3UIC shows an overshoot in a small region just after the
leading edge and a slightly larger region between 0.3c and 0.5c.
OpenFOAM also under predicts consistently, even more so than Q3UIC. This all is in line
with the steady polars, of which the experimental curve, stays on top up to 9 degrees,
where OpenFOAM crosses. At 12 degrees, apart from the suction peak at the leading
edge, the suction side pressures of the simulations are almost identical up to x/c = 0.55.
The OpenFOAM pressure side experiences higher pressures up to approximately the same
chord-wise location.
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Figure 5.10: Steady tripped boundary layer comparisons between lift, separation and transition.
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(a) Pressure distribution at α = 0◦
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(b) Pressure distribution at α = 4◦
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(c) Pressure distribution at α = 8◦
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(d) Pressure distribution at α = 12◦

Figure 5.11: Pressure coefficient over airfoil for α = [0◦, 4◦, 8◦, 12◦] and a tripped boundary
layer transition.
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5.2.3 Unsteady results

Angle of attack: α = 0◦

Looking globally at the zero angle of attack case in Figure 5.12, the first noticeable thing
is the offset in slope between measurements and simulations for the tripped transition.
Numerically there seems to be little difference apart from the offset. Looking more closely
though, the experimental loop, transitions to separated flow just above 6 degrees, result-
ing in a small clock-wise Cl(α) loop, which reattaches again in the down-stroke at the
same 6 degree angle of attack. Q3UIC captures this behaviour accurately by calculating
when the skin friction coefficient Cf drops below zero, and as such predicting separation
location. OpenFOAM does not capture this and displays a fully attached flow loop for
both amplitudes. In Figure 5.12e, there is one large attached flow region around the
mean angle of attack and two small separated regions at the extremities. Apart from the
difference in slope, Q3UIC manages to capture this effect to a high accuracy.

The free measurements on the right of Figure 5.12 also show a, somewhat smaller, sep-
arated region for Figures 5.2f and 5.2h. This time, Q3UIC does not succeed to capture
the separated region, because the boundary layer thickness is probably underestimated
causing a delay in transition. As such, not entering flow separation. The free transition
results from Q3UIC do not show the offset in slope and have a better overlap with the
measurements than in the forced transition cases.

Angle of attack: α = 4◦

In Figure 5.13 OpenFOAM shows a small region of separated flow for Figure 5.13a. As
the frequency increases this diminishes, and by increasing the amplitude, deviations grow
further. It seems like α = 8◦ is the limiting angle of attack for OpenFOAM as it is not
capable of resolving the physics properly. Again, for the lower frequency of k = 0.0314
in Figure 5.13e there is a small separated flow region at α = 12◦ which disappears as the
frequency is increased to k = 0.0628 in Figure 5.13g.

Q3UIC shows, in relation to the measurements, early separation points in the tripped
cases and retarded separation points in the free cases. This can again be explained by an
estimation of the boundary layer thickness which is not accurate enough and by inaccurate
closure equations of the transition model

Angle of attack: α = 8◦

Figure 5.14 shows the unsteady loops around the 8 degree mean angle of attack, where
flow conditions are complex and proved to be extremely challenging to model accurately
in OpenFOAM. The unsteady effects seem to be nearly absent regarding lift differences
for the up- and down-stroke.

A more detailed analysis with respect to pressure distributions is performed on Fig-
ure 5.14g in Section 5.3. This angle of 8 degrees is on the border of varying attached and
separated flow conditions, and is close to Cl,max. Where Q3UIC shows acceptable and
nearly identical shapes to the experimental loops, OpenFOAM fails in all aspects except
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for the reattachment location in the down stroke close to the minimum angle of attack.
Q3UIC predicts a more severe drop in lift during the down-stroke, forcing the flow to
reattach at lower angles of attack.

Again Q3UIC shows a consistent behaviour in delaying the reattachment point for forced
transition and a retarded separation point for free transition. Only Figure 5.14h does not
comply with this statement as the separation in this case is advanced.

Q3UIC predicts a more severe drop of lift in the down stroke, forcing the flow to reattach
at lower angles of attack then found in the measurements for Figures 5.14c and 5.14g.

Angle of attack: α = 12◦

As the highest mean angle of attack in Figure 5.15 is reached, OpenFOAM seems to
have less difficulties in resolving the flow compared to αm = 4◦. Despite the fact that
the OpenFOAM results are still not accurate, the notion that this case performs better
than for the previous case (α = 8◦), brings relief and narrows down the search to find a
probable cause for the errors and inaccuracies. The slope and offset of the OpenFOAM
loops can be traced back to the steady lift curve, which also exceeds both Q3UIC and
measurements. An over-estimation of the stall angle and Cl,max is found in all the cases.

Q3UIC under-predicts all lift values, in both free and forced transition, which is also in
line with the steady lift polar in Figure 5.16a. The growing influence of separated flow
regions at this angle of attack cause Q3UIC to experience more difficulties of properly
modelling the viscous effects.

5.3 Conclusive remarks

For convenience, all the steady lift polars are shown in Figure 5.16a, together with the
influence of the wall correction on the lift values in Q3UIC.

Looking at the pressure distributions in Figure 5.17a, there is no remarkable difference
between the unsteady OpenFOAM up- and down-stroke pressure distributions as there is
neither a big difference in the lift values at α = 14◦ in Figure 5.14g.
There is a higher suction peak present at the leading edge during the down-stroke, as
can be seen by comparing Figures 5.18a and 5.18c. Also some dissimilarities are observed
in the trailing edge region as the point of separation seems to move from x/c ≈ 0.9 in
the upstroke to x/c ≈ 0.75 in the down-stroke. This effect also seems to take place in
Figure 5.18, particularly for the turbulent kinetic energy fields Figures 5.18g and 5.18i.
Here, a ‘bubble’ with a low turbulent kinetic energy seems to move upstream towards the
leading edge, as the angle of attack increases.

To facilitate the analysis and comparison between steady pressure distributions and their
unsteady counterparts during up- and down-stroke; the steady pressure distributions for
approximately the same angle of attack are shown in Figure 5.17b. The distributions of
Q3UIC, OpenFOAM and measurements are plotted together. Q3UIC and OpenFOAM
seem to have more resemblance with each other than either of them to the experimental
pressure distribution. This, however, does not seem to comply with the steady solution,



60 Results – Pitching airfoil

−8 −6 −4 −2 0 2 4 6 8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

AoA [°]

C
l [

−
]

 

 

(a) Forced α = 0◦, ∆α = 4◦, k = 0.0314.
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(b) Free α = 0◦, ∆α = 4◦, k = 0.0314.

−8 −6 −4 −2 0 2 4 6 8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

AoA [°]

C
l [

−
]

 

 

(c) Forced α = 0◦, ∆α = 4◦, k = 0.0628.
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(d) Free α = 0◦, ∆α = 4◦, k = 0.0628.
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(e) Forced α = 0◦, ∆α = 8◦, k = 0.0314.
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(f) Free α = 0◦, ∆α = 8◦, k = 0.0314.
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(g) Forced α = 0◦, ∆α = 8◦, k = 0.0628.
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(h) Free α = 0◦, ∆α = 8◦, k = 0.0628.

Figure 5.12: Experimental and numerical Cl(α) for α = 0◦, ∆α = 4◦, 8◦, k = 0.0314, 0.0628.
Forced transition left and free transition right.



5.3 Conclusive remarks 61

−4 −2 0 2 4 6 8 10 12

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

AoA [°]

C
l [

−
]

 

 

(a) Forced α = 4◦, ∆α = 4◦, k = 0.0314.
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(b) Free α = 4◦, ∆α = 4◦, k = 0.0314.
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(c) Forced α = 4◦, ∆α = 4◦, k = 0.0628.
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(d) Free α = 4◦, ∆α = 4◦, k = 0.0628.
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(e) Forced α = 4◦, ∆α = 8◦, k = 0.0314.
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(f) Free α = 4◦, ∆α = 8◦, k = 0.0314.
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(g) Forced α = 4◦, ∆α = 8◦, k = 0.0628.
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(h) Free α = 4◦, ∆α = 8◦, k = 0.0628.

Figure 5.13: Experimental and numerical Cl(α) for α = 4◦, ∆α = 4◦, 8◦, k = 0.0314, 0.0628.
Forced transition left and free transition right.
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(a) Forced α = 8◦, ∆α = 4◦, k = 0.0314.
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(b) Free α = 8◦, ∆α = 4◦, k = 0.0314.
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(c) Forced α = 8◦, ∆α = 4◦, k = 0.0628.
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(d) Free α = 8◦, ∆α = 4◦, k = 0.0628.
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(e) Forced α = 8◦, ∆α = 8◦, k = 0.0314.
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(f) Free α = 8◦, ∆α = 8◦, k = 0.0314.
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(g) Forced α = 8◦, ∆α = 8◦, k = 0.0628.
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(h) Free α = 8◦, ∆α = 8◦, k = 0.0628.

Figure 5.14: Experimental and numerical Cl(α) for α = 8◦, ∆α = 4◦, 8◦, k = 0.0314, 0.0628.
Forced transition left and free transition right.
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(a) Forced α = 12◦, ∆α = 4◦, k = 0.0314.
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(b) Free α = 12◦, ∆α = 4◦, k = 0.0314.
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(c) Forced α = 12◦, ∆α = 4◦, k = 0.0628.
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(d) Free α = 12◦, ∆α = 4◦, k = 0.0628.
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(e) Forced α = 12◦, ∆α = 8◦, k = 0.0314.
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(f) Free α = 12◦, ∆α = 8◦, k = 0.0314.
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(g) Forced α = 12◦, ∆α = 8◦, k = 0.0628.
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(h) Free α = 12◦, ∆α = 8◦, k = 0.0628.

Figure 5.15: Experimental and numerical Cl(α) for α = 12◦, ∆α = 4◦, 8◦, k = 0.0314, 0.0628.
Forced transition left and free transition right.
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(a) NACA 64418, measured and simulated lift polars. (b) Influence of wind tunnel walls effect in Q3UIC
results.

Figure 5.16: All NACA 64-418 steady polars and effect of the wall correction in Q3UIC.

because at an angle of attack of 15 degrees, the experimental lift curve is situated between
Q3UIC and OpenFOAM curves.

In agreement with the steady polars in Figure 5.16a, the experimental pressure distribu-
tions in Figure 5.17b seem to indicate the largest difference between pressure and suc-
tion side, implying a larger lift force for the measurements. The difference between the
measured up- and down-stroke in Figure 5.17a is considerably larger than the unsteady
pressure distributions from OpenFOAM, adding to the explanation of the difference in lift
values during up- and down-stroke in Figure 5.14g. Contrary to what is seen in the Open-
FOAM pressure distributions – more suction during the up-stroke at 0.25 < x/c < 0.6 –
measurements show a much larger suction area during the down-stroke, almost over the
entire upper surface of the wing.
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(a) Unsteady pressure distributions OpenFOAM and measurements. Up– and down-stroke at
α ≈ 14◦ from Figure 5.14g.
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(b) Steady pressure distributions OpenFoam, Q3UIC and measurements at α ≈ 15◦.

Figure 5.17: Steady and unsteady pressure distributions around 14-15 degrees.
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(a) Pressure field in the upstroke at
α = 14◦.

(b) Pressure field at maximum
α = 16◦.

(c) Pressure field in the downstroke
at α = 14◦.

(d) Velocity field in the upstroke at
α = 14◦.

(e) Velocity field at maximum
α = 16◦.

(f) Velocity field in the downstroke
at α = 14◦.

(g) Turbulent kinetic energy field in
the upstroke at α = 14◦.

(h) Turbulent kinetic energy field at
maximum α = 16◦.

(i) Turbulent kinetic energy field in
the downstroke at α = 14◦.

Figure 5.18: Pressure, velocity and turbulent kinetic energy fields for NACA 64-418 case at
αm = 8◦, αA = 8◦ and k = 0.0628.



Chapter 6

Results – Morphing flap

The present chapter shows the results from the wind tunnel measurements of a harmon-
ically oscillating trailing edge flap, conducted in the LTT in Section 6.1. Simulations
of Q3UIC and OpenFoam are discussed in Section 6.2. Finally, the main findings are
summarised in Section 6.3. Additional unsteady measurements are performed for the free
transition stall angle α = 10◦, and can be found in Appendix A.

6.1 Experimental results of the DU 95-W-180 airfoil

This section reports the steady and unsteady results of the oscillating flap measurements
for a free and forced boundary layer transition.

6.1.1 Steady measurements

Figure 6.1 shows the lift and drag coefficients for the measured angle of attack range
−15◦ < α < 18◦. The difference in lift coefficient between free and forced transition is
clearly present, especially in the higher angle of attack region where there is predominantly
separated flow. As expected, both Cl,max and αmax are higher in the case of free transition.
At first glance, the difference in lift coefficients between free and forced transition seems
high, and it was believed there had been an error in the post-processing of the wind tunnel
data.
However, the designer of the airfoil, Timmer, argued that this large difference may be
possible provided that the runs are measured at Re = 1e6, which is on the edge of
stability side, because the airfoil was designed for Re = 3e6 and is likely to show unstable
behaviour for lower Re.
Additionally, the way in which the transition is forced, also has an effect that can not
be neglected. The turbulator (zig-zag tape) that is used in the experiments is large and
is likely to have created a thick boundary layer and severe transition, explaining the
large difference that is found. Presumably a smaller turbulator would have shown more

67
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resemblance with the free transition curve, since the increase in boundary layer thickness
would have been smaller [31]. The drag coefficient in the tripped case is higher, confirming
theoretical assumptions. The largest difference is found around α = 10◦, where also the
lift curves show the largest deviation.

6.1.2 Unsteady measurements

The unsteady Cl(β) loops of the measurements are shown in Figures 6.2 to 6.7. In all the
left hand side figures transition is forced, whereas in the figures on the right hand side it is
free. In all cases, the lift coefficient for the free transition is higher and steeper than in the
forced case. This can be explained by comparing the steady polars in Figure 6.1a. With
increase of the airfoil’s angle of attack, the difference between the forced and free loops
increases. Moreover, it is clearly visible that with increasing frequency k, the thickness
of the loops grows, indicating that the unsteady effects are more pronounced.
Another observable difference is that the thickness of the loops is larger for free transition,
especially for the two higher angles of attack of 8 and 18 degrees in Figures 6.4 to 6.7.
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Figure 6.1: Lift and drag steady polars, forced and free transition. Re = 106.

Angle of attack: α = 0◦

Figure 6.2 shows no remarkable difference between free and forced transition. What can be
observed is that free transition has slightly wider loops and the lift values at positive flap
angles of 5 degrees exceed tripped transition by 0.1 Cl. Increasing the reduced frequency
from a nearly steady value of k = 0.01 to unsteady k = 0.1 shows a clear growth of the
loops.
The same angle of attack and a higher flap amplitude of ∆β = 10◦ shows similar behaviour
and the flow is still attached along the entire flap range of flap angles (Figure 6.3).
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Angle of attack: α = 8◦

As the angle of attack is increased to 8 degrees, the slope and overall offset between the
loops clearly changes resembling the behaviour of the steady curves from Figure 6.1. Also
the unsteady effects are more pronounced for free transition as can be seen by the wider
loops. Figure 6.4a does seem to show crossings of the lines, which would imply that the
flow is alternating between an attached and separated condition. This is not the case for
free transition, neither is it the case for increasing frequencies. It can also be the case that
the upper left case lines do not cross but are almost on top of each other, implying the
transition character does not change. Judging by the visual interpretation of the figure it
is hard to say.
Increasing the flap amplitude leads to an overall shift upwards of the free loops compared
to the forced loops, both the values for maximum negative deflection as maximum positive
flap deflection are considerably higher. Where the positive flap angle Cl -difference is close
to 0.2. Again it is not clearly visible if the flow changes from attached to separated for
the lowest tripped reduced frequency in Figure 6.5a. However, the free case does seem to
separate at β = 6.5◦, in Figure 6.5b. For the free case an increase in frequency decreases
the separated flow region as the reattachment point is advanced to β = 9◦ in Figure 6.5d.
The highest reduced frequency does not seem to have separated flow at all, for neither
transition states. Apparently, for the k = 0.01 and k = 0.05 cases, the trailing edge sepa-
ration is given enough time travel upstream the chord whereas the highest flap frequency
of k = 0.1 does not seem to allow this as the flow stays attached in Figures 6.5e and 6.5f.

Angle of attack: α = 18◦

The highest measured angle of attack of 18 degrees clearly shows the chaotic behaviour
of separated flow, Figure 6.6. The difference between free and forced transition is nearly
absent, indicating the negligible effect of the turbulator at this high angle of attack.
The overall lift values in Figure 6.7 are slightly larger in the free transition case, but this
difference is also almost negligible as in Figure 6.6.
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(a) Forced transition, α = 0◦,∆β = 5◦, k = 0.01.
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(b) Free transition, α = 0◦,∆β = 5◦, k = 0.01.
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(c) Forced transition, α = 0◦,∆β = 5◦, k = 0.05.
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(d) Free transition, α = 0◦,∆β = 5◦, k = 0.05.
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(e) Forced transition, α = 0◦,∆β = 5◦, k = 0.10.
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(f) Free transition, α = 0◦,∆β = 5◦, k = 0.10.

Figure 6.2: Experimental Cl(β) for α = 0◦,∆β = 5◦, k = 0.01, 0.05 and 0.10.
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(a) Forced transition, α = 0◦,∆β = 10◦, k = 0.01.
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(b) Free transition, α = 0◦,∆β = 10◦, k = 0.01.
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(c) Forced transition, α = 0◦,∆β = 10◦, k = 0.05.
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(d) Free transition, α = 0◦,∆β = 10◦, k = 0.05.
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(e) Forced transition, α = 0◦,∆β = 10◦, k = 0.10.
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(f) Free transition, α = 0◦,∆β = 10◦, k = 0.10.

Figure 6.3: Experimental Cl(β) for α = 0◦,∆β = 10◦, k = 0.01, 0.05 and 0.10.
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(a) Forced transition, α = 8◦,∆β = 5◦, k = 0.01.
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(b) Free transition, α = 8◦,∆β = 5◦, k = 0.01.
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(c) Forced transition, α = 8◦,∆β = 5◦, k = 0.05.
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(d) Free transition, α = 8◦,∆β = 5◦, k = 0.05.
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(e) Forced transition, α = 8◦,∆β = 5◦, k = 0.10.
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(f) Free transition, α = 8◦,∆β = 5◦, k = 0.10.

Figure 6.4: Experimental Cl(β) for α = 8◦,∆β = 5◦, k = 0.01, 0.05 and 0.10.
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(a) Forced transition, α = 8◦,∆β = 10◦, k = 0.01.
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(b) Free transition, α = 8◦,∆β = 10◦, k = 0.01.
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(c) Forced transition, α = 8◦,∆β = 10◦, k = 0.05.
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(d) Free transition, α = 8◦,∆β = 10◦, k = 0.05.
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(e) Forced transition, α = 8◦,∆β = 10◦, k = 0.10.
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(f) Free transition, α = 8◦,∆β = 10◦, k = 0.10.

Figure 6.5: Experimental Cl(β) for α = 8◦,∆β = 10◦, k = 0.01, 0.05 and 0.10.
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(a) Forced transition, α = 18◦,∆β = 5◦, k = 0.01.
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(b) Free transition, α = 18◦,∆β = 5◦, k = 0.01.
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(c) Forced transition, α = 18◦,∆β = 5◦, k = 0.05.
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(d) Free transition, α = 18◦,∆β = 5◦, k = 0.05.
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(e) Forced transition, α = 18◦,∆β = 5◦, k = 0.10.
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(f) Free transition, α = 18◦,∆β = 5◦, k = 0.10.

Figure 6.6: Experimental Cl(β) for α = 18◦,∆β = 5◦, k = 0.01, 0.05 and 0.10.
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(a) Forced transition, α = 18◦,∆β = 10◦, k = 0.01.
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(b) Free transition, α = 18◦,∆β = 10◦, k = 0.01.
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(c) Forced transition, α = 18◦,∆β = 10◦, k = 0.05.
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(d) Free transition, α = 18◦,∆β = 10◦, k = 0.05.
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(e) Forced transition, α = 18◦,∆β = 10◦, k = 0.10.
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(f) Free transition, α = 18◦,∆β = 10◦, k = 0.10.

Figure 6.7: Experimental Cl(β) for α = 18◦,∆β = 10◦, k = 0.01, 0.05 and 0.10.
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6.2 Simulations

This section shows the convergence study, after which the steady and unsteady results
are given and discussed.

6.2.1 Convergence study

A convergence study performed for different meshes and time steps is described next.

Mesh

The mesh characteristics are summarised in Table 6.1. For the mesh generation in Point-
wise, a chord of 1 m is used instead of the 0.6 m of the experimental and OpenFOAM
model. This means that – keeping Re constant – the initial cell size is larger than in
OpenFOAM, because the x and y dimensions of the airfoil are scaled by 0.6 to comply
with the measurements. Eventually the initial cell size used for the simulations is 1.4·10−5

m or 0.014 mm, instead of the 2.3 · 10−5 value in Pointwise found in Table 6.1.

Table 6.1: Mesh variables DU 95-W-180 used for convergence study in Pointwise.

Number of cells N N=48522 N=13446 N=5248

General Surface points 2×128 2×64 2×32
TE & LE spacing 0.001 0.002 0.004
Initial cell size 2.3× 10−5 m 2.3× 10−5 m 2.3× 10−5 m
Growth rate 1.1 1.2 1.3
Farfield radius 92c 92c 89c

BL domain Cells 15240 3780 1240
Steps 60 30 20
Growth rate 1.1 1.2 1.3

TE domain Cells 1800 360 120
Steps 15 6 3
Growth rate 1.13 1.2 1.3

Farfield domain Cells 31512 9306 3888
Initial cell size 0.006 0.0045 0.003
Steps 78 47 36

Time step

For the lower angles of attack of 8 and 10 degrees, a fixed time step of 1× 10−4 s
was enough. The deviations between the largest time step 1× 10−4 s and the small-
est 2.5× 10−5 s was negligible. So in order to reduce computational time, the largest time
step is chosen for the 0 and 8 degree angles of attack. To try capturing the chaotic effects
at 18 degrees, a smaller, intermediate time step of 5× 10−5 s is used. An overview of the
time steps for the angles is shown in Table 6.2.
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(a) Mesh with N = 48522 cells. (b) Mesh with N = 13446 cells. (c) Mesh with N = 5248 cells.

Figure 6.8: Sparsity of meshes used for the convergence study.
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Figure 6.9: Values of steady Cy and Cx components for meshes with

N = [5248; 13446; 48522; ∞] ∼ 1/
√
N=[0.0138, 0.0086, 0.0045, 0].

(a) Enitre mesh of approximately 90 chords radius. (b) Detail of trailing edge region.

Figure 6.10: Entire mesh of 48522 cells and a more detailed view of trailing edge region.
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(a) Positive flap angle β = 10◦. (b) Zero flap angle β = 0◦. (c) Negative flap angle β = −10◦.

Figure 6.11: Flap angles and corresponding mesh deformation in OpenFOAM.

Table 6.2: Time steps used for DU 95-W-180 simulations.

α[◦] deltaT [s]

0 1e–4
8 1e–4
18 5e–5

6.2.2 Steady results

The steady lift polars of the experiments and the two numerical models are shown in
Figure 6.12. Q3UIC captures the forced transition to an acceptable accuracy. There is
a small over prediction for −5 < α < 7, after which the curves intersect and Q3UIC
starts oscillating and under predicting Cl. Both αmax and Cl,max are lower in Q3UIC.
The spurious oscillations of the lift curve at high angles are related to small variations in
the separation location that affect the suction side pressure level, abruptly changing the
aerodynamic loading on the airfoil. This can be reduced with a finer airfoil discretisation.
However, the current version of Q3UIC does not allow this.

OpenFOAM shows a considerably larger deviation from the experimental curve. It does
not seem to accurately capture the stall angle, nor Cl,max. This is can be caused by
improper handling of the turbulent inflow parameters discussed in Section 4.2.5. Analysis
has shown that the reference far-field values that are set at approximately 80 chords in
front of the airfoil leading edge, diminish by the time they reach the airfoil. A k-ω SST-
Sust model, is better in sustaining the far-field values and is likely to show other results.
This model has not been used in this study, but can be recommended for future studies.

For the free transition case Q3UIC shows a constant over prediction, also for the higher
angles of attack. After stall, around 12 degrees, the curves coincide. Q3UIC seems to
capture αmax well at 10 degrees, but Cl,max is slightly over predicted: 1.28 vs 1.2.
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Figure 6.12: Steady lift polars free and forced transition combined. Numerical and
experimental.

6.2.3 Unsteady results

The lift loops at the three angles of attack are described next. As the unsteady Kutta
condition is supposed to have an influence on the results due to the flap movement, the
different versions provided in Q3UIC have been compared to each other without showing
remarkable deviations. All simulations are done with the third Kutta condition in (4.6),
because it is believed to be the most accurate, incorporating the wake vorticity.

Angle of attack: α = 0◦

Figure 6.13 shows great resemblance between the two numerical methods, this is to be
expected as the steady polars coincide at α = 0◦ in Figure 6.12. Both show a vertical offset
compared to measurements which also follows from the steady polars. Apart from this
shift, the loop size is captured very well by both Q3UIC and OpenFOAM. Free transition
also shows a vertical offset and a small difference in slope.

The similarities between experiments and simulations for a higher flap amplitude of 10
degrees, in Figure 6.14 are still large. Towards the maximum positive flap deflections,
discrepancies start to become more apparent.

Angle of attack: α = 8◦

For the angle of attack of 8 degrees in Figure 6.15, Q3UIC starts to run into problems for
the forced transition cases. For a free transition this spurious behaviour is not observed.
OpenFOAM over predicts the size of the loops for all frequencies. Free transition is
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captured much more accurately because perhaps the location of the transition in Q3UIC
in the forced case does not coincide with the measurements and around this critical angle
of attack this has a large influence on the outcome.

The flow in Q3UIC seems to show trailing edge separation around an angle of attack
of 8 degrees, that can be seen in the steady polar curve as well as in the unsteady Fig-
ure 6.16. The steady experiments undergo trailing edge separation slightly later compared
to Q3UIC. The dynamic effects appear to delay separation for the experiments but not for
Q3UIC where separation is clearly observed. In Figure 6.16a, OpenFOAM also predicts
a small separated flow region from β ≈ 4◦. The two higher frequency loops are similar,
apart from the vertical offset.

The free cases show larger attached regions, but still the prediction of a small separated
flow region is present at the higher flap angles. Figure 6.16

Angle of attack: α = 18◦

The Q3UIC loops coincide acceptably with the measurements in Figure 6.17, both for
free and forced transition. Again the difference at this high angle of attack is nearly
unobservable. Negative flap angles seem to help reattach the boundary layer as the lift
values are similar or even higher than for positive flap angles. OpenFOAM clearly shows
faulty results. First of all, the steady state values at such a high angle of attack were not
steady. This meant an unsteady solver without body motion was used to obtain the initial
conditions to initialise the unsteady solver which does include the flap motion. Clearly an
error has occurred somewhere in the initialisation process, probably while reconstructing
data after having decomposed for doing computations on the TU Delft cluster. So the
validity of the OpenFOAM loops can be regarded as questionable.

The effect for Q3UIC described above is accentuated for a higher flap angle in Figure 6.18.
Remarkable is that the higher flap angles show relatively accurate results, while Q3UIC
shows a large increase in lift for negative flap angles. This means that the negative,
upward movement of the flap seems to have a favourable effect on the boundary layer and
helps reattaching it.



6.2 Simulations 81

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Flap angle [deg]

Cl [-]

Forced transition

 

 

α = 0◦, ∆β = 5◦, k = 0.01

(a) Forced transition, α = 0◦,∆β = 5◦, k = 0.01.
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(b) Free transition, α = 0◦,∆β = 5◦, k = 0.01.
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(c) Forced transition, α = 0◦,∆β = 5◦, k = 0.05.
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(d) Free transition, α = 0◦,∆β = 5◦, k = 0.05.
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(e) Forced transition, α = 0◦,∆β = 5◦, k = 0.10.
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(f) Free transition, α = 0◦,∆β = 5◦, k = 0.10.

Figure 6.13: Experimental and numerical Cl(β) for α = 0◦,∆β = 5◦, k = 0.01, 0.05 and 0.10.
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(a) Forced transition, α = 0◦,∆β = 10◦, k = 0.01.
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(b) Free transition, α = 0◦,∆β = 10◦, k = 0.01.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Flap angle [deg]

Cl [-]

Forced transition

 

 

α = 0◦, ∆β = 10◦, k = 0.05

(c) Forced transition, α = 0◦,∆β = 10◦, k = 0.05.
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(d) Free transition, α = 0◦,∆β = 10◦, k = 0.05.
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(e) Forced transition, α = 0◦,∆β = 10◦, k = 0.10.
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(f) Free transition, α = 0◦,∆β = 10◦, k = 0.10.

Figure 6.14: Experimental and numerical Cl(β) for α = 0◦,∆β = 10◦, k = 0.01, 0.05 and 0.10.
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(a) Forced transition, α = 8◦,∆β = 5◦, k = 0.01.
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(b) Free transition, α = 8◦,∆β = 5◦, k = 0.01.
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(c) Forced transition, α = 8◦,∆β = 5◦, k = 0.05.
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(d) Free transition, α = 8◦,∆β = 5◦, k = 0.05.
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(e) Forced transition, α = 8◦,∆β = 5◦, k = 0.10.
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(f) Free transition, α = 8◦,∆β = 5◦, k = 0.10.

Figure 6.15: Experimental and numerical Cl(β) for α = 8◦,∆β = 5◦, k = 0.01, 0.05 and 0.10.
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(a) Forced transition, α = 8◦,∆β = 10◦, k = 0.01.
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(b) Free transition, α = 8◦,∆β = 10◦, k = 0.01.
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(c) Forced transition, α = 8◦,∆β = 10◦, k = 0.05.
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(d) Free transition, α = 8◦,∆β = 10◦, k = 0.05.
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(e) Forced transition, α = 8◦,∆β = 10◦, k = 0.10.
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(f) Free transition, α = 8◦,∆β = 10◦, k = 0.10.

Figure 6.16: Experimental and numerical Cl(β) for α = 8◦,∆β = 10◦, k = 0.01, 0.05 and 0.10.
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(a) Forced transition, α = 18◦,∆β = 5◦, k = 0.01.

−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

β◦

Cl

Free transition

 

 

α = 18◦, ∆β = 5◦, k = 0.01

Measurements
Phase locked median

Q3UIC

(b) Free transition, α = 18◦,∆β = 5◦, k = 0.01.
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(c) Forced transition, α = 18◦,∆β = 5◦, k = 0.05.
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(d) Free transition, α = 18◦,∆β = 5◦, k = 0.05.
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(e) Forced transition, α = 18◦,∆β = 5◦, k = 0.10.
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(f) Free transition, α = 18◦,∆β = 5◦, k = 0.10.

Figure 6.17: Experimental and numerical Cl(β) for α = 18◦,∆β = 5◦, k = 0.01, 0.05 and 0.10.
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(a) Forced transition, α = 18◦,∆β = 10◦, k = 0.01.
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(b) Free transition, α = 18◦,∆β = 10◦, k = 0.01.
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(c) Forced transition, α = 18◦,∆β = 10◦, k = 0.05.
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(d) Free transition, α = 18◦,∆β = 10◦, k = 0.05.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Flap angle [deg]

Cl [-]

Forced transition

 

 
α = 18◦, ∆β = 10◦, k = 0.1

Measurements
Phase locked median

Q
3
UIC

OpenFOAM

(e) Forced transition, α = 18◦,∆β = 10◦, k = 0.10.
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(f) Free transition, α = 18◦,∆β = 10◦, k = 0.10.

Figure 6.18: Experimental and numerical Cl(β) for α = 18◦,∆β = 10◦, k = 0.01, 0.05 and 0.10.
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6.3 Conclusive remarks

The unsteady performance of OpenFOAM – i.e. without bringing into consideration the
steady state offset from Figure 6.12 – is accurate for 0 and 8 degrees angles of attack.
For the highest angle of attack of 18 degrees, a combination of wrong initial conditions
and possibly a too coarse mesh in combination with a too large time step, has resulted
in the spurious behaviour of the Cl(β) loops. The use of k-ω SST Sust or lowRe models
might be capable of improving results, especially for the highest angle of attack case of
18 degrees. What also can be done is to construct a finer mesh and run the simulations
with a smaller time step.

Q3UIC already starts to experience problems at 8 degrees, but only so for the forced
transition case. This could mean that a forced boundary layer trip in Q3UIC for this
particular angle, is critical. And that a free development of the boundary layer is modelled
more accurately. Additionally a finer airfoil discretisation can surely lead to more accurate
results. Moreover, an alteration of the unsteady Kutta condition can improve the set of
closure relations, enhance the viscous-inviscid coupling and solve viscous effects more
accurately.
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Chapter 7

Conclusions and recommendations

7.1 Conclusions

The main objective of this thesis was to gather experimental data in unsteady flow con-
ditions and to validate two numerical models by means of comparison with the experi-
mentally obtained wind tunnel pressure measurements. The accuracy of these models is
addressed as well as the difference in terms of their strong and weak points.

Q3UIC

The viscous-inviscid interaction code Q3UIC has shown to provide fairly accurate results
for the pitching airfoil case. The flap measurements were less well covered.

• To validate Q3UIC, wind tunnel experiments are conducted for free and tripped
boundary layer transitions in the open return wind tunnel of DTU as discussed
in Chapter 5. During post processing of the experimental data, some errors were
found. For instance, a stagnation pressure of Cp = 1.2 due to a misalignment of the
Pitot tube; an incorrect connection of some pressure tabs and an accidental offset
in flap angle. Although an attempt is made to correct for these errors, there are
still some unexplainable effects which are believed to be caused by a combination
of these issues.

• The steady lift curves are under predicted by Q3UIC for both free and tripped tran-
sition. However, the free transition curve shows good agreement in the linear region
prior to stall. Remarkable is that the free transition measurements compare well
with the applied flap correction, whereas for the tripped transition measurements,
the flap correction seems to make Q3UIC under predict all lift values. The reason
for this remains not fully known.
By the same reasoning, the unsteady loops show better agreement between exper-
iments and simulations in the free transition cases. Apart from the offset in the
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measurements with a tripped boundary layer, the thickness of the loops and the
flow reattachment locations are captured to a reasonable extent in most cases.

• The flap measurements in Chapter 6 show a good comparison for the steady lift
curves, for both free and forced transition. Also the unsteady effects at lower angles
of attack are captured well. However, around the stall angle of attack of approx-
imately 8 degrees and beyond, the Q3UIC results start to show increasingly large
deviations from the measurements. Theoretically, the different unsteady Kutta con-
ditions may have a noticeable influence on the flap deflection cases. The Kutta con-
ditions have been checked and did not show a remarkable difference. Nonetheless,
it is still possible that an inaccurate implementation or modelling of the unsteady
Kutta condition may be the cause of the spurious behaviour of the results for α = 8◦

and 18◦.

In short it can be said that the worst performance of Q3UIC is found in the DU 95-
W-180 case for an angle of attack of 8 degrees in, Figures 6.15 and 6.16. The Q3UIC
results show separation where neither OpenFOAM nor the measurements seem to agree.
This may be caused by the way in which the unsteady Kutta condition is modelled and
implemented, further research is needed to confirm this matter. At higher angles of 18
degrees, differences are to be expected, but are still not far off.

OpenFOAM

OpenFOAM, proved to be accurate for the flap measurements, but less so for the pitching
airfoil measurements, especially around the stall angle. A point-wise description of the
found results is summarised below.

• The pitch experiments of the NACA 64-418 airfoil compare well with the CFD
simulations with respect to the steady lift curve. As expected OpenFOAM over
predicts the lift values for angles of attack beyond αmax. The lower range until the
stall angle, shows good overlap with measurements. Modelling the mean angle of
attack that corresponds to the stall angle proved to be the most challenging and
did not provide accurate results. The loops stay linear and the up and down stroke
show a small difference in lift values, whereas the down stroke values should be
considerably lower and thus the loops wider. Various factors may have caused this,
ranging from the choice of turbulence model to mesh quality or initial conditions
specifications. Lack of time and resources prohibited the quest for optimum settings
to accurately capture all effects present in the experimental curves.

• A mean angle of attack of 12 degrees, which is beyond the stall angle, shows more
accurate results again. So it can be concluded that for a mean angle of attack
of 8 degrees, where the boundary layer constantly switches between attached and
separated condition, the flow is most difficult to simulate properly.
An other factor that may have caused the inaccuracy of the results could also be the
low Reynolds number of 4.2 · 105 at which the measurements were performed. As
the used k-ω SST turbulence model is more suited for higher meshes with y+ > 1,
an adapted version, k-ω lowRe is likely to show better results for this study where
y+ = 1.
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• By changing the upwinding scheme from second to first order, the error would
increase but the resulting set of equations should stabilize, possibly resulting in a
more accurately resolved boundary layer around the stall angle, especially in the
NACA pitching cases.

• For the DU 95-W-180 flap measurements, OpenFOAM shows a more satisfying
overlap, except for the highest angle of attack of 18 degrees. As mentioned by
Bertagnolio [33], the accuracy and validity of 2D URANS and k-ω SST is acceptable
in the lower angle of attack range, however, when the stall angle is exceeded and
most of the flow is separated, results deteriorate and more accurate models such as
LES or DES should be used.

OpenFOAM worst performance is clearly the DU 95-W-180 case at angle of attack of 18
degrees, Figures 6.17 and 6.16. However, the error is not due to the inability of the solver,
but is believed to be caused by an improper reconstruction of the steady state solution.
It is likely that the unreconstructed solution is used to initialise the unsteady run. As a
result the unsteady solution shows large deviations and does not tend to stabilise.
The other questionable outcomes of OpenFOAM are the NACA 64-418 cases around the
stall angle of 8 degrees in Figure 5.14. The one disadvantage of this OpenFOAM version
is that, because of the fact the forced transition model has not been fully validated, a
free transition comparison could not be made. This study partly aimed at validating the
former model such that in future times, free transition can be implemented.

Final thoughts

The final thoughts on the two numerical models can be summarised in a few words.
The speed and ease of calculations and change of input settings of Q3UIC is a major
advantage compared to OpenFOAM. However it is not possible to analyse the results in
the same way as OpenFOAM. The latter provides the user with many more ways of post
processing and viewing the generated results in the form of pressure, velocity or turbulent
kinetic energy fields. The complexity of OpenFOAM does not ensure the validity of the
outcome. A good example of this is the NACA 64-418 case around the mean angle of
attack of 8 degrees, where OpenFOAM fails to show accurate results while Q3UIC does
not seem to have any difficulties doing this. Moreover, to get correct results for unsteady
and separated flow in the URANS OpenFOAM solver, many parameters and settings can
be adjusted and tweaked. Due to the relatively long computation times, the results can
not be analysed quickly and the whole process takes long, making it difficult to iterate
extensively and frequently. A MSc thesis with a duration of a couple of months is not a
long enough period of time to satisfyingly accomplish flawless results.
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7.2 Recommendations

Unfortunately, not everything could be solved due to the limited time span of the thesis.
It is very likely that with more time, results can be obtained that follow experiments more
closely. A brief list of possible advise for future studies is presented below.

• To generate more accurate results with Q3UIC the first advice that arises is to have a
look at the improvement of implementing the unsteady Kutta condition. Especially
for the flap deflection cases this is likely to provide better results.

• To test Q3UIC for reduced frequencies beyond k = 0.1 it is advisable to perform a
measurement campaign with higher reduced frequencies than has previously been
done.

• An interesting validation method would be to do measurements on a coupled motion
between main airfoil and flap, with different phase delays between the two.

• More iterations, changing Q3UIC settings like unsteady Kutta condition and time
step variations.

• In order to get more reliable results in OpenFOAM it is advisable to try different
turbulence models. k-ω SST is preferred over k-ε due to its better capability to
solve boundary layer scale phenomena. Various versions of this model exist which
are likely to perform better than the one used in this study. Low Re turbulence
models or models that sustain the turbulent inflow parameters exist and are advised
to use in similar studies in unsteady flow conditions with separated flow regions.

• Apart from changing turbulence models, it is recommended to look into the effect
of changing discretisation schemes from second to first order upwind. Although this
may increase the error, it can result in more stable outcomes. The present study
did not focus on these specific details, but it is not unthinkable results could in a
sense be improved by spending more time and resources into additional research.

• CFD modelling of the flow in the stalled region is challenging because the flow is
inherently 3D and can not be modelled accurately using RANS. A LES approach
should generally be able to show better results. On the other hand, LES is compu-
tationally too expensive to model this type of flow conditions. So depending on the
situation a choice has to be made between these two solvers.
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Appendix A

Free LTT flap measurements at
α = 10◦

For the case with a free transition of the boundary layer from a laminar to a turbulent
state, the stall angle of attack was determined to be α = 10◦. Therefore, an extra set
of unsteady measurements is carried out. This angle of attack is not simulated, nor is it
measured in the forced transition.
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(a) Free transition, α = 10◦,∆β = 5◦, k = 0.01.
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(b) Free transition, α = 10◦,∆β = 10◦, k = 0.01.
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(c) Free transition, α = 10◦,∆β = 5◦, k = 0.05.
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(d) Free transition, α = 10◦,∆β = 10◦, k = 0.05.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

β◦

Cl

Free transition

 

 

α = 10◦, ∆β = 5◦, k = 0.1

Measurements

Phase locked median

(e) Free transition, α = 10◦,∆β = 5◦, k = 0.10.
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(f) Free transition, α = 10◦,∆β = 10◦, k = 0.10.

Figure A.1: Cl(β) for α = 10◦,∆β = 5◦ and 10◦, k = 0.01, 0.05 and 0.10. Re = 106
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