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Abstract. The Theodorsen-Garrick conformal mapping is used to make a grid around a
wing section and to compute the potential flow around it. The potential flow is a solution
to the incompressible Euler equations and can be used to verify the inviscid part of RANS
codes.

1 INTRODUCTION

The ideal test for a CFD code is of course an analytic solution. Analytic solutions to
the Navier Stokes or RANS equations are however restricted to specific geometries. Using
manufactured solutions gets around this limitation but the test functions are not physical
so even though conclusions about the order of accuray of the method and the relative
size of the errors can be drawn there is no direct connection to how the errors affects for
instance the integrated forces.

In the present work a potential flow solution from a conformal mapping of a wing
section is proposed for verification of the inviscid part of RANS codes.

2 CONFORMAL MAPPING

To transform the region on and outside of a wing section the method of Theodorsen
and Garrick is used!?. The transformation is done in three steps. First a Karman-Trefftz
transform is used to to remove the trailing edge corner.
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where § = 1/(2 — 7/m). The transform is singular in the points zo and z; and corners
with an included angle 7 in these points are transformed to have a continous derivate in
the (’-plane. For normal wing sections with a sharp trailing edge and a smooth leading
edge, zg is set to the trailing edge location while z; is located inside of the wing section.
The actual location of z; is arbitrary, but the image of the wing section is close to a circle
in the (’-plane if it is placed halfways between the point of maximum curvature and its
centre of curvature.

The next step is a translation

(=¢-¢ (2)
where (! is the coordinates of the centroid of the curve in the (’-plane. Centering the

curve on the origin together making with it into a near circle in the previous step improves
the convergence of the last step which is the Theodorsen-Garrick transform

(= gezyzo(aj"’ibj)ﬁ_j (3)

2.1 Computation of mapping constants

The wing section is given as offset points py, . .., p,, starting at the trailing edge, going
forward on the upper side, round the leading edge and back on the lower side back to the
trailing edge. In the following the trailing edge is assumed to be in the point (1,0) and
the leading edge in (0,0) so zg = 1 + 0.

To determine z; the point of maximum curvature is approximated by the offset point
closest to the leading edge py, : ®p;, = min Rp; and the centre of curvature cpp is found
by fitting a circle to the three points pr_1,pr, pry1- Finally, 2, = %(pL +crp).

The translation constant ¢/ is calculated as

O ISR Cf%“lcgﬂ — ¢
/ $d¢ o 1Sj+1 = Gl

where (|, ...,/ are the offset points transformed to the (-plane by the Karman-Trafftz
transform. The transform in this direction involves fractional powers of z — 2y and z — 21
so a tracking procedure that keeps the argument continous by switching Riemann sheet
when needed is used.

The hardest work is to determine the constants a; + ib; of the Theodorsen-Garrick
transform that maps the near circle in the (-plane to a unit circle in the zi-plane. First
express ¢ and £ in polar coordinates

(4)

¢ = re? (5)
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Substitute (5) into (3) and take the logarithm of both sides. The real and imaginary
parts of the equation are

Inr = ao+i(aj cos j¢ + b sin jo) (6)
j=1
0 = ¢+bo+zn:(bj cos j¢ — a;sin jo) (7)
j=1

To place the trailing edge at ¢ = 0 let

OrE = by + »_b; (8)

=1

where 7 F = arg (y. Evaluate the equation for the angle (7) for 2n uniformly spaced
angles

k
<;5k:27r% k=0,...,2n—1 9)

which gives 2n equations. With by determined from (8) there are 2n + 1 parameters
a;, b; to determine. Since there is one equation less than parameters, one parameter can
be chosen freely. With b,, = 0 the equations for the angles are

n—1
Hk — (bk‘ = b() + Z(b] COSj(bk —a; smyqﬁk) (10)
j=1
By re-writing the parameters as
Yo = bo (11)
y; = fracl2(b; +ia;) j=1,....n—1

Yn = 0
Yon—j = Yj jzlaan_l

the right hand side of (10) can be expressed as a discrete Fourier transform that can
be efficiently evaluated with FFT.

2n—1

O — b= > y;e™ i (12)
=0

Having thus determined the angles 8, an updated set of parameters a;, b; is computed
with the inverse transform
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1 2n—1 P
yi=— > lnr(@k)e_%”% (13)
2n =
where
ap = Yo (14)
An = Yn
a; = 2§Ryj jzl,,n—l
bj = —2§yj ]:1,,n—1
Yo and y,, are real and ys,—; = 75,7 = 1,...,n — 1 since y; are the Fourier coefficients

of a real sequence. The values Inr(f;) are obtained from a periodic cubic spline fit® to
the original points In |;].

The equations (12) and (13) are used iteratively to compute the parameters. The
iterations are started by setting a; = b; = 0 except for by = 6rE. Then (12) is applied to
compute the angles and finally (13) gives an updated set of parameters. The iterations
continue until the parameters have converged to sufficiently high accuracy. Sufficient
conditions for the convergence of this scheme are*

(Tmam/'rmin)l/Q —1 < € (15)

Olnr
ae max

e = 0.2954976

€

There are several approximations involved in the determination of the mapping pa-
rameters, but they do not introduce any errors when the transform is used for verification
since the grid and the potential flow solution are calculated with exactly the same param-
eters. Compare this to the situation if a panel method was used to generate a reference
solution. Then there could be differences in geometry due to different grid generators
being used, and there would also be errors due to the finite resolution of the panels.

2.2 Grid generation

Nodes for a structured grid is generated by transforming a cartesian grid in the polar
coordinates (r, @), r € [1, Tmaz), @ € [0, 27] of the xi-plane to the z-plane. If the section is
symmetrical a grid around one half can be generated by ¢ € [0, w]. The half grid may be
used to test the implementation of the symmetry boundary condition. Another variation
is add a constant to ¢ to test the influence of the position of the periodic boundary.

The transform concentrates points in the leading and trailing edge regions, so there
is no need to stretch the grid in the angular direction. In the radial direction it may be
advantageous to stretch towards r=1, see the figure below.
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Figure 1: Unstreched grid (left) and radially stretched grid (right).

3 POTENTAL FLOW SOLUTION

If £(2) is a conformal mapping, then the gradient and Laplacian of a scalar field ¢
transform as

Vo(§)dz/dE

Vo(z) = a2/ dE ] (16)
9 _ V9(9)
Vig(z) = [z de]? (17)

For exterior flow around a body in uniform flow the boundary conditions on the body
and far away are respectively

96
5 = 0 (18)
Vo — Us (19)

The first condition is unaffected by the transformation and the second is fulfilled if
|dz/d¢] — 1 as |xi| — oo.

The potential flow solution around a unit circle in the &-plane that fulfills the Kutta
condition of tangential flow (or stagnated for finite trailing edge angle) is

Voo = rUscos(§— ) (21)
_ peos(E—a)

o= (22)
_ 8

¢ = o5 (23)
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where « is the angle of attack. The boundary conditions gives the source strengths

p = —2nUs (24)
v = 4nUysin (o — &pE) (25)

The transformation derivative is

% — (1 + D>EQ1/6_1<21 — 20)2 (26)
0 (QVP —1)2(B— EE— (L)
D = Y (a;+ib;)j¢ (27)
j=0
E = ezyzo(ajJribj)g_j (28)
(l+ EE — Bz
© = Ui B pa (29)

The mapping derivative does not fulfil condition that |dz/d¢| — 1 as |zi| — oo since
the near circle has to be scaled to becom a unit circle in the &-plane. The scale factor is
e~ % so the velocity field in the z-plane is

Vo(©dz/de _,
42/ de?

The static pressure is given by Bernoullis equation. With the reference pressure p,, = 0

=V¢ = (30)

p=LU%—u?) (31)

4 CONCLUSIONS

The Theodorsen-Garrick tranform has been implemented and integrated in the
SHIPFLOW code. Grids and velocity and pressure fields can be computed.

CPU time to compute mapping parameters, grids and field are negligable.

The reference solution is exact in the sense that it is an analytical solution for the
mapped geometry.

Things that can be tested:

- Discretisation of incompressible Euler equations.
- Solution of incompressible Euler equations.

- Implementation of symmetry boundary condition.

6



Bjorn Regnstrom

- Integration of pressure force.

- By extruding the grid in the third dimension and transpose the indices in the struc-
tured grid arrays a substantial part of the 3D implementation can also be tested.

- For testing of more complicated topologies, multi-element wing section mappings
that are a generalisation of the above are available!2.

REFERENCES

[1] D.C. Ives. A modern look t conformal mapping including multiply connected regions.
AIAA Journal, 14(8), 1006-1011, (1976)

[2] N.D.Halsey. Potential flow analysis of multielement airfoils using conformal mapping.
AIAA Journal, 17(12), 1281-1288, (1979)

[3] Mortensen. Geometric Modeling. John Wiley & Sons.

[4] S.E. Warschawski. On Theodorsen’s method of conformal mappingof nearly circular
regions. Quarterly of Applied Mathematics, 3, 12-28, (1945)



