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Abstract

Over the past decade, a steep increase in the number of seismic events has been observed
in the Groningen gas producing region of the Northern Netherlands. It is generally ac-
cepted that these are induced by compaction of the reservoir rock due to extensive field
depletion, causing a buildup of strain energy which may be released seismically when a
critical stress level is reached. This study focuses not on the long term compaction, but
rather on the possible triggering of fault slip by the transient flow regime surrounding a
well which has undergone a sudden rate change. Assuming a unilateral decoupling be-
tween displacement and pressure, numerical experiments are conducted using a sequential
finite volume-finite element solution strategy that fully incorporates second order terms in
the radial flow equation. Solving for short time scales, a spatial and temporal maximum
in slip-promoting stress is observed and explained physically. Although present, the tran-
sient effect is of a magnitude that raises questions about its significance, especially as the
geometric irregularity of a fault with nonzero displacement causes even greater stress con-
centrations that grow monotonously in time.

Key Points:

+ Transient maxima in slip-promoting stresses were observed after a sudden increase
in well rate in a Groningen-type gas reservoir.

+ The described stress effect was observed to increase in magnitude for lower reser-
voir pressure, i.e. for reservoirs at a later stage of depletion.

+ The effect is physical, but of a magnitude so small that unambiguous claims regard-
ing earthquake triggering potential are difficult to make.

+ The geometric irregularity of a fault with small displacement was found to cause
concentrations of slip-promoting stress quickly exceeding those caused by the tran-
sient effects under primary investigation.



1 Introduction

We consider a subset of the broad category of earthquakes induced and/or triggered by an-
thropogenic injection or extraction of fluids in subsurface rock formations [McGarr et al.,
2002; Shapiro, 2015]. Industrial activities associated with this broad range of seismic
events are the injection of waste water or CO; in deep aquifers [Ellsworth, 2013; Shirzaei
et al., 2016; Zoback and Gorelick, 2012], the production of oil or natural gas from subsur-
face reservoirs [Segall, 1989; Van Wees et al., 2014; Bourne et al., 2014], water injection
in such reservoirs for improved oil recovery [Raleigh et al., 1976], hydraulic stimulation
("fracking’) of low-permeability reservoir rock for the production of shale gas [Holland,
2013; Bao and Eaton, 2016], and stimulation of natural fracture networks for geothermal
energy production [Baisch et al., 2006; Deichmann and Giardini, 2009].

In this broad category of fluid injection- or extraction-related seismic events, various mech-
anisms are at play. A first distinction concerns the source of energy released by the fault
movement. This may be elastic rock deformation originating from plate tectonics ('trig-
gered’ earthquakes); or production-induced compaction or injection-induced expansion of
reservoir rock (Cinduced’ earthquakes). A second distinction concerns the location of the
seismic event in relation to the reservoir into which or from which fluids are injected or
extracted. Fault movement may be triggered in the reservoir itself, or in the overlying or
underlying impermeable cap or base rock. A third distinction concerns the pathway for the
propagation of pore pressure from the injection or production well to the fault. This may
be a (predominantly) natural fracture network, as is the case for geothermal heat produc-
tion from hot fractured rock, or a fracture network generated by hydraulically stimulating
or ’fracking’ relatively impermeable rock as applied in shale gas production. Alternatively,
the pathway for pore pressure propagation may be (predominantly) the reservoir matrix,
i.e. the permeable rock itself. This is often the case for oil or natural gas production from
permeable clastic or non-fractured carbonate reservoirs, as well as for the injection of wa-
ter or CO; in aquifers of a similar geological nature.

We restrict our analysis to the subset of induced earthquakes that originate from the reser-
voir itself, with a main pathway for pore pressure propagation formed by permeable rock
with little to no fractures such that the flow is governed by Darcy’s law. In particular, we
consider earthquakes related to natural gas production that have been observed in the large
Groningen gas field in The Netherlands [Van Wees et al., 2014; Bourne et al., 2014]. The
field has estimated recoverable reserves of 2.8 x 10'2 Sm?, of which 2.0 x 10!2 Sm> have
been produced to date through a total of 258 wells distributed over 22 clusters. At the
start of production reservoir pressure was 35 MPa, which has dropped to a current aver-
age pressure of around 7.5 MPa, although a differential pressure of approximately 3 MPa
exists between the north and south of the field (approximately 45 km apart) because of

a spatially phased development. Seismic activity with magnitudes above 1.5 My was not
observed until the early 1990s, but over the past decade a steep increase in the number of
events has occurred, with a maximum observed event of 3.6 My, in 2012.

It is now generally accepted that most of the energy in the seismic events in the Gronin-
gen field results from compaction of the sandstone reservoir rock, although the release
of additional seismic energy from naturally stressed faults deep below the reservoir has
not been excluded. The most likely hypothesis is that compaction at both sides of a fault
with a significant throw is the main reason for the build-up of strain energy that may be
released when the shear stress in the fault reaches a critical limit caused by continuing
compaction [Mulders, 2003]. Although the original reasoning was that the depletion of
the field would lead to an increased magnitude of the compressive normal stresses over
the faults and thus, according to the Coulomb failure criterion, to a decreased probability
of seismic events, there is now sufficient evidence that the compaction-driven seismicity
across faults as described above is indeed the main reason for the earthquakes observed in
the field [Zbinden et al., 2017].



The current seismic hazard model as applied by the operator is based on a statistical re-
lationship between the cumulative compaction and the event rate [Bourne et al., 2014].
Control measures, imposed at national government level and based on advice of the na-
tional regulatory authority (the State Supervision of the Mines) primarily involve reducing
production rates field wide, and in particular at clusters where high event rates have been
observed. Statistical analysis indicates that these production rate restrictions indeed show
a correlation to a reduced event rate, although convincing evidence specifically indicating
a direct causal relationship has yet to be put forward [Van Thienen-Visser and Breunese,
2015]. Furthermore, it has been hypothesized that another control measure could be the
avoidance of fluctuations in well production rates, both in the form of sudden changes
(production start-ups or close-ins) and in the form of seasonal fluctuations. In fact, the
current government-imposed production controls are already based on this hypothesis:
they limit the fluctuation of production rates to a minimum, but such that seasonal vari-
ations in domestic natural gas demand (notably increased production in cold winters) can
be accommodated. This implies a flat production rate in combination with storage of ex-
cess gas in summer in a nearby depleted gas field which is now used as an underground
gas storage facility.

In this study, we do not address the compaction mechanism leading to induced seismicity
in the Groningen field, but instead consider the situation of a fault that is already criti-
cally, or almost critically, stressed such that a small perturbation of the local stress state
may lead to triggering of an earthquake. In particular, we are interested in perturbations
resulting from a sudden increase in production rate in a nearby well. This flow rate change
will alter the pressure field in the reservoir causing various spatial and temporal pressure
gradients in the reservoir which, in turn, result in changes in the state of effective stress.

Among others, Wang [2000]; Shapiro [2015] and Cheng [2016] present analytical 3D
solutions of the propagation of pore pressures and stresses resulting from sudden rate
changes in a point source for a poroelastic full-space, following the work of Rudnicki
[1986] who, in turn, builds on results of Cleary [1977]. For a permeable reservoir of large
spatial extent sandwiched between impermeable cap rock and base rock layers, an axially
symmetric schematization appears more appropriate. Such (semi-)analytical solutions in
cylindrical coordinates for the propagation of pore pressures around a line source or sink
have been derived in various domains such as hydrology [Theis, 1935; Jacob, 1940; Stern-
berg, 1969; Bear and Corapcioglu, 1981; Helm, 1994; Verruijt, 2016], petroleum engi-
neering [Van Everdingen and Hurst, 1949; Clegg, 1967; Monfared and Rothenburg, 2015a],
geotechnical engineering [Carter and Booker, 1982], geomaterials [Rudnicki, 1986], and
geophysics [Segall, 1989; Segall and Fitzgerald, 1998]. Several of these publications also
consider the resulting stresses and/or strains in axial and/or radial directions using different
solution methods (both direct and Laplace-transformed, the latter with either fully ana-
lytical or numerical inverse transforms). Importantly, they use a variety of assumptions
regarding the domain extent (bounded vs. infinite), boundary conditions (constant rate vs.
constant pressure) and deformation state (1D with axial or radial deformations only vs.

2D under plane stress or plane strain conditions). There are some publications in which it
is attempted to justify the various assumptions with the aid of numerical simulations, i.a.
[Hsieh and Cooley, 1995; Monfared and Rothenburg, 2015b].

For this study, the poroelastic response to a transient flow regime was modeled numeri-
cally using an efficient sequential FVM-FEM simulation strategy. We investigate an ideal-
ized Groningen-like geometry, solving for short time scales to capture the developing pres-
sure field of a single producer and the stress changes it induces. The aim is to discover
whether the hypothesised added risk of triggering induced seismicity exists, explore how
some controllable and uncontrollable variables influence its severity, and possibly provide
clues on how production strategy might be able to minimize risks in the future.



2 Poroelastic modeling

We consider an axially symmetric, laterally extensive, horizontally layered geometry mod-
elled on the local geology of the Groningen gas field. Due to the compressibility contrast
between pore fluid and reservoir rock, coupling of the flow problem to the geomechani-
cal problem can be neglected. This enables the use of an efficient sequential FVM-FEM
solution strategy in our dynamic reservoir simulator, in which the cell-centered pressure
field acts as a known body force when solving for the vertex-centered solid displacements.
These displacements can subsequently be used to determine the complete state of stress as
a function of time and spatial coordinates.

2.1 Governing equations
2.1.1 Fluid flow

The basic governing equation of poroelasticity is the storage equation (1). It signifies mass
conservation of both pore fluid and the solid matrix, and is obtained by adding both mass
balance equations after normalizing them by the density of the conserved quantity they
represent. Second order terms are dropped, assuming that the product of velocity and den-
sity gradient of each conserved quantity is negligibly small. It has a form resembling a
classical diffusion equation in terms of pressure p, augmented with terms that account for
the effect that deformation of the porous medium has on the flow problem.
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where ¢ is the volume strain, « is the Biot coefficient, S is the storativity and where the

third term represents the total fluid flux with respect to the porous medium via Darcy’s

law. For a full derivation starting from conservation laws, refer to Appendix A.1.

If a large contrast exists between the fluid compressibility Cr and the compressibility of
the (drained) porous medium Cy, such that C,, = % < ¢Ct, the influence of solid de-
formation on the pressure solution can be safely neglected [Cheng, 2016; Verruijt, 2016].
The reverse does not hold, i.e. pore pressure changes must be taken into account when
solving for solid displacements. This unilateral decoupling of flow from mechanics allows
for the flow problem to be solved separately, after which the obtained pressure field enters
the deformation problem as a known body force.

However, the assumption that second order terms can be neglected — although valid for
slightly compressible fluids and low flow velocities —is generally untenable when describ-
ing the radial flow of gas, especially for the high flow rates that occur around a producing
gas well. Fortunately, the decoupling allows us to rewrite the pore fluid mass balance as a
diffusion equation without dropping these terms, by introducing a real gas pseudopressure
as proposed by Al-Hussainy et al. [1966]:
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where Z is the real gas deviation factor and pys is a sufficiently low reference pressure,
chosen such that it is always beneath the lowest pressure in the system. Using the real gas
equation of state, the fluid mass balance equation can be rewritten in terms of p and Z.
Assuming Darcy flow, constant porosity and isothermal conditions, a change of variables
to m(p) gives the following (nonlinear) diffusion equation:

(1)

2
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which describes the flow of gas without assuming small density gradients and low flow
rates, whilst fully incorporating the pressure-dependent fluid properties. The pseudopres-
sure m(p) is precomputed to a desired degree of accuracy using numerical integration, so
that upon obtaining a solution for m, the real pressure solution p can be obtained by linear
interpolation without introducing significant extra errors. For a detailed derivation of (3),
refer to Appendix A.2.

2.1.2 Solid mechanics

The displacement problem must satisfy the equations of mechanical equilibrium, which
follow from Newton’s laws of motion when the second derivative of the displacement vec-
tor u with respect to time (i.e. the change in momentum) is assumed to be negligible:

Veo-f=0,

where o is the second order Cauchy stress tensor and f represents the body forces in all
coordinate directions, if present. Following the convention used in soil mechanics, nor-
mal stresses are positive for compression, and a shear stress o7; is positive when it applies
force in a direction along j of opposite sign compared to the component n; of the unit
vector normal to the surface on which it acts. Besides the equations of equilibrium, the
problem must satisfy the strain-displacement relations (or compatibility equations):

€= % [Vu+ (Vu)],

where ¢ is the infinitesimal strain tensor. Lastly, stress and strain are linearly related via
Hooke’s law in the constitutive relations:

oco=C:eg,

where C is a rank four stiffness tensor. For a three-dimensional isotropic material, this
amounts to 21 equations in total (6 equilibrium equations, 9 strain-displacement relations
and 6 independent constitutive equations), one for each of the unknowns (3 displacements,
9 stresses and 9 strains). For the full set of elastic equations expanded in an axially sym-
metric cylindrical coordinate system adapted from Verruijt [2016], refer to Appendix A.3.
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2.2 Numerical solution
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Figure 1: Subdomain Qp embedded within the complete system Q, which extends

further in the positive radial and both vertical directions.

Simulations were conducted in Matlab using an algorithm adapted from Chessa [2002]
for an unstructured triangular grid, which is initialized using Matlab’s built-in Delauney-
type meshing algorithm and finished by alternating steps of refinement and node coor-
dinate adjustment to improve triangle shape. The pseudopressure problem is solved on
only part of the domain, chosen as a section of the reservoir interval of an extent such
that flow remains infinite-acting during simulation. An especially high grid cell resolution
is chosen in this region to fully capture the developing pressure field. To our knowledge,
this sequential strategy using real gas pseudopressure has not been described in literature.
Derivations and algorithms can be found in the appendix, which details the discretisation
of both the flow problem (Appendix B.1) as well as the displacement problem (Appendix
B.2). Furthermore, it contains a validation study of the obtained pressure solution (Ap-
pendix C), and a pseudocode description of simulator algorithms (Appendix E).

2.2.1 Pressure field

Given that the reservoir is in a transient flow regime, at each time ¢ after the start of pro-
duction there exists a radius r beyond which the disturbance has not yet had time to travel,
i.e. pressure is still constant at p = prs . For sake of computational efficiency, we choose
a radius r = R bounding the subdomain €, outside of which the diffusivity equation (3)
need not be solved. Within Q,;, a high grid cell resolution enables us to capture the steep
gradients of the developing pressure field. The problem is discretised in time using back-
ward differences to ensure numerical stability. Discretisation in space is achieved with the
finite volume method, Qp; being divided into ne . grid cells each containing a discrete
pseudopressure unknown my. Pseudoflow across cell faces is described using a two-point
flux approximation as decribed by Karimi-Fard et al. [2003]. Grouping of terms results in
a nonlinear system of e, equations for which Picard iteration was found to be of suffi-
cient computational efficiency.

2.2.2 Solid displacements & state of stress

The mechanical problem is then solved across the entire domain Q using the Galerkin
method of weighted residuals, with discrete unknowns u,; and u,; at each of the n, nodes,
located at triangle vertices. Making use of the linearity of the problem, the effect of pres-



sure changes in the reservoir is incorporated by assigning every element / a pressure drop
Ap;, with Ap; = pi,—pres,0 for each element on €, and zero otherwise.

Upon solving for the displacement field, the state of stress can be computed using the
compatibility equations (5) and Hooke’s law (6). As the displacement gradients (and con-
sequently the stress components) are generally not continuous across cell boundaries, the
average state of stress in an element is chosen as a representative value. Using direction
cosines, the reference frame can be rotated to find the stress components acting on a hy-
pothetical plane at a given angle. A derivation of the transformation matrices can be ob-
tained from Appendix A.4.

To assess the potential for triggering of production-induced seismicity, we use the Coulomb
stress T, = Ts — fr - 0, with gy the coefficient of friction, o, the effective normal stress
acting on the fault and 7, the magnitude of the shear stress promoting fault slip. Given the
employed sign convention and the fact that Groningen is in a normal faulting regime, this
implies a sign change when assessing faults dipping towards the producer.

2.3 Reservoir model
2.3.1 Geometry & rock properties

Numerical experiments were performed for an axially symmetric, horizontally layered ge-
ometry, with the producing interval sandwiched between impermeable overburden and
basement. Stratigraphy was based on the geology of the gas-producing regions of the
northern Netherlands.

Elastic and hydromechanical properties were obtained from the technical addendum to
the field development plan published by the operator responsible for extraction of oil and
gas in the Netherlands [NAM, 2016]. Elastic properties are constant within stratigraphic
intervals, and the producing interval was modeled with a homogeneous permeability (k =
5-107'%) and porosity (¢ = 0.15).

Zero-displacement boundary conditions were applied at the proximal and bottom domain
boundaries in radial and vertical directions, respectively. All other boundary conditions
were left stress-free. Lateral extent of the whole geometry and vertical extent of the mod-
eled underburden were chosen such that a further increase in size no longer influenced the
outcome of numerical experiments.

3000
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Tertiary v —0.35
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5 Cretaceous v —0.25
E]
é 1250 E=4.0-10" Pa
o _ 1nl0 P, v =0.20
% Zechstein f ; 325 105 Ea
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w1 Slochteren » = 015

E=3.0-10" Pa
v =0.20

0

5000 10000 15000
Radial coordinate r, m

Figure 2: Horizontally layered stratigraphic model with corresponding elastic parameters.



2.3.2 Fluid properties

The pore fluid was modeled as a gas mixture typical for the Groningen field, with specific
gravity ye = 0.65 and a methane content of around 80%. Pressure-dependent properties
of reservoir fluids are usually best described by empirical correlations relating them to
pseudo-reduced temperature Tp,; and pseudo-reduced pressure pp,, computed by normal-
izing pressure and temperature with their respective critical values Tp. and ppc. Pressure-
dependent gas viscosity u, was modeled using Lucas’ approximation [Lucas, 1981] to the
correlation charts put forwards by Carr et al. [1954], valid for 1< T,,,<40 and 0< pp,< 100.
The explicit correlation proposed by Azizi et al. [2010] (valid for 1.1 < T, < 2 and 0.2<
Ppr < 11) was used to compute the real gas deviation factor Z as a function of pressure.
Besides its accuracy, its explicit nature allows it to be differentiated to derive an analytical
expression for the pressure-dependent isothermal compressibility C.

3 Results
3.1 Induced stresses for semi-steady state production at long time scales

Theoretically, the decrease in pore pressure caused by extensive field-wide depletion of

a gas reservoir causes effective normal stresses to grow in magnitude, thereby inhibiting
slip on existing fault planes. However, geometric irregularities, even relatively small ones
such as a fault with a throw of only a few percent of total reservoir height, can cause local
concentrations of slip-promoting stresses that grow in magnitude as depletion progresses.
These induced stresses may cause existing faults to reach critical stress levels even in a
geologically inactive region such as Groningen, with the potential to release the built up
strain energy in the form of an earthquake when triggered either by continued depletion or
some perturbation of the stress field, small or large.

To investigate the elastic response of field-wide production at long time scales, a laterally
extensive reservoir (r. = 1.5-10* m) was subjected to a uniform pressure drop of 10.0 MP,
as if depleting at a semi-steady state. The reservoir contained a fault dipping towards the
producer at § = 85° with a throw of 5% of total reservoir height. It should be noted that
due to the radially symmetric description of the problem, this constitutes a fault that forms
part of a conical surface wrapped around the producer. Although unphysical geometrically,
the behaviour of such a system can still provide trends which may apply qualitatively to
scenarios of stress concentrations near planar faults as well.

Sharp re-entrant corners are known to cause singularities in the solution of elliptic PDE’s
[Williams, 1952], leading to unbounded stresses which, in real life, would plastically de-
form the material. To prevent this effect from dominating the results, re-entrant corners
were rounded off. Slip-promoting shear stresses were observed to concentrate around the
geometric irregularities, confirming the observations of Mulders [2003].
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Figure 3: Shear component of Coulomb stress under uniform depletion of 10.0 MPa.

Plotting the Coulomb stress and its components in the area worst affected as a function
of the pressure drop —(Ap), we observe that stress components increase in magnitude in a
ratio (ur - 0)/7s < 1, causing Coulomb stress to increase as well (figure 4)
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Figure 4: Coulomb stress and its components in the location where
the former is highest, plotted versus pressure drop.

3.2 Transient baseline scenario

As a base case, we consider the scenario of a disk-shaped gas reservoir at a constant ini-
tial pressure pres0 = 7.5 MPa, comparable to current pressures found in Groningen. At the
start of production, a rate constraint of gs. = —3.0 - 10° m?/day is applied instantaneously
to the proximal boundary of the producing interval. Using a timestep Az of 15 minutes,
simulations model the first 5 days of production.



3.2.1 Pressure field

Figure 5 visualizes the development of the pressure field during the first 5 days of produc-
tion, showing that flow is still infinite-acting. The subdomain €, is modeled with a radius
R =2500 m, in which this transient regime can be modeled for up to 20 days.
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Figure 5: Developing pressure field during the first 5 days of
production.

3.2.2 Displacements

As pore pressure in de reservoir diminishes, effective stresses change and the reservoir de-
forms. For larger time scales with field-wide pressure drops, displacement in the negative
z-direction tends to dominate: the overburden can subside as one unit with minimal strain
while the basement has no free surface enabling this behaviour. At short times however,
we can still observe that positive vertical displacement at the bottom of the reservoir is

of the same order of magnitude (figure 6). The reason for this is that, as the pressure dis-
turbance has only travelled a small distance into the reservoir, the arching effect works to
prevent vertical displacement [Mulders, 2003].
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Figure 6: Vertical displacement field after 1 day of production.
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Unlike the vertical displacement, the radial displacement is not monotonous along the ra-
dial axis for an infinite-acting flow regime: a state of relative compression is found near
the wellbore, changing to relative extension with increasing radial coordinate (figure 7).
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Figure 7: Radial displacement field after 1 day of production.

3.2.3 Stress field

Plotting the Coulomb stress on a fault dipping towards the producer at 8 = 85° as a func-
tion of both spatial coordinates, Coulomb stress is found to concentrate at the top of the
reservoir (figure 8). Conversely, Coulomb stresses on faults dipping away from the pro-
ducer show elevated levels local to the bottom of the reservoir. This is due to the different
sign of shear stress on both vertical boundaries, as well as to an asymmetry in the rela-
tive magnitude of shear and normal stresses caused by rotating the reference frame. Due
to the nature of the trigonometric functions required for the transformation, the assymetry
decreases for decreasing dip angles, vanishing for 8 = 60° after which further decrease of
0 causes the same asymmetry to develop on the other side.
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Figure 8: Coulomb stress for slip along a fault plane dipping towards the producer at @ = 85°
at an arbitrary location, t = 1 day.

Knowing that the state of stress is most conducive to fault slip at either the top or bot-
tom of the reservoir interval, the Coulomb stress can be visualized as function of time
and radial coordinate by only looking at the high-risk zone (figures 9 & 10). After ap-
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proximately a day of production, the Coulomb stress exhibits a local maximum around
r = 100 m. This location then remains the spatial maximum as production continues and
the pressure field stabilizes.

To facilitate comparison of Coulomb stress responses when changing the value of a cer-
tain parameter, a two-dimensional dataset was created by plotting 7. only for that radial
coordinate r where the maximum occurs. Figure 11 shows the result for the stress field
described above, as well as the components of normal and shear stress from which it is
derived. It becomes clear that the (sudden) increase in Coulomb stress arises because, al-
though the shear contribution immediately grows in magnitude, the initial change in ef-
fective normal stress (due to elastic coupling) is one of relative tension. Starting from the
moment at which the pressure disturbance arrives, the drop in pore pressure makes a com-
pressive contribution to effective normal stress 0,,. Eventually, compressive stresses come
to dominate the tensile stress transferred via the rock matrix, stabilizing the Coulomb
stress (figure 12).
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Figure 9: Coulomb stress versus time ¢ and radial Figure 10: Coulomb stress versus time ¢ and
coordinate r at the top of the reservoir, for a plane radial coordinate r at the top of the reservoir, for a
dipping towards the producer at @ = 85°, first five plane dipping towards the producer at 6 = 85°, first
days. day.
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initially tensile o,.

3.2.4 Dependence of Coulomb stress on fault orientation

To explore the influence of fault orientation on both the magnitude and prominence of the
local maximum in Coulomb stress, simulations were conducted for various dip angles and
directions, again assuming normal faulting. Faults in the Groningen field are often espe-
cially steep, with dip angles generally around 80° and seldomly below 70° [NAM, 2016].
Figure 13 shows the variation of Coulomb stress response, which exhibits an upward trend
in both magnitude and prominence of the local stress maximum for increasing dip angles,
as well as an increasing asymmetry between the different dip directions. As very large dip
angles (i.e. near-vertical faults) are not uncommon and this orientation shows the strongest
response, a fault dipping towards the producer at & = 85° is selected as the subject of
further numerical experiments.
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Figure 13: Coulomb stresses for various dip angles. Solid lines dip
towards the producer, dashed lines dip away from the producer.
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3.3 Production rate

Lowering production rates is often viewed as a seemingly obvious way of mitigating earth-
quake risk. Figure 14 shows the Coulomb stress response for different production rates,
indeed showing greater stress levels for higher well rates. In fact, both peak stress and the
stabilizing tails of the curve appear roughly proportional to the applied well rate. Sepa-
rating the Coulomb stress into its normal and shear components, it becomes clear that the
increased Coulomb stress can be ascribed mostly to a greater shear stressing rate caused
by the steeper pressure gradients required to satisfy the production constraint. Although
normal stress drops to a lower minimum for higher production rates, the timing of this
minimum and the moment when the pore pressure drop succeeds in bringing back a state
of relative compression remains the same.
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Figure 14: Coulomb stress for an Figure 15: Shear component (dotted) and
increasing magnitude of the well rate. normal component (dashed) superimposed

on pressure drop for the first 0.5 days of

production.

3.4 Production ramping

An instantaneous switch in well rate to operating levels is hypothesized to increase the
risk of triggering earthquakes compared to a more gradual approach, i.e. either moving
to operating rates in two or more discrete steps or in a continuous rate-buildup, both of
which can be applied in a shorter or longer time window. Both parameters were varied
separately to study their effect on stress levels, choosing the moment at which produc-
tion commences such that the total amount of gas produced is equal when the ramping
phase is complete. In both cases, the stress levels appeared to remain below or equal to
the stresses found for an instantaneous switch to operating rate, the curves meeting up as
their respective pressure fields begin to align. For the case of a varying number of pres-
sure increments within the same time window (figure 16), the maximum Coulomb stress
was observed to be slightly lowered as the number of increments increases. However, this
change seems to be governed only by the amount of extra time taken to reach the operat-
ing rate. Indeed, increasing the time Ar between the onset of production and the moment
that operating rates are reached, moves the maximum Coulomb stress along the descend-
ing curve, with a time offset that seems proportional to At.
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3.5 Reservoir pressure

The frequency with which production-induced seismic events occur in the Groningen gas
field has seen a very sharp increase over the past decades; a trend that might be explain-
able in part by ever-increasing levels of compaction and the corresponding straining of
faults in the reservoir, as well as by various non-linear deformation effects not modelled
in this study. In terms of the transient effect that is studied here, the variable of interest
is the initial reservoir pressure preso: not only does pressure have a large influence on the
hydromechanical properties of the pore fluid, a lower reservoir pressure (i.e. a lower gas
density) means that at in-situ conditions a larger volume of pore fluid needs to be dis-
placed to achieve a certain production rate in terms of standard cubic meters. Numerical
experiments were conducted producing at an equal rate g for various reservoir pressures,
and Coulomb stress levels were observed to increase dramatically (figure 18). Decompo-
sition into shear and normal components (figure 19) reveals that this is caused largely by
the increased time lag of the arriving pressure wave, in turn caused by the lower com-
pressibility C¢. This causes the moment at which the minimum normal stress is reached to
appear much later, during which time the shear component freely causes Coulomb stress
to continue rising steeply.
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3.6 Fault throw
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Figure 19: Shear component (dotted) and

normal component (dashed) superimposed

production.

on pressure drop for the first 0.2 days of

To investigate the effect of a structural feature such as a fault with nonzero displacement,
a fault dipping towards the producer at & = 85° was positioned at r =
normal throw of 5% relative to the total height of the reservoir. A small throw is chosen
so as not to alter the pressure field significantly through the reduction in radial flow area,

as that would make comparison to other scenario more difficult. Moreover, the conical
fault would exhibit exceedingly different pressure behaviour compared to a geologically

realistic scenario.

After a day of production, it can already be observed that stress concentrations appear
around the geometric irregularity (figure 20), with both a region of elevated and low-

100 m, with a

ered Coulomb stress. Plotting the stress state at the radius of maximum Coulomb stress

through time (figure 21), we find that for the displaced scenario, Coulomb stress at this
point is monotonously increasing to levels above the local maximum found in the base
case. Examining the shear and normal stresses separately (figure 22) reveals that both

shear and normal stresses grow at a higher rate for the displaced fault, with the former ev-
idently dominating. It is also observed that normal stresses become compressive faster in
the displaced case, which is why the base case shows a higher Coulomb stress for the first
30 hours of production. Comparison of the local pressure drops for both scenarios shows
a near perfect match. Numerical experiments for 20 days of production show a continua-
tion of the trends observed after 5 days, with Coulomb stresses declining for the base case
and slowly rising for the displaced fault. It should be noted that this increasing Coulomb

stress is observed only locally, with surrounding regions behaving rather more like the

base case.

—16—

Shear or normal stress, 10* Pa



o o
S S

Vertical coordinate z, m
(5]
o

0 50 100

150

Coulomb stress Ter Pa

200 250 300
Radial coordinate r, m

350 400 450

.

500

x10%
4

3.5

25

Figure 20: Coulomb stress for a fault with a 5% throw relative to reservoir height, t = 1 day.

35

25

,10% Pa

c

15

Coulomb stress T

Pressure drop -(p-p’es 0 ) 10% Pa

0.5 isplaced
Base case

0 1 2 3 4 5

Time t, days

. Displaced
Base case

100 [

0 1 2 3
Time t, days

Shear or normal stress, 10* Pa

Figure 21: Coulomb stresses found for a Figure 22: Shear component (dotted) and

fault with a 5% throw compared to the base normal component (dashed) superimposed

scenario. on pressure drop.

4 Discussion

The reservoir model used in this study is a simplified one, assuming linear elastic be-
haviour, homogeneity in rock properties and a single pore fluid phase. While complex
real-world subsurface systems will produce at best quantitatively different outcomes, the
idealized description used in this study provides insight into the mechanisms behind some
of the obtained results.

4.1 Existence and mechanisms of transient stress effects

The phenomenon that a sudden change in well rate causes an extra stress effect that may
trigger seismicity [Segall and Lu, 2015; Shapiro et al., 2013] was indeed observed: Coulomb
stresses showed a local maximum in both time and space. The existence and location of

the spatial maximum can be explained in the vertical dimension by the importance of the
sign of the shear component and the fact that shear stresses are greatest on the vertical
limits of the reservoir. The reason for the maximum in the radial dimension is that the
region of highest shear (i.e. close to the wellbore) is also the region of highest normal
stress, with normal stresses rising to very high levels as r approaches ry,. This trade-off
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means that for higher friction coefficients y, the spatial maximum will likely move to a
location more distal from the wellbore.

The explanation for the temporal maximum became evident when the shear and normal
components of stress were observed separately, as elastic coupling of the rock matrix ini-
tially causes a state of relative tension to exist in the region where pore pressure has not
yet dropped. This phenomenon can also explain why more steeply dipping faults show
the strongest transient effect, both in terms of magnitude and prominence. The asymmetry
with respect to dip direction is caused by the asymmetry of the state of shear stress o;:
the upper half of the reservoir exhibits greater stress magnitudes than the bottom due to
the different elastic properties found in the under- and overburden. As dip angle increases,
this asymmetry should become more evident in the Coulomb stress, as is indeed observed.

It should be noted that the effects described seem fundamental, and not an artefact of the
idealized geometry or discretization of the problem. In terms of unincorporated physics,
the simplified linear elastic description of the system is an approach widely used for time
scales and deformations exceeding ours by several orders of magnitude. The assumption
that % < ¢Cr was monitored and satisfied for all simulations. Taking all this into account,
we have no reason to assume that the effects described will not also occur in a real reser-
voir setting. A sensitivity study, which separately altered the elastic moduli of the reser-
voir or the surrounding rock, showed that the effect of increased Coulomb stress increased
for more elastic reservoir rock and more stiff surroundings (Appendix D).

Although the transient stress effects were indeed observed in our simulations, magnitudes
of Coulomb stress, and also of its two components, were in the order of 10* Pa. This
appears rather small — especially when compared to the ambient stress levels, which are
three orders of magnitude higher. Even assuming faults are already critically stressed,
these magnitudes beg the question whether they can be considered significant. As produc-
tion time increases, the magnitude of the two components of Coulomb stress will continue
increasing, possibly arriving at a point where even though Coulomb stress is lower than
after the first day of producing, its two components reach magnitudes of significance.

Moreover, a geometric irregularity in the form of a fault with a relatively small displace-
ment caused (Coulomb) stress concentrations of a magnitude that quickly exceeded the
local maximum found for the disk-shaped geometry, still climbing monotonously after 20
days of production. It seems that these areas where stresses reliably build up in dangerous
ratios are more likely candidates for triggering seismic activity. This is in addition to the
fact that exactly in these regions stress build-up to critical magnitudes is believed to occur
as a result of prolonged production.

4.2 Evaluation of observed stress magnitudes

Nucleation of an earthquake is a chance event, involving failure mechanisms that oper-
ate locally at very small length scales. Consequently, the question whether or not a given
change in stress state in a certain location (small or large) will trigger seismicity is one
that is difficult to answer, especially given the fact that the degree of uncertainty concern-
ing the properties of a system can be enormous.

Dieterich [1994] proposes a seismic model that estimates the rate of earthquake nucle-
ation based on a set of several state variables that each incorporate some physical aspect
of earthquake formation. A key aspect of the model is that it relates seismicity to the rate
at which Coulomb stress changes, not just on its magnitude. Segall and Lu [2015] put
forward a way to simplify the model originally proposed by Dieterich, defining a rate of
earthquake production R relative to a background rate (which may be very low in geologi-
cally inactive regions). This results in a single differential equation dependent on stressing
rate, background stressing rate, ambient stress levels and a few physical parameters, pro-
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viding a way to judge a stress path in terms of the potential for triggering seismicity. A
derivation is not given in the original paper, but can be obtained from Appendix A.5.

As background stressing rates in Groningen are very low and ambient stress levels are in
the order of 107 Pa, relative rates of earthquake production returned by the seismic model
follow practically the same trends as those observed for Coulomb stress. As an example,
figures 23 and 24 compare the relative rates R found for the base case and the scenario
with decreased initial reservoir pressure preso. The discrepancy between this result and
the transient effect described by Segall and Lu [2015] is striking, but the characteristics
of the two systems under investigation explain the difference. Chief among these is the
fact that the other study dealt with injection of the more viscous water into a formation
with permeability in the order of 107!® m?, requiring pressure differences in the order of
107 Pa, much greater than the ones observed for our gas reservoir.

Relative seismicity rate R, [-] Relative seismicity rate R, [-]
1 2 5
0.9 18 45
0.8 16 4
0.7 14 3.5
2 0 12 23
] ]
h- h-
< 0.5 1 «2.5
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E 04 08 E 2
0.3 06 1.5
0.2 04 1
0.1 0.2 0.5
0 0 0
100 200 300 400 500 200 300 400 500
Radial coordinate r, m Radial coordinate r, m
Figure 23: Seismicity rates obtained for Figure 24: Seismicity rates obtained for
the base case. Dres,0 = 5.0 - 10° Pa.
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5 Conclusions

+ A hypothesized transient maximum in slip-promoting stresses following a sudden
increase in production rate is observed in our simulations.

+ The underlying cause is the time required for the pressure disturbance to reach
a certain radius, during which the comparatively instantaneous elastic coupling
through the rock matrix induces a state of relative radial tension and growing shear
stress. As pore fluid pressure drops, effective normal stresses become compressive
and subsequently grow to first stabilize and then lower the Coulomb stress.

» The effect is strengthened with increasing dip angle, increasing well rate and de-
creasing reservoir pressure.

+ A gradual or stepwise build-up to the operating rate was observed to lower the
maximum Coulomb stress, with a larger time window being of much greater value
than an increased number of rate increments.

+ Although showing the described behaviour, both Coulomb stress and its compo-
nents appear small to the point of insignificance, with ambient stresses exceeding
them by three orders of magnitude.

+ A seismic model based on rate-and-state friction predicted a very weak increase in
seismic activity, such that unambiguous claims on the potential for triggering an
earthquake are difficult to make.

+ A small geometric irregularity in the form of a fault with a 5% throw relative to
reservoir height caused (Coulomb) stress concentrations to quickly and monotonously
build up to levels far exceeding the observed maximum in the disk-shaped reservoir,
making those regions more likely candidates for triggering slip on an existing fault.
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A: Derivations
A.1 Storage equation for slightly compressible fluids

The storage equation for slightly compressible fluids (in which the coupling of flow and
mechanics is significant) is derived by adding the fluid and solid mass balances in a con-
trol volume, after which the principle of effective stress is used to group the terms ex-
pressed in derivatives of pressure and volumetric strain. Both fluid and solid are assumed
linearly compressible. Furthermore, it is assumed that porosity is constant and the product
of density gradient and velocity is negligibly small. Derivation is a more detailed version
of the one presented by Verruijt [2016].

A.1.1 Fluid mass balance

The basic conservation equation is a generalised fluid mass balance in a porous medium
with zero source:

0(¢p”+-vua¢w)— (A1)

Rewriting the time derivative in terms of pressure, one obtains

0(¢pr) _  Oprdp ap
—a-r C, —, A2
o~ Papar TGy, (A-2)
and application of the chain rule to expand the second term gives
V(prpve) = piV (¢ve) + ¢viVpr . (A.3)
——
negligible
These expressions are substituted in (A.1) and divided by the fluid density pr to find:
8 -
¢cg8—p 2V (v + Dvp = 0. (A4)
! pf
e e
negligible
A.1.2 Solid mass balance
Again, one starts from a generalised mass balance of a porous medium with zero source:
0
- |a =]+ ] -1 =0. (A5)
Using the fact that matrix density is a function of pressure and isotropic total stress, we
find
0ps Jdo
= - - , A.6
ot ¢ ( ot rn ) (4.6)

in addition to which the second term in (A.5) is expanded using the chain rule:
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\ [(1 - ¢)psvs] = psV [(1 - ¢)Vs] + (1= ¢)vsVps.
| S —
negligible

Lastly, the former two expressions are substituted in (A.5) and divided by ps to give

C ((Z—(Z - ¢6_p) + Vvg — Vovg +

ot

A.1.3 Storage equation

Adding the fluid and solid mass balances while dropping the negligible terms leaves

0
Vvs+V [¢(Vf - VS)] +¢(Co— C) 8_]; +
upon which substitution from the definitions
g =Vu,
e
E = VVS’
q = ¢ (Vf - VS)’
gives:
oe op o
—+¢(Cy—Cs) —+C— =-Vq.
Fr (G- ot "ot 4

———
negligible

Using various concepts and definitions from Biot theory,

, £
o=,
Cm
G
=1-=
a .

MV,{)S=O.

)s

one can eliminate the isotropic total stress from (A.13) to find

oe op
E+¢(Cg—cs)5+

Grouping of terms gives the storage equation:
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with the storativity coefficient S defined as

S = ¢Cq + (a - $)Cs. (A.19)
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A.2 Flow problem transformation to pseudopressure

The basic governing equation is the fluid mass balance:

9 (¢pg)
ot

+V (pedve) = 0. (A.20)

Using Darcy’s law and the real gas equation of state, one can express both flow velocity
and gas density in terms of pressure:

k
¢vg = —=Vp, (A.21)
u
pM
= —. A.22
Pg 7RT ( )

Substitution in (A.20) assuming constant porosity and isothermal conditions, one obtains:

d (p kp 3
o= (E) —V(;EVp) -0. (A.23)

Introduce the real gas pseudopressure m(p), defined as

P
L[k P
m(p) =2 / I dp, (A.24)

Pref

noting the pressure dependence of gas viscosity and real gas deviation factor. It is pos-
sible to rewrite (A.23) in terms of m. Firstly, the operand of the divergence term can be
expressed in terms of m:

—Vm=-—Vp=—-Lvp. (A.25)

For the other half of (A.23), first remove the gas deviation factor from the temporal deriva-
tive:

o (p)_ 0 RT\ RT dpgdp _ RTdp . pdp (A26)
a\z) "o\ | T M apar TP Ml T 2 2 '
Differentiation of m with respect to time gives
om Omdp k pop
Attt A.27
ot dp Ot uZ ot ( )
and after isolating the pressure derivative one obtains:
op 1uZom
— = A28
ot 2k p ot ( )

Finally, upon substitution of (A.28) in (A.26) and inserting its result in (A.23) along with
(A.25), one obtains a differential equation in terms of m [Al-Hussainy et al., 1966]:
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¢#(P)Cg([7) B_m _

V2m=0. )
; o m=0 (A.29)

It should be noted that this equation is still nonlinear due to the pressure dependence of
the gas viscosity u and the isothermal compressibility C,.
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A.3 Elastic problem

The equations of motion reduce to equations of equilibrium when the second derivative of
the displacement vector u with respect to time (the change in momentum) is assumed to
be negligible.

Veo-f=0, (A.30)

where o is the second order Cauchy stress tensor (note the sign convention for soil me-
chanics) and f represents the body forces in all coordinate directions, if present. Addi-
tionally, the problem must satisfy the strain-displacement relations (or compatibility equa-
tions):

€= % [Vu+ (Vu)], (A31)

where g is the infinitesimal strain tensor. Lastly, stress and strain are linearly related via
Hooke’s law in the constitutive relations:

og=C:e¢, (A.32)

where C is a fourth-order stiffness tensor. For a three-dimensional isotropic material, this
amounts to 21 equations in total (6 equilibrium equations, 9 strain-displacement relations
and 6 independent constitutive equations), one for each of the unknowns (3 displacements,
9 stresses and 9 strains).

Rewriting (A.30) for an axially symmetric cylindrical coordinate system in the absence of
body forces, one obtains two equations of equilibrium:

Aoy + Orr — Oyt + o
or r 0z
90yz  Orz 00z
or r 0z

=0, (A.33)

=0. (A.34)

Additionally, the moments applied by shear stresses must balance, requiring symmetry in
the shear stress components:

Oy = Ogp. (A.35)

The compatibility equations, which mathematically prohibit gaps or overlapping volumes
in the solution, allow the strain components to be expressed in terms of solid displace-
ments. Due to the symmetry of the problem, all tangential derivatives must vanish, giving
rise to the following four expressions for the components of strain:
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&7 =

The linear relation between strain and effective stress expressed in (A.32) is simplified
considerably for an isotropic material, expanding into four stress-strain relations:

a, =

g = — (K—%G) & —2Geyg,

a., =

4 —_—
Orz =

Substituting the compatibility equations (A.36-39) in the constitutive equations (A.40-
43) and making use of Terzaghi’s principle of effective stress, the total stresses can be

_ Ouy

or’
Uy
€00 = —,
r
Ou,
Ezz 9z °
1 (du, N
& ==
z 2\ 0z

Ouz

or

)

- (k-36) & - 2Ge,,.

- (K—%G) £—2Ge,,,

-2Gg;; .

expressed in terms of solid displacements and pore pressure:

ou,
0z

o, =G

Using (A.44-47) to rewrite the equations of equilibrium in terms of displacements and
fluid pressure enables numerical solution of the mechanical problem, after which the same
relations can be used to determine the (approximate) state of stress at any location in the

domain.

Ous

or
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A.4 Stress field coordinate transformation

From the point of view of a regular Cartesian coordinate system, the reference frame of
the computed stress state at a given location in the reservoir is rotated about the z-axis at

an angle 6, as given by its radial coordinates. The target reference frame is, from the point

of view of a regular Cartesian coordinate system, rotated about the y-axis at an angle ¢:

the angle of the investigated plane relative to the vertical.

Let the original reference frame be denoted ki, k>, k3 and the target reference frame be

denoted 121, 122, 123. To compute the complete set of direction cosines, find the base vectors

of both reference frames:

cos 6]
ey = |sind
0

cos ¢
é&=1]0

sin ¢

As the inner product of two unit vectors is equal to the cosine of the angle between them,

[—sin6
ey =| cosf |,
0
[0
& =|1], &
10

€3 =

|’_‘O

— sin ¢
0

cos ¢

(A.48)

(A.49)

the full set of direction cosines that combine to form the transformation matrix is given by

D(6, ) = [e1 €2 €3] - [&1 & &],

after which transformation of the stress tensor is achieved via

6=D-o-D".
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A.5 Seismic model

The seismic model used to evaluate the computed stress fields in terms of their triggering
potential is derived from the model put forward by Dieterich [1994], in which an equation
in terms of one or more state variables describes a population of earthquake nucleation
sources, all moving towards instability. Given a certain stressing history and the initial
condition of the system, the rate of earthquake production can be predicted. Key aspect
of the model is that not just the state but also the rate of stress determines the amount of
seismic activity, such that if the stress field is not perturbed there exists a constant rate of
earthquake nucleation.

Segall and Lu [2015] put forward a way of rewriting the state variable description to ob-
tain a single differential equation for the rate of earthquake nucleation relative to the back-
ground rate, eliminating the state variable. The model is written in terms of the Coulomb
stressing rate 7., with the Coulomb stress defined as 7. = 75 + uoy. (Mind the fact that the
sign convention used by the authors is not the one used in soil mechanics.) A constitutive
parameter A, an ambient effective normal stress 03, and a background Coulomb stressing
rate 7,0 make up the distinguishing constants.

A.5.1 From Dieterich to Segall & Lu

Elimination of the state variable y(z) is achieved as follows. Starting from two equations
in the original paper by Dieterich, the first of which expresses the relative seismicity rate
R(¢) in terms of y and 7. :

1
R)= —— . (A52)
=30
The second is an expression for the state variable differential dy:
1
dy = —[dt —y-dr.] . (A.53)
On
The Coulomb stress differential in (A.53) is expanded to a time differential,
d
dro = S dr =4, - dr , (A.54)

dr

after which it can be moved to the left-hand side to obtain an expression for the derivative
of the state variable y with respect to time:

dy 1
dr ~ Ad,

[1-7y7]. (A.55)

Rearranging (A.52) to isolate the state variable gives the following expression for y:

1) = , A.56
¥() Rivo (A.56)
which can be substituted in (A.55) to obtain a way of expressing the time derivative of y
in terms of the other variables,
dy 1 T
— = 1- . A.57
dt Aoy [ R‘fc,o] ( )
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Differentiating (A.52) with respect to time, leaving y in the denominator and applying the
chain rule, one finds:

dR 1 d 1 1 1d
e Y ) P A (A.58)
dt 1o dt teo \ Y2 de

upon which substitution of expressions (A.56) and (A.57) eliminates the state variable,
leaving

dR 1 2.0 |1 Te
— =—-— - Rt 1- . A.59
&~ i 4G, RT'C,O] (A-59)
As a last step, define a characteristic time scale (A.60),
AG
=22, (A.60)
Tc,0

after which substitution and rearrangement leaves the expression put forward by Segall and
Lu [2015]:

R R
d — - R} (A.61)
7c,0
A.5.2 Solution for R
Expanding the brackets to group terms of R and R? gives:
drR 1 1 1
_:_.T_C.R__.R? (A.62)
dt ta7co ta
Using the chain rule and a new variable defined as v = R~!, one finds the following ex-
pression for de derivative of v with respect to time:
dv _, dR
— =—-R"7"-—, A.63
dr dr ( )
in which (A.62) is substituted in its entirety, along with a sign reversal, to obtain
drR 1 7 1
R? —=——S_.R'1-— A.64
dr ta7co fa ( )
17 1
=T, . (A.65)
Iy Tc,0 Iy
This leaves a differential equation for v which is both linear and first order:
dv 1 7. 1
—=—|-——v——]. A.66
dr fa Te0 Y ta] ( )

Define two coefficients for clarity,
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k=1 puy=Lte, (A.67)

substitution of which shows the characteristic form of a linear first order ODE:

dv
k=P, (A.68)

This differential equation (A.68) can be solved using the integrating factor

t
M(t) = exp [ / P(s) ds} ; (A.69)
0
by which (A.68) is multiplied to give

M(t) - ((11—: =M@)-k—M(t) P(t)-v. (A.70)

Bringing the multiple of v to the left-hand side, one can apply the product rule in reverse
to obtain

M) - i—: + M) -P()-v=M@) -k = % (M(t) . v) , (A1)

which is subsequently integrated to find

/IM(x)-kdx+C=M(t)-v. (A.72)
0

Finally, isolating v and writing the integrating factor M () in full gives the following solu-

tion:
/Otkexp [/OXP(s)ds
) exp [/Ot P(s) ds}

The constraint that lim,_,o [R(¢)] =1 requires that C =1, after which the fact that by defini-
tion R = v~! gives the solution for R:

dx+C

(A.73)

exp

1 t
— €X
fa/O P

N - T, incr]
taTe,0

R= (A.74)

dx +1

* Te,incr

tafc,O
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B: Discretisation

Numerical modeling was performed in Matlab, in which a sequential finite volume/finite
element routine was developed to solve the discrete problem in radial coordinates with
fluid pressure p and solid displacements u, and u, as primary unknowns. Using the ob-
tained displacement solution, the resultant stress field can be computed using Hooke’s law
(A.32) and the compatibility equations (A.31).

B.1 Fluid flow

Starting from the diffusion equation in terms of pseudopressure, noting that gas viscosity
1 and isothermal compressibility C, are functions of p:

uCq dm

Vim = B.1
kot m =0, (B.1)

expanding the Laplacian for cylindrical coordinates gives

¢uCedm 10 ( om 0 (Om
X E‘?E(’E)Jra_z(a_z)' -2

Integrating over a radially symmetric volume element, approximated as dV = 2nrdA, one
obtains

k ot ror\ or dz \ 0z
A

C
/’(ﬁ,u ga—mZHrdAz‘/lﬁ(ra—m) 27rrdA+/£(6—m) 2nr dA, (B.3)
A A

in which the right-hand side can be rewritten using the divergence theorem to find

¢uCs Om B
52 0 dA = / (27rer~n) ds. (B.4)
A S

Discretisation in time is achieved using backward differences;

¢,UCg ntl mn+1_ m"
/ { ; } . ~ 2nrdA = / (271'er . n) ds, (B.5)
“ S

after which the problem is discretised in space with the finite volume method, making
use of a two-point flux approximation scheme taken from Karimi-Fard et al. [2003]. This
results in the following expression for every cell k:

n+l 1 n ny
¢uCg | mpt—m
{ . el .k A7 k 2nre Ak = Z [27rrc,fo Vm ’f . nf] (B.6)
k A=1
na
= 3" [Tialma - my)] (B.7)
A=1

where n, is the number of neighbouring cells, the subscript f denotes the face shared be-
tween a pair of cells and r. is the radial coordinate at the centroid of a cell or interface.
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Note that both fluid viscosity u and compressibility Cy are functions of pressure p. Trans-
missibility between cell k£ and neighbour A is computed as the harmonic average of each
cell’s half-transmissibility:

A
dkd @ = = -, (B.8)
ay + ay D;

Tia =
with D; the distance between the cell and interface centroids, f; the unit vector pointing
inwards along that path and n; the unit inward normal to the interface. Rewriting to form
terms dependent on each of the pseudopressure unknowns gives a nonlinear system of
Ne,pr €quations of the following form:

(AAt + B(p)) .m™! =B(p)-m" +q, (B.9)

with the superscript indicating the time step. Due to the pressure dependence of matrix B,
(B.9) requires an iterative solution method. Picard iteration was found to provide sufficient
computational efficiency.
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B.2 Mechanics

Discretisation of the mechanical problem is adapted from Verruijt [2016], with the novel
implementation of pore pressure as a body force taken from a previously computed pseu-
dopressure.

B.2.1 Equations & unknowns

The mechanical problem is governed by two equilibrium equations:

ao—rr Orr — 01t aO-zr
+ +

=0, B.10

ar r 0z ( )
0oy Oy | 00

“reo Ty TR . B.11

or r 0z ( )

The unknowns that constitute the solution of the two-dimensional problem are the solid
displacements u, and u,.

B.2.2 Boundary conditions

Every point on the domain boundary dQ requires two boundary conditions, one for each
of the two governing equations. Either a displacement (Dirichlet condition) or surface
traction (Neumann condition) is specified:

0Q, p:u =a,
e (B.12)
0Qy, N : Opr = Oy + Ogply = 1y

0Qu.p:u, =b,

(B.13)
(9QuZ,N L Opg = OzzN7 + OpzNy = _tZ ,

with the two subsets of dQ2 combining to form the entire domain boundary in both (B.12)
and (B.13).

B.2.3 Spatial discretisation

The problem is discretised in space using the finite element method, with the discrete un-
knowns u,; and u,; located at cell vertices. By weighted summation using linear basis
functions, both the global geometric coordinates (B.14) and the continuous displacement
field (B.15) can be interpolated from their discrete counterparts:

np Fp
r=> N, 2= N, (B.14)

i=1 i=1

ny p
=) Nittrsy  uz = Ntz (B.15)

i=1 i=1

The governing equations can be solved in terms of these interpolated variables using the
Galerkin method of weighted residuals, in which the equations are rewritten in the form of
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a linear system which forces equilibrium to hold on the spatial average using the n, basis
functions as weights.

As the values of the basis functions and their spatial derivatives are known across the do-
main and the other variables can be expressed in terms of the two unknown displacements
using constitutive relations and definitions, each governing equation provides n, equations
for n, unknown displacements. These equations must hold for all nodes, except those for
which its corresponding unknown is prescribed as a Dirichlet boundary condition.

B.2.4 Discrete equations - Radial equilibrium

Applying the Galerkin method to the equation of horizontal equilibrium, one obtains the
following expression that must be satisfied for all nodes i on which the horizontal dis-
placement is not prescribed:

// [(90’rr - Ot + 360'zr N; rdrdz =0. (B.16)
Z

Using the product rule of differentiation, this can be rewritten as the sum of two terms R;
and Ry:

[/ [ [ro-N;i] + (Saz [FO'UN[]] drdz

R,

ON; ON; ON;
—/][Urr—t+02r—t+099—l rdrdz=0. (B.17)
or 0z r

Ry

R can be transformed into a known surface integral using the divergence theorem, giving

R = / o N; dS, (B.18)
S

and R, can be rewritten in terms of the discrete set of unknowns and the previously com-
puted pressure drop Ap using the interpolators (B.15), the equations of elasticity and the
various known material properties to obtain

R — ”"M6N6N N; N; A@NN N; ON;

Z_ﬂ . or 6r+r r Urj ¥ or r+rWur‘J
1 6N(9N N@N 8N6N

* or 2 r 0z 9z 4z

c')N 6N B ON; N;
@ or
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Rewriting the integral over the entire domain as the sum of the integral over each element
[ gives:

Ne  Mp Ne

[Piﬂur,j + Qijl”z,j] + ) [Sulpil, (B.20)
=1 j=1 =1

where the second summation contains the effect of the pore fluid pressure drop Ap. The
entries of the stiffness matrices P, Q and S are computed from known integrals of ma-
terial properties and derivatives of basis functions, found as a set of n. element stiffness
matrices which are subsequently summed to find the stiffness matrices that make up the
complete system:

P_MﬂaNaN N; N; drd
=M\ e )
Q

ON; N; N@N
+/ll,[/(c')r p i )rdrdz
Q

dN; ON;

G — —~ rdrdz, B.21
" l// 9z oz < (B.21)

(9)]

ON; ON;  N; ON; ON; ON;
! T T rdrdz+ Gy [ ZE T drde, B.22
Qijt l//(@rz+r61)rrz+l,//6z6rrrz ( )

(9] Q

ON; N;
Si1 = —q // (W + 7) rdrdz. (B.23)
Q

B.2.5 Discrete equations - Vertical equilibrium

Applying the Galerkin method to the equation of vertical equilibrium, one obtains the fol-
lowing expression which must be satisfied for all nodes i on which the vertical displace-

ment is not prescribed:
0 B
//[ Irz | Irz g“]zvi rdrdz=0. (B.24)
<

Using the product rule of differentiation, this can be rewritten as the sum of two terms Z;
and Z:

// — [rov;Ni] + — 0 [rog;N;]| drdz - // a'rz%+a'zz% rdrdz=0. (B.25)
0z or 0z
Q

Z Z>

Z; can be transformed into a known surface integral using the divergence theorem, giving
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Z = / Oz N dS, (B.26)
S

and Z, can be rewritten in terms of the discrete set of unknowns and the previously com-
puted pressure drop Ap using the interpolators (B.15), the equations of elasticity and the
various known material properties to obtain

n,
- ON; ON; ON; ON;  ON; N;
Zy = M——Ly, . + 1| ——2L y
2 [/{;[ 0z 6ZMZ’J+ 0z 0r+6zr tr.J
r =

ON; ON; AN; ON; ] L

+ GWWMZ’] + Wa—zur] lp} rdrdz. (B27)

9z

Rewriting the integral over the entire domain as the sum of the integral over each element
[ gives:

Ne Ny Ne

Z=) Z | Qi + Rl,zuz,] + 3 [Tap], (B.28)

=1

where the second summation contains the effect of the known pore fluid pressure drop Ap.
The entries of the stiffness matrices Q, R and T are computed from known integrals of
material properties and derivatives of basis functions, found as a set of n. element stiff-
ness matrices which are subsequently summed to find the stiffness matrices that make up
the complete system:

ON; N ON;
Qjﬂ:/ll[/ ON; GN drdz+Gl‘/]8i—rdrdz, (B.29)
9z or 5Z
(o]
ON ON;
Riji = Ml[/G—N—rdrdz+G1//6i—rdrdz, (B.30)
T, = —al/ %rdrdz. (B.31)
0z

B.2.6 System of equations

Adding each element’s contribution to the global stiffness matrix (using Gaussian quadra-
tures to approximate the integrals) and moving the known constants to the right hand side,
one obtains the following linear system of 2n, equations for 2n, unknowns:

i Ty Ne
Z Pijuyj + Z Qijuzj= fri— Z Siipi, (B.32)
j=1 j=1 =1
i Ty ne
Z Qjiur,j + Z Rijuz j= fri — Z Tupr (B.33)
Jj=1 j=1 =1
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In which the vectors f, and f; contain the forces applied to each node due to any pre-
scribed surface stresses, as computed by the surface integrals (B.18) and (B.26) over the
relevant boundary segments.

Although Neumann boundaries incorporate naturally, the finite element method requires
the equations corresponding to Dirichlet boundary nodes to be forced to the prescribed

value after system assembly by modifying both the stiffness matrix and source vector to
essentially remove those degrees of freedom from the system. Details can be found in,

Appendix E: Simulator algorithms.
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C: Validation of finite volume solver

To validate the numerical solution of the flow problem, two verification criteria were used.
Firstly, the mass of gas in the reservoir and the mass of gas produced must sum to the
same amount that was initially in place. Secondly, a grid refinement study was conducted
in both the spatial and temporal domain, to show consistency and stability (and thereby
convergence).

C.1 Fluid mass balance

The total mass of gas produced is computed via the mass flux constraint at the wellbore,
whereas the total mass of gas (initially) in place is computed by integrating the gas den-
sity over the domain.

1.005

(mprod + mgip)/mGIIP
-

0.995 . . . . I
0 1 2 3 4 5

Time t, days

Figure C.I: Deviation from mass balance, computed as the sum of
gas produced and gas remaining normalized by the initial mass of gas

in place.

C.2 Grid refinement study

Grid refinement studies were conducted in both the spatial and temporal domain, showing
consistency and stability of the solution method. Time step size At and characteristic cell
size h were studied separately, with one resolution kept at the highest level so that the
error caused by the resolution under investigation dominates.
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C.2.1
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Figure C.2: Pressure at t = 5 days for

increasing resolutions.
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Figure C.4: Radial displacement at

t = 5 days for increasing resolutions.
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Figure C.8: Vertical displacement at
t =5 days for increasing resolutions,
z=0

&

-10

-15

Vertical displacementu_, 10%m

-20
0 1 2 3 4 5
Time t, days
Figure C.7: Vertical displacement at
r = 8 m for increasing resolutions,

Z = Hiyes

10

©

z

Vertical displacementu_, 10%m

— Mt =4

0 1 2 3 4 5
Time t, days

Figure C.9: Vertical displacement at
r = 8 m for increasing resolutions,
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C.2.2 Time step At
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Figure C.10: Pressure att = 5 days Figure C.11: Pressure at r = 8 m for
for increasing resolutions. increasing resolutions.
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Figure C.12: Radial displacement at Figure C.13: Radial displacement at
t = 5 days for increasing resolutions. r = 48 m for increasing resolutions.
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D: Sensitivity study for elastic moduli

D.1 Reservoir rock
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Figure D.1: Coulomb stress for high and low

elastic moduli in the
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Figure D.2: Coulomb stress for high elastic
moduli (K = 2Kpase; G = 2Gpyse) in the reservoir.
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case.
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Figure D.3: Coulomb stress for low elastic moduli
(K = %Kbase’ G = %Gbase) in the reservoir.
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D.2 Over- and underburden
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Figure D.5: Coulomb stress for high elastic
moduli (K = 2Kpyse; G = 2Gpyge) in the

surrounding rock.
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E: Simulator algorithms

Algorithm Matlab reservoir simulator

1: InpuT

set physical variables
3 set computational parameters

4: PRE-PROCESSING

5: compute conversion table — [m < p](..)
6: build mesh
7
8

»

assign rock properties — (K, G, Cy,)
» function_a — assemble matrix components for elastic problem
P,Q", Q% RS, T

9: » function_b — assemble transmissibility matrix
A
10: INITIALIZE
11 Pn < Pres,0
12: update fluid properties
13: » function_c — assemble nonlinear terms B(p)
14: SOLVER BODY
15: for timesteps n
16: m, < [mopl(p,)
17: pzﬂ — P,
18: » solver_j — nonlinear solver for p,,,
19: » solver_k — linear solver for u,, u,
20: » function_d — compute stress state
21: write datafiles
22: check massbalance
23: end

» solver_j Nonlinear solver for pressure

1: while ~converged
2: m”! — (A + BA?)\(Am,, + q)

n+l

3P < Imeoplmg

4 if converged

5: Pni < p‘r/H—l

6: break;

7 else

8 Phut < Py

9 update fluid properties
10: function_c — assemble nonlinear matrix B(p)
11: continue;

12: end

13: end




» solver_k Linear solver for displacement

—_—
—_ O

12:
: Pa,a, <1

R A A S e

reset stiffness matrix components

% Compute body force for pore fluid pressure

Ap; — Pk; —Pres,0 le Qpr

Ap; <0 otherwise
f, < _(SAp)
f; < —(TAp)

% Enforce Dirichlet condition for u,
d, « indices of nodes i € Q,,, p
f, —f, —Pu, -urp

Qldro <0

P-dr —0

Pdro «—0

% Enforce Dirichlet condition for u,

cdg « indices of nodes j € 9€,_ p

f, —f; —Rea, "uzp
dez' «—0
Rod <0

: Rd « 0

: Rd d. < 1

: % Assemble system and solve

: V[P, Q1 Q% R]

o Sl | 9

cu «— V\f

: % Extract solution components
:u «—u(l:n_n)

: Uy «—u(l+n_n:2*n_n)
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» function_a Matrix component assembly for mechanical problem [Chessa, 2002]

1: allocate memory for sparse matrices P, Q!, Q% R, S, T
2: [wts,locs] « Local coordinates and point weights for Gaussian quadrature
3: for elements /

24:
25:

26:
27:
28:
29:
30:

ind « node indices for element /
for Gauss points g

[N, ONjoc] « values of shape functions and their derivatives at Gauss point

Ig «— coor(l,ind) - N

Jo «— coor(:,ind) - Ny
|Jol «— coor(:,ind) - ONjc
aNglo — ONioc/Jo

or — ONg,o(:,1)

dz — ONgo(:,2)

% Build stiffness matrices

P(ind,ind) « P(ind,ind) +(K; + $G;)- (r - Or") - ry - wts(@) - Jo|
P(ind,ind) < P(ind,ind) +(K; + 3G;)- (N-N7) - r;' wts(g) - |Jol

P(ind,ind) « P@nd,ind) +(K; = 3G)) ..ooooovieniii i,

............................ +(K; + %Gl) (0z - 8z") - ry -wts(g) - [Jol
R(ind,ind) « R(ind,ind) + (Gp) - (r - ar") - rg'- wts (@) - |Jol
9 Build matrices for pore pressure body force

S(ind,1) « S(ind,1) —a-0r -ry-wts(g) - |Jol

S(ind,1) « S(ind,1) —a-N -rg-wts(g) - [Jo

T(ind,1) « T(ind,1) —a -0z - ry- wts(g) - |Jol
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» function_b Transmissibility matrix assembly

1: allocate memory for sparse matrix A
2: for cells [ € Qp;

3: k < local cell index k;

4 for neighbours A

5 if 1€Qy

6: k <« local cell index k,

7 ny < unit inward normal to face fz,

8 Af « face area

9: % Compute cell half-transmissibility

10: D, < distance from face centroid cf to cell centroid ¢
11: fi < unit vector pointing inwards along that path
12: ar < (A¢/Di)ng - £

13: 9% Compute neighbour half-transmissibility

14: D, « distance from face centroid cf to neighbour centroid ¢,
15: f, < unit vector pointing inwards along that path
16: @, (Ar/Dy) (—ny) - £

17: % Store flow contribution

18: T« (aay)/(ax + ay)

19: Ak,k) — Ak,K) + Ty,
20: Ak,k) — Ak,k) — Tk
21: end
22: end
23: end

» function_c Nonlinear matrix assembly

1: allocate memory for sparse matrix B

2: for cells [ €

3: k < local cell index k;

4 B(k,k) — B(k,k) + (VidipkCok)/ kabs
5: end
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» function_d Computation of stress state from displacements (Adapted from Chessa [2002])

1: allocate memory for storage
2: [wts,locs] « local coordinates and point weights for Gaussian quadrature
3: for elements /

31: end

zr «0
for Gauss points g

ind < node indices for element /
rr «0
tt «0
zz <0

[N, ONjoc] « values of shape functions and their derivatives at Gauss point

Tg «— coor(l,ind) -N
Jo « coor(:,ind) - dNjoc
aNglo — ONioc/Jo
or — ONgo(:,1)
0z — aNglo(: ,2)
% Take contribution from each Gauss point
rr —rr+;-—(K;+3G;))- 0r" -u, (ind)
IT « Ir +% -—(K; - %Gl) -0z" - uy (ind)
rr —rr+%-—(K; - 3G;)- N -u, (ind) /r,
zr « zr +1 - -G, - 8z" - u, (ind)
zr « zr +% - —G; - 0r" - u  (ind)

end

store (o)

store (0" + a - Ap;
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Components of stress across the reservoir at ¢ = 1 day
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Figure F.1: Shear stresses after 1 day of production.
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Figure F.2: Total radial stress after 1 day of production.
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Figure F.3: Total vertical stress after 1 day of production.
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Figure F.4: Effective radial stress after I day of production.
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Figure F.5: Effective vertical stress after 1 day of production.
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G:

G.1 Base case - shear and normal components
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Figure G.1: Normal stress for a fault

dipping towards the producer at @ = 85°.
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Figure G.3: Coulomb stress as a function

of time and radial coordinate,
gsc =2.0 - 100 m?/day.
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Figure G.2: Shear stress for a fault
dipping towards the producer at @ = 85°.
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Figure G.4: Coulomb stress as a function
of time and radial coordinate,
gsc =4.0 - 100 m3/day.



G.3 Production ramping
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Figure G.5: Coulomb stress as a function
of time and radial coordinate, Npg — ©.
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Figure G.6: Coulomb stress as a function
of time and radial coordinate, npag = 7.
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Figure G.7: Coulomb stress as a function
of time and radial coordinate, npag = 3
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Figure G.8: Coulomb stress as a function Figure G.9: Coulomb stress as a function
of time and radial coordinate, A; = 2. of time and radial coordinate, A; = 3
G.4 Reservoir pressure
Coulomb stress 7_, Pa 4 Coulomb stress 7_, Pa 4
c %10’ c %10’
45 5 4.5
4 4.5 4
35 4 35
3.5
3 3
23
2.5 3 2.5
2.5
2 2 2
£
2
1.5 1.5
15
1 1 1
05 05 05
[ 0 [
100 200 300 400 500 100 200 300 400 500
Radial coordinate r, m Radial coordinate r, m
Figure G.10: Coulomb stress as a Figure G.11: Coulomb stress as a
function of time and radial coordinate, function of time and radial coordinate,
— 6 — 7
Pres,0 = 5.0 - 10°. Pres,0 = 1.0-10
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G.5 Geometry with displaced fault
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Figure G.12: Coulomb stress for a fault Figure G.13: Coulomb stress for a fault
with a 5% throw relative to reservoir height, with a 5% throw relative to reservoir height,
first day. twenty days.
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Figure G.14: Coulomb stress for a fault with a 5% throw relative to reservoir height, t = 5 days.
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Figure G.15: Coulomb stress for a fault with a 5% throw relative to reservoir height, t = 20 days.
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G.6 Geometry with displaced fault, uniform depletion
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Figure G.16: Coulomb stresses versus time for the local maxima

proximal and distal to the fault.
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Figure G.17: Normal stress for a fault
dipping towards the producer at 8 = 85°,
uniform depletion.
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Figure G.18: Shear stress for a fault
dipping towards the producer at 8 = 85°,
uniform depletion.



H: Relative rate of earthquake production as predicted by rate-and-state friction

model
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Figure H.I: Relative seismicity rate as a
function of time and radial coordinate,
Gse = 2.0 - 10% m3/day.
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Figure H.3: Relative seismicity rate as a
function of time and radial coordinate,

nag — oo.
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Figure H.2: Relative seismicity rate as a
function of time and radial coordinate,
Gse = 4.0 - 10% m3/day.
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Figure H.4: Relative seismicity rate as a

function of time and radial coordinate,

nag =7.
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Figure H.6: Relative seismicity rate as a
function of time and radial coordinate,
At =2.
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Figure H.5: Relative seismicity rate as a

function of time and radial coordinate,

npag =3
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Figure H.7: Relative seismicity rate as a
function of time and radial coordinate,
At =3
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H.3 Reservoir pressure
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Figure H.8: Relative seismicity rate as a Figure H.9: Relative seismicity rate as a
function of time and radial coordinate, function of time and radial coordinate,
— (9 — 7
Pres,0 = 5.0 - 10°. Pres,0 = 1.0 -10

H.4 Geometry with displaced fault
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Figure H.10: Relative seismicity rate for Figure H.11: Relative seismicity rate for
a fault with a 5% throw relative to reservoir a fault with a 5% throw relative to reservoir
height, first day. height, twenty days.
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