Structural analysis of CLT walls in facades of a
multistory building
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Al Appendices

This report contains the appendices for the main thesis report “CLT fagade structures; study on the
influence of mechanical connections on the strength and stiffness of CLT facades that function as the main
stability system”. Each chapter will have its dedicated appendices with same chapter number.



A2 Chapter 2 appendices

A2.1 Method of Schelling

The method of Schelling will be derived for a structure with 7 elements using maple. It can be derived by
solving the differential equation below.
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Figure 1, variables for the calculation of the gamma-values (Schelling, W. 1982)
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Vijog = —Ciiq* Q4

2
_ _ i _
Vi = <Ci—1,i +Cijpq + =t E, * Ai) * g

Viigr = —Ciip1 * Qg

Si = Ciigr * Qyiqgr — Cimqp * Ay

Cii+1 Isthe stiffness per meter length of the connection between member i and member i+1

a; is the distance between the center of gravity of the member and that of the total element
Vi is an abbreviation for easier computing
S is an abbreviation for easier computing

The maple script to calculate the y-factors is shown in A2.3.
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Figure 2, side view with section forces



A2.2 Method of Schelling - forces
The method of Schelling can be used to calculate the bending stiffness but also to calculate the forces on
the elements. The bending stress in the middle of an element is calculated as:

O'-——ﬂ* C ok (2)
si — Ief Vi i

And the bending stress at the ends of an element is calculated according to the method of Schelling as:

M h;
O-ri:_l_*yi*(aii?l) @
ef
Where,
M is the bending moment on the facade
let is the effective bending stiffness according to the method
Yi is the gamma-value of element i
aj is the distance of element i to the center
hi is the height of element i
Osi is the stress due to bending in the center of the element
Ori is the stress due to bending at the edges of the element

However, equation (3) does not correlate to Figure 2 as the bending moment Mi(x) on each individual
member has not been accounted for in the method of Schelling and will add a bending stress on each
individual element.

A2.2.1 Section force equilibrium

The bending moment on the fagade is calculated as the sum of all bending moments on the panels and the
normal forces in each panel multiplied with its distance to the center of the facade (Figure 2). The bending
moment on each panel can be derived from this as well.

M =iMi(x)+iNi(x)*ai @
i=1 i=1

In case all elements are symmetrical.

M =Y Ni(x) * a;

M;(x) = -

®)

Ni(x) = o5 * b (6)

Mi is the bending moment on element i
Ni is the axial force in element i
n is the number of elements



A2.3 Method of Schelling derivation
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restart,

A=b1t:
t="t"
b:="b"
h="h"
E="E"
K :='K"
L:=2-h:

al =3b:a2=2b:a3:=1b:a4:=0:

vil == [ +P—l E-A
I

v21 :=-K-al :v22:
v32:=-K-a2:v33:
v43 :=-K-a3 :v44 :
vi4 :i=-K-a4:v55:
Vo5 =-K-a3 :v66 :
v76 :=-K-a6 :v77 :
sl = K-b:s2

with(linalg) :

=0:53:=0:54:=0:55:=0:56:=0:57:=-K-b:

J cal vi2 =-K-a2:

as :

Calculation of the bending stiffness of a fagade with the method of Schelling.

The height is multiplied by 2 as the method of Schelling is derived for a beam on two supports,
whereas the
facade is schematized as a cantilever.

=-b:a6 =

1v23 :=-K-a3:
V34 :=-K-a4:
v45 i=-K-a5:
vi0 i =-K-a6:
v67 =-K-a7:

-2-b:a7 =

The following equation is derived for 7 identical elements with the following parameters

-3-b;

Amatrix = matrix([[vi{, v12,0,0,0,0,0], [v2],v22,v23,0,0,0,0], [0, v32, v3i3, v34, 0,0,
0], 0,0, v43, vd4,v45,0,0], [0, 0,0, v54, v55,v56,0], [0, 0, 0, 0, v65, v66, v67], [0, 0, 0,

0,0,v76,v771]) :
S = vector([sl, s2, 53, 54, 55, 56,57]) :

gama = evalf (linsolve( Amatrix, §)) :



The solution holds the gamma-factors for each element.

gama[l] is the first gamma-factor and-so-on.

the moment of inertia is calculated for the fagade without openings.

First the I-value including stiffness is calculated, then the I-value without stiffness is calculated.
This factor is then multiplied with the moment of inertia for the fagade with openings to find the
bending stiffness of the fagade.

[>
> gamall], gamal[7]:
1.333333333 K 4% (97.40909108 E> b° £ + 157.9136705 EK b h* t +48. K> h*)
961.3891943 E> 5> £ + 1948.181822 E2 K b* h* * + 9474820228 EK> b ' t + 64. K> h®
> gamal2];, gamal6]:

8. K2 h* (9.869604404 Eb t + 8. K 1)
961.3891943 > b £ + 1948.181822 E2 K b* h> £ + 947.4820228 EK- b h*t + 64. K> i°
> gamal3]; gamal5]:

64. K> 1°
- 3,3 3 2 2,22 . 4 - 3,6
9613801943 E" b + 1948 1BIR22 E" Kb " h 1 + 9474820228 EK " b h't+64. K h
> gamal4],

| >
. 7-1:b° 2 2 _ 2,
> lef = 12 +2-gamall)-t-b-al” +2-gama[2])-t-b-a2” + 2-gama[3 ]-t-b-a3” :
7-1-b° 2 2 2 ,
> Imax = 1 +2-t-h-al”+2-t-b-a2” +2-t-b-a3” : evalf (Ifull) :
> gamma red = ef :
Imax

The presented equations have been rewritten below

(A2+E2+m?24+4xAxk*E*L?*m?+3xk?*L*) «k*L?

yl:]/7:3*(A3*E3*T[6+5*A2*k*EZ*LZ*TL'4+6*A*k2*E*L4'*7T2+k3*L6)
o (AxE*m?+2xk*L?)«k?«L*
yz_y6_2*(A3*E3*T[6+5*A2*k*E2*L2*7T4+6*A*k2*E*L4'*T[2+k3*L6)
k3 L8
Y3 =Vs =

1% (A3 *E3+«m6 +5%xA%2 xk*xE2*[2+xm*+6%xAxk?«E xL**m? + k3« L6)

Ve =1



A2.4 Effective moment of inertia for CLT panels

The effective moment of inertia for CLT panels has been calculated. For panels with two transverse
layers, the gamma method as given in Eurocode 5 can be used. For panels with more transverse layers a
method as presented in “Cross-Laminated Timber Structural Design” by Proholz has been applied. This is
related to the method of Schelling where the stiffness between layers is dependent on the stiffness of the
transverse layer due to rolling shear. Two exemplary calculations are shown on the following pages.

The resulting factors are shown in the table below

Table 1, bending stiffness of each CLT panel

IO,net Yred |0,eff

x10° mm* - x10° mm*
LL-190/7s 0,485 0,881 0,46
LL-260/7s 1,387 0,801 1,11
LL-300/9s 2,099 0,560 1,18
LL-360/9s 3,360 0,391 1,31

LL-400/11s 4,589 0,462 2,12




CLT panel LL-190/7s

E:=11000 N/mm2
Gy =50 N/mm2
b:=1000 mm
L___.:=3100
ref mm
LL-190-7s
tG;:3O mm
g i=20 mm
= ) =0,881 = =
T 5 =0, a,=1,5-t, +t,; =65
n -E-b-t, tg,
1+ :
. 2 b-G,

3
_ b'[z-to] b.t, . 2 a
IO ef-—Z- 2 + 2 +2-\[1- -2-50-51 =4,8472-10
3
be2:t)) bot,’ ) .
IOret:ZZ 3 + 1z +2-b-2-t0-a1 =5,4525-10
I
reduction = — 2% =0,889
0,net
t,=150
I ‘7 9
o= 0,485-10
et T to-lOOO
1,.,=3100
¢ 0,k =26,4
Eo,os = 9670
eff 569
i:= = R
Anet
lcr
Ai=——=54,5
i
A c,0,k
A = —- =0,91
l r
e I E, o5

ky::O,S-[lJrO,l-[A

rel

2
—0,3]+Aml ]:0,94

kc = 1
2 2
kYJr,Jky A

. =0,84



CLT panel LL-400/11s

;> restart,
L> t0:=40:¢90 :=30:E:=11000: L :== 3100 : b := 1000 : Gr :== 50:
L> al :=2540+2-190:a2 =10+ 190:a3 == 0:af =-a2:aj =-al :
> C=:%:CFZ::C:CQS::C:C34::C:C45::C:
22
> Di= w DI =2Di:D2:=Di:D3:=D2:D4:=D2:D5:=DI:
L> vil = (Cl2+Dl)-al :vl2:=-Cl2-a2 :v2] :=-Cl2-al :
L> v22:= (CI2+ C23+D2)-a2:v23 :=-C23-a3 :v32:=-C23-al:
L> v33:= (C23+ (34 +D3)-a3:v34d:=-C34-a4:
L> v43=-C34-al :vd4 == (C34 + C45 + D4)-ad :v45 :==-C45-a5:
L> vi4:=-C45-a4:v35 = (C45+ D5)-a5:
L>
L> si:=-Cl2-(a2 —al):
| > s2:=Cl2-(a2—al)—C23-(al —a2):
L> s3:=C23-(a3 —a2) —C34- (a4 —al):
> s4:=C34-(a4—a3) —C45-(ad —ad) .
L> s3:=C45 (a5 —ad):
L> with(linalg)
> Amatrix == matrix([[vi],vI2,0,0,0], [v2],v22,v23,0,0], [0, v32,v33,v34,0], [0, 0, v43,

vid, v457, [0, 0,0, v54, v55]]) :

S = vector([sl, s2, 53, 54, s5]) :
gama = linsolve(Amatrix, S) :

b2y L bt
12 +3 12

IIv lIV L)

> 0ef =2 +gamal1]-2-b-(2-10)) -al® + gama[2]-2 -b-f()-022;

2.12 x 10°

L

b(2:40) 5 bt

> [Onet =2 12 T

+2:8(2:40) -al® +2-b-10-a2*;
4.59 x 10°

10e,

> gamma_ef = TOnet

L 0.462
t, =280

9
T .,=2,12-10

e
Anet = tD -1000

1_,:=3100

C.

A fc,O,k
I

EO,G5

=0,59

2
ky::0,5-[1+0,1-(Arel—0,3]+Arel ]=0,69

k_= 12 2,:0,96
ky+,Jky A,



A2.5 Buckling of CLT
Stability of a panel has to be checked when both bending stresses and normal stresses occur. Buckling of
the CLT is checked by including a k. factor in the unity check calculation.

L | py V

N

"
7 A s A o A ¢
Figure 3, buckling of the panel [Proholz,2014]
O0c0,d Om,d (7)
+ <10
kc,y fc,O,d fm,d
1 8
ke, = ®)
ky + /kyz — Arely”
ky =0,5(1+ Be(Arery — 0,3) + Arery’) )
Be Coefficient for imperfection 0,1 for CLT
1 — A_y fc,O,k (10)
rety Eo,05
4o e (11)
Lyo.eff
12
, _ Iy,O,eff ( )
byoeff =




Table 2, compression resistance of the CLT panel including buckling

Panel to Ao et lesr ke Nc,rd
mm mm? x10° mm* - kN
LL-190/7s 150 150.000 0,49 0,84 2395
LL-260/7s 200 200.000 1,11 0,93 3535
LL-300/9s 240 240.000 1,18 0,92 4197
LL-360/9s 240 240.000 1,31 0,93 4243
LL-400/11s 280 280.000 2,12 0,96 5109
t, =280
_ 9

T =2,12-10
A _, =1,-1000
1. +=3100
fo,0,k 726,14
E, g5 =9670

eff 87
1= =

Anet
lcr
A= —=35,6
1
I3

A, =2 22K g, 59

I 0,05

ky::0,5-[1+0,1-[A

kc — 1
2 2
ky +'Jky _Arel

- =0,96

2
—0,3]+Arel ]:0,69



A2.6 CLT panel properties
Several type of CLT panels will be used for this thesis. The panels are based on the available panels at

Derix. This is a CLT producer based in Germany, but has provided CLT panels for Dutch building
projects as well. LL-type panels have been chosen, which have two layers in longitudinal direction on the
outside of the panel. These panels have a large net area orientated in the vertical orientation.

Figure 4, cross-section of an LL-type CLT panel (LL-400/11s)

Cross-sectional values follow from the properties of the base material. Most properties are defined based
on the net cross-section. Only for bending out of plane, the effective moment of inertia has to be used in
SLS. The net cross-section in the strong direction is the sum of the boards orientated in strong direction.
Similarly, the net cross-section in the weak direction is the sum of the boards orientated in the weak
direction. In the image below, the light grey hatched layers (numbered 1, 2 and 3) indicate the considered
boards. All boards have the same modulus of elasticity.

o T
1 —
1,2 a, 2y
——*g—z————«v—s ————— W‘Fﬁf—ﬁ__ﬁ
2,3 03 Zu

Figure 5, CLT cross-section [Proholz, Cross-Laminated Timber Structural Design, 2014]

Cross-sectional values have been calculated for five panels. The results are shown in the tables below.
Table 5 shows the net thickness of the panel in O-direction and 90-direction and the corresponding values
for net area, section modulus and moment of inertia. The effective moment of inertia lo e has been
calculated as the net moment of inertia multiplied with an effective gamma value as calculated in A2.4.
The buckling factor k¢ has been calculated with a buckling length of one story height (3,1 meter)



Three main stiffness parameters can be described. The first is the axial stiffness in O-direction. The second
is the axial stiffness in 90-direction. The third and final stiffness parameter is the shear stiffness. The shear
stiffness takes into account the gross cross-section. This is the total cross-section of the panel, indifferent

of the grain direction of the boards.

Ky = EO,mean AO,net

Koo = EO,mean A90,net

K; = GS,mean Agross

Table 3, orthotropic stiffness values per meter width

Ko Koo Ks

KN/mm KN/mm KN/mm
LL-190/7s 1740 464 86
LL-260/7s 2320 696 117
LL-300/9s 2784 696 135
LL-360/9s 2784 1392 162
LL-400/11s 3248 1392 180

(13)

(14)

(15)

The different directions of a CLT plate are defined based on the strong direction of the grain. Most boards
are directed in the 0°-direction. This indicates that most of the grains are parallel to the considered
direction. Perpendicular to this direction is then the 90°-direction. The resistance of the CLT panels to
compression forces, tensile forces and shear forces can be calculated based on the presented formulas. The
buckling factor k. has been calculated in chapter A2.5.

Nc,Rd = AO,net * kc * fc,O,d (16)
Nt ra = Aonet * ft,o,d (17)
Vra = Ai,net * fv,d (18)
Table 4, resistance values per meter width
to Ao net Ago net ke Nc,rd Nt,rd Vo,Rd Voo,rd
mm mm? mm? kN/m kN/m kN/m kN/m
LL-190/7s 150 150.000 40.000 0,84 2395 1725 594 159
LL-260/7s 200 200.000 60.000 0,93 3535 2300 792 238
LL-300/9s 240 240.000 60.000 0,92 4197 2756 950 238
LL-360/9s 240 240.000 120.000 0,93 4243 2756 950 475
LL-400/11s 280 280.000 120.000 0,96 5109 3222 1109 475




The net area can be found by:

(19)

n
Apet = Z b * d;
i=1

The net moment of inertia is the sum of the individual moment of inertias of each layer, summed with
their contribution according to the parallel axis theorem. Assuming there is full transfer of shear, the
formula states:

(20)

b*d
Lnet = +Zb*d * a;’

The effective moment of inertia is only taken into consideration in SLS for out of plane bending and
buckling of the CLT panel. Rolling shear deformation reduces the stiffness of the cross section. The
gamma method is used to calculate the effective moment of inertia. A gamma factor is calculated to
include the additional shear deformation. The Steiner part of the bending stiffness of each layer is then
multiplied with the corresponding gamma factor. For panels where more than two layers undergo rolling
shear deformation, the gamma value is found using the method of Schelling. This method can be best
explained as the gamma method (as given in Eurocode 5) for more than three members that are to be
connected.

1 (21)
Yi = > d
1 + T Ei Ai * i,j
lref2 b GR'i’j
S hrd® o , (22)
Ly =)~z + ) vitbedira
=1 =1
Table 5, cross-sectional values per meter width
to too t AO,net A90,net WO,net |0,net Yred |0,ef‘f
mm mm mm mm? mm? mm® mm* - x10° mm?*

LL-190/7s 150 40 190 150.000 40.000 5,74 E6 0,485 E9 0,881 0,46
LL-260/7s 200 60 260 200.000 60.000 10,7 E6 1,387 E9 0,801 1,11
LL-300/9s 240 60 300 240.000 60.000 14,0 E6 2,099 E9 0,560 1,18
LL-360/9s 240 120 360 240.000 120.000 18,7 E6 3,360 E9 0,391 1,31
LL-400/11s 280 120 400 280.000 120.000 23,0 E6 4,589 E9 0,462 2,12




A2.7 Comparisson of test results

Results from three researches regarding timber-to-steel dowelled fastener connections have been gathered.
Results were taken from Liu et al. (2020), Dobes et al. (2022) and Sandhaas (2012). The load-deformation
curves from tests have been plotted in the figure below for dowelled type fasteners.

Table 6, sources of load-deformation curves

Source Year Diameter No. fasteners
Liu et al. M16 bolts 1

Dobes et al. M20 bolts 1

Sandhaas M12 dowels 1,3and 5

Results from Dobes and Sandhaas have been adjusted for dowel diameter given that these did not use a 16
mm diameter. The European Yield Method equations have been used to adjust the force observed in the
connection to that what would be expected for a 16 mm fastener. The failure mode for all adjustments
remained the same (ductile) failure mode.
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Figure 6, test results combined
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A2.8 Effective number of fasteners (stiffness)

Reynolds et al. researched the effective number of dowels for load-reload stiffness (elastic stiffness Ke).
Theoretical results indicated that the first added dowel would have the largest influence on the effective
stiffness (33% to 40% reduction). This has been supported by test results. The theoretical results also
indicated that the effective number of dowels quickly settle at 0,60. This however is not supported in test
results. The effective number of dowels for 105 dowels was theoretically found to be 64,3 dowels whereas
the actual test results found an effective number of 20,2 (19%). Reynolds et al. indicate that this suggests
that additional processes are restricting the number of dowels contributing to the connection stiffness. In
larger specimen, “misalignment along the length of the dowel through the multiple plates may be
important.” (Reynolds et al., 2022).

Table 7, effective number of dowels according to Reynolds et al. (2022)

Number of dowels  ner Nef Nef Test results Test results
applied based on elastic based on dowel based on dowel 12 mm 10 mm
stress field (theory) misalignment misalignment

(theory) (theory)

For 10 mm dowels  For 12 mm dowels
1 1 1 1 1 1
2 0,75 0,71 0,76 0,74 0,75
3 0,64 0,63 0,67 0,65 0,65
4 0,60 0,59 0,66 0,57 0,56
5 0,61 0,56 0,64 0,51 0,47
7 0,46
105° 0,61 0,19

The results by Reynolds have been shown in the table and graph. Theoretical results have been shown in
yellow whereas test results are shown in blue. Two curves have been defined in order to indicate the trend
line that is observed. These do not represent an actual definition for ner, but do indicate clear differences
between the theoretical results and test results.



n_ef based on Reynolds et al. (2022)
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Jorissen presented several equations to represent the effective number of bolts in timber-to-timber
connections. Provided that there was a minimum spacing a; > 7d, the following equation was found.

Ner = 0,85 * n%% (23)

Mmer =0,90+m  form =2 (24)



A2.9 Single shear plane steel-to-timber connections
There are several failure modes defined in Eurocode 5. These are specified for thin plates and thick plates.

Figure 7 shows all these failure mechanisms. Thin plates have a thickness less than half the diameter of
the dowel. Thick plates have a thickness larger than the diameter of the dowel. For steel plates with a
thickness between half the diameter and one times the diameter of the dowels, linear interpolation can be
used.

tl
b - - ! i ?ll 3 M
a b c d e f g h i/ k 0m

Figure 7, failure mechanisms (Timber engineering book V2)

Thin plate failure modes are failure of timber embedment and formation of a plastic hinge.

Mode a Fv,Rk,a = 0,4‘ * fh,k * t1 * d (25)

Mode b (26)

F
Fyrip = 1,15 % \/2 * My g ok *d+ —aZ'Rk

Thick plate failure modes are also failure of the timber embedment and formation of a plastic hinge.

Mode ¢ Fyrie = frp *t1 % d (27)

Mode d (28)

fh,k*d*tlz_ 4

F
Mode e Fyrie = 2,3 * fMy,k * fpp *d+ %Rk (29)

Fvrea and Fyric are brittle failure modes as the timber fails in a brittle manner (timber embedment failure).
The other three failure modes form at least one hinge before failure, which indicates a more ductile failure.
This is preferred, hence the required failure mode should be mode b, d or e.

4+« M F
Fv,Rk,d =fh,k*t1*d* \/2.{_—3"" 1] + ax,Rk



A2.9.1 Double shear plane steel-to-timber connections
Failure modes f, g, h, j/l, k and m are modes for double shear plane connections. However, the

corresponding equations are similar to the ones for single shear plane connections (due to symmetry).

Considered mode Comparable to

Mode f Mode ¢

Mode g Mode d

Mode h Mode e

Mode j Mode ¢ with t1 as 50% of t
Mode k Mode b

Mode | Mode ¢ with t1 as 50% of t
Mode m Mode e

Mode j and mode | are similar to one another, but are named individually. Mode j is failure of the
embedment strength of the timber for thin plate connections whereas mode | is failure of the embedment
strength for thick plate connections. So the separation is only to indicate the thickness of the steel plates.
These modes are calculated as 50% of mode c, as the result is the resistance per shear plane and only half
the timber thickness contributes to each shear plane.



A2.10 Brittle failure modes of multi-fastener connections

Five types of brittle failure modes of timber have been defined in the new Eurocode 5 draft (2022). These
failures apply to standard timber and parallel laminated timber. They are not mentioned to be applicable
for CLT although Brown and Li (2020) and Azinovic et al. (2022) observed brittle failure in CLT for
grouped fasteners.

a) Splitting b) Row shear ¢) Block shear d) Net tensile failure ¢) Plug shear
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Figure 8, brittle failure modes of multi-fastener connections

The brittle failure of an LL-400/11s panel is calculated for a connection as shown in A5.1.2.

Row shear failure

Frgqg=2%ngg*F,; g =2+8%332=>5312kN (30)
Block shear failure
Fysq = max (2 * F,; 4; F; 4) = max(2 * 332;1811) = 1811 kN (31)
Plug shear failure
Fpsa = max(2 % F,p 4; Fp g + Fypq) = max(2 » 894; 1811 + 406) = 2217 kN (32)
Net tensile failure
Fineta = k¢ * Fog = 1,1+ 1811 = 1992 kN (33)

The brittle resistance of the connection in the CLT panel is found to be 1811 kN as the result of block
shear failure. Ductile failure of this connection is ( 40 x 68 =) 2720 kN. This shows that there is a
potential for brittle failure (brittle failure is 67% of ductile failure). However, it is not clearly specified in
the Eurocode draft whether the brittle failure should be accounted for in CLT, nor how the different shear
planes in a CLT panel should be defined. Given the fact that CLT has two different orientations of the
fiber, each orientation may have a contribution for each shear plane of the panel.
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Figure 9, definitions of shear resistance for different shear planes

Fvia  design shear resistance per side shear plane in the timber member
Fvoa  design shear resistance of the bottom shear plane in the timber member
Fta design tensile failure resistance of the head plane

Fyra = ky * ter * Leon * fo.a

Gean 450
k, =04+ 14 =04+14 |——=0,68
v L A 1% [T1600

Leon = 4 * 80 + 80 = 400 mm

F,1q = 0,68 * 280 * 440 3,96 = 332 kN

Fv,b,d = ky, * Leon * bpet * fv,d
byer =8+ 80+ 48 = 688 mm

Fypa = 0,68 * 488 * 680 * 3,96 = 894 kN

Fea = ki *tef * bret * fro,a

G 450
ke =09+14 [——=09+14 |[——=1,18
Eo mean 11600

Frq =1,18+194 %688 « 11,5 = 1811 kN

(34)

(35)

(36)

(37)

(38)
(39)

(40)

(41)

(42)

(43)



The effective thickness of the fastener to calculate Fiq4 is calculated below.

Inner member
tef,el = maX{(Z - %) ; 0,65 } * Aoy * th,i lf% > 11 acy

190
tefel = (2 - 176) * 0,65 % 190 = 114 mm

M t
v,k h
tefpl = |55 —+ =
efpl 2d fror 2
L 0,3 * 800 x 1626 Q200 oo
ef ol = 0,035 (1— 0,015 16) 385016 ' 2 _
216 %

1,1

terps = Min{teset; tes.pi}
tefps = min{114;120} = 114 mm
Outer member

th,o

[
18d);0'35}*ad*th’i if%>3acl

tefel = max{(1,17 -

65
to.ol = (1,17 - ) % 0,65 * 65 = 40 mm

288
65
terpr =20+ -5 = 53mm

terps = min{40;53} = 40 mm

tef =114+ 2 x40 = 194 mm

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)



A3 Chapter 3 appendices

A3.1 Loads on the structure

A3.1.1 Floor loads

Vertical loads are the result of floor loads transferred to the fagade and self weight of the facade. The
weight of the floor depends on the lay-up. Especially the use of a concrete screed can influence this
weight. As many literature indicates that a lightweight structure has many difficulties it was decided to
assume a timber concrete composite floor. The concrete can be replaced by gravel if disassembly is
requested. However, this would mean that the thickness of the CLT floor panel needs to increase as it no
longer functions as a timber concrete composite floor. A detail of the floor lay-up is given in appendix
NR.

Table 8, floor lay-up

Material Thickness  Unit Weight  Unit Weight Unit

Floor finishing 15 mm 0,10 kN/m?
Double fermacel 25 mm 0,30 kN/m?
Insulation 40 mm 0,05 kN/m?
Concrete 80 mm 25 kN/m?® 2,00 kN/m?
CLT 280 mm 4,5 kN/m?® 1,26 kN/m?
Total 440 mm 3,71 kN/m?

The main variable load on the floor is the usage of the apartments. This is specified in Table 9. Internal
walls will be accounted for by a variable load of 0,8 kN/m?. This represents movable walls with a dead
load of at most 2,0 kN/m.

Table 9, variable load apartments

Category Function Ok [KN/m?]  Qk [kN] ¥, b £ ¥,
A Apartments (including walls) 2,55 3,00 0,40 0,50 0,30
A Hallways 2,00 3,00 0,40 0,50 0,30

Roof loads are not specified as they contribute very little to the overall behavior of the structure.
The floor load per story are found to be (based on a measured span of 8 m)

gk = 14,82 kN/m
Ok = 4,08 kN/m including yo=0,4



A3.1.2 Facade loads

The fagade is made from CLT panels. Openings have been used to allow for daylight entry. This takes up
34% of the area of the panel. The self-weight of the facade is calculated as the average between the weight
of the closed facade and the weight of the windows. The weight of the CLT panels is separated from the
facade load as it can be generated in the computer, based on the thickness of the panel.

Table 10, facade lay-up (inside to outside)

Material Thickness Weight Weight
kN/m?* kN/m? kN/m?
Wall finishing 10 0,10
Gypsumboard 12 0,15
Insulation (fire resistant) 100 0,10
CLT Variable 4,2 -
Insulation (thermal) 100 0,10
Facade cladding 40 0,50
Total 222 excl. CLT 0,95
Table 11, window lay-up (inside to outside)
Material Thickness Weight Weight
mm kKN/m? kN/m?
Glass (triple glazing) 15 25 0,38
Hardwood window frame 0,18
Total 0,56

It is given that 34% of the facade is transparent (window) and therefor the weight of the facade then

becomes 0,82 kN/m? or 2,54 kN/m* for each story.

Table 12, self weight of the CLT panels per story

Panel Thickness Weight Weight
mm kN/m? kN/m
LL-190/7s 190 0,80 1,63
LL-260/7s 260 1,09 2,24
LL-300/9s 300 1,26 2,58
LL-360/9s 360 1,51 3,10
LL-400/11s 400 1,68 3,44




A3.2 cscq factor calculation

b:=27,0 bouwwerkbreedte
d:=20,3 bouwwerkdiepte
h:=77,5 bouwwerkhoogte
Cair *=1:0 windrichtingsfactor
Copason = 1,0 seizoensfactor
Vp,0'=27.0
2p:=0,3 voor windgebied II
z_=0,6'h ruwheidslengte
Ei=E

g
z, ;=0,05

0,07
Zg
kr':D’19'| ] =0,2154
20,11

CT::kr'ln[Zi =1,0862 ruwheidsfactor

orografiefactor voor viakke gebieden 1,0

=27

: -
dir ' Cseasen b,0

Vm = t‘_',‘r - CO ~Vb =29, 3301
ki =1,0 turbulentiefactor 1,0
k!

I,:= 27 001983 turbulentie-intensiteit

c, In|—

Zp

L, =300 referentielengteschaal
z, =200 referentiehcogte

c:‘f:=ﬂ,6?+D,D5-1n[zD]=D,609B

o
L:=1L, [— =123,2438 turbulentielengteschaal
Bi= L : —=0,7036
b 2 h 2 b h 2
1+1,5- [E] +[E] + T
5:0: =0,06
pi=2=0,6 afmetingsreductiefunctie

Tabel 4.1 — Terreincategoriesn en 1&me nparameters

Iy
Terreincategorie =

=

e ol kusigebeed mel wind aanstiomend over open Zee 0,002

| Meren of viak en horzontaal gebied met verwaarioosbare vegelabe en zonder o.oi
obstakets N

| Gebied met lage bagroeing als gras en vrjstaande abstakels (bomen, 0,05
QEDOLWEN) MET een ESSERAIMLE van ten minste 20 obstakenooyes i

I Gebied met fregeimatige begroeing of gebouwen of Vistaande chatakels met

eEn ussennambe van ken hoogsle 20 obslakehoogles (2oas dampen, 03 -1
woarslEdeli lemein, bivend bas)
IV Gebied waar tan minste 15 % van de oppeniakta is bedekt met gebouwen i0 i

met een gemiddelde hoogie boven 15 m

De lemeincalegariesn zijn geflustreand in A1,

afhankelijk van locatie 0,003; 0,01; 0,05; 0,3; 1,0

achtergrondresponsfactor (eigenlijk = 2}

De keuze B macht2 = 1 is aan de veilige kant

2
Resonantieresponsfactor (eigenlik & )




G,1=0,375 waarde G: indien uniform 0,5; indien lineair 0,375; indien parabolisch 0,278
waarde K: indien uniform 1,000; indien lineair 1,500; indien parabolisch 1,667

G,:=0,375
Ky':l,OO
K, :=1,00
c,:=11,5 vervalconstant
c,:=11,5 vervalconstant
46 . 2
n:=—-=0,5935 eerste eigenfrequentie
c:y +bn c, h-n
¢, = =6,2835 b= =18,0361
m m
1
K = =0,0745
2 2 2 ‘
1+ [Gy-@y] +[Gz-¢z] +|5 Gy 8y G,
n-L
£, = = 22,4841 bevestiging dat n is n1,x ofwel eerste eigenfrequentie
m

spectrale dichtheidsfunctie

=0,4079 verwachtingswaarde van de frequentie in een vlaag

B +R
T:=600 seconden

0,6 .
——=13,4076 piekfactor  maar groter dan 3
J2-1n (v-T)
c;Cy -waarden voor verschillende constructietypen

k=2 1n(v-T) +

C1+701,B

Cs 1= T+ 7-1 =0,8277 afmetingtack (1) De eigenfrequenties en trillingsvormen van de constructies in deze bijlage zijn afgeleid met lineaire
v analyse of geschat met de uitdrukkingen in bijlags F.
2 2
l+2'kp'IV' E +R
= =1,1856 Hoogte: [m] 1,06 100 085 0,80
d 1+7-I -B 0o 110 105 1,00 0,95
v pabaseard op” [JHIIS 1 K
SITF g i 7090
- — & =005 ¥ / : 0,85
CsCd := C."Cy™ 0,9%813 lemreincategoria 1l (getrokken ljn) 4 I | f / .
temeincategorie |l (gestippelde lijn) 80 3 h Al =
w =28 m's -#._ / / R
& =0 ™ ﬁ 4= "
imrdl Iws ps
&
Fr 4
50 ’f ~ -"/
. ' d rl 0,85
’ I A 7 %
e
Iy
4
0 1A =
10

W oW W 4 N W MW w oW

Broedie [m]
OPMERKING  Voor waarden groder dan 1,1 mag de gedelaileerds procedure gegeven in 6.3 zijn toegepast
{goadgekeurds minimumwaarde van ey = 0,85)

Figuur D.1 — ¢,c4 voor stalen gebouwen met meer verdiepingen met rechthoekige plattegrond en
verticale gevels met een regelmatige verdeling van stijfheid en massa (frequentie volgens
uitdrukking (F.2))



A3.3 Detail of the fagade-floor connection
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Figure 10, vertical detail of the CLT facade with a timber-concrete composite floor




A3.4 2nd order calculation for the structure

The second order contribution of the fagade is calculated. There is no contribution of the foundation
included. This makes that the result will be an underestimation of the second order effect.

Vertical load on the fagade is calculated assuming half the vertical load is transferred to the facade and
half the load is transferred to the inner load bearing structure. A top deformation of 229 mm was found in
initial calculations, but might differ from the presented values slightly due to alterations after this
calculation was performed. An equivalent bending stiffness Eleq has been calculated based on a forget-me-
not of a cantilevering beam with distributed load and the abovementioned top deformation.

This together leads to a vertical load on the stability element and a critical load. the calculated ratio n
between these two loads is used to calculate the second order factor.

gk.=27,1 kN/m
a:= 27000 =13500 mm
b:=20300 mm
L:=77500 mm
W:=229 mm assumed top deflection based on first calculations of the top deformations
Notory = 29
gk .L 4 17
EIeg ::8-—W=5,3364-1O Nmm2

a simplified calculation for the vertical load is made below
A.p=0,5-a.-b.10 =137 m2 50% of the floor load is assumed on the fagade

—6
Afa;:ade !Z[a+b].L.1O =2619,5 m2

qfloor,d::I'Z'14'82+115'4108=2319 kN/m2

qfa;:ade,d::1'2'0f4'4r2=2f02 kN/m2

(nstory : Afloor : qfloor,d + Afag:ade : qfagade,d]

N, oq= > = 43584 kN
n2-Equ
cr, 1= 5 =699054,3 kN
1000-[(1,12.L) ]
no. cr,l’_16
7= =
NV,Ed

1
2nd :Zﬁ =1,066



A4 Chapter 4 appendices

A4.1 Facade view and deflection components
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Bending of the fagade




Shear of the fagade




Bending of lintels
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Bending of piers




Sliding
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Additional bending deformation
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Free bending deformation




Free rocking deformation




A4.2 Shear stiffness of fenestrated panels

Research has been done by Duijic et al. (2007) regarding the shear stiffness of fenestrated panels.
Openings ina CLT panel result in a reduced shear stiffness which can be calculated using equations (55)
and (56).

o HYL; (59)
CHYL+XA
__r (56)
K= 2—r

Where
H is the height of the panel
Li is the width of full height wall segments
A is the sum of openings
K is the ratio of shear stiffness of fenestrated and non-fenestrated panels

For panels with a width of 2,9 meter; height of 15,5 meter and five openings of 1,74x1,74 meter, the
reduction factor is 0,37. Or in other words, 37% of the shear stiffness of the full panel remains when the
openings are included. This is only slightly less than the reduction of shear area at the height of the
opening, which is 40% of the original area. Hence, this approach by Dujic et al. will not be included in the
calculation of the shear deformation.



A4.3 Theoretical hand calculations
Calculations for the maximal compressive force for the model of 77,5 meter are presented below. The
floor load has trapezoidal load distribution. That is why the vertical load is reduced by a factor 6/7. As six
out of seven panels are effectively loaded and assuming that this load then distributes among all piers

evenly.

Table 13, calculation of axial force in the piers of a CLT panel when unfavorable

q Factor b Nstory Npiers Y NEed
Self weight 3,44 X Xx 203 x 25 [ 14 X 1,20 150
Floor G 14,82 X 6/7 Xx 203 x 25 [ 14 X 1,20 553
Facade 2,54 X x 203 x 25 [ 14 X 1,20 110
Floor Q 4,08 X 6/7 Xx 203 x 25 [ 14 X 1,50 190
Total 1003 kN
Table 14, calculation of axial force in the piers of a CLT panel when favorable
q Factor b Nstory Npiers Y NEd
Self weight 3,44 X x 203 x 25 [ 14 X 0,90 112
Floor G 14,82 X 67 x 203 x 25 [ 14 X 0,90 414
Facade 2,54 X X 20,3 x 25 /| 14 X 0,90 83
Floor Q 4,08 X 67 x 203 x 25 [ 14 X 0,00 0
609 kN

Calculation of shear force Vex and bending moment Mg on the fagade acting at the foundation level.
Wind load gw is translated into a horizontal force Fy by multiplying it by 15,5 meter. The distance
between the horizontal wind force and the foundation z is multiplied with the force to find the bending
moment contribution of that force. The sum is the bending moment of 72.411 kNm on the foundation.

Similarly, the sum of horizontal forces Fu  is the horizontal shear force on the foundation.

Table 15, calculation of Mek due to wind load

Height Cw.k Frx z M
kN/m kN M

77,5 meter 27,1 420 69,8 29.295

62,0 meter 24,7 383 54,3 20.778

46,5 meter 22,3 346 38,8 13.408

31,0 meter 19,6 304 23,3 7.068

15,5 meter 15,7 243 7,8 1.883

Total Ve 1696

Total Mgk 72.411




Similarly for other heights

Table 16, acting forces on the fagade at half-way panel height of the bottom panels

-1696

Height MEk,max VEk,max Meq VEd
kKNm kN kNm kN
77,5 meter 72.411 1696 108.617 2544
62,0 meter 43.113 1276 64.669 1913
46,5 meter 22.343 893 33.515 1339
31,0 meter 8.949 547 13.424 821
15,5 meter 1.886 243 2829 365
oooooojo
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Figure 11, wind load on the facade



Calculation of axial force Ngq in the outer pier due to wind for each model height

Table 17, axial force in outer piers

wind MEeqd W bpier Tpier NEd
kNm mm® m m kN
77,5 meter 108.617 * 108 / 7,84%10° x 0,58 x 0,28 = 2251
62,0 meter 64.669 *10% / 7,84%10° x 0,58 x 0,28 = 1340
46,5 meter 33.515 *108 /[  7,84*10° x 0,58 x 0,28 = 694
31,0 meter 13.424 *108 / 5,60%10° x 0,58 x 0,20 = 278
15,5 meter 2829 *108 /[ 4,20%10° x 0,58 x 0,15 = 59

Calculation of the axial force in the hold-down connection. Where the maximum tension is the wind force
reduced with the minimum weight and the maximum compression force is the wind force added to the
maximum weight.

Table 18, results of maximum compressive and tensile forces in the outer connections at the foundation

Helght NEd,wind NEd,Weight,min NEd,weight,max Nt,d Nc,d
kN kN kN kN

77,5 meter 2251 -609 -1003 1642 -3254

62,0 meter 1340 -487 -802 853 -2142

46,5 meter 694 -365 -602 329 -1296

31,0 meter 278 -244 -401 34 -679

15,5 meter 59 -122 -201 0 -260

These theoretical results assume full cooperation between CLT panels. That is why these results are
considered to be unfavorable. Actual tensile and compressive forces are expected to be higher. The actual
magnitude of this deviation is to be found by comparing the theoretical results to the computer results.



A4.4 Theoretical top deformation without connection stiffness

The top deformation of a CLT fagade of 77,5 meter is calculated. It includes the contribution of openings.
It does not include the contribution of any stiffness of the fasteners in the connections. Four contributions
to the top deformation are accounted for. These are bending and shear deformation of the fagcade with
reduced stiffness due to openings and additional bending due to deformation of piers and lintels.

The contribution of the bending of lintels is calculated using the method of Schelling. The stiffhess of the
lintel is distributed over the height of the story. The piers are then considered as beam elements that are
connected by the lintels. The length of the lintel is defined according to Hsiao (2014).

_ Qwina *h* _ 27,1%77500*

Whending = 8 % Elred = 8+923 » 1015 =132 mm
_ Gwina*h?* _ 2712775002 _
Wshear = Z*GAS,avg_Z*Z,Olg*log_ ,omm
Awind * hstory * hpier eff3 27.1 %3100 * 24203
jers =T —— =32 =19,1
Wpiers n¥* 12+ ZElpier 325 * 12+1,69 1015 ,Lmm
1= Yred 0,165
Wschelling = W wy = 0.835 * 132 = 26,1 mm

where
¥rea = 0,835 according to Maple script below
The total deformation of the top is the sum of the components

Wiop = 218 mm



A4.5 Maple script for the top deformation due to deformation of the lintels

L> restart.
L>
> gwind = 27.1:
>
> :
[> 00:=120
[> E=11600:
| > Himtal = 1360
|> Llmtel := 2320 :

12-E. ’%] -190-Hlintel’ )
> K= V12 RN

Llimtal 31
90,45 i)

2

Lvalamrvalve velve v

Lvalvalmew

Lvalval

v

Lvalval

s P2 3\
> Mg = |KE+K+— -E-A|-a4:
\ i /

22 3
P £.05. 4 |-a8
Fo J

>
=>
L>
[>
L>
>
=>
L>
>
L>
> with(linalg) -
> Amatrix == marix( [ [vILvI2 0.0.0.0.0.0). [v21.v22.v23.0.0.0.0.0]. [0, v32,v33.v34. 0.
0.0.00 [0.0. v43. v v45.0.0.0] [0.0. 0. vi4. v55 w56 0.0]. [0. 0.0, 0. v63. v66. v67.
L 07.[0.0.0.0.0,v76. v77. ¥781. [0.0. 0. 0. 0. 0. v87.v887]) :
> vector( | 51,52, 53 54. 55, 56.57.58])
> valf (linsolve( Amatrix. §)):
{ 0.874 0815 2 0793 0815 0.827 J @
> Irigid o= 2t0Bpier | 30 (2 Bpier)” 5 4 Boier.al® = 2.10-(2-Bpier)-a2 2102

2 12
-Bpier) a3t 2402 -Bp.ier)-rrtil :

n _ 2.t0-Bpier _ 5-t0-(2-Bpier)’
> Jlopenings = - + T

-Bpier)-a2® +2-b[3)-10-(2-Bpier) -a3” + 2-b[4]-10- (2-Bpier) -ad"
> gamma_red = Jopenings

~2-b[1]-10-(Bpier) -al® +2-b[2]-10- (2

Irigid
L )
4
> addifional_bending = ~—82mma red _qwind-h__
- gamma_red 8 E-Irigid
| 2614 )
B NP oy
— gwind-h _ _gwind-h
> Alierative 8-E-Jopenings  8-E-Irigid
2614 )




A4.6 Theoretical top deformation - results
The results for all heights have been calculated in a similar way and shown before. The results in black are

for the panels used in further calculations. The results in grey are for panels that will not be further

researched.

Table 19, theoretical top deformation

Model

Ok panel to t El GAs >Elp Yred Wb Ws Whier Wschelling ~ Wtot
kN/m mm mm  x10®  x108 x10%° mm mm mm mm mm
Nmm? N Nmm?
15,5 meter 15,7 LL-190/7s 150 190 495 959 0,903 0,12 0,23 1,97 0,95 1,77 4,92
31,0 meter 19,6 LL-260/7s 200 260 660 1312 1,209 0,36 3,43 7,17 3,27 6,20 20,1
46,5 meter 22,3 LL-400/11s 280 400 923 2019 1,690 0,64 14,1 11,9 5,80 7,97 39,8
62,0 meter 24,7 LL-400/11s 280 400 923 2019 1,690 0,76 494 23,5 11,2 15,5 100
77,5 meter 27,1 LL-400/11s 280 400 923 2019 1,690 0,83 132 40,3 19,1 26,1 218




A4.7 Forces on the connections — additional bending moment

Chapter 4.5 already explained the forces acting on the connections. This appendix goes more into detail
regarding the increase of forces due to additional bending moments as a result of eccentricities in the
connection. The shear force in the connections is assumed to be resisted equally by all bolts.

V,
F, = 24 (57)
nxm

The maximum force Fr, as a result of the additional bending moment is located in the outer bolts. Meaning
that one of the four outer bolts is by default the governing element. The maximum force Fmax in one such
bolt is calculated as the resulting vector of the two forces Fy and Frn. This maximum force should be below
the resistance of the bolt F, rq.
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Figure 12, forces on the shear connection on the vertical edges of the panels

The force in the outer bolt due to bending is calculated using the equation below

m g2 (58)

The force Fn is to be decomposed in a force vector in x- and y-direction.

3,5*%xa
E mx — * Fp (59)
amax
0,5*a (60)
Fm'y = * 'm
amax

The maximum force Fmax is then calculated using the equation below

(61)
Fpax = JFm,xz * (E? + Fm,y)2



A calculation is made for the shear key connection on the vertical edges of the CLT panels of the model of
77,5 meter.

e
Mgq = Vga * 2 (62)
Vea = 291 kN (63)
. aiz (64)
Meq = ) ——xF,
e Amax
i=1
u . 402 N 1202 N 2002 N 2802 (65)
=3 E3 *
Ea 283 283 283 283 ™

Mgy = 1900 * E,, (66)

The force on the outer bolt due to bending on the connection is calculated and split into a horizontal
component (Fmx) and vertical component (Fmy). These are added to the shear force per bolt (F.).

_ Mka (67)
™~ 1900
3 Via *% (68)
™™ 1900
291 % 0,12
En, = BECT 18,4 kN (69)
280
Fpx = 83 % 18,4 = 18,2 kN (70)
0
Eny = =8 18,4 = 2,6 kN (71)
291 72)
E, = m = 18,2 kN
E.=F,,=182kN (73)
F, =F,y+F =182+ 2,6 = 20,8kN (74)
Fraxa = /18,22 % 20,82 = 27,6 kN (75)
Fyrq = 40 kN (76)

The unity check was 0,46 (18,2 / 40) but increased to 0,69 (27,6 / 40). Which is an increase of 52%.
This increase is independent of the value of Veq. It solely depends on the geometry of the connection.



A5 Chapter 5 appendices

Ab5.1 Detail drawings of the connections at the foundation

Details are presented for the model of 77,5 meter.

il Vy

@ 0000000

]

(=== - - ===
RN
COQOOODOOO0
00000000
00000000

0O 0000000

poo0ooo000c o0

000000000
000000000

cco000000
cococococoe
COOQOOQOQ
00000000
O00000CO0O0

ono"ooec)-‘oa
cocooo000
000000000
oocoocooccoo0
000‘000000

ala & |ji{|

ala s allal
FTTT

Detail Hy

s

BB 8B B

T

Detail Hx

lala a alal
LTTT

Detail Hy

ff



Hy front view

horizontal edge

A5.1.1 Hold-down connection
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Hy cross-section

horizontal edge

A5.1.2 Hold-down connection
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Hx front view

horizontal edge

A5.1.3 Shear connection
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Ab5.1.4 Shear connection horizontal edge Hx cross-section
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Ab5.1.5 Shear connection vertical edge
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A5.2 Detail drawings of the connections at the fifth floor

The shear connections on the vertical edge of the CLT panels are similar as those presented for the
connections at the foundations for the model of 77,5 meter.
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Hy cross-section

20, 65 20

horizontal edge
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Hx cross-section
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Ab5.2.4 Shear connection
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Ab.3 Calculation of the bolt resistance of a M16 bolt

d:=16 mm ¢ r b
i«
fu,k =800 N/mm2 |
I L [ ] I ] —3
Py =385 kg/m3 |_J j LJ i@
X gogree = 90 a b c d e f g h jll k
I
Yrad = Ygegree 180 1,5708
1,16
0,035.(1-0,015.d). 9,
fh,CLT,k = i 2 =24,13 N/mmz2
1,1-51n[(xrad] +cos[aréd]
2,6 5
M,,:=0,3-f, ,.d =3,2428.10
tl =65 mm
t2 =190 mm
Axial resistance of a washer M16
fc,ED,k =2,5 N/mm2
DEXt =50
Dint =17
n 2 2 -3
Fax,Rk = Z . Dext - Dint -3 fc,BO,k -10 =13,02 kN
outer part inner part
— -3
Fyorx,r=Tn cpr -ty d-107 T =25,1 Fopg,1=0,5 % cpny-ty-d-107 " =36,7
F = £ to.d. 2+M7Y'k,1 ,1073:169 F 23 M I3 a3 10—37257
v:Rk,g h,CLT,k 71 £ g.+ 2 ! v,Rk,m P2 v,k " "h,cnT,k Y " =<9,
h,CLT,k "7 " "1
F M £ d -3
voren =23 (M d 107 T =25,7
Fax,Rk
. 4 Fax,R.k
Rope :=min 0,25-F, zp,q ||~ 3,26 Rope thick :=min 4 —3,26
0,25-F, o » 0,25-F; zx,m
Fv,Rk,f F . FV,Rk,l 0,
. 0,9 ,Rd, . :=min . + —
Fy pa=min || Fope,q +RPE || 22 213,93 VR, thick Fy pkm +ROPe_thick .
FV,Rk,h -+ Rope
o ra,tor =2y pg T2 F, pq tnick = 68

Figure 13, example calculation for double internal steel plate
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Table 20, resistance of a bolt in a connection with a single internal steel plate

Panel t M12 M16 M20
[mm] [kN] [kN] [kN]

LL-190/7s 65 18 Ductile 28 Ductile 38 Ductile

LL-260/7s 100 23 Ductile 33 Ductile 43 Ductile
Table 21, resistance of a bolt in a connection with two external steel plates

Panel t M12 M16 M20

[mm] [KN] [KN] [KN]

LL-190/7s 110 24 Brittle 29 Brittle

LL-260/7s 180 25 Ductile 40 Ductile 55 Brittle

LL-300/9s 220 25 Ductile 40 Ductile 58 Ductile

LL-360/9s 280 25 Ductile 40 Ductile 58 Ductile

LL-400/11s 320 25 Ductile 40 Ductile 58 Ductile
Table 22, resistance of a bolt in a connection with two internal steel plates

Panel t t; M12 M16 M20

[mm] [mm] [KN] [KN] [KN]

LL-260/7s 40 100 39 Brittle 48 Brittle X

LL-300/9s 45 130 41 Ductile 59 Brittle X

LL-360/9s 55 170 42 Ductile 67 Ductile 86 Brittle

LL-400/11s 65 190 42 Ductile 68 Ductile 96 Ductile
Table 23, internal stresses in a connection with two internal steel plates

Panel t t M12 M16 M20

Gin Gout Gin Gout Gin Gout
[mm] [mm] N/mm? N/mm? N/mm? N/mm? N/mm? N/mm?

LL-260/7s 40 100

LL-300/9s 45 130 14,1 17,0 16,7 16,7

LL-360/9s 55 170 12,4 12,8 15,3 16,0 15,4 15,4

LL-400/11s 65 190 13,4 13,2 14,8 15,1




A5.4 Maximum force on bolts of shear key connections on vertical edges of the panels
The maximum force on the bolts of the shear key connections on the vertical edges of the panels is the
result of the shear force acting on the connection and the bending moment acting on the connection. The
equations to calculate Fmax have been presented in the main report and chapter A4.7.

The table below shows the forces acting on the bolts and ultimately the maximum force Fmax on the outer
bolts. The last column indicates the increase of the force on the bolt due to the additional bending

moment. It can be seen that for the connection with two columns of bolts, the forces increase by 52%.
Whereas for the connections with one column of bolts, the forces only increase by 12%. This is due to the
fact that the bending moment is smaller due to less eccentricity, as well as the lack of a vertical component
of the force vector from the bending moment.

The increase of 52% and 12% is constant for all connections of one and two columns of bolts. The
increased force on the bolts can also be calculated using a multiplication factor depending on the geometry
of the bolts.

Table 24, maximum force on bolt - shear connection vertical edges

Model Location VEed e Megq Fin Frnx Frmy Fy Fnax Fu.rd Fiax ! Fy
height
kN m kNm kN kN kN kN kN kN

77,5 meter Foundation 291 0,24 34,9 18,38 18,18 2,60 18,19 27,6 40 1,52
77,5 meter  Fifth floor 250 0,24 30,0 15,79 15,62 2,23 15,63 23,7 40 1,52
62,0 meter Foundation 219 0,24 26,3 13,83 13,68 1,95 13,69 20,8 40 1,52
62,0 meter  Fifth floor 177 0,12 10,6 11,06 11,06 0 22,13 24,7 40 1,12
46,5 meter Foundation 153 0,12 9,18 9,56 9,56 0 19,13 21,4 40 1,12
46,5 meter Fifth floor 112 0,12 6,72 7,00 7,00 0 14,00 15,7 40 1,12
31,0 meter Foundation 94 0,12 5,64 5,88 5,88 0 11,75 13,1 40 1,12
31,0 meter  Fifth floor 59 0,12 3,54 3,69 3,69 0 7,38 8,2 40 1,12
15,5 meter Foundation 42 0,12 2,52 2,63 2,63 0 5,25 59 29 1,12




A6 Chapter 6 appendices

AG6.1 Validation of the model

In order to get a better understanding of the validity of the model, several verifications have been
performed. First the structural behavior of the panels has been verified. The top deformation and
maximum forces at the foundation are considered for a simplified version of the computer models. The
simplified models have their openings removed. All other properties remain the same. The results of the
models are then compared to the expected results form theoretical hand calculations.

First the bending and shear deformation at the top are calculated by hand and compared to the computer
results. Then the forces in the bottom CLT panels are compared (at half the height of the panels).

The calculations in SCIA for the validation is performed as linear elastic calculations.

A6.1.1 Deformations of the panels
The values used for the calculation are presented below.

Table 25, values for the calculation of the top deflection

Model Panel t to too GAs avg El w
Type mm mm mm kN kNm? m?
77,5 meter LL-400/11s 400 280 120 3.045.000 2.264*10° 19,23

5 (77)
GA, = o 450 * 400 * 20.300 = 3.045.000 kN
1
EI = 11.600 * 280 * 203003 = 2.264 * 10® kNm? (78)
1
W = r 280 % 203002 = 19,23 m3 (79)
_ Quwina *h* _ 27,1%77.500* 40 (80)
Wb =g Rl 8x2264x106 M
oo xh? 271 %77.5002 81
_ Jwina = = 26,7 mm (81)

Ys = T2%GA,  2+3.045.000



A6.1.2 Forces at the foundation
Not only the top deformation is considered, but also the forces at the foundation are calculated. The
theoretical forces are calculated as:

Mgq | Ngg (82)
YEW R

The bending moment on the facade is given in Table 16. Vertical loads for calculating the normal force is
the sum of loads from the floor and the self-weight of the facade. These loads are per story height.
Depending on whether the maximum compression or tensile forces are calculated, the vertical load has to
be calculated with the corresponding safety factors. The values for the model with a height of 77,5 meter
are calculated in the equations below. The forces at half the height of the first panel are considered
(h=7,75 m) since the connections at the location of the foundation influence the results significantly.

Vertical load on the facade per story is calculated below for maximum compression forces and maximum
tensile forces.

Gourss = 1,20 (14,82 + 2,54 + 0,4 * 4,2) + 1,5 * 4,08 = 28,6 kN/m
Goursz = 0,9 * (14,82 + 2,54 + 0,4 x 4,2) + 0 % 4,08 = 17,1 kN/m

Meq = 72.411 kNm at the foundation, but the check is performed at a height of 7,75 m from the
foundation, or 69,75 meter from the top. The bending moment at that location is calculated below.

M 69,75% 72.411 = 59.720 kN 83
= ——x72 = 59.
Ed =752 m

The force per meter in both compression (ny.c) and tension (ny;) can then be calculated. There are 22
stories that introduce loads from the floor and facade. This is then multiplied by a factor of 6/7 to account
for the triangular load distribution near the corners.

_15%59720 08640 = 1281+ —539 = —1820 N (84)
Nyc=—""1g33 +24*486x7=— +—539 = - oo
028
_15%59720 10148 2 1281 - 294 = 0g7 N (85)
ny't = W - * ,1 % 7 = —_ = E

0,28



The figures below show the loads on the fagade.
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Figure 14, loads on the facade



A6.1.3 Verification conclusions

The calculated deformation is 81 mm by hand whereas the observed deformation in SCIA is 89 mm, as
can be seen in Figure 15. The resulting forces per meter in SCIA are -2166 KN/m in compression and
+1041 KN/m in tension. Theoretical hand calculations were -1820 kN/m in compression and +987 kN/m in
tension.

The compression forces per meter deviate 346  kKN/m which is 19%

The tension forces per meter deviate 54 kN/m  which is 6%
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81.0

72.0
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Figure 15, top deformation of the simplified model Figure 16, forces on the fagade panels

It can be concluded that the computer model gives predictable results for this simplified setup. Adding
openings to the panels will increase the complexity of the verification, but the model will still remain
functional. It is to be noted that the computer model shows higher forces per meter in both tension and
compression. In other words the theoretical hand calculations are an underestimation, both for the forces
in the structure as well as the deflection at the top.

The deviations can be explained by the fact that the panels are separated from one another with the steel
connection plates already modelled in between the panels. Only the fastener stiffness is missing in the
models. This separation makes that there are two factors contributing to the deviations between hand
calculations and computer results

e Load introduction from one panel to the panel below is though one such connection plate. This
causes peaks in the load introduction in the lower panel.

e Separation of the panels makes that there can be a slight reduction in the cooperation. This causes
a reduction of the bending stiffness and moment of resistance. Which in turn increases forces per
meter as a result of wind load.



A6.2 Validation of connections (with linear stiffness)

The previous chapter showed that the model yields predictable results when the openings are not included.
The behavior of the connections on the horizontal and vertical edges of the CLT panels is the next
verification that has been made. Verification of the connections on the horizontal edges is split for sliding
and rocking behavior of the connections. Deformation due to rocking was manually calculated as the rigid
body rotation of each layer of CLT panels due to elongation of the connections in tension and deformation
of the CLT panels in compression. Verification of the connections on the vertical edges is based on the
method of Schelling.

The modelled stiffness that is used for the interface between the steel plate and the CLT panels is a linear
stiffness (100 KN/mm per meter). This is done in order to make the comparison to the theoretical results
simpler. Hold-down connections on the horizontal edge have a rigid behavior in compression.
Connections on the vertical edge of the panel result in deformation due to a reduction of bending stiffness.
This bending slip is calculated using the method of Schelling. The stiffness of the fasteners is smeared
over the height of one story in the theoretical hand calculation.



A6.2.1 Connections on the vertical edge

In order to verify the functioning of the connections on the vertical edges of the panels a linear spring
stiffness is added to the model. A connection in the computer model is defined as a steel plate in between
the two CLT panels. This was already present in the previous verification. But for this verification, the
interfaces between the steel plate and the CLT panels on either side are given a linear spring behavior. In
compression it will behave rigid. In tension it will have a tensile stiffness.

TTTTTTTTTTTTTTTTT
I I e I A i e

Figure 17, connection as modelled in SCIA (right)

The fagade is a cantilever structure which means that the height used in the method of Schelling is twice
the height of the fagade. Local connections have been modelled, but the method of Schelling assumes a
distributed connection. The theoretical hand calculation results are shown in Table 26. One example is
presented in chapter A6.2.2.

Table 26, gamma values and top deflection calculated with the method of Schelling

K Yred Wh,slip,theory
KN/mm/m mm mm

1 0,071 708

3 0,155 293

10 0,357 97

30 0,617 33,5

100 0,841 10,2

300 0,941 3,4

In order to compare the spring stiffness in SCIA with a hand calculation, the spring stiffness in SCIA has
to be recalculated into an effective stiffness. If the stiffness of the interface between the left CLT panel
and the steel plate is 200 kN/mm per meter, the stiffness of the connection is 100 kN/mm per meter
(assuming the steel plate is rigid). The connection stiffness is then distributed over the height of one story
to get an average stiffness per meter panel. The height of the connection per story is 1,0 meter (2 x 0,5
meter ) for this verification. One story has a height of 3,1 meter. So the average stiffness per meter panel is
(100/ 3,1 =) 30 KN/mm per meter. Table 27 shows the resulting top deformations for several stiffnesses.
The observed top deformation is then reduced by the top deformation of the fagade without connection



stiffness (89,0 mm as was found in the previous chapter). This deformation is the additional deformation
due to the connections at the vertical edges of the facade.

Table 27, SCIA results; top deflection including bending slip for various stiffness values

Kef Wiop Wh slip,SCIA
kKN/mm/m mm mm

1 882,9 794

3 401,3 312

10 209,8 121

30 128,6 39,6

100 102,5 13,5

300 92,8 3,8

Comparing the results from the theoretical hand calculations with the computer results it can be concluded
that there is a good correlation between the two methods.
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Figure 18, top deformation of the facade for ket = 30 kN/mm



A6.2.2 Theoretical hand calculation of bending slip
The equations below show the calculation performed to assess the bending slip deformation for a smeared
stiffness Ker = 30 KN/mm using the method of Schelling.

t:=280
b:=2900 5
A:=b-t=8,12-10
E:=11600
k:=30
h:=77500
L:=2-h
a,=3,0-b=8700
a,:=2,0-b=5800
a,=1,0-b=2900
34::0
Y; =Yy
[A E -n4+4-A-k-E-L ‘n2+3-k2-L4 k.12
Y, =
3 [A3 E -m +5-A2-k-EZ-LZ-n4+6-A-k2-E-L4 n2+k3-L6
Y, i =Yg
A E-n2+2-k-L -J<2-L4
Ygi=
2 [A E -u6+5-A2-k-E -L -n4+6-A-k -E-L4-n +k3-L6]
Y33 =Ys
k3-L6
Y5 =

v, =0,6333
Y, =0,3725
Y3 =0,5379
Yyi=1
7-t b3 2 2 2 14
of 1= 12 +2-y,-t-b-a;, " 42y, t-b-a, " +2-y;-t-b-a; " =1,2046-10
7-t-b 2 2 2 14
Ti=———+2:tbra " +2:t-b.a, " +2:t:ba;"=1,9519-10
L Ief_
Vred'*T_O'GN
18
EI_,:==E-I_,=1,3973-10 Nmm2
g:=27,1
(17yred] q-h4 =33 5
yred BIE‘I_ ’
M:=59720-10°
mm
7V1~E»31»M~t~b _3
Ny = 10~ =2218
ef
7V2~E~anM~t~b ~3
N,=———— .10 “=1337
EI_,
v; E-ag-M-t-b 5
N, = 10° “ =628
ET

Where,

N1, N2 and N3 are axial forces in the panels 1, 2 and 3.



A6.2.3 Force distribution in the panels
Not only the top deflection is used to verify the connection on the vertical edge. Also the forces on the
panels are verified. Forces as a result of wind on the facade have been calculated.

_y*E*ai*M*t (86)
" El,
Where
n; is the force per meter width in tension or compression
Y is the gamma reduction factor of the facade
Ei is the modulus of elasticity for the considered panel
aj is the distance from the center of the panel to the center of the facade
M is the bending moment on the facade

Eles  is the bending stiffness of the facade

As already described in chapter A2.2, the method of Schelling does not account for additional bending
forces on the individual elements, thus leading to an underestimation of the forces in the elements. A
correction based on section force equilibrium has been applied.



Section force equilibrium
The bending moment on the facade is equal to the sum of all bending moments on the panels and the
normal forces in each panel multiplied with its distance to the center of the facade.

M = iMi(x) + iNi(x) * a;

M; is the bending moment on the panel

(87)

In case the bending moment on each panel is considered to be equal, the value of this bending moment per
panel can be calculated. The axial forces per panel are calculated using equation (89). These are then
multiplied with their respective distance to the center in equation (90).
The bending moment due to wind has been calculated at the half-way point of the bottom CLT panel and
was found to be 59.270 kNm. The axial force in a panel is calculated as the average force per meter
multiplied by the width. The average fore per meter is calculated using the equation below from the
method of Schelling.

M = 59.270 kNm (88)

Ni(x) =mn; *b (89)

b is the width of the panel

Writing out equation (87) the bending moment on a single panel M;i(69,75) can be calculated

59.270 = 7 * M;(69,75) + 2% 2218 3«29 + 2% 1337« 22,9+ 2628 * 2,9 (90)
59.270 = 7 + M;(69,75) + 57.745 (91)
M;(69,75) = 218 kNm (92)

The axial forces per meter width can be calculated with equations (93)

M; 218 93
An1=—l=1 = 155 kN/m (%3)
Mo 24292
6
W, is the moment of resistance of the panel

n is the number of elements



Conclusions and comparissons

Due to local disturbances at the foundation, forces have been calculated at half the height of the bottom
panels. On the left, the normal forces are given for a rigid structure. On the right, the normal forces are
given for the structure with a smeared stiffness of 30 kN/mm. Forces presented in the figures below are
characteristic forces as a result of wind load on the facade.

2D internal forces.
Values: m,

Interne 2D-krachten
Waardes: ny
Niet-lineaire berekening
Niet-lineaire combinatie: NqnLinear
load case wind

e
Selec SE19, SE21,SE23,

Locatie: In knooppunten gem. bij
€ macro. Systeem: LCS net element

N,
4 kNP
N,

(L D illie L n S - |

Figure 19, forces in the panels for rigid connections (left) and for connections with stiffness ket =30 kN/mm (right)

The forces at the panel edges are shown in Table 28 (panels numbered from left to right, for the first four
panels).The forces are shown for the model without connection stiffness modelled (rigid, left figure) and
the model with a stiffness of Ker = 30 KN/mm modelled.

Table 28, average normal forces in the panels

nl,max nl,min N2max nZ,min nS,max nS,min n4,max n4,min
SCIA rigid 1005 675 702 365 378 115 124 -120
holayPrine 1222 505 736 108 467 -114 284 -286
Schelling theory
Original 943 557 648 266 420 34 193 -193
Schelling theory
Adjusted - 1098 402 803 111 575 -121 348 -348

Member equilibrium




The computer results for rigid connections are the forces that occur without fastener stiffness included.
Which is basically similar to the forces expected on standard beam theory. The results for SCIA springs
ker=30 are the results as indicated in the figure. The results of the method of Schelling and the adjusted
results are also shown in the figure in dashed lines.

The additional bending moment results in forces in the panels that do indeed more closely resemble the
results from the computer model.

The forces in the panels for all four cases have been summarized in the graph below. In yellow, the forces

are shown in case no connection stiffness is applied. All other curves indicate forces due to connection
stiffnesses. The blue line is the actual force in each panel based on computer results.
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Figure 20, forces in the panels for the method of Schelling

In conclusion

It can be concluded that the adjustment of the method of Schelling leads to a better correlation to the
computer results. A good correlation is found for both stiffness and strength behavior of the facade under
the influence of connection stiffnesses of connections on the vertical edges of the fagade.



A6.2.4 Connections on the horizontal edge - rocking

Rocking deformation is the result of elongation of the connections in tension and decompression of the
CLT panels due to compressive forces (Chen and Popovski, 2014). It is assumed that the panels rotate as
rigid bodies and that at least half of the width of the facade is in compression.
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Figure 21, rocking of a CLT panel

The following equations are defined in order to calculate rocking deformation

Vertical equilibrium 94

q R.=R; + z Qv (94)

Moment equilibrium My = e, * Ry + e, * Z 4 (95)

Where

et eccentricity between the resultant tension force and the resultant compression force
ev eccentricity between the resultant vertical load and the resultant compression force

Compression force 1 96

P RCZE*Gc,max*Lc*t ( )

u 97

Oc,max = Eeffﬁ (97)

Assuming that the angle caused by tensile forces is equal to the angle caused by compressive forces yields
the following equation



uc Re/ke (98)

tan (Qrock) = L_ e
c t

The presented equations can be solved using iterative procedures (Chen and Popovski, 2014).
Rocking is calculated based on rigid body rotation of the panels. The elongation of the connection and the

compression of the timber are calculated. The contribution to the rocking deformation of each level is then
this total vertical deformation multiplied by the height to the top, divided by the width of the fagade.

_Re (99)
Uy = kt
kxR, (100)
Ye = txE
C Upi U (101)
grocking - T
n (102)
Wrocking = z grocking * hy
i=1
Where
Ut is the elongation of the hold-down connection in tension
Uc is the compression of the CLT panel under compression forces

There are no tensile forces in the connections at the 15" and 20" floor level. This makes that the rotation
of those panels is identical independent of the connection stiffness. Only the connections at the ground
floor, 5" floor and 10™ floor will elongate under tensile forces. Furthermore, all compressive deformations
can be calculated beforehand due to the assumption that the forces do not change under different stiffness
values.

The forces in the connections due to wind and vertical load are presented in the table below. These forces
are calculated in SLS.

Table 29, forces in the connections (SLS)

Ry,t,o Ry,t,Sth Ry,t,lOIh Ry,t,lSth Ry,t,ZOth Ry,c,o Ry,c,Sth Ry,c,lOth Ry,c,lSth Ry,c,ZOth

kN kN kN kN kN kN kN kN kN kN
Nwind 1054 675 380 169 42 1054 675 380 169 42
Nweightmin 578 462 347 231 116
Nweight,max 578 462 347 231 116
Niot 476 213 33 0 0 1632 1137 727 400 158

Using these values together with the potential elongation of the fasteners per level, the rotation of each
row of CLT panels is found.



The compression deformation of the CLT panel can be calculated using equation (100).

kxR, 2x1137 070
Yesth = T 280+11600 "
This is done at all heights of the connections in the table below.
Table 30, compression deformation at the connection
Uc Description Value
Uc,o Compression deformation at foundation level 1,00 mm
Uc 5th Compression deformation at 5" floor 0,70 mm
Uc 10th Compression deformation at 10" floor 0,45 mm
Uc 15th Compression deformation at 15" floor 0,25 mm
Uc,20th Compression deformation at 20" floor 0,10 mm

(103)

The tensile elongation of the connections is calculated using equation (99). The stiffness of the connection

is half that of the stiffness of the modelled stiffness of the interface. This is similar to the approach for the
connections at the vertical edges of the CLT panels. The stiffness of the interface between the steel plate
and the CLT panel is 100 kN/mm. Hence the stiffness of the connection is 50 kN/mm. Results are shown

in the table below. The resulting rotations of the rigid bodies are also presented in this table.

Table 31, tensile elongation of the connection

K Keon Utioth  Utsth Ui 020th Oi5th Ooth Ostn 0o Wrocking
KN/mmperm kN/mmperm mm mm mm mrad mrad mrad mrad mrad mm
k=10 k=5 6,6 42,6 952 0,005 0,012 0,347 2,133 4,739 516

k =100 k =50 066 426 952 0,005 0,012 0,055 0,244 0,518 58,3

k =1000 k =500 0,07 043 095 0,005 0,012 0,025 0,055 0,096 125

k =10.000 k =5.000 001 0,04 0,10 0,005 0,012 0,022 0,037 0,054 8,0

k = infinite k = infinite 0 0 0 0,005 0,012 0,022 0,034 0,049 74

Computer results have been shown in the table below. The rocking deformation is the increase in
deformation at the top due to the connection stiffness. Forces in the connections have been presented as

well for the bottom three panels. Based on these values, it can be observed that the tension force in the
connection decreases for lower stiffness values. Similarly, the compression force increases.

Table 32, computer results for rocking deformation of various connection stiffnesses

K Ux Wrocking Ry,t,o Ry,t,Sth Ry,t,lOth Ry,c,o Ry,c,5th Ry,c,lOth
KN/mmperm mm mm kN kN kN kN kN kN
k=10 1445 54,9 63 9 0 -2152 -1185  -683

k =100 119,9 30,3 303 83 4 -1889 -1118  -667

k =1000 101,0 11,4 781 273 47 -1698 -1041  -645

k =10.000 95,9 6,3 1045 371 84 -1646 -1018  -636

k = infinite 89,6 0 1022 377 82 -1589 -1028  -640

The results for the top deformation have been gathered in the table above. It can be seen that the rocking
deformation from computer results does not match that of the theory. This is due to the assumption that



loads on the connections do not change. The force in the connection at the ground floor is only 6% of the
assumed force, hence only 6% of the elongation will occur.

When the elongation of the connection is corrected for the observed tensile forces in the computer model
an adjusted rocking deformation can be calculated. The elongation of the connections and compression of
the CLT panels has been calculated based on the forces found in SCIA from Table 32. Results are
presented in the tables below. The resulting rigid body rotation and rocking deformation at the top is also
presented.

Table 33, elongation of the connections and compression of the CLT panels based on forces from SCIA

Ut,10th Ut,5th Ut,0 Uc,20th Uc,15th Uc,10th Uc5th Uc,0

mm mm mm mm mm mm mm mm
k=10 12,6 1,8 0 0,10 0,25 0,42 0,73 1,33
k =100 6,06 1,66 0,08 0,10 0,25 0,41 0,69 1,16
k =1000 1,56 0,55 0,09 0,10 0,25 0,40 0,64 1,05
k = 10.000 0,21 0,07 0,02 0,10 0,25 0,39 0,63 1,01
k = infinite 0 0 0 0,10 0,25 0,39 0,63 0,98

Table 34, rotation of rigid bodies and resulting rocking deformation at the top

020th 015th 010th Osth 0o Woraocking
mrad mrad mrad mrad mrad mm
k=10 0,005 0,012 0,641 0,125 0,065 43,1
k =100 0,005 0,012 0,319 0,118 0,069 28,0
k = 1000 0,005 0,012 0,098 0,063 0,070 14,3
k = 10.000 0,005 0,012 0,031 0,040 0,066 9,5
k = infinite 0,005 0,012 0,021 0,036 0,065 8,7

This adjusted rocking deformation is a better estimate of the actual rocking deformation in SCIA.

In conclusion

It is found that the tensile forces in the connections highly depend on the stiffness of the connections. This
implies that a simplified theoretical hand calculation can only be performed for connections with a relative
large stiffness. Otherwise the forces calculated in the connections will be a significant overestimation of
the actual forces, leading to an overestimation of the elongation of that connection. This in turn results in
large rocking deformations that have not been observed in the computer model.

Calculating the rocking deformation by hand with the use of forces from the computer model shows that
the method can predict rocking deformations reasonably accurate, but that there is a need to use the actual
tensile forces in the connection.



A6.2.5 Connections on the horizontal edge — sliding

The sliding deformation is calculated by the equation below

Woy = (QWind — MU * QWeight) *h*n (104)
ot 2xbx* Kser
Where
h is the total height of the structure m
n is the number of sliding surfaces along the height -
b is the total width of the structure m
Kser is the stiffness of the fastener group kN/mm

A single connection has two surfaces or interfaces that have a stiffness to model the bolt stiffnesses of one
side of the connection. Each with an assumed stiffness of 100 KN/mm. Except at the foundation, where
only one surface with a stiffness is modelled. A total of 9 surfaces of 100 kN/mm are modelled over the
height. Over the width of the fagade 14 connections each with a width of 0,58 meter have been modelled.
This in total leads to a slip deformation of 11,6 mm.

_(27,1-0)%77,5%9
WSl = 5 %14+ 058 * 100

(105)

=11,6 mm

This is compared to results from SCIA. Here a top deformation was found of 102,4 mm, whereas the top
deformation without sliding connection stiffness was found to be 89,0 mm. This difference of 13,4 mm is
the result of sliding deformation. Hence the sliding behavior is acceptable.

3D displacement
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Figure 22, top displacement in SCIA for a model with only connections deforming under sliding



A6.3 Modelling of the transversal fagade
The effective width has been calculated using an equation presented by Chiewanichakorn et al. (2004).

(106)

fi,n

™ 05%R,
l) = =

eff

Nymax  MNymax

A simplified model was made of the transversal fagade consisting of nine CLT panels next to one another.
On the edge panels a distributed vertical load of 100 KN/m has been applied. The figure below shows the
maximum force per meter on the CLT facade at a height of 3,1 meter from the foundation, which is 1483
kN/m. A total force of 3100 kN acts on the structure. Which results in an effective width of 1,0 meter.
Values for other heights are presented in Table 35.
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Figure 23, force ny per meter on the facade

Table 35, effective width of the transversal facade

Model Ry Ny, max Derr Percentage bett applied
kN kN/m m m
15,5 meter 3100 1483 1,0 20% 1,1
31,0 meter 6200 2143 1,4 28% 1,3
46,5 meter 9300 2533 1,8 35% 2,0
62,0 meter 12.400 2864 2,2 41% 2,7
77,5 meter 15.500 3185 2,4 47% 3,4

The applied effective width deviates from the calculated effective width. This is due to the fact that
initially a different force on the structure was applied in an earlier calculation. This resulted in a different
effective width, which was then modelled in SCIA. In hindsight this approach was deemed unsuitable and
was adjusted to be more accurate. However, this was not altered in the model due to time constraints.



AT Chapter 7 appendices

A7.1 Theoretical top deformation including connection stiffness

The computer results will be compared to theoretical results. To do so, the top deformation of the model
of 77,5 meter is calculated in this chapter. The contribution of each deformation component is calculated
for the actual applied connection that has been presented in the previous chapters.

The deformation of the fagade structure without connections was calculated in chapter A4 and found to be
218 mm.

The connection stiffness for the theoretical deformation is calculated using table 14 from chapter 5.4. The
kser Value used for hand calculations cannot equal the multi-linear load-displacement curve used in the
computer model. Hence the multi-linear curve has to be simplified by taking an average stiffness. This
stiffness is 60% of ke as indicated with the red line in the figure below, without including the initial slip.
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Figure 24, non-linear load-deformation curve for a multiple fastener connection



Sliding
The sliding deformation is calculated below. The number of sliding surfaces for the model of 77,5 meter is
9. There are seven connections that each have a stiffness of 768 kN/mm.

_ Qwing*hxn _ 27,1x775%9
Wslldmg - 2 « Neon * Kser - 2 x 7 % 514

= 2,6 mm

Rocking

The rocking deformation is calculated below. The stiffness of the hold-down connection is 2215 kN/mm
at the foundation and 665 kN/mm for all other hold-down connections at higher levels (which is half of
the kserer Value found above of 1329 kN/mm as this is the stiffnes per side of the connection.)

It is expected that the forces on the connections will reduce due to the stiffness of the connections. This
effect will not be included in the calculation of the rocking deformation.

qwina = 27,1 kN/m
Qweight = 14,82 + 2,54 + 3,44 = 20,8 kN /m per story

Table 36, calculation of the rocking deformation

Connection Mgk NEek Nywind  Nyc Nyt bt be AL Uc 0 atop We
location

kNm kN/m  kN/m m m mm mm mrad m mm
Twentieth No tension, so no rocking contribution 15,5
floor
Fifteenth 12.733 208 455 663 247 55 14,8 0,64 0,24 0,04 310 1,34
floor
Tenth floor 27.857 312 995 1307 683 7,0 13,3 1,77 0,47 0,11 46,5 5,13
Fifth floor 48.014 416 1715 2131 1299 17,7 12,6 3,37 0,76 0,20 62,0 12,6
Foundation 72.411 520 2586 3106 2066 8,1 12,2 1,61 1,11 0,13 775 104

Total 29,5
The rocking deformation is found to be
=295mm

Wrocking



Additional bending deformation - Schelling

Reduction of the bending stiffness results in additional bending deformation that is calculated using the
method of Schelling. The stiffness value is a smeared value of the connection stiffness. This value is
halved since it is the bolt stiffness on both sides of the steel plate. There are two connections per story.

128
3,10

kN
Kgor = 2 % = 82,8 %per story

The additional deformation due to reduced bending stiffness is an additional deformation that can be
considered as a percentage of the calculated bending deformation. The calculation of the yrq value is
presented on the next page.

1—Yrea

red

Wschelling = * Whending = 0,23 * 132 = 30,0 mm

The total contribution of the connection stiffness to the deformation is the sum of the components
Wstif fness = Wsliding T Wrocking T Wschelling = 2,6 + 29,5+ 30,0 =62mm
Adding this to the deformation of the structure, the total theoretical deformation is found to be

Weop = 218 + 62 = 280 mm



Calculation of the additional bending deformation

t:=280
b:=2900 5
A:=b-t=8,12-10
E:=11600
k:=82,9
h:=77500
L:=2-h
a,=3,0-b=8700
a,=2,0-b=>5800
a,=1,0-b=2900
&24 =0
Yp =Yy
[A E -n4+4-A-k-E-L -n2+3-k2-L4 k.1?
}f7 =
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Theoretical top deformation including connection stiffness - results

The results for all heights have been calculated in a similar way and shown below.

Table 37, theoretical top deformation for the different heights of the facade

Model h Ok panel to t El GAs >Elp  Wragade Wl Wr Whslip Wiot

m kN/m mm mm x10%  x108 x10%  mm mm mm mm mm
Nmm2 N Nmm?

15,5 meter 155 15,7 LL-190/7s 150 190 495 959 0,903 4,92 0,1 0,1 1,2 6

31,0 meter 31 19,6 LL-260/7s 200 260 660 1312 1,209 20,1 0,5 0,7 6,6 28

46,5 meter 465 22,3 LL-400/11s 280 400 923 2019 1,690 39,8 1,3 5,2 17,3 64

62,0 meter 62 24,7 LL-400/11s 280 400 923 2019 1,690 100 2,5 13,2 346 150

775meter 775 27,1 LL-400/11s 280 400 923 2019 1,690 218 2,6 295 30,0 280




AT7.2 Theoretical top deformation including connection stiffness and slip
Adding an additional slip to the non-linear load-displacement curve results in additional deformations of

the top that have to be calculated differently than the theory presented before.
Free additional bending deformation
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Free sliding
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Figure 25, overview of deflection components due to free initial slip in the connections



Sliding slip
Sliding slip deformation is the sum of the initial slip of each shear plane. The model of 77,5 meter has 9
shear planes, which makes that the deformation is

Wsliding,stip = M * slip=9%1,0=9,0mm

Rocking slip

Rocking slip is the sum of the top deflection contributions of rigid body rotation of each layer of the
facade. This rigid body rotation of a single layer is the result of the elongation of the connection (in this
case free slip) multiplied by the ration width over distance to the top. Provided that the connection is in
tension. Otherwise, no slip will occur.

i .
Wrocking,slip = E * slip

Table 38, rocking deformation (rigid body rotation) as a result of free slip

Connection location b Distancetotop  AlLcon Wy
m m mm mm
Twentieth floor 0
Fifteenth floor 20,3 31,0 2,0 3,1
Tenth floor 20,3 46,5 2,0 4,6
Fifth floor 20,3 62,0 2,0 6,1
Foundation 20,3 77,5 1,0 3,8
Total 17,6

Wrocking,slip = 17,6 mm

Additional bending deformation - Schelling
Top deformation due to slip in the shear keys on the vertical edges of the panels is the result of rigid body
rotation.

)

—2"10”
’ 29

panel ’

Wschelling,slip = 2% Slip * =53,4mm



Total deformation
The total contribution of the connection slip to the deformation is the sum of the components

Wsiip = Wsliding,slip + Wrocking,slip + Wschelling,slip = 9,0+ 17,6 +53,4 = 80 mm
Adding this to the deformation of the structure, the total theoretical deformation is found to be
Wiop = 280 + 80 = 360 mm

A similar calculation for the other modelled heights gives the following overview.

Table 39, top deformations of the individual slip components

Model ksliding kholddown I(Schellir\g Wiliding Wrocking Woschelling Wiliding,sl Wrocking,sl Wschelling sl
KN/mm  kN/mm  kN/mm mm mm mm mm mm mm
15,5 meter 128 128 128 0,1 0,1 1,2 1,0 0,8 10,7
31,0 meter 128 128 128 0,5 0,7 6,6 3,0 31 21,4
514 514
46,5 meter 257 257 128 1,3 5,2 17,3 5,0 6,9 32,1

514 771 257

e0meer o03  [M BI g5 132 346 70 122 428
775 meter 514 %3?5 257 26 205 300 9,0 176 53.4

The stiffness values for the models of 46,5 meter and 62,0 meter differ for the bottom panels and the
panels starting from the 5" floor and onwards. That is why there are two values in the table. Where the
highest value is the stiffness value of the connection at the foundation level and the lowest value is the
stiffness of the other connections.

Table 40, top deformations of the fagade with and without connection stiffnesses

Model Wrigid Wisprings Wisprings+slip
mm mm mm
15,5 meter 4,92 6,32 18,8
31,0 meter 20,1 27,9 55,4
46,5 meter 39,8 63,6 108
62,0 meter 99,6 150 212
77,5 meter 218 280 360
In conclusion

The theoretical top deformations indicate an increase of the top deformation according to the values in
Table 40. The increase of the top deformation when connection stiffness is included without initial slip
shows an even increase for all heights. The deformation increase of the model of 62,0 meter is relatively
larger than that of the model of 77,5 meter. Which is explained by the fact that the model of 77,5 meter
has larger connections which have a higher stiffness.

The additional top deformation of the fagades including initial slip of the connection shown that for all
heights the top deformation increases significantly. The relative increase of the top deformation of the
model of 15,5 meter is a factor 3, which is very high. This increase is primarily the result of the additional
bending deformation.



A7.3 Addition of a concrete core
The addition of a concrete core (modelled as a concrete wall of 300 mm with cracked concrete properties)
will have a beneficial influence on the strength and stiffness behavior of the CLT fagade.

e The deformation of the structure is reduced
e The forces on the facade are reduced

A7.3.1 Reduced deformation of the structure

The deformation of the structure is reduced as the concrete core has a bending stiffness and shear stiffness
that resist lateral deformation. Especially the shear deformation is reduced given the fact that the shear
stiffness of concrete is significantly higher than that of CLT (4167 vs 450 N/mm?).

For the model of 77,5 meter

Elcur 923  *10% Nmm? (889%)
Elcore 128  *10° Nmm? (12%)
Elcombined 1051 *10® Nmm?

GAscLt 2019 *10° KN (27%)
GAs core 5556 *10° KN (73%)

GAs,combined 7575 * 103 kN

It is assumed that the bending deformation and deformation due to bending slip (method of Schelling) is
reduced by 12% as the bending stiffness of the structure is increased by that same amount. Shear
deformation and deformation of the piers is reduced by 73%. The overall reduction of the top deformation
is found to be 29%. The table below shows one example of the calculation of the top deformation for the
model of 77,5 meter with an additional core. Chapter A7.5 contains a complete overview.

Table 41, exemplary calculation for the facade of 77,5 meter with an additional concrete wall

MOdel Wbending Wshear Wpiers WScheIIing Whot
Qwind * h* Qwina * h? . Gwina * Rstory * hpier,eff3 Metho_d of
8 * Eloy 2 x GAq " 12 % ¥ ElLyje, Schelling

CLT 132 40,3 19,1 26,1 218

CLT+core 116 10,8 51 23,0 155




A7.3.2 Reduced forces of the facade
The forces on the structure are reduced due to the additional concrete core that has been added to the
structure. Bending forces on the fagade can be reduced by 12%.

The shear forces on the fagade can be reduced by 73% by adding a concrete stability element to the
structure. This is an important design option given the fact that the panel dimensions for the models of
15,5; 31,0 and 46,5 meter were governed by the shear forces. When 27% of the shear forces in the corners
is calculated, it is found that the thickness of the CLT panels can significantly be reduced.

When different type (smaller thickness) of CLT panels are used, the shear force on the panel will be lower
as the contribution of the shear stiffness of that panel to the total shear stiffness of the structure is lower.
This makes that the smaller the thickness of the CLT panels, the lower the actual shear force on the panel,
as the core will resist more shear force.

Table 42, required CLT panels and corresponding unity checks, adjusted for concrete core

Model Panel Unity checks

type Nyt Ny.c Nxy Nxy,corner Nxy, reduced Nxy,corner,red
155meter LL-190/7s 0,00 020 0,42 0,63 0,10 0,15
31,0 meter  LL-190/7s 0,08 050 0,95 1,43 0,23 0,35
46,5 meter  LL-260/7s 0,27 062 1,04 1,56 0,32 0,48
62,0 meter  LL-300/9s 052 0,83 1,48 2,22 0,49 0,74

77,5 meter  LL-400/11s 0,85 1,06 0,99 1,49 0,40 0,60




AT7.4 Theoretical contribution of the effective width

The transversal walls can have a contribution on the strength and stiffness behavior of the CLT facade as
well. Research has been done on the potential contribution of these walls. The effective width of the
transversal walls itself is fully researched, only the effect that a certain effective width may have on the
structure.

e The deformation of the structure is reduced
e The forces on the fagade are different, not necessarily reduced

A7.4.1 Reduced deformation of the structure
The transversal fagades will increase the bending stiffness of the overall structure. It will not have a
significant influence on the shear stiffness, nor the deformation of the lintels and piers.

The bending stiffness of the overall structure is reduced by the connection stiffness according to the
method of Schelling. This method was previously derived for 7 elements. With the addition of transversal
walls, this method is to be derived for a structure of 9 elements as well. This derivation is shown in
chapter A7.4.3. Special attention is required for the outer elements as they have a different distance a.
Subsequently the boundary conditions have been adjusted.

A comparison of the effective gamma-factor for a fagade with and without a transversal panel (width of
2,9 meter) has been made. The graph below on the left shows that the effective gamma-factor for the
facade with effective width is slightly less than the values that would be found for the fagade without the
influence of the transversal walls.



Looking at the bending stiffness of the facade including effective width a significant increase can be
found. An increase of 1,94 *10'® Nmm? is calculated with equation (107). The bending stiffness then
becomes 2,86 * 10'® Nmm?. The graph in Figure 27 shows that for high stiffnesses of the connections, the
bending stiffness indeed approaches 2,86 * 10'® Nmm?2,

AEI = E + ZA +a2 = 11.600 * 2 * 280 * 2900 * 10.1502 = 1,94 * 1018 (107)
Elcpr = 0,92 %108 + 1,94 1018 = 2,86 « 1018 (108)
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Figure 26, gamma factor of the facade with and without Figure 27, bending stiffness of the fagade with and without
transversal walls transversal walls

The increased bending stiffness has a direct relation to the bending deformation. This bending deformation
was found to be 132 mm for the facade of 77,5 meter. The increased bending stiffness results in a bending
deformation of 43 mm, which is a reduction of 89 mm. This shows that there is a large potential
contribution of the transversal facade on the bending stiffness.



AT7.4.2 Forces on the transversal facade

The transversal facades have the potential to contribute largely to the bending stiffness. By doing so, the
force transfer in the facade will also change significantly. The moment of resistance W is related to the
moment of inertia | as shown below. This makes that the moment of resistance also increases by a factor 3
in case transversal walls are included.

The force in the transversal wall can be calculated by first calculating the maximum stress in the outer
panel for the new found bending stiffness. This stress is then multiplied by the area of the transversal wall.
The maximum increment of the bending moment for a single story AM is taken from the table in chapter 4
of the main report.

AM xb 7885 10° % 20,3 5 (109)
TNl T, 2865100 0,325 N/mm
* T 11.600
Fg =0y xt*bys =n, *bes (110)
F; = 0,325 * 280 * 2900 = 264 kN (111)

This force of 264 kN is 68% of the acting bending moment AM (264 * 20,3 = 5350 kNm). 32% of the
bending moment is resisted by the facade itself. In other words, the additional transversal walls reduce the
forces in the fagade by 68%.

This force of 264 kN is to be transferred to the transversal walls by the connections in the corners. The
connections on the vertical edges of the fagade panels have been designed for a force of 291 kN according
to the table in chapter 4.5. This shows that the connections required for connecting the fagade to the
transversal panels can be similar to the connections used for the fagade panels on the vertical edges.
Although additional bending moments due to eccentricities do have to be included.



A7.4.3 Maple script for the effective bending stiffness of the facade with an effective width

=> restari,
=>

Calculation of the bending stiffness of a fagade including the effective width of the transversal facade
the height is multiplied by 2 as the method of Schelling is derived for a beam on two supports, whereas
the

facade is schematized as a cantilever.

The equation of Schelling has previously been used to calculate the fagade without the effective width
of the transversal fagade.
this equation used 7 elements.

The following equation is derived for 9 elements, where the first and last element have the area of the
effective width of the fagade.

the boundary conditions of the matrix denoted by s_i have been adjusted for the 9 element structure. the
fact that the transversal

facade panels contribute to the stiffness influences these boundary conditions as sl (first), s2, s8 and s9
(last) have a value; wherea for the 7 element structure

only sl and s7 (first and last) boundary conditions were non-zero.

it is assumed that the connections to the transversal fagade have the same stiffness as the other
| connections

>
;>‘ = bt
| > A eff = b_efft:
| > ¢:=280:
:> E = 11600:
> K =100
K =100 )
|:> L := 277500 :
[> b :=2900:
> b_eff = 2900;
b_eff = 2900 @
2
> Elfacade == 923-10"° + E-2-b eff't- [ 20300 ) :
2.86 x 10" .
>
>al =35b:a2:=3 b:a3=2-b:ad:=>b:a6=—b:a7 '=—2-b:a8:=—3-b:a9:=
L —35b:a5=0:
>
2

P
> vl = [K’+ —Iz-l-:-A eﬁ']-a! cvl2=—K-a2:
5 _



2

> v2l =—K-aql :v22 = | K+ K+ P—IZ-E-A a2 v23 i =—K-a3:
L
pi’

> v32=—K-q2:v33:= | K+ K+ — EA a3 :v3i4d =—K-a4:
L
pi’

> i =—K-aq3:vd4d = | K+ K+ —2'E'A -ad 1v4s =—K-ah .
L

, . PPt ,

> vid =—K-aq4:v55 = | K+ K+ —z-b‘A cad v i=—K-a6

L
, .., PP ,

> voy =—K-afd:v66 = | K+ K+ —2°E-A -ab v67 =—K-a7 :
L
Pi’

> vio=—K-a6:v77 = | K+ K+ — EA a7 :vi8 =—K-a8:
L
Pi’

> v87 i=—K-a7 :v88 = | K+ K + — E-4|-a8 :v89 i=—K-a9:
L

Pi’
> V98 i=—K-a8:v99 = | K+ —E-A_eff |-a9:
L

> s/1:=05Kb:
> s2:=05K-b:

> 53:=20:
> s4:=0:
> 553:=0:
> 56:=0:
> 57:=0:

> 58§:=—05-K-b:
> §9:=—05-Kb:

> with(linalg) :

> Amatrix == matrix([|v11,vi2,0,0,0,0,0,0,0], [v2],v22,v23,0,0,0,0,0,0], [0, v32, v33,
v34,0,0,0,0,0]1, [0, 0, v43, v44,v45,0,0,0, 0], [0, 0, 0, vi4, v55,v56,0,0,0], [0, 0,0, 0,
v63, v66, v67,0,01],10,0,0,0,0,v76,v77,v78,0],0,0,0,0,0,0,v87, v88, v89], [0, 0, 0,
0,0,0,0,v98,v99]]) :

> S :=vector([sl,s2, 53, 54,53, 50,57, 58, 59]) :

> sol == linsolve(Amatrix, S);

0.765 0.761 0.737 0.723 _t, ,, 0.723 0.737 0.761 0.765 @)

The solution holds the gamma-factors for each element.



sol[1] is the first gamma-factor and-so-on.

the moment of inertia is calculated for the fagade without openings.

First the I-value including stiffness is calculated, then the I-value without stiffness is calculated.
This gives a reduction factor for the fagade.

This factor is then multiplied with the moment of inertia for the fagade with openings to find the
bending stiffness of the facade including the effective width.

=>
7'2“53 .0 7 2
> lef:= 12 + 2-sol[1]-t-b_eff-al” + 2-s0l[2]-t-b-a2” + 2-s0l[3|-t-b-a3" + 2-s0l[4]-1-b
-a42;
275.67 x 10" (5)
745 2 2 2 2
> [full == 1 +2-t-b effal”+ 2-t-b-a2”+ 2-t-b-a3” + 2-t-b-ad7;
362.50 x 10" (6)
>
e
> gamma red ‘= Tfull
0.760 7
> Elschelling :== gamma_red-Elfacade
218 x 10" ®)




A7.5 Reduced top deformation — theoretical calculation without connection stiffnesses
The theoretical top deformation of the models with an additional core and/or effective width has been
calculated for all heights, using the equations presented in the previous chapters. First the top deformation
of the facade is calculated without connections (Table 43). Then the increased top deformations due to
connection deformation is calculated in Table 44. Finally the initial slip of the connections is also included
in the top deformation (Table 45).

Table 43, theoretical top deformations for facades with additional stability elements — without connection stiffnesses

Model Height Whending Wshear Whiers WSchelling Whot
CLT 77,5 meter 132 100% 40,3 100% 19,1 26,1 218
CLT+core 77,5 meter 116 88% 10,8 27% 51 27% 23,0 88% 155
CLT+beft 77,5 meter 38,1 29% 40,3 100% 19,1 100% 26,1 100% 124
Both 77,5 meter 33,7 25% 10,8 27% 51 27% 23,0 88% 72,6
CLT 62,0 meter 49,4 100% 23,5 100% 11,2 15,5 100
CLT+core 62,0 meter 43,5 88% 6,35 27% 3,02 27% 13,6 88% 66,5
CLT+besr 62,0 meter 16,7 34% 23,5 100% 11,2 100% 15,5 100% 66,9
Both 62,0 meter 14,8 30% 6,35 27% 3,02 27% 13,6 88% 37,8
CLT 46,5 meter 14,1 100% 11,9 100% 5,80 7,97 39,8
CLT+core 46,5 meter 12,4 88% 3,21 27% 1,57 27% 7,01 88% 24,2
CLT+besr 46,5 meter 5,7 41% 11,9 100% 5,80 100% 7,97 100% 314
Both 46,5 meter 51 36% 3,21 27% 1,57 27% 7,01 88% 16,9
CLT 31,0 meter 3,43 100% 7,17 100% 3,27 6,20 20,1
CLT+core 31,0 meter 2,88 84% 1,36 19% 0,62 19% 521 84% 10,1
CLT+besr 31,0 meter 1,81 53% 7,17 100% 3,27 100% 6,20 100% 18,5
Both 31,0 meter 1,53 45% 1,36 19% 0,62 19% 521 84% 8,7

CLT 15,5 meter 0,23 100% 1,97 100% 0,95 1,77 4,92
CLT+core 15,5 meter 0,18 79% 0,24 12% 0,11 12% 1,40 79% 1,90
CLT+besr 15,5 meter 0,15 67% 1,97 100% 0,95 100% 1,77 100% 4,84

Both 155 meter 0,12 53% 0,24 12% 0,11 12% 1,40 79% 1,87




Table 44, theoretical top deformations for fagades with additional stability elements —connection stiffnesses without
slip

Model Height Wiot Wislip Wrock Wh,slip Wiot
CLT 77,5 meter 218 26 100% 29,5 100% 30,0 100% 280
CLT+core 77,5 meter 155 0,7 27% 26,0 88% 26,4 88% 208
CLT+best 77,5 meter 124 26 100% 8,56 29% 8,7 29% 144
Both 77,5 meter 72,6 0,7 2% 7,38 25% 7,5 25% 88
CLT 62,0 meter 100 25 100% 13,2 100% 34,6 100% 150
CLT+core 62,0 meter 66,5 0,7 27% 116 88% 30,4 88% 109
CLT+best 62,0 meter 66,9 25 100% 4,49 34% 11,8 34% 86
Both 62,0 meter 37,8 0,7 27% 3,96 30% 10,4 30% 53
CLT 46,5 meter 39,8 1,3 100% 5,2 100% 17,3 100% 64
CLT+core 46,5 meter 24,2 04 27% 458 88% 15,2 88% 44
CLT+best 46,5 meter 31,4 1,3 100% 2,13 41% 7,09 41% 42
Both 46,5 meter 16,9 04 27% 1,87 36% 6,23 36% 25
CLT 31,0 meter 20,1 05 100% 0,7 100% 6,6 100% 28
CLT+core 31,0 meter 10,1 0,1 19% 0,59 84% 5,54 84% 16
CLT+best 31,0 meter 18,5 05 100% 0,37 53% 3,50 53% 23
Both 31,0 meter 8,7 0,1 19% 0,32 45% 297 45% 12
CLT 15,5 meter 4,92 0,1 100% 0,1 100% 1,2 100% 6,3
CLT+core 15,5 meter 1,90 0,0 12% 0,08 79% 0,95 79% 29
CLT+best 15,5 meter 4,84 0,1 100% 0,07 67% 0,80 67% 5,8

Both 15,5 meter 1,87 00 12% 005 53% 0,64 53% 2,6




Table 45, theoretical top deformations for fagades with additional stability elements —connection stiffnesses including
slip

Model Height Whot Wisliding,sl Wrock,sl Wschelling,s! Wiot
CLT 77,5 meter 280 9 100% 17,6 100% 53,4 100% 360
CLT+core 77,5meter 208 2,43 27% 15,5 88% 47 88% 273
CLT+berr  77,5meter 144 9 100% 17,6 100% 53,4 100% 266
Both 77,5 meter 88 2,43 27% 15,5 88% 47 88% 191
CLT 62,0 meter 150 7 100% 12,2 100% 42,8 100% 212
CLT+core 62,0 meter 109 1,89 27% 10,7 88% 37,7 88% 159
CLT+bert 62,0 meter 86 7 100% 12,2 100% 42,8 100% 145
Both 62,0 meter 53 1,89 27% 10,7 88% 37,7 88% 100
CLT 46,5 meter 64 5 100% 6,9 100% 32,1 100% 108
CLT+core 46,5meter 44 1,35 27% 6,07 88% 28,2 88% 80,0
CLT+besr 46,5 meter 42 5 100% 6,9 100% 32,1 100% 81,9
Both 46,5 meter 25 1,35 27% 6,07 88% 28,2 88% 57,5
CLT 31,0 meter 28 3 100% 3,1 100% 21,4 100% 55,4
CLT+core 31,0 meter 16 0,57 19% 2,6 84% 18 84% 37,5
CLT+berr 31,0 meter 23 3 100% 3,1 100% 21,4 100% 47,2
Both 31,0 meter 12 0,57 19% 2,6 84% 18 84% 30,6
CLT 15,5 meter 6,3 1 100% 0,8 100% 10,7 100% 18,8
CLT+core 155 meter 2,9 0,12 12% 0,63 79% 8,45 79% 12,2
CLT+berr 155 meter 5,8 1 100% 0,8 100% 10,7 100% 17,5

Both 155 meter 2,6 0,12 12% 0,63 79% 8,45 79% 11,2




AT7.6 Shape of openings

The shape of openings have been defined as rectangular openings of 1,74x1,74 meter in chapter 3.3.
However, different shapes of openings can be required. For instance in case a door opening is needed to
allow access to a balcony. That is why the facade has also been analyzed with regard to different shapes of

openings.

This analysis has been done using the theoretical hand calculations that have been presented in this report.
Influence of connections has not been included. As this would (in theory) be unaffected by the openings in

the panels.

Three alternative openings have been considered. The first is an opening with the dimensions required for
a door (1,00 x 2,40 meter). The second opening is dimensioned for a door with an additional sidelight
(1,40 x 2,40 meter). Finally the third opening has been dimensioned for a wider window of 2,00 x 1,20

meter.

Figure 28, four different openings in the fagade panels
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Table 46, top deformation of the fagade for different type of openings

Wiop Rectangular Door Door + sidelight Window
1,74x 1,74 m 1,00 x 2,40 m 1,40 x 2,40 m 2,00x1,20m

15,5 meter 4,92 3,75 6,83 5,57

31,0 meter 20,1 15,2 27,1 22,9

46,5 meter 39,8 28.8 47,1 471

62,0 meter 100 69,8 110 120

77,5 meter 218 149 225 265

Top deformations of the fagade for different openings have been calculated using the theory presented in
chapter 4. The door opening shows that the top deformation is reduced compared to the rectangular
openings used for the computer models. When a sidelight is added to the door the top deformations
increase such that they surpass the top deformations of the rectangular openings. The increase of top
deformation is primarily the result of the increased deformation as a result of deformations of the lintels.

The window openings also result in an increased top deformation when compared to the rectangular
openings. This is mainly due to the reduced bending stiffness of the fagade, as the bending stiffness is
related to the area of the piers. Another contributor is the horizontal deformation of the piers themselves.
For all other openings, the pier deformation is relative low. But for the wider windows this becomes more
prominent.



