
The Application of RDMA over Converged
Ethernet Data Transport for Radio-Astronomy

Systems
by

W.M. de Laat
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday December 20, 2022 at 13:30 PM.

Student number: 4587960
Project duration: February 15, 2022 – December 20, 2022
Thesis committee: Dr. Ir. Z. Al-Ars, TU Delft, supervisor

Dr. Ir. R. Venkatesha Prasad, TU Delft
Ir. S. van der Vlugt, Astron
Dr. Ir. J.J. Hoozemans, Voltron Data

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

The need to receive and process higher data rates in computer clusters is an ever-increasing trend. This also
applies to radio-astronomic systems, which have become more distributed over the past decades, increasing
data traffic between antennas and processing facilities. At the antenna, Field Programmable Gate Arrays (FP-
GAs) digitise the radio signals and often perform the first stage of signal processing at the antenna. Hereafter,
the data is sent from the FPGAs to computer clusters, where further processing is accomplished on CPUs and
GPUs. Currently used protocols for data transport between FPGAs and CPUs, such as UDP, are insufficiently
scalable for higher data rates since these heavily load the receiving CPU.

Remote Direct Memory Access (RDMA) over Converged Ethernet (RoCE) was developed to overcome the
disadvantages of the standard UDP and TCP protocols by using the CPU to orchestrate data transfers and not
engaging the CPU in the data path. With this, the data bypasses the CPU, lowering the CPU workload and
enabling throughput and latency improvements. However, the data transport methods for applications in
radio-telescopes must meet specific characteristics of this application area, such as public Ethernet routing,
high sustained data rates, real-time processing and implementable on FPGAs.

This work examines whether RoCE can reduce system load and increase throughput in sending and re-
ceiving antenna data. For this purpose, we characterise the data transport, derive the best RoCE configuration
for the intended application and asses whether RoCE can achieve the required performance. The protocol
analysis concluded that an unreliable connection transport service with RDMA WRITE with immediate data
is best suited for the application in radio telescope systems.

This thesis defines a methodology to examine the impact of RoCE settings and RoCEs scalability on a
representative cluster setup with CPU-CPU and CPU-GPU data transport. To conduct these tests, an appli-
cation is developed with abstractions such that it can be easily reused. Our RoCE application is available
on GitLab [29]. First, standard tooling demonstrated that RoCE achieves ∼2x higher goodput and 3x lower
CPU utilisation compared to UDP, indicating the possible scale of performance improvement of RoCE. Fur-
ther performance studies are accomplished through the custom-developed application to explore various
settings and network topologies (1-1, 1-N and N-1). For example, we found that using a shared receive queue
can reduce CPU utilisation by 50%, and the use of solicited events can yield reductions of up to 70%, with
no negative impact on resources and goodput. Direct memory access from the RoCE-enabled NIC to GPU
memory is also evaluated, for which comparable performance was achieved to standard main memory in an
N-1 setup. We found that RoCE can transport data from multiple transmitters over a total of 2000 QPs with a
16kiB message size to a single receiver at 90Gbps and a CPU load of 40% for one core in the receiver.

The feasibility and performance of transporting data between FPGA and RNIC are also investigated. The
implementation could not transport the data from the FPGA into the CPU memory because of an incorrect
checksum implementation. Nevertheless, we were able to confirm that it is possible to implement RoCE on
an FPGA for use in radio astronomical data transport.

3

Preface

I would like to take this opportunity to express my sincere gratitude to those who have helped me along my
journey. First and foremost, I thank Steven van der Vlugt for his supervision during this thesis. I greatly
appreciated his kindness, passion for technique and willingness to help me with all my questions. Further-
more, I am deeply grateful to Zaid Al-Ars for his openness, positivity and yet critical outlook through which
he supervised my project.

I would also like to thank ASTRON for this great opportunity. My sincere thanks to all ASTRON employees
who have shared their knowledge and expertise with me. In particular, I would like to thank John Romein
for his knowledge of radio telescope systems and high-performance computing systems. I would also like
to thank Chris Broekema (ASTRON) and Joost Hoozemans (Voltron Data) for their perspectives, suggestions
and critical questions during the project.

For the support with the FPGA implementation, I would like to express my profound gratitude to Dario
Korolija and Javier Moya from ETH Zurich Systems Group. Their technical expertise and help in troubleshoot-
ing the various challenges have been of great value.

Besides the people who helped with my graduation project and thesis, I also want to thank others who
made my studies a wonderful experience. The Electrotechnische Vereeniging (ETV) has been with me from
the very first day. The ETV brought me friends, study buddies, parties and career opportunities. A community
of amazing people who greatly enriched my college years. It has been an honour to be part of the 147th board.
for this, I will be forever grateful to the ETV and everyone who was a part of it. Furthermore, a shout-out to the
fellas of the squadpack. Sharing our ups and downs for over a decade now, with so many great and marvellous
moments, and many more to come!

Last but certainly not least, I want to thank my family for their unconditional love and support. Your
words of encouragement and unwavering belief in me have kept me going. I want to thank my parents for
all the opportunities I have had and their commitment. They encouraged me in pursuing my passion for
engineering, and their pride in their ambitious and inquisitive children contributed to making this succeed.
A solid foundation has been built for a future of even more opportunities.

W.M. de Laat
Delft, December 14, 2022

5

Contents

1 Introduction 1
1.1 Context . 2
1.2 Problem statement . 2
1.3 Thesis outline . 2

2 Background 5
2.1 Use cases . 5

2.1.1 Use case 1: LOFAR . 7
2.1.2 Use case 2: AARTFAAC . 8
2.1.3 Use case 3: ALMA . 8
2.1.4 Key differences and characteristics. 9

2.2 System requirements . 9
2.3 RDMA. 10
2.4 RoCE . 12

2.4.1 Architectural overview . 12
2.4.2 RoCE networking . 13
2.4.3 Converged Ethernet . 14
2.4.4 RoCE headers . 15
2.4.5 RoCE transport services . 16
2.4.6 RoCE operations . 17
2.4.7 Queue model . 19
2.4.8 Stack architecture . 20

2.5 RoCE applied to the use case . 21
2.6 Direct memory access to GPU memory . 22
2.7 FPGA . 22
2.8 Related work . 22

3 Methodology 25
3.1 DAS6 cluster . 26
3.2 Software . 26
3.3 Network topology and settings . 26
3.4 Measurement method . 27

3.4.1 CPU utilisation. 27
3.4.2 Goodput . 27
3.4.3 Application profiling . 28
3.4.4 Other measurements. 28

3.5 Measurements . 28
3.5.1 RDMA VS UDP . 28
3.5.2 One-to-one . 29
3.5.3 Scalability; many to one . 30
3.5.4 Scalability; one to many . 32

4 Implementation 33
4.1 Overview (or system context view) . 33
4.2 Container view . 34
4.3 Components view. 34

4.3.1 RDMA API . 34
4.3.2 Profiling tools . 35
4.3.3 Main program . 36

4.4 Measurement automation . 37

7

8 Contents

5 Results 39
5.1 Comparison of UDP and RoCE . 39
5.2 One-to-one setup . 40

5.2.1 Message size and memory page size . 40
5.2.2 Linked work requests and solicited events . 42
5.2.3 QP scaling and shared receive queue. 44
5.2.4 GPU memory via peerDirect and SRQ . 47
5.2.5 Conclusion. 48

5.3 Many-to-one setup . 49
5.3.1 Scalability using separate threads . 49
5.3.2 Shared receive queue thread . 51
5.3.3 GPU memory and shared receive queue . 52
5.3.4 Conclusion. 53

5.4 One-to-many setup . 54
5.4.1 Shared receive queue . 54
5.4.2 Conclusion. 55

6 FPGA implementation and results 57
6.1 Related FPGA implementations . 57
6.2 Coyote . 58
6.3 Methodology . 59

6.3.1 Experimental setup . 59
6.3.2 FPGA - FPGA validation . 59
6.3.3 FPGA - RNIC validation . 60

6.4 Results . 60
6.4.1 FPGA - FPGA validation . 60
6.4.2 FPGA - RNIC validation . 60

7 Conclusions and future work 63
7.1 Conclusions. 63

7.1.1 Chapter 2 . 63
7.1.2 Chapter 3 . 64
7.1.3 Chapter 4 . 64
7.1.4 Chapter 5 . 64
7.1.5 Chapter 6 . 65

7.2 Future work . 66

A DAS6 overview 67
A.1 Hardware overview . 67
A.2 Software overview. 68

B Additional results 69
B.1 One-to-one configuration. 69
B.2 One-to-one additional results . 70
B.3 Many-to-one configuration . 73
B.4 Many-to-one additional results . 73
B.5 One-to-many configuration. 76

C Coyote FPGA implementation and results 77
C.1 ETHZ-HACC infrastructure . 77
C.2 Coyote RoCE test terminal output. 78
C.3 TCPdump of Coyote and RNIC . 79

List of Figures

2.1 Radio telescope basic signal pipeline . 5
2.2 Map of LOFAR stations across Europe . 6
2.3 Top-level overview of the LOFAR system[9] . 7
2.4 ALMA antennae under the Milkyway, source: Sergio Otarola - ALMA [1] 8
2.5 Vanilla data transport via software stacks . 10
2.6 RDMA data transport with zero-copy . 10
2.7 Network layer overview of different RDMA protocols . 11
2.8 RoCE system context overview . 12
2.9 RoCE communication stack . 13
2.10 RoCEv2 Ethernet frame format . 14
2.11 Send sequence diagram . 18
2.12 Write sequence diagram . 18
2.13 Read sequence diagram . 18
2.14 Consumer queueing model . 19
2.15 RoCE stack architecture . 21

3.1 Overview of three test setups . 25
3.2 Illustration of buffers inside an Ethernet network . 26

4.1 C4 model legenda . 33
4.2 RoCE test system context overview . 33
4.3 Container view of a single RoCE test program . 34
4.4 Component view of the RDMA API container . 35
4.5 Component view of the profiling tools container . 35
4.6 Sequence diagram of the primary interaction between hosts and RNICs in the test system 36

5.1 Results of message size and page type test for the requester node (configurations provided in
Table 5.2) . 40

5.2 Results of one-to-one message size and page type test at responder node (configurations pro-
vided in Table 5.2) . 41

5.3 Results of one-to-one linked WR and SE test at responder node (configurations provided in Ta-
ble 5.3) . 42

5.4 Plot of the throughput and CPU utilisation, configuration 1 of the linked WR tests during one-
to-one setup . 43

5.5 CPU utilisation for different linked WR values in the requester (configurations provided in Table
5.3) . 43

5.6 Results of one-to-one QP scalability test at responder node without SRQ (configurations pro-
vided in Table 5.4) . 45

5.7 Results of one-to-one shared receive queue test at responder node (configurations provided in
Table 5.5 . 46

5.8 Results of one-to-one GPU tests at responder node (configurations provided in Table 5.7) 47
5.9 Time series plots of throughput and utilisation in one-to-one setup using GPU memory 48
5.10 Results of many-to-one without SRQ at responder node (configurations provided in Table 5.8) . 50
5.11 Time series plots of the throughput for two runs using configuration 6 in Table 5.8 51
5.12 Results of many-to-one SRQ at responder node (configurations provided in Table 5.8) 51
5.13 Results of many-to-one GPU SRQ at responder node (configurations provided in Table 5.9) . . . 53
5.14 Results of one-to-many SRQ at responder node (configurations provided in Table 5.10 54
5.15 Results of one-to-many SRQ at requester node (configurations provided in Table 5.10 56

9

10 List of Figures

6.1 Coyote high-level overview (Fig. 1, [28]) . 58
6.2 RoCEv2 FPGA architecture overview (Fig 5.4, [40]) . 59

B.1 Results of one-to-one linked WR and SE test at requester node (configurations provided in Table
5.3) . 70

B.2 Results of one-to-one QP scalability test at requester node without SRQ (configurations pro-
vided in Table 5.4) . 70

B.3 Results of one-to-one shared receive queue test at requester node (configurations provided in
Table 5.5 . 71

B.4 Results of one-to-one GPU tests at responder node (configurations provided in Table 5.7) 71
B.5 Time series plots of throughput and utilisation in one-to-one setup using GPU memory 72
B.6 Results of many-to-one scalability at requester node501 (configurations provided in Table 5.8) . 73
B.7 Time series plots of responder throughput in many-to-one setup configuration 3 (given in Table

5.8) . 74
B.8 Results of many-to-one SRQ at requester node501 (configurations provided in Table 5.8) 74
B.9 Results of many-to-one GPU SRQ at requester node501 (configurations provided in Table 5.9) . 75

C.1 ETH Zurich HACC infrastructure overview [45] . 77
C.2 ETH Zurich HACC networking overview [45] . 78
C.3 Terminal output of ETHz HACC U55C RDMA WRITE result . 78
C.4 TCP dump of RDMA WRITE result: FPGA ETHz HACC U55C RoCE packet (left side) and RNIC

RoCE packet (right side) . 79

List of Tables

2.1 RoCE CNP format . 15
2.2 RoCE operations support for specific transport services (+ is supported, - is not supported) . . . 18

3.1 Overview of relevant LOFAR system properties . 31

5.1 UDP and RoCE performance comparison . 39
5.2 Configurations during message size and page type tests (used in Figures 5.1 and 5.2) 40
5.3 Configurations during linked WR and solicited events tests (used in Figures 5.3 and 5.5) 42
5.4 Configurations during queue pair scaling test using one-to-one setup (used in Figure 5.6) 45
5.5 Configurations used queue pair scaling with SRQ test using one-to-one setup (used in Figure 5.7) 46
5.6 10% quantile results of the (aggregated) CPU utilisation, one-to-one QP scaling 46
5.7 Configurations used during GPU test in one-to-one setup (used in Figure 5.8) 47
5.8 Configurations during queue pair scaling test using many-to-one setup (used in Figures 5.10

and 5.12) . 50
5.9 Configurations during queue pair scaling test using many-to-one setup and GPU memory (used

in Figure 5.13) . 53
5.10 Configurations during queue pair scaling test using one-to-many setup (used in Figures 5.14

and 5.15) . 54

6.1 Coyote RoCE throughput and latency between two U55C FPGAs 60

A.1 Overview of available hardware in DAS6 at ASTRON . 67
A.2 Software used for the CPU setup . 68

B.1 RoCE settings one-to-one setup . 69
B.2 RoCE settings many-to-one setup . 73
B.3 RoCE settings one-to-many setup . 76

11

Acronyms

COTS Commercially of-the-shelf.

CPU Central Processing Unit.

CQ completion queue.

CQE completion queue element.

ECN Explicit Congestion Notification.

EMI Electromagnetic Interference.

ETS Enhanced Transmission Selection.

FPGA Field Programmable Gate Array.

GPU Graphics Processing Unit.

NIC Network Interface Card.

NUMA Non-uniform memory access.

PFC Priority Flow Control.

QP queue pair.

RDMA Remote Direct Memory Access.

RNIC RoCE enabled NIC.

RoCE RDMA over Converged Ethernet.

SRQ shared receive queue.

TC Traffic Class.

UDP User Datagram Protocol.

WAN Wide-Area Network.

WQE qork queue element.

WR work request.

13

1
Introduction

In the last century, many discoveries have been made in the universe through astronomy. Together with
optical telescopes, radio telescopes are an essential tool for astronomers. A radio telescope observes (radio)
waves outside of the visible spectrum. However, for even more groundbreaking discoveries, we need better
and better equipment to see more details of the universe and be able to look further into the universe than
ever before. To achieve high sensitivity and high resolution, one would need a very large (100 square meters
to several square kilometres) collecting area. These kinds of systems are very costly and impractical to build.
An alternative is to build phased array and inferometry systems consisting of many small antennae spread
out over a large area. The signals of these antennae are computationally combined into one large antenna.

Such a system is cost-effective and flexible but requires a powerful computational back-end. Data has to
be streamed in real-time from the antennae to a central location where the data is combined through filtering,
correlation and beamforming. Today’s computers are well suited to implement the computations for large
radio telescopes [9], the main bottleneck is currently in the (efficient) transport of data from the antennae
to a central location. The increasing data traffic is not only a desire and a problem in radio astronomy but
also in many other sectors such as particle physics [10] (Nikhef, CERN), other distributed sensor networks,
applications in edge computing [21], but also within data centres [11, 47] (e.g. moving workload between
Field Programmable Gate Arrays (FPGAs) [17] and Graphics Processing Units (GPUs) [18]).

Radio telescopes produce a lot of data since the radio signals originated from space are measured with
a large number of sensors (20-10000+), with sensors operating at very high sample rates (20 MHz up to 70
GHz) or a combination of both. Due to physical constraints and data arrangement, the processing cannot
occur at the telescopes themselves and requires a central facility where a supercomputer or computational
cluster performs the calculations. Some essential data transport characteristics in this kind of application are
the single direction in which the data is transported, from the antenna to the computation facility, and the
static network and routing topology. In addition, this data transport involves a long-term stable volume of
data since an astronomical survey can take days or weeks.

Current transport implementations are based on UDP / IP transmission over (partially public) Ethernet.
On Central Processing Unit (CPU) nodes, this is implemented in a software stack that covers; a driver, a Linux
kernel and user space. The communication data is copied multiple times between these layers to achieve sep-
aration and protection, consequently imposing a significant load on the CPU. For large Ethernet data rates,
this leads to significant inefficiency in CPU utilisation or might even become a bottleneck in the application.

Remote Direct Memory Access (RDMA) technology has been developed to overcome this problem by ob-
taining data from another host’s memory directly without unnecessary overheads due to data movement.
With this technology, data movement is handled either at a low level in the operating system (e.g. Linux
kernel) or directly in hardware in the network interconnect, thus drastically reducing the load on the CPU.

RDMA has already been used for many years in many supercomputers and other high-performance com-
puting facilities, either over Infiniband or Ethernet. However, this is mainly done over internal data centre
networks and not over public Ethernet. On top of that, in many radio telescope systems, FPGAs perform digi-
tisation of the radio signals and often the first stage of signal processing at the antenna and send the data to
the central processing facility. Therefore, a suitable data transport protocol must also be implementable on
an FPGA.

1

2 1. Introduction

In this work, we investigate and test if RDMA over Converged Ethernet (RoCE) is able to reduce system
load and increase throughput in sending and receiving antenna data for applications in radio telescopes.
Part of this work includes a representative test between CPUs and GPUs and between FPGAs and CPUs.

1.1. Context
ASTRON is the Netherlands Institute for Radio Astronomy and was founded in 1949. Their goal is to make
discoveries in radio astronomy happen. They design, manufacture and operate various radio telescopes and
systems needed to acquire astronomical data. In addition to their in-house activities, they also have close
contact with other institutions and companies involved in astronomy at (inter)national levels.

ASTRON contributes to many scientific goals, such as observation and the life course of galaxies (clusters)
and black holes. Furthermore, they also monitor the solar weather and the earth’s ionosphere.

Astronomy allows us to look far into space to see, for example, how other planets move and develop. This
allows researchers to estimate better what the life course of the Earth has been and will be.

In order to remain capable of groundbreaking research, they are constantly improving their instruments.
New instruments and technologies must meet several tight constraints. The physical location, for example,
provides limitations in size and energy budgets. At the same time, the environment imposes conditions on
the required robustness due to the impact of weather and wildlife. In addition, these are often one-off large
system designs expected to last for decades, making easy to carry out maintenance and reliability even more
important. These aspects must be carried out within tight budgets for development, production and mainte-
nance.

One of the most urgent challenges in radio telescope systems is to both increase the efficiency of data
movement as well as to enable higher bandwidth between the (FPGA) receivers and (GPU) back-ends. This
research into the operation of RoCE in radio astronomy was carried out in cooperation with ASTRON.

1.2. Problem statement
The main research question that this thesis aims to answer is as follows:

• Can we use RoCE to reduce system load and increase throughput in sending and receiving antenna data
for applications in radio-telescopes?

To answer this question, we will study the RoCE protocol and examine its deployment in radio telescope
systems. We do so by addressing the following sub-research questions:

1. What are the characteristics and requirements of applications for radio-telescopes?

2. Which configuration of RoCE is best for the intended application?

3. Can RoCE deliver the required performance and reliability at the scale of large distributed telescope
systems?

Research contributions
To answer the above-stated research questions, we implemented and tested several solutions. We identify
the data transport requirements for antennae data transport in radio telescope systems, as provided in Sec-
tion 2.1. A test system was developed to simulate the environment and requirements between server nodes.
The application is designed to scale to multiple server nodes in various topologies (one-to-one, many-to-one,
one-to-many). Python-based scripts are designed to leverage a cluster job manager, Slurm, to automate de-
sign space testing and analysis. More discussion on this contribution can be found in Chapter 4. Via these
contributions, we analysed the impact of various features offered by RoCE. Lastly, we tested and evaluated
the RoCE protocol between an FPGA and a network card to study the feasibility of the protocol on FPGAs.
This contribution is covered in Chapter 6.

1.3. Thesis outline
The remainder of the thesis is divided into five chapters:

Chapter 2 provides an introduction to the building blocks of a radio telescope processing pipeline and
three radio telescope systems that describe the need for an improved data transport method. The second part

1.3. Thesis outline 3

briefly introduces several RDMA technologies and a detailed discussion of the RoCE protocol. The chapter
concludes with a discussion of related studies on the performance and scalability of RoCE.

Chapter 3 first describes the hardware and software components available and used. Then different mea-
surement methods are discussed and chosen to measure the protocol adequately. Lastly, it details the dis-
tribution of the design space over different setups and configurations to reduce the number of tests without
compromising the necessary insights.

Chapter 4 contains a complete account of the design and implementation of the RoCE test system and ap-
plication. It starts with a global system overview, followed by a hierarchical approach to relevant application
layers in subsequent sections.

In Chapter 5, the measurements of all configurations are analysed. Starting with a short analysis between
UDP and RoCE followed by successive measurements using the following transmission topologies; one-to-
one connection, many-to-one and one-to-many. In which the knowledge of previous measurements is used
for more target-oriented subsequent measurements.

In Chapter 6, FPGA implementations of RDMA and RoCE protocols are discussed, after which the chosen
implementation is briefly explained. In addition, this chapter discusses the methodology and results of this
implementation, aiming to assess the RoCE transport protocol between an FPGA and a network card.

In Chapter 7, conclusions are drawn from the previous chapters. Furthermore, we present recommen-
dations for future research regarding the scalability of RoCE, the application of RoCE in radio astronomy
applications and the implementation of RoCE on an FPGA.

2
Background

This chapter gives background information on all relevant aspects and technologies related to the research in
this thesis. Firstly, we introduce a common radio telescope processing pipeline, and three different radio tele-
scope use cases relevant to our work in Section 2.1. We then address the data transport requirements for these
use cases in Section 2.2. Hereafter, we discuss remote direct memory access technology in Section 2.3. In suc-
ceeding Section 2.4 provides a detailed explanation of the RDMA over Converged Ethernet (RoCE) protocol.
In Section 2.5, we discuss which features of RoCE match the requirements for application in radio astronomy
systems. Finally, this chapter concludes with a section presenting related work on evaluating RoCE features
and scalability.

2.1. Use cases
First, we start with a discussion of the processing pipeline used in the different use cases, followed by three
specific use cases that use this pipeline.

Radio telescope processing pipeline
To look better and further into space, we need increasingly sophisticated equipment. A classic way of receiv-
ing radio signals from space is through a dish antenna. To perform better measurements, the antenna must
have a higher sensitivity. This can be achieved by increasing the size of the dish. However, there are physi-
cal and mechanical limits to the size of a dish. Another method to retrieve more detailed information from
the universe is to use the signals of multiple antennae together. Combining the information from antennae
is often very similar, but the implementation (techniques used) might differ per system. Therefore, only the
primary components will be explained to capture EM signals and transform them into figures of the universe.

Correlator or
Beamformer

Imager or
 other processing

Calibration

Analog to digital
and pre-filtering

Analog to digital
and pre-filtering

many more

Output product
to mass storage

Radio waves

Figure 2.1: Radio telescope basic signal pipeline

Figure 2.1 shows a basic and simplified overview of a radio telescope processing pipeline. First, the EM
signals emitted by sources in the universe must be captured by antennae, e.g. with dish antennae or dipole
antennae. These antennae convert the EM signals (from space) into an analogue electrical signal containing
both the signal of interest as well as Electromagnetic Interference (EMI) that primarily originates from earth.

5

6 2. Background

The analogue signal is converted into the digital domain, where most of the filtering and processing is done.
The conversion to the digital domain is done close to the antennae because the received signals of interest are
very weak and thus very sensitive to interference from outside sources. The first digital stage is the filtering
of the signal. This is not only to remove unnecessary signals but often also to divide the signal into different
frequency bands for further processing.

After that, the data can be processed using either correlation or beam forming, and sometimes a com-
bination of both. Beamforming creates one or more higher quality, thus better signal-to-noise ratio, signals.
This is achieved by compensating the antenna signals for the phase shift between antennae where after they
can be combined. This allows astronomers to look further into the universe at the cost of spatial resolution.
The correlation method (also known as interferometry) applies cross-correlation to the antennae data. The
result is a higher spatial resolution at the expense of sensitivity compared to beamforming.

Both processes deliver different products, but they have in common that the operations are performed on
aggregated real-time streamed data. This real-time data originates from antennae in the field where the data
should be as raw (un-processed) as possible. As a result, this process needs a lot of resources and high I/O
bandwidth since it receives vast amounts of data from the antennae. Another critical stage in radio telescope
processing is calibration. The environment around the antennae continuously changes, and so does the
signal path of the EM waves from the universe. Hence the system needs to be tuned to gain optimal results.

The last stage is the most different for each survey. Here, much research-specific processing takes place;
consequently, the end products will also be very different. Nevertheless, most output products are either an
image or spectral information of the universe.

To further characterise radio telescopes, we will briefly describe three use cases at the extremes of radio
telescopes here and in the following three subsections in more detail. The first use case is LOFAR, a small-
band telescope system with many antennae sampled at a relatively low rate. The system contains many
antennae grouped in stations. The throughput of individual antennae is relatively low, but the combined
throughput of all antennae would be huge. Therefore the antennae data is already partially beamformed and
filtered at station granularity, yet the resulting throughput of the system is still large. These antennae and
field stations are distributed over a large area in Europe; therefore, some data traffic is transported over long
distances over public Ethernet.

The second use case is AARTFAAC; this project uses a sub-set of LOFAR (576 antennae) and works directly
on the raw antenna data instead of station data. The combined data rate is very large, and the radio telescope
uses a private network.

The third and last use case is ALMA, which has a small number of wideband antennae (72). Each antenna
generates a tremendous data rate from the receivers to the processing facility, which is transported over a
private network. So, in this case, a small number of nodes will provide huge data throughput.

Rozhen

Birr

Chilbolton

Nançay Unterweilenbach

Jülich
E�elsberg

Potsdam

Tautenburg

Irbene

Bałdy

Borówiec

Łazy

Onsala

Norderstedt

Medicina

Dutch stations

Figure 2.2: Map of LOFAR stations across Europe

2.1. Use cases 7

2.1.1. Use case 1: LOFAR
ASTRON’s LOFAR1 (Low-Frequency Array) is currently the largest low-frequency radio telescope worldwide.
LOFAR is a multipurpose sensor network with an innovative computer and network infrastructure that can
handle large data volumes. LOFAR consists of many receiver stations spread out over the Netherlands and
Europe, as shown in Figure 2.2. A top-level view of the LOFAR system is shown in Figure 2.3. These sta-
tions stream high volumes of data over private networks and public Wide-Area Networks (WANs) to a central
data processor node (COBALT) in the Netherlands [9]. The LOFAR radio telescope enables astronomers to
research, for example, the creation of the first stars and galaxies and cosmic magnetic structures [15].

Each station cabinet receives data from many antennae, which is filtered and pre-processed to the re-
quirements set for the survey. In addition, the data is grouped by sub-frequency bands inside the station
cabinets. After which, each frequency band is sent to the central correlator. The data is also pre-processed
(filtered and beamformed) in the station cabinets due to the constrained bandwidth to the central compute
nodes. Because the data is beamformed on a station level, only a small portion of the sky is observed. The
digitisation of the antennae data and processing at the station level are both implemented in FPGAs. These
FPGAs are configured once per survey, and a single survey can run for a couple of hours up to several days.
The final step for the FPGAs in the station cabinet is to send the data over the Ethernet to the processor nodes
using User Datagram Protocol (UDP) packets.

In the central correlator each processor node converts and stores the received Ethernet data through a
software network stack. Because of this, the data gets copied between kernel space and user space memory
several times before being processed on CPUs and GPUs.

It is essential to highlight that several characteristics make this system so unique. First of all, the data
rate towards the central processor. In total, there are 126 FPGAs in station cabinets spread across western
Europe that can each transmit 3Gb/s divided over a maximum of 488 sub-bands. This results in an aggregated
bandwidth at the central processing node of almost 400Gb/s. The data is grouped and spread out over 24
CPU-GPU nodes at a subband granularity (each node processes several subbands). Besides, processing a
single subband requires the subband data of all antennae, resulting in numerous connections between end
nodes. Secondly, the data is partially transmitted over the public internet. As a result, the optimisations
possible in a private, isolated network can not be done in this system.

Lastly, the data generated by the antennae and filtered by the FPGAs is so large that it is impossible to store
and re-process the raw data. Therefore, it is impossible to retransmit data if something goes wrong during
transmission. Even so, small amounts of missing data do not directly impact an observation’s result. However,
it is required to identify missing data so it can be accounted for in the processing pipeline. In addition, the
incoming data on the central processor can only be buffered for a short time window. Consequently, the data
has to be passed on to the GPUs for further processing as soon as possible.

To summarise, one of the main requirements for such a use case is the many-to-many single-direction
data transmission. An FPGA must be able to transmit to various nodes (distribution of subbands over all
nodes) at lower data rates. At the same time, a Network Interface Card (NIC) must be able to receive data
from many FPGAs (126+, needs the data from all antennae per sample in a subband) that all transmit at low
rates but combined, leading to a high data rate. Another requirement is that the data transport over public
Ethernet must be possible, and it must be clear whether and which data has been lost during transport. A
currently ongoing upgrade of LOFAR will increase aggregated data rates by 2-4x.

Figure 2.3: Top-level overview of the LOFAR system[9]

1https://www.astron.nl/telescopes/lofar

https://www.astron.nl/telescopes/lofar

8 2. Background

2.1.2. Use case 2: AARTFAAC
The AARTFAAC (Amsterdam-ASTRON Radio Transients Facility And Analysis Center) system is a real-time
transient detector. It can quickly create images of the visible sky with a spatial resolution of 10 arcseconds.
Such an image is created every second to discover transients in the universe.

Normally astronomers point their (radio) telescopes in the direction they want to observe. However, fo-
cusing on a single place is not convenient if one is looking for short events or transient objects. It offers a huge
advantage to look everywhere simultaneously. The AARTFAAC radio system can scan the visible universe ev-
ery second, looking for anomalies. As soon as something abnormal is detected, other radio astronomical
instruments can take follow-up measurements in that direction with higher precision. In addition, this sys-
tem can make a (relatively low resolution) image of the visible universe every second. These transient events
provide insights into various astrophysical objects, such as emission mechanisms of jet sources and proper-
ties of intervening medium and pulsars [13].

AARTFAAC uses the raw (non-beamformed) data from 567 low-band antennae located at the core of LO-
FAR. These antennae are omnidirectional, meaning they can survey the sky without physically moving the
antennae. Both LOFAR and AARTFAAC work in parallel and independently since the data is replicated af-
ter the digitiser in the station cabinets and sent to the AARTFAAC correlator. The system uses only a few
subbands since the aggregated raw data rate of each subband of a low-band antenna would be too large to
transport. The raw data is gathered in a central field station and sent over Ethernet to the processing facility
located in Amsterdam. The current system is limited to an aggregated data rate of 100 Gbit/s out of a poten-
tial data volume of 1.5 Tbit/s. The future LOFAR system will expose all 2304 antennae of the LOFAR core and
generate, when used at its full potential, 6 Tbit/s of aggregated raw data.

In summary, the AARTFAAC system leverages many antennae located at the core of LOFAR. The system
uses a few subbands of the low-band antennae due to throughput limitations caused by raw antennae data
transmission. Using RoCE technology to improve the throughput at the receiver side might enable to use
more frequency bands and or more antennae in a future update of the system.

2.1.3. Use case 3: ALMA
The Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope is an array of up to 72 antennae.
The telescope is located in the Atacama Desert in Chili at 5000 meters above sea level. It creates the perfect
conditions for observations in the GHz domain since it suffers from less pollution due to water vapour (dry
air), low radio interference and scant clouds. Due to incredible engineering astronomers are now able to
extensively research matters around black holes that are millions of light years away from us. In addition,
the radio telescope also allows scientists to research the chemical composition of gas clouds inside various
galaxies and around various planets [7].

Figure 2.4: ALMA antennae under the Milkyway, source: Sergio Otarola - ALMA [1]

The ALMA telescope array consists of a mix of twelve-meter diameter dish antennae and seven-meter
diameter dishes spread across 15 square kilometres. Each antenna is currently equipped with eight receiver
bands which will be increased to 10 in the coming years. When the system is fully operational, the antennae
can detect signals from 950 GHz down to 35 GHz, corresponding to wavelengths of 0.32 mm to 8.6 mm, re-
spectively. The system can be used in different configurations and will at a maximum use 72 dishes in a future

2.2. System requirements 9

upgrade. The ALMA telescope has a much wider bandwidth and operates at much higher sampling frequen-
cies than LOFAR. The larger frequency bandwidth and higher frequency require higher sampling rates, which
drastically increases the data rate per antenna. In the next-generation ALMA system, a single dish is able to
generate a data stream of up to 1.2 Tbit/s per receiver, with two receivers per dish.2

The analogue signal of each receiver (called the front end) is converted into a digital signal in the so-called
back end located in each antenna. The digital signal is sent over optic fibres towards the correlator relatively
close by. The correlator combines these signals and generates astronomical data sent to the operations sup-
port facility. The operations support facility houses several compute clusters that run multiple processing
pipelines to compute relevant astronomical products.

2.1.4. Key differences and characteristics
First, one of the key differences between these systems is the network topology. LOFAR has many field sta-
tions transmitting at low rates (in the future up to 10Gb/s) towards several compute nodes. However, this is
entirely different for ALMA, which transmits data at a very high data rate (in the future up to 2 times 1.2Tbit/s)
from relatively a few antennae to a few nodes. Thus, a generic implementation must be capable of high trans-
mission rates and receiving and sending with a large number of connections. This is different for AARTFAAC;
this system’s data rates and connections depend heavily on the technical capacities. In AARTFAAC, the raw
antennae data needs to be transported, which increases the data rate per connection. On the other hand,
AARTFAAC uses fewer subbands and antennae, reducing the overall data volume.

Generally speaking, the data rate per antenna in AARTFAAC is lower than ALMA but higher than LOFAR.
In contrast to the number of connections which is higher than ALMA and lower than LOFAR. In conclusion,
ALMA and LOFAR are the extremes regarding the throughput and the number of connections, respectively.

Besides, the network medium over which the data transport takes place differs. Both AARTFAAC and
ALMA have the advantage that the transport takes place over private networks. This is not the case for a large
part of the LOFAR system since it leverages public Ethernet.

Lastly, These systems must operate in real-time with a constant high data rate. As a result, it is impossible
to store unprocessed data for an extended period; even for several seconds might be infeasible.

2.2. System requirements
We have derived the following common requirements from the above-listed use cases. These requirements
will be listed below, as well as several non-functional requirements discussed during multiple interviews with
engineers and researchers who work on enhancements of radio astronomy systems.

Functional requirements
These requirements describe the system’s functioning (e.g., what the system should do). These must be mea-
surable and ultimately can be answered with a clear yes or no.

R1 The setup must have an FPGA that sends packets and a NIC to receive packets.

R2 The system must be capable of transmission over a public Ethernet network.

R3 The protocol and devices must allow different network topologies such as 1-to-1, 1-to-N and N-to-N
with at least 200 devices on either side.

R4 Must achieve a goodput of at least 90Gbit/sec, while multiple sender nodes transmit at lower rates
towards a receiver node capable of 100Gbit/sec.

R5 The data must be transmitted via a connection without retransmissions because the system cannot
re-transmit data.

R6 The system must be able to flag missing data such that this information can be used further down the
processing pipeline.

2https://www.almaobservatory.org/

https://www.almaobservatory.org/

10 2. Background

Non-functional requirements
These non-functional requirements are requirements that do not define the functional aspects of the sys-
tem. For example, performance and costs-related requirements do not describe the system’s functioning but
impact the system’s implementation. On top of that, they include requirements that can be answered sub-
jectively and are, therefore, not measurable. Lastly, non-functional requirements might be less strict because
some are not mandatory to meet to accept the solution. Our data transport solution for application in radio
astronomy should meet the following non-functional requirements:

S1 Must be created with hardware and software Commercially of-the-shelf (COTS) products to reduce de-
velopment complexity and costs.

S2 The solution must be future-proof, meaning that it is scalable to even higher speeds and more end-
points. Allowing upscaling of the system without large changes. (e.g. better hardware should increase
performance without (large)changes to the code base)

S3 The solution should make use of mature technologies that can be expected to continue to be supported
for a long time (with possibly minor adjustments).

S4 Open-source software, firmware and hardware are preferred to proprietary whenever possible.

S5 The RoCE protocol should be implemented in an abstract and reusable manner.

2.3. RDMA
In recent decades, more computing resources have been coupled together to tackle more extensive and di-
verse tasks. This has led to increased data sharing between compute nodes and the need for better intercon-
nects between them. Improvements have been made in two technical fields. Firstly, new physical intercon-
nects have been developed by various companies such as Infiniband, Slingshot, Intel Omni-path, and many
other vendor-specific interconnects. The second improvement is the development of new protocols for eas-
ier and faster remote memory and storage access. One of the most known protocols to improve efficiency
and throughput is the Remote Direct Memory Access protocol.

Remote Direct Memory Access allows one host to access the memory of another host or device not in the
same physical system or chassis. Figure 2.5 shows the conventional way (via a TCP or UDP software stack)
in which host 1 tries to retrieve data from the memory of host 2. Both host kernels are involved in the data
transfer of each byte as it needs to copy the data from the user to the kernel space. The transfer flow for RDMA
data transfers is shown in Figure 2.6. Both host kernels are only involved during the setup phase in which they
establish a communication channel and transfer requests are communicated without context switches. As a
result, the kernel involvement in the data transfer is drastically reduced and, therefore, the system load is also
reduced.

User
space

User
space

NIC

OS
(kernel)

OS
(kernel)

NIC

Data path Control path

Host 1 Host 2

Switch

Figure 2.5: Vanilla data transport via software stacks

User
space

User
space

RDMA
NIC

OS
(kernel)

OS
(kernel)

RDMA
NIC

Host 1 Host 2

Data path Control path

Switch

Figure 2.6: RDMA data transport with zero-copy

2.3. RDMA 11

Infiniband, iWarp and RoCE
This section discusses the differences in the InfiniBand (IB), iWarp and RoCE RDMA protocols. Figure 2.7
gives a high-level overview of the network layering of these RDMA implementations. These network layers
can give insight into the complexities, limitations and possibilities of different RDMA implementations.

One might notice that each RDMA protocol uses the Verbs API in the application layer. The verb layer is
designed by the Open Fabrics Alliance and is also called Open Fabrics Enterprise Distribution (OFED) verbs
API. OFED is open-source software for RDMA and kernel bypass applications developed for Linux systems [3].

UDP is a widely used transport layer protocol to transport data in an unreliable connectionless manner
over commodity Ethernet. Hence, the protocol does not require prior communication to set up the commu-
nication channel and does not require specialised internet hardware. The UDP network stack is shown in the
outer left column in Figure 2.7. The figure shows the offloading of the IP layer as it is executed in hardware;
this reflects the partial UDP/IP offloading possibilities, such as checksum offloading and fragmentation of-
floading. Despite this, there is still much to handle in the Linux network stack. This burdens the CPU with a
lot of computational work and data shuffling but also inefficiencies arise at high data rates because of many
interrupts generated by the network card.

InfiniBand has been designed as a computer cluster interconnect by the InfiniBand Trade Association
(IBTA) to achieve high bandwidths and low latencies. The InfiniBand network stack uses InfiniBand-specific
protocols in each layer below the Verbs layer. The InfiniBand RDMA implementation uses InfiniBand fabric,
which reduces header overheads compared to Ethernet fabric. Besides, InfiniBand fabrics and protocols are
optimised for low latencies and short distances compared to Ethernet fabrics [6]. Unfortunately, InfiniBand
fabrics are more expensive and make use of proprietary headers and fabrics. This makes it difficult, or even
impossible, to implement on FPGAs compared to the open-source available Ethernet protocols.

RoCEv2 uses the well-known and commonly used Ethernet link layer and the IP and UDP protocols.
Which differs from RoCEv1 as RoCEv1 does not use IP routing. We do not discuss RoCEv1 in greater detail
due to this major disadvantage over RoCEv2. In the rest of this thesis, we refer to RoCEv2 when we mention
RoCE. RoCEv2 allows network designers to transport the data traffic through commodity InfiniBand cables
and switches. This is a massive advantage over InfiniBand since it does not require a particular cable type and
switches. Though, to fully benefit from RoCE, one should use network adapters that support RoCE in hard-
ware. Otherwise, one is limited to softRoCE, which leverages the CPU cores instead of the network card [31].
Besides, RoCEv1 is not routable across InfiniBand subnets since it does not use the Internet Protocol layer.

RoCE uses many mechanisms of Infiniband in the network and application layer, as shown in Figure Fig-
ure 2.7. As a result, several higher-level APIs have almost identical capabilities for RoCE and InfiniBand. The
IP and UDP mechanisms contain extra services to improve the networking and routing of packets. RoCE
does support these extra services or protocols, such as VLANs and QoS, to improve security and routabil-
ity. UDP, unfortunately, does not ensure a reliable transfer which might cause issues in various application
domains. Luckily this can be taken care of by the higher-level IB transport protocol implementation, which
will be discussed in Section 2.4. Regarding the network stack, the IB transport protocol adds headers that
contain information about the RDMA operation and connection. Hence the maximum theoretical goodput
is reduced compared to native UDP.

Application

RoCEv2Traditional (UDP) InfiniBand

Application Application

Upper layer protocol Verbs

IB transport protocol

Verbs

IB transport protocol

IB network

IB Link & IB
Physical

UDP

IP

Ethernet mac &
physical

UDP

IP

Ethernet mac &
physical

Executed in
hardware

Executed in
software

Application

Link &
Physical

Network

Transport

iWarp

Application

Verbs

IP

Ethernet mac &
Physical

iWarp protocol
(RDMAP, DDP MPA)

TCP or SCTP

Figure 2.7: Network layer overview of different RDMA protocols

12 2. Background

iWARP uses several conventional lower-level network protocols such as the Ethernet link layer and IP and
TCP. The first difference with RoCE is that iWarp uses TCP instead of UDP. The TCP protocol ensures a reliable
connection, so this does not need to be taken care of at a higher level, as is done in RoCE. The core of iWARP
consists of three protocols, the Direct Data Placement (DDP) protocol, RDMAP and marker PDU aligned
(MPA) protocol. The DDP protocol handles the data interaction with the memory to allow kernel bypass data
transmission. This protocol is not immediately useful for RDMA since it does not define a wire protocol or
operation services such as read and write operations. iWARP uses RDMAP to implement read-and-write ser-
vices and a wire protocol. The RDMAP uses the DDP protocol to enable direct memory access mechanisms.
Lastly, the Marker PDU Aligned Framing (MPA) protocol is needed as an “adaption layer” between the TCP
and DDP layers.

For this thesis, we selected RoCEv2 because the implementation should be Ethernet-based and not InfiniBand-
based, as the data transport has to be possible over public Ethernet. We select RoCE instead of iWARP because
iWARP will be more complex to programme and use with FPGAs because of the TCP connection and less pub-
licly available documentation. Moreover, there are already FPGA implementations available for RoCE, which
are discussed in Section 6.1.

2.4. RoCE
2.4.1. Architectural overview

RNIC1 RNIC2 RNIC3

app1 app2 app3

server 1

RNIC1 RNIC2

app1 app2

se
rv

er
 2

RNIC1 RNIC2 RNIC3

app1 app2 app3

server X

Figure 2.8: RoCE system context overview

This section briefly describes the key components related to RoCE at a high level. To send data via RoCE,
one needs at least two servers equipped with RoCE support (e.g. via full software implementation, a RoCE en-
abled NIC (RNIC) or an FPGA with RoCE support), as depicted in Figure 2.8. The figure illustrates the scalabil-
ity of the technology as multiple programs could use multiple RNICs. RoCE is built upon several conventional
networking protocols to enable Ethernet packet transports. We discuss the usage of these protocols, and the
functionalities they provide in Subsection 2.4.2. Subsection 2.4.3 details the notion of converged Ethernet
and the networking protocols to create it. In addition, the RoCE technology requires user-space libraries and
kernel drivers to communicate between CPUs, NICs and GPUs; these are described in Subsection 2.4.8.

A fundamental aspect of the RoCE protocol is the queue model, which forms the foundation for the com-
munication method of data transport requests between the host program and RNIC (also referred to as chan-
nel adapter (CA) by IB), as depicted in Figure 2.9. The queue model defines two queues in which the host
program can post Work requests (WRs), a send queue and a receive queue. These queues can only be used
to communicate from the host program to the CA. Each work request placed into these queues represents
a single data transfer instruction. Some RoCE operations require both servers to post work requests in the
correct queue, while others require a single WR at one end node, referred to as double-sided and single-sided
operations. The CA has a single queue type to communicate to the host program, called completion queue
(CQ). The reusability of queues, the impact of queues on system resources and more details related to the
queue model is provided in Subsection 2.4.7.

To establish a RoCE connection between two servers, one must create a queue pair (QP) in each CA. These
QPs are connected via a transport service, which defines the degree of reliability and how the QP transfers
data. A transport service can either be a connection-oriented or a datagram service. The datagram services al-
low a single QP to send and receive messages to/from multiple QPs. On the other hand, connection-oriented
services can only transmit data to a single remote QP. In addition, the transport service can either be reliable
or unreliable. Reliable service guarantees the delivery of each message, or else it will create an error message.
These transport services are discussed in greater detail in Subsection 2.4.5.

2.4. RoCE 13

Application

completion

Verbs layer
WR

WQE

CQE

N
IC

 /
ch

an
ne

l a
da

pt
er

Transport
and lower layers

QP

Send Receive

WC

Physical port
Packet

Application

completion

Verbs layer
WR

WQE

CQE

Transport
and lower layers

QP

Send Receive

WC

Physical port
Packet

Switch

N
IC

 /
ch

an
ne

l a
da

pt
er

Figure 2.9: RoCE communication stack

A QP contains much more information than just the transport service. During the creation of a QP, one
must also, for example, select the allowed operations, QoS and retry counters. Moreover, a QP is associated
with a single protection domain (PD) that adds additional abstraction layer to allow multiple QPs to access
a group of memory regions (MRs). In addition, each protection domain also has its own key which adds an
extra security step. A registered memory region belongs to one or more PD and contains the virtual address
of a memory block, the size of the block and the access rights such as read and write permissions. We will not
cover some other internal RoCE (or ibVerbs) structures in this report as they do not contain (relevant) settings
for our research.

2.4.2. RoCE networking
This section covers the networking protocols and packet formats related to RoCEv2. An overview of the net-
work headers used by RoCE is shown in Figure 2.10. We discuss each header and its protocols, whereafter we
explain how one establishes a converged Ethernet network.

Ethernet Protocol
The Ethernet protocol is the lowest protocol layer used in Ethernet traffic, located in the link layer. This
protocol defines Ethernet frames and the Ethernet header. A physical Ethernet connection can route such
Ethernet frames that include the Ethernet header. The header contains, amongst others, the source and
destination address and indicates that the following header is the IP header.

Internet Protocol
The Internet Protocol (IP) is a network layer protocol consisting of two major versions, IPv4 and IPv6, both
supported by RoCE. IPv4 is the older, more widely used protocol compared to IPv6. The most significant im-
provement of IPv6 is the increased address range which will become a problem for IPv4 in the future. The
IP protocol enables the fragmentation of a larger message or packet into multiple Ethernet frames. More-
over, the IP header enables network routing and several services such as congestion protocols and priority
classification, which will be discussed later on.

User Datagram Protocol
This protocol resides in the transport layer of the OSI model. The protocol is built upon the Internet Protocol
and uses a connectionless communication model. The UDP header contains the source and destination ports
to distinguish data streams originating from the same sources. Some of these destination ports are reserved
for upper-level protocols. The reservation of those destination ports is regulated by IANA 3. IANA assigned
destination port 4791 to the RoCE protocol, thus each UDP packet containing destination port 4791 must
contain an Infiniband Base Transport Header (IB BTH).

3https://www.iana.org/

https://www.iana.org/

14 2. Background

Eth L2
header

IP
Header

UDP
header

IB
BTH RoCE payload ICRC FCSExtra IB

headers

L3 Packet Maximum Transmission Unit
22 bytes 20 bytes 8 bytes 12 bytes M bytes N bytes 4 bytes 4 bytes

Figure 2.10: RoCEv2 Ethernet frame format

RoCE Protocol headers
The final headers in the Ethernet package are specific to RoCE. These headers are taken from the standard In-
finiBand stack. The Base Transport Header (BTH) will always be appended, and depending on the operation
and transport service, additional RoCE headers will follow. Then finally, the actual payload can be added and
terminated with an invariant cyclic redundancy check (ICRC). This ICRC is specific to RoCE and increases
the protection of bit corruption in the payload, compared to the Ethernet protocol’s Frame Check Sequence
(FCS). The BTH and the other RoCE headers are addressed in more detail in section Subsection 2.4.4.

2.4.3. Converged Ethernet
Converged Ethernet (CE) is a characterisation of an Ethernet network where different application networks
are deployed in a single lossless network, often referred to as Data Centre Bridging (DCB). This section dis-
cusses protocols that can be used to create Converged Ethernet.

Previously, data centres deployed separate networks for database storage, high-speed interconnects and
external connections, which resulted in many cables and hardware. By merging different data streams, the
space for hardware and cost is drastically reduced, though it increases the interference between the streams
and the probability of congestion in the network. As a result, it becomes essential to differentiate between
application-specific data streams since the requirements may differ. For example, one would like to prioritise
outgoing data from run-time applications to take precedence over data towards external (backup) databases.
A Converged Ethernet network is one in which priority and congestion management mechanisms are applied
to mitigate interference and congestion. These mechanisms are implemented via additional protocols inside
the networking layers.

Priority mechanism might be achieved via the Priority Flow Control (PFC) protocol, allowing users to map
their packets to a priority class. These priorities can be linked to resources such as specific ingress buffers. As a
result, transmission is paused independently for each priority when buffers are about to overflow. Allocating
buffers to priorities can result in lower-priority data traffic never being sent if there are too many higher-
priority packets. The Enhanced Transmission Selection (ETS) standard prevents such transmission stalls.
ETS can limit the egress bandwidth per traffic class, allowing lower priority packets at all times to be sent (at
a lower speed).

Lastly, one needs to control congestion in networks to reduce losses. Although previous standards reduce
the likelihood of congestion, they will not intervene when congestion occurs or completely pause the trans-
mission. A protocol that proactively reduces end-to-end congestion is the Explicit Congestion Notification
(ECN) protocol. ECN is an extension of the IP protocol consisting of just 2 bits in the IP header. These bits
indicate if ECN is supported and if congestion has occurred in the network data path. The ECN protocol
marks packets with congestion when the packet buffer utilisation exceeds the ECN marking threshold. The
effectiveness of ECN also depends on the support of ECN marking in the routers and switches. A network
administrator is supposed to set these thresholds themselves, which is difficult to optimise in multi-purpose
high-throughput and low-latency networks.

The RoCE specification provides RoCE congestion management (RCM) to avoid congestion hot spots and
optimise throughput. RCM implements a feedback mechanism for the ECN-marked packets received by the
destination node back to the source node. This allows the source node to receive congestion notifications
and decrease their injection rates on a per QP basis to decrease queueing delays and congestion effects. This
feedback is sent to the source node via congestion notification packets (CNP), the composition of these pack-
ages is shown in Table 2.1. The interval and amount of CNP are not defined by the RoCE specification; thus
the RCM does not need to send a CNP per received ECN marking.

The effects of congestion are getting worse with increasing network speeds in data centre networks. Exist-

2.4. RoCE 15

Table 2.1: RoCE CNP format

Ethernet header
IPv4/IPv6 header

UDP header
BTH

DestQP set to QPN for which the RoCEv2 CNP is generated
Opcode set to b’10000001
PSN set to 0
SE set to 0
M set to 0
P_Key set to the same value as in the BTH of the ECN packet marked
(16 bytes) - Reserved. MUST be set to 0 by sender. Ignored by receiver

ICRC
FCS

ing RDMA congestion control (CC) schemes have limitations in responsiveness and unawareness of micro-
bursts due to long end-to-end control loops. Besides, it requires explicit settings in all network adapters and
switches to benefit from the CC mechanism fully. These limitations drive the research to improve congestion
control [19, 34, 49]. [32] discusses these limitations in greater detail and proposes a high-precision conges-
tion control (HPCC) mechanism focusing on RDMA congestion, leveraging precise load information from
in-network telemetry. Proactive and accurate congestion control (PACC) via P4 switches is proposed in [52].
PACC uses a PI controller technique to calculate the congestion based on previous and current information
and signals the congestion via existing DCQCN schemes. RoCC [46] calculates the congestion and fair rate of
flows inside switches and signals congestion via custom feedback messages. HPCC, PACC and RoCC require
adjustment inside the switch, referred to as switch-driven solutions. Switch adjustments are not necessary
for TIMELY [35], based on round trip time measurements between end nodes. The ease of implementation
comes at the cost of increased latency and less precise congestion information compared to the other pro-
posed solutions.

Last year, NVIDIA launched their Zero Touch RoCE - round trip time congestion control (ZTR-RTTCC)
technology [2], enabling congestion control between supported NICs. Their technology does not require
extra configuration on switches and does not require additional parameter selection or hardware support
on NICs and switches. This makes it very easy to use, though it reduces the maximum throughput (due to
extra protocol packets). In addition, it is difficult to implement this on an FPGA and is likely to be relatively
resource-consuming as it requires a lot of state-keeping.

It must be noted that RoCE might be used over non-converged Ethernet networks. However, this increases
the likelihood of buffer overflows and congestion, which are no longer detected and resolved by the Ethernet
protocols. Consequently, packets will be dropped or delivered out of order causing retransmissions or even
message drops, inducing degradation in goodput. In the event of congestion problems between CPUs, we
will use PFC, ECN and ETS since these are commonly used protocols.

2.4.4. RoCE headers
Upper-level protocols need a method to communicate their settings and variables to remote nodes. Ethernet
protocols use headers to share such settings and parameters between network cards and routers. RoCE adds
extra headers to communicate the transport protocol, RDMA operation and other related information. This
section describes the headers used for reliable and unreliable connection transport services (BTH, RETH,
AETH).

Each ethernet packet created by the RoCE protocol must contain the Base Transport Header (BTH), irre-
spective of the transport service or opCode. This header has 12 bytes describing, for example, the OpCode,
destination QP number and packet sequence number. The packet sequence number (PSN) is used to check if
packets arrive in order and to detect duplicated or missing packets. The OpCode defines, besides the (RDMA)
operation type, the transmission service and the remaining headers.

A single RoCE operation or message might require multiple Ethernet packets to complete the data trans-
port. The RDMA Extended Transport Header (RETH) together with the OpCode indicate the start of a new
message. Receiving a RETH packet defines a new RDMA operation for the QP defined in the BTH. If the pre-

16 2. Background

vious operation has not yet been completed, it will not be completed; however, the consequences depend on
the transport service. The RETH contains the virtual address, the remote key and the memory size in bytes of
the requested operation.

The key to reliable connections is the information on whether the destination received the packets cor-
rectly. RoCE sends ethernet packets containing the Acknowledge Extended Transport Headers (AETH) as a re-
ply in case of reliable transmission. The header contains two fields, the syndrome and the message sequence
number, represented by 1 and 3 bytes, respectively. The syndrome indicates if the packet is acknowledged
or not and might contain the Limit Sequence Number (LSN) if the packet is acknowledged. RoCE also pro-
vides an end-to-end message level flow control mechanism to communicate the available resources from the
receiver during run-time, which we will not discuss.

RoCE supports the addition of 4 bytes of Immediate data, which is not written into the memory location
defined by the operation. The data is therefore separated from the payload and stored inside the Immediate
Extended Transport Header (ImmDt), added in the last Ethernet packet of the message. The receiving end-
node copies this data into the consumed work request, which is transformed into a work completion event.
Thus the immediate data is delivered to the user program via the work completion instead of immediately
written into memory.

RoCE theoretical throughput efficiency
The headers mentioned above reduce the maximum theoretical goodput of vanilla UDP data transport. Be-
sides, RoCE restricts the maximum data payload size per Ethernet packet via the so-called path maximum
transmission units (PMTUs). Depending on hardware support, the PMTU can be set to 256B, 512B, 1024B,
2048B, and 4096B. A larger PMTU results in higher efficiency since more data is transmitted per packet. The
following example considers a WRITE with Immediate operation with a message of 4096 Bytes and a RoCE
PMTU of 4096 B. The standard required headers, namely, the Ethernet, IP, UDP, BTH and ICRC, require 14, 20,
8, 12 and 4 Bytes, respectively. A single Ethernet packet is necessary to fulfil the operation since the payload
is equal to the PMTU. So the RETH and Immediate data header will be added in the same Ethernet frame;
these contain 16 and 4 bytes, respectively. The theoretical Ethernet efficiency can be calculated according
to Equation 2.1 and results in 98.1% efficiency for this example. Hence a 100Gb Ethernet link can achieve a
maximum goodput of 98.1 Gigabits per second (Gbps).

efficiency 4kB= P MTU /(P MTU +header s)∗100%

= 4096/(4096+78)∗100%

= 98.1%

(2.1)

There are (many) Ethernet packets without the Immediate data or RETH header if the message size is larger
than the PMTU. This reduces the header overhead and increases the theoretical maximum efficiency to 98.6%
as calculated via Equation 2.2.

efficiency middle packets= 4096/(4096+58)∗100%

= 98.6%
(2.2)

Standard UDP traffic requires 42 Bytes of data for the Ethernet, IP and UDP headers and supports larger
payloads of up to 9000B called jumbo frames. The decrease of the header size and increase of the payload
per header increases the efficiency of UDP data transport to 99.5%. This demonstrates that RoCE, due to the
added headers and the limited payload size, has a lower maximum theoretical efficiency (up to 1.5Gbps at
100GbE) than UDP.

2.4.5. RoCE transport services
A transport service defines the conditions and available mechanisms between two or more end nodes. An
example of such a condition is the notion of connection-oriented transport, which limits the communica-
tion of the local QP to a single remote QP. The transport service also defines whether or not the reliability
mechanism must be used. Lastly, the transport service specifies the available (RDMA) operations. We first
discuss the available connection-oriented transport services, then briefly discuss the datagram services. It
is important to note that all transport services, except Unreliable Datagram, support a maximum message
size of 2GB, regardless of the operation. The maximum message size supported by the unreliable Datagram
transport service is equal to the PMTU being used.

2.4. RoCE 17

Connection oriented services
The first implementations of RoCE supported a Reliable Connection (RC) and an Unreliable Connection (UC)
service. Later, two other connection-oriented services were added to improve the scalability and reusability
of QPs, the so-called Extended Reliable Connection (XRC) and Dynamically Connected (DC).

Unreliable connection transport service is used in systems where message loss is acceptable or in systems
where reliability is achieved in lower network layers (for example, via DCB). The service allows just a single
channel between 2 QPs. In other words, when two servers run multiple processes, e.g. both three processes,
exchanging data between each other, one needs to have a total of 18 QPs to achieve full process connectiv-
ity, as can be calculated from Equation 2.3. The service supports SEND and RDMA WRITE operations which
might be enriched with Immediate data. All traffic between these QPs flows from the requester to the respon-
der in a unidirectional flow. Hence, the operation requester is never notified of the transmitted packets and
message status.

#QPs = #nodes ∗ local pr ocesses ∗ r emotepr ocesses (2.3)

The Reliable Connection Transport service, on the other hand, allows the responder to inform the re-
quester if it correctly received the packets and the complete message. Reliability is achieved via timeouts
and the Go-Back-N retransmission mechanism. This service requires additional settings, such as the maxi-
mum number of retransmissions and timeout timers for each QP. The work request shall return with errors
and transition the QP to an error state when a timeout or retransmission counter is exceeded. In effect, a
reliable connection requires extra state-keeping and extra headers to signal transmission problems. This ser-
vice can perform all operations supported by RoCE, and the number of QPs needed to achieve (full process)
connectivity is equivalent to the UC service.

The Extended Reliable Connection service allows a local QP to communicate to all processes on a single
remote host over a reliable connection. This reduces the number of local QPs by a factor of remote processes,
thus reducing local resource usage. Nevertheless, the XRC is more challenging to implement, and programs
only benefit when end nodes require communication to multiple processes in a single remote node. In ad-
dition, care should be taken so that the processes do not interfere with each other as the processes use the
same resources.

The latest transport service is the Dynamically Connected service that combines features from RC and
UD. The DC service decreases resource sharing and improves scalability further compared to XRC since a
single QP can be connected to multiple processes across multiple nodes. The most significant disadvantage
of this service is the single available transport channel for a QP. In other words, a local QP needs to send a
complete message to a remote QP before it is allowed to connect and communicate with another remote QP.
Besides, the dynamic behaviour drastically increases the complexity of state-keeping.4

Datagram services
QPs leveraging datagram services are not tied to a single remote QP. The destination is defined per work re-
quest, and an extra context, the end-to-end context EEC, specifies appropriate remote nodes. The operations
supported by the Unreliable Datagram (UD) service are limited to SEND operations and thus not capable of
RDMA operations or ATOMIC operations. In addition, the message size is limited to the maximum packet
size supported in the path. RoCE supports packet sizes between 512B and 4KB (increments by a factor of 2),
forcing high message rates when one needs high data throughput.

The Reliable Datagram service solves these issues due to the added reliability at the cost of scalability.
The scalability decreases compared to UC due to extra information and resources needed to establish and
maintain the reliability mechanisms. Both diagram services add extra headers to the Ethernet packet and thus
reduce the theoretical maximum throughput. Besides, the diagram services increase the implementation
complexity for FPGAs due to the extra EE context.

2.4.6. RoCE operations
The RoCE protocol defines multiple operations to exchange data between end nodes. These operations can
be divided into "true" RDMA operations and non-RDMA operations. Operations involving the remote user-
space application are called non-RDMA operations. These operations are also referred to as double-sided
operations since they require work requests on both end nodes. RDMA operations, on the other hand, are
referred to as single-sided operations, meaning the remote node is unaware of the operation. An overview of

4https://www.openfabrics.org/images/2018workshop/presentations/303_ARosenbaum_DynamicallyConnectedTranspo
rt.pdf

https://www.openfabrics.org/images/2018workshop/presentations/303_ARosenbaum_DynamicallyConnectedTransport.pdf
https://www.openfabrics.org/images/2018workshop/presentations/303_ARosenbaum_DynamicallyConnectedTransport.pdf

18 2. Background

Requester Responder

Ack

Data

RoCE send operation:

post SR

poll CQ

post RR

poll CQ

Sync QPs

Figure 2.11: Send sequence diagram

Requester Responder

Ack

Address, keys & Data

RoCE RDMA write operation:

post SR

poll CQ

Sync QPs & mem info

Figure 2.12: Write sequence diagram

Requester Responder

Data

Address & keys

RoCE RDMA read operation:

post SR

poll CQ

Sync QPs & mem info

Ack

Figure 2.13: Read sequence diagram

Table 2.2: RoCE operations support for specific transport services (+ is supported, - is not supported)

RoCE operation
Transport service

Unreliable
Connection

Reliable
Connection

XRC
Reliable
Datagram

Unreliable
Datagram

SEND + + + + +
RDMA WRITE + + + + -
RDMA READ - + + + -

the supported operations per transport service is shown in Subsection 2.4.5. We do not discuss ATOMIC and
memory binding operations as they are irrelevant to our use cases.

SEND operation
The SEND (/RECEIVE) operation is regarded as a non-RDMA operation and supported by all transport ser-
vices. The operation requires the involvement of the responder because the requester’s work request does
not set the message’s destination. In other words, the requester does not need to know the memory address
it should write into. The responder should thus provide the destination of the message. Hence, the destina-
tion QP must have a corresponding receive request inside the receive queue containing the memory location
before the SEND operation arrives; if not, the message will be dropped. As a result, the responder is continu-
ously engaged in posting receive requests, causing this operation to generate more CPU load in the responder
than a true RDMA operation. Figure 2.11 shows a simplified sequence diagram of the SEND operation. The
figure indicates that the requester and responder must post send requests (SR) and receive requests (RR),
respectively. The responder’s acknowledgement is solely sent when using a reliable transport service.

RDMA WRITE operation
Data transport without user-space involvement of the responder is achieved with RDMA WRITE operations.
This is a single-sided RDMA operation to write data from the requester to the responder. The requester spec-
ifies the remote memory address and extra keys in the send work request. Figure 2.12 depicts the sequence
diagram for WRITE operations (without immediate data). One should notice that extra communication is
needed to exchange memory information before the data transport starts. Hereafter, the requester can post
send requests and receives completion events after transmission or acknowledgement, depending on the
transport service.

The WRITE operation can be augmented with Immediate data. The Immediate data consists of 32bits
placed in the receive work completion event and not directly written into the memory. Hence, requiring a
receive work request to be consumed and transformed into a completion event by the RNIC. To clarify, the
remote responder must post an (empty) receive work request to the receive queue to receive the immediate
data.

RDMA READ operation
Another true RDMA operation is the READ operation, allowing the local node to read remote memory in-
stantly without remote host intervention. This operation is only supported by reliable services. An abstract
sequence diagram for this operation is shown in Figure 2.13. Requirement R5, given in Section 2.2, stipu-
lates that the system cannot support retransmission which is an essential component of the reliable services.
Therefore, we do not discuss this operation in more detail.

2.4. RoCE 19

2.4.7. Queue model
Work requests must be communicated between the user program and the network card to start data transfers.
This communication must be highly optimised to achieve high data rates and a low CPU workload. This sec-
tion discusses the queue model and related methods available to reduce the (internal) communication load.
The communication flow follows the RoCE queue model, which defines four types of queues, a send queue,
receive queue, Shared receive queue (SRQ) and a completion queue. A user program can post work requests
in the first three queue types. After that, the Verbs layer converts the work requests into work queue elements
used by the hardware, as shown in Figure 2.14. We use the ibverbs API as the interface and implementation
of the Verbs layer, as discussed in greater detail in Subsection 2.4.8.

A message rate bottleneck might occur when one tries to achieve high throughput while using a small
message size due to the work request communication between the user and RNIC. Luckily, multiple mecha-
nisms are available to cope with this issue. The easiest to use is the linked work request. It is a mechanism
to link multiple work requests and send them to the Verbs layer and RNIC. Consequently, the number of calls
to the Verbs layer and RNIC is significantly reduced. Other mechanisms to reduce the workload, such as
solicited and signalled events, are discussed later in this section.

Figure 2.14 depicts the consumer queueing model. The user program creates work requests (send or
receive requests) and posts them into their corresponding queue. Each QP has its own set of send & receive
queues and might share a completion queue with other QPs. Hence, completion queues are independent
of work queues. Nonetheless, each work queue must always be associated with a completion queue since a
work request error is communicated via work completion events.

The send queue holds operations that cause data to be transferred between two QPs. Hence, the host
program must place SEND (w. Imm), RDMA WRITE (w. Imm) and RDMA READ operations into the send
queue to request (start) an operation. The information of an operation is placed in a send work request (SWR
or SR), which is converted into a qork queue element (WQE) by the Verbs layer and placed in the send queue.
The information inside the send request depends on the operation. For example, the SEND operation does
not require the knowledge of the destination’s memory address, while RDMA WRITE does. Once a work queue
element is completed, a completion queue element (CQE) is generated and placed in the completion queue,
as visualised in Figure 2.14.

The receive queue contains operations that specify where incoming remote data needs to be placed. A
receive operation, for example, defines the memory location required when the remote QP uses the send
operation. Other instructions requiring a receive queue element are instructions containing immediate data.
The immediate data is not instantly written to the memory because it is treated as status information. The
immediate data is instead returned as data in a CQE. To generate such CQE, the RNIC must consume a WQE
which is only available when a work request has been posted to a queue. Thus, RDMA WRITE operations with
immediate data require receive requests too.

An improvement can be made over the standard receive queue when an application posts numerous
receive requests to multiple QPs by taking advantage of a shared receive queue (SRQ). The queue is used
for receiving operations which allows the same operations as previously explained for the receive queue.
The strength of the SRQ is that the queue can be shared (used) concurrently by multiple QPs, even if they
use different transport services. Instead of keeping track of and filling, e.g. 10, different receive queues, the
program only needs to check and replenish a single receive queue. The SRQ, together with the usage of linked

Hardware

WQEWQE

CQE

user
program

SR

RR
WQE

WQE

WQE

RR

CQE CQE

WQEWQE

WC

Send
queue

Receive
queue

Receive
queue

Completion
queue

Ve
rb

s

Figure 2.14: Consumer queueing model

20 2. Background

work requests, decreases the amount of communication between the host program and RNIC. On top of that,
the RNIC now has only a single receive queue to check. As a result, the utilisation of the program might
decrease, and the throughput could increase if the host-to-RNIC communication is the bottleneck due to the
message rate.

Once a work request is completed, a Completion Queue Element (CQE) is generated and placed in the
completion queue. A CQE contains information about the local QP, the operation, and the remote QP num-
ber. Besides, a CQE contains information about transmission errors. As mentioned at the beginning of this
section, a single completion queue might be connected to multiple work queues. Each work request shall
always result in a completion queue element when finished processing, except when using signalled events
in the send work requests, which is discussed later. One retrieves the data in a completion queue by invoking
a poll() operation on the queue. If one desires low latency, the program should continuously call the poll()
operation. Though, this causes a high workload on the CPU. Programmers can reduce the load by polling at
a time interval or implementing the notification method.

Ibverbs provide a notification mechanism via a Completion channel and completion notification. The
RoCE protocol allows one to connect multiple completion queues to a single completion channel. This chan-
nel can notify users when a new CQE is available. One must arm the channel with a request notification to get
such a notification. The channel can only be armed once, generating just a single notification for the first new
CQE. As a result, one must arm the channel each time after reading and acknowledging a notification. After
notification, the user must still poll() the CQ to retrieve the CQE. Usually, each WQE results in a notification,
if not already notified, except when the user uses the solicited flag or signalled flag.

Solicited completion events decrease the number of notifications at the responder and, therefore, might
reduce the workload. A solicited event is created when a responder receives a message containing the so-
licited flag. The solicited flag is thus set in the send work request by the requester. A responder must arm a
completion channel with a solicited flag to create a notification when a message is processed containing the
solicited flag. Consequently, the responder RNIC might (silently) receive and process multiple unsolicited
messages before notifying the user program of completion events in the completion queue. In effect, more
CQEs will be polled in a single call, thus decreasing the total number of polling operations. This method is
solely possible for operations that require receive work request.

Unsignaled work requests decrease the number of CQE at the requester and thus reduces the commu-
nication and workload. This mechanism allows the user to select if a CQE should be generated from a work
request. One reason to not signal (send) work completions is the fact that they do not contain new infor-
mation when processed without errors, unlike the receive work completions. For example, a receive work
completion does contain the opcode, message size, and remote QP number. Besides, the user program is
still notified if an error occurs. Thus, all previous operations must be successful if the requester processes a
signalled completion. The ability to use (un)signalled send requests is an attribute of the QP and each SR.

To emphasise, the solicited flag (set by the requester) impacts the notification events at the responder,
while the signalled flag (again set by the requester) impacts the creation of CQE at the requester.

2.4.8. Stack architecture
This section discusses the library, kernel and driver stack related to this research. Figure 2.15 depicts the
software stack used in our implementation. User applications can interface with Upper-Level Protocols (ULP)
and APIs such as MPI, UDAPL and ibVerbs. In our work, we use the ibVerbs user-space library to interface with
lower-level drivers and the network card. The ibVerbs API implements management for InfiniBand (including
RoCE) and iWARP RDMA protocols. Many API calls are equal between the supported protocols in ibVerbs; the
difference is primarily in the attributes that need to be included. Ibverbs communicates mainly directly with
the RNIC, thus bypassing the kernel. Some calls still require kernel interaction, for example, when creating,
modifying or destroying RDMA resources such as Protection Domains and Queue-Pairs. The API uses Kernel
bypass when interacting with work requests and completion confirmations. ibVerbs uses the ib_core kernel
module for its RDMA resources and memory-related kernel calls during the creation and removal of RoCE
structures. InfiniBand-specific requests are retrieved from the mlx5_ib kernel module, while all other queries
and lower-level communication are handled via the mlx5_core driver.

Furthermore, the ib_core implements a peer memory API permitting the registration of device memory
located in the same chassis. The Nvidia PeerDirect and the GPU driver, being the CUDA driver, leverage this
peer memory API to enable RDMA access to GPU memory, this is discussed in greater detail in Section 2.6.

2.5. RoCE applied to the use case 21

ibVerbs

Application

ULPs

Ib_core

mlx5_core

mlx5_ib

CUDA driver

User
space

Kernel
space

Hardware

IP

Sockets Layer

UDPTCP

PeerDirect

Mellanox NIC NVIDIA GPU

Netdevice
kernel
bypass

CUDA runtime

Figure 2.15: RoCE stack architecture

2.5. RoCE applied to the use case
In this section, we discuss the optimal transport service and RDMA operation for the application in radio
astronomy based on the use cases and requirements discussed in Section 2.1 and Section 2.2, respectively.

A fundamental choice is the type of transport service. The service defines which operations are possible.
The first requirement to be highlighted is that re-transmission of data is impossible due to each use case’s
real-time and high throughput constraints, see requirement R5. Consequently, the two remaining transport
services are Unreliable Connection and Unreliable Datagram. The UD service can connect a single QP to
multiple remote QPs, improving scalability since fewer resources would be needed. Other differences be-
tween the two services are related to the message size and supported operations. The message size for UD is
limited to 4KiB, and it only supports SEND operations. Whereas UC supports SEND and WRITE operations
with message sizes up to 2GB. Besides, the UD requires additional state-keeping due to the EE context, which
also increases the implementational complexity on FPGAs. We opted for the UC transport service because
the UD has higher complexity and limited message size.

UC supports SEND and WRITE operations which can be extended with Immediate data. Requirement R6
prescribes that it must be clear which data has been received correctly. This requirement, therefore, makes
it impossible to use a native RDMA WRITE operation, as such an operation completely bypasses the CPU.
Adding immediate data to the WRITE operation does allow insight into received and missing data as the
required information can be encoded into the immediate data. However, the sender (thus the FPGA) must
provide the memory location per message, which is a disadvantage since storing many memory addresses
requires extra resources.

The alternative is to use SEND operations (with immediate data). The receiving side (CPU/RNIC) then
determines where the data from the incoming message will be placed. Eliminating the need for the sending
side (FPGA) to store and send along the memory location. Even so, we would still need to use immediate data
to get the necessary insights into the (not) received data and its memory location. The underlying problem is
that an incorrectly received message does not consume a receive request.

Consequently, one is not sure what the timestamp is of the data placed in the memory. In the further
processing pipeline, it is necessary to simultaneously use all data from the different transmitters of a single
time point. If it is not sure which time point belongs to the data, this must be determined after receipt and,
if necessary, put in another correct place. This requires extra computational effort and is, therefore, less
efficient. This problem worsens if one intends to use a shared receive queue to reduce RoCE resources and
possible CPU utilisation. If using an SRQ, it is unknown which receive request will be used for the incoming
message. An SRQ is used by multiple QPs and thus for multiple data transport connections making it unclear
which memory region is used for a specific QP and in which order. Consequently, to which timestamp the
data belongs and from which transmitter or subband the data originates is unclear. This can be partially
mitigated by using multiple SRQs.

Another disadvantage is that the SEND operation will cost more CPU utilisation and resources. After all,
for each receive request, a scatter/gatter element must be created that contains the relevant memory address,
length of the operation and local key. This data must be kept close to the process as these are needed to

22 2. Background

quickly refill the queues.
We decided to use the WRITE with Immediate operation since it ensures that the data of each time window

is consistently placed in a standard manner. This reduces the complexity, and therefore the workload, on the
receiving CPU(s).

2.6. Direct memory access to GPU memory
The ib_core kernel module allows 3rd party memory to be registered and used for RDMA operations. Em-
ploying this method with GPU memory results in a direct data path between the network card and the GPU
memory. Hence, the data does not need to be moved through the main memory or CPU, improving the la-
tency and avoiding bottlenecks caused by main memory I/O operations. Since we only have Nvidia GPUs at
our disposal, we will only discuss the method and restrictions for Nvidia GPUs. The interaction between the
Nvidia and RDMA interfaces and modules is displayed in Figure 2.15. The necessary permissions and other
requirements to bind GPU memory to the ib_core module are facilitated by Nivida via the PeerDirect kernel
module, a standard component of the recent Nvidia drivers. However, it is important to mention that this
kernel module is not supported by all combinations of Linux kernel and Mellanox driver versions.

We should also consider the available GPU memory for the RDMA operations. The available amount of
memory for RDMA operation is determined by the GPU’s Base Address Register (BAR) size. The BAR size
determines how much memory is immediately and simultaneously available over PCIe. One can therefore
use more memory than the BAR size. However, having more memory simultaneously registered for RDMA
operations than the BAR allows is impossible. The BAR size varies by GPU type. For example, the BAR size is
only 256MB for the Nvidia A4000, which is mainly purposed for display and as much as 60GB for the Nvidia
A100, which is mainly purposed for compute. The BAR size of the A100 is larger than its 40GB of device
memory so that the entire GPU memory can be used for RDMA operations.

Finally, the placement of the GPU and RNIC in the system must be considered. Servers today often con-
tain multiple CPU sockets, the system is divided into more than one Non-uniform memory access (NUMA)
domain. Data movement from one NUMA domain to another is limited by the bandwidth of the interface
between the CPU sockets, which is typically lower than the PCIe bandwidth. To achieve maximum perfor-
mance, it is therefore important to ensure that when transferring data between the CPU, RNIC and GPU, the
devices are located in the same NUMA domain.

2.7. FPGA
Field programmable gate arrays (FPGAs) offer reprogrammable hardware which can be adapted to the user’s
needs after manufacturing. That is to say, the functionality of the FPGA can be changed, which differs from
using the same functionality in a different sequence, as is the case for CPU and GPU programming. However,
the clock rate of FPGAs is generally lower than that of CPUs and GPUs, limiting the performance boost in
some use cases. Nonetheless, FPGAs provide enormous performance boosts in various application domains,
such as medical image processing and database acceleration.

Xilinx has introduced an Alveo product line which can be used in computer and server systems because of
its PCI Express connectivity. The Alveo line offers various features such as onboard High Bandwidth Memory
(HBM2), DDR4 memory, Direct Memory Access (DMA), partial reconfiguration and up to 2x100GbE connec-
tions. The ease of deployment in existing server structures and the high bandwidth ethernet interfaces make
them highly suitable for our development setup.

2.8. Related work
This section evaluates existing efforts in (scalability) assessments of RoCE between CPU nodes.

In [48], the authors compare TCP, UDP and RoCE over 10Gbps and 40Gbps Ethernet networks. They show
extensive improvements in RoCE compared to UDP and TCP, both in latency and throughput. Though, it
must be noted that the switch was over-designed as it could support 100Gbps. As a result, congestion was
mainly in the network adapters and not in the switch. The authors of [22] evaluate the impact of low-level
details such as PCIe transactions and NIC architecture. Besides, they concluded that cache misses in the NIC
can be reduced in 2 ways for multiple configurations (different transport services and operations). First, by
using huge 2 MB pages, address translation cache misses are reduced. Second, QP state cache misses can be
reduced by using fewer QPs. Though, they do not examine the impact of the message size or usage of a shared
receive queue.

2.8. Related work 23

The effects of throughput-sensitive flows (using large message sizes) and concurrent latency-sensitive
flows (using small message sizes) are evaluated in [51], and [30]. Their results show the suppression of small
message sizes in the presence of large messages.

[36] presents a complete software implementation for dynamically connected transport. Their work does
not require RoCE hardware support, which improves usability. Regardless, they report SSD NFS storage’s read
and write throughput instead of main memory throughputs.

[16] discusses congestion and livelock challenges when running RoCE with more than 1000+ nodes and
an aggregated bandwidth of 3Tb/s in Microsoft data centres. A key finding is using shared buffers in a switch
to reduce the likelihood of PFC pause frames. Their work addresses network topology and PFC-related prob-
lems, not lower-level RoCE-related settings regarding QPs and the like. Scalability is also examined in [23] by
leveraging up to 4 source nodes running multiple processes. Their results show nearly equivalent through-
put for 1kB, 10kB, 100kB and 1MB message sizes. Moreover, they also show that RoCE achieves much better
ratings in terms of throughput and latency than TCP implementations. Lastly, Collie is designed and imple-
mented in [27], a tool for users to systematically uncover performance anomalies in RDMA systems. The
paper provides insights into possible RDMA bottlenecks and performance measurement methods inside the
host and network adapter. Their publicly available test program can reveal host or network configuration
errors. However, a significant part of the measurement methods, such as PCIe bottlenecks, are unavailable
because they are proprietary. Moreover, they do not define what values in goodput or latency should be
achieved for particular settings.

All studies mentioned do not provide a detailed insight into the CPU utilisation and the effect of RoCE
configuration settings such as a shared receive queue or solicited events. Our work aims to exploit the perfor-
mance impact of all relevant RoCE settings.

3
Methodology

This chapter discusses the methodology to acquire the information to answer research questions 2 and 3
as stated in Section 1.2. The objective is to derive the best RoCE configuration for application in radio as-
tronomical systems and to validate whether the RoCE protocol can deliver the performance needed for use
cases related to radio astronomy. To do so, we need to simulate the requirements and environment of these
use cases. Using real telescopes for these measurements would be impractical and impossible. On the other
hand, CPU server nodes are readily available and are also easier to use, so we use these in our test setups.
Section 3.1 discusses the available servers and other hardware resources, followed by the software tools in
Section 3.2. In Section 3.4, we discuss our methods to measure CPU utilisation, goodput and other metrics.
We used four setups to gain insights into the performance of RoCE; first of all, we briefly show the difference
between UDP and RDMA transport. After that, we divided the necessary tests over three setups to simulate
the environments needed and to reduce the design space exploration. With these tests, we approach a radio
telescope system as closely as possible with the available test system. In Figure 3.1 we show these last three
test setups: one-to-one, many-to-one and one-to-many.

Comparison of UDP and RoCE
The first setup shows the differences between UDP data transmission and RDMA transmission with well-
established and publicly available tools such as qperf [14].

one-to-one setup many-to-one setup one-to-many setup

Figure 3.1: Overview of three test setups

one-to-one
The objective of the second setup is to identify the behaviour of various RoCE settings between two nodes. As
the basis for our CPU/NIC implementation, we started with Andrew Answer’s RDMA transport test applica-
tion, which provided a single RoCE connection and implements the SEND operation over UC [5]. We adopted
this application to test the effect of message size, linked work requests, memory type and the shared receive
queue. In the last stage of these tests, the number of Queue Pairs is varied to characterise the scalability of
Queue Pairs between two nodes. The insights from these tests are used as a starting point in the many-to-one
test. This setup is discussed further in Subsection 3.5.2.

many-to-one
The many-to-one tests are designed to simulate the distributed and scalable aspect of radio telescopes. Thus
the goal is to test the scalability of RoCE. We use the insights from the one-to-one test to reduce the design
space exploration. This setup uses up to four nodes to send data to a single receiving node as depicted in

25

26 3. Methodology

Figure 3.1. Furthermore, the number of QPs between each node increases to test the scalability. An in-depth
explanation of the many-to-one test is provided in Subsection 3.5.3.

one-to-many
In this setup, the performance is tested in an arrangement where a single RNIC transmits data towards mul-
tiple receivers, which characterises the scalability of a sender. This test was conducted for the completeness
of our study as this setup is not representative of radio astronomical applications. The relevant settings asso-
ciated with this setup are presented in Subsection 3.5.4.

3.1. DAS6 cluster
We evaluate the implementation on the DAS 6 cluster at ASTRON [4]. This cluster consists of 4 regular com-
pute nodes and one fat node. Each regular node contains two NVIDIA A4000 GPUs and a single port 100GbE
Mellanox Network Interface Card, all connected via PCIe gen4 x16 interfaces. These nodes have two AMD
EPYC Processor CPUs in a dual NUMA domain setup containing 135GiB RAM per NUMA domain. In all
our tests, we utilise the CPU and host memory located in the same NUMA node as the NIC unless other-
wise stated. This eliminates any negative impact due to inter-NUMA domain data transport. The fat node
contains one NVIDIA A100 GPU, one Xilinx Alveo U280 and one single port 100GbE Mellanox NIC. This node
contains two AMD EPYC 7H12 64-Core Processors in each NUMA domain with a total of 1,08 TiB RAM divided
over both domains. All nodes are connected via a shallow buffered 100GbE Mellanox switch. The Mellanox
NICS in these nodes have hardware support for the RoCEv2 protocol. Appendix A.1 provides a more detailed
overview of the hardware.

3.2. Software
Several software packages and tools are used to compile, validate and measure our program. Compilation of
the CPU program is done with GCC 9.4.0, and all nodes in DAS6 run Rocky Linux OS. RDMA-Core 39.1, Mel-
lanox OFED 5.4, and CUDA 11.6.2 allow us to use the RDMA capabilities between the user program, NIC and
GPU. RDMA-Core provides libibverbs used in our benchmarking program. Mellanox OFED is a package con-
taining user-space code, kernel modules, drivers and debug tools for the network cards. In addition, NVIDIA
PeerDirect (part of Nvidia Linux driver 510) is installed to enable direct memory access between the NIC and
GPU. Slurm is used to reserve node resources and run tests on the nodes. We used python 3.9 to iterate over
the design space by automating the execution of benchmarks and the creation of figures. The packages used
in these scripts can be seen in the repository [29]. We used TCPdump (libpcap 1.8) and Wireshark to verify
our application and validate RoCE settings. Appendix A.2 provides a more detailed overview of the software
components.

3.3. Network topology and settings
Ethernet network devices use buffers to optimally receive and transmit data. For an Ethernet port, a dis-
tinction is therefore made between a buffer for incoming traffic (ingress traffic) and outgoing traffic (egress
traffic), as illustrated in Figure 3.2. An important and widely used capability of Ethernet traffic is traffic pri-

egress

ingress

Single port NIC

egress

ingress

Single port NIC

ingress

egress

egress

ingress

Single port NIC

egress

ingress

Single port NIC

Switch

Figure 3.2: Illustration of buffers inside an Ethernet network

3.4. Measurement method 27

oritisation via Traffic Class (TC). Different buffers can be allocated for each traffic class to keep different pri-
orities from interfering with each other. In our test network, we use lossless Ethernet at traffic class 3, for
which a separate buffer is used in the network adapters with PFC enabled. In the switch, shared buffer pools
are used per TC; for TC 3, the ingress pool has an alpha of 1, and the egress pool has an infinite alpha.1 The
most important property of a shared buffer pool is that the buffer memory is shared over several ports and
the amount of memory used is not fixed but dynamically limited by the alpha value.

In addition, certain congestion mechanisms can also be set per priority, such as Explicit Congestion Noti-
fication (ECN). For TC 3, we enabled ECN on the ports in the switch with a minimum and maximum threshold
value of 300kB and 3MB, respectively.

3.4. Measurement method
The RoCE data transport method we want to test must operate at very high data rates while achieving very
low CPU utilisation. These performance characteristics make it relatively easy to affect the measurement
and so extra care must be taken about the method used to measure these and other components. After all,
our measurements should not influence the actual measurements. Besides, RoCE provides many features
and settings which create ample design space, so besides choosing measurements properly, it is required to
store and process the measurements in a standardised and automated way. In this section, we first discuss
the method to measure CPU utilisation, after which we discuss the goodput measurement method in Sub-
section 3.4.2. At last, we discuss the application profiling in Subsection 3.4.3, which describes a method to
measure function calls.

3.4.1. CPU utilisation
CPU utilisation of the receiving server is an important performance index in this study. Different techniques
allow us to measure system, process (program), or thread-level utilisation. Our benchmarking is performed
on nodes with large amounts of resources. The benchmarking program can use a single thread per QP or
multiple QPs in a single thread. Therefore, the system’s overall (resource) utilisation would not represent the
program’s actual load, we require a method to measure utilisation per thread. Methods to measure the utili-
sation on a per thread bases are, for example, Linux perf [25], the proc filesystem [26] and clock_gettime() [24].
The measurement needs to be done in a consistent manner while iterating over multiple design spaces. Be-
sides, the measurement must be stored in a standardised, automated manner to enable automated plotting
of data.

The proc filesystems provide relevant insights; however, the documentation does not provide information
regarding the measurement interval or precision. The perf tool is embedded in the Linux kernel and provides
various methods to measure many performance characteristics. Although, it does not provide an easy-to-use
API to measure at a self-defined interval. Moreover, we would like to have the opportunity to measure at an
interval of tens of milliseconds to identify bursting behaviour. Measuring the utilisation with clock_gettime()
is possible on a per-thread basis and at a self-selected interval and locations inside the program. However,
this method consumes clock ticks (and thus increases utilisation) inside the thread.

All things considered, we decided to use the clock_gettime() measurement method as it allows a fine-
grained measurement method when needed. In addition, we do not expect measurements at millisecond
intervals to involve significant utilisation.

3.4.2. Goodput
Goodput is defined as the rate of useful bytes that a node receives. Consequently, the actual ethernet through-
put is always larger than the goodput since ethernet protocols add headers to the payload. The goodput can
be derived via several methods, such as network adapter counters or the number of completed messages.

The goodput can easily be calculated in the application itself if the amount of correctly received messages
and the corresponding interval is known. The message size set in the work request defines the goodput of
a single RoCE message. Then one can calculate the goodput when the number of completed messages in a
time interval is known. Though, the smallest achievable measurement interval and precision depends on the
message size and the polling interval of the completion queue.

Another method to determine the goodput is to leverage the counters of the network card or switch. These
report the total number of Ethernet packets and bytes received from all connections. These counters are

1https://support.mellanox.com/s/article/understanding-the-alpha-parameter-in-the-buffer-configuration-o
f-mellanox-spectrum-switches

https://support.mellanox.com/s/article/understanding-the-alpha-parameter-in-the-buffer-configuration-of-mellanox-spectrum-switches
https://support.mellanox.com/s/article/understanding-the-alpha-parameter-in-the-buffer-configuration-of-mellanox-spectrum-switches

28 3. Methodology

not specific to RoCE, and the update interval is also unknown, which constitutes a significant disadvantage.
Nonetheless, the network card reports other valuable metrics such as congestion packets, out-of-buffer inci-
dents and RoCE retransmission in case of reliable service. The network counters can be accessed locally on
each node, whereas the switch counter requires a connection to the switch’s management interface. Besides,
the update interval and time resolution of the counters are unclear. This imposes yet another disadvantage
to leveraging the switch for throughput measurements.

We decided to calculate the goodput using work completions as it can be measured through a self-set
frequency. However, with this method, it must be noted that the maximum measurement frequency is limited
by the interval at which work completions come in. The goodput is measured on each node since messages
might be dropped between the sending and receiving nodes due to unreliable transport service. In addition,
we report the network card counters on a per benchmark basis to detect transmission problems such as buffer
overflows and congestion.

3.4.3. Application profiling
Knowing the goodput and CPU utilisation is vital to answering our research questions. Nevertheless, they do
not provide insight into time-consuming function calls. For example, without application profiling, there is
no insight into the time it takes to create a QP. Furthermore, RoCE settings can also impact the speed of cre-
ating or deleting RoCE-related structures. For this reason, we have created a profiling tool using the Chrono
high-resolution clock. To make the data easy to view, we have stored it in a JSON structure to use it with
Chrome tracing [37]. Chrome tracing is a free-to-use web application built into the chrome web browser to
visualise event tracing data. A JSON file is also easy to use and analyse in python. Unmistakably, trace profil-
ing comes at the cost of keeping track of multiple timers. Moreover, the profiling tool is designed to write the
profiling data during runtime in the JSON file. This method ensures the availability of the data even when the
program crashes at the expense of increased runtime overhead. For this reason, we do not use application
profiling during performance tests unless otherwise stated.

3.4.4. Other measurements
The methods discussed in the previous subsections provide information for our KPIs. However, these do
not provide sufficient insight into a possible cause of any degradation in performance. For example, the
goodput shall drop if the work queue is not replenished on time, so it is important to know if it becomes
empty during measurement. We have therefore added a method to track and report queue utilisation during
the measurement by keeping track of the number of posted and completed work requests. Another cause
by which goodput can drop is the loss of messages during transportation. This might be caused by packet
drops due to buffer overflows, the out-of-order arrival of messages, ICRC errors or congestion in the network.
These causes can be traced through the counters of the NIC. In addition, transport and congestion insights
can be obtained via the switch’s management interface. The disadvantage of the switch counters is that they
are updated at most once a second. This results in less insight into the (peak) values because they are often
also averaged over time.

3.5. Measurements
In Section 2.4, we discussed the RoCE protocol and its features. The design space will become enormous if
we use a naive design exploration method. Therefore, we have broken it down into four stages, which we will
explain in their respective subsections.

3.5.1. RDMA VS UDP
The aim of this setup is to demonstrate the performance difference between UDP and RDMA transmission.
We use Qperf [14] to answer this question as it supports both RDMA and UDP transfers. In addition, Qperf can
report CPU utilisation and the achieved goodput. We compare the results of rc_rdma_write_bw and udp_bw.
We perform these tests with node501 and node505 in DAS6 as sender and receiver, respectively. We will use a
few message sizes (4kB, 32kB, 1MB) as they might impact the performance of both transport methods.

The following command-line argument is used to test the performance of RoCE:

qperf −v −cm1 −−use_bits_per_sec − t 30 −−msg_size <size >

<remote_IPaddress> rc_rdma_write_bw

3.5. Measurements 29

The following command-line argument is used to test the performance of UDP:

qperf −v −−use_bits_per_sec − t 30 −−msg_size <size > <remote_IPaddress> udp_bw

3.5.2. One-to-one
The one-to-one connection setup and experiment aim to identify the impact and trade-offs of RoCE settings
between two CPU nodes. This subsection covers this single connection experiment’s goal and design space.
From the use cases discussed earlier, desire emerges for a system with the smallest possible message size and
a large number of connections, while at the same time, CPU utilisation must remain low and data through-
put high. We first identify the parameters that impact the throughput and utilisation for small message sizes.
After that, we identify the effect on the performance when the number of Queue Pairs increases between two
nodes. This data allows us to determine the optimal configuration and possible trade-offs for the use cases of
radio astronomy. Besides, this approach gives us a good starting point and smaller design exploration when
the setup expands to multiple nodes.

The two nodes are connected via a switch over 100GbE. The network is configured into a lossless con-
figuration via PFC. We run the traffic on traffic class 3 (TC3) with PFC enabled. Thus the RoCE traffic in the
network cards is sent and received using different virtual buffers than standard UDP and TCP traffic. The data
rate is set to unlimited and the vendor transmission scheduling algorithm is used. The switch is also modified
to run TC3 in separate buffers and queues. The congestion notifications thresholds inside the TC3 buffers are
set to 4MB and 6MB, respectively the minimum and maximum. Hence we are using converged Ethernet as
explained in Subsection 2.4.2. Besides, a single NUMA node domain is used during each test to eliminate any
overheads and limitations that might occur due to intra NUMA domain communication. Thus the network
card, GPU, CPU memory and CPU cores are located within the same NUMA domain.

Furthermore, the send, receive, and completion queue sizes are unchanged between these experiments.
The network card takes work orders from these queues, and the size of these queues should not have any ef-
fect as long as they are not emptied during the measurement. The queue size might become important when
the number of QPs increases since more resources will be needed. Hence, we consider the queue size when
we test scalability with multiple nodes, as discussed in the next section. The queue utilisation is measured
during each run to determine if the program can post work requests at sufficient speed.

Each configuration will be tested over a period of 10 seconds and will be repeated three times to expose
any anomalies between runs. The measurements at the start of the test and at the end can result in large
outliers. Caused by, for example, the first-time filling of queues and not starting or closing threads simul-
taneously on all nodes involved in the measurement. Besides, we are interested in sustained performance
because the data transport for our use cases takes place over a long period of time without fluctuating data
ingress rates. Therefore we exclude the first and last second of measurement data for our analysis.

Transport service and RDMA operations We evaluate the RoCE protocol using RDMA WRITE with Imme-
diate operations over the unreliable connection transport service. A rationale for this choice can be read in
Section 2.5. However the application allows to configure alternative RDMA transport services and operations.

Message size The message size impacts the system resources (larger buffers) and the possibility of losing
a message. We want to minimise the message size since a larger message requires the transmission of more
packets between nodes. This increases the possibility of losing a packet during transmission. The loss of a
single packet will lead to the loss of the entire message since we are using an unreliable transport service. On
the other hand, we expect performance degradation at smaller message sizes due to communication limita-
tions between the CPU and NIC and higher processing load due to increased RoCE operations per second.
We iterate over different message sizes (from 4kiB to 200MiB) to identify the impact of the message sizes.

Memory regions, page size and GPU memory We used three types of memory allocation to reduce the
design space: transparent huge pages, 2MB and 2GB huge pages. These three types should give us insights if
one creates a bottleneck in throughput. These settings are only used on the receiving side since we are mainly
interested in the receiver’s behaviour. The number of memory regions and their sizes used in a single QP can
also be varied. These settings depend heavily on the production application that leverages RoCE. We expect
the number of memory regions used, in our case, to have no effect on throughput or utilisation but mainly on
resource utilisation. We expect this because the test application reuses memory regions in work jobs when
the queue is not yet fully filled. Hence, the number of memory regions is set to a constant value while the size
of a single memory region is equal to the message size multiplied by the number of linked work requests.

30 3. Methodology

Linking WR and solicited events Work requests can be linked and posted in a single call to the RNIC.
This configuration is expected to decrease utilisation and might improve throughputs in certain cases. We,
therefore, increase the number of linked requests (in several steps from 1 to 100) to see when this performance
improvement stagnates. In addition, we are testing the impact of solicited events together with linked work
requests. One solicited event per linked work request will be added during these tests.

Queue pairs and Shared Receive Queue The number of queue pairs is increased after the before-mentioned
settings have been tested. The number of QPs is increased in four steps to a maximum of 500 connections
to keep the design space small while revealing the possible degradation of performance when the amount of
QPs increases. In addition, it is also more relevant to observe the impact when the data originates from mul-
tiple sources, which will be tested in the many-to-one setup. By default, our test application provides each
QP with its own thread; however, this might not scale well for large amounts of QPs. Therefore, this iteration
will also be extended to use shared receive queues at the receiving node. In this case, we combine all QPs in a
single SRQ during this test.

Unsignalled events Both the source node and the sink node may experience bottlenecks. Whereas the
previous solicited events and SRQ should reduce the CPU and memory utilisation in the sink node, they do
not influence the source nodes. Besides linked work requests, one could try to use solely signalled work
events to reduce the CPU utilisation in source nodes. This mechanism reduces the insight into the finished
work requests, which may make this configuration unworkable for some applications. Nevertheless, in our
use cases, the transmitter will be replaced by an FPGA making this option impossible. Nonetheless, we will
only leverage this method if there is evidence of a source node bottleneck that reduces the throughput.

3.5.3. Scalability; many to one
In a real-world scenario, multiple FPGAs send data toward a single compute node. The compute node thus
needs to handle multiple connections originating from different devices. This test aims to asses such scala-
bility and to reveal the trade-offs and limitations.

This setup has several similarities with the one-to-one test. Each test will again use the RDMA WRITE
with Immediate operation over the unreliable connection service. Secondly, the program runs in the same
(single) NUMA domain to avoid side effects due to NUMA crossing. Lastly, we use the same measurement
method, so each test is run for a period of ten seconds and repeated three times.

As stated before, the DAS6 cluster at ASTRON is used for each test. This cluster is limited to five compute
nodes with a 100GbE RNIC; as a result, the scalability will be tested with a maximum of four sending nodes
and one receiving node. We use the most powerful node (node505) as the receiving node in each configu-
ration. The four sending nodes have a higher aggregated throughput than the receiving node is capable of
receiving. Without adjustments, this would definitely lead to congestion problems. Several methods to deal
with congestion are discussed in Subsection 2.4.3. During testing, the bandwidth of each transmitter will be
limited to 23Gbps link speed via Enhanced Transmission Selection (ETS) to avoid major congestion prob-
lems2. This is representative of an actual radio telescope system since the transmitting FPGAs will also be
developed and configured in such a manner to avoid a regular congestion problem in the network. Besides,
the aggregated bandwidth with this setting is 92Gbps hence requirement R4 is still met.

Message size The message size impacts the system resources (larger buffers) and the possibility of losing
a message. The size of these messages will be based on results from the one-to-one tests, with a focus on
smaller sizes, as these are preferred.

Page size and GPU memory To reduce the design space, we use two types of memory allocation: GPU
memory and transparent huge pages or 2GB huge pages, depending on the test result of the previous tests.
Again we will only use these settings on the receiving side as we are mainly interested in the receiver’s be-
haviour.

Memory regions The amount of memory used by our test application will increase considerably when the
number of clients and/or QPs increases, especially in the receiving node. The receiving node in our test appli-
cation needs an amount of memory available equal to the amount of memory used by all clients combined.
The number of memory regions and their sizes depend heavily on the production application that leverages
RoCE. Therefore, it is not possible to choose a representative value for this.

We expect the number of memory regions used, in our case, not to affect throughput or utilisation but
mainly resource utilisation. We expect this because the test application reuses memory regions in work jobs
when the queue is not yet fully filled. Hence, the number of memory regions is set to a constant value while

2A 10% deviation from the requested rate limit is considered acceptable by Mellanox.

3.5. Measurements 31

the size of a single memory region is equal to the message size multiplied by the number of linked work
requests. For this reason, we chose the node with the largest memory (node505) as the receiving node. The
number of memory regions will be unchanged compared to the previous setup, provided the memory usage
does not become too large in case the previous setup shows that a relatively large message size must be used
to achieve our objectives. In addition, the memory region’s size is (again) linked to the number of linked work
requests and the message size.

Linking WR and solicited events For these settings, a single value will be chosen based on the best re-
sults of previous one-to-one measurements. The solicited events method will be used if it shows positive
effects. The number of linked WR will also be determined from previous results to limit the total number of
measurements.

Clients, Queue Pairs and Shared Receive Queue The number of queue pairs is a crucial parameter dur-
ing the scalability test. The number of queue pairs increases in the receiving node as the number of clients
increases. The maximum number of QPs to be tested is based on one of the use cases and is covered later in
this section.

The benefit of the SRQ will be determined from the previous setup; if positive, we will use the SRQ for all
tests to check whether a larger amount of QPs causes a problem.

Queue size Though we expect the solicited events mechanism to decrease the CPU utilisation, it also im-
poses a small drawback on the resource requirements. Solicited events decrease the number of notifications,
causing the completion queue to be read out at a slower interval, so more events must be stored in the queue.
Consequently, QPs leveraging solicited events require a larger completion queue. The SRQ also impacts the
optimal queue size since all WR and WQ will be placed in a single queue rather than a queue per QP. There-
fore, the receive and completion queue will be at least be a factor 2 larger than the send queue in the client
nodes. If a suboptimal throughput is measured, a larger queue size might be tested to determine if it was a
limitation.

Unsignalled events In case the unsignalled feature was required in the previous setup, it will be used again
during these tests.

Scalability calculations
The data generated by a single FPGA needs to be transported to a single or multiple end nodes, as described
in Section 2.1. Moreover, the subband data of a single antennae need to be gathered at a single compute node.
This requires a transposition of the antennae data, which might be achieved by the transport method. In this
section, we will derive the number of QPs required for the LOFAR use case, Figure 2.1. Relevant information
on LOFAR is given in Table 3.1.

We make several assumptions to derive the number of QPs required by a single central compute node.
First, we assume a connection topology that allows the data to transpose over the network. Second, we con-
sider the usage of a single QP per subband at each sending FPGA. This implies that a single message contains
the data belonging to a single subband originating from one FPGA. This is the most fine-grained manner to
distribute the subbands across QPs and thus requires the most number of QPs to transport every subband.
Another method is to transmit the data of multiple subbands in a single message. This results in interleaved
subband data placement pattern, which the central processing application should support. Suppose the pro-
cessing application cannot perform optimally with this interleaved placement. In that case, it will cost extra
CPU utilisation to rearrange the data, which is precisely what we are trying to diminish. Besides, losing a
single packet would result in a data loss of multiple subbands.

Using the assumptions mentioned earlier, the maximum number of QPs needed per central processing
compute node can be calculated with Equation 3.1, with the amount of QPs rounded up as we do not transmit

Table 3.1: Overview of relevant LOFAR system properties

Sending FPGAs per field station 4
Maximum subbands per sending FPGA 122
Total number of subbands per field station 488
Number of field stations 80
Central compute nodes3 24

312 servers with 2 sockets are regarded as 24 nodes

32 3. Methodology

partial subbands.

max_#QPs_per _computenode = #subband s ∗#sender s

#compute_nodes

= 488∗80

24
≈ 1627

(3.1)

In our study, we take extra margin by increasing the maximum number of QPs to be tested to 2000 QPs,
allowing any expansion to more stations or subbands to be accommodated. This number of QPs will be
tested with a single receiving compute node in DAS6 over 100GbE. As such, we expect a throughput per QP
of 45Mbps, considering a RoCE Ethernet efficiency of 98.1% and an aggregated bandwidth limit of 92Gbps.

3.5.4. Scalability; one to many
With this setup, we examine whether limitations arise in the current RoCE implementation and hardware
when a sender is tasked with more QPs. In addition, we demonstrate that our application is capable of han-
dling such topology. Nonetheless, the RNIC sending node shall be replaced with FPGAs in a real-world sce-
nario.

The sending and receiving nodes are swapped compared to the previous many-to-one setup. Other set-
tings, such as network settings, NUMA domains, measurement method and the number of nodes, remain
unchanged.

The tested configurations are a subset of the many-to-one configurations with a focus on the sending
node, as this node is more stressed due to the higher number of QPs. The subset will be determined based on
the results from previous tests.

4
Implementation

This chapter discusses the system context required to run our RoCEs test application and RDMA API im-
plementation. The application enables us to quantify the performance of RoCEs when exploring its design
space and is publicly available via Gitlab [29]. We discuss the system in a hierarchical top-down manner via
the C4 model1, the legend for the C4 model figures is given in Figure 4.1. First, the system context overview
is given in Section 4.1. Second, we elaborate on the RoCEs application and RDMA API interaction in Sec-
tion 4.2. There after, Section 4.3 provides the most fine-grained explanation of the components that compose
the application and API.

4.1. Overview (or system context view)
The input to the RoCE test system is given by a user or by a python benchmark automation program as de-
picted in Figure 4.2. These external users provide command-line arguments as input to select various set-
tings, such as the number of memory regions and the test duration. The repository provides a complete list of
the command-line arguments [29]. The user must launch the RoCE benchmarking program on (at least) two
machines equipped with network interface controllers supporting RoCE, which form the RoCE test system
together. These RNICs exchange RDMA information (needed to establish a RoCE communication channel)
over TCP and transmit or receive RoCE packets. The software and hardware components required for RoCE
are shown in Figure 4.2 as an external system since we have to rely on TCP sockets, ibVerbs and the network
card for some features.

Legend

Person

Software System

Container

Component

External Person

External Software System

Figure 4.1: C4
model legenda

User
[Person or Python scripting]

Person or script using
the RoCE test program

RoCE test program
[Software System]

C++ program using RDMA API
(server side)

RoCE test program
[Software System]

C++ program using RDMA API
(client side)

RDMA interaction
[RoCE]RDMA info exchange

[TCP sockets]

ibVerbs and RNIC
[SW & HW System]

Interface and HW to

perform RoCE operations

ibVerbs & RNIC
[SW & HW system]

Interface and HW to

perform RoCE operations[System Context] RoCE test system

Provides
arguments to

Provides
arguments to

Reports results to
Reports results to

GPU system
[SW & HW System]

Interface and HW to

Nvidia GPUs

RDMA info exchange
[Cuda API]

Data exchange
via DMA

[PCI express]

Figure 4.2: RoCE test system context overview

1https://www.c4model.com/

33

https://www.c4model.com/

34 4. Implementation

The system needs a single RoCE benchmarking program running in server mode to which multiple clients
might connect. The maximum number of concurrent clients and the maximum total number of clients are
set at compile time, while the user provides the actual number of expected clients as a runtime argument.
The memory usage required to receive or send data to each client restricts the total number of clients.

The data transport direction between the server and client nodes depends not just on the type of op-
eration but also on the reverse program option, -R. By default, the server node acts as an RDMA requester
and thus initiates the operations, while clients act as RDMA responders. Consequently, the reverse program
option allows us to transform a one-to-many topology into a many-to-one topology, in the case of RDMA
WRITE with Immediate operations. The test program does not support many-to-many topologies natively.
Nonetheless, this could be achieved when running multiple program instances on each node.

Furthermore, the user can select a NIC and the preferred network port if the host machine contains mul-
tiple RNICs that expose multiple ports. Likewise, it is possible to select a GPU if more than one is present.

4.2. Container view

[Container] RoCE transport System
RoCE test program
[Software System]

RDMA API
[Container: C++]

Provides all of the RoCE
functionality

Main program
[Container: C++]

Program requiring
data transport

Profiling tools
[Container: C++]

Provides NIC counters and
function call tracing

ibVerbs & RNIC
[SW & HW system]

Interface and HW to

perform RoCE operations

Submits
arguments to

Makes API
calls to

Makes API
calls to

Notifies

Provides NIC counters to

Reports results to
[stdout, CSV] Provides

counters to
Provides

counters toReports results to
[JSON]

GPU system
[SW & HW System]

Interface and HW to
Nvidia GPUs

RDMA info exchange
[CUDA API]

Data exchange
via DMA

[PCI express]
User

[Person or Python scripting]

Person or script using
the RoCE test program

Figure 4.3: Container view of a single RoCE test program

Figure 4.3 provides a more detailed view of a single RoCE test program. The program is divided into
three containers, the main program, RDMA API and profiling tools. The user (or python program) interacts
with the main program. The main program can be replaced by any program that seeks to transport data via
RoCE and uses the RDMA API. To put it differently, this program can be replaced and adapted to other use
cases, and above all, it can be developed independently of the RDMA API. The RDMA API container provides
an abstraction to the ibVerbs and GPU memory usage. The third container is profiling tools; this container
provides methods to retrieve network card counters and measure time spent on functions.

4.3. Components view
4.3.1. RDMA API
The inner components of the RDMA API container are shown in Figure 4.4. The test program interacts with
the RDMA API component and the RDMA memory manager. The RDMA API component provides several ser-
vices. Firstly, the RDMA API interacts with the ibVerbs layer. The API uses ibVerbs to query NIC properties and
to create and modify QPs and all RoCE attributes. Secondly, the API initialises the memory manager, which
keeps track of each region’s state. Thirdly, the API provides "default" transport functions to the main program,
which handles the actual data transport. These transport functions post work requests and check the work
completions. We have developed several functions optimised for our objectives, located in the RDMA work
request component, explained later on. It is important to note that these functions depend on the use case, so
they should be adjusted as needed. Lastly, the RDMA API provides methods to exchange RDMA information
between the external nodes.

The RDMA memory manager component has a central role in the RDMA API container, providing infor-
mation between the primary and child threads. The RDMA memory manager allocates memory and keeps
track of two attributes: whether the region is queued and the validity of the data. In other words, the memory
manager provides functions to determine whether the data transport has taken place and thus contains old

4.3. Components view 35

RDMA API
[Container]

RDMA API Component
[Component: C++]

Provides RoCE data transport
functionality via API

GPU Component
[Component: C++ & CUDA]

Provides CUDA context and
GPU memory (de)allocation

RDMA memory manager
[Component: C++]

Tracks status

of memory regions

RDMA work request
[Component: c++]

Posts WR and checks WC

[Component]
RoCE transport system - RDMA API

Makes API calls to

Gets status of
memory regions

Uses

Updates memory
region states

Uses in
separate thread

Uses

UsesUses

ibVerbs & RNIC
[SW & HW system]

Interface and HW to

perform RoCE operationsMain program
[Container: C++]

Program requiring
data transport GPU system

[SW & HW System]

Interface and HW to
Nvidia GPUs

Data exchange
via DMA

[PCI express]

Makes API calls
[CUDA API]

Figure 4.4: Component view of the RDMA API container

(incorrect) or new data. These states are initialised by the RDMA API, updated by the RDMA work request
component and read by the main program. These components (might) run in separate threads; thus, the
memory manager uses a mutex lock to update and read these states safely. The placement and handling of
RDMA operations (messages) are implemented in the RDMA work request component. The API is designed in
a modular but flexible manner, and as such, multiple transfer methods have been developed to cover all rel-
evant capabilities of RoCE. Each transfer method is started in a separate thread so that the main programme
is not blocked while the data transport takes place.

The RDMA API can use GPU memory for RDMA operations. This feature is implemented in a separate
RDMA GPU component to improve modularity and usability. This component employs a direct memory
access method between the RNIC and GPU, provided by NVIDIA PeerDirect technology, as described in Sec-
tion 2.6. This technology improves the latency and PCIe utilisation since the data is not copied to the main
memory.

4.3.2. Profiling tools

The profiling tools container implements two profiling tools that enable the program to read NIC counters
and measure the wall time of a function call. These tools have been designed to be independent of the other
containers and components, making them usable in other applications too. The structural decomposition of
the profiling tool container is shown in Figure 4.5. The NIC snapshot component supports Mellanox adapters
utilising mlx5 drivers. However, other cards should be easily supported if they report the counters in a similar
manner (via the filesystem). The second tool is the function profiling tool. This tool aims to gain insight into
the execution time of function calls. It uses the Chrono high-resolution clock and writes the data directly into
a JSON file as soon as the function is finished. In addition, one can turn this tool on or off before compilation
by editing a single line of code. This eliminates any overhead in the application after compilation when
turned off. This tool was mainly used during development to gain insight into slow components and the
number of times a function is invoked.

RDMA API
[Container: C++]

Provides all of the RoCE
functionality

Main program
[Container: C++]

Program requiring
data transport

ibVerbs & RNIC
[SW & HW system]

Interface and HW to

perform RoCE operations

Submits
arguments to

Makes API
calls to

Makes API
calls to

Notifies

Provides NIC
counters to

Reports results to
[stdout, CSV]

Provides function
tracing to

Provides
counters to

Reports
results to

[JSON]

User
[Person or Python scripting]

Person or script using

the RoCE test program

[Component]
RoCE transport system - Profiling tools

Profiling Tools
[Container]

Provides function
tracing to

Function profiling
[Component: C++]

Allows a program to trace and
time function calls

NIC snapshot
[Component: C++]

Provides methods to retrieve and
compare NIC counters

Figure 4.5: Component view of the profiling tools container

36 4. Implementation

4.3.3. Main program
The main program can be regarded as an intermediate layer between the input (the terminal commands) and
the actual use of RoCE by the RDMA API. It is specifically made to accept and pass many different settings
to the API and to take relevant measurements for our study. So this container can be replaced by another
application or processing pipeline that requires data transport.

For this container, the internal components are less relevant than the tasks required to establish and use a
RoCE connection. Therefore, we discuss the sequence diagram provided in Figure 4.6 instead of a component
view of the container. The sequence diagram shows the basic operations required for the usage of the RoCE
protocol between two servers using RoCE-enabled NICs. First, each host must create a QP and its required
attributes, such as the protection domain, completion queue and event channel.

Host 1 (requester) RNIC 1 RNIC 2 Host 2 (responder)

Start initialisation

Finished initialisation

loop

Close RoCE connection

Create QPs

Create QPs

Exchange QP info over TCP

Exchange QP info over TCP

Modify QPs

Modify QPs

Post receive requests

Post send requests

RoCE Ethernet packets

Completion events

Completion events

Check immediate data
and flag memory regions

Destroy MR, CQ, QP, PD, etc.

Destroy MR, CQ, QP, PD, etc.

Host 1 (requester) RNIC 1 RNIC 2 Host 2 (responder)

Figure 4.6: Sequence diagram of the primary interaction between hosts and RNICs in the test system

After this, the information from a QP can be shared with the remote host over a connection of your liking.
We use a TCP connection because it provides guaranteed transmission of the data. One must exchange the
QP number, packet sequence number, global identifier (this is a sort of IP address for RoCE), and local key
for each QP. In addition, for each memory region, the memory address, format and matching key must be
shared. Some of this information is then used to modify the QP’s state and connect the QP to a single remote
QP. Linking the remote QP information allows the local QP to send (or receive) data to (or from) this remote
QP. The remaining information is required once a RoCE work request is posted to the respective queue.

The QPs are now ready for use, and the memory regions can be used until they (or other important RoCE
attributes) are discarded. Because we use the WRITE with Immediate operation, the receiver of the data,

4.4. Measurement automation 37

i.e. the responder, must first place receive requests in its receive queue. Then the sender, i.e. the requester,
can place send requests in the send queue, which will cause the local RNIC to read the corresponding data
from memory and send it over the Ethernet via RoCE packets. Because of the unreliable connection, the
sending host receives a completion event of the operation as soon as the last RoCE packet for the operation
has been dispatched. Thus, the completion events in the requester do not depend on a correct transmission
or acknowledgement from the responder RNIC or host.

The responder host receives a completion event as soon as all packets of a single operation (also called a
message) are successfully received. The completion event contains, amongst others, the immediate data and
error codes if relevant. With this information, the related memory region can be flagged so that the further
processing application or pipeline is aware of the existence of the received data.

Data transmission ceases as soon as the send queue is empty. In addition, data transport can be stopped
at all times, on both sides, by deregistering corresponding memory regions or by adjusting the QP into the
reset or error state. The proper way to close a QP channel is to first process all work requests in the queues,
then deregister all memory regions, destroy the completion queues & QPs and finally delete the protection
domain and close the RoCE device.

4.4. Measurement automation
The test application is designed to explore various RDMA configurations and to determine whether the RoCE
protocol can deliver the required performance for distributed telescope systems. Therefore, we must test the
protocol’s performance over an ample design space. We have automated this through two python scripts, the
first allows us to iterate over a design space and use the required cluster resources for each test via Slurm jobs.
The second script analyses all data from all tests and compute nodes via multiprocessing to gain insight into
the performance achieved or bottlenecks encountered.

5
Results

This chapter presents the results of the different setups and configurations. First, in Section 5.1, we discuss
and compare data transmission results via UDP and RoCE. The results of various RoCE configurations within
a one-to-one setup are discussed in Section 5.2. The chapter then discusses the results of the many-to-one
and one-to-many configurations in Section 5.3 and Section 5.4, respectively.

This chapter contains box plots to show the goodput and CPU utilisation. This reveals the distribution
of data points and reflects the readings’ stability. The box extends from the Q1 to Q3 quartile values of the
data, with a line at the median (Q2). The whiskers run from the box’s edges and extend to a maximum of
1.5∗ (Q3−Q1). We do not plot the outliers, as, in many cases, they negatively impact the readability of the
plot. In addition, CPU utilisation is displayed as a percentage relative to the full load of one CPU core. Per
configuration, the number of threads and cores used can differ. To compare them, we report the aggregated
CPU utilisation of the threads used. So a CPU utilisation of 100% means that the total load is comparable to
the load of an entire core, and 200% implies that the load is comparable to two fully utilised cores.

In our study, we are interested in the performance of the RoCE protocol over a long time and not in the
effects during the start-up and shutdown of the data transport. Firstly, the network measurements during
start-up can show various artefacts that can be highly dependent on the hardware and network settings used.
So the start-up period would not so much give a picture of the RoCE protocol but mainly of the hardware and
network settings used. Secondly, the aim is to see if the RoCE protocol is suitable for radio astronomy applica-
tions. RoCE is used continuously over an extended period (order of hours and days), where a steady data rate
must be maintained in this application area. A short start-up and shutdown period is, therefore, acceptable.
From this, it was chosen to test each configuration three times, with 10 seconds of data transmission per test.
After that, only the middle 8 seconds are used for the goodput and CPU utilisation calculations.

All goodput and CPU utilisation measurements were taken per QP thread at an interval of 10ms unless
otherwise stated. The interval of the measurements may differ due to the measurement method as it depends
on the goodput. For this reason, and because of multi-QP measurements (i.e. multithreading), the data is
resampled afterwards at an interval of 10ms to interpret the measurements better.

5.1. Comparison of UDP and RoCE

Table 5.1: UDP and RoCE performance comparison

Message size 9kB 32kB 64kB 1MB
UDP Throughput 25 Gbps 43 Gbps 50 Gbps -

CPU utilisation 122% 145% 146% -
RoCE Throughput 92 Gbps 98 Gbps 97 Gbps 92 Gbps

CPU utilisation 95.2% 77.6 % 43 % 7%

This section briefly compares the performance difference between UDP and RoCE. The protocols are
evaluated between two nodes connected over a 100GbE network, more information regarding the (hardware)
setup and methodology can be found in Section 3.1 and Subsection 3.5.1, respectively. The results shown
in Table 5.1 have been acquired with Qperf. UDP achieved a maximum throughput of 50Gbps at a message

39

40 5. Results

size of 64kB. Larger message sizes were not possible with UDP and resulted in NaN values. For any message
format, RoCE outperforms UDP. In addition, it can be seen that when using UDP, CPU utilisation increases as
message size and throughput increase. This is not the case for RoCE, where CPU utilisation decreases as the
message size increases. The most significant performance difference is visible for the 64kB messages. Here
the throughput of RoCE is almost twice as high, with only a third of the CPU utilisation required compared to
UDP.

This brief comparison demonstrates the performance of RoCE over UDP. However, it is important to un-
derstand that both UDP and RoCE methods can be improved by optimisations such as offloading, multiple
concurrent processes/streams and interrupt scheduling.

5.2. One-to-one setup
This section presents the results acquired in the one-to-one topology setup. In the following subsections, we
discuss different configuration results. We use previous experiments’ knowledge in subsequent subsections
to test more purposeful and optimised configurations. The selection of configurations is based on providing
an understanding of the impact of the RoCE features and arriving at a configuration that allows line rate
transport for the smallest possible message size along with low CPU utilisation. Where applicable, the most
relevant settings for each experiment will be stated; the remaining settings per experiment are available in
Appendix B.1. In each subsection, we first discuss noteworthy outliers and then discuss the impact of the
tested parameter.

5.2.1. Message size and memory page size
The first iteration of tests provides insights into the effects of the message size and memory type. The change
in the settings per configuration is listed in Table 5.2 of which the results are shown in Figure 5.1 and Fig-
ure 5.2, the data source (requster) and sink (responder) node respectively.

Configuration

97600

97800

98000

Go
od

pu
t [

M
bp

s]

Goodput

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 211 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Configuration

0

25

50

75

100

Ut
ilis

at
io

n
[%

]

Utilisation

Figure 5.1: Results of message size and page type test for the requester node (configurations provided in Table 5.2)

Table 5.2: Configurations during message size and page type tests (used in Figures 5.1 and 5.2)

Configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Page type T 2M 1G T 2M 1G T 2M 1G T 2M 1G T 2M 1G T 2M 1G T 2M 1G
Size 4kiB 16kiB 50kiB 250kiB 500kiB 1MiB 200Mib

5.2. One-to-one setup 41

Configuration

97600

97800

98000

Go
od

pu
t [

M
bp

s]

Goodput

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 211 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Configuration

0

20

40

60

80

Ut
ilis

at
io

n
[%

]

Utilisation

Figure 5.2: Results of one-to-one message size and page type test at responder node (configurations provided in Table 5.2)

First, both graphs show a relatively small standard deviation for each measurement. Though, the appli-
cation reported an empty send and receive queue on several occasions when using a message size of 4kiB
or 16kiB, regardless of the memory configuration. A more thorough investigation of the results during these
measurements revealed that the responder recorded missed packets (less than 500kB of data) when the re-
ceiver queue was empty. More importantly, throughput dropped to around 65Gbps simultaneously and took
about 350 milliseconds to recover to 97Gbps. This drop in throughput was also seen in the requester and
thus appears to be an effect of a congestion management method which reduces throughput. However, it
cannot be stated with certainty whether this was caused by a "hiccup" in the switch or by the receiver. The re-
quester also reported multiple empty transmit queues during these configurations. However, these occurred
at different times and did not seem to be related to the observations in the responder node. However, a short
throughput degradation of 10 to 20Gbps is visible for a single measurement interval when an empty queue is
registered.

Secondly, the goodput rate was higher than 98Gbps for all configurations with a message size between
50kiB and 200MiB. Besides, these configurations did not report any message loss or empty queues.

Message size
From the figures, it can be seen that the message size impacts both the throughput and CPU utilisation. The
CPU utilisation decreases as the message size increases in both the requester and responder nodes. This is
likely a result of a decrease in message rate since the goodput is nearly constant as the message size grows. A
lower message rate reduces the CPU’s workload since the rate of WR decreases, thus reducing the interaction
with the RNIC and the amount of memory state tracking. The results also show that the CPU utilisation of
the requester is higher than the receiver for each configuration. One viable reason is that the corresponding
memory regions must be looked up and passed along to the WR for each message.

Memory page type
The second aim of these tests is to identify the impact of the memory page type. Comparing the results of
equivalent message sizes provides insight into the effect of page types. This shows neither clear nor signif-
icant differences in goodput or CPU utilisation in Figures 5.1 and 5.2. Though, it is important to note that
the transported data is not used during the measurements. In other words, the test application does not
perform calculations on the memory used. An application using these memory blocks can benefit from a
particular page type as it reduces cache misses. From these tests, it can be concluded that RoCE can use 2MB
and 1GB pages without performance degradation. Moreover, on this (small) scale, there is no advantage or
disadvantage to using the memory type.

42 5. Results

5.2.2. Linked work requests and solicited events
The previous design space exploration showed that the RNIC could saturate a 100GbE connection with a
message size starting from 16kiB. At the same time, the CPU utilisation decreased as the message size in-
creased. This suggests room for improvement regarding CPU utilisation when using small-sized messages.
In addition, it makes less sense to further optimise low utilisation and high throughput configurations. For
this reason, we used 4kiB and 16kiB message sizes in the results discussed in this subsection.

In these tests, the interval at which solicited events are sent is linked to the number of linked WR. If the
solicited events mechanism is used, the program sends a single solicited message per linked work request.
Table 5.3 lists each configuration’s (varying) settings.

The goodput and CPU utilisation corresponding to the responder node is provided as boxplots in Figure
5.3. Note the goodput deterioration in configurations 1 and 6. A few congestion notifications (<300) were
sent, and a negligible amount of message loss was reported for these tests. Besides, the CPU utilisation of the
requester node was continuously close to 100% during these tests. This is also the maximum possible because
a single QP and, thus, a single thread were used. In addition, the send queue utilisation in the requester
was often exceptionally low (below 10%), and the queue often became empty. These readings suggest that
a limitation in the requester node caused the reduction in goodput. More specifically, the limitation occurs
due to the CPU overhead introduced by posting a single WR at a time to the RNIC since the goodput rate
increased when the number of linked WR increased, while all other settings remained unchanged.

Configuration
87500

90000

92500

95000

97500

Go
od

pu
t [

M
bp

s]

Goodput

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Configuration

20

40

60

80

Ut
ilis

at
io

n
[%

]

Utilisation

Figure 5.3: Results of one-to-one linked WR and SE test at responder node (configurations provided in Table 5.3)

Table 5.3: Configurations during linked WR and solicited events tests (used in Figures 5.3 and 5.5)

Configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#Linked WR 1 5 25 50 100 1 5 25 50 100 1 5 25 50 100 1 5 25 50 100
Solicited events no yes no yes
Size 4kiB 16kiB

The time series plot of a single run using configuration 1 is shown in Figure 5.4. The goodput decreases
three times to 55Gbps, whereafter it recovers to 92Gbps. An empty receive queue and a small amount of
message loss were recorded at the beginning of these reductions. Such a reduction also occurs in some other
configurations, albeit less frequently. A recurring phenomenon in these reductions is the registration of an
empty receive queue. So it appears that congestion mechanisms, such as pause frames, are sent when a
RoCE operation requires receive requests which are not present. This was not as expected because RoCE’s
documentation dictates that messages will be dropped if no receive requests are present. Moreover, it was
expected that backpressure from the RNIC would be treated differently from the lack of work requests. This is
because the RNIC can receive and process the messages but does not have a work request for this and should

5.2. One-to-one setup 43

4 5 6 7 8 9 10 11 12
Total wall time [s]

55000

60000

65000

70000

75000

80000

85000

90000

G
oo
dp
ut

 [M
bp

s]

0.1quantile= 88667 57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Ut
ilis

at
io

n
[%

]

0.9quantile= 74

Configuration: 1, run: 1, responder node505

Figure 5.4: Plot of the throughput and CPU utilisation, configuration 1 of the linked WR tests during one-to-one setup

therefore drop the message. Yet, it appears that PFC intervenes and causes the transmitter to send data at a
lower rate.

Impact of linked WR
The effect of linked WR on CPU utilisation (without the usage of solicited events) is not significant in the re-
sponder during both the 4kiB and 16kB tests, as the average CPU utilisation differed at most 5%. Especially
considering a common deviation in CPU utilisation of 2% between equivalent repetitions. Yet, from the good-
put results, it is clear that a message rate limit is reached if no linked WR is used, along with a message size of
4kB.

The effect of the linked WR on utilisation is different for the requester, as shown in Figure 5.5. The CPU
utilisation decreases as the number of linked work requests increase for the 4kiB and are equal when using
solicited events, as expected. The 16kiB configurations show a similar trend in CPU utilisation when the
number of linked WR increases. Though, the utilisation is higher when using solicited events. This is expected
to be a deviation because we measure on a non-real-time system, so background processes may also have
an influence. In addition, the CPU utilisation always exhibits a relatively large standard deviation in the
requester.

Impact of solicited events
More significant improvements are achieved when leveraging solicited events for 4kiB and 16kiB configura-
tions. The decrease in utilisation originates from the reduced number of notifications and, thus, fewer in-
terrupts. The reduction in the number of notifications also means that more work completions are retrieved
through a single API call. This further reduces the required interaction between the application and the verbs
API and RNIC.

The improvement becomes substantial in 4kiB configurations when the interval of solicited events in-
creases to 50 and 100. Whereas the improvement already becomes significant with an interval of 25 for runs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
configuration

60

80

100

 U
til

isa
tio

n
[%

]

Utilisation

Figure 5.5: CPU utilisation for different linked WR values in the requester (configurations provided in Table 5.3)

44 5. Results

with a message size of 16kiB. The CPU utilisation is reduced by almost 75% when using solicited events at
an interval of 25 messages with 16kiB messages, compared to its equivalent configuration without solicited
events. A similar comparison for the tests with a solicited interval of 100 messages when using messages of
4kiB shows a reduction of 52% in CPU utilisation.

Notice in Figure 5.3 stagnation of the advantage of solicited events for 16kiB configuration with an interval
of 50 and 100 solicited events, respectively configuration 19 and 20. The lower notification interval reduces
the workload related to receiving notifications and retrieving work completions. However, the number of
messages and immediate data to be processed does not change through the use of solicited events. So at
some point, the basic workload to process the number of messages will become apparent. And therefore, the
benefit of larger solicited event intervals will stagnate.

From the preceding discussion of the results, it can be concluded that posting linked WR may mainly
impact the requester and barely impact the responder. In addition, linked work requests can reduce or pre-
vent a bottleneck in the communication between the CPU and RNIC whenever there is a high message rate.
Lastly, the usage of solicited events positively affects the CPU utilisation of the responder. Though the benefit
stagnates at higher intervals, the interval where after stagnation occurs depends on the message size.

5.2.3. QP scaling and shared receive queue
An important characteristic of data transport in the application of radio astronomy is the support for mul-
tiple concurrent connections. We refer to the support of multiple concurrent connections of a protocol as
the protocol’s scalability. In this subsection, we take the first step towards testing the scalability of RoCE
between 2 nodes by increasing the number of QPs. In general, using multiple QPs in a single node can be
beneficial when using multiple parallel applications, processes or threads that need to communicate with a
remote node. In this section, the results and effects of the responder node are discussed. For completeness,
equivalent plots of the requester are provided in Appendix B.2. In short, the requester has a higher utilisation
compared to the responder. This could be reduced by signalling the completion events of fewer WR instead
of every WR, as discussed in Subsection 2.4.7.

The previous experiment revealed that solicited events positively affect the responder’s CPU utilisation.
In addition, using 50 and 100 linked WR gave a significant additional benefit when using 4kiB message sizes.
During the following measurements, the number of QPs increases, which will put more stress on the CPU
because it has to keep track of more connections and memory regions. It was decided to use solicited events
with 100 linked WR to reduce CPU utilisation without compromising insight into processed messages. The
other settings that are not varied during the following measurements are provided in Appendix B.1.

Scalability using separate threads
During these tests, the program processes each QP in a separate thread and each QP has a private send and
receive queue and a dedicated completion queue. The message size and the number of QPs per configura-
tion are listed in Table 5.4. Figure 5.6 shows the achieved performance when the number of concurrent QPs
increases between two end nodes. Note that the goodput is less than 1Gbps below the theoretical maximum
of 98.1 and 98.5 Gbps, respectively, for 4kiB and 16kiB. Moreover, the goodput was relatively stable, and a few
reductions in throughput were encountered during a few runs. More importantly, no significant or constant
congestion was observed during any run. The figure reveals a clear difference between the goodput of each
4kiB and 16kiB test, with the 16kiB configurations being 330Mbps higher.

For CPU utilisation, the 16kiB configuration consistently outperforms the 4kiB configuration, with the
difference increasing as the number of QPs increases. In addition, the CPU utilisation for the 4kiB configu-
ration increases drastically once the number of QPs increases to 100 and 500. The first part of the cause is
the increased context switching as the number of threads increases beyond the number of cores. Second,
the 4kiB configuration has four times more notification events to handle, which increases the number of
context switches compared to 16kiB configurations. Thirdly, the threads of the 4kiB configurations have a
higher workload as they need to process four times as many messages, each requiring immediate data checks
and placement of work requests. The third reason already causes an increase in CPU utilisation at lower QPs,
whose impact was also covered in previous subsections. Yet, it plays a magnifying effect as the number of QPs
increases since the threads have lower waiting (or idle) times, causing larger context-switching overhead.

The increase of CPU utilisation during 16kiB configurations is more gradual and thus encounters a minor
penalty as the number of QPs increases. Therefore, this result is more in line with our expectations, as the
total workload should not increase significantly as the aggregated message rate remains equal. So we should
only see a (small) multithreading overhead.

5.2. One-to-one setup 45

Configuration

97600

97700

97800

97900

Go
od

pu
t [

M
bp

s]

Goodput

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10
Configuration

20

40

60

80

Ut
ilis

at
io

n
[%

]

Utilisation

Figure 5.6: Results of one-to-one QP scalability test at responder node without SRQ (configurations provided in Table 5.4)

Table 5.4: Configurations during queue pair scaling test using one-to-one setup (used in Figure 5.6)

Configuration 1 2 3 4 5 6 7 8 9 10
Size [kiB] 4 16 4 16 4 16 4 16 4 16
QPs 1 5 10 100 500

Scalability using a shared receive queue
Examining the use of the Shared Receive Queue is worthwhile as the number of QPs increases. The perfor-
mance of the previous QP scalability test was satisfactory. Besides, we are interested in even higher scalability
at a later stage. Therefore, we use 100, 500 and 750 QPs in this test with 4kiB, 8kiB, 16kiB message sizes, as
assigned to the configurations in Table 5.5. Note that the 8kiB results were done at a later stage because the
4kiB configurations performed less than expected. All QPs are processed using the same SRQ and completion
queue in a single thread in the responder. The queue size for both the receive queue and completion queue
has been increased by a factor of 2 compared to previous tests, as it is expected to take more time to find the
data of each QP in an array. Increasing the queue size can help bridge this extra time to prevent a queue from
becoming empty. All other configuration values remained unchanged compared to the previous scalability
tests, such as 100 linked work requests and the use of solicited events.

The responder results for the SRQ configurations are shown in Figure 5.7. The goodput of all 4kiB con-
figurations is exceptionally low, with an average below 60Gbps. In addition, the NIC counters also indicate
that congestion was severe. The requester did not cause this degradation since identical settings were used in
previous tests when testing the scalability without an SRQ. In addition, a high amount of network congestion
was observed during the 4kiB configurations. Further investigation showed that this congestion was caused
by backpressure in the responder. The responder cannot process the data stream fast enough, causing it to
send congestion notifications to the requester and pause frames to the network switch. The requester then
reduces the data rate to reduce the congestion.

One reason for the degradation might be that the message rate is too high to handle in a single SRQ. A
NIC often uses parallel processing elements. In these tests, a single SRQ is used to process all messages which
belong to various QP resources. As a result, there is only one SRQ for all QPs, which possibly constrains the
parallelism, and that, together with a high message rate, can lead to a possible bottleneck in the RNIC. We
have not been able to validate this due to the many modifications required to support multiple SRQ threads
in our test application. Instead, 8kiB configurations are measured because one of the aims is to achieve a
close-to-line rate goodput with the lowest possible message size and low CPU utilisation. For the 8kiB, an
immediate increase in goodput and slightly lower CPU utilisation can be seen, compared to the 4kiB. Also
note that the goodput deviation does increase for the 8kiB configuration as the number of QPs increases. No
empty queues were recorded for all measurements, however, it is visible from the detailed results that the

46 5. Results

Configuration

60000

80000

100000

Go
od

pu
t [

M
bp

s]

Goodput

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9
Configuration

10

20

30

40

50
Ut

ilis
at

io
n

[%
]

Utilisation

Figure 5.7: Results of one-to-one shared receive queue test at responder node (configurations provided in Table 5.5

Table 5.5: Configurations used queue pair scaling with SRQ test using one-to-one setup (used in Figure 5.7)

configuration 1 2 3 4 5 6 7 8 9
Size [kiB] 4 8 16 4 8 16 4 8 16
QPs 100 500 750

queues for the 4kiB and 8kiB configurations regularly fall below 50% utilisation while for the 16kiB configura-
tion this remains, with a few exceptions, above 65%. Compared to previous measurements, more fluctuation
is observable in queue utilisation. The fluctuation is now more noticeable partly because there are far fewer
queue elements. To illustrate, without the SRQ, 2 queues were used per QP (a receive queue and a completion
queue). So for 500 QPs, a total of 1000 queues were used with 1000 elements each. For the same number of
QPs, using an SRQ, only 2 queues are used, each of which had 2000 elements. In the many-to-one setup, the
queue size will be increased. First, because without increasing the queue size, the number of QPs are equal
to available elements in the receive queue. Secondly, to reduce the possible negative effect of too small SRQ
with the knowledge that still many resources are saved by using the SRQ. Notice in Figure 5.7 that the CPU
utilisation increases incrementally with the number of QPs, while the goodput remains relatively constant.
For each WC received, the responder has to retrieve the corresponding QP data in a QP information array to
check the immediate data and flag the corresponding memory block. This causes an increase in CPU util-
isation since the computational overhead increases as the QP information array (in which to search for the
correct QP) becomes larger.

A comparison of the 16kiB configurations with and without SRQ is given in Table 5.6. This signifies a pos-
itive effect of the SRQ on CPU utilisation; however, the advantage reduces as the number of QPs increases.
This can be improved by running multiple SRQs or improving the arrays in the application, reducing the CPU
overhead due to searching and retrieving the QP data. After all, one of the ancillary benefits of distributing
QPs over more threads is the increase in cache memory, making the QP-related data more quickly available.
The results of 4kiB configurations with and without SRQ are not compared since the goodput is lower when
using the SRQ. It is expected that CPU utilisation always increases when the message rate rises, so it is impos-
sible to compare them properly.

Table 5.6: 10% quantile results of the (aggregated) CPU utilisation, one-to-one QP scaling

Number of QPs 100 500 750
Seperate threads 23% 24% -
Shared receive queue 11% 17% 20%

5.2. One-to-one setup 47

5.2.4. GPU memory via peerDirect and SRQ
The RNIC can directly access part of the GPU memory through the PCIe interface by using the GPU peerDirect
configuration described in Section 2.6. Consequently, the data traverses the PCIe bus once, reducing the
load on the PCIe bus. Using the GPU memory in this manner requires the Mellanox and Nvidia drivers to
be installed appropriately, as detailed in Subsection 2.4.8. Though, some Linux kernels are also not (yet)
supported. Because of these restrictions and the use of a research compute cluster, which others also use, it
has only been possible to use the GPU memory via DAS6 node505. Besides, note that the CPU still handles
the control of RoCE and thus, the GPU only receives or sends data.

Two message sizes were used to investigate the performance of RoCE with GPU memory; the results are
shown in Figure 5.8 and the corresponding configurations Table 5.7. The goodput decreases significantly as
the number of QPs increases. The number of QPs, whereafter the goodput decreases, is lower for the 8kiB
configuration than for the 16kiB configurations. It is also noticeable that the goodput fluctuates significantly
when using one QP. The fluctuation is substantially less when 10 or 100 QPs are used along with 16kiB message
sizes, configuration four and six, respectively.

The trend of CPU utilisation with increasing QPs is consistent with previous measurements. However, the
increase is lower than during the SRQ test using main memory, likely due to the decreased data rate. As a
result, only configuration 6 can be compared with configuration 2 of the previous SRQ test, which is listed
in Table 5.5 and shown in Figure 5.7. Both configurations achieve a CPU utilisation of around 11%. The
10% quantiles are 94.5Gbps and 97.5Gbps for configuration 6 and SRQ main memory test configuration 2,
respectively. Therefore, this difference is only 3Gbps, and the averages are closer. The main difference is a
systematic decrease in goodput when using GPU memory, which is not present in previous measurements.

Configuration

70000

80000

90000

100000

Go
od

pu
t [

M
bp

s]

Goodput

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10
Configuration

10

20

30

Ut
ilis

at
io

n
[%

]

Utilisation

Figure 5.8: Results of one-to-one GPU tests at responder node (configurations provided in Table 5.7)

Table 5.7: Configurations used during GPU test in one-to-one setup (used in Figure 5.8)

Configuration 1 2 3 4 5 6 7 8 9 10
Size [kiB] 8 16 8 16 8 16 8 16 8 16
QPs 1 10 100 500 750

Figures 5.9a and 5.9b show the trajectory of the (aggregated) goodput and utilisation over time for con-
figurations 1 and 6, respectively. These figures are provided in larger dimensions in Appendix B.2 Figure B.5.
Notice the large drops in goodput down to 65Gbps and the more frequent drops to 88Gbps at intervals of
1.2 and 0.1 seconds in Figure 5.9a. The interval of these reductions is constant over time, and the amount of
reduction is also remarkably consistent. We do not observe this phenomenon in configurations that do not
utilise GPU memory. In addition, this phenomenon is only observed during configurations 1, 2, 4 and 6, as

48 5. Results

1 2 3 4 5 6 7 8 9
Total wall time [s]

60000

65000

70000

75000

80000

85000

90000

95000
G
oo
dp
ut

 [M
bp

s]

0.1quantile= 76628

6

7

8

9

Ut
ilis

at
io

n
[%

]

0.9quantile= 8

Configuration: 2, run: 3

(a) GPU throughput and utilisation using 1QP and message size of 16kiB

1 2 3 4 5 6 7 8 9
Total wall time [s]

90000

92000

94000

96000

98000

G
oo
dp
ut

 [M
bp

s]

0.1quantile= 94284
10

12

14

16

18

Ut
ilis

at
io

n
[%

]

0.9quantile= 12

Configuration: 6, run: 3

(b) GPU throughput and utilisation using 100QP and message size of 16kiB.

Figure 5.9: Time series plots of throughput and utilisation in one-to-one setup using GPU memory

listed in Table 5.7. To point out, the configurations in which a throughput of around 97.9Gbps is achieved
suffer from these consistent short-lived decreases in goodput. From the number of congestion notifications
during these measurements, it is clear that these anomalies result from backpressure due to GPU memory
usage. However, it is unclear what caused the backpressure; using fewer memory regions, a larger receive
queue, or a larger message size did not improve the goodput results. A possible cause might be reduced
bandwidth to the memory due to TLB misses. This might be overcome by allocating the full BAR size once
via the CUDA kernel API and ensuring that the separated memory regions are connected continuously in the
GPU memory.

GPU utilisation and consumption were measured in a separate test with the same configurations by
querying the parameters at an interval of ten milliseconds using nvidia-smi. The idle consumption of the
A100 was measured to be around 36 watts, which increases to 45 watts during memory allocation and deallo-
cation. The power consumption during the data transport is about 2 to 4 watts higher than idle consumption.
Both GPU and memory utilisation are reported at 0%. The low power consumption and utilisation increase
are partly due to the absence of a compute kernel that uses the received data.

Moreover, the lack of a CUDA kernel meant it was impossible to profile the transport via another tool,
such as Nvidia Nsight systems. It is unclear whether such direct memory access would be reported as it does
not occur via the CPU. Adding a CUDA kernel and measuring performance on the GPU remains as future
work.

5.2.5. Conclusion
In summary, the following conclusions were derived from the experiments in this section:

• Increasing the message size reduces the CPU utilisation in both the requester and responder as the
notification frequency is reduced. Moreover, fewer immediate data and work completions must be
checked, reducing CPU utilisation.

• Tests have shown that up to 200MiB message sizes can be transferred. However, the data of an entire
message is lost if a single Ethernet frame is not received. We have shown that with 16kiB we already
achieve a good performance for our use case (goodput of 98Gbps and CPU utilisation of 75% using one
QP without optimisations).

• The use of transparent huge pages, 2MB or 1GB huge pages, has shown no significant advantages or
disadvantages when using a single QP.

• Linked work requests have more impact on requesters than responder QPs. We identified that posting
a single work request at a time (for small message sizes) does not reach the full performance and that
linked work request should be used instead.

• Solicited events reduce the CPU utilisation of the responder and have no negative effect on the goodput.
Though, if the interval becomes too large, the reduction in CPU utilisation will stagnate. This is because
the amount of messages and immediate data does not change per time interval, so there will always be
a minimum load to process them.

5.3. Many-to-one setup 49

• It is possible to use up to 500 QPs with a one-to-one connection with only 23% CPU utilisation and
goodput of 98Gbps by using threads per QP, 16kiB message size, solicited events and link work requests
of 100.

• Using 4kiB message sizes compared to 16kiB causes four times higher CPU utilisation at a larger num-
ber of QPs. This makes sense as there are four times as many work requests (and thus immediate data)
to process. This also provides four times more fine-grained insight into which memory parts contain
data. However, this factor of 4 was previously not reflected in the CPU utilisation, so with a lower num-
ber of QPs, the penalty of a smaller message size is less.

• An SRQ reduces CPU utilisation by more than 50% for 100QPs. However, this benefit decreases as the
number of QPs increases. The main reason for this is the increasing inefficiency of searching a QP’s
data in an array that scales with the number of QPs. In addition, configurations with a message size of
4kiB achieve low goodput. This is probably due to the high message rate without sufficient parallelism
in the RNIC because of the single SRQ. In the future, these issues can be addressed by using multiple
SRQs or by improving the search algorithm and data locality of the QP data.

• Direct memory access to GPU memory is possible from the RNIC and has no effect on CPU utilisation
compared to the use of main memory. However, the goodput does degrade when using more QPs. In
addition, systematic short-lived reductions in goodput are observable when a goodput rate of 98Gbps
is obtained, for which the cause is unknown.

From the results, we can evaluate some of the requirements established for transport methods for the use
cases considered in this thesis. It is evident that RoCE packets can be routed over networks as standard UDP
Ethernet packets, and thus the RoCE protocol complies with R2. Furthermore, the measurements have shown
that the program provides insight into (incorrectly) received messages and data, as stipulated in requirement
R6, when using the WRITE with immediate data operation and the unreliable connection transport service.
Lastly, this operation and transport method satisfies requirement R5 because these settings do not demand
retransmission if something goes wrong during data transfer. In the subsequent sections of this chapter, we
will conduct tests to validate requirements R3 and R4, which address network topologies and the minimum
goodput.

5.3. Many-to-one setup
This section presents our results acquired in the many-to-one topology setup. We use four similar nodes as
requesters of the RDMA WRITE operation, which write concurrently into a single server node. While develop-
ing the scalability capability in the application, it was noticed that high congestion occurs when we connect
4x100GbE to 1x100GbE. This caused significant fluctuations in the goodput due to the PFC and RoCE con-
gestion management mechanisms. In our research, we want to test the RoCE protocol and its application in
radio astronomy systems. A key characteristic of this application area is a stable data rate from data-sending
FPGAs over a network where the number of end nodes does not change during measurement. As a result, it is
known in advance which data rate needs to be processed and from how many transmitters it originates. Be-
cause of these properties, we decided to limit the bandwidth of the (maximum) four transmitters to 23Gbps
and thus an aggregated bandwidth of 92Gbps.

In addition, the ECN thresholds in the switch have been adjusted. This is because the buffers in the switch
are more heavily loaded in a many-to-one setup than in a one-to-one because multiple data streams have to
be merged. The ECN minimum threshold is set to 4MB and the maximum threshold to 6MB.

In this section, we first discuss the results of the QPs in separate threads, then the use of the SRQ in this
setup and lastly, the use of GPU memory. The section concludes with a comparison of these configurations.

5.3.1. Scalability using separate threads
Processing each QP in a separate thread is similar to having a different process per connection, which can be
desirable if one has a separate processing pipeline for (part of) the connections. The scalability is tested up to
2000 QPs in the responder node, thus up to 500 QPs per client. More information regarding the methodology
is provided in Subsection 3.5.3.

Figure 5.10 depicts the performance of the responder node. The system does not achieve its maximum
theoretical performance as the number of QPs and client nodes increases. When using 40 QPs or more, a
decrease in goodput and an increase in congestion notifications are noticed. During the one-to-one setup, it

50 5. Results

Configuration

60000

70000

80000

90000

Go
od

pu
t [

M
bp

s]

Goodput

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8
Configuration

10

20

30

40

Ut
ilis

at
io

n
[%

]
Utilisation

Figure 5.10: Results of many-to-one without SRQ at responder node (configurations provided in Table 5.8)

Table 5.8: Configurations during queue pair scaling test using many-to-one setup (used in Figures 5.10 and 5.12)

configuration 1 2 3 4 5 6 7 8
Size [kiB] 8 16 8 16 8 16 8 16
QPs 4 40 400 2000

was confirmed that the test application could process 500 QPs simultaneously from a single requester with a
goodput of 97.9Gbps. The one-to-one setup using 500 QPs is superior to the results obtained using 400 QPs
in the many-to-one setup, which resulted in an average goodput of around 72Gbps for both message sizes.

Configurations 3, 4 and 6 report a large distribution of the goodput. For configurations 3 and 4, the results
showed that the goodput varied greatly during the measurement for each of the three iterations. For better
insight, a time series plot of the goodput for configuration 3 is provided in Appendix B.4 Figure B.7. This dis-
crepancy is unexpected because these configurations use as few as 40QPs, and previously good results were
obtained for this order of magnitude of QPs. The number of memory regions, queue formats and measure-
ment intervals remained the same compared to the one-to-one setup. We, therefore, expect no significant
increase in RNIC resources or negative impact of conducting a measurement. In addition, queue utilisation
was always high during each measurement and never reported as empty. This discrepancy was also noticed
for 40 QP configurations using SRQ, while a higher number of QPs using SRQ achieved good results. Hence,
we cannot identify a clear justification for these two configurations’ large degradation in goodput.

The measurements of configuration 6 report a distribution of the goodput between 90Gbps and 55Gbps.
A better analysis shows that a stable goodput of 90Gbps was achieved during run 1 of the three iterations of
this configuration, as depicted in Figure 5.11a. While a subsequent test (run 2) with exactly the same settings
achieved a goodput of around 72Gbps, Figure 5.11b. For run 2, many congestion notification messages were
sent, while almost no congestion notifications were sent for run 1. No differences could be noticed in the
queue utilisation between the runs, and it was also verified that no one else was using the network at the time
of the measurements. We expect this performance difference to result from PFC intervening too hard caused
by start-up glitches. It is noticed that at start-ups, the ETS rate limit is sometimes exceeded very briefly. In
addition, the first activated QP threads have a high data rate at start-up for a very short time, whereas this peak
decreases or even disappears for subsequently launched threads. We, therefore, expect that this behaviour
can be improved by implementing a slow start mechanism, for example, by filling the send queues in the
requester threads more slowly at start-up. In our setup, we cannot observe the PFC behaviour in detail, so a
definite cause cannot be ascertained.

The goodput deviation appears small for the 2000 QPs configuration; however, this reflects the aggregated
goodput. An examination of the goodput per QP reveals a variation of up to 20% from the average throughput

5.3. Many-to-one setup 51

of a QP in the requester. A more significant deviation in the goodput per QP was also measured for the other
configurations of this test compared to the one-to-one test setup. Yet, this variation is not as visible in the
responder node, which could be attributable to the buffer space in the switch.

4 6 8 10 12
Total wall time [s]

60000

65000

70000

75000

80000

85000

90000

G
oo
dp
ut

 [M
bp

s]

0.1quantile= 90502

Configuration: 6, run: 1

(a) Stable throughput during run 1

4 6 8 10 12
Total wall time [s]

50000

55000

60000

65000

70000

75000

G
oo
dp
ut

 [M
bp

s]

0.1quantile= 72749

Configuration: 6, run: 2

(b) Instable and lower throughput during run 2

Figure 5.11: Time series plots of the throughput for two runs using configuration 6 in Table 5.8

5.3.2. Shared receive queue thread
The SRQ and associated completion queue are increased to 20.000 elements to ensure that each QP can con-
sume multiple receive requests before replenishing the queues. The queue size of requesters is not modified
since the number of QPs per client does not increase, and also, no issues were signalled in the requester nodes
in the previous measurement.

Note that the performance of the SRQ configuration, as shown in Figure 5.12, is better than the previous
test with separate threads. The goodput has a 10% quantile of at least 89.9Gbps for all configurations except
configurations 3 and 4, which use 40 QPs. Also note that unlike the results of the one-on-one setup using the
SRQ, the configurations with 8kiB have no (additional) goodput degradation compared to the 16kiB configu-
ration. This is most likely a result of the Ethernet rate limit being lower than the rate at which the bottleneck
occurred in the previous setup.

Up to 6 times more congestion notifications were sent in the tests of configurations 3 and 4 compared to
the other configurations. In addition, the goodput varied considerably for each of the three measurements

Configuration

70000

80000

90000

Go
od

pu
t [

M
bp

s]

Goodput

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8
Configuration

20

40

60

80

Ut
ilis

at
io

n
[%

]

Utilisation

Figure 5.12: Results of many-to-one SRQ at responder node (configurations provided in Table 5.8)

52 5. Results

per configuration; in other words, each of the three measurements achieved equal distribution in goodput.
The deviation in the goodput corresponds thus to the result for the equivalent configuration in the previous
test with threads per QP. The anomaly is unique to the use of 40 QPs in the responder and was not examined
in more detail because the configurations with more QPs did perform well.

For the other configurations, the variation of the goodput is smaller. Yet, we noticed that the variation in
goodput is more prominent in the responder than in the requester. Which is contrary to what was previously
observed in the many-to-one measurement using threads per QP. The QPs in the transmitters now have less
than 2% deviation from their average goodput, while in the responder, there are many outliers of 5% duration
of a single data point. However, these variations are so small and less than the 10% variation prescribed by
the ETS protocol that no further research has been devoted to this.

The utilisation for the smaller message size increases more strongly as the number of QPs increases. And
note that CPU utilisation for 16kiB configurations is between 30% and 50% lower than for 8kiB configurations.
The underlying reasons for this are expected to be similar to those mentioned earlier for the QP scaling using
the one-to-one setup.

5.3.3. GPU memory and shared receive queue
This subsection discusses the results obtained while using GPU memory in the responder node; all other
settings are the same as those discussed in the previous subsection. Configurations without the SRQ are not
tested since configurations with separate threads per QP, as discussed in Subsection 5.3.1, resulted in poor
performance.

Interesting to note from Figure 5.13 is that the goodput when using 2000 QPs with GPU memory is, on
average, above 90Gbps. In addition, the goodput and CPU utilisation averages of the other configurations,
except configuration 7, are equivalent to the SRQ test with main memory. Besides the lower goodput for con-
figuration 7, four more findings are worth noting. First, the goodput variation is slightly larger than reported
in the SRQ test with main memory tests. Secondly, the goodput is improved compared to the one-to-one
setup with GPU memory. Compared to the one-to-one setup, there are fewer congestion notifications (ex-
cept for configuration 7). In addition, we do not observe a systematic short-lived reduction of the goodput
for any measurement, as was present in the one-to-one GPU measurement discussed in Subsection 5.2.4.
Firstly, this could result from the limited aggregated throughput of 92Gbps. Secondly, the ECN threshold
beyond which the switch sends notifications has been increased, allowing better handling of short-term con-
gestion. Another difference from the one-to-one setup is the larger receive queue in the responder; however,
we do not expect this to have had any (significant) effect. After all, the (smaller) receive queue did not seem
to have been a problem in the one-to-one measurement because it was constantly populated for more than
60%. In short, we expect the rate limit and higher ECN thresholds to have positively affected the goodput.

Thirdly, it can be observed that the configurations using 40 QPs suffer from the same goodput degra-
dation as the equivalent configuration during the SRQ test with main memory. Hence, this degradation is
not expected to be caused by GPU memory. Lastly, the analysis of the individual measurements shows that
all 16kiB configurations have significantly lower congestion and minor fluctuation in goodput than the 8kiB
configurations. One reason for this might be that this larger message size requires fewer memory translations
per unit of time because the message rate is lower. As a result, the RNIC suffers less from cache misses.

As noted earlier, the goodput for configuration 7, which uses 2000 QPs and a message size of 8kiB, is lower
than the configured rate limit of 92Gbps. The queue utilisation in the requesters and responder was high
and thus did not pose a problem. Though a lot of congestion notifications were sent indicating backpressure
from the responder. The same configuration without GPU memory achieved a goodput of over 90Gbps, as
presented in Figure 5.12, which proves that the number of QPs and the message rate can be processed in
a single SRQ thread. So the problem seems to occur due to writing data to GPU memory, yet, it resolves
when using a message size of 16kiB. As the number of QPs increases, the number of memory blocks used
increases proportionally. And so, there are five times more memory locations used by the received operations
when using 2000 QPs compared to 400 QPs. On top of that, the memory locality of consecutive received
operations in the responder decreases as the number of QPs increases. Consequently, the number of TLB
misses is expected to increase when the number of QPs increases due to poorer memory coalescing. A TLB
miss increases the time before data can be written, increasing the pressure on the ingress buffer.

Yet configurations using larger message sizes or main memory do not suffer from the increase in TLB
misses. The page type was set to transparent huge pages when using main memory. So it is feasible that the
OS used a page size of 2MB or 1GB, decreasing TLB misses. However, this was not validated by enforcing a
4kB or 2MB page size and thus remains for future work. In addition, a larger message size (and its resulting

5.3. Many-to-one setup 53

Configuration

70000

80000

90000

Go
od

pu
t [

M
bp

s]

Goodput

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8
Configuration

20

40

60

Ut
ilis

at
io

n
[%

]

Utilisation

Figure 5.13: Results of many-to-one GPU SRQ at responder node (configurations provided in Table 5.9)

Table 5.9: Configurations during queue pair scaling test using many-to-one setup and GPU memory (used in Figure 5.13)

configuration 1 2 3 4 5 6 7 8
Size [kiB] 8 16 8 16 8 16 8 16
QPs 4 40 400 2000

lower message rate) also reduces the number of TLB misses per unit of time. The lower message rate reduces
the number of (scattered) memory blocks needed in a time unit. In addition, RoCE Ethernet packets are re-
quired for a single message whose memory addresses are near each other, reducing the probability of a TLB
miss. And so, we estimate that the impact of TLB misses is up to 50% less for the 16kiB GPU configuration
compared to the 8kiB GPU configuration. For GPU memory, it is impossible to adjust the page size; however,
one can force the memory addresses of all memory blocks to align to improve data locality, as discussed in
Subsection 5.2.4. Unfortunately, we could not gain insight into the alternation of RDMA operations originat-
ing from various QPs at 90Gbps because the NICs using TCPdump cannot store Ethernet traffic at this data
rate.

5.3.4. Conclusion
In this section the number of QPs denotes the total aggregated number of QPs in the measurement, further-
more, four requesters (transmitters) were used and one responder (receiver). If for instance 40 QPs is stated,
it implies that there were 40 QPs in the responder and 10 QPs in each requester.

• When using threads per QP the goodput becomes very poor once 40 QPs or more are used. For four
QPs, a stable goodput of 90Gbps is measured, which is the theoretical maximum due to the used rate
limit. In addition, the goodput for 40 QPs is unstable between 90 and 70Gbps and for 400 and 2000 QPs
the goodput is relatively equal and stable at 72Gbps.

• Utilising a single SRQ thread, up to 2000 QPs can be processed at 90Gbps with CPU utilisation of up to
80% and 43% for message sizes of 8kiB and 16kiB, respectively. In addition, an increase in the goodput
deviation was identified as the number of QPs increased.

• Unlike the earlier GPU measurements in the one-to-one setup, the GPU configurations in the many-
to-one setup do perform equivalent to the SRQ configurations with main memory. The 8kiB with 2000
QPs is the only deviating configuration with a goodput of 80Gbps. We expect this to be caused by the
increase in random writes to GPU memory (reduced memory coalescing) at a high message rate which
also increases TLB and/or cache misses. For 16kiB, we expect this effect to be less significant (and not

54 5. Results

observable) because the message rate is twice as low, and thus the alternation between memory blocks
is twice as low.

The many-to-one setup shows that the SRQ configurations, with and without GPU memory, can achieve a
throughput of 90Gbps for 2000 QPs with 16kiB message size. The goodput for these configurations was lim-
ited by the rate limit as no congestion or backpressure was noticed. With these results, we confirm that RoCE
satisfies requirement R3 and R4 for a many-to-one setup.

5.4. One-to-many setup
In this setup, the most powerful node (node505) is used as a requester and four other nodes as responders.
The most powerful node is used as the requester because, in previous measurements, it was found that the
requester is more heavily loaded than the responder. Furthermore, SRQs are used in each receiver to keep
utilisation and resource requirements low. Due to system limitations, GPU memory is not used during these
tests because direct access to GPU memory is only possible on node505. This means we would read the data
from the GPU and place it in standard DRAM main memory in the receiving nodes. This has no relevance
to the use cases and was therefore not tested. All other settings (except the topology) remained unchanged
from the previous one-to-many tests. The settings per configuration are similar to previous SRQ and GPU
with SRQ tests and are shown in Table 5.8.

5.4.1. Shared receive queue

configuration

10000

20000

av
er

ag
e

Th
ro

ug
hp

ut
 [M

bp
s] Throughput

1 2 3 4 5 6 71 2 3 4 5 6 7
configuration

0

10

20

av
er

ag
e

Ut
ilis

at
io

n
[%

] Utilisation

node501

Figure 5.14: Results of one-to-many SRQ at responder node (configurations provided in Table 5.10

Table 5.10: Configurations during queue pair scaling test using one-to-many setup (used in Figures 5.14 and 5.15)

configuration 1 2 3 4 5 6 7 8
Size [kiB] 8 16 8 16 8 16 8 16
QPs 4 40 400 2000

The result of one of the four responder nodes is shown in Figure 5.14. The goodput is constant at 24.4Gbps
for configurations up to and including 400 QPs. There is no difference in goodput for these configurations, so
8kiB and 16kiB perform equally well. On the other hand, notice the increase in CPU utilisation distribution
as the number of QPs increases. In addition, as previous results showed, CPU utilisation is higher for 8kiB
configurations compared to 16kiB configurations.

5.4. One-to-many setup 55

Note that in Figure 5.14, configuration 8 is missing. This is because there are problems with these mea-
surements and with the measurements of configuration 7. For these two configurations, timeout events were
recorded for different responder nodes. This implies that for 10 seconds no data was received after the SRQ
thread was started. No network congestion was observed during any of the measurements. This indicates
that the responder nodes had no problems processing the amount of data because any issues are noticeable
by message drops or backpressure in the network that (eventually) require congestion management. The
main reason for these timeouts seems to be a design flaw. Firstly, the test application uses a delay mecha-
nism for requester nodes to ensure responders are ready to receive data. Though, in this setup, the requester
takes longer to initialise and modify QPs and to fill the queues as it has to handle up to 4 times as many QPs
as the responders. This may have caused too much delay for some clients, triggering the timeout. Secondly,
the number of individual threads and compute load could be a problem. The troublesome configurations
have five times more QPs than have been tested in a requester. Moreover, in the previous measurements, it
had been noticed that the CPU load in the requester was always higher than in the responder. The higher
workload per thread and the huge number of threads can cause scheduling problems and increase cache
misses.

This can be improved by handling multiple QPs in a single thread. For example, running 50 threads that
each handle 40 QPs reduces the number of context switches. This makes it possible for multiple QPs to use
the same completion queue, reducing the number of resources and notification channels. Besides, there was
no focus on the number of cache misses and data locality during development. Providing only the strictly
necessary information to a thread and storing it more efficiently in smaller structures can reduce the penalty
for context switching (and cache misses). But to reduce CPU utilisation even more drastically in the requester,
signalled events should be used. This reduces the number of work completions, thus decreasing CPU utilisa-
tion because not every send request is checked for correct transmission. However, if something goes wrong
when processing a work request, it will always result in a work completion with associated error codes. So
signalled events lower the insight into time points when send work requests are completed but retain insight
into errors.

Also note from Figures 5.14 and 5.15 that the goodput in the responder varies more at 400 QPs than at 4
QPs and 40 QPs while this increase in variation is not visible in the requester. Hence, the requester can keep
the aggregated throughput relatively stable, but the stability of the throughput distribution per QP decreases
as the number of QPs increases.

5.4.2. Conclusion
This setup proved that it is possible to achieve a goodput of 97.6Gbps when using up to 400 QPs in a one-
to-four topology. With the achieved data rate, requirement R4 (in which a minimum goodput of 90Gbps is
specified) is amply fulfilled. In addition, this latest setup proved that the protocol also supports a 1-to-N
topology. So it is affirmed that the protocol meets requirement R3, which requires the data transport method
to support different network topologies such as 1-to-1, 1-to-N and N-to-1. Nevertheless, performance was
not as satisfactory when using 2000 QPs. Three implementation modifications were identified to improve
performance, firstly implementing signalled events to reduce the processing load per QP. Secondly, reducing
the number of threads by processing more QPs in a single thread and optimising the data structures used to
reduce the context switch and cache miss penalty.

56 5. Results

configuration

60000

80000

100000

av
er

ag
e

Th
ro

ug
hp

ut
 [M

bp
s] Throughput

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8
configuration

200

220

240

260

av
er

ag
e

Ut
ilis

at
io

n
[%

] Utilisation

Figure 5.15: Results of one-to-many SRQ at requester node (configurations provided in Table 5.10

6
FPGA implementation and results

Most radio telescope systems require data transport from FPGAs close to antennae to a central processing
location. In this thesis, we investigate the feasibility of RoCE for such systems; therefore, we also examine its
implementation on FPGAs and its possible limitations. This chapter discusses our methodology and results
to create a proof-of-concept implementation of RoCE on FPGA. The RoCE protocol requires a UDP/IP net-
work stack and a DMA implementation augmented with RoCE. Fully implementing such a complex system
is infeasible in the time frame of our project. Hence, we discuss available RoCE FPGA implementations in
Section 6.1, whereafter we discuss the selected implementation in greater detail in Section 6.2. Section 6.3
covers the experimental setup and methodology. Lastly, we discuss the results in Section 6.4.

6.1. Related FPGA implementations
This section evaluates the existing FPGA RDMA solutions in order to compare their opportunities and short-
comings. Schelten et al. present a network-attached accelerator (NAA) framework with partial support for
RoCEv2 [39, 43]. This framework implements a Reliable Connection allowing SEND and RDMA WRITE op-
erations. They implement the READ operation via a so-called pre-RDMA operation which starts a WRITE
operation on the remote node. Unfortunately, this implementation supports just a single RDMA connection
and the implementation is not publicly available at the time of this study. Multiple connections are supported
in the RDMA acquisition system for high-performance applications (RASHPA) framework developed by Man-
sour et al. [33] for the European Synchrotron radiation Facility (ESRF). Yet, they provide an even more custom
RDMA protocol over Ethernet based on RoCEv2. Besides, they report throughput results between CPU and
FPGA but do not report the number of QPs nor the resource utilisation on the FPGA. This makes it difficult to
compare them quantitatively. StaR is proposed in [50] to solve the scalability problem of RDMA by transfer-
ring states to the other communication end. Despite their research showing that their proposal works, they,
like the aforementioned ones, do not use a mature and general protocol.

Companies such as Xilinx and BittWare also offer RDMA FPGA implementations, respectively ERNIC [20]
and GROFV RDMA [8]. Both claim to be compatible with RDMA NICs at 100Gbps. ERNIC is limited to Reliable
Connection and up to 127 QPs, while GROFV supports all transport services except DC and is scalable to more
than 1023 QPs. Unfortunately, these implementations are a black box model and require significant licensing
costs or costs to have the implementation adapted to the targeted implementation.

Korolija et al. [28] implement an open-source RoCEv2 stack operating at 100GbE into their Coyote Frame-
work [44]. Coyote is an extensive framework providing secure spatial and temporal multiplexing of FPGA
kernels, network interfaces (such as RDMA, TCP and UDP) and memory services to leverage host memory
and the FPGAs DRAM or HBM memory. The network stack is an improvement on previous open-source
FPGA projects such as Limago [38], and StRoM [41]. The StRoM network stack has been evaluated between
two FPGAs by T. Song [42]. The stack supports WRITE and READ operations over a reliable connection service
and supports up to 500 connections, which should be relatively easy to enlarge as the stack consists of HLS
code. This RoCE stack was designed to work between FPGAs and between FPGA and RNIC, but has not yet
been validated between an FPGA and RNIC.

The SKA concortium, whose RNIC implementation was discussed earlier [5], implemented the RoCE
SEND over unreliable connection in VHDL to be used between two FPGAs. Results for this were shared in

57

58 6. FPGA implementation and results

internal documentation, however, the implementation was not available to us.
To summarise, the IPs provided by Xilinx and BittWare are the only ones currently claiming to support

RoCE communication with RNICs. Other implementations, such as RASHPA and the NAA framework, pro-
vide a custom RDMA protocol or redefine an RDMA operation, making it very unlikely to work with network
cards. The Coyote framework provides a scalable and open-source available RoCE implementation which
seems to require small modifications to support Unreliable Connection since UC requires a subset of the
functionalities of RC. Moreover, Coyote is an actively maintained framework and a continuing development
of the (no longer actively maintained) Limago and StRom implementations. Given these points, we decided
to use the Coyote framework as a starting point for our implementation and tests.

6.2. Coyote
Coyote is a framework that offers a configurable "shell" for FPGAs supporting various OS abstractions (such
as processes and virtual memory). Coyote provides three essential components; first, it provides a recon-
figurable FPGA implementation for various Xilinx FPGAs. Secondly, a high-level C++ Coyote API provides a
runtime manager and an application interface to control the user-defined logic in the FPGA. Lastly, Coyote
contains a custom low-level Linux kernel driver responsible for communication with the FPGA and memory
mappings.

The FPGA implementation can be divided into two parts: the static and dynamic regions. A high-level
overview of Coyote’s FPGA structure is shown in Figure 6.1. The dynamic region consists of vFPGAs, which
can be reconfigured at runtime. These vFPGAs contain user-defined logic within a static wrapper. The wrap-
per provides an interface to the rest of the system, the static region. The static region includes logic to enable
partial reconfiguration and communication with the CPU’s OS and optional logic such as memory and net-
work stack. The memory stack contains logic to use the HBM or DRAM memory located at the FPGA and the
host’s CPU memory through XDMA. While network services such as TCP/IP and RoCEv2 are implemented in
the network stack.

Figure 6.1: Coyote high-level overview (Fig. 1, [28])

The network stack is based upon the open-source work of Sidler [40, 12]. This work supports TCP/IP,
RoCEv2 and UDP/IP at 10-100Gbit/s. The network stack is mainly developed in HLS, improving readability
and ease of adjustment compared to HDL programming. We are mainly concerned with the RoCE stack,
shown in Figure 6.2, which is built upon the UDP/IP implementation. The implementation supports the
Reliable Connection transport service and three operations; SEND, RDMA WRITE and RDMA READ. Each

6.3. Methodology 59

protocol header is processed in several stages and, if successful, removed after which the remainder is passed
on to the next stage. The overview shows a clear separation between the data path at the edges and the state-
keeping structures in the middle. The CPU application and user-defined logic in the vFPGAs can fill these
tables and queues. The sizes of these tables and queues can be adjusted at compile time though it already
supports 500 QPs by default.

Figure 6.2: RoCEv2 FPGA architecture overview (Fig 5.4, [40])

6.3. Methodology
6.3.1. Experimental setup
We use two clusters to validate the RoCE stack of Coyote, namely the ETH Zurich hybrid accelerated compute
cluster (HACC) and the DAS6 cluster at ASTRON. The AMD and Xilinx university program provides five com-
pute clusters (HACCs) across the world.1 2 An overview of the available hardware in ETHz HACC is provided
in Section C.1. In our test, we used two alveo U55C nodes as these nodes were provided with an easy-to-use
hotplug boot script. This script eliminates a warm reboot of the system to discover the new PCIe memory
mapping of Coyote. Besides, the FPGA on the U55C is the same as for the U280 which we have available in
DAS6. The main difference between them is the availability of DRAM and HBM memory. The available hard-
ware in the DAS6 cluster is covered in Appendix 3.1. In this cluster, we used node505 as it is equipped with the
U280, and another standard node is used to receive and inspect the RoCE Ethernet packets. The framework
is built using Xilinx 2022.1 tooling and python for some automation. The Coyote API and test program are
compiled using C++17.

6.3.2. FPGA - FPGA validation
The FPGA RoCE network stack will be validated with two FPGAs in HACC leveraging host CPU memory. The
RoCE FPGA network stack provides the message size as a configuration parameter. So the stack does not
provide features such as SRQ and linked requests. These tests will be performed over a reliable connection
using WRITE operations since the FPGA stack does not support UC service and write with immediate oper-
ations. We vary the message size between 128B and 2GB with increments of factor 2. We use the rdma_perf
example application provided in the Coyote repository as a basis for these tests. The throughput and latency
measurements are performed with CPU counters. The timing measurements, therefore, also include PCIe,
driver and interrupt latencies. As a result, measurements may be more negative than reality. However, this is
unimportant because the primary concern is to validate the protocol between FPGAs and, later, between an
FPGA and network card. The rdma_perf application has been extended to initialise and print the memory
content before and after data transport. This allows us to verify that the transport correctly took place.

1https://www.xilinx.com/support/university.html
2https://www.amd-haccs.io/

https://www.xilinx.com/support/university.html
https://www.amd-haccs.io/

60 6. FPGA implementation and results

6.3.3. FPGA - RNIC validation
The second phase uses the DAS6 cluster to test the RoCE FPGA implementation between the available U280
and a single Mellanox NIC. During this setup, we use tcpdump to analyse the ethernet packets created by the
FPGA. These tests will again be performed over a reliable connection using WRITE operations. The applica-
tion controlling the FPGA is based on the rdma_perf application as used in the previous setup. It has been
modified so that we can manually transfer the RDMA values between the two remote RoCE nodes. In addi-
tion, we designed a new, less complicated CPU application based on the implementation discussed in Chap-
ter 4. The new CPU application leverages the same RDMA API. If the RoCE packets are generated correctly as
required by the protocol and validated by the network card, then we will test this for different message sizes.

6.4. Results
6.4.1. FPGA - FPGA validation
The FPGA - FPGA setup has been validated using two U55C nodes. The first problem we encountered dur-
ing the tests of the RoCE stack inside the Coyote framework was the inability to send messages larger than
1024B. Table 6.1 shows the test result with message sizes ranging from 128B up to 1024B. Each message size
is sent 1000 times, after which the average is taken. The results show a stable latency of 6 microseconds and
a maximum throughput of 20Gbps with a message size of 1024 Bytes. The throughput increases linearly with
the message size, indicating a bottleneck in the message rate. Besides, the maximum theoretical goodput is
lower when the message is lower than the maximum PMTU of 4096B. The terminal output of this test is given
in Appendix C.2.

Table 6.1: Coyote RoCE throughput and latency between two U55C FPGAs

Message size [B] Throughput [Mbps] Latency [us]
128 2504 5.77
256 5048 5.63
512 10248 5.78
1024 20420 6.02

From conversations with the Coyote developer and HACC administrator, the message size limitation ap-
pears to be caused by the network switch between the FPGAs. The switch either split the jumbo frames or did
not forward them. Via TCPdump, we found that the "do not fragment flag" was not set in Coyote packets; see
Section C.3 for the TCPdumps. However, activating this flag had no positive result. The message size limita-
tion is acceptable in the current development phase because we aim for a proof-of-concept implementation
between an FPGA and RNIC.

In conclusion, the Coyote RoCE networking stack is proven to work between two FPGAs with a maximum
message size of 1024B. In addition, measurement results indicate that goodput will increase if larger packets
and message sizes can be sent.

6.4.2. FPGA - RNIC validation
This section discusses the results of the tests between the Coyote framework and the Mellanox connectX-6 in-
side the DAS6 cluster. The test between the FPGA and RNIC revealed various faults, which will be discussed in
this section. First of all, we discovered, with the aid of TCPdump, an error in the transmitted packet sequence
number (PSN). The PSN appears in each RoCE packet in the base transport header; besides, each QP has its
own PSN value. The PSN must match the locally stored values and should be incremented for each packet.
However, the FPGA stack sends the wrong PSN, namely the PSN of the local QP, instead of the PSN belonging
to the remote QP. This problem was not noticed between the two FPGAs because each FPGA compared the
received PSN with the incorrect known PSN value.

Manually adjusting the PSN numbers revealed a second problem related to the Invariant CRC (ICRC)
check. The ICRC error was reported by the NIC_Snapshot, discussed in Subsection 4.3.2. The RoCE protocol
adds a RoCE-specific four Bytes ICRC check at the end of each Ethernet frame. Initially, the ICRC calculation
on the FPGA appeared to be off by default and contained a default value. Moreover, the ICRC was also not
checked in the default configuration and, thus, not in the previous setup between two FPGAs. However,
activating the pre-existing ICRC components did not resolve the error notification. Despite trying to trace the
specific error, we could not resolve it as it is complicated to check and adjust the ICRC calculation.

6.4. Results 61

Finally, we encountered kernel panic in the DAS6 server in which we were using the FPGA and Coyote.
This kernel panic caused the entire server to shut down for security reasons. We expect an illegal memory
operation in the Coyote driver caused this issue. However, tracing the cause is very difficult because the
server immediately freezes and shuts down, making log data recovery difficult and time consuming.

To summarise, we identified several problems in the FPGA network stack that prevented it from working
with an RNIC. We were not able to resolve these issues with the framework within the scope of this project.
However, we were able to identify that it should be possible to use this protocol between an FPGA and RNIC.
The vast majority of the RoCEv2 protocol is already well implemented in the framework, which was confirmed
by checking the Ethernet packets via an Ethernet packet analyser.

7
Conclusions and future work

The demand for more efficient data transport is ever-increasing and also applies to radio astronomical sys-
tems to be able to observe the universe in greater detail. In this work, we have studied three sub-research
questions to answer our main research question;
Can we use RoCE to reduce system load and increase throughput in sending and receiving antenna data for
applications in radio-telescopes?
The three sub-research questions and the way they are addressed is listed as follows:

1. What are the characteristics and requirements of applications for radio-telescopes?
We investigated data transport in radio astronomy systems using three use cases and drafted relevant
requirements for these. More details about this investigation are discussed in Section 7.1.1.

2. Which configuration of RoCE is best for the intended application?
We examined the RoCE protocol and its numerous settings, then compared the properties of funda-
mental settings with the radio astronomical data transport conditions to conclude whether the pro-
tocol is viable for this application domain. More details about these comparisons are discussed in
Section 7.1.1 and 7.1.4.

3. Can RoCE deliver the required performance and reliability at the scale of large distributed telescope
systems?
We developed a RoCE test application between RoCE-enabled NICs to profile, analyse and compare
several RoCE settings for their impact on the throughput and CPU utilisation. We also worked to inves-
tigate the feasibility and performance of a RoCE implementation on FPGAs. The answer to the research
questions is: yes RoCE can deliver the required performance under specific conditions. More details
about these results are discussed in Section 7.1.4 and 7.1.5.

Section 7.1 provides a consistent summary of Chapters 2 to 6, after which this chapter concludes with an
overview of recommendations for future work in Section 7.2.

7.1. Conclusions
7.1.1. Chapter 2
The chapter began with an introduction to the processing pipeline of radio telescope systems and three ra-
dio astronomy use cases. Each use-case has distinctive characteristics; The first has many transmitters dis-
tributed across Europe with relatively low data rates per transmitter. The second has higher data rates over a
private network. In comparison, the last one has exceptionally high data rates from relatively few transmit-
ters. These use cases formulated requirements for a data transport technology between the antennas and the
central computer, by which we addressed sub-research question 1.

The chapter proceeded with a brief overview of several RDMA technologies, after which we discussed the
RoCE protocol in greater detail. We discussed the notion of converged Ethernet and highlighted existing and
new approaches to dealing with (RoCE) congestion. Using multiple data streams and protocols over a single
Ethernet network can cause congestion and unfair bandwidth distribution. Therefore, it is common practice

63

64 7. Conclusions and future work

to transport (less) important data streams over a network via dedicated buffers and individual congestion
management methods. An Ethernet network where this division of data streams over available resources is
implemented is called a converged Ethernet network. This investigation also indicated that RoCE is a mature
and widely used technology that will scale to higher speeds in the future, as desired by requirement S3 and S2.

After that, we explained RoCE core components and settings. In addition, we also discussed the opportu-
nities of these settings to achieve better speeds or lower CPU utilisation. Based on the study of the operation
and transport capabilities of RoCE and the characteristics of the use cases, it has been made evident that the
unreliable connection transport service with the WRITE with immediate data operation is the best fit for the
application in radio telescope systems. This ensures there is no obligation for retransmission and the imme-
diate data allows us to flag memory regions with which we meet requirement R5 and R6, respectively, based
on the technology choice.

7.1.2. Chapter 3
Chapter 3 discussed the available hardware and software and described the method to analyse the RoCE
protocol between RNICs. The key performance indices were defined as the goodput and CPU utilisation
during data transfer. We discussed different ways to measure these, after which it was decided to measure the
CPU utilisation at thread level and determine the goodput via the number of work completions. In addition,
RNIC counters are used to detect network congestion.

The second part of the chapter presented four different setups to investigate the performance of the RoCE
protocol and the various settings. First, we define a setup to demonstrate the differences in throughput and
CPU utilisation between data transport over UDP and RoCE.

The second setup is the one-to-one setup, focusing on identifying the effect of different parameters be-
tween two RNICs using a single connection. Among others, we discuss settings such as message size, page
sizes and reducing notifications in the receiver by using solicited events.

The third setup uses a many-to-one topology to study the scalability of RoCE. The aim is to simulate radio
telescopes’ distributed and scalable aspects using the available cluster.

The fourth and last setup is the one-to-many topology to analyse the scalability of a sender.

7.1.3. Chapter 4
In Chapter 4, we provided an overview of the system we developed to evaluate the design space of RoCE in
accordance with the methods and metrics discussed in Chapter 3. The developed program can be used for
one-to-one connectivity as well as many-to-one and one-to-many. Besides, our implementation facilitates
the registration of GPU memory to RoCE so that the RNIC can read from and write into GPU memory without
the involvement of the main memory or CPU. This system was implemented with COTS products, and when
feasible, open-source software was used, satisfying non-functional requirements S1 and S4.

Furthermore, we address our application’s three major components: the RDMA API, profiling tools and
the main program. The main program uses the RDMA API and profiling tools to establish and measure data
transport via RoCE.

The RDMA API uses ibVerbs to query, create and modify all relevant RoCE attributes. The API also provides
transport methods to the main program, which posts RoCE work requests in a separate thread to the RNIC
and checks the resulting work completions. The measurement method of, for example, the CPU utilisation
and goodput is implemented in the RDMA API and not in the profiling tools. This is because the profiling tools
include more generally usable measurement methods to, for example, read out RNIC counters and measure
and track function calls. Hence, the implementation includes a few abstractions which satisfy non-functional
requirement S5.

7.1.4. Chapter 5
In Chapter 5, we examined the results of the different configurations and setups. First, we briefly demon-
strated the performance difference between UDP and RoCE as transport methods. Here, the UDP protocol
had a maximum of 50Gbps with a CPU utilisation of 146%, while RoCE could achieve 97Gbps with 43% utili-
sation using equal message sizes. RoCE thus yielded almost twice as much throughput for a third of the CPU
utilisation and therefore 6 times better performance.

In the second setup, we studied the performance of several RoCE settings in a one-to-one topology. We
observed that CPU utilisation decreases as the message size increases. From this, we concluded that a 16kiB
message size was already capable of achieving a goodput of 98Gbps with a CPU utilisation of 75%. For larger
message sizes, for example 1MB, we observe up to 200Mbps higher goodput and a CPU utilisation down to

7.1. Conclusions 65

5%. Testing with different page types showed no effect on the settings used. However, we note that this might
affect the performance when the memory blocks become very large or when the memory is used in real-time
application, requiring reconsidering the use of huge pages.

Furthermore, we assessed the use of linked work requests and solicited events. Linked work requests
have more impact on requesters than responder QPs, and are necessary (in our implementation) for small
message sizes (<16kiB) so that the queue is quickly refilled to avoid goodput degradation. Solicited events,
as was expected, decrease the CPU utilisation of the responder. In the case of 4kiB and an interval of 100
messages per solicited event, the reduction in CPU utilisation was 52% compared to no solicited events, an
interval of 25 messages per solicited event and 16kiB message size achieved an even higher reduction of 75%.

We concluded the one-to-one setup by examining the increase of QPs, which resulted in a considerable
dissimilarity between using one thread per QP and a single SRQ. The multi-threading method achieved a
goodput of about 98Gbps for both 4kiB and 16kiB with 80% and 22% utilisation, respectively, when using 500
QPs. In contrast, the SRQ with 4kiB achieved only 60Gbps. At the same time, the 16kiB with SRQ gained a
reduction in CPU utilisation of 50% and 30% for 100 and 500 QPs, respectively, compared to the equivalent
multi-threaded configuration.

The third setup using the many-to-one topology has proven that a configuration using an SRQ with up to
a total of 2000 QPs in the responder and 16kiB messages, regardless of GPU memory usage, can transport a
goodput of 90Gbps from four requesters to one responder. However, when using one thread per QP, many
congestion problems were recorded and the goodput did not stably exceed 73Gbps when using 400 or 2000
QPs. The last setup demonstrated that our application could use RoCE over a one-to-many topology. It is ca-
pable of sending data at 98Gbps from 1 requester to four responders using 400 QPs. At 2000 QPs, we observed
limitations which are most likely related to our implementation (the amount of threads and workload) and
not to a fundamental limitation in the RNIC.

Regarding the second and third sub-research questions, the transport service and operation determined
in Chapter 2 achieve optimal performance using an SRQ and the solicited events mechanism. In this case,
we use 2000 QPs, solicited events interval of 100 and receive and completion queue of 20000 elements. This
achieved a CPU utilisation of 40% on a single core and a goodput of 90Gbps (which is the maximum achiev-
able due to RoCE Ethernet frame efficiency of 98% and an aggregated rate limit of 92Gbps). Yet the optimal
configuration depends on the use case, with the number of QPs and message size being important metrics.
For example, we showed the benefit of an increase in linked WR and solicited events stagnates as the message
size increased. With our application and setups, we showed that our RoCE test system meets the performance
(R4) and network (R2, R3) requirements without retransmission (R5). Reliability was validated in a research
cluster over short periods while using PFC and considered satisfactory. However, our test set-up lacks the
scale of a radio telescope system. In addition, we have not tested over public Ethernet; we are confident that
it can be accomplished as we use protocols supported by public Ethernet. Given the resources at our disposal
and the results achieved, we argue that RoCE should be able to satisfy this application area.

7.1.5. Chapter 6
In Chapter 6, we started by exploring available FPGA implementations of RoCE. From this, the Coyote frame-
work was selected and adapted to evaluate data transport from an FPGA to RNIC over the RoCE protocol.
Coyote is a framework that offers operating system abstractions on FPGAs, including memory and network
services such as TCP/IP and RoCE. The framework has its own driver and C++ API so that, among other things,
it has direct memory access to the server’s main memory.

Due to network limitations, it was not possible to use Ethernet frames larger than 1500B. As a result, the
largest possible message size was 1024B, for which it achieved a goodput of 20.4Gbps between two FPGAs.
Yet it is possible to achieve a data rate of more than 80Gbps if the maximum packet size of 4096B can be used.
This is because the buffers can scale along by a factor of 4 without adversely affecting the frequency at which
packets are sent, allowing throughput to scale proportionally.

Follow-up testing between an RNIC and FPGA revealed some other areas of improvement. First, an incor-
rect packet sequence number was found to be sent and compared in the FPGA implementation. Secondly,
the ICRC calculation did not meet the strict conditions set by the RoCE specification, which could not be
solved within the scope of this project. Consequently, we have not been able to receive the data transmit-
ted by an FPGA on an RNIC; hence, requirement R1 has not been confirmed with a real-world test setup.
Nonetheless, this study showed that it is possible to implement RoCE on FPGAs, and it is evident that the
FPGA implementation will perform significantly better if larger Ethernet packets can be transported.

66 7. Conclusions and future work

7.2. Future work
Two main areas for future work are identified from our study. First, we observed many fluctuations in data
rates, which could not be sufficiently managed by rate limiting via ETS. Besides millisecond-level fluctua-
tions, microbursts have also been an issue, leading us to use Priority Flow Control (PFC) to improve this. In
addition, when using the RNICs as transmitters, as in our set-up with the DAS6 system, it is unclear in which
order packets from a QP are sent if multiple QPs are used, partly because TCPdump cannot handle the high
data rate. This can be addressed using an FPGA as a transmitter (requester) because it can be configured to
send packets without bursts at a stable rate. This allows better investigation of sustained throughput without
using PFC or other congestion methods. Furthermore, sending an exact sequence of packets via an FPGA is
possible, allowing it to test interleaved QP packets.

Second, more research on GPU memory in combination with RoCE as a transport technique is recom-
mended. Our study showed systematic short-lived reductions in goodput when a goodput rate of 98Gbps
was achieved, for which the cause is still unknown. In addition, the data in the GPU memory was not used
for further processing by the GPU during the measurements, which might impact the performance. Imple-
menting a GPU kernel and additional research into possible bottlenecks and methods to quantify them may
uncover and resolve these issues.

In addition to the aforementioned items for future work, the following list of issues is also considered
worth investigating:

1. Analyse IP services such as VLAN and AES. In the real world, VLANs are often used to separate networks
and data flows from each other, e.g. to increase security. In addition, in some use cases, the data trav-
els over public Ethernet, for which additional encryption may be required, for instance, via AES-XTS.
The use of these methods causes additional loads on the network card and can therefore affect perfor-
mance. The use of VLANs and encryption methods is not included in our study and is recommended if
the protocol’s security is to be improved.

2. Enhance the SRQ implementation. The SRQ provided improvements in both CPU utilisation and good-
put. However, CPU utilisation increased drastically with more QPs to a point where it no longer offered
an advantage over QP handling in separate threads. The use of the SRQ in our implementation is lim-
ited to 1 thread, limiting the maximum number of QPs. By distributing the total number of QPs over
several SRQs (in different threads), the amount of cache per SRQ increases, and the number of QPs per
SRQ decreases. Making it easy to find and update the correct QP data.

3. Implementation and validation improvements for RoCE on an FPGA. First, it is worth investigating
what causes the problem in the Coyote RoCE network stack when using packets with a payload of
4096B. Due to this obstacle, achieving the desired goodput rate is impossible. In addition, the use
cases ultimately require the RoCE stack to be used without a CPU activating the operations. This can
be tested by extracting the RoCE network stack from the Coyote framework and using it in its own im-
plementation. This way, driver and kernel panics can also be addressed. Lastly, the functioning of
the ICRC calculation should be checked and improved so that an RNIC can further validate the RoCE
package.

4. Identify and measure non-network related bottlenecks. Currently, we notice backpressure in the receiv-
ing RNIC. However, we cannot distinguish whether this is due to computing load in the RNIC, cache or
TLB misses in the RNIC, a bottleneck in memory or a bottleneck in the PCI express bus. Identifying and
quantifying these performance degradation sources makes it possible to mitigate them through other
settings. It is also possible that a server’s architectural (dis)advantages emerge, which can be considered
when designing new systems.

A
DAS6 overview

A.1. Hardware overview

Table A.1: Overview of available hardware in DAS6 at ASTRON

Machine Component Value

node501-504 CPU dual AMD EPYC 7282 16-Core Processor (min 1.5GHz, max 2.8GHz)

RAM 135GiB per NUMA domain

OS Rocky Linux 8.6 (Green Obsidian) 5.18.14-1.el8.elrepo.x86_64

NIC Mellanox Technologies MT28908 Family [ConnectX-6]

GPU 2x NVIDIA A4000

node505 CPU dual AMD EPYC 7H12 64-Core Processor (min 1.5GHz, max 2.6GHz)

RAM 1TB of 64GB SK HYNIX HMAA8GR7AJR4N-XN, 3200 MT/s

OS Rocky Linux 8.5 (Green Obsidian) 5.4.167-1.el8.elrepo.x86_64

NIC Mellanox Technologies MT28908 Family [ConnectX-6], NUMA node 0

GPU NVIDIA Corporation GA100 [A100 PCIe 40GB], NUMA node 0

FPGA Xilinx U280 2x100GbE connected, NUMA node 1

headnode CPU dual AMD EPYC 7F72 24-Core Processor (min 2.5GHz, max 3.2GHz)

RAM 512GB

OS Rocky Linux 8.6 (Green Obsidian) 5.4.195-1.el8.elrepo.x86_64

NIC Mellanox MT28908 Family [ConnectX-6 Lx]

GPU none

switch Type SN2100, 16MB shared buffer memory

OS Onyx 3.8.2008

Settings TC3: lossless PFC ECN minimum-absolute 300
ECN maximum-absolute 3000

67

68 A. DAS6 overview

A.2. Software overview

Table A.2: Software used for the CPU setup

Whireshark 3.6.7

Tcpdump with libpcap 1.8

python 3.9.9

rdma-core 39.1

mellanox ofed 5.4

Nvidia driver version 510 with peerdirect

cuda 11.6.2

cmake 3.22.1, GCC 9.4.0, C++17

Xilinx 2022.1 tools

B
Additional results

B.1. One-to-one configuration
All RNICs and the network switch have separate buffers for Traffic Class 3, for which PFC is enabled. The RNIC
is set to DSCP and has a separate ingress buffer for TC 3. No bandwidth limiting is used in the one-to-one
setup. The Mellanox switch uses shared buffer pools for which the egress buffer has an infinite alpha, and the
ingress buffer has an alpha of 1. These pools are set as lossless pools and have an ECN minimum threshold of
300kB and an ECN maximum threshold of 3MB. The MTU is set to 9000 in the RNICs and switch, and RoCE
uses the maximum Path MTU of 4096B.

Table B.1: RoCE settings one-to-one setup

Send queue size 1000
Receive queue size 1000
Completion queue size 1000
Shared receive queue size 2000
Shared completion queue size 2000
memory regions per QP 10
Linked work requests 10

69

70 B. Additional results

B.2. One-to-one additional results

Configuration
87500

90000

92500

95000

97500

Go
od

pu
t [

M
bp

s]

Goodput

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Configuration

60

80

100

Ut
ilis

at
io

n
[%

]

Utilisation

Figure B.1: Results of one-to-one linked WR and SE test at requester node (configurations provided in Table 5.3)

Configuration
97400

97600

97800

98000

98200

Go
od

pu
t [

M
bp

s]

Goodput

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10
Configuration

100

200

300

Ut
ilis

at
io

n
[%

]

Utilisation

Figure B.2: Results of one-to-one QP scalability test at requester node without SRQ (configurations provided in Table 5.4)

B.2. One-to-one additional results 71

Configuration

60000

80000

100000

120000
Go

od
pu

t [
M

bp
s]

Goodput

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9
Configuration

250

300

350

400

450

Ut
ilis

at
io

n
[%

]

Utilisation

Figure B.3: Results of one-to-one shared receive queue test at requester node (configurations provided in Table 5.5

Configuration

80000

100000

120000

140000

160000

Go
od

pu
t [

M
bp

s]

Goodput

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10
Configuration

100

200

300

400

Ut
ilis

at
io

n
[%

]

Utilisation

Figure B.4: Results of one-to-one GPU tests at responder node (configurations provided in Table 5.7)

72 B. Additional results

1 2 3 4 5 6 7 8 9
Total wall time [s]

60000

65000

70000

75000

80000

85000

90000

95000

G
oo
dp
ut

 [M
bp

s]

0.1quantile= 76628

6

7

8

9

Ut
ilis

at
io

n
[%

]

0.9quantile= 8

Configuration: 2, run: 3

(a) GPU throughput and utilisation using 1QP and message size of 16kiB

1 2 3 4 5 6 7 8 9
Total wall time [s]

90000

92000

94000

96000

98000

G
oo
dp
ut

 [M
bp

s]

0.1quantile= 94284
10

12

14

16

18

Ut
ilis

at
io

n
[%

]

0.9quantile= 12

Configuration: 6, run: 3

(b) GPU throughput and utilisation using 100QP and message size of 16kiB.

Figure B.5: Time series plots of throughput and utilisation in one-to-one setup using GPU memory

B.3. Many-to-one configuration 73

B.3. Many-to-one configuration
The modified network settings compared to those discussed in Section B.1 are provided in this section. This
setup does use bandwidth limitation through ETS, the RNICs of the 4 requesters are limited to an egress rate
of 23Gbps for TC 3 and the egress scheduling is kept at the default value, i.e. vendor dependent. In addition,
the ECN minimum and ECN maximum thresholds have been increased to 4MB and 6MB, respectively.

Table B.2: RoCE settings many-to-one setup

Send queue size 1000
Receive queue size 1000
Completion queue size 1000
Shared receive queue size 20000
Shared completion queue size 20000
memory regions per QP 10
Linked work requests 100

B.4. Many-to-one additional results
The results of one requester are given in this appendix because the others show equivalent results.

Configuration

15000

17500

20000

22500

Go
od

pu
t [

M
bp

s]

Goodput

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8
Configuration

100

200

Ut
ilis

at
io

n
[%

]

Utilisation

Figure B.6: Results of many-to-one scalability at requester node501 (configurations provided in Table 5.8)

74 B. Additional results

4 6 8 10 12
Total wall time [s]

70000

75000

80000

85000

90000
G
oo
dp
ut

 [M
bp

s]

0.1quantile= 76641

Configuration: 3, run: 1

Figure B.7: Time series plots of responder throughput in many-to-one setup configuration 3 (given in Table 5.8)

Configuration

18000

20000

22000

24000

Go
od

pu
t [

M
bp

s]

Goodput

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8
Configuration

0

100

200

300

Ut
ilis

at
io

n
[%

]

Utilisation

Figure B.8: Results of many-to-one SRQ at requester node501 (configurations provided in Table 5.8)

B.4. Many-to-one additional results 75

Configuration

16000

18000

20000

22000

24000

Go
od

pu
t [

M
bp

s]

Goodput

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8
Configuration

0

100

200

300

Ut
ilis

at
io

n
[%

]

Utilisation

Figure B.9: Results of many-to-one GPU SRQ at requester node501 (configurations provided in Table 5.9)

76 B. Additional results

B.5. One-to-many configuration
The network configuration is similar to that used for the many-to-one setup, discussed in Appendix B.3. This
is because the bandwidth limitation via ETS has no effect on incoming traffic, and previously there was no
rate limit set on node505. This was a responder in the previous setup and is used as a requester in this setup.

Table B.3: RoCE settings one-to-many setup

Send queue size 1000
Receive queue size 1000
Completion queue size 1000
Shared receive queue size 20000
Shared completion queue size 20000
memory regions per QP 10
Linked work requests 10

C
Coyote FPGA implementation and results

C.1. ETHZ-HACC infrastructure

Figure C.1: ETH Zurich HACC infrastructure overview [45]

77

78 C. Coyote FPGA implementation and results

Figure C.2: ETH Zurich HACC networking overview [45]

C.2. Coyote RoCE test terminal output

Figure C.3: Terminal output of ETHz HACC U55C RDMA WRITE result

C.3. TCPdump of Coyote and RNIC 79

C.3. TCPdump of Coyote and RNIC

Figure C.4: TCP dump of RDMA WRITE result: FPGA ETHz HACC U55C RoCE packet (left side) and RNIC RoCE packet (right side)

Bibliography

[1] Sergio Otarola- ALMA (ESO/NAOJ/NRAO. In the Chajnantor Plateau, amazing picture of the antennas
under the Milkyway. URL: https://www.almaobservatory.org/wp-content/uploads/2021/08/5
0538953736_ee641c7c9b_o.jpg.

[2] I. Ozery A. Barnea and B. Claman. Scaling Zero Touch RoCE Technology with Round Trip Time Conges-
tion Control. URL: https://developer.nvidia.com/blog/scaling-zero-touch-roce-technol
ogy-with-round-trip-time-congestion-control/.

[3] OpenFabrics Alliance. OFED for Linux. URL: https://www.openfabrics.org/ofed-for-linux/.

[4] Vrije Universiteit Amsterdam. DAS-6 clusters. URL: https://www.cs.vu.nl/das/clusters.shtml.
(accessed: 01.12.2022).

[5] SKA consortium Andrew Ensor. RDMA-data-transport. URL: https://gitlab.com/ska-telescope
/rdma-data-transport. (accessed: 01.12.2022).

[6] InfiniBand Trade Association. URL: https://www.infinibandta.org/. (accessed: 01.12.2022).

[7] Atacama large millimeter/submillimeter array. URL: https://public.nrao.edu/telescopes/alma
/. (accessed: 30.10.2022).

[8] BittWare. GROVF RDMA IP core. URL: https://www.bittware.com/ip-solutions/grovf-rdma/.

[9] P. Chris Broekema et al. “Cobalt: A GPU-based correlator and beamformer for LOFAR”. In: Astronomy
and Computing 23 (Apr. 2018), pp. 180–192. ISSN: 2213-1337. DOI: 10.1016/j.ascom.2018.04.006.
URL: http://dx.doi.org/10.1016/j.ascom.2018.04.006.

[10] CMS Collaboration. The Phase-2 Upgrade of the CMS Data Acquisition and High Level Trigger. Tech. rep.
This is the final version of the document, approved by the LHCC. Geneva: CERN, 2021. URL: https://c
ds.cern.ch/record/2759072.

[11] Alexandros Daglis et al. “Manycore Network Interfaces for in-memory rack-scale computing”. In: 2015
ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA). 2015, pp. 567–579.
DOI: 10.1145/2749469.2750415.

[12] ETH Zurich David Sidler Systems Group. Scalable Network Stack supporting TCP/IP, RoCEv2, UDP/IP
at 10-100Gbit/s. URL: https : / / github . com / fpgasystems / fpga - network - stack. (accessed:
10.10.2022).

[13] Rob Fender et al. “The LOFAR Transients Key Project”. In: (2006). DOI: 10.48550/ARXIV.ASTRO-PH/0
611298. URL: https://arxiv.org/abs/astro-ph/0611298.

[14] Johann George. qperf. URL: https://github.com/linux-rdma/qperf. (accessed: 01.12.2022).

[15] Jean-Mathias Grießmeier, Philippe Zarka, and Michel Tagger. “Radioastronomy with LOFAR”. In: Comptes
Rendus Physique 13.1 (2012). The next generation radiotelescopes / Les radiotélescopes du futur, pp. 23–
27. ISSN: 1631-0705. DOI: https://doi.org/10.1016/j.crhy.2011.11.002. URL: https://www.s
ciencedirect.com/science/article/pii/S1631070511002234.

[16] Chuanxiong Guo et al. “RDMA over Commodity Ethernet at Scale”. In: Proceedings of the 2016 ACM SIG-
COMM Conference. SIGCOMM ’16. Florianopolis, Brazil: Association for Computing Machinery, 2016,
pp. 202–215. ISBN: 9781450341936. DOI: 10.1145/2934872.2934908. URL: https://doi.org/10.11
45/2934872.2934908.

[17] Joost Hoozemans et al. “FPGA Acceleration for Big Data Analytics: Challenges and Opportunities”. In:
IEEE Circuits and Systems Magazine 21.2 (2021), pp. 30–47. DOI: 10.1109/MCAS.2021.3071608.

[18] Ernst Joachim Houtgast et al. “GPU-Accelerated BWA-MEM Genomic Mapping Algorithm Using Adap-
tive Load Balancing”. In: Architecture of Computing Systems – ARCS 2016. Ed. by Frank Hannig et al.
Cham: Springer International Publishing, 2016, pp. 130–142. ISBN: 978-3-319-30695-7.

81

https://www.almaobservatory.org/wp-content/uploads/2021/08/50538953736_ee641c7c9b_o.jpg
https://www.almaobservatory.org/wp-content/uploads/2021/08/50538953736_ee641c7c9b_o.jpg
https://developer.nvidia.com/blog/scaling-zero-touch-roce-technology-with-round-trip-time-congestion-control/
https://developer.nvidia.com/blog/scaling-zero-touch-roce-technology-with-round-trip-time-congestion-control/
https://www.openfabrics.org/ofed-for-linux/
https://www.cs.vu.nl/das/clusters.shtml
https://gitlab.com/ska-telescope/rdma-data-transport
https://gitlab.com/ska-telescope/rdma-data-transport
https://www.infinibandta.org/
https://public.nrao.edu/telescopes/alma/
https://public.nrao.edu/telescopes/alma/
https://www.bittware.com/ip-solutions/grovf-rdma/
https://doi.org/10.1016/j.ascom.2018.04.006
http://dx.doi.org/10.1016/j.ascom.2018.04.006
https://cds.cern.ch/record/2759072
https://cds.cern.ch/record/2759072
https://doi.org/10.1145/2749469.2750415
https://github.com/fpgasystems/fpga-network-stack
https://doi.org/10.48550/ARXIV.ASTRO-PH/0611298
https://doi.org/10.48550/ARXIV.ASTRO-PH/0611298
https://arxiv.org/abs/astro-ph/0611298
https://github.com/linux-rdma/qperf
https://doi.org/https://doi.org/10.1016/j.crhy.2011.11.002
https://www.sciencedirect.com/science/article/pii/S1631070511002234
https://www.sciencedirect.com/science/article/pii/S1631070511002234
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1109/MCAS.2021.3071608

82 Bibliography

[19] Yongrui Hu et al. “DCQCN Advanced (DCQCN-A) : Combining ECN and RTT for RDMA Congestion
Control”. In: 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Con-
ference (ITNEC). Vol. 5. 2021, pp. 1192–1198. DOI: 10.1109/ITNEC52019.2021.9586872.

[20] Xilinx Inc. ERNIC (Xilinx Embedded RDMA enabled NIC) IP. URL: https://www.xilinx.com/produc
ts/intellectual-property/ef-di-ernic.html. (accessed: 25.09.2022).

[21] Integrated ground-based remote sensing stations for atmospheric profiling. URL: https://cordis.eur
opa.eu/project/id/2343. (accessed: 30.10.2022).

[22] Anuj Kalia, Michael Kaminsky, and David G. Andersen. “Design Guidelines for High Performance RDMA
Systems”. In: Proceedings of the 2016 USENIX Conference on Usenix Annual Technical Conference. USENIX
ATC ’16. Denver, CO, USA: USENIX Association, 2016, pp. 437–450. ISBN: 9781931971300.

[23] Joseph P. Kenny and Craig D. Ulmer. “RoCE: Promising Technology for Ethernet as a High Performance
Networking Fabric.” In: (Oct. 2019). DOI: 10.2172/1573446. URL: https://www.osti.gov/biblio
/1573446.

[24] Michael Kerrisk. clock_gettime(3) —Linux manual page. URL: https://man7.org/linux/man-pages
/man3/clock_gettime.3.html. (accessed: 30.08.2022).

[25] Michael Kerrisk. perf(1) —Linux manual page. URL: https://man7.org/linux/man-pages/man1/p
erf.1.html. (accessed: 30.08.2022).

[26] Michael Kerrisk. proc(5) —Linux manual page. URL: https://man7.org/linux/man-pages/man5/p
roc.5.html. (accessed: 30.08.2022).

[27] Xinhao Kong et al. “Collie: Finding Performance Anomalies in RDMA Subsystems”. In: 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22). Renton, WA: USENIX Asso-
ciation, Apr. 2022, pp. 287–305. ISBN: 978-1-939133-27-4. URL: https://www.usenix.org/conferen
ce/nsdi22/presentation/kong.

[28] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. “Do OS Abstractions Make Sense on FPGAs?” In:
Proceedings of the 14th USENIX Conference on Operating Systems Design and Implementation. OSDI’20.
USA: USENIX Association, 2020. ISBN: 978-1-939133-19-9.

[29] W. de Laat. RDMA-data-transport. URL: https://gitlab.com/astron-misc/benchmark-rdma.
(accessed: 01.12.2022).

[30] Yanfang Le et al. “On the Impact of Cluster Configuration on RoCE Application Design”. In: Proceed-
ings of the 3rd Asia-Pacific Workshop on Networking 2019. APNet ’19. Beijing, China: Association for
Computing Machinery, 2019, pp. 64–70. ISBN: 9781450376358. DOI: 10.1145/3343180.3343190. URL:
https://doi-org.tudelft.idm.oclc.org/10.1145/3343180.3343190.

[31] Przemyslaw Lenkiewicz, P. Chris Broekema, and Bernard Metzler. “Energy-efficient data transfers in ra-
dio astronomy with software UDP RDMA”. In: Future Generation Computer Systems 79 (2018), pp. 215–
224. ISSN: 0167-739X. DOI: https://doi.org/10.1016/j.future.2017.03.027. URL: https://ww
w.sciencedirect.com/science/article/pii/S0167739X17304715.

[32] Yuliang Li et al. “HPCC: High Precision Congestion Control”. In: Proceedings of the ACM Special Interest
Group on Data Communication. SIGCOMM ’19. Beijing, China: Association for Computing Machinery,
2019, pp. 44–58. ISBN: 9781450359566. DOI: 10.1145/3341302.3342085. URL: https://doi.org/10
.1145/3341302.3342085.

[33] Wassim Mansour, Nicolas Janvier, and Pablo Fajardo. “FPGA Implementation of RDMA-Based Data Ac-
quisition System Over 100-Gb Ethernet”. In: IEEE Transactions on Nuclear Science 66.7 (2019), pp. 1138–
1143. DOI: 10.1109/TNS.2019.2904118.

[34] Qingkai Meng and Fengyuan Ren. “Lightning: A Practical Building Block for RDMA Transport Control”.
In: 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS). 2021, pp. 1–10. DOI:
10.1109/IWQOS52092.2021.9521326.

[35] Radhika Mittal et al. “TIMELY: RTT-Based Congestion Control for the Datacenter”. In: SIGCOMM Com-
put. Commun. Rev. 45.4 (Aug. 2015), pp. 537–550. ISSN: 0146-4833. DOI: 10.1145/2829988.2787510.
URL: https://doi.org/10.1145/2829988.2787510.

https://doi.org/10.1109/ITNEC52019.2021.9586872
https://www.xilinx.com/products/intellectual-property/ef-di-ernic.html
https://www.xilinx.com/products/intellectual-property/ef-di-ernic.html
https://cordis.europa.eu/project/id/2343
https://cordis.europa.eu/project/id/2343
https://doi.org/10.2172/1573446
https://www.osti.gov/biblio/1573446
https://www.osti.gov/biblio/1573446
https://man7.org/linux/man-pages/man3/clock_gettime.3.html
https://man7.org/linux/man-pages/man3/clock_gettime.3.html
https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://www.usenix.org/conference/nsdi22/presentation/kong
https://www.usenix.org/conference/nsdi22/presentation/kong
https://gitlab.com/astron-misc/benchmark-rdma
https://doi.org/10.1145/3343180.3343190
https://doi-org.tudelft.idm.oclc.org/10.1145/3343180.3343190
https://doi.org/https://doi.org/10.1016/j.future.2017.03.027
https://www.sciencedirect.com/science/article/pii/S0167739X17304715
https://www.sciencedirect.com/science/article/pii/S0167739X17304715
https://doi.org/10.1145/3341302.3342085
https://doi.org/10.1145/3341302.3342085
https://doi.org/10.1145/3341302.3342085
https://doi.org/10.1109/TNS.2019.2904118
https://doi.org/10.1109/IWQOS52092.2021.9521326
https://doi.org/10.1145/2829988.2787510
https://doi.org/10.1145/2829988.2787510

Bibliography 83

[36] Jiwoong Park et al. “SoftDC: Software-Based Dynamically Connected Transport”. In: Cluster Computing
23.1 (Mar. 2020), pp. 347–357. ISSN: 1386-7857. DOI: 10.1007/s10586-019-02926-0. URL: https://d
oi.org/10.1007/s10586-019-02926-0.

[37] The Chromium Projects. Trace event profiling tool. URL: https://www.chromium.org/developers
/how-tos/trace-event-profiling-tool. (accessed: 01.12.2022).

[38] Mario Ruiz et al. “Limago: an FPGA-based Open-source 100 GbE TCP/IP Stack”. In: 2019 29th Interna-
tional Conference on Field Programmable Logic and Applications (FPL). IEEE. Sept. 2019, pp. 286–292.
DOI: 10.1109/FPL.2019.00053.

[39] Niklas Schelten et al. “A High-Throughput, Resource-Efficient Implementation of the RoCEv2 Remote
DMA Protocol for Network-Attached Hardware Accelerators”. In: 2020 International Conference on Field-
Programmable Technology (ICFPT). 2020, pp. 241–249. DOI: 10.1109/ICFPT51103.2020.00042.

[40] David Sidler. “In-Network Data Processing using FPGAs”. en. Doctoral Thesis. Zurich: ETH Zurich,
2019. DOI: 10.3929/ethz-b-000362532.

[41] David Sidler et al. “StRoM: Smart Remote Memory”. In: Proceedings of the Fifteenth European Con-
ference on Computer Systems. EuroSys ’20. Heraklion, Greece: Association for Computing Machinery,
2020. ISBN: 9781450368827. DOI: 10.1145/3342195.3387519. URL: https://doi-org.tudelft.id
m.oclc.org/10.1145/3342195.3387519.

[42] Tianli Song. Roce based 100gbe RDMA Network Stack on FPGA hardware. Nov. 2021. URL: https://rep
ository.tudelft.nl/islandora/object/uuid%5C%3Abdc8259e-43e7-4e81-b573-c2f8c14428
92?collection=education.

[43] Fritjof Steinert et al. “Hardware and Software Components towards the Integration of Network-Attached
Accelerators into Data Centers”. In: 2020 23rd Euromicro Conference on Digital System Design (DSD).
2020, pp. 149–153. DOI: 10.1109/DSD51259.2020.00033.

[44] ETH Zurich Systems Group. Coyote framework repository. URL: https://github.com/fpgasystems
/Coyote. (accessed: 10.10.2022).

[45] ETH Zurich Systems Group. ETH’s Heterogeneous Accelerated Compute Cluster. URL: https://github
.com/fpgasystems/hacc. (accessed: 10.10.2022).

[46] Parvin Taheri et al. “RoCC: Robust Congestion Control for RDMA”. In: Proceedings of the 16th Inter-
national Conference on Emerging Networking EXperiments and Technologies. CoNEXT ’20. Barcelona,
Spain: Association for Computing Machinery, 2020, pp. 17–30. ISBN: 9781450379489. DOI: 10.1145/33
86367.3431316. URL: https://doi.org/10.1145/3386367.3431316.

[47] Kenji Tanaka et al. “Communication-Efficient Distributed Deep Learning with GPU-FPGA Heteroge-
neous Computing”. In: 2020 IEEE Symposium on High-Performance Interconnects (HOTI). 2020, pp. 43–
46. DOI: 10.1109/HOTI51249.2020.00021.

[48] Brian Tierney et al. “Efficient data transfer protocols for big data”. In: 2012 IEEE 8th International Con-
ference on E-Science. 2012, pp. 1–9. DOI: 10.1109/eScience.2012.6404462.

[49] Tianshi Wang et al. “Congestion Detection and Link Control via Feedback in RDMA Transmission”. In:
2022 International Conference on Service Science (ICSS). 2022, pp. 1–4. DOI: 10.1109/ICSS55994.202
2.00010.

[50] Xizheng Wang et al. “StaR: Breaking the Scalability Limit for RDMA”. In: 2021 IEEE 29th International
Conference on Network Protocols (ICNP). 2021, pp. 1–11. DOI: 10.1109/ICNP52444.2021.9651935.

[51] Yiwen Zhang et al. “Performance Isolation Anomalies in RDMA”. In: Proceedings of the Workshop on
Kernel-Bypass Networks. KBNets ’17. Los Angeles, CA, USA: Association for Computing Machinery,
2017, pp. 43–48. ISBN: 9781450350532. DOI: 10.1145/3098583.3098591. URL: https://doi.org
/10.1145/3098583.3098591.

[52] Xiaolong Zhong et al. “PACC: Proactive and Accurate Congestion Feedback for RDMA Congestion Con-
trol”. In: IEEE INFOCOM 2022 - IEEE Conference on Computer Communications. 2022, pp. 2228–2237.
DOI: 10.1109/INFOCOM48880.2022.9796803.

https://doi.org/10.1007/s10586-019-02926-0
https://doi.org/10.1007/s10586-019-02926-0
https://doi.org/10.1007/s10586-019-02926-0
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool
https://doi.org/10.1109/FPL.2019.00053
https://doi.org/10.1109/ICFPT51103.2020.00042
https://doi.org/10.3929/ethz-b-000362532
https://doi.org/10.1145/3342195.3387519
https://doi-org.tudelft.idm.oclc.org/10.1145/3342195.3387519
https://doi-org.tudelft.idm.oclc.org/10.1145/3342195.3387519
https://repository.tudelft.nl/islandora/object/uuid%5C%3Abdc8259e-43e7-4e81-b573-c2f8c1442892?collection=education
https://repository.tudelft.nl/islandora/object/uuid%5C%3Abdc8259e-43e7-4e81-b573-c2f8c1442892?collection=education
https://repository.tudelft.nl/islandora/object/uuid%5C%3Abdc8259e-43e7-4e81-b573-c2f8c1442892?collection=education
https://doi.org/10.1109/DSD51259.2020.00033
https://github.com/fpgasystems/Coyote
https://github.com/fpgasystems/Coyote
https://github.com/fpgasystems/hacc
https://github.com/fpgasystems/hacc
https://doi.org/10.1145/3386367.3431316
https://doi.org/10.1145/3386367.3431316
https://doi.org/10.1145/3386367.3431316
https://doi.org/10.1109/HOTI51249.2020.00021
https://doi.org/10.1109/eScience.2012.6404462
https://doi.org/10.1109/ICSS55994.2022.00010
https://doi.org/10.1109/ICSS55994.2022.00010
https://doi.org/10.1109/ICNP52444.2021.9651935
https://doi.org/10.1145/3098583.3098591
https://doi.org/10.1145/3098583.3098591
https://doi.org/10.1145/3098583.3098591
https://doi.org/10.1109/INFOCOM48880.2022.9796803

	Introduction
	Context
	Problem statement
	Thesis outline

	Background
	Use cases
	Use case 1: LOFAR
	Use case 2: AARTFAAC
	Use case 3: ALMA
	Key differences and characteristics

	System requirements
	RDMA
	RoCE
	Architectural overview
	RoCE networking
	Converged Ethernet
	RoCE headers
	RoCE transport services
	RoCE operations
	Queue model
	Stack architecture

	RoCE applied to the use case
	Direct memory access to GPU memory
	FPGA
	Related work

	Methodology
	DAS6 cluster
	Software
	Network topology and settings
	Measurement method
	CPU utilisation
	Goodput
	Application profiling
	Other measurements

	Measurements
	RDMA VS UDP
	One-to-one
	Scalability; many to one
	Scalability; one to many

	Implementation
	Overview (or system context view)
	Container view
	Components view
	RDMA API
	Profiling tools
	Main program

	Measurement automation

	Results
	Comparison of UDP and RoCE
	One-to-one setup
	Message size and memory page size
	Linked work requests and solicited events
	QP scaling and shared receive queue
	GPU memory via peerDirect and SRQ
	Conclusion

	Many-to-one setup
	Scalability using separate threads
	Shared receive queue thread
	GPU memory and shared receive queue
	Conclusion

	One-to-many setup
	Shared receive queue
	Conclusion

	FPGA implementation and results
	Related FPGA implementations
	Coyote
	Methodology
	Experimental setup
	FPGA - FPGA validation
	FPGA - RNIC validation

	Results
	FPGA - FPGA validation
	FPGA - RNIC validation

	Conclusions and future work
	Conclusions
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Future work

	DAS6 overview
	Hardware overview
	Software overview

	Additional results
	One-to-one configuration
	One-to-one additional results
	Many-to-one configuration
	Many-to-one additional results
	One-to-many configuration

	Coyote FPGA implementation and results
	ETHZ-HACC infrastructure
	Coyote RoCE test terminal output
	TCPdump of Coyote and RNIC

