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Abstract

With the introduction of autonomous vehicles on public roads, their performance in emergency
situations has become a strong focus. Collision Imminent Control (CIC) concerns the planning
and control of aggressive evasive maneuvers for collision avoidance of automated vehicles. CIC
is implemented using adaptive Nonlinear Model Predictive Control (NMPC), which considers
obstacles and road barriers for combined trajectory re-planning and control. To achieve real-
time performance, the prediction model complexity is often reduced, which can lead to an
under-utilization of the control potential. The aim of CIC is to use as much of the control
potential of the vehicle as possible while remaining real-time viable.

In this research, CIC is implemented using objective-based collision avoidance based on the
distance to obstacles and road boundaries. Different collision avoidance formulations were
derived and compared on accuracy and real-time performance. The control potential of
the vehicle was further exploited by a computationally efficient vehicle model that employs
differential braking. The NMPC problem is solved using Sequential Quadratic Programming
(SQP) with Real Time Iterations (RTI). Different techniques that reduce the computation
time were compared. Sparse solvers and variable timesteps were found to be most significant.

The robustness of the controller was improved by friction estimation. The controller is further-
more demonstrated to work on highly curved roads and in scenarios with dynamic obstacles.
The controller is implemented on the hardware of a real autonomous vehicle and simulated on
a closed-loop embedded system. Combining all these elements results in a CIC controller that
can apply more control potential and reach control frequencies upwards of 100Hz, increasing
the level of safety in vehicle collision avoidance.
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Preface

This work is a Master of Science graduation thesis on Collision Imminent Control (CIC)
in autonomous vehicles. The aim of CIC is to achieve the highest level of safety in these
scenarios. Since vehicle dynamics near the limits of handling are strongly non-linear, CIC
controllers commonly apply NMPC. NMPC can exploit more modeling power as it allows
for the formulation of nonlinear prediction model dynamics, constraints, and objectives. This
allows for a greater utilization of the control potential, which can improve safety. However,
NMPC has higher computational complexity, posing a challenge to real-time control.

State-of-the-art works on CIC combine path planning and tracking in a single (one-level)
nonlinear optimization problem. This combination can employ more control potential of the
vehicle to perform aggressive maneuvers [20]. However, it suffers from increased computa-
tional complexity [40]. How to implement such NMPC controllers in real-time using combined
steering and differential braking control remains an open question. Therefore, techniques that
can reduce the computational complexity of NMPC for CIC have become more relevant.

Different techniques investigated in this work include reductions in prediction model fidelity,
formulations of collision avoidance, and solving techniques. Differential braking is applied on
a low-fidelity single-track vehicle model using careful friction limit constraint formulations.
Collision avoidance is formulated in the objective function of the optimization problem, where
violations of a minimum safe distance between the vehicle and the obstacle dominate. Differ-
ent geometric shapes are used to formulate these distances, aiming to decrease computation
time and increase modeling accuracy. The effects of different solvers, variable timesteps, and
global reference trajectories on the computational complexity are explored. The influences of
changing friction coefficients, road curvatures, and obstacle locations on the CIC controller
are evaluated. The best-suited combination of techniques can significantly reduce the com-
putation time to allow for the exploitation of higher modeling power.

The CIC controller is implemented on the embedded controller of a developmental autonomous
vehicle of the TUDelft and simulated in real-time using a Hardware in the Loop (HIL) system.

The thesis committee consists of the following members:

• Prof. Dr. M.E. Mazo,
• Prof. Dr. M.T.J. Spaan,
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“If your car could travel at the speed of light, would your headlights work?”
— Steven Wright





Chapter 1

Introduction

The level of autonomy in modern vehicles has significantly increased, leading to the introduc-
tion of autonomous vehicles on public roads. As autonomous vehicles appear on public roads,
their performance in emergency situations becomes a strong focus [11]. In these scenarios,
autonomous vehicles have the potential to significantly increase the safety of road vehicles
[22].

Complex vehicle control techniques can react faster and exploit more control potential of the
vehicle in comparison to human drivers [2, 29]. With faster reactions, evasive maneuvers can
be executed earlier. By utilizing more control potential, more aggressive maneuvers can be
performed.

CIC deals with the planning and control of aggressive evasive maneuvers in collision-imminent
scenarios. The aim of CIC is to exploit more control potential of the vehicle with a controller
that can be implemented in real-time.

Autonomous vehicles must adhere to traffic laws and aim to achieve the highest level of safety
[34]. Safety in vehicle control often focuses on vehicle stability and collision avoidance [29].
Obstacles can be avoided faster if the vehicle can violate stability constraints temporarily [13].
CIC can prioritize different control objectives to find a balance between collision avoidance,
stability, and path tracking that provides the highest level of safety [11].

Aggressive maneuvers may lead the vehicle to its handling limits [11], where the dynamics of
the vehicle become nonlinear [21]. In CIC, nonlinear models are required for accurate path
planning and control [38].

The complexity of CIC is influenced by the dynamic environment in which the vehicle op-
erates [2]. Environmental disturbances, including the tire-road friction coefficient, can pose
a robustness challenge to model-based control [12, 39]. Robustness can be improved using
constraint tightening or parameter estimation [19, 39].

In vehicle control, Model Predictive Control (MPC) is commonly used as it can incorporate
complex control strategies, safety constraints, and control objective prioritization [11, 32]. To
account for the nonlinear vehicle dynamics near the handling limits, NMPC has been used to
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implement CIC [2, 38]. However, the added modeling power in NMPC comes at the expense
of increased computational complexity [2].

State-of-the-art works on CIC apply a one-level NMPC controller that combines path re-
planning and control in a single Optimal Control Problem (OCP) [2, 38]. This is achieved by
incorporating information about the location of obstacles in objectives or constraints. Long
prediction horizons ensure that current input signals can regard the future response of the
vehicle [11]. Combined braking and steering control can be used to improve collision avoidance
performance or stability [2, 15, 35].

The higher computational complexity of a one-level NMPC controller is a challenge to real-
time control implementations [40]. In addition, a vehicle controller should use a nonlinear
model and optimally distribute braking and steering inputs to improve the handling capa-
bilities in emergency driving [5]. This large input space further increases the computational
complexity.

This research aims to utilize techniques that improve the computational performance of
NMPC, enabling higher modeling power to be used safely in real-time. Different methods
are commonly applied to reduce the computational complexity of CIC. These include using
different controller hierarchies [9], problem formulations, integrators, and prediction model
fidelities [33].

Several factors can influence the computational complexity of NMPC. Determining which
technique outperforms the other can be challenging as various control problem formulations,
hardware platforms, and experimental conditions are used in literature. It thus remains
an open question as to what combination of techniques is best suited to optimize the time
complexity NMPC for CIC. Different techniques that reduce the computational complexity
could enable higher modeling power in real-time control.

This research investigates which methods can reduce computational complexity without sig-
nificantly impacting safety. Therefore, the research question is formalized as:

"What combination of techniques is best suited to reduce the computational com-
plexity of NMPC for planning and control of aggressive maneuvers for automated
vehicles in emergency situations?"

This research builds upon the controller proposed by the work of Brown et al. [2]. This
controller uses a one-level NMPC that includes longitudinal brake distribution and steering
control. Collision avoidance is formulated as an objective on the distance between the vehicle
and obstacles. This controller is implemented as a baseline for the CIC controller developed
in this research. Brown et al. [2] executed the controller at a control frequency of 20Hz,
requiring a low-level controller to execute the first 5 control inputs open-loop to obtain a real-
time implementable controller with a control frequency of 100Hz. This work aims to improve
this baseline by investigating various techniques to reduce computational complexity.

This research evaluates the model fidelity, control problem formulation, integration methods,
and solving techniques based on their impacts on safety and ability to reduce the computa-
tional complexity for a one-level NMPC controller. First, state-of-the-art works on CIC are
discussed in chapter 2. In chapter 3, different formulations of collision avoidance objectives
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are derived. After which, a model that achieves differential braking with a lower model fi-
delity is developed in chapter 4. The formulation of the optimization problem is discussed
in chapter 5. The implementation of the controller and the effects of different solvers and
moving block strategies are presented in chapter 6. The impacts of the reference trajectory,
vehicle model, and formulation of collision avoidance objectives are evaluated against the
baseline implementation [2] in chapter 7. The controller is then pushed to the limits, and
its robustness against friction deviations, road curvature variations, and dynamic obstacle
behavior is analyzed in chapter 8. Finally, in chapter 9, the controller is implemented on the
embedded controller of the TUDelft autonomous vehicle. A full hardware-in-the-loop simu-
lation is performed on embedded hardware, demonstrating the real-life applicability of the
proposed controller and computational complexity reduction techniques.

Master of Science Thesis K. Trip



4 Introduction

K. Trip Master of Science Thesis



Chapter 2

Background

CIC forces the vehicle to its handling limits, where the dynamics are highly nonlinear. Model-
based control techniques must be able to capture these dynamics to make accurate predictions.
Therefore, NMPC is commonly applied in CIC [2]. However, the computational complexity
poses a burden to real-time control. To use CIC in real-time, state-of-the-art works have ex-
plored different controller hierarchies, prediction model fidelity, OCP formulation, and NMPC
solving techniques to reduce the computational complexity. In addition, methods have been
explored to improve the robustness of the CIC in the highly dynamic environment in which
autonomous vehicles operate.

2-1 Controller hierarchy

Vehicle control is often divided into a modular framework of components, such as presented
in Figure 2-1 [18]. This modularity gives rise to different control hierarchies, which can be
used to address the problem of computational complexity in NMPC. The elements marked
blue in Figure 2-1 form the focus of CIC.

GPS

IMU

Vehicle
sensors

Cameras

Radar / Lidar

Localization

Vision system

State
estimation

Planning

Control

Steering

Brakes

Accelerator

Figure 2-1: Vehicle control framework [18]

Master of Science Thesis K. Trip



6 Background

A common control hierarchy for CIC uses a separate path planner and tracking controller,
splitting the problem into two levels [40]. In CIC, this structure is described as a two-level
NMPC. This control structure is presented in Figure 2-2.

tracking
MPC

Obstacle states

Vehicle Path planner

Parameter
estimation

Figure 2-2: Two-level NMPC
A two-level hierarchy allows for the use of a simplified vehicle model for path planning [9].
Since the planning and control are divided into different problems, they can be solved at
different frequencies [14]. As planning is considered a separate problem, the problem size of the
tracking controller is reduced compared to a one-level hierarchy. This allows for higher fidelity
tracking controllers [9]. Therefore, a two-level hierarchy can improve tracking performance
and reduce computational complexity. However, it can not include guarantees and constraints
on collision avoidance as the controller does not consider the location of obstacles. Thereby,
collisions may occur due to tracking errors. Furthermore, a trajectory planned with a low-
fidelity model can lead to sub-optimal track performance near the handling limits. The
trajectory can be infeasible [26] or overly conservative [24] using different models for planning
and control [20]. This can lead to frequent recalculation of trajectories [14]. For these reasons,
state-of-the-art works on CIC apply a one-level control hierarchy [40, 20, 22].

A one-level hierarchical controller uses a single model that includes the position or dynamics
of the object or environment, often expressed in spatial coordinates [26]. This allows for the
formulation of collision avoidance as a single optimization problem. Combining planning and
tracking removes the need for a separate path planner, allowing the same prediction model
to be used for re-planning and control. This hierarchy is presented in Figure 2-3.

MPC

Obstacle states

Vehicle

Parameter
estimation

Figure 2-3: One-level NMPC

A one-level hierarchy solves a single optimization problem with the same prediction model for
planning and control. This can lead to fewer infeasible trajectories and greater exploitation
of the control potential [20], thus improving controller fidelity [40]. However, a one-level hier-
archy has higher computational costs as integrating the path planning increases the problem
size of the OCP. The added computational cost requires careful control problem formulation
and the use of methods that can reduce the computation to employ one-level NMPC for CIC
in real-time [40, 2].
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2-2 Model fidelity

State-of-the-art works on CIC achieve real-time control by employing a Single Track (ST)
vehicle model [40, 11]. More control potential can be exploited from the vehicle using dif-
ferential braking [15]. The ST vehicle model generally does not allow for differential braking
but has been adapted to include simplified forms of brake distribution [2]. Because of the
increased computational complexity, Double Track (DT) models are used less in real-time
CIC control [32].

2-3 OCP formulation

Stability and collision avoidance objectives are often chosen to dominate the OCP [2, 11].
These objectives can be prioritized by allowing stability constraint violations before collision
avoidance violations [11]. Slack variables have been used to implement allowable constraint
violations [11] at the expense of increased problem size. For collision avoidance, constraints
or objectives can be formulated based on the distance between the vehicle and obstacles [2].
The problem with constraints is that they can reduce the number of feasible solutions and
do not always provide a sense of direction for the solver. Therefore, state-of-the-art methods
enforce collision avoidance using an objective [2].

2-4 NMPC solving techniques

Different methods exist that can improve the computational complexity without signifi-
cantly impacting performance. Several techniques focus on reducing the prediction horizon
[11, 8, 20, 40]. As the CIC controller must plan sufficiently far ahead to achieve successful
collision avoidance, integrators are often carefully selected [2, 40]. Time steps can be increased
using more accurate integration methods [40]. However, Runga Kutta methods require more
evaluations per time instance and are generally more complex than forward Euler methods
[40]. A balance must be found between the timestep size and the integrator complexity [2].
Variable timesteps have been applied in Linear Time Varying (LTV) MPC for CIC to reduce
the prediction horizon while conserving performance [11]. Cascaded models throughout the
prediction horizon [20] likely require more tuning and careful formulation of constraints and
objectives. Utilizing different control and replanning frequencies entails that some control
actions are derived using open-loop control. As model inaccuracies are inherent in CIC,
reliance on open-loop control inputs can pose risks in emergencies.
Other methods employed in the literature on NMPC that reduce the computational complex-
ity are often solver-specific and can be challenging to compare directly. Generally, it can be
hard to determine which technique outperforms the other. To a certain degree, each paper
solves a different control problem on different hardware platforms with different experimental
conditions. This makes it difficult to specify exactly what the solution time benefits of each
method are or to compare their performance directly. The time for the nonlinear optimization
problem to converge to a solution depends on many factors, which can be difficult to analyze
independently. Thus, it remains an open question as to what technique or combination of
techniques is best suited to optimize the time complexity NMPC for CIC.
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2-5 Robustness

To improve robustness, tube-based methods and constraint tightening have been applied to
MPC controllers [12, 19]. These methods generally add computational complexity, although
more efficient methods have been developed [19]. Robustness can be improved by adding
online friction estimation in parallel to solving the OCP [39]. Since friction imposes robustness
issues in collision avoidance, it has been added to CIC controllers [39]. The Unscented Kalman
Filter (UKF) is well suited for tire-road friction estimation because it is computationally
efficient since it avoids the computation of the Jacobian [16]. Furthermore, UKFs can have
a lower settling time than Recursive Least Squares (RLS) estimators [39]. The estimation
performance of UKF can be compromised by Gaussian noise assumptions [39]. However, low
settling times make it well suited to real-time implementations in CIC [39]. Online estimators
do not directly affect the computational complexity of the NMPC problem and might aid in
convergence by improving estimates.

By combining these techniques, this research aims to improve performance and achieve real-
time control for the baseline controller [2]. The baseline controller uses a nonlinear ST vehicle
model as a prediction model in a one-level NMPC. This controller configuration can better
exploit the vehicle’s control potential, increasing safety. However, careful OCP formulation
and selection of solving techniques are required to reduce the computational complexity.
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Chapter 3

Collision avoidance

In this chapter, different formulations of collision avoidance are derived. Collision avoidance
in CIC can be divided into road boundary and obstacle collision avoidance. Collision avoid-
ance can be achieved by enforcing constraints or penalizing safe-distance violations in the
objective function of the OCP. As collision avoidance has the highest priority in CIC, the
formulation of these constraints or objectives can significantly impact the controller’s perfor-
mance. Therefore, these formulations must be carefully considered to reduce computational
complexity and excessive conservatism while ensuring accuracy and safety.

Collision avoidance is assumed to be a problem in which obstacles and road boundaries
must be avoided. Obstacle collision avoidance is complex due to the wide range of obstacle
geometries and dynamic or stochastic behavior. Road boundaries can be difficult to formulate
due to changing widths and curvatures of the road. The vehicle’s dynamics can be projected
onto a trajectory that follows the road curvature to simplify the modeling of road boundaries.
This leads to the formulation of the spatial dynamics commonly used in vehicle control [26, 10].

3-1 Spatial dynamics

The spatial dynamics are formed by projecting the dynamics of the vehicle (ẋ, ẏ, ψ̇) onto a
road-fixed trajectory σ. Here, ẋ and ẏ are the longitudinal and lateral velocities of the vehicle
in the body fixed frame 𭟋b and ψ̇ is the angular velocity around the yaw axis.

The trajectory σ can be represented by a lane boundary or center of the road [10]. This
projection creates three states (eψ, s, ey). The state eψ is the angle between the vehicle velocity
and the road direction, s is the distance along the trajectory σ, and ey is the perpendicular
distance from the trajectory σ. Graphically, this is represented in Figure 3-1.

The relations in Equation 3-1 hold for the projection in Figure 3-1 [10].

ey =
∥∥∥[Xv, Yv]T − [Xσ, Yσ]T

∥∥∥
2
, eψ = ψ − ψσ (3-1)
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10 Collision avoidance

Figure 3-1: Spatial coordinate transformation [10]

Here, (Xv, Yv) and (Xσ, Yσ) are the coordinates in a global frame 𭟋g. ψ and ψσ are the yaw
angles with respect to the global frame 𭟋g.

The equations of motion of the spatial coordinates (eψ, s, ey) can be expressed using the
vehicle states (ẋ, ẏ, ψ̇) and the road curvature κ(s). The dynamics of eψ, s, and ey can be
expressed as shown in Equation 3-2 [2].

ėψ = ψ̇ − κ(s)ṡ

ṡ = 1
1 − κ(s)ey

(ẋ cos (eψ) − ẏ sin (eψ)) (3-2)

ėy = ẋ sin(eψ) + ẏ cos(eψ)

As the curvature can change along the road, it can be expressed as a function of the distance
along the trajectory s. If the vehicle’s location is known, κ(s) could be assumed available
from maps, estimated from visual systems on the vehicle, or derived from cartesian road
coordinates as will be discussed in chapter 8.

The lateral distance ey and rotation eψ with respect to the reference trajectory σ can be
included in the OCP. Road boundary collision avoidance can be formulated as objectives or
constraints on ey.

As an extension, the vehicle dynamics (ẋ, ẏ, ψ̇) can be divided by ṡ to create a spatial-
based model that is distance variant instead of time-variant [10]. However, in real-time
systems, it can be impractical to have a model that is not time-dependent. For example,
the prediction horizon of a spatial-based model is some distance that varies with the vehicle
velocity. Therefore, a time-dependent model is developed, presented in chapter 4.
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3-2 Objective and constraint-based collision avoidance

The spatial dynamics can be used to formulate objectives or constraints, allowing the con-
troller to avoid collision with obstacles and road barriers.

Constraint-based collision avoidance limits the state-space of the vehicle to the drivable space
confined between the road boundaries and obstacles. Generally, these constraints can be for-
mulated as distance-varying lateral bounds on the projected state ey. Since the road geometry
can change, these bounds on ey can be defined as a function of the distance s [26]. This forms
the limits eyl(s) and eyr(s). The limits eyl(s) and eyr(s) specify the perpendicular distance
from the left and right road boundary to the trajectory, respectively. These constraints can
be extended to include obstacles. The limits eyl(s) and eyr(s) can be selected based on the
minimum value of the obstacle or round boundary, defining the drivable space using a form
of corridor planning [26]. This is exemplified in Figure 3-2.

Figure 3-2: Spatial varying collision avoidance bounds

3-2-1 Limitations of constraint-based collision avoidance

Constraint-based collision avoidance has several limitations. Constraints of the obstacle
boundaries can only be specified when a decision has been made on which side the obstacle
will be evaded. This can be trivial in cases such as depicted in Figure 3-2, where the left side
of the obstacle is included in the right bound eyr(s) to initiate an evasive maneuver to the
left. However, in some cases, choosing the direction of the evasive maneuver is less trivial.

Furthermore, constraint-based collision avoidance can have undesirable effects in emergency
collision avoidance, as constraints limit the feasible space of the OCP. In CIC, a large set of
trajectories can be infeasible depending on the difficulty of the collision avoidance problem.
When a current solution is infeasible, it does not always give the solver a sense of direction.
Furthermore, it remains a question of what should be done when no feasible solution is found
within the periodic execution of the controller.

Objective-based collision avoidance alleviates these issues to some extent. Including an ob-
jective that maximizes the distance to an obstacle or road boundary until a safe distance is
achieved can supply crucial information in the form of a Jacobian and Hessian to the solver.
This can be beneficial in real-time CIC to create faster sub-optimal trajectories. Therefore,
collision avoidance is formulated as an objective in the CIC controller, similar to the baseline
implementation [2].
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12 Collision avoidance

3-3 Collision avoidance formulation

Objective-based collision avoidance aims to maximize the distance d between the vehicle and
obstacle or road boundaries. This can be achieved by defining some safe distance boundary
dmin and formulating the distance cost in the objective function as presented in Equation 3-3
[2].

cdist =
{
Qdist(d− dmin)2 if d < dmin

0 otherwise
(3-3)

By including multiple distances, an Artificial Potential Field (APF) is created. An APF is a
superposition of potential functions that can be minimized to find an optimal trajectory [37].
APFs have commonly been used in path planning in highly dynamic environments [23], such
as vehicle control. A superposition of multiple distances costs cdist for multiple obstacles and
road boundaries can be seen as a APFs that can directly be minimized in an OCP. This
achieves simultaneous planning and control, common for one-level hierarchical control. The
distance function is scaled by a parameter Qdist.

Figure 3-3: APF collision avoidance

A superposition of four distance cost functions for two obstacles and two road boundaries
leads to the APF presented in Figure 3-3. For this APF, the driveable space of the vehicle is
presented by regions with low-cost values, and the regions that should be avoided include a
higher cost. A benefit of this method is that it defines a quadratic cost that provides a sense
of direction to a solver of the OCP in the form of a Jacobian and a Hessian. When these
costs dominate the cost function of the OCP, fast, locally optimal solutions can be generated
without extensively limiting feasibility compared to constraint-based collision avoidance.

The computational complexity of objective-based collision avoidance correlates to the formu-
lation of the distance d. For this reason, different methods of formulating this instance are
explored and compared on accuracy, conservatives, and computational complexity.

3-4 Distance formulations

In objective-based collision avoidance, different distance formulations can describe the dis-
tance between the vehicle, obstacles, and road boundaries. These distance formulations can
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be created using different vehicle geometry formulations, as the vehicle’s geometry does not
change.

The minimum distance between the vehicle and the left and right road boundaries dl and
dr can be defined as presented in Equation 3-4 [2]. Each vehicle geometry formulation has
a different expression of the maximum lateral coordinate eymax . The location of the left and
right road boundary is expressed as rbl and rbr respectively.

dl = rbl − ey − eymax , dr = ey − eymax − rbr (3-4)

To formulate the distance between the vehicle and an obstacle do, it is considered that the
potential obstacles can have a varied range of different geometries. Therefore, describing
an obstacle by a set of circles of different radii is opted for as it can describe any potential
geometry [2]. For each circle fitted to an obstacle ro, the distance do is derived as presented in
Equation 3-5 [2]. Here, L is the center distance between the obstacle and the geometric shape
fitted to the vehicle. The distance from the center to the edge of the geometric shape fitted
to the vehicle in the direction of the obstacle is described by dv, as illustrated in Figure 3-4.

do = L− dv − ro (3-5)

Figure 3-4: Derivation of do

The distances can be expressed in different coordinate frames, including the spatial coor-
dinates of the road frame (s, ey) and the Cartesian vehicle body fixed frame (x, y) [28].
Expressing convex geometric shapes in the spatial coordinate frame leads to a non-convex
transformation [28]. The downside of using cartesian coordinates is that the states (x, y, ψ)
from the vehicle model must be included in the control problem, which can increase the
problem size as the states states (eψ, s, ey) are required to describe road boundaries.

To avoid expressing non-convex geometric shapes using spatial coordinates, the distances L,
dv, and ro are defined in the Cartesian frame but are expressed as functions of (eψ, s, ey) and
the road curvature κ(s). As is done in the baseline [2].

Using the linearized signed distance L derived in the baseline [2], θ is derived so that different
geometric shapes can be fitted to the vehicle. The baseline method fits multiple circles to the
vehicle [2]. As an extension, an ellipsoid and a rectangle are used to represent the geometry
of the vehicle. The angle θ and the distance L to the obstacle can be derived by assuming
that the vehicle is at location (s1, e1) and that the obstacle is at location (s2, e2). This is
depicted in Figure 3-5.
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Figure 3-5: Derivation of L and θ [2]

Here ∆e = e2 − e1 and ∆s = s2 − s1. Since the distance is only added to the cost function
when the vehicle is in relative proximity to the obstacle, ∆s is relatively small, and κ(s) = κ
is assumed constant over ∆s. This leads to the approximations of θR and L presented in
Equation 3-6 [2].

θR ≈ κ∆s, L ≈
√

(1 − e1κ) (1 − e2κ) (s2 − s1)2 + (e2 − e1)2 (3-6)

To find an expression for the angle between the vehicle and the obstacle θ, an isosceles triangle
can be created to form the expression of θL and θn in Equation 3-7.

θL = π − κ∆s
2 , θn = κ∆s

2 (3-7)

The Sine rule can form an expression of θe, presented in Equation 3-8. To describe the
angle correctly after the obstacle is passed, a sign function for ∆s is added. To reduce
the complexity of this expression, an approximation can be used by assuming that the road
curvature is relatively small and the vehicle is close to the obstacle. The accuracy of this
approximation is very high near the obstacle, and the error is generally below 5 degrees, as
presented in Appendix B.

θe = sign(∆s) arcsin
(∆e
L

sin (θL)
)

≈ arctan
(∆e

∆s

)
(3-8)

As the vehicles rotated with respect to the road frame (s, ey) with an angle eψ, the total angle
between the vehicle and the obstacle θ can be expressed as presented in Equation 3-9.

θ = θe + θn − eψ ≈ arctan
(∆e

∆s

)
+ κ∆s

2 − eψ (3-9)

3-4-1 Multiple circle distance

In the baseline, multiple circles can be projected on the agent vehicle and obstacles to describe
the distance accurately and reduce conservativeness [2]. Graphically, this is presented in
Figure 3-6.
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Figure 3-6: Multiple circle collision model

Obstacle distance

In each obstacle distance do, dv equals the radius rv of one of the circles fitted to the vehicle.
For the scenario depicted in Figure 3-6, the obstacle distances are expressed in Equation 3-10
[2]. Here, L1 and L2 are the center distances between the obstacle and both circles fitted to
the vehicle.

do1 = L1 − rv − ro, do2 = L2 − rv − ro (3-10)

Road boundary distance

For each circle fitted to the vehicle, eymax = rv [2]. For the situation depicted in Figure 3-6,
the road boundary distances are expressed in Equation 3-11 [2].

dl1 = rbl − e1 − rv, dr1 = e1 − rv − rbr

dl2 = rbl − e2 − rv, dr2 = e2 − rv − rbr (3-11)

This method is more accurate and less conservative than using a single circle around the
vehicle and each obstacle [2], as it explicitly captures the vehicle’s rotation. However, the
multiple circle method has a complexity of O(2 ·nd ·no) distances, where nd are the number of
circles fitted to the vehicle and no are the number of obstacles in the collision avoidance sce-
nario. Using two circles leaves a significant region of the vehicle out of the collision avoidance
expression, which can pose safety risks.

3-4-2 Elliptical distance

An ellipse can be used to fit a single geometry to the vehicle. Due to a vehicle’s shape, an
ellipse can describe the geometry of a vehicle relatively well.
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Figure 3-7: Elliptical distance approximation

Obstacle distance

The distance between the vehicle and the obstacle can be expressed using the polar expression
of Cartesian coordinates of an ellipse. These expressions can be used to derive dv as presented
in Equation 3-12.

de =
√
x2
e + y2

e , xe = l

2 sin θ, ye = w

2 cos θ

= 1
2
√
l2 sin2 θ + w2 cos2 θ2 (3-12)

= 1
2

√
(l2 − w2) sin2 θ + w2

Using the expression of dv, distance do to each obstacle is presented in Equation 3-13.

do = L− 1
2

√
(l2 − w2) sin2 θ + w2 − ro (3-13)

Road boundary distance

The minimum distance between the ellipse and the road boundaries can be found by finding
the extrema points of the ellipse along the ey axis of the road frame. The ellipse is defined in
the body-fixed frame of the vehicle in (x, y). In the road frame (s, ey) the ellipse is centered
at (s1, e1) and is rotated by eψ. The extrema lateral points of a rotated ellipse centered at
the origin are derived in Appendix B and expressed in Equation 3-14.

eymax = 1
2

√
(w sin eψ)2 + (l cos eψ)2

= 1
2

√
(w2 − l2) sin2 eψ + l2 (3-14)
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Using this expression of eymax , the distance to the left and right road boundaries dl and dr
can be defined as described by Equation 3-15.

dl = rbl − ey − 1
2

√
(w2 − l2) sin2 eψ + l2

dr = ey − 1
2

√
(w2 − l2) sin2 eψ + l2 − rbr (3-15)

This method is also more accurate and less conservative than using a single circle around
the vehicle and each obstacle, as it also explicitly captures the vehicle’s rotation. Compared
to the multiple circle method, the time complexity of the distance calculations is reduced to
O(2 · no), where no are the number of obstacles in the collision avoidance scenario. This is
because a single geometric shape is fitted to the vehicle instead of a set of circles. A limitation
of the ellipse is that it does not accurately capture the corners of the vehicle, which might be
critical in collision avoidance.

3-4-3 Rectangular distance

Using the approximation of θ, a rectangle can be used to describe the vehicle’s geometry.
A rectangular or polytopic expression accurately represents the vehicle’s geometry [2], as
vehicles tend to be more angular than ellipsoidal or circular.

Figure 3-8: Rectangular distance approximation

Obstacle distance

The distance to an obstacle dv can be expressed in coordinates (s, ey) using the previously
derived approximation for θ, as expressed in Equation 3-16.

θC = arctan
(
l

w

)
θR = |mod(θ, π) − π

2 | ≈ π

4 (cos θ + 1) (3-16)

dv = min
(

w

2 cos θR
,

l

2 sin θR

)
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Here, dv is a piece-wise defined function that describes the distance from the center to the
edge of the rectangle fitted to the vehicle for the angle θ between the vehicle and obstacle.

Road boundary distance

Another benefit of using a rectangular geometry is that the lateral extrema point is always
situated at a corner of the rectangle.

The rectangle is defined in the body-fixed frame of the vehicle in (x, y). In the road frame
(s, ey) the rectangle is centred at (s1, e1) and is rotated by eψ. Therefore, the lateral extrema
occurs at the rectangle’s corners, rotated by eψ. This leads to the expression of eymax in
Equation 3-17.

θE = |mod(θ, eψ) − π

2 | ≈ π

4 (cos eψ + 1)

eymax =
√
l2 + w2

2 · sin (θC + θE) (3-17)

For the rectangle, the distance to the left and right road boundaries dl and dr can be defined
as:

dl = rbl − ey −
√
l2 + w2

2 · sin (θC + θE) (3-18)

dr = ey −
√
l2 + w2

2 · sin (θC + θE) − rbr (3-19)

3-4-4 Dynamic obstacle behavior

If it is possible to estimate the velocities of an obstacle, they can be assumed constant through-
out the prediction horizon and updated based on the controller’s frequency or the estimation
algorithm. A set of obstacle locations Lo with size [2 ×N ] can be provided to the controller
for each obstacle o.

Using the initial estimates: ŝo(0), êo(0) for the location and ˙̂so, ˙̂eo for the velocity of the
obstacle in the road frame (s, ey), the set Lo can be explicitly defined:

Lo(i) = [ŝo(i− 1) + ˙̂so · dt, êo(i− 1) + ˙̂eo · dt]T , ∀i = {1, · · · , N} (3-20)

3-5 Distance formulation comparison

The distance formulations can be compared based on the computation times and the distance
cost function values cdist. These can be found by evaluating the different distance formulations
on an uncontrolled exemplary trajectory. This trajectory ensures the vehicle gets close to two
obstacles and both road boundaries, as presented in Figure 3-9.

The distance formulations result in the distance cost functions cdist presented in Figure 3-10,
where Qdist = 1. The rectangular representation is the most accurate as it is the closest to
the vehicle geometry [2]. However, the rectangular distance function leads to a non-smooth
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Figure 3-10: Cost function values for a specified trajectory

cost function, which could be a challenge for solvers as the Jacobian and Hessian can be hard
to define near these points.

From Figure 3-10, it can be observed that the multiple-circle method produces wider cost
function peaks with dips near the middle of the vehicle near the obstacles. This can be ex-
plained by the location of the two circles fitted to the vehicle, as fitting a circle on the front
and rear axles is limited in representing the geometry near the vehicle’s center. Further-
more, the costs near the road boundaries are greater because both circles are near the edge.
The multiple-circle formulation can create some discrepancies compared to the rectangular
distance formulation.

The ellipsoidal formulation has narrower peaks near the obstacles and a lower cost function
near the road boundaries. This can be explained by the modeling errors created by fitting
an ellipse to the vehicle geometry. An ellipse does not capture the corners of the vehicle
accurately if the longitudinal and lateral axis dimensions are defined as the length and width
of the vehicle.

The computation times are presented in Table 3-1. The ellipse is the fastest, followed by the
rectangle and the multiple-circle method. The rectangular formulation can be slower due to
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20 Collision avoidance

conditional formulation and additional angular expressions. The multiple-circle method has
to evaluate more distances, proportional to the number of circles fitted to the vehicle, creating
higher computational complexity.

Multiple circles [2] 2.31 µs
Ellipsoid 1.61 µs
Rectangle 2.01 µs

Table 3-1: Distance formulation computation times
The effects of these distance models are on the computation time of the closed-loop CIC
controller, which is evaluated in chapter 7.
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Chapter 4

Vehicle prediction model

This chapter derives a low-fidelity vehicle model that can apply differential braking. Different
vehicle models can be used to model the dynamics of a vehicle. The choice of a model can
depend on many factors, including the control objective, required prediction accuracy, and
computational complexity. Prediction model fidelity can significantly impact the computa-
tional performance of model-based control techniques such as NMPC. An ideal prediction
model is computationally efficient and captures the dynamics of the plant well enough to
achieve the perceived control objective. In CIC, the objective is to apply the full control
potential of the vehicle in emergency collision avoidance scenarios. More control potential
can be applied by utilizing differential braking [15].
Torque vectoring control can also be applied to improve vehicle stability [31]. However, it
has complex powertrain requirements as it needs the ability to control the torque output at
each wheel. This has been possible in some modern electric vehicles but is rare in production
vehicles. However, since each wheel has a separate brake actuator and electronic braking
systems have become very common, differential braking can be possible in CIC.
In the domain of emergency collision avoidance in road vehicles, ST and DT models with
three Degrees of Freedom (DoF) are most common [32]. Differential braking can not be
applied to a conventional ST model as each wheel is not modeled separately. Although
it can be applied to a Double Track (DT) model, more tire function evaluations increase
computational complexity. By combining the dynamical expressions of a ST and DT model,
a low-fidelity vehicle model is derived that allows for differential braking. This model aims
to apply differential braking with fewer tire function evaluations than the DT model.
The vehicle model derived in this chapter combines the computational efficiency of the ST
model with the higher modeling power of the DT model to achieve efficient differential braking.
This model is referred to as the CIC vehicle model and can be seen as an evolution of the
prediction model derived in the baseline [2].
The dynamics of the ST and DT models are first presented to derive this model. These
models commonly have three degrees of freedom around the vehicle’s body-fixed lateral, lon-
gitudinal, and yaw axes [32]. The ST and DT models have different expressions for the lateral
acceleration ÿ, longitudinal acceleration ẍ, and the angular yaw acceleration ψ̈.
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22 Vehicle prediction model

The ST model is presented in Figure 4-1. This model resembles a bicycle with separate
front and rear tire dynamics. This is done to simplify the model, reducing the computational
complexity while still describing the most significant effects of the steering angle on the vehicle
dynamics. The front axle of the ST model has tire forces Fxf

, Fyf
and the rear axle has tire

CoM

Figure 4-1: ST vehicle model
forces Fxr , Fyr . The equations of motion for the ST model are described in Equation 4-1 [2].

mẍ = mẏψ̇ + Fxf
cos δ − Fyf

sin δ + Fxr − Fdrag

mÿ = −mẋψ̇ + Fxf
sin δ + Fyf

cos δ + Fyr (4-1)
Izψ̈ = lf (Fxf

sin δ + Fyf
cos δ) − lrFyr

Here, Fi,j denote the tire forces, v is the velocity of the vehicle with angle β to the x-axis,
δ is the front steering angle, ψ is the global yaw angle, and ψ̇ is the angular velocity of the
vehicle. This model includes the following parameters: the distance between the Center of
Mass (CoM) and the front axle lf and rear axle lr, the inertia around the z-axis Iz, and the
mass of the vehicle m.

The steady-state normal load at each axle can then be expressed using the sum of moments
around the y-axis, gravitational constant g, and the height of the CoM of the vehicle h [2].

Fzf = lrmg − hmẍ

lf + lr
, Fzr = lrmg + hmẍ

lf + lr
(4-2)

The DT model is presented in Figure 4-2. In a DT model, the tire forces of each tire are mod-
eled separately. This improves the accuracy of the model but also increases the computational
complexity. This is due to the increased complexity of the expressions and the increase in the
number of evaluations of the tire model. The DT model further enables differential braking
between the left and right sides of the vehicle as the effect of each tire force is modeled.

In the double-track model, the forces at each wheel are considered separately. Therefore, the
tire forces are denoted Fi,j,k, with i = (x, y) for the direction, j = (f, r) for the axle, and
k = (l, r) for the side of the vehicle that the tire is on. This leads to the expression for the
vehicle dynamics presented in Equation 4-3 [33].

mẍ = mẏψ̇ + (Fxfl + Fxfr) cos δ − (Fyfl + Fyfr) sin δ + Fxrl + Fxrr − Fdrag

mÿ = −mẋψ̇ + (Fyfl + Fyfr) cos δ + (Fxfl + Fxrl) sin δ + Fyrl + Fyrr (4-3)

Izψ̈ = (Fyfl sin δ − Fxfl cos δ + Fxfr cos δ − Fyfr sin δ + Fxrr − Fxrl)
w

2 −

(Fxfl sin δ + Fyfl cos δ + Fxfr sin δ + Fyfr cos δ) lf + (Fyrr + Fyrl) lr
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CoM

Figure 4-2: Double track vehicle model

Similar to the ST model, the steady state normal load at each tire can be expressed using the
sum of moments around the y-axis and the width of the vehicle w [6].

Fzfl = lrmg − hmẍ

2 (lf + lr)
− lrhmÿ

(lf + lr)w
, Fzfr = lrmg − hmẍ

2 (lf + lr)
+ lrhmÿ

(lf + lr)w

Fzrl = lfmg + hmẍ

2 (lf + lr)
− lfhmÿ

(lf + lr)w
, Fzrr = lfmg + hmẍ

2 (lf + lr)
+ lfhmÿ

(lf + lr)w
(4-4)

In both models, the drag force Fdrag can be approximated by Fdrag = Cd0 + Cd1ẋ, where
Cd0 and Cd0 scale the linear drag force [2].

Using assumptions on the operating conditions, steering system, and tire model, it can be
shown that the yaw dynamics is the main difference between the ST and DT dynamics. These
assumptions include:

Assumption 1. The road surface is flat.

Assumption 2. All wheels have contact with the road surface at all times.

Assumption 3. The steering angle of both front wheels is equal.

Assumption 4. The lateral tire force can be expressed as: Fy = µFz · g(ẋ, ẏ, ψ̇, δ).

Assumption 5. The longitudinal force Fx on each axle (f, r) is equal to the sum of each
wheel’s longitudinal force on that axle.

Here, g(ẋ, ẏ, ψ̇, δ) is some nonlinear function. Assumptions 1 and 2 allow for the use of the
normal load expressions of the ST and DT models in Equation 4-2 and Equation 4-4. With
these assumptions, it can be derived that the normal forces of each tire can be combined as
presented in Equation 4-5.

Fzfl + Fzfr = lrmg − hmẍ

2 (lf + lr)
= Fzf

, Fzrl + Fzrr = lrmg + hmẍ

2 (lf + lr)
= Fzr (4-5)
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24 Vehicle prediction model

Assumptions 3, 4, and 5 simplify longitudinal and lateral tire force expressions so that they
can be combined as described by Equation 4-6.

Fxfr + Fxfl = Fxf
, Fxrr + Fxrl = Fxr

Fyfl + Fyfr = µ(Fzfl + Fzfr) · g(ẋ, ẏ, ψ̇, δ) = µFzf
· g(ẋ, ẏ, ψ̇, δ) = Fyf (4-6)

Fyrl + Fyrr = µ(Fzrl + Fzrr) · g(ẋ, ẏ, ψ̇, δ) = µFzr · g(ẋ, ẏ, ψ̇, δ) = Fyr

Substituting these tire force expressions into the equations of motion of the DT results in the
updated dynamics presented in Equation 4-7. Under the assumptions above, the DT model
can be written as a ST model with an additional yaw moment MDT .

mẍ = mẏψ̇ + Fxf
cos δ − Fyf

sin δ + Fxr − Fdrag

mÿ = −mẋψ̇ + Fxf
sin δ + Fyf

cos δ + Fyr (4-7)
Izψ̈ = lf (Fxf

sin δ + Fyf
cos δ) − lrFyr +

(Fyfl sin δ − Fxfl cos δ + Fxfr cos δ − Fyfr sin δ + Fxrr − Fxrl)
w

2
= lf (Fxf

sin δ + Fyf
cos δ) − lrFyr +MDT

For relatively small steering angles, the main contributions to MDT stem from differences
between the longitudinal forces on either side of the vehicle. This phenomenon is exploited
in torque vectoring and differential braking control. In Equation 4-8, this moment can be
divided into parts impacted by either longitudinal or lateral forces, Mx and My respectively.

MDT = ((Fxfr − Fxfl) cos δ + Fxrr − Fxrl)
w

2︸ ︷︷ ︸
Mx

+ ((Fyfl − Fyfr) sin δ) w2︸ ︷︷ ︸
My

(4-8)

The moment My requires the tire model evaluations of both front tires. If this term is
neglected, such as in the ST model, only two tire model evaluations are needed for Fyf

and
Fyr . To reduce model fidelity and promote computational complexity, it is assumed that
My = 0, so fewer tire model evaluations can be used.

Assumption 6. The yaw moment My = 0.

The moment Mx is used to implement differential braking. With assumption 6, the dynamics
of the reformulated DT model are equal to the dynamics of the ST model with an additional
yaw moment Mx. This model is referred to as the CIC vehicle model and is presented in
Figure 4-3.

CoM

Figure 4-3: CIC vehicle model
The expression of Mx can be further simplified by employing braking logic to derive the
individual longitudinal tire forces (Fxfl, Fxfr, Fxrl, Fxrr).
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4-1 Braking logic 25

4-1 Braking logic

The braking force at each wheel can be controlled using three inputs, namely Ḟx, λx, and λy.
This can be seen as an expansion on previous works that only apply a longitudinal brake bias
λx [2]. Here, Ḟx controls the rate of change in longitudinal force. Having Ḟx as a control input
can minimize braking jerk by adding a penalty on Ḟx in the objective [2]. λx and λy specify
the braking bias in longitudinal and lateral directions. Fewer inputs are required compared
to introducing a longitudinal force input for each wheel [2]. Using these three inputs, the
longitudinal tire forces at each wheel can be derived as presented in Equation 4-9.

Fxfl =
{
λxλyFx Fx ≤ 0
λdrive

Fx
2 otherwise

Fxfr =
{
λx(1 − λy)Fx Fx ≤ 0
λdrive

Fx
2 otherwise

Fxrl =
{

(1 − λx)λyFx Fx ≤ 0
(1 − λdrive)Fx

2 otherwise
(4-9)

Fxrr =
{

(1 − λx)(1 − λy)Fx Fx ≤ 0
(1 − λdrive)Fx

2 otherwise

The small angle approximation in Equation 4-10 can simplify the expression of Mx. This
approximation sinmplifies the process of rewriting Mx as a function of (δ, Ḟx, λx, λy).

Mx =
(

(Fxfr − Fxfl)
(

1 − δ2

2

)
+ Fxrr − Fxrl

)
w

2 (4-10)

Using the braking logic defined in Equation 4-9, it is clear that Mx = 0 whenever the vehicle
is not braking (Fx > 0). This aligns with the desire to apply only differential braking, not
torque vectoring. In the case that the vehicle is braking (Fx ≤ 0), Mx can be expressed as a
function of (δ, Ḟx, λx, λy), as shown in Equation 4-11.

Mx

∣∣∣∣
Fx≤0

=
(

(λx − 2λxλy)
(

1 − δ2

2

)
+ 1 − λx − 2λy + 2λxλy

)
wFx

2

=
(
2 − 4λy − λx (1 − 2λy) δ2

) wFx
4 (4-11)

This expression can be further simplified if the δ2 factor is neglected. The maximum error
introduced by this approximation can be derived when it is assumed that the steering angle
is bounded.

Assumption 7. The steering angle at the wheels δ is bounded by approximately ±20 deg.

Since the steering angle and the distribution values λ are bounded by [0, 1], the worst error
of the additional moment Mx due to these simplifications is around 6% and is independent
of λx, as derived in Appendix A. This maximum error occurs when the vehicle brakes on a
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26 Vehicle prediction model

single wheel at the maximum steering angle. As this error is acceptable, the simplification in
Equation 4-12 is applied.

Mx ≈
{
wFx

2 (1 − 2λy) Fx < 0
0 otherwise

(4-12)

Load dynamics

The longitudinal tire forces are controlled using (δ, Ḟx, λx, λy). However, these forces must
adhere to the friction limits. Since the longitudinal force of each tire is controlled individually,
four constraints must be added to ensure that each tire remains unsaturated. The friction
limits depend on the friction coefficient µ and the normal load Fz. The lateral and longitudinal
tire forces influence the tire load at each wheel Fzi,j .

To simplify the constraint formulation, the load dynamics can be added to the state space
of the vehicle model [33]. This is realized using longitudinal and lateral tire force deviation
parameters ∆Fzx and ∆Fzy respectively [33]. These parameters describe the longitudinal
and lateral load distribution deviation from the front and rear static axle loads Fsf and Fsr
respectively. The load forces on each tire are expressed in Equation 4-13 [33].

Fzfl = 1
2 (Fsf − ∆Fzx) − γ∆Fzy, Fzfr = 1

2 (Fsf − ∆Fzx) + γ∆Fzy

Fzrl = 1
2 (Fsr + ∆Fzx) − (1 − γ) ∆Fzy, Fzrr = 1

2 (Fsr + ∆Fzx) + (1 − γ) ∆Fzy (4-13)

The distribution of lateral load deviation ∆Fzy on the front axle is described using the vehicle
handling parameter γ. The value of γ can account for oversteer or understeer behavior of the
vehicle [33].

The dynamics of ∆Fzx and ∆Fzy can be expressed as a linear combination of the total longi-
tudinal and lateral tire forces, Fxtot and Fytot respectively. The load dynamics are presented
in Equation 4-14 [33]. Here, kx and ky are the longitudinal and lateral load derivative scaling
parameters.

∆Ḟzx = kxh
Fxf

cos δ − Fyf
sin δ + Fxr

lf + lr
= kxhFxtot

lf + lr

∆Ḟzy = kyh
Fxf

sin δ + Fyf
cos δ + Fyr

w
= kyhFytot

w
(4-14)

4-2 Tire model

Different tire models can be considered, but the scope is limited to nonlinear models as CIC
aims to perform maneuvers near the handling limits. Linear tire models fail to capture the
dynamics under these conditions [17]. The Fiala tire model is considered in this work as it has
a relatively small number of parameters, and it can capture the nonlinear relation between
Fy and Fx, leading to simplified friction limit constraints on the control problem formulation
discussed in chapter 5.
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4-3 Combined state space model 27

The brush Fiala tire model is commonly used in control for aggressive maneuvers at the limits
of handling [1, 11]. It is a nonlinear model that is piecewise-defined based on the current tire
slip angle α, tire saturation slip angle αs, tire stiffness Cα, and the maximum lateral tire force
Fymax. The model can be formalized as presented in Equation 4-15 [2].

Fy =

−Cα tanα+ C2
α

3Fy max
| tanα| tanα− C3

α

27(Fy max)2 tan3 α, |α| < αs

−Fymax sign(α), otherwise

αs = tan−1
(3Fymax

Cα

)
, Fymax =

√
(µFz)2 − F 2

x (4-15)

4-3 Combined state space model

The CIC vehicle model can be formulated into a continuous nonlinear state space model. The
vehicle dynamics, load dynamics, and collision avoidance model equations can be combined
to form a single prediction model. The dynamics of the CIC prediction model f(ξ, u) in
Equation 4-16 combines all these expressions for state space ξ and input space u.

ξ̇ = f(ξ, u), ξ = (δ, Fx, ψ̇, ẋ, ẏ, eψ, s, ey,∆Fzx,∆Fzy), u = (δ̇, Ḟx, λx, λy) (4-16)

This vehicle model is used as a prediction model in the planning and control of evasive
maneuvers for CIC.

Baseline model

To evaluate the performance of this model, a state-of-the-art baseline prediction model de-
veloped by Brown et al. [2] is implemented to compare the performance of the CIC model in
chapter 7. The CIC model can be seen as an evolution of this model. The baseline model only
includes longitudinal brake distribution and does not provide differential braking. Therefore,
the baseline model is equal to the CIC model for λy = 0.5 for which Mx = 0. Since the brake
distribution is greatly simplified, only two constraints of friction limit are needed, which do
not require load dynamics. Therefore, this model has a more compact state space. Further-
more, the model has one less input as λy is not a control variable. The state and input space
of the baseline prediction model are presented in Equation 4-17.

ξ̇ = f(ξ, u), (δ, Fx, ψ̇, ẋ, ẏ, eψ, s, ey), u = (δ̇, Ḟx, λx) (4-17)

4-4 Model parameter identification

To ensure the accuracy of the prediction model, the model parameters can be identified
to ensure that the response of the prediction model response best matches the controlled
plant. This is referred to as gray-box system identification. The BMW 5-series vehicle model
from IPG CarMaker 1 with an RT_255_55R17_p2.50 tire model is used as the plant of the

1IPG CarMaker: https://ipg-automotive.com/en/products-solutions/software/carmaker/
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controller. This is a high-fidelity model with complex dynamics that closely approximates
the behavior of a real car.

To control this model, the control input u = (δ̇, Ḟx, λx, λy) have to be converted to inputs that
relate to the plant. In this case, the vehicle can be controlled using the steering wheel angle
δsw, the accelerator acc, and the braking torques Tb,i,j at axle i = (f, r) and side j = (l, r).
The power train is included using the accelerator instead of a driving torque. Individual
braking torques are used to employ differential braking.

The control inputs u can be converted to plant inputs up using the conversion presented in
Equation 4-18. Here, ∆t is the timestep of the controller.

δsw = nsw ·
(
δ + δ̇∆t

)
Tbfl =

−λxλy
(
Fx + Ḟx∆t

)
if Fx + Ḟx∆t < 0

0 otherwise

Tbfr =

−λy (1 − λx)
(
Fx + Ḟx∆t

)
if Fx + Ḟx∆t < 0

0 otherwise

Tbrl =

−λx (1 − λy)
(
Fx + Ḟx∆t

)
if Fx + Ḟx∆t < 0

0 otherwise
(4-18)

Tbrr =

− (1 − λx) (1 − λy)
(
Fx + Ḟx∆t

)
if Fx + Ḟx∆t < 0

0 otherwise

acc = nacc

(
Fx + Ḟx∆t

)
, 0 ≤ acc ≤ 1

The braking torques Tb,i,j are denoted as positive. Furthermore, the steering rate nsw and
accelerator scaling parameter nacc can be added to the set of prediction model parameters
to be identified. With this input conversion, the CIC and baseline prediction models can be
used to control the system plant.

Since the CIC and baseline prediction model have different dynamics, constraints, and input
and state spaces, the parameters of each model are identified separately to offer a fair com-
parison. As these models have different input spaces, a different input sequence is used to
identify the parameters of each model. Both input sequences force the vehicle to perform an
aggressive double-lane change maneuver to capture the vehicle’s dynamics near the handling
limits. For each input sequence, the model parameters of the corresponding prediction model
can be fitted to the state response of the plant model.
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4-4 Model parameter identification 29

4-4-1 Baseline prediction model identification

The baseline and CIC prediction models are identified using the control input sequence pre-
sented in Figure 4-4. The simulated state space of the IPG vehicle model and the baseline
model for these control inputs are presented in Figure 4-5 and Figure 4-7. Here, the spatial
dynamics (eψ, s, ey) are excluded as these can be directly derived using the cartesian dynamics
and the curvature profile.
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Figure 4-4: Control inputs for model indentification

From Figure 4-5, it is clear that the identified model closely represents the IPG vehicle model.
The most significant deviations between the models exist in the longitudinal dynamics due to
the more complex drivetrain and tire model of the plant model. The gray box identification
leads to the set of identified model parameters in Table 4-1. Since there is a deviation between
the modeled tire forces and the tire force of the plant, the drag dynamics are challenging to
estimate in this scenario.
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Figure 4-5: States for baseline model indentification

4-4-2 CIC prediction model identification

The identification process for the baseline model can be repeated for the CIC prediction
model. However, since the CIC prediction model has more parameters, the load dynamics are
identified separately to simplify the identification process. The input sequence in Figure 4-4
is used to identify the parameters of the load dynamics.

Identification of load dynamics

The load forces on each tire can be expressed using the CIC model states ∆Fzx and ∆Fzx,
presented in chapter 4. These states depend on the longitudinal and lateral tire forces, which
makes it impossible to identify the load dynamics separately from the rest of the CIC model.
To enable separate identification of the load dynamics, these states can be approximated from
the accelerations using scaling parameters kax and kay as presented in Equation 4-19.

∆Fzx = kaxẍ, ∆Fzx = kayÿ (4-19)

Fitting the load dynamics to the tire loads of the IPG model for the control inputs in Fig-
ure 4-4 leads to the response presented in Figure 4-6. The identified model for the load
dynamics captures the tire loads well, with most of the error present in the peak load forces.
The remainder of the parameters for the CIC prediction model can be identified using the
previously identified load dynamics. The simulated state space of the IPG vehicle model and
the CIC prediction model for the control inputs in Figure 4-4 is presented in Figure 4-7.
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Figure 4-6: Load dynamics identification

More significant discrepancies can be observed in the lateral dynamics, likely caused by mod-
eling errors in applying differential braking. However, the magnitude of the lateral velocity
is also significantly lower than in the baseline model. All other states are described equally
well.

4-4-3 Identified parameters

For the baseline model, nine parameters are identified. The CIC model has an additional
eight parameters for the load dynamics. Since these models are nonlinear, constrained SQP
gray-box optimization is used to identify the parameters. The identified model parameters are
presented in Table 4-1, Table 4-2, and Table 4-3. The parameters of the IPG input conversion
were identified as nacc = 1.4e−4 and nsw = 14.

Generally, both prediction models can describe the dynamics of the IPG CarMaker vehicle
validation model well, with most uncertainty caused by prediction model inaccuracies of the
powertrain and tire model.
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Figure 4-7: States for CIC model identification

symbol value unit
m 2011.2 kg
Iz 3763.2 m4

lr 1.377 m
lf 1.511 m
h 0.380 m
Cαf 252 · 103 -
Cαr 178 · 103 -
Cd0 43.83 -
Cd1 1.42 -

Table 4-1: Baseline
model parameters

symbol value unit
m 1972.2 kg
Iz 3294.2 m4

lr 1.373 m
lf 1.514 m
h 0.400 m

Cαf 215 · 103 -
Cαr 280 · 103 -
Cd0 423 -
Cd1 1.42 -

Table 4-2: CIC model
parameters

symbol value unit
kx 6.406 -
ky 21.05 -
nFx 0.625 -
Fs1 7757.1 N
Fs2 7871.1 N
kax 309.0 −
kay 634.5 −
γ 0.456 −

Table 4-3: Load dy-
namics parameters
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Chapter 5

Optimization problem formulation

With the definition of the dynamics, constraints, and objectives for the prediction model in
chapter 3 and chapter 4, the NMPC problem can be formulated. The OCP formulation is
derived from the baseline [2]. This OCP can be defined as an Nonlinear Program (NLP).
This is achieved by formulating a constrained minimization problem of the objective function
J(ξ, u) for the system states ξ and inputs u over a finite horizon prediction N . The NMPC
problem can be formulated into a NLP using multiple shooting over N intervals between t0
and tN [3]. This is demonstrated in Equation 5-1 [3].

min
ξk,uk

N−1∑
k=0

J(ξk, uk) + JN (ξN )

s.t. ξ0 = ξ̂0

ξk+1 = Φ(ξk, uk)
cL ≤ c(ξk, uk) ≤ cU

cNL ≤ c(ξN ) ≤ cNU

(5-1)

In Equation 5-1, JN (ξ, u) is the terminal cost, ξN the terminal state, cL and cU the lower
and upper bounds of the nonlinear stage constraints, and cNL and cNU the lower and upper
bounds of the nonlinear terminal constraints. The functions c(ξk, uk) and c(ξN ) describe the
nonlinear stage and terminal constraint functions. The discrete state update is described by
Φ(ξk, uk).

Since the dynamics are nonlinear, most constraints of the NMPC problem have to be for-
mulated as nonlinear constraints in the NLP problem. Input constraints are the only linear
constraints. These nonlinear constraints can be divided into constraints on states, system
dynamics, and general constraints.
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34 Optimization problem formulation

5-1 State constraints

The CIC prediction model defined in chapter 4 has ten states, these include:

ξ = [δ, Fx, ψ̇, ẋ, ẏ, eψ, s, ey,∆Fzx,∆Fzy] (5-2)

A constraint is introduced on δ to limit the steering angle. Furthermore, The total longitudinal
force Fx is limited by the powertrain. This results in the following two state constraints [2]:

δmin ≤δ ≤ δmax, Fxmin ≤ Fx ≤ Fxmax (5-3)

5-2 Input constraints

The CIC prediction model defined in chapter 4 has four inputs, u = [δ̇, Ḟx, λx, λy]. Input
constraints can incorporate actuator limits and ensure system feasibility. The steering rate δ̇
is confined to the specifications of the steering system. No bounds are defined on the rate of
change of the longitudinal force Ḟx. However, a cost will be placed on this input to prevent
jitter, similar to the baseline [2]. To distribute the braking force over the four wheels, λx and
λy are bounded by [0, 1]. This results in the following three input constraints presented in
Equation 5-4.

δ̇min ≤ δ̇ ≤ δ̇max, 0 ≤ λx ≤ 1, 0 ≤ λy ≤ 1 (5-4)

5-3 System dynamics constraints

The prediction model dynamics can be encoded in the NLP by enforcing the constraint ξk+1 =
Φ(ξk, uk). Here Φ(ξk, uk) is a function that calculates and integrates the state derivative ξ̇k
using the current state ξk and input uk. This derivative is then integrated over some time
dt = tk+1 − tk to produce the next state ξk+1. The state derivate is calculated using the state
space dynamics of the CIC model defined in chapter 4.
Different integration methods can be exploited to balance accuracy and computational com-
plexity for real-time performance [40]. This is further discussed in chapter 6.

5-4 Friction limit constraints

When differential braking is applied, the braking force on each tire can be controlled indi-
vidually. However, the friction at each wheel limits the available braking force. The tire
saturation constraints are defined in Equation 5-5 [2].

F 2
xi,j

+ F 2
yi,j

≤ µFzi,j (5-5)

The lateral tire force constraints are encoded in the Fiala tire model. However, the longitu-
dinal tire forces must be constrained according to the friction limits at each wheel. These
constraints can be formulated as presented in Equation 5-6.

|Fxi,j | ≤ µFzi,j , i = (f, r), j = (l, r) (5-6)
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These constraints ensure that lateral tire forces are feasible and the friction limit bounds the
longitudinal force. This constraint can be expressed in terms of Fx, λx, and λy using the load
dynamics at each wheel.
Using these load dynamics and the previously defined braking forces on each tire, four friction
limit constraints are derived in Appendix A. These constraints are expressed in Equation 5-7.
Here, µ can be substituted by ηµ, where η is a scaling factor smaller than 1 to account for
uncertainty in µ [2].

sign(Fx) ·
[
λ1
µ

1
2 γ

]  Fx
∆Fzx
∆Fzy

 ≤ Fgf , sign(Fx) ·
[
λ2
µ

1
2 −γ

]  Fx
∆Fzx
∆Fzy

 ≤ Fgf

(5-7)

sign(Fx) ·
[
λ3
µ −1

2 1 − γ
]  Fx

∆Fzx
∆Fzy

 ≤ Fgr, sign(Fx) ·
[
λ4
µ −1

2 γ − 1
]  Fx

∆Fzx
∆Fzy

 ≤ Fgr

With:

λ1 =
{

−λxλy Fx ≤ 0
λdrive

2 otherwise
, λ2 =

{
−λx(1 − λy) Fx ≤ 0
λdrive

2 otherwise

λ3 =
{

−(1 − λx)λy Fx ≤ 0
(1−λdrive)

2 otherwise
, λ4 =

{
−(1 − λx)(1 − λy) Fx ≤ 0
(1−λdrive)

2 otherwise
(5-8)

Fgf = lrmg

2 (lf + lr)
, Fgr = lfmg

2 (lf + lr)

5-5 Stability

Stability can be enforced using constraints on tire slip [31], yaw rate, or lateral velocity [11].
However, collision avoidance should be prioritized over stability in CIC [11]. As collision
avoidance performance can be improved when stability constraints are temporarily violated,
these constraints should not always be enforced. Allowing constraint violations requires slack
variables, which increase the problem size.
In some cases, stability constraints can be left out of the OCP entirely in CIC [2]. Stability
is then indirectly enforced as unrecoverable unstable conditions lead to collisions with road
boundaries or obstacles later on in the prediction horizon. Therefore, unrecoverable vehicle
instability is penalized by penalizing collision avoidance with road boundaries and obsta-
cles, combined with long prediction horizons already required by collision avoidance control.
Temporary and marginal vehicle stability violations are not penalized or constrained in this
way.

5-6 Control hierarchy

Different control hierarchies can be used to implement CIC. Combining the collision avoid-
ance objective into the OCP leads to a controller that can achieve collision avoidance without

Master of Science Thesis K. Trip



36 Optimization problem formulation

needing a reference trajectory. However, it might be desirable to incorporate a global plan-
ner so that the controller can be used as a tracking controller outside of collision imminent
scenarios. Furthermore, having a reference trajectory available during collision avoidance can
incorporate other objectives, such as adherence to traffic laws by specifying a target velocity.
This reference trajectory should always be tracked as well as possible unless following it leads
to a collision. In chapter 6, it is explored whether this reference trajectory can improve the
collision avoidance performance of CIC.

Similar to the baseline [2], a global planner that specifies a trajectory eyref (s) as a function
of the distance s and a reference velocity ẋref is implemented. This leads to the controller
hierarchy presented in Figure 5-1.

NMPC Vehicle

Parameter
estimation

Global
planner

Figure 5-1: CIC controller hierachy

This hierarchy is somewhere between a one-level and two-level controller. The location of
obstacles is directly considered in the optimization problem using the collision avoidance
objective presented in chapter 3. The location of the obstacles is included in the estimated
parameter vector p̂.

The CIC controller has ten parameters in p̂ that describe elements of the dynamic environment
in which the vehicle operates. These are presented in Equation 5-9. Here, it is assumed that
there are two obstacles described by the location (so, eo) and radius ro. Other time-varying
parameters, such as the road boundaries, friction coefficient, and road curvature, are also
included.

p̂(s) = [so1, eo1, ro1, so2, eo2, ro2, rbr, rbl, µ, κ] (5-9)

Some parameters are a function of s as they can vary over distance. As the parameters are
not assumed constant, each step in the prediction horizon has a separate set of parameters.
This leads to p̂(s) having a size of a [N × 10] when there are two obstacles. The distance s
can be extrapolated throughout the prediction horizon based on the initial location s0 and
the velocity along the road ṡ.

The estimation of these parameters is further addressed in chapter 8. Some parameters can
be manually selected without estimation to specify different experimental setups discussed in
chapter 6.
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5-7 Objective 37

5-7 Objective

CIC has multiple control objectives that must be combined and weighted to achieve the
desired behavior. The objectives are formulated similarly to the baseline [2]. The objectives
include tracking the global planner’s reference trajectory and velocity, avoiding obstacles and
road boundaries, limiting jitter in the steering and longitudinal acceleration, and limiting
vehicle instability. Energy-based costs can furthermore promote convergence.

These objectives are formalized as a combination of stage costs J(ξk, uk) and terminal costs
JN (ξN ) in Equation 5-10.

J(ξk, uk) = J(ξk, uk) + JN (ξN ) (5-10)
= (h(ξk, uk) − href)Q (h(ξk, uk) − href)T + (hN (ξN ) − hNref)QN (hN (ξN ) − hNref)

T

Here, Q and QN are weighted diagonal matrices, and h and hN are nonlinear cost functions.
The cost functions are defined in Equation 5-11.

h(ξk, uk) = [ẋ, ey, δ̇, Ḟx, λx, λy, d−
o , d

−
r ] − href

href = [ẋref, eyref , 0, 0, λxnat , λynat , domin , drmin ]
hN (ξN ) = [ẋ, ey] − hNref (5-11)
hNref = [ẋref, eyref ]

The weighted diagonal matrices Q and QN are presented in Equation 5-12. The values were
tuned so that the controller achieved the desired performance, starting from the initial values
from the baseline [2]. As collision avoidance has the highest priority in CIC, the weight of
collision avoidance was set to dominate the cost function.

Q = diag([0.1, 4, 100, 10−6, 0.1, 0.1, 100, 100]), QN = diag([0.1, 4]) (5-12)

Here, d−
o and d−

r describe the distance to all obstacle and road boundaries distances in the
OCP when the minimum distances domin and drmin are violated. These are presented in
Equation 5-13 to implement the function cdist defined in chapter 3. The formulations for do
and dr derived in that chapter can be used to create different OCP formulations. In vector
form, do and dr can include all distances to the obstacles and road boundaries according to
the distance models and scenario.

d−
o =

{
do if do < domin

domin otherwise
, d−

r =
{
dr if dr < drmin

drmin otherwise
(5-13)

The parameters λxnat and λynat describe the natural longitudinal and lateral brake distribution
respectively. These costs ensure the brake distribution returns to the natural configuration
after an aggressive maneuver [2].

The values of the parameters used in href are presented in Table 5-1. These values aim to
capture that vehicles naturally distribute more braking force to the front tires. Furthermore,
more distance margin is desired around obstacles than road boundaries.
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λxnat [-] λynat [-] domin [m] drmin [m]
0.7 0.5 0.7 0.5

Table 5-1: Objective reference parameters
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Chapter 6

Solving techniques

The OCP problem can be implemented in various ways, allowing for different solving tech-
niques. These techniques can be exploited by using different solvers or problem formulations.
This chapter evaluates the performance of CIC for different condensed or sparse solvers, in-
tegration grids, and toolboxes. For this evaluation, an experimental setup is created in which
a collision is imminent. The resulting maneuver should push the vehicle and the controller to
the limits.

6-1 Experimental setup

The performance of CIC is analyzed when the vehicle must perform a double-lane change on
a dual two-lane road to avoid two obstacles in either lane, similar to the baseline [2]. This
scenario is depicted in Figure 6-1. Both obstacles spontaneously appear in front of the vehicle

Obst 1

Obst 2

Figure 6-1: Experimental setup for CIC
when the vehicle is some distance ∆sa from the first obstacle. The vehicle must stay within
the road boundaries during the maneuver. This experimental setup can be parameterized by
specifying the reference velocity ẋref, the distance between obstacles ∆so, the distance ∆sa,
and the friction coefficient µ. Generally, smaller values for ∆sa, ∆so, and µ and larger values
of ẋref make the problem more difficult to solve. These parameters can be specified using the
parameter vector p̂, defined in chapter 5.
A default obstacle radius ro of 2 meters is selected. Furthermore, a reference trajectory eyref
is assumed available. The reference tracks the left lane at a distance ∆sa from the obstacle
and returns to the right lane between the obstacles.
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40 Solving techniques

All PC-based simulations are performed on a Windows 10 PC with an i7-7700 CPU running
at 2.80GHz.

6-2 Controller implementation

The implementation of the controller can impact the real-time performance of the controller.
To solve the nonlinear OCP in real-time, the problem can be rewritten to a Quadratic Pro-
gramming (QP) problem using Newton-based methods such as SQP [7]. SQP is commonly
used in NMPC, as it can solve NMPC problems in real-time [27]. Therefore, SQP forms the
focus of this research.

6-2-1 Sequential quadratic programming

SQP exploits the Karush-Kuhn-Tucker (KKT) conditions of a local optimal solution of the
non-linear OCP to re-write the problem as a QP problem.

The KKT conditions for a general NLP presented in chapter 5 can be expressed as presented
in Equation 6-1 [7]. Here, z is the state and input space of the OCP, fec(z) and fic(z) are
the equality and inequality constraints for the NLP.

z = [ξ, u]T , fec(z) = 0, fic(z) ≤ 0 (6-1)

For some local optimum z∗, the KKT conditions are expressed in Equation 6-2 [7].

∇zL (z∗, λ∗
z, µ

∗
z) = ∇z(f(z∗) + fec(z∗)Tλ∗

z + fic(z∗)Tµ∗
z) = 0

fec (z∗) = 0, fic (z∗) ≤ 0, µ∗
z ≥ 0 (6-2)

fic (z∗)i µ
∗
zi

= 0, ∀i = 1 · · ·nh

It is assumed that no exact Hessian is available and that the generalized Gauss-Newton
method is applied to approximate the Hessian in real-time. This is applicable as the objective
function of the OCP J(ξ, u) in chapter 5 is defined as a sum of squares [7]. The objective is
rewritten in Equation 6-3.

J(ξ, u) = 1
2 ||J1(z)||22 (6-3)

The QP problem can be formulated by iteratively finding a solution that satisfies the KKT
conditions [7]. In this way, a local optimum is iteratively found. The Hessian H, QP objective
fQP (z), and the constraints can be expressed at each iteration k as presented in Equation 6-4
[7].

Hk = ∇J1(zk)∇J1(zk)T

fQPk(z) = ∇f (zk)T z + 1
2 (z − zk)T Hk (z − zk) (6-4)

= 1
2

∥∥∥J1 (zk) + ∇J1 (zk)T (z − zk)
∥∥∥2

2
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6-2 Controller implementation 41

In this research, the toolboxes MATMPC [3], ACADO, and Acados are leveraged to perform
these operations in real time. Real Time Iterations (RTI) are used, in which only a single
SQP iteration is performed for k = 0. In RTI, the performance of SQP is further exploited
using direct multiple-shooting discretization [27].

6-2-2 SQP toolboxes

For real-time control, embedded software tools that leverage C + + and C languages are
explored. Three toolboxes are used to implement the CIC controller. These toolboxes use
a definition of the OCP as presented in chapter 5 and apply SQP to generate a Quadratic
Programming (QP) problem implemented in C-code.

The generated controllers can be compiled for Matlab execution using the MEX compiler.
This outputs an S-function that can be directly used in Simulink. The S-function of the
controllers can then be inserted into the Simulink configuration of IPG CarMaker, which
simulates the plant’s response. The integrated closed loop Simulink model is presented in
Appendix D.

MATMPC

MATMPC is a recent toolbox that utilizes Casadi to generate a QP problem in the C coding
language using symbolic variables in Matlab. The interface of MATMPC is in Matlab, where
executable Mex functions are generated upon building the C-code. No direct embedded
implementation is possible by default, as the generated Mex functions are executed from
Matlab.

Casadi offers flexibility by allowing simple and efficient integration with other programming
languages like Python and Matlab. However, it can result in poorly readable C code. This
makes it more complex to add external features, limiting available options to those imple-
mented by default.

ACADO

ACADO is the most common toolbox used in vehicle control [32]. ACADO can be interfaced
with through Matlab, or the model can be specified directly in the C++ coding language. The
benefit is that this results in more readable code that allows custom features to be added,
such as variable timesteps.

A downside of using ACADO is that it uses custom datatypes for the variables used in the
OCP. This means that standard operators do not work. ACADO provides basic operators for
its datatypes but does not include extrema or conditional operators. A workaround must be
found since the Fiala tire model and the collision avoidance formulation use such operators.

To approximate conditional operators, a tangent hyperbolic function can be used. This can be
done for the conditional operator in the collision avoidance model as presented in Equation 6-

Master of Science Thesis K. Trip



42 Solving techniques

5.

cdist =
{
Qdist(d− dmin)2 if d < dmin

0 otherwise

≈ Qdist (d− dmin)2 ·
(

0.5 − arctan (narctan · (d− dmin))
π

)
(6-5)

narctan is a scaling parameter. Larger values result in a better approximation of the con-
ditional operator. Applying the same method to the Fiala tire model results in a highly
complex expression. Instead, the Fiala tire model presented in chapter 4 is approximated by
a simplified Pacejka tire model presented in Equation 6-6 [36, 25]. This tire model does not
require any conditional operators.

Fy = −µFz sin (B arctan (Cα− E (Cα− arctanα))) · cos (arctan (BxFx)) (6-6)

The Pacejka tire model parameters B,C,E,Bx in Table 6-1 are identified for the front and
rear axle of the vehicle.

Parameter Front axle Rear axle
B 1.62 1.43
C 17.03 17.78
E 1.00 1.00
Bx 2.5e−4 2.5e−4

Table 6-1: Pajecka tire model parameters

ACADO primarily uses the QPoases solver. However, others can be added [27]. ACADO is
most commonly used in vehicle control [32], but its developers have started developing the
newer Acados toolbox.

Acados

Acados is an extension of ACADO. In Acados, the codebase written in C++ has been replaced
by an implementation in C-code that can be interfaced with in Matlab of Python using Casadi.
Like MATMPC, the optimization problem and settings can be defined in Matlab, and C-code
can be generated. Acados also provides options for embedded implementations on modern
dSpace hardware. However, no standard method exists to implement variable timesteps.

These toolboxes can apply different solvers and solving techniques to improve the computation
time. The effects of different solvers and variable timesteps are first evaluated to compare
these toolboxes in their optimal configurations.

6-3 QP solvers

Different solvers can be used to solve the QP problem generated by the different toolboxes.
There are important distinctions between these solvers.
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6-4 Integration 43

Solvers can be divided into condensed and sparse solvers. Different condensing methods
exist for condensed solvers, including partial and full condensing. Condensing exploits the
principle that a new state can be expressed as a function of the current state and control
inputs and eliminates it from the OCP [7]. Sparse solvers exploit sparse matrices, where the
dimensionality can be reduced by eliminating zero entries. This eliminates algebraic variables
and reduces the problem size [7]. Generally, reduced-sized problems can be solved faster.

Using the MATMPC toolbox, the computation time of different solvers is analyzed. The
experimental setup in section 6-1 is used with the parameters specified in Table 6-2. The
computation time for each solver class is presented in Figure 6-2. The sparse HPIMP solver
has the lowest computation time of the solvers considered. The condensed solver QPoases
has the second-lowest average computation time. It is found that condensed solvers have a
greater maximum computation time compared to sparse solvers.

ẋref [m/s] ∆sa [m] ∆so [m] µ N

17 20 25 0.9 50

Table 6-2: Scenario parameters QP solver comparison
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(a) Condensed QP solvers
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(b) Sparse QP solvers
Figure 6-2: Compuatation time of QP solvers

6-4 Integration

In NMPC, candidate control trajectories are mapped to state trajectories [40]. State trajec-
tories are used to compute the value of the objective function and check for feasibility [40].
This mapping is achieved through numerical integration of the nonlinear dynamics [40].

In CIC, there is a trade-off between the accuracy and computational complexity of the inte-
grator. Higher integrator accuracy allows for larger timesteps that reduce the number of steps
in the prediction horizon N for the same time window. Reducing the number of steps in the
prediction horizon decreases computational complexity. However, more complex integrators
require more function evaluations of the system dynamics. Runge Kutta methods can be
applied to increase the integrator’s accuracy [40]. Runge-Kutta 2th order (RK2) has been
found to offer a good balance for CIC [2].
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An increased integrator timestep can reduce the number of steps N in a time horizon PT ,
which reduces computational complexity. However, the integrator must continue to capture
the system dynamics with acceptable accuracy. In one-level CIC, there is another limitation.
Larger distances between evaluation points can lead to problems in avoiding smaller obstacles,
as exemplified in Figure 6-3. The controller encounters no costs for collision avoidance as all
integration points lay outside the minimum obstacle distance.

obstacle
trajectory

Figure 6-3: Integrating points in collision avoidance

6-4-1 Variable timesteps

Variable timesteps can be applied to decrease the number of steps in the prediction horizon
[8]. Furthermore, variable timesteps allow for larger timesteps without significantly impacting
collision avoidance performance.

The timestep between integrations can be changed from short to long over the prediction
horizon. Reducing the prediction horizon can reduce the computation time, reducing the
input, search, and solution space of the OCP for the same prediction time window.

Increasing the time step along the prediction horizon ensures accuracy at the start and pro-
vides predictions increasingly further ahead [15]. Variable timesteps can achieve equal pre-
diction time windows with fewer steps than smaller timesteps throughout the horizon.

In CIC, initial small time steps are primarily used for stability control and tracking decisions,
and larger time steps capture the effects on collision avoidance [11]. Variable timesteps
can reduce the computational complexity of NMPC by reducing the number of steps in the
prediction horizon while ensuring accuracy and predictions sufficiently far ahead.

Variable timesteps can reduce the computation time. However, careful implementation is
required to prevent undesirable behavior. Due to timestep differences, this behavior can be
introduced through artificially scaled cost functions and constraint equations. In Linear Time
Invariant (LTI) MPC, the costs and constraints must be weighted to account for the different
timesteps [11].

Moving block strategies address this problem by evaluating the dynamics at a fixed lower
timestep and keeping control actions constant for some integration points [30]. This allows
variable timesteps to be implemented in SQP. Moving block strategies can be implemented
by specifying a non-uniform integration grid for the input space u of the OCP problem. A
conventional uniform and non-uniform integration grid are presented in Figure 6-4. From
Figure 6-4, it can be observed that the number of points on the integration grid is greatly
reduced. The same prediction time window is obtained using small timesteps in the beginning
and larger timesteps near the end of the prediction horizon.

Variable timesteps are implemented by assuming a constant prediction time window PT , initial
timestep dt1, initial timestep horizon N1, and total prediction horizon N . A moving block
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Figure 6-4: Integration grids

strategy is implemented using a non-uniform integration grid created with an integration
point at each variable timestep dt(n). This timestep dt(n) is specified as:

dt(n) =
{
dt1 if n < N1

dt2 otherwise
(6-7)

dt2 = PT − dt1N1
N −N1

≈ ndtdt1, ndt ∈ Z∥ndt ≥ 1 (6-8)

Variable timesteps are applied to the best condensed and sparse solvers, namely QPoases
and HPIPM. The effects of variable timesteps are explored for an initial timestep dt1 of 0.05.
The first entry uses no variable timesteps N1 = N = 50, which is applied to the baseline
[2]. Different total timesteps N and initial timesteps N1 are applied, and the average and
maximum computation times are found for the following scenarios:

ẋref [m/s] ∆sa [m] ∆so [m] µ

20 22 15 0.9

Table 6-3: Scenario HPIPM

ẋ0 [m/s] ∆s [m] ∆so [m] µ

17 20 15 0.9

Table 6-4: Scenario QPoases

These scenarios are different as the performance of the solvers near the limits is explored.
As HPIPM is faster, it generally handles more complex scenarios as the faster computations
allow for more exploration. The computation times are averaged over three measurements.
The computation times and the standard deviation error are presented in Tables Table 6-5
and Table 6-6.

These results show that the computation time can be greatly reduced by applying variable
timesteps. Generally, smaller prediction horizons N yield faster computation times as N is
proportional to the problem size. The average computation time was reduced by 40% and 75%
and the maximum by 50% and 88% for HPIPM and QPoases, respectively. The computation
time reduction is greater in non-sparse solvers as these benefit most from the reduced problem
size. For HPIPM, the average and maximum computation was almost reduced to half the
original value. For HPIPM, a higher value of N1 generally yields better results. This trend
does not appear for QPoases. The reductions in computation time indicate that variable
timesteps can play an important role in improving the real-time performance of NMPC.
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N N1 CPT avg CPT max
50 50 3.42±0.04 14.42±3.20
40 10 2.77±0.03 13.88±4.71
40 20 2.83±0.10 13.72±1.78
40 30 2.86±0.03 10.55±3.51
35 10 2.63±0.03 9.40±2.20
35 20 2.45±0.04 8.70±2.02
35 25 2.65±0.12 8.33±0.85
30 5 2.31±0.09 7.71±0.83
30 10 2.51±0.13 14.32±3.34
30 20 2.20±0.02 7.26±0.95
25 5 1.93±0.05 7.02±1.34
25 10 1.94±0.07 7.83±1.30

Table 6-5: CPT HPIPM sparse

N N1 CPT avg CPT max
50 50 15.13±0.29 121.17±4.53
40 10 9.85±0.12 86.62±12.47
40 20 8.67±0.26 54.93±5.25
40 30 8.88±0.15 67.3±3.80
35 10 7.33±0.26 39.98±5.46
35 20 6.65±0.21 35.36±2.87
35 25 6.98±0.20 47.94±4.36
30 5 5.07±0.08 22.66±1.12
30 10 5.2±0.11 25.35±3.33
30 20 5.04±0.19 27.49±2.16
25 5 4.08±0.40 15.11±1.47
25 10 3.87±0.10 20.34±1.06

Table 6-6: CPT QPoases condensed

6-5 Toolbox comparison

With the best solver and variable timesteps settings, the toolboxes used to perform SQP can
be compared using PC-based simulations in IPG CarMaker. The toolboxes are compared in
their best configuration to make a fair comparison. MATMPC can use variable timesteps
as standard, and a custom non-uniform integration grid is implemented in the C++ code-
base of ACADO. Acados has no standard implementation for variable timesteps. MATMPC
and ACADO can exploit the best variable timestep configuration of N = 25 and N1 = 5.
MATMPC and Acados can use the HPIPM solver, whereas ACADO is equipped with the
QPoases solver. This forms the set of parameters in Table 6-7 for the scenario on which these
toolboxes can be compared.

Toolbox ẋref [m/s] ∆sa [m] ∆so [m] µ N Solver
ACADO 15 20 20 0.9 25 QPoases
Acados 15 20 20 0.9 50 HPIPM

MATMPC 15 20 20 0.9 25 HPIPM

Table 6-7: Scenario parameters toolbox comparison

The computation times of CIC using these toolboxes for the scenario described by Table 6-7
are presented in Figure 6-5. It can be observed that ACADO has the lowest average com-
putation time, and Acados has the highest average computation time. The longer prediction
horizon in Acados can explain this. ACADO has relatively high maximum computation times,
likely due to the QPoases solver. HPIPM has a relatively constant computation time.

The trajectories presented in Figure 6-6 show that MATMPC and ACADO have relatively
similar trajectories. The longer prediction horizon used in Acados likely increases the costs
of tracking the reference eyref , leading to a tighter trajectory around the first obstacle.
MATMPC is used for PC-based simulations as it comes prepared with a large set of options
and offers customizability. The downside of MATMPC is that it is not suited for embedded
implementations by default. The controller is also validated on embedded hardware using
ACADO. Information about the embedded implementation is presented in chapter 9.
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Chapter 7

Closed-loop performance assessment

This chapter evaluates the closed-loop performance of the CIC controller. The effects of
the reference trajectory, vehicle model, and distance formulation on the performance and
computation time of the CIC controller are evaluated.

7-1 Influence of reference trajectory

The reference trajectory eyref(s), is assumed to be provided by a global planner, as introduced
in chapter 5. A simple trajectory can be used since collision avoidance is included in the
OCP. The controller’s performance is evaluated using the experimental setup presented in
section 6-1 using the parameters in Table 7-1. The obstacles initially have a radius of 2
meters.

ẋref [m/s] ∆sa [m] ∆so [m] µ N Solver
18 20 15 0.9 50 HPIPM

Table 7-1: Scenario parameters for trajectory evaluation

Two different trajectories are considered. The first is a straight trajectory that follows the
initial lane. The second is a trajectory from a lane selector that selects the left lane at a
distance ∆sa from the obstacle and returns to the right lane between the obstacles. The
vehicle’s reference trajectories and trajectories are presented in Figure 7-1. The distance to
the obstacles for both scenarios is presented in Figure 7-2.

The vehicle takes a much wider path around the first obstacle when the lane selector provides
a reference. The computation times for both scenarios are stated in Table 7-2. Next to
increasing the distance to the obstacles, the reference trajectory of the lane selector also
leads to a reduced computation time. However, the increased computation time for the first
trajectory is mainly caused by the high maximum time.
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Figure 7-1: Reference trajectory tracking and collision avoidance
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Figure 7-2: Obstacle distance for different reference trajectories

The same experiment is repeated to evaluate the impact of the obstacle’s size. Figure 7-
3 presents the trajectories where the size of the obstacles is increased to 3 meters. The
computation times of this scenario are stated in Table 7-3.

Distance model CPT avg [ms] CPT max [ms]
Constant reference 6.71 239.01

Lane selecting 3.27 12.17

Table 7-2: Computation time reference types

These results show that providing a simple reference trajectory can improve the safety and
computation time of the CIC controller in scenarios with small obstacles. For larger obstacles,
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Figure 7-3: Reference trajectory tracking and collision avoidance
Distance model CPT avg [ms] CPT max [ms]
Constant reference 6.71 10.34

Lane selecting 4.05 10.12

Table 7-3: Computation time reference types for large obstacles

the reference trajectory from the lane selector offers fewer improvements. As the lane selector
trajectory increases the performance of CIC, it is assumed to be available for the remaining
experiments in this research.

7-2 Vehicle models

The CIC model presented in chapter 4 can be compared directly to the baseline model [2]. The
CIC model includes an additional yaw moment resulting from differential braking. Compared
to the baseline model, the CIC model has two more states, one extra input, and two additional
constraints.
Both models are simulated using the experimental setup presented in section 6-1. The pa-
rameters of this maneuver are presented in Table 7-4. Executing this scenario results in the

ẋref [m/s] ∆sa [m] ∆so [m] µ N Solver
20.5 25 15 0.9 50 HPIPM

Table 7-4: Scenario parameters for vehicle model evaluation

trajectories presented in Figure 7-4. From these trajectories, a clear control strategy can be
observed. The vehicle tends to get close to the first obstacle, making the second obstacle and
road boundaries easier to avoid. While both trajectories are similar, the CIC vehicle model
results in a marginally tighter trajectory, allowing it to recover from the maneuver faster.
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Figure 7-4: Trajectory of vehicle models

The input trajectory of both models is presented in Figure 7-5. The CIC model has a fourth
control input λy that allocates the brake distribution from left to right. The direction of the
lateral brake allocation coincides with the direction of the turn. Generally, the control inputs
of the CIC model are smoother, indicating that the baseline is pushed further to its control
limits.
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Figure 7-5: Vehicle model control inputs

The state trajectory of both models is presented in Figure 7-6. Because of differential braking,
more control potential can be applied. This results in the vehicle driving a tighter trajectory
around the first obstacle, yielding a maneuver with a lower lateral velocity. This means the
car can brake less and keep a higher longitudinal velocity.
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Figure 7-6: Inputs of vehicle models

Employing more control potential by applying differential braking can make the CIC problem
easier to solve. This claim is supported by the computation times of both models, presented
in Table 7-5.

Vehicle model CPT avg [ms] CPT max [ms]
Baseline [2] 6.71 13.70

CIC 4.05 11.26

Table 7-5: Computation time with different vehicle models

The average computation time of the CIC model is lower despite having a greater input and
state space and more nonlinear constraints. Therefore, adding differential braking can allow
for a greater exploitation of the control potential. By exploiting more control potential, the
OCP becomes easier to solver, reducing the average computation time.

The aggressiveness of the maneuver is demonstrated in the GG curve, which presents the
accelerations relative to the acceleration µg. The GG curve is presented in Figure 7-7. The
vehicle’s accelerations reach the edges of the circle defined by µg, indicating that the maneuver
is aggressive with an acceleration between 0.8g and 1.1g for µ = 0.9. To verify that the CIC
model adheres to the friction limits, the baseline and CIC friction limits are presented in
Figure 7-8 and Figure 7-9 respectively.
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Figure 7-7: Vehicle model accelerations

3 4 5 6
0

1000

2000

3000

4000

5000

6000

T
ire

 fo
rc

e 
[N

]

Front left tire force

3 4 5 6
0

2000

4000

6000

8000

T
ire

 fo
rc

e 
[N

]

Front right tire force

3 4 5 6

Time [s]

0

2000

4000

6000

8000

T
ire

 fo
rc

e 
[N

]

Rear left tire force

3 4 5 6

Time [s]

0

2000

4000

6000

8000

T
ire

 fo
rc

e 
[N

]

Rear right tire force

Figure 7-8: Friction limit constraints baseline model

There are minor temporary violations of the friction limits in both the baseline model and
the CIC model, likely due to a difference in control frequency and the frequency of the plant
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Figure 7-9: Friction limit constraints CIC model

simulations. Generally, both models allow for high exploitation of the available tire forces.
However, the CIC model has smoother tire forces that almost perfectly adhere to the limits,
allowing for greater exploitation of the control potential.

In this scenario, the CIC model employed more control potential through differential braking.
More control potential utilization entails that the OCP becomes easier to solve, resulting
in lower computation times despite the larger problem size. Furthermore, all tire friction
constraints remain satisfied despite using an adjusted single-track model.

7-2-1 Vehicle model stability

The vehicle model used in the prediction model of the OCP can impact the controller’s
stabilizing performance. The OCP formulation derived in chapter 5 does not have explicit
stability constraints. Instead, the controller indirectly penalizes instability if it leads to a
collision during its long prediction horizon.
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7-2-2 Stability limits

Stability limits can be formulated as steady-state limits on the yaw rate and lateral velocity,
as shown in Equation 7-1 [11]. The limits form the stability envelope in Figure 7-10 [1].

ψ̇ ≤ min
(
Fyf,max(1 + lf/lr)

mẋ
,
Fyr,max(1 + lr/lf )

mẋ

)
, ẏ ≤ ẋαrsat + lrψ̇ (7-1)
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Figure 7-10: Stability envelope [1]
Alternatively, stability limits can be enforced on the sideslip angle β [8]. β is often limited in
driver-focused vehicle stability control techniques such as Electronic Stability Control (ESC)
[4]. In ESC, |β| is often limited to around 4 or 5 degrees [4].

The stability constraints in Equation 7-1 are not enforced in the OCP definition described
in chapter 5. However, these limits can provide insight into the vehicle stability conditions
for both vehicle models. The stability conditions of the baseline and CIC vehicle models are
presented in Figure 7-11 and Figure 7-12, respectively. The sideslip angles of both models
are compared in Figure 7-13. These figures show that the CIC vehicle model can execute
a similar collision avoidance maneuver with lower lateral velocity and sideslip angles than
the baseline model. This demonstrates that differential braking could improve the stabilizing
performance of the vehicle.
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Figure 7-11: Stability baseline model
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Figure 7-12: Stability CIC model
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Figure 7-13: Sideslip angles of vehicle models

7-3 Collision avoidance formulations

The impact of model fidelity on the computation time is further investigated using different
collision avoidance models presented in chapter 3. Here, the baseline distance model using
multiple circles [2] is compared against the derived ellipsoidal and rectangular distance models.

The collision avoidance models are simulated using the experimental setup presented in sec-
tion 6-1 with the parameters stated in Table 7-6. For this scenario, the performance of these
models is analyzed based on time and accuracy.

ẋref [m/s] ∆sa [m] ∆so [m] µ N Solver
18 25 15 0.9 50 HPIPM

Table 7-6: Scenario parameters collision avoidance formulation evaluation

For this scenario, the trajectories of each collision model are presented in Figure 7-14. Fig-
ure 7-14 shows relatively similar trajectories for the distance models. After avoiding the first
obstacle, the trajectories differ more.
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Figure 7-14: Collision model trajectories

The rectangular method is the most conservative of the distance models, capturing the full
vehicle geometry by fitting right-angled corners to the vehicle. It is expected that the rectan-
gular model would result in the largest distance to the obstacles as it would encounter greater
costs for an equal trajectory than the other methods due to the more conservative nature of
the formulation. This seems not to be the case in this scenario.

The execution time of distance model function model evaluations in chapter 3 demonstrates
that the ellipsoidal and rectangular models have a reduced computation time compared to
the multiple circle method. This does not directly entail that the computation time of the
entire OCP will also be reduced. The computation times of the OCP for the distance models
are presented in Table 7-7.

Distance model CPT avg [ms] CPT max [ms]
Multiple circles 3.09 8.38

Ellipse 3.11 8.48
Rectangle 3.15 7.45

Table 7-7: Computation time distance models

For this scenario, the average computation times are relatively equal, with the multiple circles
having the minimal average and the rectangle having the lowest maximum time. Despite faster
model evaluations, the computation time is not improved.

Since each distance model leads to a somewhat different optimization problem, their behavior
can be difficult to analyze. To limit the effects of the reference trajectory, the obstacle radius
ro is increased to 3 meters. Furthermore, the vehicle’s reference velocity was increased to
evaluate the performance at the controller’s limits. Leading to the scenario in Table 7-8.

ẋref [m/s] ∆sa [m] ∆so [m] µ N Solver
25 35 16 0.9 50 HPIPM

Table 7-8: Scenario parameters collision avoidance formulation evaluation

The trajectories for this scenario are presented in Figure 7-15. In this case, the multiple-circles
method fails to find a collision-free trajectory, leading to constraint violations that saturate
the tires. The ellipsoidal and rectangular methods are similar to the first scenario, where the
rectangular model applies marginally more aggressive steering.
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Figure 7-15: Collision model trajectories with large obstacles

The computation times at the limits of the OCP are shown in Table 7-9. In this scenario,
the rectangular method strongly outperforms both other models, achieving the lowest average
and maximum computation time.

It remains the case that comparing the distance models based on the closed-loop computation
time remains complex, as it can depend on several factors. Results might differ significantly
between scenarios. However, the rectangular and multiple circles methods consistently out-
performed the ellipsoidal method.

Distance model CPT avg [ms] CPT max [ms]
Multiple circles 4.90 48.98

Ellipse 5.02 215.10
Rectangle 3.91 20.23

Table 7-9: Computation time distance models with large obstacles

A potential contributing factor to the lower computation times for the multiple circles method
might be that the Jacobian and Hessian could be easier to approximate as they have a more
simplified mathematical expression. The state space of the OCP is presented in Figure 7-16.

The state space illustrates that the rectangular method is the first to apply a large steering
angle, indicating that it converges faster to a locally optimal trajectory. The ellipsoidal and
multiple circles methods initially apply more braking and less steering.

The multiple circles method requires more time to converge to a trajectory that avoids both
obstacles. This results in excessive braking, which could have temporarily violated saturation
constraints. From the rotational velocity and steering angle of the multiple circles model, it
can be derived that the controller is likely correcting a drift.

It is demonstrated that all distance models could be used in a real-time implementable CIC
controller. The multiple-circle and rectangular methods generally achieved the best real-time
performance.

The rectangular model can be considered the best distance model for CIC. It captures the
vehicle’s geometry most accurately, leading to a more conservative distance formulation that
considers all parts of the vehicle in the expression. Despite the increased conservatives,
the closed-loop computation time is lower or equal to the baseline method, which captures
significantly less of the vehicle geometry.
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Figure 7-16: Vehicle state space for collision models with large obstacles
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Chapter 8

Robustness evaluation

The CIC controller must cope with the complex dynamic environment in which autonomous
vehicles operate. Robustness challenges can be posed by changing road-tire friction coefficients
and road curvatures or by dynamic obstacle behavior. This chapter evaluates the performance
of the best controller from chapter 7 in scenarios where these robustness challenges are posed.

As described in chapter 5, the CIC controller with two obstacles has ten parameters describing
the dynamic environment. As shown in Equation 8-1.

p̂ = [so1, eoy1, ro1, so2, eoy2, ro2, rbr, rbl, µ, κ] (8-1)

This chapter evaluates robustness for changing values of µ, κ, and the location of obstacles.

8-1 State and friction estimator

The road-tire friction coefficient can be estimated to improve robustness and model accuracy
[39]. Estimating the road-tire friction coefficient is important in differential braking control
for the accuracy of tire saturation constraints and prediction model dynamics. Furthermore,
prediction model states might not be available as some states can not be measured or mea-
suring is economically unviable.

A UKF is constructed to estimate the states of the CIC prediction model and the tire-road
friction coefficient. The CIC vehicle model is used to generate a model-based prediction, and
a Monte Carlo simulation is used to describe the dynamics of the tire-road friction coefficient
[16].

To obtain an accurate value of µ using the UKF, it is chosen to use the same prediction model
as used by the controller. This ensures that the estimated parameter of µ reduces the error
between the CIC prediction model and the plant.

Two state and friction estimators were developed in Appendix C. A UKF that uses the
rotational wheel dynamics to determine the longitudinal tire forces and a UKF that assumes
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ideal tire force actuation. The longitudinal tire forces can be estimated using the rotational
dynamics of a wheel presented in Equation 8-2 [16].

Iwω̇f = Tw −Mr − Fxrw (8-2)

Here, ωw, Iwi , and rwi are the rotational velocity, inertia and radius of the wheel respectively.
Tw is the total applied torque at the wheel and Mr is the torque of wheel resistance. To
describe the rotational dynamics accurately, each wheel should be considered separately. No
set of parameters could be identified for which the wheel dynamics closely approximated the
artificial measurements from the IPG vehicle model. However, Since the control inputs from
the CIC controller respect the friction limits, the approximation in Equation 8-3 is applied.

Fxf
≈ Tf
rw
, Fxr ≈ Tr

rw
(8-3)

Therefore, the second UKF developed in Appendix C is implemented in closed-loop simula-
tions. The parameter space ξ̂ of this UKF is created using the cartesian dynamics of the CIC
vehicle model (ẋ, ẏ, ψ̇) and friction coefficient µ. For the control inputs of the filter uUKF ,
the control inputs to the IPG model are considered. It is assumed that only standard vehicle
sensors can be used. These include accelerometers, gyroscopes, and wheel speed sensors. Ar-
tificial measurements can be taken from the IPG model that forms the measurement vector
yUKF . The parameter, input, and measurement vectors are presented in Equation 8-4.

ξ̂ = [ẋ, ẏ, ψ̇, µ]T

uUKF = [δsw, Tf , Tr]T (8-4)
y = [ẋ, ẍ, ÿ, ψ̇]T

The design and the tools used to implement the UKF are derived from the work of Hamann
et al. [16]. The details of the UKF algorithm used are presented in Appendix E.

8-1-1 Friction estimation

The friction estimator is tuned on a trajectory for which the friction coefficient changes during
an aggressive double-lane change maneuver. This is achieved in IPG CarMaker by specifying
a road section with a lower friction coefficient just before the vehicle encounters two obstacles.

The effects of online fiction estimation on the success rate of aggressive maneuvers for collision
avoidance have been evaluated in previous works [39]. Online friction estimation can increase
the success rate significantly as the robustness issues posted by the changing friction coefficient
can be reduced [39]. A scenario is constructed to demonstrate that this extends to CIC and
to study the effect on the computation time. This scenario is created using the experimental
setup in section 6-1, and the environment parameters are specified in Table 8-1. In the
experiment, the friction coefficient is suddenly reduced from 0.9 to 0.4 when the vehicle is at
a distance ∆sa to the first obstacle. The friction-adaptive closed-loop controlled is evaluated
against a CIC controller that assumes a constant friction coefficient of µ = 0.9. The UKF
is first tested offline in this scenario, resulting in the estimated states and friction coefficient
presented in Figure 8-1.
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ẋ0 [m/s] ∆sa [m] ∆so [m] µ N Solver
15 30 15 0.9-0.4 50 HPIPM

Table 8-1: Scenario parameters uncertain friction
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Figure 8-1: Offline UKF state and friction estimates

The UKF can estimate the state space and friction coefficient. The real-time collision avoid-
ance performance of the CIC with friction estimation can be compared to the case where
a fixed friction coefficient µ = 0.9 is assumed to demonstrate the impact of online friction
estimation.

The online estimated friction coefficient during the executed maneuver is presented Figure 8-2.
When the friction coefficient changes at s = 70, the friction estimate decreases to 0.49 when
s = 97 around 1.3 seconds later. Here, the prediction is the most accurate, likely since this is
near the limit of handling of the vehicle. Near the limits of handling the friction coefficient
estimates are generally more accurate [17].

The non-adaptive and adaptive controller trajectories are presented in Figure 8-3. The non-
adaptive controller collides with the second obstacle and causes violent oscillations when
correcting a drift.

The non-adaptive controller results in a collision, and the adaptive controller performs a
successful evasive maneuver. The difference between the two controllers can be more clearly
evaluated based on their state space, presented in Figure 8-4.

For the values of the system states, it can be observed that the non-adaptive controller
performs greater steering actions and fewer braking actions. The planned control actions
saturate the tires as the prediction model assumes a friction coefficient of (µ = 0.9). This
discrepancy between the prediction model and the plant thus leads to a colliding trajectory.
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Figure 8-2: Online estimated friction coefficient
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Figure 8-3: IPG scenario with uncertain friction

The adaptive controller applies significantly more braking as it derives that with the initial
velocity and the predicted friction coefficient, the trajectory is not collision-free.

The effect of online friction estimation on the computation time is shown in Table 8-2. The
adaptive controller did not have a significantly lower average computation time for this sce-
nario. However, the adaptive controller did perform a collision-free evasive maneuver.

Distance model CPT avg [ms] CPT max [ms]
non-adaptive 3.96 8.01

adaptive 3.59 10.47

Table 8-2: Computation time for adaptive CIC
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Figure 8-4: State space adaptive CIC

8-2 Road curvature estimator

Thus far, CIC has been mainly tested on straight roads. In the real world, the CIC con-
troller must cope with changing road curvatures. This can be a source of disturbance to the
controller, posing robustness issues.

For the CIC controller to work on highly curved roads with no road curvature profile, the
road curvature can be estimated based on a cartesian-based definition of the road, such as
available on maps. The road curvature can be estimated using three points in the cartesian
frame. However, the curvature approximation can be greatly simplified if these points are
assumed to be an equal distance ∆s apart. Both methods are as presented in Appendix C.

These curvature estimator were used to derive a curvature profile for the Silverstone racetrack,
presented in Figures 8-5a and 8-5b. This curvature profile simulates the behavior of the CIC
controller on strongly curved roads. The track data was retrieved from the TUM Institute of
Automotive Technology 1

This curvature profile simulates the CIC controller on the racetrack. The parameters in
Table 8-3 are used to describe the scenario.

With the estimated curvature profile κ(s), the CIC controller was simulated on the Silverstone
1Racetrack database: https://github.com/TUMFTM/racetrack-database
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Figure 8-5: Silverstone curvature estimation

ẋref [m/s] eyref [m] µ N Solver
25 0 0.9 50 HPIPM

Table 8-3: Scenario parameters racetrack

racetrack. The full trajectory is presented in Appendix C. A particular section of the track is
highlighted in Figure 8-6. In this track segment, it can be observed that the controller follows
a racing line as it aims to minimize the error to its target velocity ẋref. Since eyref = 0, the
vehicle drives in the middle of the track on the straights.

600 650 700 750 800 850 900 950
X [m]

350

400

450

500

550

600

Y
 [m

]

CIC
Track limits

Figure 8-6: CIC on Silverstone
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This scenario demonstrates that CIC can avoid the road boundaries on highly curved road
profiles. The smallest momentary turning radius of the track is around 12 meters. This is
close to the minimum turning radius of the vehicle. This demonstrates that the controller
can effectively apply braking, acceleration, and steering control inputs to negotiate these tight
turns at high velocity.

8-3 Dynamic obstacles

Another source of disturbance and uncertainty stems from obstacles’ dynamic and uncertain
behavior. To model the behavior of obstacles, it is assumed that the position and velocity of
each obstacle are available at the beginning of the prediction horizon.

The position po and the velocity vo of an obstacle are described in spatial coordinates (s, ey).
In the controller, the velocity of the obstacles is assumed to be constant throughout the
prediction horizon. When a new estimate of the obstacle location and position is available,
the parameters can be updated in a future execution of the controller. The location of the
obstacles is updated as described in chapter 3.

Two scenarios are investigated to evaluate the effects of dynamic obstacle behavior on the CIC
controller. In the first scenario, two obstacles are considered traveling in opposite directions
on a two-lane road. The obstacles travel much slower than the agent vehicle and are observed
around 1 second before a collision would occur. Since an obstacle is approaching in the other
lane, the slower obstacle in the same lane as the vehicle can not be overtaken at first. The
vehicle must brake hard to prevent an accident with the significantly slower obstacle and wait
to overtake until the approaching obstacle in the other lane has passed.
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Figure 8-7: Dynamic obstacles blocked overtaking

The trajectories of the vehicle and obstacles in this scenario are shown in Figure 8-7. On the
left, a top-down view is presented, where the positions of the obstacles are shaded from light
to dark as the obstacle moves along their paths. On the right, these trajectories are shown in
three dimensions with respect to (s, ey) and the time. In the right plot, the trajectory’s slope
indicates the velocity. The vehicle stays in its lane despite quickly approaching the much
slower obstacle. Instead of changing lanes, the vehicle brakes and waits with the overtaking
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maneuver until the obstacle in the opposite lane has passed. Figure 8-7 precisely describes
the controller’s expected behavior.

Another possible scenario is that the obstacle changes lanes while the agent vehicle attempts
an overtake. In this scenario, the vehicle must abandon its overtake maneuver, brake, and
return to the original lane. This maneuver is presented in Figure 8-8, where the trajectories are
presented similarly to Figure 8-7. The slope of both trajectories with respect to s is relatively
similar, indicating that the vehicle and obstacle are traveling at similar velocities. When the
vehicle initiates an overtake of the obstacle, the obstacle moves over to the overtaking lane.
In this scenario, the drivable space of the controller rapidly shrinks as the obstacle moves
in front of it. The vehicle correctly extrapolates the velocity of the obstacle and decides to
change back to the original lane to overtake from the left.
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Figure 8-8: Dynamic obstacles changing lanes
These two scenarios demonstrate that the CIC controller can avoid dynamic obstacles in
complex collision avoidance scenarios.
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Chapter 9

Hardware in the loop

The CIC controller is implemented on several dSpace embedded control platforms to evaluate
the real-time performance. These platforms are purpose-built for the automotive sector to
allow for rapid implementation and testing of vehicle control systems. Controllers can be
implemented using C-code or, more commonly, by building a Simulink model and compiling
it to C-code.

9-1 Platforms

Out of the toolboxes evaluated in chapter 6, ACADO and Acados can be applied on dSpace
embedded platforms. Three of such platforms were employed to perform HIL simulations of
the CIC controller, these include:

• AutoBox (ABX) DS1007,
• MicroAutoBox (MABX) DS1404,
• SCALEXIO (SCX).

The MABX controller presented in Figure 9-1 was first used to implement the CIC controller.
It was found that with a long prediction horizon (N = 50), the CIC problem developed in
ACADO can exceed its memory of 16MB. Next to reducing the computation time, variable
timesteps also reduce the storage size of the OCP.

The aim is to exploit the full performance of the embedded controller. Therefore, it is desired
to solve the OCP and simulate the measurements of the validation model on separate systems.
To achieve this, the ABX controller from the developmental TUDelft autonomous vehicle can
be used. This vehicle is presented in Figure 9-2.

Using the vehicle CAN network, the ABX controller can send control signals to the vehicle
actuators. Setting up a CAN network between the controller and a validation model simulator
can allow for closed-loop simulations. Since variable timesteps can not be used when imple-
menting the CIC controller in Acados, it might also lead to memory issues. Furthermore,
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Figure 9-1: MicroAutoBox (MABX)

Acados does not provide a default method to deploy it on older dSpace controllers. Because
of these considerations and the lower computation time of ACADO in PC-based simulations,
the HIL simulations are performed using the ACADO toolbox.

Figure 9-2: Autonomous vehicle test platform

9-2 Closed loop embedded simulation

Closed loop embedded HIL simulations are performed by sending control signals over a CAN
network. These control signals form the inputs of a HIL IPG CarMaker validation model
executed on a separate simulator. Artificial measurements are then returned to the controller,
from which a new initial state is derived. The ABX runs the CIC controller using ACADO,
and a SCX simulator is used to execute the HIL IPG CarMaker validation model. Both
controllers send and receive messages over a custom-implemented CAN network, as depicted
in Figure 9-3.
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DS1007 AutoBox Controller

CAN network

SCALEXIO IPG simulator

Figure 9-3: Closed loop embedded CAN network

9-2-1 CAN network

The CAN network was set up using the dSpace RTI CAN Simulink blocks on the controller
side and dSpace ConfigurationDesk on the simulator side.
The CAN network structure was configured using a DBC file created using CANdb++. This
DBC file specifies the signal names and the data types. The DBC file is used in the RTI
Simulink blocks and ConfigurationDesk to specify the RX and TX message structures.
Using data type conversions from the Simulink environment to the CAN network is essential.
Signals with low values were multiplied by a certain factor according to the data type. For
example, the control signal for the accelerator ∈ (0, 1) can be multiplied on the TX side and
divided on the RX side by a large factor so that it is not converted to a binary signal. More
details on the implementation of the CAN network are available in Appendix E.
The closed loop embedded HIL simulation is executed using the scenario presented in sec-
tion 6-1 with the parameters stated in Table 6-7. The computation times of the controller
are shown in Figure 9-4.
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Figure 9-4: Computation times SQP toolboxes
The computation time on the embedded system is significantly higher than in the PC-based
simulations. This can have multiple causes, such as delays in the CAN communication,
reduced signal accuracy due to data type conversions in the CAN network, and reduced
computation power of the hardware. The average computation time of 8ms makes it suitable
for high control frequencies. The maximum computation time could be further reduced by
using a sparse solver such as HPIPM, employing different stopping conditions of the OCP, or
implementing advanced real-time task scheduling.
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The trajectory of the HIL simulation is presented in Figure 9-5. Even though the computation
time is higher, the vehicle’s trajectory in this scenario is similar to the PC-based simulation.
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Figure 9-5: Trajectory HIL simulation
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Chapter 10

Discussion

This research investigated several methods to improve the safety of CIC. Safety can be
increased by employing more control potential of the vehicle. Typically, this can be achieved
by using higher modeling power at the expense of computational complexity. More control
potential can be applied using a one-level NMPC controller with a single nonlinear prediction
model for re-planning and control.

Different ways of decreasing the computational complexity were explored, including solving
techniques, model fidelity, and control problem formulation.

10-1 Solving techniques

The nonlinear optimization problem was solved using SQP with RTI. Different solvers can
be used to solve the resulting QP problem. Solvers can significantly impact the computation
time of the NMPC CIC problem. Sparse solvers outperformed condensed solvers for CIC with
long prediction horizons.

To improve convergence, a global reference trajectory provides a sense of direction. This
trajectory is not strictly necessary for collision avoidance, as demonstrated in chapter 6.
However, it can improve the computation time and the distance to the obstacles, specifically
for smaller obstacles.

10-2 Model fidelity

The model fidelity of the prediction model can significantly impact safety and computation
time. Safety can be improved by exploiting more control potential. Differential braking
was found to employ more control potential, which can reduce computation time, promote
stability, and achieve collision avoidance in more complex scenarios, compared to the baseline
vehicle model [2].

Master of Science Thesis K. Trip



74 Discussion

Collision avoidance is integrated into the NMPC problem as an objective. Multiple distance
formulations were compared based on their modeling accuracy and computation time. These
formulations result from describing the vehicle with different geometric shapes, including mul-
tiple circles [2], an ellipse, and a rectangle. Although the ellipse had the lowest computation
time for model evaluations, integrating this collision model in the OCP increased the compu-
tation time of the controller. Due to the intricate nature of nonlinear optimization, comparing
the effects of the distance models directly is complex. A possible explanation could be that
the higher complexity of the distance expression leads to less sparsity and more complex
Jacobian and Hessian expressions, even though fewer distances must be computed.

It was found that the rectangular model best describes the vehicle geometry. This leads
to greater conservativeness, as all areas of the vehicle are included in the expression. The
computation time of the rectangular distance model is lower or equal to the baseline method
[2] despite the increased conservativeness. Therefore, the rectangular model can improve
safety in CIC.

10-3 OCP formulation

The control problem can be formulated in various ways, depending on the objectives, con-
straints, and requirements of the controller. Reducing the problem size was found to reduce
computational complexity. Several methods exist that can reduce the problem size. Firstly,
stability can be enforced indirectly by penalizing eventual collisions with road boundaries
and obstacles that may result from instability [2]. This reduces the problem size compared
to using stability constraints with slack variables that allow temporary constraint violations.
Secondly, using braking distribution parameters instead of individual tire longitudinal tire
forces can reduce the input space [2]. Furthermore, moving block strategies can be applied
to reduce the amount of steps in the prediction horizon. Reducing the prediction horizon
decreases the problem size, affecting the input and state space, together with the number of
constraints. Compared to applying bigger fixed timesteps, variable timesteps can capture the
dynamics accurately in the initial phase of the prediction horizon.

A lower bound on the number of timesteps in the prediction horizon was identified. Below this
bound, the integration accuracy of the vehicle dynamics and collision avoidance formulation
is potentially reduced past a limit where collision avoidance performance suffers significantly.

10-4 Real-time performance

The best real-time performance was achieved on PC-based simulations using the MATMPC
framework, the HPIPM solver, and variable timesteps. The computation time of the HIL
controller is significantly higher than in the PC-based simulations. This can have multiple
causes, such as delays in the CAN communication, reduced signal accuracy due to data type
conversions in the CAN network, and reduced computation power of the hardware. Even the
HIL could be executed at real-time control frequencies due to the low average computation
time of 8 ms. The effects of high maximum computation times could be further reduced
by using the sparse HPIPM solver in ACADO, employing earlier stopping conditions of the
nonlinear optimization problem, or using advanced real-time task scheduling.
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Chapter 11

Conclusion

An adaptive real-time implementable one-level NMPC controller is proposed for CIC that can
achieve higher levels of safety by exploiting greater modeling power. To employ higher mod-
eling power in real-time, SQP with RTI was used together with sparse QP solvers. Starting
from a baseline controller [2], various methods that decrease the computational complexity
were explored, including solving techniques, model fidelity, and control problem formulation.

It was found that the solver can significantly impact computational complexity, with sparse
solvers generally outperforming condensed solvers. Furthermore, moving block strategies
employing variable timesteps can considerably reduce the problem size. This greatly reduces
computational complexity, with the most significant impact on condensed solvers.

The model fidelity of a vehicle model that can employ differential braking was minimized
by employing differential braking on an adjusted single-track vehicle model. This vehicle
prediction model can increase the control potential that can be applied, resulting in higher
levels of safety demonstrated by improved collision avoidance and stabilizing performance.
It was found that the increase in control potential utilization can decrease the computation
time despite increasing the problem size.

Safety was increased by employing more accurate collision avoidance formulations that accu-
rately capture the vehicle geometry. A rectangular shape in the collision avoidance formula-
tion provided the best modeling accuracy and computational complexity.

The most significant factors influencing the computation time are the solver, problem size,
model complexity, and the exploitation of control potential. With these factors carefully
selected or exploited, the CIC controller can achieve control frequencies exceeding 100Hz in
PC-based simulations. Compared to the PC-based implementation used by Brown et al.
[2], the control frequency was increased by a factor of 5. This removes the need for open-
loop control, as the lower computation time of the CIC controller allows it to be closed-loop
implemented in real-time. Furthermore, the CIC controller can be considered safer as it
can apply more control potential through differential braking, and the (rectangular) collision
avoidance formulation is more conservative.
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The controller was implemented on the embedded controller of a real autonomous vehicle.
HIL simulations were performed using a separate controller and simulator that interface over
a CAN network. A control frequency exceeding 50Hz could be feasible with more advanced
scheduling. The main problem facing the embedded implementation is the high maximum
computation time.

The controller was forced to the limits, achieving collision avoidance in scenarios with uncer-
tain friction and dynamic obstacles. The controller also successfully avoided road boundaries
at high speed on highly curved tracks. This demonstrates that the proposed controller can
cope with some aspects of the dynamic environment in which autonomous vehicles operate.

With careful formulation and applying different techniques, the safety of CIC can be improved
by exploiting more control potential. This can be achieved since the lower computational
complexity allows for higher modeling power. However, several challenges to autonomous
driving remain, such as perception and global decision-making. Implementing the controller
on a real vehicle might bring other unforeseen problems, such as coping with other vehicle
safety systems, delays, and other actuator-specific limitations.

In some experiments, it was observed that the CIC controller had a high maximum com-
putation time. Future research could investigate the effects of different solver settings on
the performance and maximum computation time of CIC. Furthermore, for UKF friction
estimation in vehicle control with differential braking, future works could use a high-fidelity
prediction model that includes the rotational dynamics of individual wheels.

To further improve the computational complexity, future works could investigate the effects
of different non-uniform integration grids with non-binary variable timestep step increases,
implement promising novel solvers such as PRESAS [27], or explore other methods that might
offer further reductions in computation time. In addition, the performance of the collision
avoidance formulations could be investigated for scenarios with more obstacles.
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Appendix A

Vehicle model

This chapter in the appendix presents the analysis of approximations and derivation of con-
straints for the CIC vehicle model. The error of the approximation of Mx is analyzed, followed
by derivations of the friction limit constraints.

A-1 Simplifying the differential braking moment

In chapter 4, an added yaw moment Mx is included in the CIC model to enable differential
braking. The approximation of Mx is based on a small angle approximation. Equation A-1
shows the full expression and approximation of the added moment when Mx < 0.

Mx

∣∣∣∣
Fx≤0

= wFx
2 (λx (1 − 2λy) cos δ + (1 − λx) (1 − 2λy))

≈ wFx
2 (1 − 2λy) (A-1)

Hence, the error is expressed as:

ErrorMx = |
Mxmax −Mxapprox

Mxmax
| · 100 = |λx (cos δ − 1) | · 100 (A-2)

This maximum error occurs if λx = 1 and δ = 20 deg and amounts to 6.03%.

A-2 Friction limit constraints

Generally, the friction limit can be expressed in Equation A-3 [2].

|Fx| ≤ µFz (A-3)
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78 Vehicle model

When using differential braking, this constraint must be applied to each individual tire. The
normal loads of each tire can be expressed as in Equation 4-13, and the longitudinal force can
be derived from Equation A-10. This can be used to derive four friction limit constraints.

First, the constraints can be formalized in the case that: Fx < 0. In this case, the
following constraint can be formulated for each tire (i, j):

Fxi,j ≥ −µFzi,j (A-4)

Filling in the equations for the front left tire results in:

Fxfl = λxλyFx ≥ −µFzfl
−Fxfl = −λxλyFx ≤ µFzfl (A-5)

= −λxλyFx ≤ µ

2

(
lr

lf + lr
Fz − ∆Fzx

)
− γ∆Fzy

This process can be repeated for the other tires to derive constraints for Fxfr, Fxfr, and Fxfr.
Moving the vehicle state-dependent terms to the left results in the following linear constraints
with respect to the states:

[
−λxλy µ

2 µγ
]  Fx

∆Fzx
∆Fzy

 ≤ lrµmg

2 (lf + lr)

[
−λx (1 − λy) µ

2 −µγ
]  Fx

∆Fzx
∆Fzy

 ≤ lrµmg

2 (lf + lr)

[
− (1 − λx)λy −µ

2 µ (1 − γ)
]  Fx

∆Fzx
∆Fzy

 ≤ lfµmg

2 (lf + lr)
(A-6)

[
− (1 − λx) (1 − λy) −µ

2 −µ (1 − γ)
]  Fx

∆Fzx
∆Fzy

 ≤ lfµmg

2 (lf + lr)

Second, the constraints can be formalized in the case that: Fx ≥ 0. In this case, the
following constraint can be formulated for each tire (i, j):

Fxi,j ≤ µFzi,j (A-7)

If Fx is positive, there is no differential braking or torque vectoring as there exists a fixed Fx
distribution λdrive, resulting in the following constraints:

[
λdrive µ

] [ Fx
∆Fzx

]
≤ lrµmg

(lf + lr)[
1 − λdrive −µ

] [ Fx
∆Fzx

]
≤ lfµmg

(lf + lr)
(A-8)
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The full constraint can be expressed as:

[
λ1
µ

1
2 γ

]  Fx
∆Fzx
∆Fzy

 ≤ Fgf

[
λ2
µ

1
2 −γ

]  Fx
∆Fzx
∆Fzy

 ≤ Fgf

[
λ3
µ −1

2 1 − γ
]  Fx

∆Fzx
∆Fzy

 ≤ Fgr (A-9)

[
λ4
µ −1

2 γ − 1
]  Fx

∆Fzx
∆Fzy

 ≤ Fgr

With:

λ1 =
{

−λxλy Fx ≤ 0
λdrive

2 otherwise
, λ2 =

{
−λx(1 − λy) Fx ≤ 0
λdrive

2 otherwise

λ3 =
{

−(1 − λx)λy Fx ≤ 0
(1−λdrive)

2 otherwise
, λ4 =

{
−(1 − λx)(1 − λy) Fx ≤ 0
(1−λdrive)

2 otherwise
(A-10)

Fgf = lrmg

2 (lf + lr)
, Fgr = lfmg

2 (lf + lr)
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Appendix B

Distance formulation derivation

Certain approximations and derivations are relied upon in the formulation of the distance
models presented in chapter 3. These are presented and analyzed in this chapter.

B-1 Error in angle estimation

0 5 10 15 20 25 30 35 40

s [m]

-5

0

5

ey
 [m

]

Trajectory

Examplary trajectory
Obstacles

Figure B-1: Exemplary trajectory simulation
The expression of θ is significantly simplified but influenced by κ in the θL term. To evaluate
the accuracy of this approximation, it can be evaluated against the original expression on
an uncontrolled exemplary trajectory, such as presented in Figure B-1. The error in the
approximation increases for larger road curvatures. In this trajectory, the road is assumed to
have an instantaneous turning radius of 10 meters.

The approximation error of the angle to each obstacle during the trajectory is shown in
Figure B-2. Generally, the error in the angle is less than 5 degrees. Near the obstacles at
s = 10 and s = 30, the error in the angle to the obstacle is minimal.
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0 5 10 15 20 25 30 35 40
-2

-1

0

1
Angle approx, Obst 1
True angle, Obst 1

0 5 10 15 20 25 30 35 40
-1

0

1

2
Angle approx, Obst 2
True angle, Obst 2

0 5 10 15 20 25 30 35 40
0

5

10
Absolute error, Obst 1
Absolute error, Obst 2

Figure B-2: Approximation errors in θ

B-2 Derivation of extrema coordinates of a rotated ellipse

The extrema coordinates of a rotated ellipse with respect to the y-axis are derived in this
chapter. The equations of a rotated ellipse with angle θ in the cartesian space can be expressed
as:

(x cos θ − y sin θ)2

a2 + (x sin θ + y cos θ)2

b2 = 1 (B-1)

(x cos θ − y sin θ)2b2 + (x sin θ + y cos θ)2a2 = a2b2

This equation expands to:

(x2 cos2 θ − 2xy cos θ sin θ + y2 sin2 θ)b2 + (x2 sin2 θ + 2xy cos θ sin θ + y2 cos2 θ)a2 = a2b2

The maximum point can be found by finding the derivative with respect to x and y of the
LHS:

f(x, y) = (x2 cos2 θ − 2xy cos θ sin θ + y2 sin2 θ)b2 + (x2 sin2 θ + 2xy cos θ sin θ + y2 cos2 θ)a2
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Differentiating f(x, y), with respect to x and y results in the following partial derivative
functions:

∂f(x, y)
∂x

= (2x cos2 θ − 2y cos θ sin θ)b2 + (2x sin2 θ + 2y cos θ sin θ)a2

= b2x cos2 θ + a2x sin2 θ + (a2 − b2)y cos θ sin θ (B-2)
∂f(x, y)
∂y

= (−2x cos θ sin θ + 2y sin2 θ)b2 + (2x cos θ sin θ + 2y cos2 θ)a2

= b2y sin2 θ + a2y cos2 θ + (a2 − b2)x cos θ sin θ (B-3)

∂y
∂x can be found by dividing the partial derivative equations.

∂y

∂x
= ∂y

∂f(x, y) · ∂f(x, y)
∂x

= b2x cos2 θ + a2x sin2 θ + (a2 − b2)y cos θ sin θ
b2y sin2 θ + a2y cos2 θ + (a2 − b2)x cos θ sin θ

(B-4)

∂y
∂x equals zero if:

b2x cos2 θ + a2x sin2 θ + (a2 − b2)y cos θ sin θ = 0 (B-5)

Hence:

ymax = −b2x cos2 θ + a2x sin2 θ

(a2 − b2) cos θ sin θ

= −xa
2 sin2 θ + b2 cos2 θ

(a2 − b2) cos θ sin θ (B-6)

∂x
∂y equals zero if:

b2y sin2 θ + a2y cos2 θ + (a2 − b2)x cos θ sin θ = 0 (B-7)

Hence:

xmax = −b2y sin2 θ + a2y cos2 θ

(a2 − b2) cos θ sin θ

= −ya
2 cos2 θ + b2 sin2 θ

(a2 − b2) cos θ sin θ (B-8)

The maximum y-coordinate is then found by filling in the equation for xmax in the function
of the rotated ellipse:

b2
(
x cos θ + x

a2 sin2 θ + b2 cos2 θ

(a2 − b2) cos θ

)2

+ a2
(
x sin θ − x

a2 sin2 θ + b2 cos2 θ

(a2 − b2) sin θ

)2

= a2b2 (B-9)

The following simplification can be applied:

f(a, b, θ) = a2 sin2 θ + b2 cos2 θ (B-10)
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The equation of the ellipse expands to:

a2x2
(

f2

(a2 − b2) sin θ

)2

+ b2x2
(

f2

(a2 − b2) cos θ

)2

+ 2x2 f
(
b2 − a2)

(a2 − b2) + b2x2 cos2 θ + a2x2 sin2 θ = a2b2

a2x2
(

f2

(a2 − b2) sin θ

)2

+ b2x2
(

f2

(a2 − b2) cos θ

)2

− y2f = a2b2

x2
(

a2f2

(a2 − b2)2 sin2 θ
+ b2f2

(a2 − b2)2 cos2 θ
− f

)
= a2b2

x2
(

f2

(a2 − b2)2 · a
2 cos2 θ + b2 sin2 θ

sin2 θ cos2 θ
− f

)
= a2b2

x2
(

f

(a2 − b2)2 ·
(
a2 cos2 θ + b2 sin2 θ

)
·
(
a2 sin2 θ + b2 cos2 θ

)
sin2 θ cos2 θ

− f

)
= a2b2

x2
(

f

(a2 − b2)2 ·
(
a4 sin2 θ cos2 θ + a2b2 cos4 θ + a2b2 sin4 θ + b4 sin2 θ cos2 θ

)
sin2 θ cos2 θ

− f

)
= a2b2

x2
(

f

(a2 − b2)2 ·
(
a4 sin2 θ cos2 θ + a2b2 (1 − 2 sin2 θ cos2 θ

)
+ b4 sin2 θ cos2 θ

)
sin2 θ cos2 θ

− f

)
= a2b2

x2
(

f

(a2 − b2)2 · a
2b2 + (a2 − b2)2 sin2 θ cos2 θ

sin2 θ cos2 θ
− f

)
= a2b2

x2
(
f · a2b2

(a2 − b2)2 sin2 θ cos2 θ

)
= a2b2

x2 = (a2 − b2)2 sin2 θ cos2 θ

a2 sin2 θ + b2 cos2 θ
(B-11)

Using the previously found

ymax = −xa
2 sin2 θ + b2 cos2 θ

(a2 − b2) cos θ sin θ (B-12)

∴ y2
max = x2

(
a2 sin2 θ + b2 cos2 θ

)2
(a2 − b2)2 cos2 θ sin2 θ

= (a2 − b2)2 sin2 θ cos2 θ

a2 sin2 θ + b2 cos2 θ
·
(
a2 sin2 θ + b2 cos2 θ

)2
(a2 − b2)2 cos2 θ sin2 θ

= a2 sin2 θ + b2 cos2 θ (B-13)

This leads to the value of the maximum y-coordinate of a rotated ellipse:

ymax = ±
√
a2 sin2 θ + b2 cos2 θ (B-14)
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Appendix C

Environmental estimators

This section provides the derivations of the estimators used in this work.

C-1 State and friction estimator

Two different Unscented Kalman Filters (UKFs) are developed in this research. The first filter
includes the rotational dynamics of the wheels, and the second filter simplifies the dynamics
by assuming that the longitudinal tire forces can be derived from the control inputs u.

C-1-1 UKF with rotational dynamics

To account for discrepancies between the commanded longitudinal tire forces by the controller
and the actual longitudinal tire forces, the tire rotational dynamics described in Equation C-1
can be used [16].

Iwf
ω̇f = Tf −Mrf

− Fxf
rwf

, Iwr ω̇r = Tr −Mrr − Fxrrwr (C-1)

In Equation C-1, ωwi is the rotational velocity, Iwi is the inertia, and rwi is the radius of the
wheel at i = (f, r). Tf and Tr represent the torques at the front and rear axle.

The rotational dynamics of the wheel and the dynamics of the ST model lead to the following
estimation vector ξ̂ for the UKF shown in Equation C-2. These estimates can be integrated
and scaled to represent the full state space of the CIC prediction model.

ξ̂ = [ẋ, ẏ, ψ̇, µ, Fxf , Fxr, ωf , ωr]T (C-2)

Artificial measurements are taken from the plant in IPG CarMaker. These form the measure-
ment vector yUKF , presented in Equation C-3.

y = [ẋ, ẍ, ÿ, ψ̇, ωf , ωr]T (C-3)
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The input space of the UKF uUKF is chosen to be equal to the inputs of the IPG plant
model. Including the torques directly as an input simplifies the wheel rotational dynamics in
the prediction model.

uUKF = [δsw, Tf , Tr]T (C-4)

The UKF prediction model is expressed in Equation C-5.

mẍ = mẏψ̇ + Fxf
cos δ − Fyf

sin δ + Fxr

mÿ = −mẋψ̇ + Fxf
sin δ + Fyf

cos δ + Fyr

Izψ̈ = lf (Fxf
sin δ + Fyf

cos δ) − lrFyr

µ̇ = 0
Ḟxf

= (Fxf
− Tfrwr )∆t (C-5)

Ḟxr = (Fxr − Tfrwr )∆t
Iwω̇f = Tf −Mrf

− Fxf
rwr

Iwω̇r = Tr −Mrr − Fxrrwr

Similar to the CIC prediction model, a Fiala tire model is used for the lateral dynamics.
Gray-box parameter identification was performed to find the model parameters. However, it
proved challenging to fit the rotational dynamics to the response of the IPG model. This is
likely due to differential braking and a ST model in the prediction model of the UKF.

Measurement model

The measurement model H(ξk+1) finds the prediction of the measurements ŷk+1 according
the predicted model states ξk+1 [16]. For the UKF with rotational dynamics, the precision
model can be defined as:

ŷ1k+1 = ξ1k+1

ŷ2k+1 = ξ1k+1 − ξ1k
∆t − ξ3k+1ξ2k+1

ŷ3k+1 = ξ2k+1 − ξ2k
∆t + ξ3k+1ξ1k+1

ŷ4k+1 = ξ3k+1 (C-6)
ŷ5k+1 = ξ7k+1

ŷ6k+1 = ξ8k+1

UKF parameters

The UKF was tuned to minimize the error in the lateral velocity. This resulted in the variables
of the covariance matrices P0, Rv, Rn and the UKF tuning parameters αUKF , βUKF , and
κUKF .
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Figure C-1: UKF with wheel rotational dynamics

P0 = diag([1.2e−6, 1.7e−5, 1.0e−5, 1.1e−4, 2.0e−5, 1.8e−5, 1.2e−6, 1.0e−6])
Rv = diag([1.0e−5, 1.2e−5, 1.0e−5, 9.0e−4, 2.2e−4, 2.0e−4, 1.0e−5, , 1.1e−5])
Rn = diag([1.0e−5, 5.0e−4, 5.8e−5, 1.1e−8, 1.1e−5, 1.0e−5])

αUKF = 0.1
βUKF = 2.2
κUKF = 96000

Estimation results

The estimator was tuned on a double lane change maneuver in IPG. The estimated states
and friction coefficient are presented in Figure C-1. Although the UKF can estimate the
states and friction coefficient relatively well on the double lane change maneuver dataset,
the friction coefficient would blow up in closed-loop simulations. Since the wheel rotational
dynamics seemed to significantly impact µ̂, not being able to fit the rotational velocities to
the IPG model response was likely the reason for this behavior.

Master of Science Thesis K. Trip



88 Environmental estimators

C-1-2 Simplified UKF

Since the rotational dynamics proved difficult to fit the response of the IPG model, a simplified
UKF was implemented. Here, the longitudinal tire forces are approximated as:

Fxf
≈ Tf
rw
, Fxr ≈ Tr

rw
(C-7)

Compared to the UKF with rotational wheel dynamics, this approximation eliminates multiple
variables. Again, the measurements are taken from a BMW 5-series vehicle model from IPG
CarMaker and form measurement vector y:

y = [ẋ, ẍ, ÿ, ψ̇]T (C-8)

The input space is also chosen to be equal to the inputs of the IPG plant.

u = [δsw, Tf , Tr]T (C-9)

The prediction model of the simplified UKF can be expressed as:

mẍ = mẏψ̇ + Fxf
cos δ − Fyf

sin δ + Fxr

mÿ = −mẋψ̇ + Fxf
sin δ + Fyf

cos δ + Fyr (C-10)
Izψ̈ = lf (Fxf

sin δ + Fyf
cos δ) − lrFyr

µ̇ = 0

A Fiala tire model is used for the lateral dynamics. Gray-box parameter identification was
performed to find the model parameters. Without the rotational dynamics of the wheels, this
prediction model could closely approximate the vehicle dynamics.

Measurement model

The measurement model H(ξk+1) finds the prediction of the measurements ŷk+1 according
the predicted model states ξk+1 [16]:

ŷ1k+1 = ξ1k+1

ŷ2k+1 = ξ1k+1 − ξ1k
∆t − ξ3k+1ξ2k+1

ŷ3k+1 = ξ2k+1 − ξ2k
∆t + ξ3k+1ξ1k+1

ŷ4k+1 = ξ3k+1

UKF parameters

The UKF was tuned to minimize the error of the estimated parameters. This resulted in the
following set of variables:
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P0 = diag([1.2e−6, 2.1e−5, 1.1e−5, 1.0e−4])
Rn = diag([1e−5, 5e−3, 5e−5, 1e−8])
Rv = diag([1e−5, 1e−5, 1e−5, 1e−5])

αUKF = 0.5
βUKF = 1.9
κUKF = 88000

Estimation results

The estimator was tuned on a double lane change maneuver in IPG. The estimated states
and friction coefficient are presented in Figure C-2. Eliminating the rotational dynamics of
the wheels has somewhat decreased the accuracy of the UKF. However, as the prediction
model could fit the response of the plant better, this filter was implementable in closed-loop
control.
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Figure C-2: UKF without wheel rotational dynamics
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implementation

This UKF filter was integrated inside the IPG Simulink model, as presented in Figure C-3.

Figure C-3: UKF Simulink implmentation

C-2 Road curvature estimator

The road curvature at some point can be found using a previous location and a future location
in cartesian coordinates. This can be taken from maps and integrated with GPS data. Two
different methods are presented to estimate this curvature. The first method fits a circle
to three points. The second method uses the dynamics of the curvature, assuming that the
points along the trajectory are sampled at equal distances apart.

C-2-1 Circle fitting method

To find the curvature, a circle can be fitted to three points. A system of equations can be
solved to find the center (xc, yc) and radius of the circle for which Equation C-11 holds for
each point p = (x, y).

(x− xc)2 + (y − yc)2 = r2

∴ x2 + y2 − 2xcx+ x2
c − 2ycy + y2

c − r2 = 0 (C-11)
∴ 2xcx+ 2ycy + r2 − x2

c − y2
c = x2 + y2

Assuming we have 3 points: p1 = (x1, y1), p2 = (x2, y2), and p3 = (x3, y3). We can find r by
solving a system of equations which can be expressed in matrix form:

In matrix from: 2x1 2y1 1
2x2 2y2 1
2x3 2y3 1

 ·

ab
c

 =

x2
1 + y2

1
x2

2 + y2
2

x2
3 + y2

3

 (C-12)
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where, a = xc, b = yc, and c = r2 − x2
c − y2

c . Then we can find curvature k over these points
as:

k = 1
r

= 1√
a2 + b2 + c

(C-13)

However, the sign of the curvature is required to indicate if the road is curving to the left or
right.

θ1 = arctan
(
y2 − y1
x2 − x1

)
, θ2 = arctan

(
y3 − y2
x3 − x2

)
, ∆θ = θ2 − θ1 (C-14)

Using the change of angle of the track, the road curvature with the corresponding sign can
be derived:

k = sign(∆θ)√
a2 + b2 + c

(C-15)

C-2-2 Simplified curvature estimator

In some cases, it can be assumed that the distance between points on a trajectory is constant.
This means that the distance between the points pi and pi+1 is some distance ∆s for all i ∈ T
where T is some trajectory. In this case, the curvature can be simplified to:

ki = ∆θ
∆s = ∆θ√

(xi+1 − xi)2 + (yi+1 − yi)2 (C-16)

C-2-3 Race track simulation

The CIC controller is implemented on the Silverstone race circuit. Here, the curvature is
estimated using the curvature estimators above. The full trajectory of the CIC controller on
the Silverstone track is shown in Figure C-4 on the next page.
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Figure C-4: CIC on the Silverstone race circuit
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Appendix D

IPG vehicle model

This chapter presents the integration of the CIC controller in IPG CarMaker for closed-loop
control. IPG CarMaker is configured to use the BMW 5-series model. A 3D scenario is
created in IPG, where two square obstacles are avoided, this is presented in Figure D-1.

Figure D-1: IPG render

D-1 IPG Simulink implementation

Measurements from IPG can be transformed to the states of the prediction model using
identified parameters from chapter 4. This transformation is presented in Figure D-2. The
standard IPG Simulink model includes different subsystems, presented in Figure D-3. CIC
is implemented in the VehicleControl and IPG-Vehicle subsystems. All custom blocks are
marked in blue. The VehicleControl subsystem is shown in Figure D-4. The VehicleControl
subsystem includes the controller shown in Figure D-5, state imports from Figure D-6, and the
VhclCtrl bus creator presented in Figure D-7. The IPG Vehicle subsystem that implements
differential braking is shown in Figure D-8.
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Figure D-2: IPG state measurements

Figure D-3: Full IPG Simulink model

Figure D-4: IPG VehicleControl subsystem

The vehicle control subsystem is shown in Figure D-5. The VehicleControl subsystem includes
the controller, state imports, and VhclCtrl bus creator.
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Figure D-5: IPG Controller subsystem

Figure D-6: IPG control input conversion
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Figure D-7: IPG VhlCtrl bus creator

Figure D-8: IPG Vehicle subsystem

D-2 NMPC toolbox integration

In Figure D-9, Figure D-10, and Figure D-11, the Simulink implementation of the NMPC
toolboxes MATMPC, ACADO and Acados are presented.
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Figure D-9: IPG MATMPC closed loop controller

Figure D-10: IPG ACADO closed loop controller

Figure D-11: IPG Acados closed loop controller
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Appendix E

Hardware in the loop

As presented in chapter 9, HIL simulations are performed using a CAN network. This CAN
network was set up using the dSpace RTI CAN Simulink blocks on the controller side and
dSpace ConfigurationDesk on the simulator side. Here, dSpace AutoBox is used as the con-
troller and dSpace SCALEXIO is used for embedded HIL simulations of the IPG model.

The CAN network structure was configured using a DBC file created using CANdb++. This
DBC file specifies the signal names and the data types. On the SCALEXIO simulator, the
CAN network is implemented using HIL IPG. This is shown in Figure E-3 and Figure E-2.
On the AutoBox side, the controller is implemented on the CAN network using RTI Simulink
blocks from the dSpace RTI CAN library, as depicted in Figure E-3. These figures show the
data type conversion on the RX and TX side between the CAN network and Simulink. Signals
on the TX side are multiplied by an array of values that exploit the maximum accuracy of the
specified datatype of the CAN network. On the RX side, these values are divided using the
same array of values. In future works, more advanced conversion techniques could be used.
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Figure E-1: CAN setup simulator
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Figure E-2: HIL IPG setupMaster of Science Thesis K. Trip
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Figure E-3: CAN setup controller
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Glossary

List of Acronyms

MPC Model Predictive Control
APF Artificial Potential Field
DoF Degrees of Freedom
UKF Unscented Kalman Filter
ESC Electronic Stability Control
NMPC Nonlinear Model Predictive Control
RK2 Runge-Kutta 2th order
UKF Unscented Kalman Filter
RLS Recursive Least Squares
CIC Collision Imminent Control
CoM Center of Mass
OCP Optimal Control Problem
SQP Sequential Quadratic Programming
RTI Real Time Iterations
KKT Karush-Kuhn-Tucker
LTI Linear Time Invariant
LTV Linear Time Varying
HIL Hardware in the Loop
NLP Nonlinear Program
OCP Optimal Control Problem
QP Quadratic Programming
ST Single Track
DT Double Track
ABX AutoBox
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MABX MicroAutoBox
SCX SCALEXIO
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Nomenclature

List of Symbols

ψ̇ Yaw axis angular velocity [rad/s]
α Tire slip angle [rad]
αs Tire saturation slip angle [rad]
αUKF UKF sigma point spread [-]
β Vehicle sideslip angle [rad]
βUKF UKF prior [-]
δ Vehicle front steering angle [rad]
δsw Steering wheel angle [rad]
∆Fzx Longitudinal load deviation [N]
∆Fzy Lateral load deviation [N]
∆t Controller time step [-]
𭟋b Vehicle body fixed frame [-]
𭟋g Global frame [-]
ψ̇ Vehicle yaw rate [rad/s]
η Friction limit conservativeness factor [-]
γ Vehicle front axle lateral load distribution [-]
ξ̂ Estimation vector of the UKF [-]
κUKF UKF tuning parameter [-]
µ Friction coefficient [-]
Φ(ξk, uk) Discrete state update function [-]
ψ Vehicle yaw angle in the global frame [rad]
ψσ Yaw angle of the trajectory [rad]
σ Road fixed trajectory [-]
θ Angle between the vehicle and an obstacle [rad]
ξ Prediction model state space [-]
ξN NMPC terminal state [-]
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(Xv, Yv) Global vehicle coordinates [m]
(so, eo) Obstacle location [m]
(Xσ, Yσ) Global trajectory coordinates [m]
ψ̈ Angular yaw acceleration of the vehicle [rad/s2]
ẍ Longitudional acceleration of the vehicle [m/s2]
ÿ Lateral acceleration of the vehicle [m/s2]
∆sa Distance from the first obstacle where obstacles appear in experiments [m]
∆so Distance between obstacles in experiments [m]
˙̂so, ˙̂eo Dynamic obstacle velocity [m/s,m/s]
Ḟx Longitudinal tire force rate [N/s]
ẋ Longitudinal vehicle velocity [m/s]
ẋref Reference loditudinal velocity [m/s]
ẋref Reference velocity [m/s]
ẏ Lateral vehicle velocity [m/s]
p̂ Estimated parameters
p̂ Parameter vector [-]
ŝo(0), êo(0) Initial dynamic obstacle location [m,m]
κ(s) Road curvature [1/m]
λx Longitudinal brake distribution parameter [-]
λy Lateral brake distribution parameter [-]
λxnat Natural logitudional brake distribution [-]
λynat Natural lateral brake distribution [-]
ωwi Wheel speed of the wheel at i = (f, r) [rad/s]
ωw Wheel rotational velocity [rad/s]
acc Accelerator control signal [-]
B,C,E,Bx Pacejka tire model parameters [-]
c(ξk, uk) NMPC nonlinear stage constraint function [-]
c(ξN ) NMPC nonlinear terminal constraint function [-]
Cα Tire stiffness factor [-]
cL NMPC lower bound of nonlinear stage constraints [-]
cU NMPC upper bound of nonlinear stage constraints [-]
cdist Obstacle distance cost [-]
cNL NMPC lower bound of nonlinear terminal constraints [-]
cNU NMPC upper bound of nonlinear terminal constraints [-]
Cd0 Linear drag offset parameter [N]
Cd0 Linear drag scaling parameters [Ns/m]
d Distance between the vehicle and an obstacle or road boundary [-]
dl Minimum distance between the vehicle and the left road boundary [m]
do Minimum distance between the vehicle and obstacle [m]
d−
o Obstacle distances lower than the minimum [m]
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dr Minimum distance between the vehicle and the right road boundary [m]
d−
r Road boundary distances lower than the minimum [m]
dv Distance from the center to the edge of geometric shape fitted to the vehicle [m]
dmin Safe distance boundary [-]
domin Minimum safe obstacle distance [m]
drmin Minimum safe road boundary distance [m]
dt(n) Variable timestep [s]
dt1 Initial timestep [s]
eψ Angle between the vehicle velocity and the road direction [rad]
ey Vehicle distance perpendicular to the trajectory [m]
eymax Maximum lateral coordinate of the vehicle geometry formulation [m]
eyl(s) Left distance varying lateral bound [m]
eyr(s) Right distance varying lateral bound [m]
eyref (s) Reference trajectory [m]
f(ξ, u) Prediction model dynamics [-]
Fdrag Drag force on the vehicle [N]
fec(z) NLP equality constraints
Fi,j,k Tire forces at axis i = (x, y, z), axle j = (f, r), and side k = (l, r) [N]
Fi,j Single track tire forces along axis i = (x, y, z), at axle j = (f, r) [N]
fic(z) NLP inequality constraints [-]
fQP (z) QP objective function [-]
Fsf Static load on the front axle [N]
Fsr Static load on the rear axle [N]
Fxtot Total longitudinal tire force [N]
Fymax Maximum lateral tire force [N]
Fytot Total lateral tire force [N]
g Acceleration due to gravity [m/s2]
H Hessian matrix [-]
h Height of the vehicle CoM [m]
Iz Vehicle z-axis inertia [kgm2]
Iwi Moment of inertia of the wheel at i = (f, r) [kgm2]
Iwi Wheel moment of inertia [kgm2]
J(ξ, u) NMPC cost function [-]
JN (ξ, u) NMPC terminal cost [-]
kx Longitudinal load derivative scaling parameter [-]
ky Lateral load derivative scaling parameter [-]
kax Longitudinal tire load scaling parameter [-]
kay Lateral tire load scaling parameter [-]
L Center distance between the vehicle and obstacle [m]
lf Vehicle distance between the CoM and front axle [m]
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Lo Set of obstacle locations [-]
lr Vehicle distance between the CoM and rear axle [m]
m Vehicle mass [kg]
Mr Wheel resistance torque [Nm]
Mx Additional yaw moment due to longitudinal forces [Nm]
My Additional yaw moment due to lateral forces [Nm]
N Prediction horizon
N1 Initial timestep horizon [-]
narctan Arctan scaling paramter
nacc Accelerator scale factor [-]
nsw Steering rate [-]
P0, Rv, Rn UKF covariance matrices [-]
PT Prediction time window [s]
Qdist Distance cost scaling parameter [-]
ro Radius of a circle fitted to the obstacle [m]
rv Vehicle radius [m]
rwi Radius of the wheel at i = (f, r) [m]
rwi Wheel radius [m]
rbl Left road boundary location [m]
rbr Right road boundary location [m]
s Distance along the trajectory [m]
Tf Torque at the front axle [Nm]
Tr Torque at the rear axle [Nm]
Tw Wheel torque [Nm]
Tb,i,j Braking torque at axle i = (f, r) and side j = (l, r)[-]
u Input space [-]
up Input space plant model [-]
uUKF UKF input vector [-]
v Vehicle velocity [m/s]
w Vehicle width [m]
yUKF UKF measurement vector [-]
z NLP state and input vector (ξ, u) [-]
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