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An Empirical Study of Single-Query Motion
Planning for Grasp Execution

Jonathan Meijer, Qujiang Lei, Martijn Wisse

Abstract—This paper identifies high-performing OMPL plan-
ners, available in MoveIt!, when carrying out several grasp
executions with a UR5 manipulator. Simultaneously, this paper
presents useful benchmark data. The single-query performance
of the planners was measured by means of solved runs, computing
time and path length. Based on the results, recommendations are
made for planner choice that shows high performance.

I. INTRODUCTION

MoveIt! [1] is widely used for robot manipulation within
ROS (Robot Operating System). MoveIt! comes with the Open
Motion Planning Library (OMPL) [2] plugin. This lets the user
easily choose state-of-the-art sampling-based motion planners
from the OMPL library. Currently, 23 motion planning algo-
rithms of OMPL are configured to use in MoveIt!. Recommen-
dations for picking a motion planning algorithm is not given.
The Planner Arena [3] is created to help users determine which
planner suits a given motion planning problem. However, none
of the problems resemble the use of a manipulator performing
a grasp execution.

This paper aims to provide insight in choosing the right
planner(s) for performing grasp executions by conducting an
empirical study on the available motion planners of OMPL
in MoveIt!. We choose to only investigate the single-query
performance of the available sampling-based motion planners,
included multi-query planners are being used as single-query
planners. The performance of such planners depends on the
configuration space of the robot, in particular, motion planning
through narrow passages can cause issues [4]. For this paper,
four grasp execution motions are defined in the MoveIt!
Benchmark environment to discover the behavior of the plan-
ners. The manipulator that will be used in the benchmarking
is the UR5 robot due to its universal use. To resemble the
real-world grasping problem, we fitted the manipulator with a
virtual camera and gripper.

The performance of the planners is measured in terms of
solved runs, computing time and path length. Solved runs can
be noted as a percentage of the total motion planning runs that
finish correctly, barplots are used to visualize the difference.
For every run, the total computing time and path length can
change due to the randomization in sampling-based motion
planners. Boxplots and tables are used to analyze the planners
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TABLE I: Summary of available planners of OMPL in MoveIt!
Planner name Optimizing

planners
Time-invariant
goal

SBL [5] X
EST [6] X
BiEST [6] X
ProjEST [6] X
KPIECE [7] X
BKPIECE [7] X
LBKPIECE [7][8] X
RRT [9] X
RRTConnect [10] X
PDST [11] X
STRIDE [12] X
PRM [13]
LazyPRM [8]
RRTstar [14] X
PRMstar [13][14] X
LazyPRMstar
[8][14]

X

FMT [15] X X
BFMT [16] X X
LBTRRT [17] X X
TRRT [18] X X
BiTRRT [19] X X
SPARS [20] X
SPARStwo [21] X

with respect to computing time and path length. Performance
depends on the users need, right planners for one performance
measure can be wrong planners for a different performance
measure. By looking at each measure, we can discuss on the
preferred planner choice.

Through a quick survey of the available planners of OMPL
in MoveIt!, several observations can be made on how they
handle motion problems. The comparison (Tab. I) shows that
the promise of using FMT, BFMT, LBTRRT, TRRT and
BiTRRT. These planners have an optimizing step and stop
once an optimized path is found.

II. BACKGROUND

A. Software

The open-source Robot Operation System is a suite of
software libraries that help create robot applications. ROS
was created to encourage collaborative robotics software de-
velopment. MoveIt! serves as a framework in ROS to help
with the manipulation of robotic hardware. Within MoveIt!
several motion planner libraries can be added to perform
motion planning for the specified robot. OMPL is a well-
integrated motion planner library and is the default library
for MoveIt!. It houses state-of-the-art sampling-based motion
planners. OMPL itself only implements the basic primitives of
sampling-based motion planning. MoveIt! configures OMPL



and provides the back-end for OMPL to work with motion
planning problems.

When executed through MoveIt!, OMPL creates a path to
solve the motion planning problem. By default, OMPL tries
to perform path simplification. These are routines that shorten
the path. The smoothness of the path may not be affected by
this simplification.

B. Overview planning algorithms

Sampling-based motion planners are proven to be proba-
bilistically complete [13], which implicates that the proba-
bility of not finding a feasible path in an unbounded setting
approaches zero. For this reason, sampling-based motion plan-
ners are widely used to find feasible paths in high-dimensional
and geometrically constraint environments. Optimizing plan-
ners can refrain from potential high-cost paths and rough
motions [14]. However, computational effort for finding an
optimized path is increased.

Among the 23 motion planners in Tab. I, six can be consid-
ered as multi-query planning methods. A common multi-query
planning method is the Probabilistic RoadMap (PRM) [13].
The planner attempts to find a path in a constructed roadmap.
The construction of the roadmap is executed by sampling valid
nodes (configuration states) in the configuration space. These
nodes are connected to other nearby nodes by edges (path
segments). In OMPL, the roadmap construction is finished
when a certain time limit is reached. Afterward, a simple graph
search (query) can be performed on the roadmap to find a path
between the start and goal node. Because the algorithm covers
the total configuration space with a roadmap, multiple queries
can be started to find a path with different a start and goal
node.

In MoveIt!, three variants of the PRM planner are available
for use. The LazyPRM [8] planner initially does not check for
valid states when sampling nodes for roadmap construction.
Once a path has been found from between start and goal node,
collision checking is performed along the nodes and edges
of the roadmap. Invalid nodes and edges are removed and a
new graph search is attempted. This process is repeated until
a feasible path is found. PRMstar [14] is the asymptotically
optimal variant of the PRM planner. It rewires nodes to other
near nodes if this is beneficial to the cost towards the node.
An asymptotically optimal path is found if there is a great
number of nodes. LazyPRMstar [14] combines the LazyPRM
and PRMstar.

In addition to the PRM planner and its variants, OMPL
has two more multi-query planners, SPARS and SPARStwo.
They are similar to PRMstar but adds another sparse subgraph.
This subgraph is an asymptotically optimal roadmap that
houses nodes which resemble multiple nodes in a dense graph.
Therefore less computing memory is needed to store the
asymptotically optimal roadmap. SPARStwo is different since
it has an infinite iteration loop.

The remaining 17 planners in Tab. I are considered as
single-query planning methods. These create a roadmap every
time a new planning query has to be determined. A common

single-query planner is the Rapidly Exploring Random Tree
(RRT) method [9]. It grows one tree (mono-directional) from
the initial configuration state in the direction of the unexplored
areas of the bounded free space. This is realized by randomly
sampling nodes in the free space, sampled nodes that can be
are within a certain distance of tree nodes are added to the tree
by edges. The process of adding nodes and edges is repeated
until the tree reaches the goal node. The goal bias parameter
in this planner specifies the probability of choosing the goal
configuration as a sample rather than a random sample.

The RRTConnect method [10] is a bi-directional version
of the RRT method, meaning that two trees are grown. Two
processes of RRT are started, one in the start node and one
in the goal node. At every iteration or edge addition, it is
checked whether the trees can be connected to each other.
A path that solves the motion planning problem, is found if
these trees can be connected. The near-optimal variant of RRT,
RRTstar [14], checks whether the new sampled node can be
connected to other near nodes so that the state space is more
locally refined. The RRTstar removes the connections of the
new sample that are not beneficial towards the cost of the path,
like PRMstar. When the number of nodes is big enough, it can
result in an asymptotically optimal path from the start-to-goal
node. As shown in Tab. I, the RRTstar goal is time-invariant.
It keeps trying to optimize the trees by adding new nodes until
specified time limit is met.

Lower Bound Tree-RRT (LBT-RRT) [17] is an asymptoti-
cally optimal planner and uses a so-called lower bound graph
which is an auxiliary graph. To maintain the tree, a similar
method as RRTstar is used. Transition-based RRT or TRRT
[18] is a combination of the RRT method and a stochastic
optimization method for global minima. It performs transition
tests to accept new states to the tree. The algorithm computes
an optimized path that is not tied to a time limit, unlike
RRTstar. The Bi-TRRT [19] is a bi-directional version of this
planner.

The EST method [6] stands for Expansive Space Trees.
Other than RRT, EST tries to determine the direction of the
tree by looking at neighboring nodes. The tree will grow in
the direction of the less explored space. Bi-directional EST
(BiEST), based on [6], grows two trees like RRTConnect.
Projection EST (ProjEST), also based on [6], detects the less
explored area of the configuration space by using a grid. This
grid serves as a projection of the state space. Single-query Bi-
directional probabilistic roadmap planner with Lazy collision
checking, also called SBL, grows two trees. The trees expand
in the same manner as EST. Due to its lazy collision checking
it will determine if a path is valid after the two trees are
connected. It deletes nodes and edges of the path that are not
valid, similar to LazyPRM.

KPIECE (Kinodynamic motion Planning by Interior-
Exterior Cell Exploration) [7] is a tree-based planner that uses
layers of discretization to help estimate the coverage of the
state space. The OMPL implementation only uses one layer.
OMPL incorporates a bi-directional variant called BKPIECE
and a variant which incorporates lazy collision checking, this



is the LBKPIECE.
Fast Marching Tree (FMT) [15] is an asymptotically optimal

planner which marches a tree forward in the cost-to-come
space on a specified amount of samples. The BFMT [16]
planner is a bi-directional variant of this planner.

PDST (Path-Directed Subdivision Tree) [11] represents
samples as path segments instead of configuration states. It
uses non-uniform subdivisions to explore the state space.

STRIDE (Search Tree with Resolution Independent Density
Estimation) [12] uses a Geometric Nearneighbor Access Tree
(GNAT) to sample the density of the configuration space. This
information helps to guide the planner into the less explored
area.

III. PROBLEM FORMULATION

The available planners consist of non-optimizing and opti-
mizing planners. The problem formulation follows the work
of Karaman and Frazzoli [14]. Non-optimizing planners at-
tempt to find a feasible path in the bounded d-dimensional
configuration space C = [0, 1]d. The free configuration space
is defined by Cfree = cl(C \ Cobs), in which cl(·) denotes the
closure of a set and in which Cobs denotes the obstacle space.
A path p is called feasible when:

p(0) = xinit, p(1) = xgoal (1)
p(x) ∈ Cfree for all x ∈ [0, 1]

Optimizing planners that are given a motion planning prob-
lem (Cfree, xinit, xgoal) and a cost function c, find a optimized
path p∗ such that:

c(p∗) = min{c(p) : p is feasible } (2)

Problem implementation. Non-optimizing planners are
asked to produce feasible paths with a maximum computing
time of 3s and 10s. Optimizing planners are asked to produce
an optimized path within a maximum computing time of 3s
and 10s. Path simplification by OMPL is turned on.

Performance metric. Solved runs, computing time and path
length are used as metric in our experiments. We analyze the
measures individually to provide the best performing planners
in each one of the measures. Solved runs is analyzed in terms
of percentage of total runs of the planner resulting in feasible
paths, higher performance is considered for higher solved runs.
Total computing time is measured for the time it takes for
planners to produce feasible or optimized paths with path
simplification, a shorter time is considered as higher perfor-
mance. Moreover, planners with a small standard deviation
from the average computing time and small interquartile range
are considered as better performance. Path length is measured
by the length of the sum of motions for a produced path.
Shorter lengths are considered as higher performance. Again,
planners with a small standard deviation from the average path
length and small interquartile range are considered as better
performance.

Parameters. In MoveIt! and OMPL parameters can be set
to increase the performance of the planners. To choose them,

Fig. 1: Benchmark 1: Grasp between obstacles

Fig. 2: Benchmark 2: Long motion

we conducted an iterative process in which we investigated the
different parameter settings for each planner by increasing and
decreasing the default settings by a factor of two. Parameter
tuning was conducted again in the direction performance
increase was noticed until no better performance was achieved.
These new parameter values were then set before conducting
the benchmarks.

IV. DEFINED MOTION PLANNING PROBLEMS

Four grasp execution motions have been defined to measure
the performance of the planners.

A. Grasp between obstacles

Benchmark 1 has its end-effector goal placed in a such
a way that the manipulator has to move through a narrow
passage, shown in Fig. 1. This benchmark uses an environment
that resembles a table with obstacles. To be able to move
through the narrow passage the UR5 robot needs to be in
a specific configuration due to its geometry, this decreases the
free configuration space near the goal configuration.

B. Simple motion

Benchmark 2 has its end-effector goal placed at the other
side of the scene, shown in Fig. 2. It operates in the same
environment as benchmark 1. The end-effector has to be dis-
placed 1.5m in order to reach the goal. This motion planning
problem can be solved by mainly actuating the shoulder lift
joint. To actuate less joints, using optimizing planners could
be beneficial.

C. Place motion

In benchmark 3, initial end-effector position is located at
the end of a shelf box, shown in Fig. 3a. This benchmark
uses an environment that houses a simplified shelf box and
obstacles placed on a flat surface. The goal position is the



(a) Place motion (b) Pick motion

Fig. 3: Benchmark 3 and 4: a, b respectively

initial configuration used in benchmark 1 and 2 (orange state
in figure). The motion problem starts in a narrow passage
(transparent state in figure), the goal is situated in a less
constrained space.

D. Pick motion

Benchmark 4 is attempting to resemble a picking motion
from a narrow shelf box, shown in Fig. 3b. The environment
is identical to benchmark 3. The goal of the problem is to be
in a specific gripper orientation at the end of this shelf. The
planner will have to produce a motion plan with high accuracy
to reach the end of the shelf. The motion problem starts in a
less constrained space (transparent state in figure), the goal is
situated in a narrow passage (orange state in figure).

V. PARAMETER SELECTION

Parameters can be set to improve the performance of the
planners. In this section, the parameter selection is presented.

While conducting parameter selections for LBTRRT it was
found that this planner is behaving unreliable in our setup.
We tested all parameter combinations for this planner when
conducting various motion planning which resulted in crashes.
So we are unable to provide benchmark data for this particular
planner.

A. Global planner parameter

There is one parameter that affects all planners. This is
the distance parameter longest valid segment fraction. The
parameter is called when the planner checks for collisions
between two nodes. Collision detection is not checked for
the motion if the distance between the nodes is within the
parameter value. In narrow passages and corners, this param-
eter can be critical. The parameter is set in meters and by
default has a value of 0.005m. After conducting experiments
with lower values, it was found that reducing this parameter
did not have an immediate effect on the solved runs for the
various benchmark problems.

B. Planner specific parameters

The majority of planners (20 of 23) have their own param-
eters. For the benchmarks, each parameter was set to values
that benefit one or more performance measures, these values
are noted in Tab. II.

C. Robot

The UR5 robot that will be used has two joint limit settings
for each joint, π and 2π. Validating by means of simple motion
planning experiments it was found that setting the joint limits
to π resulted in favorable performance for all the performance
measures.

VI. RESULTS

A. Methodology

The benchmarking experiments are performed using one
thread on a system with an Intel i5 2.70GHz processor and
8Gb of memory. To give reliable data on the solved runs,
computing time and path length, each algorithm was run 30
times for the given motion planning problem. The algorithms
were given a maximum computing time of 3s and 10s to show
the effect of time on the algorithms for which the goal is not
time-invariant (shown in Tab. I). The times are kept low since
for most robotics applications results are required quickly.
Specifically for grasping approaches that try to find grasps
in a short amount of time. Planners, where path simplification
was not performed by OMPL, have been marked with a *
behind the planner name.

B. Plots and Tables

Results of benchmark 1 are shown in Fig. 4 and Tab. III.
The motion planning problem affects planners EST, RRT,
RRTstar, TRRT and SPARStwo since they were not able to
solve all the runs with a percentage higher than 80% with a
maximum computing time of 3s and 10s. With exception of
SPARStwo, these are mono-directional planners. SBL, BiEST,
KPIECE, BKPIECE and LBKPIECE compute valid paths in
a computing time shorter than 0.5s. RRTConnect is the fastest
planner and BiTRRT is the fastest optimizing planner. SBL
has the lowest average path length with a small standard
deviation. For solved runs higher than 80%, planners SBL,
KPIECE, and LBKPIECE are able to plan paths of similar
lengths. For optimizing planners, BiTRRT has the lowest
median path length. TRRT has the lowest average path length
and standard deviation. Selecting a higher limit for computing
time showed shorter paths for planners RRTstar, PRMstar and
LazyPRMstar, due to the optimization step. Path simplification
contributes to shorter paths.

Results of benchmark 2 are shown in Fig. 5 and Tab. IV.
RRTstar, TRRT and SPARStwo have lower solved runs com-
pared to the other planner algorithms. SBL, BiEST, BKPIECE,
LBKPIECE, RRTConnect and BiTRRT compute paths in
under 0.1s, all being bi-directional planners. BiTRRT is the
fastest optimizing planner. SBL and BiTRRT have the shortest
paths. The planners that keep sampling the configuration space
or optimizing the path until the maximum computing time is
reached see improved performance with respect to path length.
However, compared to non-optimizing planners

Results of benchmark 3 are shown in Fig. 6 and Tab. V.
None of the multi-query planners are able to find feasible
paths. Increased computing effort is needed to cover the total



TABLE II: Specified planner parameters
SBL EST BiEST ProjEST RRT RRTConnect PRM LazyPRM RRTstar
range: .3125 range: .625 range: 0 range: .625 range: 0 range: .3125 max n.n.: 10 range: .3125 range: 0

goal bias: .05 goal bias: .05 goal bias: .05 goal bias: .05
delay c.c.: 0

KPIECE BKPIECE LBKPIECE STRIDE FMT BFMT TRRT BiTRRT SPARS SPARStwo
range: .625 range: .3125 range: .3125 range: .625 samples: 1000 samples: 1000 range: 1.25 range: 1.25 str. factor: 2.6 str. factor: 3
goal bias: .05 border frac.: .9 border frac.: .9 goal bias: .05 rad. mult.: 1.05 rad. mult.: 1.05 goal bias: .05 temp c. fact.: .2 sp. d. frac.: .25 sp. d. frac.: .25
border frac.: .9 failed e.s.f.: .5 min.v.p.frac.: .5 use proj.dist.: 0 nearest k: 1 nearest k: 1 max s. f.: 10 init temp.: 50 d. d. frac.: .001 d. d. frac.: .001
failed e.s.f.: .5 min.v.p.frac.: .5 degree: 8 cache cc: 1 balanced: 1 temp c. fact.: 2 f. threshold: 0 max fails: 1000 max fails: 5000
min.v.p.frac.: .5 max degree: 12 heuristics: 1 optimality: 0 m.temp.: 1e-10 f. n. ratio: .1

min degree: 6 extended fmt: 1 cache cc: 1 i.temp.: 1e-6 cost.thres.: 5e4
max p.p. leaf: 3 heuristics: 1 f. threshold: 0
est. dim.: 0 extended fmt: 1 f.NodeRatio: .1
min.v.p.frac.: .1 k constant: 0

Fig. 4: Results for benchmark 1 for 3s and 10s maximum computing time. a. Solved runs (higher is better), b. Computing time (lower is better, small
interquartile range is better), c. Path length (lower is better, small interquartile range is better).

free configuration space with these planners. Of the single-
query planners BiEST, RRT, RRTstar and FMT are not able
to reach a high level of solved runs. Indicating that these
planners are not fast enough to have a proper coverage of the
free configuration space. BKPIECE and RRTConnect reach
100% solved runs for 3s maximum computing time. SBL, EST,
ProjEST, KPIECE, LBKPIECE, PDST, STRIDE, TRRT and
BiTRRT perform better with respect to solved runs when the

maximum computing time is set to 10s. RRTConnect is the
fastest planner, TRRT is the fastest optimizing planner with
solved runs higher than 50%. With exception of RRTConnect,
the single-directional planner variants are able to plan a shorter
path length compared to the bi-directional planner variant.
These planners propagate a path out of a narrow passage and
with the use of goal bias shorter paths can be obtained.

Results of benchmark 4 are shown in Fig. 7 and Tab. VI.



Fig. 5: Results for benchmark 2 for 3s and 10s maximum computing time. a. Solved runs (higher is better), b. Computing time (lower is better, small
interquartile range is better), c. Path length (lower is better, small interquartile range is better).

5 of the 22 planners were able to compute paths with solved
runs higher than 50%. These are all bi-directional planners,
motion planning with these planners are also started in the
goal configuration. These planners provide high solved runs
for max 10s computing time. KPIECE and RRTConnect are
the fastest performing planners. BiTRRT has the shortest path
planning length. RRTConnect shows significant performance
increase for path length with a higher maximum computing
time.

C. Discussion
From the results, observations are made and discussed.
Solved runs. The planners RRTstar, TRRT and SPARStwo

show consistent lower solved runs for all the benchmarks,
making them less desirable to use for the grasp executions
we presented. SBL, LBKPIECE and BiTRRT have high
solved runs for a maximum computing time of 10s in all
benchmarks. When high solved runs has to be achieved in a
shorter time, BKPIECE and RRTConnect are the best choices
when performing varied grasp executions.

TABLE III: Average values for benchmark 1
Planner name Max. 3s computing time Max. 10s computing time

Time (s) Path length Time (s) Path length
SBL 0.29 (0.11) 10.07 (0.74) 0.37 (0.18) 9.90 (0.63)
EST 2.18 (0.31) 10.58 (0.77) 4.65 (2.55) 11.03 (1.01)
BiEST 0.21 (0.10) 14.81 (5.19) 0.18 (0.07) 13.32 (3.14)
ProjEST 1.83 (0.86) 11.82 (1.81) 2.37 (1.57) 12.13 (2.19)
KPIECE 0.20 (0.09) 10.89 (1.80) 0.22 (0.10) 10.55 (1.28)
BKPIECE 0.42 (0.21) 10.94 (1.86) 0.42 (0.21) 10.56 (1.82)
LBKPIECE 0.30 (0.08) 10.41 (1.53) 0.26 (0.11) 12.30 (7.16)
RRT 0.54 (0.84) 11.93 (1.41) 1.48 (2.71) 11.62 (1.14)
RRTConnect 0.11 (0.08) 12.52 (15.68) 0.09 (0.03) 11.89 (9.10)
PDST 1.37 (0.87) 11.96 (2.35) 1.68 (1.61) 12.37 (2.15)
STRIDE 0.59 (0.57) 11.97 (5.35) 1.12 (1.58) 11.20 (2.24)
PRM* 3.01 (0.01) 15.60 (2.26) 10.01 (0.01) 14.49 (1.65)
LazyPRM 3.02 (0.00) 12.13 (1.17) 10.02 (0.01) 12.48 (1.96)
RRTstar* 3.01 (0.01) 12.76 (0.93) 10.02 (0.02) 11.47 (1.03)
PRMstar* 3.02 (0.01) 14.43 (1.90) 10.02 (0.01) 12.99 (1.67)
LazyPRMstar 3.02 (0.00) 11.53 (1.23) 10.03 (0.01) 10.95 (1.59)
FMT 2.07 (0.45) 10.49 (0.99) 1.78 (0.21) 10.33 (0.64)
BFMT 1.17 (0.36) 11.74 (2.65) 0.89 (0.09) 10.88 (1.06)
TRRT 0.57 (0.58) 10.21 (0.52) 2.41 (2.82) 10.12 (0.45)
BiTRRT 0.13 (0.08) 15.56 (16.75) 0.13 (0.10) 11.03 (5.22)
SPARS* 3.04 (0.04) 23.63 (4.74) 10.07 (0.07) 23.87 (5.57)
SPARStwo* 3.00 (0.00) 22.98 (3.97) 10.00 (0.00) 26.34 (10.01)
Standard deviation in parentheses



TABLE IV: Average values for benchmark 2
Planner name Max. 3s computing time Max. 10s computing time

Time (s) Path length Time (s) Path length
SBL 0.05 (0.01) 9.48 (7.86) 0.04 (0.01) 7.76 (1.76)
EST 0.20 (0.13) 9.53 (2.58) 0.16 (0.11) 9.38 (4.00)
BiEST 0.09 (0.04) 11.36 (1.96) 0.08 (0.03) 12.71 (3.57)
ProjEST 0.18 (0.11) 9.86 (2.51) 0.15 (0.09) 8.99 (1.32)
KPIECE 0.18 (0.09) 9.10 (1.50) 0.14 (0.08) 9.49 (1.68)
BKPIECE 0.11 (0.11) 9.71 (5.83) 0.13 (0.16) 8.17 (2.79)
LBKPIECE 0.09 (0.06) 9.33 (5.53) 0.08 (0.03) 9.23 (3.80)
RRT 0.53 (0.62) 12.03 (7.08) 0.44 (1.10) 10.15 (1.99)
RRTConnect 0.09 (0.04) 13.90 (10.39) 0.06 (0.02) 9.65 (4.05)
PDST 0.24 (0.16) 11.71 (3.56) 0.24 (0.16) 12.27 (4.00)
STRIDE 0.19 (0.21) 9.42 (3.26) 0.14 (0.09) 8.98 (1.17)
PRM* 3.02 (0.01) 12.91 (3.41) 10.01 (0.00) 11.56 (1.56)
LazyPRM 3.02 (0.00) 9.80 (1.88) 10.02 (0.00) 9.58 (1.27)
RRTstar 3.01 (0.02) 8.78 (0.00) 10.01 (0.01) 8.21 (0.94)
PRMstar* 3.03 (0.01) 12.30 (1.81) 10.02 (0.01) 11.11 (1.65)
LazyPRMstar 3.02 (0.00) 8.62 (0.98) 10.02 (0.01) 7.88 (0.72)
FMT 1.23 (0.16) 9.64 (6.44) 1.10 (0.15) 7.92 (1.15)
BFMT 0.79 (0.06) 8.24 (0.69) 0.73 (0.06) 8.35 (1.64)
TRRT 0.78 (1.00) 7.82 (0.91) 2.05 (2.43) 8.55 (2.17)
BiTRRT 0.08 (0.02) 8.39 (3.00) 0.07 (0.02) 7.75 (1.11)
SPARS* 3.05 (0.04) 19.38 (8.05) 10.07 (0.06) 16.22 (5.38)
SPARStwo* 3.00 (0.01) 14.98 (5.37) 10.00 (0.00) 20.10 (9.43)
Standard deviation in parentheses

TABLE V: Average values for benchmark 3
Planner name Max. 3s computing time Max. 10s computing time

Time (s) Path length Time (s) Path length
SBL 1.54 (0.69) 13.72 (5.89) 2.06 (1.56) 15.02 (6.16)
EST 1.06 (0.64) 12.91 (2.14) 1.03 (0.79) 12.84 (1.89)
BiEST 0.11 (0.00) 16.57 (0.00) 3.51 (3.03) 16.99 (4.03)
ProjEST 0.98 (0.74) 13.26 (2.44) 1.21 (1.03) 13.02 (1.87)
KPIECE 1.15 (0.86) 13.31 (3.07) 1.00 (0.90) 13.47 (6.05)
BKPIECE 1.32 (0.78) 21.42 (31.12) 1.19 (0.87) 17.10 (7.24)
LBKPIECE 1.50 (0.88) 14.37 (3.13) 1.34 (1.28) 14.82 (4.58)
RRT* - (-) - (-) 3.82 (2.87) 17.20 (2.46)
RRTConnect 0.62 (0.23) 16.13 (13.07) 0.68 (0.28) 14.17 (3.69)
PDST 1.27 (0.71) 13.21 (2.75) 2.07 (1.77) 14.96 (5.60)
STRIDE 0.89 (0.59) 14.76 (4.44) 1.08 (0.82) 13.00 (1.87)
RRTstar* 3.00 (0.00) 18.06 (0.00) 10.01 (0.00) 17.64 (0.00)
FMT 2.91 (0.15) 14.99 (3.77) 6.57 (1.23) 13.47 (0.03)
TRRT 0.90 (0.66) 12.47 (3.10) 1.74 (1.92) 13.07 (4.57)
BiTRRT 1.74 (0.62) 12.55 (2.59) 2.65 (1.63) 16.12 (10.42)
Standard deviation in parentheses

TABLE VI: Average values for benchmark 4
Planner name Max. 3s computing time Max. 10s computing time

Time (s) Path length Time (s) Path length
SBL 1.71 (0.73) 24.37 (51.46) 2.40 (1.67) 32.01 (83.89)
BKPIECE 1.00 (0.63) 20.15 (30.20) 1.23 (0.80) 20.14 (30.63)
LBKPIECE 1.21 (0.60) 22.68 (35.48) 1.49 (1.10) 21.29 (31.37)
RRTConnect 0.75 (0.32) 21.15 (30.21) 0.91 (0.54) 15.66 (14.27)
PRM* - (-) - (-) 10.01 (0.00) 18.22 (0.00)
BiTRRT 1.61 (0.65) 28.14 (35.93) 3.05 (2.02) 28.88 (62.82)
Standard deviation in parentheses

Computing time. When feasible paths need to be found
quickly, a bi-directional planner is recommended similar
motion planning problems to benchmark 1, 2 and 4. When
a path creation starts in a narrow passage as in benchmark
3, a single-directional planner can give improved computing
times, with exception of RRTConnect.

Path length. Picking an optimizing planner to find shorter
path lengths can not be justified from the benchmark data.
Only in benchmark 2, the TRRT and BiTRRT planners for
3s and 10s maximum computing time respectively compute
shorter paths compared to non-optimizing planners. Having
more computing time for time-variant goals decreases path
lengths, however, not drastically. The RRTConnect shows low
path length means in all benchmark problems.

Multi-query. For this paper, we only looked at single-query
motion planning problems, multi-query planners can also be

used as single-query planners. Though this paper fails to
show the potential benefit of using the same roadmap multiple
times and how this can affect computing time. Though we do
notice that RRTConnect and BiTRRT are able to give valid
paths in very short amounts of time that we argue the need
for multi-query planners for online grasp executions.

Parameter selection. Since parameter values have to be
set for a planner to operate, the aim was to achieve maximum
performance of the planners. By manually conducting the
iterative process explained before, a guarantee of maximum
performance can not be given. We executed the iterative
process to the best of our ability to achieve maximum
performance.

Combined metrics. When looking at all the benchmarks,
SBL, BKPIECE, LBKPIECE, RRTConnect and BiTRRT
show high performance in the metrics solved runs, computing
time and path length.

Optimization with a time-invariant goal. Planners FMT,
BFMT, LBTRRT, TRRT and BiTRRT stop once an optimized
path is found. Of these, BiTRRT is the fastest performing
planner. However, compared to not non-optimizing planners
the path length is not consistently shorter. More research has
to be done to see whether other metrics will make the use of
this planner more desirable.

Robot. The UR5 is used to compute the motion plans
though we have not investigated the change in the performance
measures for different types of manipulators. It needs to be
determined if the results hold for other types of manipulators.
For future work, multiple manipulators can be used to
perform the same benchmark to find a better answer on the
consistency of the planner’s performance.

Path constraints. The results presented do not give any
estimation on how the planners perform when implementing
hard path constraints.

VII. CONCLUSION

This paper presented benchmark data of available OMPL
planners in MoveIt! for geometrically constrained grasp ex-
ecutions using a 6-DOF manipulator. Planner performance
was studied by means of solved runs, computing time and
path length for two maximum computing time settings. From
the performance analysis remarks and recommendations were
made depending on the performance measure. For the defined
benchmarks, the bi-directional planners SBL, LBKPIECE,
RRTConnect and BiTRRT are high performing planners in
terms of all the studied metrics. For future work, we would
like to investigate the use of different manipulators to find
consistency in planner performance when performing grasp
executions.
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