
 
 
 

 

  

Structural analysis of CLT walls in façades of a 
multistory building 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pim Mol 
 
February 2023 
 

URBAN  

CLIMATE 

ARCHITECT

S 

Appendices 

https://www.google.nl/url?sa=i&url=https%3A%2F%2Fwww.tudelft.nl%2Fen%2F2020%2Ftnw%2Fzigzag-dna%2F&psig=AOvVaw38oyvQPOGTn2H8te1UNQyg&ust=1586074761384000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCKj0kIirzugCFQAAAAAdAAAAABAD
https://www.google.nl/url?sa=i&url=https%3A%2F%2Fwww.luning.nl%2F&psig=AOvVaw1djXoD3irdpo654Up7V-3x&ust=1586074701538000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCPj-v-uqzugCFQAAAAAdAAAAABAD


 
 

Content 
A1 Appendices ........................................................................................................................... 4 

A2 Chapter 2 appendices .......................................................................................................... 5 

A2.1 Method of Schelling ....................................................................................................... 5 

A2.2 Method of Schelling - forces .......................................................................................... 7 

A2.3 Method of Schelling derivation ..................................................................................... 8 

A2.4 Effective moment of inertia for CLT panels ................................................................ 10 

A2.5 Buckling of CLT .......................................................................................................... 13 

A2.6 CLT panel properties ................................................................................................... 15 

A2.7 Comparisson of test results .......................................................................................... 18 

A2.8 Effective number of fasteners (stiffness) ..................................................................... 19 

A2.9 Single shear plane steel-to-timber connections ............................................................ 21 

A2.10 Brittle failure modes of multi-fastener connections ..................................................... 23 

A3 Chapter 3 appendices ........................................................................................................ 26 

A3.1 Loads on the structure .................................................................................................. 26 

A3.2 cscd factor calculation ................................................................................................... 28 

A3.3 Detail of the façade-floor connection........................................................................... 30 

A3.4 2nd order calculation for the structure ......................................................................... 31 

A4 Chapter 4 appendices ........................................................................................................ 32 

A4.1 Façade view and deflection components ..................................................................... 32 

A4.2 Shear stiffness of fenestrated panels ............................................................................ 42 

A4.3 Theoretical hand calculations ...................................................................................... 43 

A4.4 Theoretical top deformation without connection stiffness ........................................... 46 

A4.5 Maple script for the top deformation due to deformation of the lintels ....................... 47 

A4.6 Theoretical top deformation - results ........................................................................... 48 

A4.7 Forces on the connections – additional bending moment ............................................ 49 

A5 Chapter 5 appendices ........................................................................................................ 51 

A5.1 Detail drawings of the connections at the foundation .................................................. 51 

A5.2 Detail drawings of the connections at the fifth floor ................................................... 58 

A5.3 Calculation of the bolt resistance of a M16 bolt .......................................................... 63 

A5.4 Maximum force on bolts of shear key connections on vertical edges of the panels .... 65 

A6 Chapter 6 appendices ........................................................................................................ 66 

A6.1 Validation of the model ............................................................................................... 66 

A6.2 Validation of connections (with linear stiffness) ......................................................... 70 



 
 

A6.3 Modelling of the transversal façade ............................................................................. 83 

A7 Chapter 7 appendices ........................................................................................................ 84 

A7.1 Theoretical top deformation including connection stiffness ........................................ 84 

A7.2 Theoretical top deformation including connection stiffness and slip .......................... 89 

A7.3 Addition of a concrete core .......................................................................................... 92 

A7.4 Theoretical contribution of the effective width............................................................ 94 

A7.5 Reduced top deformation – theoretical calculation without connection stiffnesses .. 100 

 
 

  



 
 

A1 Appendices 

This report contains the appendices for the main thesis report “CLT façade structures; study on the 

influence of mechanical connections on the strength and stiffness of CLT façades that function as the main 

stability system”. Each chapter will have its dedicated appendices with same chapter number.  

 

 

 

 

  



 
 

A2 Chapter 2 appendices  

A2.1 Method of Schelling   
The method of Schelling will be derived for a structure with 7 elements using maple. It can be derived by 

solving the differential equation below.  

 

 
𝐸𝐼

𝑑4𝑤

𝑑𝑥4
= 𝑞(𝑥) 

(1) 

 

 
Figure 1, variables for the calculation of the gamma-values (Schelling, W. 1982) 
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𝑣𝑖,𝑖−1 = −𝐶�̅�−1,𝑖 ∗ 𝑎𝑖−1 

 
 

𝑣𝑖,𝑖 = (𝐶�̅�−1,𝑖 + 𝐶�̅�,𝑖+1 +
𝜋2

𝑙2
∗ 𝐸𝑣 ∗ �̅�𝑖) ∗ 𝑎𝑖−1 

 
 

𝑣𝑖,𝑖+1 = −𝐶�̅�,𝑖+1 ∗ 𝑎𝑖+1 

 
 

𝑠𝑖 = 𝐶�̅�,𝑖+1 ∗ 𝑎𝑖,𝑖+1 − 𝐶�̅�−1,𝑖 ∗ 𝑎𝑖−1,𝑖 

 

Where, 

 

𝐶�̅�,𝑖+1 is the stiffness per meter length of the connection between member i and member i+1 

𝑎𝑖 is the distance between the center of gravity of the member and that of the total element 

𝑣𝑖,𝑖 is an abbreviation for easier computing 

𝑠𝑖 is an abbreviation for easier computing 

 

The maple script to calculate the γ-factors is shown in A2.3.  

 

 
Figure 2, side view with section forces 

 

  



 
 

A2.2 Method of Schelling - forces 
The method of Schelling can be used to calculate the bending stiffness but also to calculate the forces on 

the elements. The bending stress in the middle of an element is calculated as: 

 

 
𝜎𝑠𝑖 = −

𝑀

𝐼𝑒𝑓
∗ 𝛾𝑖 ∗ 𝑎𝑖 

(2) 

 

And the bending stress at the ends of an element is calculated according to the method of Schelling as: 

 

 
𝜎𝑟𝑖 = −

𝑀

𝐼𝑒𝑓
∗ 𝛾𝑖 ∗ (𝑎𝑖 ±

ℎ𝑖

2
) 

(3) 

 

Where, 

 

M  is the bending moment on the façade 

Ief  is the effective bending stiffness according to the method 

γi  is the gamma-value of element i 

ai  is the distance of element i to the center 

hi   is the height of element i  

σsi  is the stress due to bending in the center of the element 

σri  is the stress due to bending at the edges of the element 

 

However, equation (3) does not correlate to Figure 2 as the bending moment Mi(x) on each individual 

member has not been accounted for in the method of Schelling and will add a bending stress on each 

individual element.  

 

A2.2.1 Section force equilibrium 
The bending moment on the façade is calculated as the sum of all bending moments on the panels and the 

normal forces in each panel multiplied with its distance to the center of the façade (Figure 2). The bending 

moment on each panel can be derived from this as well.  

 

 
𝑀 = ∑𝑀𝑖(𝑥)

𝑛

𝑖=1

+ ∑𝑁𝑖(𝑥)

𝑛

𝑖=1

∗ 𝑎𝑖 
(4) 

 

In case all elements are symmetrical. 

 

 𝑀𝑖(𝑥) =
𝑀 − ∑ 𝑁𝑖(𝑥)𝑛

𝑖=1 ∗ 𝑎𝑖

𝑛
 (5) 

 

 𝑁𝑖(𝑥) = 𝜎𝑠𝑖 ∗ 𝑏 (6) 

 

Mi is the bending moment on element i 

Ni is the axial force in element i 

n is the number of elements 

 

  



 
 

A2.3 Method of Schelling derivation 

 



 
 

 
 

The presented equations have been rewritten below 

 

𝛾1 = 𝛾7 =
(𝐴2 ∗ 𝐸2 ∗ 𝜋2 + 4 ∗ 𝐴 ∗ 𝑘 ∗ 𝐸 ∗ 𝐿2 ∗ 𝜋2 + 3 ∗ 𝑘2 ∗ 𝐿4) ∗ 𝑘 ∗ 𝐿2

3 ∗ (𝐴3 ∗ 𝐸3 ∗ 𝜋6 + 5 ∗ 𝐴2 ∗ 𝑘 ∗ 𝐸2 ∗ 𝐿2 ∗ 𝜋4 + 6 ∗ 𝐴 ∗ 𝑘2 ∗ 𝐸 ∗ 𝐿4 ∗ 𝜋2 + 𝑘3 ∗ 𝐿6)
 

 

𝛾2 = 𝛾6 =
(𝐴 ∗ 𝐸 ∗ 𝜋2 + 2 ∗ 𝑘 ∗ 𝐿2) ∗ 𝑘2 ∗ 𝐿4

2 ∗ (𝐴3 ∗ 𝐸3 ∗ 𝜋6 + 5 ∗ 𝐴2 ∗ 𝑘 ∗ 𝐸2 ∗ 𝐿2 ∗ 𝜋4 + 6 ∗ 𝐴 ∗ 𝑘2 ∗ 𝐸 ∗ 𝐿4 ∗ 𝜋2 + 𝑘3 ∗ 𝐿6)
 

 

𝛾3 = 𝛾5 =
𝑘3 ∗ 𝐿6

1 ∗ (𝐴3 ∗ 𝐸3 ∗ 𝜋6 + 5 ∗ 𝐴2 ∗ 𝑘 ∗ 𝐸2 ∗ 𝐿2 ∗ 𝜋4 + 6 ∗ 𝐴 ∗ 𝑘2 ∗ 𝐸 ∗ 𝐿4 ∗ 𝜋2 + 𝑘3 ∗ 𝐿6)
 

 

𝛾4 = 1 

 

  



 
 

A2.4 Effective moment of inertia for CLT panels  
The effective moment of inertia for CLT panels has been calculated. For panels with two transverse 

layers, the gamma method as given in Eurocode 5 can be used. For panels with more transverse layers a 

method as presented in “Cross-Laminated Timber Structural Design” by Proholz has been applied. This is 

related to the method of Schelling where the stiffness between layers is dependent on the stiffness of the 

transverse layer due to rolling shear. Two exemplary calculations are shown on the following pages. 

 

The resulting factors are shown in the table below 

 
Table 1, bending stiffness of each CLT panel 

 I0,net γred I0,eff 

 x109 mm4 - x109 mm4 

LL-190/7s 0,485  0,881 0,46  

LL-260/7s 1,387  0,801 1,11 

LL-300/9s 2,099  0,560 1,18  

LL-360/9s 3,360  0,391 1,31  

LL-400/11s 4,589  0,462 2,12 

 

 

 

 

 

 

 

 

 

  



 
 

CLT panel LL-190/7s 

 

 

 
 

 

 

  



 
 

CLT panel LL-400/11s 

 

 
 

 

  



 
 

A2.5 Buckling of CLT 
Stability of a panel has to be checked when both bending stresses and normal stresses occur. Buckling of 

the CLT is checked by including a kc factor in the unity check calculation. 

 

 
Figure 3, buckling of the panel [Proholz,2014] 

 

 𝜎𝑐,0,𝑑

𝑘𝑐,𝑦 𝑓𝑐,0,𝑑
+

𝜎𝑚,𝑑

𝑓𝑚,𝑑
≤ 1,0 (7) 

 
 𝑘𝑦 = 0,5(1 + 𝛽𝑐(𝜆𝑟𝑒𝑙,𝑦 − 0,3) + 𝜆𝑟𝑒𝑙,𝑦

2) (9) 

 

βc Coefficient for imperfection  0,1 for CLT   

 

 

𝜆𝑟𝑒𝑙,𝑦 =
𝜆𝑦

𝜋
√

𝑓𝑐,0,𝑘

𝐸0,05
 

(10) 

 

 
𝜆𝑦 =

𝑙𝑐𝑟
𝑖𝑦,0,𝑒𝑓𝑓

 
(11) 

 

 

𝑖𝑦,0,𝑒𝑓𝑓 = √
𝐼𝑦,0,𝑒𝑓𝑓

𝐴0,𝑛𝑒𝑡
 

(12) 

 

 

  

 
𝑘𝑐,𝑦 =

1

𝑘𝑦 + √𝑘𝑦
2 − 𝜆𝑟𝑒𝑙,𝑦

2

 
(8) 



 
 

Table 2, compression resistance of the CLT panel including buckling 

Panel t0 A0,net Ieff  kc  Nc,Rd 

 mm mm2 x109 mm4   - kN 

LL-190/7s 150 150.000 0,49 0,84 2395 

LL-260/7s 200 200.000 1,11 0,93 3535 

LL-300/9s 240 240.000 1,18 0,92 4197 

LL-360/9s 240 240.000 1,31 0,93 4243 

LL-400/11s 280 280.000 2,12 0,96 5109 

 

 
 

 

 

  



 
 

A2.6 CLT panel properties 
Several type of CLT panels will be used for this thesis. The panels are based on the available panels at 

Derix. This is a CLT producer based in Germany, but has provided CLT panels for Dutch building 

projects as well. LL-type panels have been chosen, which have two layers in longitudinal direction on the 

outside of the panel. These panels have a large net area orientated in the vertical orientation.  

 

 
Figure 4, cross-section of an LL-type CLT panel (LL-400/11s) 

Cross-sectional values follow from the properties of the base material. Most properties are defined based 

on the net cross-section. Only for bending out of plane, the effective moment of inertia has to be used in 

SLS. The net cross-section in the strong direction is the sum of the boards orientated in strong direction. 

Similarly, the net cross-section in the weak direction is the sum of the boards orientated in the weak 

direction. In the image below, the light grey hatched layers (numbered 1, 2 and 3) indicate the considered 

boards. All boards have the same modulus of elasticity.  

 
Figure 5, CLT cross-section [Proholz, Cross-Laminated Timber Structural Design, 2014] 

Cross-sectional values have been calculated for five panels. The results are shown in the tables below. 

Table 5 shows the net thickness of the panel in 0-direction and 90-direction and the corresponding values 

for net area, section modulus and moment of inertia. The effective moment of inertia I0,eff has been 

calculated as the net moment of inertia multiplied with an effective gamma value as calculated in A2.4. 

The buckling factor kc has been calculated with a buckling length of one story height (3,1 meter)  

 

  



 
 

Three main stiffness parameters can be described. The first is the axial stiffness in 0-direction. The second 

is the axial stiffness in 90-direction. The third and final stiffness parameter is the shear stiffness. The shear 

stiffness takes into account the gross cross-section. This is the total cross-section of the panel, indifferent 

of the grain direction of the boards.  

 

 𝐾0 = 𝐸0,𝑚𝑒𝑎𝑛 𝐴0,𝑛𝑒𝑡   (13) 

 

 𝐾90 = 𝐸0,𝑚𝑒𝑎𝑛 𝐴90,𝑛𝑒𝑡   (14) 

 

 𝐾𝑠 = 𝐺𝑆,𝑚𝑒𝑎𝑛 𝐴𝑔𝑟𝑜𝑠𝑠   (15) 

 

 

Table 3, orthotropic stiffness values per meter width 

 K0 K90  Ks  

 kN/mm kN/mm kN/mm 

LL-190/7s 1740 464 86 

LL-260/7s 2320 696 117 

LL-300/9s 2784 696 135 

LL-360/9s 2784 1392 162 

LL-400/11s 3248 1392 180 

 

The different directions of a CLT plate are defined based on the strong direction of the grain. Most boards 

are directed in the 0°-direction. This indicates that most of the grains are parallel to the considered 

direction. Perpendicular to this direction is then the 90°-direction. The resistance of the CLT panels to 

compression forces, tensile forces and shear forces can be calculated based on the presented formulas. The 

buckling factor kc has been calculated in chapter A2.5.  

 

 𝑁𝑐,𝑅𝑑 = 𝐴0,𝑛𝑒𝑡 ∗ 𝑘𝑐 ∗ 𝑓𝑐,0,𝑑 (16) 

 

 𝑁𝑡,𝑅𝑑 = 𝐴0,𝑛𝑒𝑡 ∗ 𝑓𝑡,0,𝑑 (17) 

 

 𝑉𝑅𝑑 = 𝐴𝑖,𝑛𝑒𝑡 ∗ 𝑓𝑣,𝑑 (18) 

 

Table 4, resistance values per meter width 

 t0 A0,net A90,net kc Nc,Rd Nt,Rd V0,Rd V90,Rd 

 mm mm2 mm2  kN/m kN/m kN/m kN/m 

LL-190/7s 150 150.000 40.000 0,84 2395 1725 594 159 

LL-260/7s 200 200.000 60.000 0,93 3535 2300 792 238 

LL-300/9s 240 240.000 60.000 0,92 4197 2756 950 238 

LL-360/9s 240 240.000 120.000 0,93 4243 2756 950 475 

LL-400/11s 280 280.000 120.000 0,96 5109 3222 1109 475 

 



 
 

The net area can be found by:  

 
 

 
𝐴𝑛𝑒𝑡 = ∑𝑏 ∗ 𝑑𝑖

𝑛

𝑖=1

 
(19) 

 

 

The net moment of inertia is the sum of the individual moment of inertias of each layer, summed with 

their contribution according to the parallel axis theorem. Assuming there is full transfer of shear, the 

formula states: 

 
 

 
𝐼𝑛𝑒𝑡 = ∑

𝑏 ∗ 𝑑𝑖
3

12
+ ∑𝑏 ∗ 𝑑𝑖 ∗

𝑛

𝑖=1

𝑛

𝑖=1

𝑎𝑖
2 

(20) 

 

 

The effective moment of inertia is only taken into consideration in SLS for out of plane bending and 

buckling of the CLT panel. Rolling shear deformation reduces the stiffness of the cross section. The 

gamma method is used to calculate the effective moment of inertia. A gamma factor is calculated to 

include the additional shear deformation. The Steiner part of the bending stiffness of each layer is then 

multiplied with the corresponding gamma factor. For panels where more than two layers undergo rolling 

shear deformation, the gamma value is found using the method of Schelling. This method can be best 

explained as the gamma method (as given in Eurocode 5) for more than three members that are to be 

connected.  
 

 
𝛾𝑖 =

1

(1 +
𝜋2 𝐸𝑖 𝐴𝑖

𝑙𝑟𝑒𝑓
2 ∗

𝑑𝑖,𝑗

𝑏 𝐺𝑅,𝑖,𝑗
)

 
(21) 

 

 

𝐼𝑒𝑓 = ∑
𝑏 ∗ 𝑑𝑖

3

12
+ ∑𝛾𝑖 ∗ 𝑏 ∗ 𝑑𝑖 ∗

𝑛

𝑖=1

3

𝑖=1

𝑎𝑖
2 

(22) 

 
Table 5, cross-sectional values per meter width 

 t0 t90 t A0,net A90,net W0,net I0,net γred I0,eff 

 mm mm mm mm2 mm2 mm3 mm4 - x109 mm4 

LL-190/7s 150 40 190 150.000 40.000 5,74 E6 0,485 E9 0,881 0,46  

LL-260/7s 200 60 260 200.000 60.000 10,7 E6 1,387 E9 0,801 1,11 

LL-300/9s 240 60 300 240.000 60.000 14,0 E6 2,099 E9 0,560 1,18  

LL-360/9s 240 120 360 240.000 120.000 18,7 E6 3,360 E9 0,391 1,31  

LL-400/11s 280 120 400 280.000 120.000 23,0 E6 4,589 E9 0,462 2,12 

 

 

  



 
 

A2.7 Comparisson of test results 
 

Results from three researches regarding timber-to-steel dowelled fastener connections have been gathered. 

Results were taken from Liu et al. (2020), Dobes et al. (2022) and Sandhaas (2012). The load-deformation 

curves from tests have been plotted in the figure below for dowelled type fasteners.  

 
Table 6, sources of load-deformation curves 

Source Year Diameter No. fasteners  

Liu et al. 2020 M16 bolts 1  

Dobes et al.  2022 M20 bolts 1  

Sandhaas 2012 M12 dowels 1, 3 and 5  

 

Results from Dobes and Sandhaas have been adjusted for dowel diameter given that these did not use a 16 

mm diameter. The European Yield Method equations have been used to adjust the force observed in the 

connection to that what would be expected for a 16 mm fastener. The failure mode for all adjustments 

remained the same (ductile) failure mode.  

 

 
Figure 6, test results combined 

 

 

 

 

 

  



 
 

A2.8 Effective number of fasteners (stiffness) 
 

Reynolds et al. researched the effective number of dowels for load-reload stiffness (elastic stiffness Ke).  

Theoretical results indicated that the first added dowel would have the largest influence on the effective 

stiffness (33% to 40% reduction). This has been supported by test results. The theoretical results also 

indicated that the effective number of dowels quickly settle at 0,60. This however is not supported in test 

results. The effective number of dowels for 105 dowels was theoretically found to be 64,3 dowels whereas 

the actual test results found an effective number of 20,2 (19%). Reynolds et al. indicate that this suggests 

that additional processes are restricting the number of dowels contributing to the connection stiffness. In 

larger specimen, “misalignment along the length of the dowel through the multiple plates may be 

important.” (Reynolds et al., 2022).  

 

Table 7, effective number of dowels according to Reynolds et al. (2022) 

Number of dowels 

applied 

nef  

based on elastic 

stress field (theory) 

nef  

based on dowel 

misalignment 

(theory) 

For 10 mm dowels 

nef  

based on dowel 

misalignment 

(theory) 

For 12 mm dowels 

Test results  

12 mm 

Test results  

10 mm 

1 1 1 1 1 1 

2 0,75 0,71 0,76 0,74 0,75 

3 0,64 0,63 0,67 0,65 0,65 

4 0,60 0,59 0,66 0,57 0,56 

5 0,61 0,56  0,64 0,51 0,47 

      

7a  0,46     

105b   0,61 0,19  

 

The results by Reynolds have been shown in the table and graph. Theoretical results have been shown in 

yellow whereas test results are shown in blue. Two curves have been defined in order to indicate the trend 

line that is observed. These do not represent an actual definition for nef, but do indicate clear differences 

between the theoretical results and test results.  

 



 
 

 
 

Jorissen presented several equations to represent the effective number of bolts in timber-to-timber 

connections. Provided that there was a minimum spacing a1 > 7d, the following equation was found. 

 

 𝑛𝑒𝑓 = 0,85 ∗ 𝑛0,90  (23) 

 

 𝑚𝑒𝑓 = 0,90 ∗ 𝑚     𝑓𝑜𝑟 𝑚 = 2  (24) 

 

 

 

  



 
 

A2.9 Single shear plane steel-to-timber connections 
There are several failure modes defined in Eurocode 5. These are specified for thin plates and thick plates. 

Figure 7 shows all these failure mechanisms. Thin plates have a thickness less than half the diameter of 

the dowel. Thick plates have a thickness larger than the diameter of the dowel. For steel plates with a 

thickness between half the diameter and one times the diameter of the dowels, linear interpolation can be 

used.  

 

   
Figure 7, failure mechanisms (Timber engineering book V2) 

Thin plate failure modes are failure of timber embedment and formation of a plastic hinge. 

 

Mode a 𝐹𝑣,𝑅𝑘,𝑎 = 0,4 ∗ 𝑓ℎ,𝑘 ∗ 𝑡1 ∗ 𝑑 (25) 

 

Mode b 
𝐹𝑣,𝑅𝑘,𝑏 = 1,15 ∗ √2 ∗ 𝑀𝑦,𝑘 ∗ 𝑓ℎ,𝑘 ∗ 𝑑 +

𝐹𝑎𝑥,𝑅𝑘

4
 

(26) 

 

Thick plate failure modes are also failure of the timber embedment and formation of a plastic hinge. 

 

Mode c 𝐹𝑣,𝑅𝑘,𝑐 = 𝑓ℎ,𝑘 ∗ 𝑡1 ∗ 𝑑 (27) 

 

Mode d 

𝐹𝑣,𝑅𝑘,𝑑 = 𝑓ℎ,𝑘 ∗ 𝑡1 ∗ 𝑑 ∗ [√2 +
4 ∗ 𝑀𝑦,𝑘

𝑓ℎ,𝑘 ∗ 𝑑 ∗ 𝑡1
2 − 1] +

𝐹𝑎𝑥,𝑅𝑘

4
 

(28) 

 

Mode e 
𝐹𝑣,𝑅𝑘,𝑒 = 2,3 ∗ √𝑀𝑦,𝑘 ∗ 𝑓ℎ,𝑘 ∗ 𝑑 +

𝐹𝑎𝑥,𝑅𝑘

4
 

(29) 

 

Fv,Rk,a and Fv,Rk,c are brittle failure modes as the timber fails in a brittle manner (timber embedment failure). 

The other three failure modes form at least one hinge before failure, which indicates a more ductile failure. 

This is preferred, hence the required failure mode should be mode b, d or e. 

  

  



 
 

A2.9.1 Double shear plane steel-to-timber connections 
Failure modes f, g, h, j/l, k and m are modes for double shear plane connections. However, the 

corresponding equations are similar to the ones for single shear plane connections (due to symmetry). 

 

Considered mode Comparable to  

Mode f Mode c 

Mode g Mode d 

Mode h Mode e 

Mode j Mode c with t1 as 50% of t 

Mode k Mode b 

Mode l Mode c with t1 as 50% of t 

Mode m Mode e 

 

Mode j and mode l are similar to one another, but are named individually. Mode j is failure of the 

embedment strength of the timber for thin plate connections whereas mode l is failure of the embedment 

strength for thick plate connections. So the separation is only to indicate the thickness of the steel plates. 

These modes are calculated as 50% of mode c, as the result is the resistance per shear plane and only half 

the timber thickness contributes to each shear plane. 

 

 

 

 

 

  



 
 

A2.10 Brittle failure modes of multi-fastener connections 
Five types of brittle failure modes of timber have been defined in the new Eurocode 5 draft (2022). These 

failures apply to standard timber and parallel laminated timber. They are not mentioned to be applicable 

for CLT although Brown and Li (2020) and Azinovic et al. (2022) observed brittle failure in CLT for 

grouped fasteners.  

 

  
 

 
Figure 8, brittle failure modes of multi-fastener connections 

 

The brittle failure of an LL-400/11s panel is calculated for a connection as shown in A5.1.2.  

 

Row shear failure 

 

 𝐹𝑟𝑠,𝑑 = 2 ∗ 𝑛90 ∗ 𝐹𝑣,𝑙,𝑑  = 2 ∗ 8 ∗ 332 = 5312 𝑘𝑁 (30) 

 

Block shear failure 

 

 𝐹𝑏𝑠,𝑑 = max (2 ∗ 𝐹𝑣,𝑙,𝑑; 𝐹𝑡,𝑑)= max(2 ∗ 332; 1811) = 1811 𝑘𝑁  (31) 

 

Plug shear failure   

 

 𝐹𝑝𝑠,𝑑 = max(2 ∗ 𝐹𝑣,𝑏,𝑑; 𝐹𝑡,𝑑 + 𝐹𝑣,𝑏,𝑑) = max(2 ∗ 894; 1811 + 406) = 2217 𝑘𝑁  (32) 

 

Net tensile failure 

 

 𝐹𝑡,𝑛𝑒𝑡,𝑑 = 𝑘𝑡 ∗ 𝐹𝑡,𝑑 = 1,1 ∗ 1811 = 1992 𝑘𝑁 (33) 

 

The brittle resistance of the connection in the CLT panel is found to be 1811 kN as the result of block 

shear failure. Ductile failure of this connection is ( 40 x 68 = ) 2720 kN. This shows that there is a 

potential for brittle failure (brittle failure is 67% of ductile failure). However, it is not clearly specified in 

the Eurocode draft whether the brittle failure should be accounted for in CLT, nor how the different shear 

planes in a CLT panel should be defined. Given the fact that CLT has two different orientations of the 

fiber, each orientation may have a contribution for each shear plane of the panel.  

  



 
 

 

 

Figure 9, definitions of shear resistance for different shear planes 

Fv,l,d design shear resistance per side shear plane in the timber member 

Fv,b,d design shear resistance of the bottom shear plane in the timber member  

Ft,d design tensile failure resistance of the head plane  

 

 𝐹𝑣,𝑙,𝑑 = 𝑘𝑣 ∗ 𝑡𝑒𝑓 ∗ 𝐿𝑐𝑜𝑛 ∗ 𝑓𝑣,𝑑   (34) 

 

 

𝑘𝑣 = 0,4 + 1,4√
𝐺𝑚𝑒𝑎𝑛

𝐸0,𝑚𝑒𝑎𝑛
= 0,4 + 1,4√

450

11600
= 0,68 

(35) 

 

 𝐿𝑐𝑜𝑛 = 4 ∗ 80 + 80 = 400 𝑚𝑚 (36) 

 

 𝐹𝑣,𝑙,𝑑 = 0,68 ∗ 280 ∗ 440 ∗ 3,96 = 332 𝑘𝑁 (37) 

 

 

 𝐹𝑣,𝑏,𝑑 = 𝑘𝑣 ∗ 𝐿𝑐𝑜𝑛 ∗ 𝑏𝑛𝑒𝑡 ∗ 𝑓𝑣,𝑑    (38) 

 

 𝑏𝑛𝑒𝑡 = 8 ∗ 80 + 48 = 688 𝑚𝑚 (39) 

 

 𝐹𝑣,𝑏,𝑑 = 0,68 ∗ 488 ∗ 680 ∗ 3,96 = 894 𝑘𝑁   (40) 

 

 

 𝐹𝑡,𝑑 = 𝑘𝑡 ∗ 𝑡𝑒𝑓 ∗ 𝑏𝑛𝑒𝑡 ∗ 𝑓𝑡,0,𝑑   (41) 

 

 

𝑘𝑡 = 0,9 + 1,4√
𝐺𝑚𝑒𝑎𝑛

𝐸0,𝑚𝑒𝑎𝑛
= 0,9 + 1,4√

450

11600
= 1,18  

(42) 

 

 𝐹𝑡,𝑑 = 1,18 ∗ 194 ∗ 688 ∗ 11,5 = 1811 𝑘𝑁 (43) 

 

 

  



 
 

The effective thickness of the fastener to calculate Ft,d is calculated below.  

 

Inner member 

 

 𝑡𝑒𝑓,𝑒𝑙 = max {(2 −
𝑡ℎ,𝑖

11𝑑
) ; 0,65 } ∗ 𝛼𝑐𝑙 ∗ 𝑡ℎ,𝑖         𝑖𝑓

 𝑡ℎ,𝑖

𝑑
> 11 𝛼𝑐𝑙  

(44) 

 

 
𝑡𝑒𝑓,𝑒𝑙 = (2 −

190

176
) ∗ 0,65 ∗ 190 = 114 𝑚𝑚 

(45) 

 

 

𝑡𝑒𝑓,𝑝𝑙 = √
𝑀𝑦,𝑘

2 𝑑 𝑓ℎ,0,𝑘
+

𝑡ℎ
2

 

(46) 

 

 

𝑡𝑒𝑓,𝑝𝑙 = √
0,3 ∗ 800 ∗ 162,6

2 ∗ 16 ∗
0,035 ∗ (1 − 0,015 ∗ 16) ∗ 3851,16

1,1

+
200

2
= 120 𝑚𝑚 

(47) 

 

 𝑡𝑒𝑓,𝑝𝑠 = 𝑚𝑖𝑛{𝑡𝑒𝑓,𝑒𝑙; 𝑡𝑒𝑓,𝑝𝑙} (48) 

 

 𝑡𝑒𝑓,𝑝𝑠 = 𝑚𝑖𝑛{114; 120} = 114 𝑚𝑚 (49) 

 

Outer member 

 

 
𝑡𝑒𝑓,𝑒𝑙 = max {(1,17 −

𝑡ℎ,𝑜

18𝑑
) ; 0,35 } ∗ 𝛼𝑐𝑙 ∗ 𝑡ℎ,𝑖         𝑖𝑓 

𝑡ℎ,𝑖

𝑑
> 3 𝛼𝑐𝑙   

(50) 

 

 
𝑡𝑒𝑓,𝑒𝑙 = (1,17 −

65

288
) ∗ 0,65 ∗ 65 = 40 𝑚𝑚 

(51) 

 

 
𝑡𝑒𝑓,𝑝𝑙 = 20 +

65

2
= 53 𝑚𝑚 

(52) 

 

 𝑡𝑒𝑓,𝑝𝑠 = 𝑚𝑖𝑛{40; 53} = 40 𝑚𝑚 (53) 

 

 

 

 𝑡𝑒𝑓 = 114 + 2 ∗ 40 = 194 𝑚𝑚 (54) 

 

 

  



 
 

A3 Chapter 3 appendices 

A3.1 Loads on the structure 

A3.1.1 Floor loads 
Vertical loads are the result of floor loads transferred to the façade and self weight of the façade. The 

weight of the floor depends on the lay-up. Especially the use of a concrete screed can influence this 

weight. As many literature indicates that a lightweight structure has many difficulties it was decided to 

assume a timber concrete composite floor. The concrete can be replaced by gravel if disassembly is 

requested. However, this would mean that the thickness of the CLT floor panel needs to increase as it no 

longer functions as a timber concrete composite floor. A detail of the floor lay-up is given in appendix 

NR.  

 
Table 8, floor lay-up 

Material Thickness Unit  Weight  Unit   Weight Unit  

Floor finishing 15 mm     0,10 kN/m2  

Double fermacel 25 mm     0,30 kN/m2  

Insulation 40 mm      0,05 kN/m2  

Concrete  80 mm   25 kN/m3   2,00 kN/m2  

CLT 280 mm   4,5 kN/m3   1,26 kN/m2  

         

Total 440 mm      3,71 kN/m2  

 

The main variable load on the floor is the usage of the apartments. This is specified in Table 9. Internal 

walls will be accounted for by a variable load of 0,8 kN/m2. This represents movable walls with a dead 

load of at most 2,0 kN/m.  

 
Table 9, variable load apartments 

Category Function  qk [kN/m2] Qk [kN] Ψ0 Ψ1 Ψ2 

A Apartments (including walls) 2,55 3,00 0,40 0,50 0,30 

A Hallways 2,00 3,00 0,40 0,50 0,30 

 

Roof loads are not specified as they contribute very little to the overall behavior of the structure.  

 

The floor load per story are found to be (based on a measured span of 8 m) 

 

gk = 14,82 kN/m   

qk = 4,08 kN/m  including ψ0 = 0,4  



 
 

A3.1.2 Façade loads 
The façade is made from CLT panels. Openings have been used to allow for daylight entry. This takes up 

34% of the area of the panel. The self-weight of the façade is calculated as the average between the weight 

of the closed façade and the weight of the windows. The weight of the CLT panels is separated from the 

façade load as it can be generated in the computer, based on the thickness of the panel.  

 
Table 10, façade lay-up (inside to outside) 

Material Thickness  Weight    Weight  

 kN/m3   kN/m3    kN/m2   

Wall finishing 10     0,10  

Gypsumboard 12     0,15  

Insulation (fire resistant) 100     0,10  

CLT Variable  4,2   -  

Insulation (thermal) 100     0,10  

Façade cladding 40     0,50  

        

Total 222 excl. CLT     0,95  

 
Table 11, window lay-up (inside to outside) 

Material Thickness  Weight    Weight  

 mm   kN/m3    kN/m2  

Glass (triple glazing) 15  25   0,38  

Hardwood window frame   0,18  

        

Total      0,56  

 

It is given that 34% of the façade is transparent (window) and therefor the weight of the façade then 

becomes 0,82 kN/m2 or 2,54 kN/m1 for each story.  

 
Table 12, self weight of the CLT panels per story 

Panel Thickness  Weight    Weight  

 mm  kN/m2    kN/m   

LL-190/7s 190  0,80   1,63  

LL-260/7s 260  1,09   2,24  

LL-300/9s 300  1,26   2,58  

LL-360/9s 360  1,51   3,10  

LL-400/11s 400  1,68   3,44  

  



 
 

A3.2 cscd factor calculation 

 



 
 

 



 
 

A3.3 Detail of the façade-floor connection 
 

 
Figure 10, vertical detail of the CLT façade with a timber-concrete composite floor 

 

  



 
 

A3.4 2nd order calculation for the structure 
The second order contribution of the façade is calculated. There is no contribution of the foundation 

included. This makes that the result will be an underestimation of the second order effect.  

Vertical load on the façade is calculated assuming half the vertical load is transferred to the façade and 

half the load is transferred to the inner load bearing structure. A top deformation of 229 mm was found in 

initial calculations, but might differ from the presented values slightly due to alterations after this 

calculation was performed. An equivalent bending stiffness EIeq has been calculated based on a forget-me-

not of a cantilevering beam with distributed load and the abovementioned top deformation. 

This together leads to a vertical load on the stability element and a critical load. the calculated ratio n 

between these two loads is used to calculate the second order factor.  

 

 
 

  



 
 

A4 Chapter 4 appendices 

A4.1 Façade view and deflection components 
 

  



 
 

 
 

  



 
 

 
 

  



 
 

 
 

 

  



 
 

 
 

 

  



 
 

 
 

 

  



 
 

 
 

  



 
 

 
 

 

  



 
 

 
 

  



 
 

 
 

 

  



 
 

A4.2 Shear stiffness of fenestrated panels 
Research has been done by Dujic et al. (2007) regarding the shear stiffness of fenestrated panels. 

Openings in a CLT panel result in a reduced shear stiffness which can be calculated using equations (55) 

and (56).  

 

 
𝑟 =

𝐻 ∑𝐿𝑖

𝐻 ∑ 𝐿𝑖 + ∑𝐴𝑖
    

(55) 

 

 𝐾 =
𝑟

2 − 𝑟 
    (56) 

 

Where  

 

H  is the height of the panel 

Li  is the width of full height wall segments 

Ai  is the sum of openings 

K   is the ratio of shear stiffness of fenestrated and non-fenestrated panels  

 

For panels with a width of 2,9 meter; height of 15,5 meter and five openings of 1,74x1,74 meter, the 

reduction factor is 0,37. Or in other words, 37% of the shear stiffness of the full panel remains when the 

openings are included. This is only slightly less than the reduction of shear area at the height of the 

opening, which is 40% of the original area. Hence, this approach by Dujic et al. will not be included in the 

calculation of the shear deformation. 

 

  



 
 

A4.3 Theoretical hand calculations 
Calculations for the maximal compressive force for the model of 77,5 meter are presented below. The 

floor load has trapezoidal load distribution. That is why the vertical load is reduced by a factor 6/7. As six 

out of seven panels are effectively loaded and assuming that this load then distributes among all piers 

evenly. 

 
Table 13, calculation of axial force in the piers of a CLT panel when unfavorable 

 q   Factor   b   nstory  npiers  γ  NEd 

Self weight 3,44 x   x  20,3 x  25 / 14 x 1,20 = 150 

Floor G 14,82 x 6/7 x 20,3 x 25 / 14 x 1,20 = 553 

Façade 2,54 x  x 20,3 x 25 / 14 x 1,20 = 110 

Floor Q 4,08 x 6/7 x 20,3 x 25 / 14 x 1,50 = 190 

              

Total             1003 kN 

 

Table 14, calculation of axial force in the piers of a CLT panel when favorable 

 q   Factor   b   nstory  npiers  γ  NEd 

Self weight 3,44 x   x  20,3 x  25 / 14 x 0,90 = 112 

Floor G 14,82 x 6/7 x 20,3 x 25 / 14 x 0,90 = 414 

Façade 2,54 x  x 20,3 x 25 / 14 x 0,90 = 83 

Floor Q 4,08 x 6/7 x 20,3 x 25 / 14 x 0,00 = 0 

              

             609 kN 

 

Calculation of shear force VEk and bending moment MEk on the façade acting at the foundation level. 

Wind load qw,k is translated into a horizontal force FH,k by multiplying it by 15,5 meter. The distance 

between the horizontal wind force and the foundation z is multiplied with the force to find the bending 

moment contribution of that force. The sum is the bending moment of 72.411 kNm on the foundation. 

Similarly, the sum of horizontal forces FH,k is the horizontal shear force on the foundation.  

 
Table 15, calculation of Mek due to wind load 

Height qw,k  FH,k z M  

 kN/m kN M   

77,5 meter 27,1 420 69,8 29.295  

62,0 meter 24,7 383 54,3 20.778  

46,5 meter 22,3 346 38,8 13.408  

31,0 meter 19,6 304 23,3 7.068  

15,5 meter 15,7 243 7,8 1.883  

      

Total Vek  1696    

Total MEk    72.411  

 

  



 
 

Similarly for other heights 

 
Table 16, acting forces on the façade at half-way panel height of the bottom panels 

Height MEk,max VEk,max  MEd VEd  

 kNm kN  kNm kN 

77,5 meter 72.411 1696  108.617 2544 

62,0 meter 43.113 1276  64.669 1913 

46,5 meter 22.343 893  33.515 1339 

31,0 meter 8.949 547  13.424 821 

15,5 meter 1.886 243  2829 365 

 

       
Figure 11, wind load on the façade 

  



 
 

Calculation of axial force NEd in the outer pier due to wind for each model height 

 
Table 17, axial force in outer piers 

Wind  MEd   W   bpier   tpier   NEd 

  kNm   mm3   m  m   kN 

77,5 meter  108.617 * 106 / 7,84*109 x 0,58 x  0,28 = 2251  

62,0 meter  64.669 * 106 / 7,84*109 x 0,58 x  0,28 = 1340  

46,5 meter  33.515 * 106 / 7,84*109 x 0,58 x  0,28 = 694  

31,0 meter  13.424 * 106 / 5,60*109 x 0,58 x  0,20 = 278 

15,5 meter  2829 * 106 / 4,20*109 x 0,58 x  0,15 = 59 

 

Calculation of the axial force in the hold-down connection. Where the maximum tension is the wind force 

reduced with the minimum weight and the maximum compression force is the wind force added to the 

maximum weight.  

 
Table 18, results of maximum compressive and tensile forces in the outer connections at the foundation 

Height NEd,wind NEd,weight,min NEd,weight,max  Nt,d Nc,d  

 kN kN kN  kN   

77,5 meter 2251  -609 -1003  1642 -3254 

62,0 meter 1340  -487 -802  853 -2142 

46,5 meter 694  -365 -602  329 -1296 

31,0 meter 278 -244 -401  34 -679 

15,5 meter 59 -122 -201  0 -260 

 

These theoretical results assume full cooperation between CLT panels. That is why these results are 

considered to be unfavorable. Actual tensile and compressive forces are expected to be higher. The actual 

magnitude of this deviation is to be found by comparing the theoretical results to the computer results.   

 

 

  



 
 

A4.4 Theoretical top deformation without connection stiffness 
The top deformation of a CLT façade of 77,5 meter is calculated. It includes the contribution of openings. 

It does not include the contribution of any stiffness of the fasteners in the connections. Four contributions 

to the top deformation are accounted for. These are bending and shear deformation of the façade with 

reduced stiffness due to openings and additional bending due to deformation of piers and lintels.  

 

The contribution of the bending of lintels is calculated using the method of Schelling. The stiffness of the 

lintel is distributed over the height of the story. The piers are then considered as beam elements that are 

connected by the lintels. The length of the lintel is defined according to Hsiao (2014).  

 

𝑤𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = 
𝑞𝑤𝑖𝑛𝑑 ∗ ℎ4

8 ∗ 𝐸𝐼𝑟𝑒𝑑
=

27,1 ∗ 775004

8 ∗ 923 ∗ 1015
= 132 𝑚𝑚  

 

𝑤𝑠ℎ𝑒𝑎𝑟 = 
𝑞𝑤𝑖𝑛𝑑 ∗ ℎ2

2 ∗ 𝐺𝐴𝑠,𝑎𝑣𝑔
=

27,1 ∗ 775002

2 ∗ 2,019 ∗ 109
= 40,3 𝑚𝑚  

 

𝑤𝑝𝑖𝑒𝑟𝑠 = 𝑇𝑛 ∗
𝑞𝑤𝑖𝑛𝑑 ∗ ℎ𝑠𝑡𝑜𝑟𝑦 ∗ ℎ𝑝𝑖𝑒𝑟,𝑒𝑓𝑓

3

12 ∗ ∑𝐸𝐼𝑝𝑖𝑒𝑟
= 325 ∗

27.1 ∗ 3100 ∗ 24203

12 ∗ 1,69 ∗ 1015
= 19,1 𝑚𝑚 

 

𝑤𝑆𝑐ℎ𝑒𝑙𝑙𝑖𝑛𝑔 =
1 − 𝛾𝑟𝑒𝑑

𝛾𝑟𝑒𝑑
 𝑤𝑏 =

0,165

0,835
∗ 132 = 26,1 𝑚𝑚 

 

where 

 

𝛾𝑟𝑒𝑑 = 0,835 according to Maple script below 

 

The total deformation of the top is the sum of the components 

 

𝑤𝑡𝑜𝑝 = 218 𝑚𝑚 

  



 
 

A4.5 Maple script for the top deformation due to deformation of the lintels 

 

  



 
 

A4.6 Theoretical top deformation - results  
The results for all heights have been calculated in a similar way and shown before. The results in black are 

for the panels used in further calculations. The results in grey are for panels that will not be further 

researched. 

 
Table 19, theoretical top deformation 

Model qk  panel t0 t EI GAS ∑EIp γred wb ws wpier wSchelling wtot  
kN/m 

 
mm mm x1015 

Nmm2 

x106 

N 

x1015 

Nmm2 

 mm mm mm mm mm 

15,5 meter 15,7 LL-190/7s 150 190 495 959 0,903 0,12 0,23 1,97 0,95 1,77 4,92 

31,0 meter 19,6 LL-260/7s 200 260 660 1312 1,209 0,36 3,43 7,17 3,27 6,20 20,1 

46,5 meter 22,3 LL-300/9s 240 300 792 1515 1,447 0,51 16,5 15,9 6,76 16,0 55,1 

46,5 meter 22,3 LL-400/11s 280 400 923 2019 1,690 0,64 14,1 11,9 5,80 7,97 39,8 

62,0 meter 24,7 LL-360/9s 240 360 792 1818 1,447 0,79 57,6 26,1 13,1 15,5 112 

62,0 meter 24,7 LL-400/11s 280 400 923 2019 1,690 0,76 49,4 23,5 11,2 15,5 100 

77,5 meter 27,1 LL-400/11s 280 400 923 2019 1,690 0,83 132 40,3 19,1 26,1 218 

 

  



 
 

A4.7 Forces on the connections – additional bending moment 
Chapter 4.5 already explained the forces acting on the connections. This appendix goes more into detail 

regarding the increase of forces due to additional bending moments as a result of eccentricities in the 

connection. The shear force in the connections is assumed to be resisted equally by all bolts.  

 

 
 𝐹𝑣 =

𝑉𝐸𝑑

𝑛 ∗ 𝑚
 

(57) 

 

The maximum force Fm as a result of the additional bending moment is located in the outer bolts. Meaning 

that one of the four outer bolts is by default the governing element. The maximum force Fmax in one such 

bolt is calculated as the resulting vector of the two forces Fv and Fm. This maximum force should be below 

the resistance of the bolt Fv,Rd.  

 

       
Figure 12, forces on the shear connection on the vertical edges of the  panels 

 

The force in the outer bolt due to bending is calculated using the equation below 

 

 
 𝑀𝐸𝑑 = ∑

𝑎𝑖
2

𝑎𝑚𝑎𝑥
∗ 𝐹𝑚 

𝑛

𝑖=1

 
(58) 

 

The force Fm is to be decomposed in a force vector in x- and y-direction.  

 

 
 𝐹𝑚,𝑥 =

3,5 ∗ 𝑎

𝑎𝑚𝑎𝑥
∗ 𝐹𝑚 

(59) 

 

 
 𝐹𝑚,𝑦 =

0,5 ∗ 𝑎

𝑎𝑚𝑎𝑥
∗ 𝐹𝑚 

(60) 

 

The maximum force Fmax is then calculated using the equation below 

 

 
 𝐹𝑚𝑎𝑥 = √𝐹𝑚,𝑥

2 ∗ (𝐹𝑣 + 𝐹𝑚,𝑦)2 
(61) 



 
 

 

A calculation is made for the shear key connection on the vertical edges of the CLT panels of the model of 

77,5 meter. 

 
 𝑀𝐸𝑑 = 𝑉𝐸𝑑 ∗

𝑒

2
 (62) 

 

  𝑉𝐸𝑑 = 291 𝑘𝑁 (63) 

 

 
 𝑀𝐸𝑑 = ∑

𝑎𝑖
2

𝑎𝑚𝑎𝑥

∗ 𝐹𝑚 

𝑛

𝑖=1

 
(64) 

 

 
 𝑀𝐸𝑑 = 4 ∗ [

402

283
+

1202

283
+

2002

283
+

2802

283
] ∗ 𝐹𝑚 

(65) 

 

  𝑀𝐸𝑑 = 1900 ∗ 𝐹𝑚 (66) 

 

The force on the outer bolt due to bending on the connection is calculated and split into a horizontal 

component (Fm,x) and vertical component (Fm,y). These are added to the shear force per bolt (Fv).  

 
 

 𝐹𝑚 =
𝑀𝐸𝑑

1900
 

(67) 

 

 

 𝐹𝑚 =
𝑉𝐸𝑑 ∗

𝑒
2

1900
 

(68) 

 

 
 𝐹𝑚 =

291 ∗ 0,12

1900
= 18,4 𝑘𝑁 

(69) 

 

 
 𝐹𝑚,𝑥 =

280

283
∗ 18,4 = 18,2 𝑘𝑁 

(70) 

 

 
 𝐹𝑚,𝑦 =

40

283
∗ 18,4 = 2,6 𝑘𝑁 

(71) 

 

 
 𝐹𝑣 =

291

2 ∗ 8
= 18,2 𝑘𝑁 

(72) 

 

  𝐹𝑥 = 𝐹𝑚,𝑥 = 18,2 𝑘𝑁 (73) 

 

  𝐹𝑦 = 𝐹𝑚,𝑦 + 𝐹𝑣 = 18,2 + 2,6 = 20,8𝑘𝑁 (74) 

 

  𝐹𝑚𝑎𝑥,𝑑 = √18,22 ∗ 20,82 = 27,6 𝑘𝑁 (75) 

 

  𝐹𝑣,𝑅𝑑 = 40 𝑘𝑁 (76) 

 

The unity check was 0,46 (18,2 / 40) but increased to 0,69 (27,6 / 40). Which is an increase of 52%. 

This increase is independent of the value of VEd. It solely depends on the geometry of the connection. 



 
 

A5 Chapter 5 appendices 

A5.1 Detail drawings of the connections at the foundation 
 

Details are presented for the model of 77,5 meter.  

 

 
 

 

 

 

  



 
 

A5.1.1 Hold-down connection horizontal edge  Hy front view 
 

 
  



 
 

A5.1.2 Hold-down connection horizontal edge Hy cross-section 
 

 



 
 

A5.1.3 Shear connection   horizontal edge Hx front view 
 

 
 

 

  



 
 

A5.1.4 Shear connection   horizontal edge Hx cross-section 
 

  



 
 

A5.1.5 Shear connection   vertical edge  Vx front view 
 

 
 

 

  



 
 

Shear connection   vertical edge  Vx cross-section 

 

 
  



 
 

A5.2 Detail drawings of the connections at the fifth floor 
 

The shear connections on the vertical edge of the CLT panels are similar as those presented for the 

connections at the foundations for the model of 77,5 meter. 

 

 
 

  



 
 

A5.2.1 Hold-down connection horizontal edge  Hy front view  
 

 
  



 
 

A5.2.2 Hold-down connection horizontal edge Hy cross-section 

 
  



 
 

A5.2.3 Shear connection   horizontal edge Hx front view 
 

 
 

 

 



 
 

A5.2.4 Shear connection   horizontal edge Hx cross-section 
 

 
 



 
 

A5.3 Calculation of the bolt resistance of a M16 bolt 

 
Figure 13, example calculation for double internal steel plate 

  



 
 

Table 20, resistance of a bolt in a connection with a single internal steel plate 

Panel t1 M12  M16  M20  

 [mm] [kN]  [kN]  [kN]  

LL-190/7s 65 18  Ductile 28 Ductile 38 Ductile 

LL-260/7s 100 23 Ductile 33 Ductile 43 Ductile 

 
Table 21, resistance of a bolt in a connection with two external steel plates 

Panel t M12  M16  M20  

 [mm] [kN]  [kN]  [kN]  

LL-190/7s 110 24 Brittle 29 Brittle   

LL-260/7s 180 25 Ductile 40 Ductile 55 Brittle 

LL-300/9s 220 25 Ductile 40 Ductile 58 Ductile 

LL-360/9s 280 25 Ductile 40 Ductile 58 Ductile 

LL-400/11s 320 25 Ductile 40 Ductile 58 Ductile 

 
Table 22, resistance of a bolt in a connection with two internal steel plates 

Panel t1 t2 M12  M16  M20  

 [mm] [mm] [kN]  [kN]  [kN]  

LL-260/7s 40 100 39 Brittle 48 Brittle x  

LL-300/9s 45 130 41 Ductile 59 Brittle x  

LL-360/9s 55 170 42 Ductile 67 Ductile 86 Brittle 

LL-400/11s 65 190 42 Ductile 68 Ductile 96 Ductile 

 
Table 23, internal stresses in a connection with two internal steel plates 

Panel t1 t2 M12  M16  M20  

   σin σout σin σout σin σout 

 [mm] [mm] N/mm2  N/mm2 N/mm2 N/mm2 N/mm2 N/mm2 

LL-260/7s 40 100       

LL-300/9s 45 130 14,1 17,0 16,7 16,7   

LL-360/9s 55 170 12,4 12,8 15,3 16,0 15,4 15,4 

LL-400/11s 65 190   13,4 13,2 14,8 15,1 

 

 

 

 

  



 
 

A5.4 Maximum force on bolts of shear key connections on vertical edges of the panels 
The maximum force on the bolts of the shear key connections on the vertical edges of the panels is the 

result of the shear force acting on the connection and the bending moment acting on the connection. The 

equations to calculate Fmax have been presented in the main report and chapter A4.7.  

 

The table below shows the forces acting on the bolts and ultimately the maximum force Fmax on the outer 

bolts. The last column indicates the increase of the force on the bolt due to the additional bending 

moment. It can be seen that for the connection with two columns of bolts, the forces increase by 52%. 

Whereas for the connections with one column of bolts, the forces only increase by 12%. This is due to the 

fact that the bending moment is smaller due to less eccentricity, as well as the lack of a vertical component 

of the force vector from the bending moment.  

The increase of 52% and 12% is constant for all connections of one and two columns of bolts. The 

increased force on the bolts can also be calculated using a multiplication factor depending on the geometry 

of the bolts. 

 
Table 24, maximum force on bolt - shear connection vertical edges 

Model 

height 
Location  VEd e MEd Fm Fm,x  Fm,y  Fv  Fmax Fv,Rd  Fmax / Fv  

   kN m  kNm  kN kN kN kN kN kN   

77,5 meter Foundation  291 0,24 34,9 18,38 18,18 2,60 18,19 27,6 40  1,52 

77,5 meter Fifth floor  250 0,24 30,0 15,79 15,62 2,23 15,63 23,7 40  1,52 

62,0 meter Foundation  219 0,24 26,3 13,83 13,68 1,95 13,69 20,8 40  1,52 

62,0 meter Fifth floor  177 0,12 10,6 11,06 11,06 0 22,13 24,7 40  1,12 

46,5 meter Foundation  153 0,12 9,18 9,56 9,56 0 19,13 21,4 40  1,12 

46,5 meter Fifth floor  112 0,12 6,72 7,00 7,00 0 14,00 15,7 40  1,12 

31,0 meter Foundation  94 0,12 5,64 5,88 5,88 0 11,75 13,1 40  1,12 

31,0 meter Fifth floor  59 0,12 3,54 3,69 3,69 0 7,38 8,2 40  1,12 

15,5 meter Foundation  42 0,12 2,52 2,63 2,63 0 5,25 5,9 29  1,12 

 

 

  



 
 

A6 Chapter 6 appendices 

A6.1 Validation of the model 
In order to get a better understanding of the validity of the model, several verifications have been 

performed. First the structural behavior of the panels has been verified. The top deformation and 

maximum forces at the foundation are considered for a simplified version of the computer models. The 

simplified models have their openings removed. All other properties remain the same. The results of the 

models are then compared to the expected results form theoretical hand calculations.  

 

First the bending and shear deformation at the top are calculated by hand and compared to the computer 

results. Then the forces in the bottom CLT panels are compared (at half the height of the panels). 

 

The calculations in SCIA for the validation is performed as linear elastic calculations. 

 

A6.1.1 Deformations of the panels 
 The values used for the calculation are presented below. 

 
Table 25, values for the calculation of the top deflection 

Model Panel t t0  t90 GAs,avg EI W 

 Type mm mm mm kN kNm2  m3  

77,5 meter LL-400/11s 400 280 120 3.045.000 2.264*106 19,23  

 

 
𝐺𝐴𝑠 =

5

6
∗ 450 ∗ 400 ∗ 20.300 =  3.045.000   𝑘𝑁    

(77) 

 

 
𝐸𝐼 = 11.600 ∗

1

12
∗ 280 ∗ 203003 = 2.264 ∗ 106    𝑘𝑁𝑚2 

(78) 

 

 
𝑊 =

1

6
∗ 280 ∗ 203002 = 19,23    𝑚3 

(79) 

 

 

 
𝑤𝑏 =

𝑞𝑤𝑖𝑛𝑑 ∗ ℎ4

8 ∗ 𝐸𝐼
=

27,1 ∗ 77.5004

8 ∗ 2.264 ∗ 106
= 54,0 𝑚𝑚 

(80) 

 

 
𝑤𝑠 =

𝑞𝑤𝑖𝑛𝑑 ∗ ℎ2

2 ∗ 𝐺𝐴𝑠
=

27,1 ∗ 77.5002

2 ∗ 3.045.000
= 26,7 𝑚𝑚 

(81) 

 

 

  



 
 

A6.1.2 Forces at the foundation 
Not only the top deformation is considered, but also the forces at the foundation are calculated. The 

theoretical forces are calculated as: 

 

 
𝑛𝑦 =

𝑀𝐸𝑑

𝑊
±

𝑁𝐸𝑑

𝐴
 

(82) 

 

The bending moment on the façade is given in Table 16. Vertical loads for calculating the normal force is 

the sum of loads from the floor and the self-weight of the façade. These loads are per story height. 

Depending on whether the maximum compression or tensile forces are calculated, the vertical load has to 

be calculated with the corresponding safety factors. The values for the model with a height of 77,5 meter 

are calculated in the equations below. The forces at half the height of the first panel are considered 

(h=7,75 m) since the connections at the location of the foundation influence the results significantly.  

 

Vertical load on the façade per story is calculated below for maximum compression forces and maximum 

tensile forces.  

 

𝑞𝑣,𝑈𝐿𝑆,1 =  1,20 ∗ (14,82 + 2,54 + 0,4 ∗ 4,2) + 1,5 ∗ 4,08 = 28,6 𝑘𝑁/𝑚 

 

𝑞𝑣,𝑈𝐿𝑆,2 =  0,9 ∗ (14,82 + 2,54 + 0,4 ∗ 4,2) + 0 ∗ 4,08 = 17,1 𝑘𝑁/𝑚 

 

MEd = 72.411 kNm at the foundation, but the check is performed at a height of 7,75 m from the 

foundation, or 69,75 meter from the top. The bending moment at that location is calculated below. 

 

 
𝑀𝐸𝑑 ≅

69,752

77,52
∗ 72.411 = 59.720 𝑘𝑁𝑚 

(83) 

 

The force per meter in both compression (ny,c) and tension (ny,t) can then be calculated. There are 22 

stories that introduce loads from the floor and façade. This is then multiplied by a factor of 6/7 to account 

for the triangular load distribution near the corners. 

 

 
𝑛𝑦,𝑐 =

1,5 ∗ 59.720

19,23
0,28

+ 22 ∗ 28,6 ∗
6

7
= −1281 + −539 = −1820 

𝑘𝑁

𝑚
  

(84) 

 

 
𝑛𝑦,𝑡 =

1,5 ∗ 59.720

19,23
0,28

− 22 ∗ 17,1 ∗
6

7
= 1281 − 294 = 987 

𝑘𝑁

𝑚
  

(85) 

 

 

 

 

       

 

  



 
 

The figures below show the loads on the façade. 

 

    
Wind load Floor load G Floor load Q Façade load 

Figure 14, loads on the façade 

 

 

 

 

  



 
 

A6.1.3 Verification conclusions 
The calculated deformation is 81 mm by hand whereas the observed deformation in SCIA is 89 mm, as 

can be seen in Figure 15. The resulting forces per meter in SCIA are -2166 kN/m in compression and 

+1041 kN/m in tension. Theoretical hand calculations were -1820 kN/m in compression and +987 kN/m in 

tension.  

The compression forces per meter deviate  346    kN/m  which is 19% 

The tension forces per meter deviate   54 kN/m  which is 6% 

 

  

                        

Figure 15, top deformation of the simplified model Figure 16, forces on the façade panels 

It can be concluded that the computer model gives predictable results for this simplified setup. Adding 

openings to the panels will increase the complexity of the verification, but the model will still remain 

functional. It is to be noted that the computer model shows higher forces per meter in both tension and 

compression. In other words the theoretical hand calculations are an underestimation, both for the forces 

in the structure as well as the deflection at the top.  

 

The deviations can be explained by the fact that the panels are separated from one another with the steel 

connection plates already modelled in between the panels. Only the fastener stiffness is missing in the 

models. This separation makes that there are two factors contributing to the deviations between hand 

calculations and computer results 

 

• Load introduction from one panel to the panel below is though one such connection plate. This 

causes peaks in the load introduction in the lower panel.  

• Separation of the panels makes that there can be a slight reduction in the cooperation. This causes 

a reduction of the bending stiffness and moment of resistance. Which in turn increases forces per 

meter as a result of wind load.   



 
 

A6.2 Validation of connections (with linear stiffness) 
The previous chapter showed that the model yields predictable results when the openings are not included.  

The behavior of the connections on the horizontal and vertical edges of the CLT panels is the next 

verification that has been made. Verification of the connections on the horizontal edges is split for sliding 

and rocking behavior of the connections. Deformation due to rocking was manually calculated as the rigid 

body rotation of each layer of CLT panels due to elongation of the connections in tension and deformation 

of the CLT panels in compression. Verification of the connections on the vertical edges is based on the 

method of Schelling.  

 

The modelled stiffness that is used for the interface between the steel plate and the CLT panels is a linear 

stiffness (100 kN/mm per meter). This is done in order to make the comparison to the theoretical results 

simpler. Hold-down connections on the horizontal edge have a rigid behavior in compression. 

Connections on the vertical edge of the panel result in deformation due to a reduction of bending stiffness. 

This bending slip is calculated using the method of Schelling. The stiffness of the fasteners is smeared 

over the height of one story in the theoretical hand calculation.  

 

 

 

 

 

  



 
 

A6.2.1 Connections on the vertical edge 
In order to verify the functioning of the connections on the vertical edges of the panels a linear spring 

stiffness is added to the model. A connection in the computer model is defined as a steel plate in between 

the two CLT panels. This was already present in the previous verification. But for this verification, the 

interfaces between the steel plate and the CLT panels on either side are given a linear spring behavior. In 

compression it will behave rigid. In tension it will have a tensile stiffness.  

 

 
Figure 17, connection as modelled in SCIA (right) 

The façade is a cantilever structure which means that the height used in the method of Schelling is twice 

the height of the façade. Local connections have been modelled, but the method of Schelling assumes a 

distributed connection. The theoretical hand calculation results are shown in Table 26. One example is 

presented in chapter A6.2.2.  

 
Table 26, gamma values and top deflection calculated with the method of Schelling 

K γred wb,slip,theory 

kN/mm/m mm  mm 

1 0,071 708 

3 0,155 293 

10 0,357 97 

30 0,617 33,5 

100 0,841 10,2 

300 0,941 3,4 

 

In order to compare the spring stiffness in SCIA with a hand calculation, the spring stiffness in SCIA has 

to be recalculated into an effective stiffness. If the stiffness of the interface between the left CLT panel 

and the steel plate is 200 kN/mm per meter, the stiffness of the connection is 100 kN/mm per meter 

(assuming the steel plate is rigid). The connection stiffness is then distributed over the height of one story 

to get an average stiffness per meter panel. The height of the connection per story is 1,0 meter ( 2 x 0,5 

meter ) for this verification. One story has a height of 3,1 meter. So the average stiffness per meter panel is 

(100 / 3,1 = ) 30 kN/mm per meter. Table 27 shows the resulting top deformations for several stiffnesses. 

The observed top deformation is then reduced by the top deformation of the façade without connection 



 
 

stiffness (89,0 mm as was found in the previous chapter). This deformation is the additional deformation 

due to the connections at the vertical edges of the façade.  

 
Table 27, SCIA results; top deflection including bending slip for various stiffness values 

Kef  wtop  wb,slip,SCIA 

kN/mm/m mm  mm 

1 882,9 794 

3 401,3 312 

10 209,8 121 

30 128,6 39,6 

100 102,5 13,5 

300 92,8 3,8 

 

Comparing the results from the theoretical hand calculations with the computer results it can be concluded 

that there is a good correlation between the two methods.  

 

 

 

 

 

 

Figure 18, top deformation of the façade for kef = 30 kN/mm 

 

 

 

 

 

  



 
 

A6.2.2 Theoretical hand calculation of bending slip 
The equations below show the calculation performed to assess the bending slip deformation for a smeared 

stiffness Kef = 30 kN/mm using the method of Schelling.  

 

 
Where, 

 

N1, N2 and N3  are axial forces in the panels 1, 2 and 3.   

mm  



 
 

A6.2.3 Force distribution in the panels  
Not only the top deflection is used to verify the connection on the vertical edge. Also the forces on the 

panels are verified. Forces as a result of wind on the façade have been calculated.  

 

 
𝑛𝑖 =

𝛾 ∗ 𝐸 ∗ 𝑎𝑖 ∗ 𝑀 ∗ 𝑡

𝐸𝐼𝑒𝑓
 

(86) 

 

Where  

 

ni is the force per meter width in tension or compression 

γ is the gamma reduction factor of the façade 

Ei is the modulus of elasticity for the considered panel 

ai is the distance from the center of the panel to the center of the façade 

M is the bending moment on the façade 

EIef is the bending stiffness of the façade 

 

As already described in chapter A2.2, the method of Schelling does not account for additional bending 

forces on the individual elements, thus leading to an underestimation of the forces in the elements. A 

correction based on section force equilibrium has been applied.  

 

 

 

  



 
 

Section force equilibrium 

The bending moment on the façade is equal to the sum of all bending moments on the panels and the 

normal forces in each panel multiplied with its distance to the center of the façade.  

 

 
𝑀 = ∑𝑀𝑖(𝑥)

𝑛

𝑖=1

+ ∑𝑁𝑖(𝑥)

𝑛

𝑖=1

∗ 𝑎𝑖 
(87) 

 

Mi is the bending moment on the panel  

 

In case the bending moment on each panel is considered to be equal, the value of this bending moment per 

panel can be calculated. The axial forces per panel are calculated using equation (89). These are then 

multiplied with their respective distance to the center in equation (90).  

 

The bending moment due to wind has been calculated at the half-way point of the bottom CLT panel and 

was found to be 59.270 kNm. The axial force in a panel is calculated as the average force per meter 

multiplied by the width. The average fore per meter is calculated using the equation below from the 

method of Schelling. 

 

 𝑀 =  59.270 𝑘𝑁𝑚 (88) 

 

 𝑁𝑖(𝑥) = 𝑛𝑖 ∗ 𝑏 (89) 

 

b is the width of the panel 

 

Writing out equation (87) the bending moment on a single panel Mi(69,75) can be calculated 

 

 59.270 = 7 ∗ 𝑀𝑖(69,75) + 2 ∗ 2218 ∗ 3 ∗ 2,9 + 2 ∗ 1337 ∗ 2 ∗ 2,9 + 2 ∗ 628 ∗ 2,9 (90) 

 

 59.270 = 7 ∗ 𝑀𝑖(69,75) + 57.745 (91) 

 

 𝑀𝑖(69,75) = 218 𝑘𝑁𝑚  (92) 

 

The axial forces per meter width can be calculated with equations (93)  

 

 
∆𝑛1 =

𝑀𝑖

𝑊𝑝
=

218

1
6 ∗ 2,92

= 155 𝑘𝑁/𝑚 
(93) 

 

Wp is the moment of resistance of the panel 

n is the number of elements  

 

 

 

  



 
 

Conclusions and comparissons 

Due to local disturbances at the foundation, forces have been calculated at half the height of the bottom 

panels. On the left, the normal forces are given for a rigid structure. On the right, the normal forces are 

given for the structure with a smeared stiffness of 30 kN/mm. Forces presented in the figures below are 

characteristic forces as a result of wind load on the façade.  

 

 
 

  

Figure 19, forces in the panels for rigid connections (left) and for connections with stiffness kef =30 kN/mm (right) 

 

The forces at the panel edges are shown in Table 28 (panels numbered from left to right, for the first four 

panels).The forces are shown for the model without connection stiffness modelled (rigid, left figure) and 

the model with a stiffness of Kef = 30 kN/mm modelled.  

 
Table 28, average normal forces in the panels 

 n1,max n1,min n2max n2,min n3,max n3,min n4,max n4,min 
SCIA rigid 1005 675 702 365 378 115 124 -120 
SCIA springs 
kef=30 

1222 505 736 108 467 -114 284 -286 

Schelling theory 

Original 
943 557 648 266 420 34 193 -193 

Schelling theory 
Adjusted -  

Member equilibrium 
1098 402 803 111 575 -121 348 -348 

 

 

 

  

Panel 1 Panel 2 Panel 3 Panel 4 Panel 5 Panel 6 Panel 7 

 



 
 

The computer results for rigid connections are the forces that occur without fastener stiffness included. 

Which is basically similar to the forces expected on standard beam theory. The results for SCIA springs 

kef=30 are the results as indicated in the figure. The results of the method of Schelling and the adjusted 

results are also shown in the figure in dashed lines.  

The additional bending moment results in forces in the panels that do indeed more closely resemble the 

results from the computer model.  

 

The forces in the panels for all four cases have been summarized in the graph below. In yellow, the forces 

are shown in case no connection stiffness is applied. All other curves indicate forces due to connection 

stiffnesses. The blue line is the actual force in each panel based on computer results.  

 

 
Figure 20, forces in the panels for the method of Schelling 

 

In conclusion 

It can be concluded that the adjustment of the method of Schelling leads to a better correlation to the 

computer results. A good correlation is found for both stiffness and strength behavior of the façade under 

the influence of connection stiffnesses of connections on the vertical edges of the façade.   

 

  



 
 

A6.2.4 Connections on the horizontal edge - rocking 
Rocking deformation is the result of elongation of the connections in tension and decompression of the 

CLT panels due to compressive forces (Chen and Popovski, 2014). It is assumed that the panels rotate as 

rigid bodies and that at least half of the width of the façade is in compression.  

 

 
Figure 21, rocking of a CLT panel 

 

The following equations are defined in order to calculate rocking deformation 

 

Vertical equilibrium 

 
𝑅𝑐 = 𝑅𝑡 + ∑𝑞𝑣 

(94) 

 

Moment equilibrium 

 
𝑀𝐸𝑑 = 𝑒𝑡 ∗ 𝑅𝑡 + 𝑒𝑣 ∗ ∑𝑞𝑣 

(95) 

 

Where 

 

et eccentricity between the resultant tension force and the resultant compression force 

ev eccentricity between the resultant vertical load and the resultant compression force 

 

Compression force 

 
𝑅𝑐 =

1

2
∗ 𝜎𝑐,𝑚𝑎𝑥 ∗ 𝐿𝑐 ∗ 𝑡 

(96) 

 

 𝜎𝑐,𝑚𝑎𝑥 = 𝐸𝑒𝑓𝑓

𝑢𝑐

𝑘 ∗ 𝐿𝑐
            (97) 

 

Assuming that the angle caused by tensile forces is equal to the angle caused by compressive forces yields 

the following equation 

 



 
 

 
𝑡𝑎𝑛(𝜃𝑟𝑜𝑐𝑘) =

𝑢𝑐

𝐿𝑐
∗

𝑅𝑡 𝑘𝑡⁄

𝑒𝑡
 

(98) 

 

The presented equations can be solved using iterative procedures (Chen and Popovski, 2014).  

 

Rocking is calculated based on rigid body rotation of the panels. The elongation of the connection and the 

compression of the timber are calculated. The contribution to the rocking deformation of each level is then 

this total vertical deformation multiplied by the height to the top, divided by the width of the façade. 

 

 
𝑢𝑡 =

𝑅𝑡

𝑘𝑡
 

(99) 

 

 
𝑢𝑐 =

𝑘 ∗ 𝑅𝑐

𝑡 ∗ 𝐸
 

(100) 

 

 
𝜃𝑟𝑜𝑐𝑘𝑖𝑛𝑔 =

𝑢𝑡,𝑖 + 𝑢𝑐,𝑖

𝑏
 

(101) 

 

 
𝑤𝑟𝑜𝑐𝑘𝑖𝑛𝑔 = ∑𝜃𝑟𝑜𝑐𝑘𝑖𝑛𝑔 ∗ ℎ𝑖

𝑛

𝑖=1

 
(102) 

 

Where 

 

ut   is the elongation of the hold-down connection in tension 

uc  is the compression of the CLT panel under compression forces 

 

There are no tensile forces in the connections at the 15th and 20th floor level. This makes that the rotation 

of those panels is identical independent of the connection stiffness. Only the connections at the ground 

floor, 5th floor and 10th floor will elongate under tensile forces. Furthermore, all compressive deformations 

can be calculated beforehand due to the assumption that the forces do not change under different stiffness 

values.  

 

The forces in the connections due to wind and vertical load are presented in the table below. These forces 

are calculated in SLS.  

 
Table 29, forces in the connections (SLS)  

  Ry,t,0 Ry,t,5th Ry,t,10th Ry,t,15th Ry,t,20th Ry,c,0 Ry,c,5th Ry,c,10th Ry,c,15th Ry,c,20th 

  kN kN kN kN kN kN kN kN kN kN 

Nwind  1054 675 380 169 42 1054 675 380 169 42 

Nweight,min 578 462 347 231 116           

Nweight,max           578 462 347 231 116 

                      

Ntot 476 213 33 0 0 1632 1137 727 400 158 

 

Using these values together with the potential elongation of the fasteners per level, the rotation of each 

row of CLT panels is found.  

 

  



 
 

The compression deformation of the CLT panel can be calculated using equation (100).  

 

 
𝑢𝑐,5𝑡ℎ =

𝑘 ∗ 𝑅𝑐

𝑡 ∗ 𝐸
=

2 ∗ 1137

280 ∗ 11.600
= 0,70 𝑚𝑚 

(103) 

 

This is done at all heights of the connections in the table below.  

 
Table 30, compression deformation at the connection 

uc  Description  Value   

    

uc,0 Compression deformation at foundation level 1,00 mm  

uc,5th Compression deformation at 5th floor 0,70  mm  

uc,10th Compression deformation at 10th floor 0,45 mm  

uc,15th Compression deformation at 15th floor 0,25 mm  

uc,20th Compression deformation at 20th floor 0,10 mm  

 

The tensile elongation of the connections is calculated using equation (99). The stiffness of the connection 

is half that of the stiffness of the modelled stiffness of the interface. This is similar to the approach for the 

connections at the vertical edges of the CLT panels. The stiffness of the interface between the steel plate 

and the CLT panel is 100 kN/mm. Hence the stiffness of the connection is 50 kN/mm. Results are shown 

in the table below. The resulting rotations of the rigid bodies are also presented in this table.  

 
Table 31, tensile elongation of the connection 

K Kcon  ut,10th ut,5th ut,0 θ20th θ15th θ10th θ5th θ0 wrocking 

kN/mm per m kN/mm per m mm  mm  mm  mrad mrad mrad mrad mrad mm  

k = 10 k = 5 6,6 42,6 95,2 0,005 0,012 0,347 2,133 4,739 516 

k = 100 k = 50 0,66 4,26 9,52 0,005 0,012 0,055 0,244 0,518 58,3 

k = 1000 k = 500 0,07 0,43 0,95 0,005 0,012 0,025 0,055 0,096 12,5 

k = 10.000 k = 5.000 0,01 0,04 0,10 0,005 0,012 0,022 0,037 0,054 8,0 

k = infinite k = infinite 0 0 0 0,005 0,012 0,022 0,034 0,049 7,4 

 

Computer results have been shown in the table below. The rocking deformation is the increase in 

deformation at the top due to the connection stiffness. Forces in the connections have been presented as 

well for the bottom three panels. Based on these values, it can be observed that the tension force in the 

connection decreases for lower stiffness values. Similarly, the compression force increases.  

 
Table 32, computer results for rocking deformation of various connection stiffnesses 

K ux  wrocking  Ry,t,0 Ry,t,5th Ry,t,10th Ry,c,0 Ry,c,5th Ry,c,10th 

kN/mm per m mm  mm  kN kN kN kN kN kN 

k = 10 144,5 54,9 63 9 0 -2152 -1185 -683 

k = 100 119,9 30,3 303 83 4 -1889 -1118 -667 

k = 1000 101,0 11,4 781 273 47 -1698 -1041 -645 

k = 10.000 95,9 6,3 1045 371 84 -1646 -1018 -636 

k = infinite 89,6 0 1022 377 82 -1589 -1028 -640 

 

The results for the top deformation have been gathered in the table above. It can be seen that the rocking 

deformation from computer results does not match that of the theory. This is due to the assumption that 



 
 

loads on the connections do not change. The force in the connection at the ground floor is only 6% of the 

assumed force, hence only 6% of the elongation will occur.  

 

When the elongation of the connection is corrected for the observed tensile forces in the computer model 

an adjusted rocking deformation can be calculated. The elongation of the connections and compression of 

the CLT panels has been calculated based on the forces found in SCIA from Table 32. Results are 

presented in the tables below. The resulting rigid body rotation and rocking deformation at the top is also 

presented.  

 
Table 33, elongation of the connections and compression of the CLT panels based on forces from SCIA 

 ut,10th ut,5th ut,0  uc,20th uc,15th uc,10th uc,5th uc,0 

 mm  mm  mm   mm mm mm mm mm 

k = 10 12,6 1,8 0  0,10 0,25 0,42 0,73 1,33 

k = 100 6,06 1,66 0,08  0,10 0,25 0,41 0,69 1,16 

k = 1000 1,56 0,55 0,09  0,10 0,25 0,40 0,64 1,05 

k = 10.000 0,21 0,07 0,02  0,10 0,25 0,39 0,63 1,01 

k = infinite 0 0 0  0,10 0,25 0,39 0,63 0,98 

 
Table 34, rotation of rigid bodies and resulting rocking deformation at the top 

 θ20th θ15th θ10th θ5th θ0  wrocking 

 mrad mrad  mrad mrad mrad  mm  

k = 10 0,005 0,012 0,641 0,125 0,065  43,1 

k = 100 0,005 0,012 0,319 0,118 0,069  28,0 

k = 1000 0,005 0,012 0,098 0,063 0,070  14,3 

k = 10.000 0,005 0,012 0,031 0,040 0,066  9,5 

k = infinite 0,005 0,012 0,021 0,036 0,065  8,7 

 

This adjusted rocking deformation is a better estimate of the actual rocking deformation in SCIA.  

 

In conclusion 

It is found that the tensile forces in the connections highly depend on the stiffness of the connections. This 

implies that a simplified theoretical hand calculation can only be performed for connections with a relative 

large stiffness. Otherwise the forces calculated in the connections will be a significant overestimation of 

the actual forces, leading to an overestimation of the elongation of that connection. This in turn results in 

large rocking deformations that have not been observed in the computer model.  

 

Calculating the rocking deformation by hand with the use of forces from the computer model shows that 

the method can predict rocking deformations reasonably accurate, but that there is a need to use the actual 

tensile forces in the connection.  

 

  



 
 

A6.2.5 Connections on the horizontal edge – sliding 
 

The sliding deformation is calculated by the equation below 

 

 
𝑤𝑠𝑙 =

(𝑞𝑤𝑖𝑛𝑑 − 𝜇𝐹 ∗ 𝑞𝑤𝑒𝑖𝑔ℎ𝑡) ∗ ℎ ∗ 𝑛

2 ∗ 𝑏 ∗ 𝐾𝑠𝑒𝑟
 

(104) 

 

Where 

 

h  is the total height of the structure   m 

n is the number of sliding surfaces along the height - 

b is the total width of the structure    m 

kser  is the stiffness of the fastener group    kN/mm 

 

A single connection has two surfaces or interfaces that have a stiffness to model the bolt stiffnesses of one 

side of the connection. Each with an assumed stiffness of 100 kN/mm. Except at the foundation, where 

only one surface with a stiffness is modelled. A total of 9 surfaces of 100 kN/mm are modelled over the 

height. Over the width of the façade 14 connections each with a width of 0,58 meter have been modelled. 

This in total leads to a slip deformation of 11,6 mm. 

 

 
𝑤𝑠𝑙 =

(27,1 − 0) ∗ 77,5 ∗ 9

2 ∗ 14 ∗ 0,58 ∗ 100
= 11,6 𝑚𝑚 

(105) 

 

This is compared to results from SCIA. Here a top deformation was found of 102,4 mm, whereas the top 

deformation without sliding connection stiffness was found to be 89,0 mm. This difference of 13,4 mm is 

the result of sliding deformation. Hence the sliding behavior is acceptable. 

 

 
 

Figure 22, top displacement in SCIA for a model with only connections deforming under sliding 

  



 
 

A6.3 Modelling of the transversal façade 
The effective width has been calculated using an equation presented by Chiewanichakorn et al. (2004).  

 

 

𝑏𝑒𝑓𝑓 =

∫ 𝑛𝑦
𝑏
1
2
𝑏

𝑛𝑦,𝑚𝑎𝑥
=

0,5 ∗ 𝑅𝑦

𝑛𝑦,𝑚𝑎𝑥
 

(106) 

 

A simplified model was made of the transversal façade consisting of nine CLT panels next to one another. 

On the edge panels a distributed vertical load of 100 kN/m has been applied. The figure below shows the 

maximum force per meter on the CLT façade at a height of 3,1 meter from the foundation, which is 1483 

kN/m. A total force of 3100 kN acts on the structure. Which results in an effective width of 1,0 meter. 

Values for other heights are presented in Table 35.  

 

 
Figure 23, force ny per meter on the façade 

 
Table 35, effective width of the transversal façade 

Model Ry  ny,max beff Percentage  beff applied 

 kN kN/m m  m 

15,5 meter 3100 1483 1,0 20% 1,1 

31,0 meter 6200 2143 1,4 28% 1,3 

46,5 meter 9300 2533 1,8 35% 2,0 

62,0 meter 12.400 2864 2,2 41% 2,7 

77,5 meter 15.500 3185 2,4 47% 3,4 

 

The applied effective width deviates from the calculated effective width. This is due to the fact that 

initially a different force on the structure was applied in an earlier calculation. This resulted in a different 

effective width, which was then modelled in SCIA. In hindsight this approach was deemed unsuitable and 

was adjusted to be more accurate. However, this was not altered in the model due to time constraints.  



 
 

A7 Chapter 7 appendices 

A7.1 Theoretical top deformation including connection stiffness 
The computer results will be compared to theoretical results. To do so, the top deformation of the model 

of 77,5 meter is calculated in this chapter. The contribution of each deformation component is calculated 

for the actual applied connection that has been presented in the previous chapters.  

 

The deformation of the façade structure without connections was calculated in chapter A4 and found to be 

218 mm.  

 

The connection stiffness for the theoretical deformation is calculated using table 14 from chapter 5.4. The 

kser value used for hand calculations cannot equal the multi-linear load-displacement curve used in the 

computer model. Hence the multi-linear curve has to be simplified by taking an average stiffness. This 

stiffness is 60% of kser as indicated with the red line in the figure below, without including the initial slip.  

 

 
Figure 24, non-linear load-deformation curve for a multiple fastener connection 

 

 

  

k = 60% kser  



 
 

Sliding 

The sliding deformation is calculated below. The number of sliding surfaces for the model of 77,5 meter is 

9. There are seven connections that each have a stiffness of 768 kN/mm.  

 

𝑤𝑠𝑙𝑖𝑑𝑖𝑛𝑔 =
𝑞𝑤𝑖𝑛𝑑 ∗ ℎ ∗ 𝑛

2 ∗ 𝑛𝑐𝑜𝑛 ∗ 𝐾𝑠𝑒𝑟
=

27,1 ∗ 77,5 ∗ 9

2 ∗ 7 ∗ 514
= 2,6 𝑚𝑚 

 

Rocking 

The rocking deformation is calculated below. The stiffness of the hold-down connection is 2215 kN/mm 

at the foundation and 665 kN/mm for all other hold-down connections at higher levels (which is half of 

the kser,ef value found above of 1329 kN/mm as this is the stiffnes per side of the connection.)  

 

It is expected that the forces on the connections will reduce due to the stiffness of the connections. This 

effect will not be included in the calculation of the rocking deformation. 

 

𝑞𝑤𝑖𝑛𝑑 = 27,1 𝑘𝑁/𝑚 
𝑞𝑤𝑒𝑖𝑔ℎ𝑡 = 14,82 + 2,54 + 3,44 = 20,8 𝑘𝑁/𝑚 per story 

 

Table 36, calculation of the rocking deformation 

Connection 

location 

MEk NEk ny,wind ny,c ny,t bt bc ∆L uc  θ  atop  wr  

  kNm kN/m kN/m     m m mm mm mrad m mm 

Twentieth 

floor 

No tension, so no rocking contribution    15,5   

Fifteenth 

floor 

12.733 208 455 663 247 5,5 14,8 0,64 0,24 0,04 31,0 1,34 

Tenth floor 27.857 312 995 1307 683 7,0 13,3 1,77 0,47 0,11 46,5 5,13 

Fifth floor 48.014 416 1715 2131 1299 7,7 12,6 3,37 0,76 0,20 62,0 12,6 

Foundation 72.411 520 2586 3106 2066 8,1 12,2 1,61 1,11 0,13 77,5 10,4 

                          

                      Total 29,5 

 

The rocking deformation is found to be  

 

𝑤𝑟𝑜𝑐𝑘𝑖𝑛𝑔 = 29,5 𝑚𝑚 

 

 

  



 
 

Additional bending deformation - Schelling 

Reduction of the bending stiffness results in additional bending deformation that is calculated using the 

method of Schelling. The stiffness value is a smeared value of the connection stiffness. This value is 

halved since it is the bolt stiffness on both sides of the steel plate. There are two connections per story. 

 

 

𝑘𝑠𝑒𝑟 = 2 ∗
128

3,10
= 82,8 

𝑘𝑁

𝑚𝑚
𝑝𝑒𝑟 𝑠𝑡𝑜𝑟𝑦 

 

 

The additional deformation due to reduced bending stiffness is an additional deformation that can be 

considered as a percentage of the calculated bending deformation. The calculation of the γred value is 

presented on the next page. 

 

𝑤𝑠𝑐ℎ𝑒𝑙𝑙𝑖𝑛𝑔 =
1 − 𝛾𝑟𝑒𝑑

𝛾𝑟𝑒𝑑
∗ 𝑤𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = 0,23 ∗ 132 = 30,0 𝑚𝑚 

 

The total contribution of the connection stiffness to the deformation is the sum of the components 

 

𝑤𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 = 𝑤𝑠𝑙𝑖𝑑𝑖𝑛𝑔 + 𝑤𝑟𝑜𝑐𝑘𝑖𝑛𝑔 + 𝑤𝑠𝑐ℎ𝑒𝑙𝑙𝑖𝑛𝑔 = 2,6 + 29,5 + 30,0 = 62 𝑚𝑚 
 

Adding this to the deformation of the structure, the total theoretical deformation is found to be 

 

𝑤𝑡𝑜𝑝 = 218 + 62 = 280 𝑚𝑚 

 

  



 
 

Calculation of the additional bending deformation 

 



 
 

 

Theoretical top deformation including connection stiffness - results  

 

The results for all heights have been calculated in a similar way and shown below.  

 
Table 37, theoretical top deformation for the different heights of the façade 

Model h qk  panel t0 t EI GAS ∑EIp wfaçade wsl  wr  wb,slip   wtot  
m kN/m 

 
mm mm x1015 

Nmm2 

x106 

N 

x1015 

Nmm2 

mm mm  mm  mm   mm  

15,5 meter 15,5 15,7 LL-190/7s 150 190 495 959 0,903 4,92 0,1 0,1 1,2  6 

31,0 meter 31 19,6 LL-260/7s 200 260 660 1312 1,209 20,1 0,5 0,7 6,6  28 

46,5 meter 46,5 22,3 LL-400/11s 280 400 923 2019 1,690 39,8 1,3 5,2 17,3  64 

62,0 meter 62 24,7 LL-400/11s 280 400 923 2019 1,690 100 2,5 13,2 34,6  150 

77,5 meter 77,5 27,1 LL-400/11s 280 400 923 2019 1,690 218 2,6 29,5 30,0  280 

 

 

 

 

 

 

  



 
 

A7.2 Theoretical top deformation including connection stiffness and slip 
Adding an additional slip to the non-linear load-displacement curve results in additional deformations of 

the top that have to be calculated differently than the theory presented before.  

 

Free sliding Free rocking Free additional bending deformation 

   

Figure 25, overview of deflection components due to free initial slip in the connections  



 
 

Sliding slip 

Sliding slip deformation is the sum of the initial slip of each shear plane. The model of 77,5 meter has 9 

shear planes, which makes that the deformation is 

 

𝑤𝑠𝑙𝑖𝑑𝑖𝑛𝑔,𝑠𝑙𝑖𝑝 = 𝑛 ∗ 𝑠𝑙𝑖𝑝 = 9 ∗ 1,0 = 9,0 𝑚𝑚 

 

Rocking slip 

Rocking slip is the sum of the top deflection contributions of rigid body rotation of each layer of the 

façade. This rigid body rotation of a single layer is the result of the elongation of the connection (in this 

case free slip) multiplied by the ration width over distance to the top. Provided that the connection is in 

tension. Otherwise, no slip will occur. 

 

𝑤𝑟𝑜𝑐𝑘𝑖𝑛𝑔,𝑠𝑙𝑖𝑝 =
ℎ𝑖

𝑏
∗ 𝑠𝑙𝑖𝑝 

 
Table 38, rocking deformation (rigid body rotation) as a result of free slip 

Connection location b Distance to top ∆Lcon wr  

 m m mm mm 

Twentieth floor    0 

Fifteenth floor 20,3 31,0 2,0 3,1 

Tenth floor 20,3 46,5 2,0 4,6 

Fifth floor 20,3 62,0 2,0 6,1 

Foundation 20,3 77,5 1,0 3,8 

     

Total    17,6 

 

𝑤𝑟𝑜𝑐𝑘𝑖𝑛𝑔,𝑠𝑙𝑖𝑝 = 17,6 𝑚𝑚 

 

Additional bending deformation - Schelling  

Top deformation due to slip in the shear keys on the vertical edges of the panels is the result of rigid body 

rotation.  

 

𝑤𝑆𝑐ℎ𝑒𝑙𝑙𝑖𝑛𝑔,𝑠𝑙𝑖𝑝 = 2 ∗ 𝑠𝑙𝑖𝑝 ∗
ℎ

𝑏𝑝𝑎𝑛𝑒𝑙
= 2 ∗ 1,0 ∗

77,5

2,9
= 53,4 𝑚𝑚 

 

  



 
 

Total deformation 

The total contribution of the connection slip to the deformation is the sum of the components 

 

𝑤𝑠𝑙𝑖𝑝 = 𝑤𝑠𝑙𝑖𝑑𝑖𝑛𝑔,𝑠𝑙𝑖𝑝 + 𝑤𝑟𝑜𝑐𝑘𝑖𝑛𝑔,𝑠𝑙𝑖𝑝 + 𝑤𝑆𝑐ℎ𝑒𝑙𝑙𝑖𝑛𝑔,𝑠𝑙𝑖𝑝 = 9,0 + 17,6 + 53,4 = 80 𝑚𝑚 
 

Adding this to the deformation of the structure, the total theoretical deformation is found to be 

 

𝑤𝑡𝑜𝑝 = 280 + 80 = 360 𝑚𝑚 

 

A similar calculation for the other modelled heights gives the following overview. 

 
Table 39, top deformations of the individual slip components 

Model ksliding  kholddown kSchelling wsliding wrocking wschelling    wsliding,sl wrocking,sl wschelling ,sl 

 kN/mm kN/mm kN/mm mm mm mm  mm mm mm 

15,5 meter 128 128 128 0,1 0,1 1,2  1,0 0,8 10,7 

31,0 meter 128 128 128 0,5 0,7 6,6  3,0 3,1 21,4 

46,5 meter 
514 

257 

514 

257 
128 1,3 5,2 17,3  5,0 6,9 32,1 

62,0 meter 
514 

257 

771 

514 

257 

128 
2,5 13,2 34,6  7,0 12,2 42,8 

77,5 meter 514 
1285 

771 
257 2,6 29,5 30,0  9,0 17,6 53,4 

 

The stiffness values for the models of 46,5 meter and 62,0 meter differ for the bottom panels and the 

panels starting from the 5th floor and onwards. That is why there are two values in the table. Where the 

highest value is the stiffness value of the connection at the foundation level and the lowest value is the 

stiffness of the other connections. 

 
Table 40, top deformations of the façade with and without connection stiffnesses 

 Model wrigid wsprings wsprings+slip 

  mm  mm mm 

15,5 meter 4,92 6,32 18,8 

31,0 meter 20,1 27,9 55,4 

46,5 meter 39,8 63,6 108 

62,0 meter 99,6 150 212 

77,5 meter 218 280 360 

 

In conclusion 

The theoretical top deformations indicate an increase of the top deformation according to the values in 

Table 40. The increase of the top deformation when connection stiffness is included without initial slip 

shows an even increase for all heights. The deformation increase of the model of 62,0 meter is relatively 

larger than that of the model of 77,5 meter. Which is explained by the fact that the model of 77,5 meter 

has larger connections which have a higher stiffness.  

The additional top deformation of the façades including initial slip of the connection shown that for all 

heights the top deformation increases significantly. The relative increase of the top deformation of the 

model of 15,5 meter is a factor 3, which is very high. This increase is primarily the result of the additional 

bending deformation.  

  



 
 

A7.3 Addition of a concrete core 
The addition of a concrete core (modelled as a concrete wall of 300 mm with cracked concrete properties) 

will have a beneficial influence on the strength and stiffness behavior of the CLT façade. 

 

• The deformation of the structure is reduced  

• The forces on the façade are reduced 

 

A7.3.1 Reduced deformation of the structure 
The deformation of the structure is reduced as the concrete core has a bending stiffness and shear stiffness 

that resist lateral deformation. Especially the shear deformation is reduced given the fact that the shear 

stiffness of concrete is significantly higher than that of CLT (4167 vs 450 N/mm2).  

 

For the model of 77,5 meter 

 

EICLT  923  * 1015  Nmm2   (88%) 

EIcore  128 * 1015  Nmm2  (12%) 

EIcombined 1051 * 1015  Nmm2 

 

GAs,CLT  2019  * 103  kN  (27%) 

GAs,core  5556 * 103  kN  (73%) 

GAs,combined 7575 * 103  kN 

 

It is assumed that the bending deformation and deformation due to bending slip (method of Schelling) is 

reduced by 12% as the bending stiffness of the structure is increased by that same amount. Shear 

deformation and deformation of the piers is reduced by 73%. The overall reduction of the top deformation 

is found to be 29%. The table below shows one example of the calculation of the top deformation for the 

model of 77,5 meter with an additional core. Chapter A7.5 contains a complete overview.  

 
Table 41, exemplary calculation for the façade of 77,5 meter with an additional concrete wall 

Model wbending wshear wpiers wSchelling  wtot 

 𝑞𝑤𝑖𝑛𝑑 ∗ ℎ4

8 ∗ 𝐸𝐼𝑟𝑒𝑑
 

𝑞𝑤𝑖𝑛𝑑 ∗ ℎ2

2 ∗ 𝐺𝐴𝑠
 𝑇𝑛 ∗

𝑞𝑤𝑖𝑛𝑑 ∗ ℎ𝑠𝑡𝑜𝑟𝑦 ∗ ℎ𝑝𝑖𝑒𝑟,𝑒𝑓𝑓
3

12 ∗ ∑𝐸𝐼𝑝𝑖𝑒𝑟

 
Method of 

Schelling 

  

       

CLT 132 40,3 19,1 26,1  218 

CLT+core 116 10,8 5,1 23,0  155 

 

 

 

 

 

  



 
 

A7.3.2 Reduced forces of the façade 
The forces on the structure are reduced due to the additional concrete core that has been added to the 

structure. Bending forces on the façade can be reduced by 12%.  

 

The shear forces on the façade can be reduced by 73% by adding a concrete stability element to the 

structure. This is an important design option given the fact that the panel dimensions for the models of 

15,5; 31,0 and 46,5 meter were governed by the shear forces. When 27% of the shear forces in the corners 

is calculated, it is found that the thickness of the CLT panels can significantly be reduced.  

 

When different type (smaller thickness) of CLT panels are used, the shear force on the panel will be lower 

as the contribution of the shear stiffness of that panel to the total shear stiffness of the structure is lower. 

This makes that the smaller the thickness of the CLT panels, the lower the actual shear force on the panel, 

as the core will resist more shear force.  

 
Table 42, required CLT panels and corresponding unity checks, adjusted for concrete core 

Model Panel Unity checks 

  type ny,t ny,c nxy  nxy,corner nxy,reduced nxy,corner,red 

15,5 meter LL-190/7s 0,00 0,20 0,42 0,63  0,10  0,15 

31,0 meter LL-190/7s 0,08 0,50 0,95 1,43  0,23  0,35 

31,0 meter LL-260/7s 0,06 0,33 0,64 0,96  0,20  0,30 

46,5 meter LL-190/7s 0,36 0,92 1,56 2,34  0,38  0,57 

46,5 meter LL-260/7s 0,27 0,62 1,04 1,56  0,32  0,48 

46,5 meter LL-300/9s 0,22 0,52 1,04 1,56  0,34  0,51 

46,5 meter LL-400/11s 0,19 0,43 0,52 0,78  0,21  0,32 

62,0 meter LL-300/9s 0,52 0,83 1,48 2,22  0,49  0,74 

62,0 meter LL-360/9s 0,52 0,83 0,74 1,11  0,28  0,42 

62,0 meter LL-400/11s 0,45 0,70 0,74 1,11  0,30  0,45 

77,5 meter LL-400/11s 0,85 1,06 0,99 1,49  0,40  0,60 

 

 

 

 

  



 
 

A7.4 Theoretical contribution of the effective width 
The transversal walls can have a contribution on the strength and stiffness behavior of the CLT façade as 

well. Research has been done on the potential contribution of these walls. The effective width of the 

transversal walls itself is fully researched, only the effect that a certain effective width may have on the 

structure. 

 

• The deformation of the structure is reduced 

• The forces on the façade are different, not necessarily reduced 

 

A7.4.1 Reduced deformation of the structure 
The transversal façades will increase the bending stiffness of the overall structure. It will not have a 

significant influence on the shear stiffness, nor the deformation of the lintels and piers.  

 

The bending stiffness of the overall structure is reduced by the connection stiffness according to the 

method of Schelling. This method was previously derived for 7 elements. With the addition of transversal 

walls, this method is to be derived for a structure of 9 elements as well. This derivation is shown in 

chapter A7.4.3. Special attention is required for the outer elements as they have a different distance ai. 

Subsequently the boundary conditions have been adjusted.  

 

A comparison of the effective gamma-factor for a façade with and without a transversal panel (width of 

2,9 meter) has been made. The graph below on the left shows that the effective gamma-factor for the 

façade with effective width is slightly less than the values that would be found for the façade without the 

influence of the transversal walls.  

 

  



 
 

Looking at the bending stiffness of the façade including effective width a significant increase can be 

found. An increase of 1,94 *1018 Nmm2 is calculated with equation (107). The bending stiffness then 

becomes 2,86 * 1018 Nmm2. The graph in Figure 27 shows that for high stiffnesses of the connections, the 

bending stiffness indeed approaches 2,86 * 1018 Nmm2.  

 

 ∆𝐸𝐼 = 𝐸 ∗ ∑𝐴 ∗ 𝑎2 = 11.600 ∗ 2 ∗ 280 ∗ 2900 ∗ 10.1502 = 1,94 ∗ 1018 
(107) 

 

 𝐸𝐼𝐶𝐿𝑇 = 0,92 ∗ 1018 + 1,94 ∗ 1018 = 2,86 ∗ 1018 (108) 

 

 
Figure 26, gamma factor of the façade with and without 
transversal walls 

 
Figure 27, bending stiffness of the façade with and without 
transversal walls 

 

The increased bending stiffness has a direct relation to the bending deformation. This bending deformation 

was found to be 132 mm for the façade of 77,5 meter. The increased bending stiffness results in a bending 

deformation of 43 mm, which is a reduction of 89 mm. This shows that there is a large potential 

contribution of the transversal façade on the bending stiffness.  

 

  



 
 

A7.4.2 Forces on the transversal façade 
The transversal façades have the potential to contribute largely to the bending stiffness. By doing so, the 

force transfer in the façade will also change significantly. The moment of resistance W is related to the 

moment of inertia I as shown below. This makes that the moment of resistance also increases by a factor 3 

in case transversal walls are included.  

 

The force in the transversal wall can be calculated by first calculating the maximum stress in the outer 

panel for the new found bending stiffness. This stress is then multiplied by the area of the transversal wall. 

The maximum increment of the bending moment for a single story ∆M is taken from the table in chapter 4 

of the main report.  

 

 𝜎𝑦 =
∆𝑀 ∗ 𝑏

2 ∗ 𝐼
=

7885 ∗ 106 ∗ 20,3

2 ∗
2,86 ∗ 1018

11.600
 

= 0,325 𝑁/𝑚𝑚2 
(109) 

 

 𝐹𝑑 = 𝜎𝑦 ∗ 𝑡 ∗ 𝑏𝑒𝑓 = 𝑛𝑦 ∗ 𝑏𝑒𝑓 (110) 

 

 𝐹𝑑 = 0,325 ∗ 280 ∗ 2900 = 264 𝑘𝑁 (111) 

 

This force of 264 kN is 68% of the acting bending moment ∆M (264 * 20,3 = 5350 kNm). 32% of the 

bending moment is resisted by the façade itself. In other words, the additional transversal walls reduce the 

forces in the façade by 68%.  

 

This force of 264 kN is to be transferred to the transversal walls by the connections in the corners. The 

connections on the vertical edges of the façade panels have been designed for a force of 291 kN according 

to the table in chapter 4.5. This shows that the connections required for connecting the façade to the 

transversal panels can be similar to the connections used for the façade panels on the vertical edges. 

Although additional bending moments due to eccentricities do have to be included.  

 

 

 

  



 
 

A7.4.3 Maple script for the effective bending stiffness of the façade with an effective width 

  



 
 

  



 
 

 
 

 

 

  



 
 

A7.5 Reduced top deformation – theoretical calculation without connection stiffnesses 
The theoretical top deformation of the models with an additional core and/or effective width has been 

calculated for all heights, using the equations presented in the previous chapters. First the top deformation 

of the façade is calculated without connections (Table 43). Then the increased top deformations due to 

connection deformation is calculated in Table 44. Finally the initial slip of the connections is also included 

in the top deformation (Table 45).  

 
Table 43, theoretical top deformations for façades with additional stability elements – without connection stiffnesses 

Model Height wbending  wshear  wpiers  wSchelling   wtot 

            

            

CLT 77,5 meter 132 100% 40,3 100% 19,1  26,1   218 

CLT+core 77,5 meter 116  88% 10,8 27% 5,1 27% 23,0 88%  155 

CLT+beff 77,5 meter 38,1 29% 40,3 100% 19,1 100% 26,1 100%  124 

Both 77,5 meter 33,7 25% 10,8 27% 5,1 27% 23,0 88%  72,6 

            

CLT 62,0 meter 49,4 100% 23,5 100% 11,2  15,5   100 

CLT+core 62,0 meter 43,5 88% 6,35 27% 3,02 27% 13,6 88%  66,5 

CLT+beff 62,0 meter 16,7 34% 23,5 100% 11,2 100% 15,5 100%  66,9 

Both 62,0 meter 14,8 30% 6,35 27% 3,02 27% 13,6 88%  37,8 

            

CLT 46,5 meter 14,1 100% 11,9 100% 5,80  7,97   39,8 

CLT+core 46,5 meter 12,4 88% 3,21 27% 1,57 27% 7,01 88%  24,2 

CLT+beff 46,5 meter 5,7 41% 11,9 100% 5,80 100% 7,97 100%  31,4 

Both 46,5 meter 5,1 36% 3,21 27% 1,57 27% 7,01 88%  16,9 

            

CLT 31,0 meter 3,43 100% 7,17 100% 3,27  6,20   20,1 

CLT+core 31,0 meter 2,88 84% 1,36 19% 0,62 19% 5,21 84%  10,1 

CLT+beff 31,0 meter 1,81 53% 7,17 100% 3,27 100% 6,20 100%  18,5 

Both 31,0 meter 1,53 45% 1,36 19% 0,62 19% 5,21 84%  8,7 

            

CLT 15,5 meter 0,23 100% 1,97 100% 0,95  1,77   4,92 

CLT+core 15,5 meter 0,18 79% 0,24 12% 0,11 12% 1,40 79%  1,90 

CLT+beff 15,5 meter 0,15 67% 1,97 100% 0,95 100% 1,77 100%  4,84 

Both 15,5 meter 0,12 53% 0,24 12% 0,11 12% 1,40 79%  1,87 

 

 

 

 

  



 
 

Table 44, theoretical top deformations for façades with additional stability elements –connection stiffnesses without 

slip 

Model Height wtot wslip  wrock  wb,slip   wtot  

           

           

CLT 77,5 meter 218 2,6 100% 29,5 100% 30,0 100%  280 

CLT+core 77,5 meter 155 0,7 27% 26,0 88% 26,4 88%  208 

CLT+beff 77,5 meter 124 2,6 100% 8,56 29% 8,7 29%  144 

Both 77,5 meter 72,6 0,7 27% 7,38 25% 7,5 25%  88 

              

CLT 62,0 meter 100 2,5 100% 13,2 100% 34,6 100%  150 

CLT+core 62,0 meter 66,5 0,7 27% 11,6 88% 30,4 88%  109 

CLT+beff 62,0 meter 66,9 2,5 100% 4,49 34% 11,8 34%  86 

Both 62,0 meter 37,8 0,7 27% 3,96 30% 10,4 30%  53 

            

CLT 46,5 meter 39,8 1,3 100% 5,2 100% 17,3 100%  64 

CLT+core 46,5 meter 24,2 0,4 27% 4,58 88% 15,2 88%  44 

CLT+beff 46,5 meter 31,4 1,3 100% 2,13 41% 7,09 41%  42 

Both 46,5 meter 16,9 0,4 27% 1,87 36% 6,23 36%  25 

              

CLT 31,0 meter 20,1 0,5 100% 0,7 100% 6,6 100%  28 

CLT+core 31,0 meter 10,1 0,1 19% 0,59 84% 5,54 84%  16 

CLT+beff 31,0 meter 18,5 0,5 100% 0,37 53% 3,50 53%  23 

Both 31,0 meter 8,7 0,1 19% 0,32 45% 2,97 45%  12 

            

CLT 15,5 meter 4,92 0,1 100% 0,1 100% 1,2 100%  6,3 

CLT+core 15,5 meter 1,90 0,0 12% 0,08 79% 0,95 79%  2,9 

CLT+beff 15,5 meter 4,84 0,1 100% 0,07 67% 0,80 67%  5,8 

Both 15,5 meter 1,87 0,0 12% 0,05 53% 0,64 53%  2,6 

 

 

  



 
 

Table 45, theoretical top deformations for façades with additional stability elements –connection stiffnesses including 

slip 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

  

Model Height wtot wsliding,sl  wrock,sl  wschelling,sl   wtot 

           

           

CLT 77,5 meter 280 9 100% 17,6 100% 53,4 100%   360 

CLT+core 77,5 meter 208 2,43 27% 15,5 88% 47 88%  273 

CLT+beff 77,5 meter 144 9 100% 17,6 100% 53,4 100%   266 

Both 77,5 meter 88 2,43 27% 15,5 88% 47 88%  191 

            

CLT 62,0 meter 150 7 100% 12,2 100% 42,8 100%  212 

CLT+core 62,0 meter 109 1,89 27% 10,7 88% 37,7 88%   159 

CLT+beff 62,0 meter 86 7 100% 12,2 100% 42,8 100%  145 

Both 62,0 meter 53 1,89 27% 10,7 88% 37,7 88%   100 

            

CLT 46,5 meter 64 5 100% 6,9 100% 32,1 100%   108 

CLT+core 46,5 meter 44 1,35 27% 6,07 88% 28,2 88%  80,0 

CLT+beff 46,5 meter 42 5 100% 6,9 100% 32,1 100%   81,9 

Both 46,5 meter 25 1,35 27% 6,07 88% 28,2 88%  57,5 

            

CLT 31,0 meter 28 3 100% 3,1 100% 21,4 100%  55,4 

CLT+core 31,0 meter 16 0,57 19% 2,6 84% 18 84%   37,5 

CLT+beff 31,0 meter 23 3 100% 3,1 100% 21,4 100%  47,2 

Both 31,0 meter 12 0,57 19% 2,6 84% 18 84%   30,6 

            

CLT 15,5 meter 6,3 1 100% 0,8 100% 10,7 100%   18,8 

CLT+core 15,5 meter 2,9 0,12 12% 0,63 79% 8,45 79%  12,2 

CLT+beff 15,5 meter 5,8 1 100% 0,8 100% 10,7 100%   17,5 

Both 15,5 meter 2,6 0,12 12% 0,63 79% 8,45 79%   11,2 



 
 

A7.6 Shape of openings 
The shape of openings have been defined as rectangular openings of 1,74x1,74 meter in chapter 3.3. 

However, different shapes of openings can be required. For instance in case a door opening is needed to 

allow access to a balcony. That is why the façade has also been analyzed with regard to different shapes of 

openings. 

 

This analysis has been done using the theoretical hand calculations that have been presented in this report. 

Influence of connections has not been included. As this would (in theory) be unaffected by the openings in 

the panels.  

 

Three alternative openings have been considered. The first is an opening with the dimensions required for 

a door (1,00 x 2,40 meter). The second opening is dimensioned for a door with an additional sidelight 

(1,40 x 2,40 meter). Finally the third opening has been dimensioned for a wider window of 2,00 x 1,20 

meter.  

 

Figure 28, four different openings in the façade panels 

 
 

  



 
 

Table 46, top deformation of the façade for different type of openings 

wtop  Rectangular Door Door + sidelight Window 

 1,74 x 1,74 m 1,00 x 2,40 m 1,40 x 2,40 m 2,00 x 1,20 m 

     

15,5 meter 4,92  3,75 6,83 5,57 

31,0 meter 20,1 15,2 27,1 22,9 

46,5 meter 39,8 28.8 47,1 47,1 

62,0 meter 100 69,8 110 120 

77,5 meter 218 149 225 265 

 

Top deformations of the façade for different openings have been calculated using the theory presented in 

chapter 4. The door opening shows that the top deformation is reduced compared to the rectangular 

openings used for the computer models. When a sidelight is added to the door the top deformations 

increase such that they surpass the top deformations of the rectangular openings. The increase of top 

deformation is primarily the result of the increased deformation as a result of deformations of the lintels.  

 

The window openings also result in an increased top deformation when compared to the rectangular 

openings. This is mainly due to the reduced bending stiffness of the façade, as the bending stiffness is 

related to the area of the piers. Another contributor is the horizontal deformation of the piers themselves. 

For all other openings, the pier deformation is relative low. But for the wider windows this becomes more 

prominent.  

 


