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Introduction

Background

Driving simulators are used as tools in research since the early 1960s, as means to obtain insights in in-
teractions between the driver and his/her environment. Various reasons make it beneficial or necessary
to conduct experiments in a simulated environment opposed to on the real road. Driving simulators offer
a controlled environment, assuring safety and reproducibility. Moreover, simulator studies are generally
less expensive when compared to studies with real vehicles. Lastly, a lack of readiness of a concept
of which one wants to investigate the interactions with a human driver can make studies with a real
vehicle impossible. Currently, simulator experiments in the field of driving with higher levels of automa-
tion are becoming increasingly popular, introducing new use cases. Examples of novel experiments
on user behavior are system acceptance [1], takeover behavior [2] and cooperative strategies [3]. The
growing number of use cases, combined with the increasing levels of realism that can be reached due
to technological advances in the last decades, makes driving simulation a topic which is researched
extensively. [4]

A driving simulator is a device set up to provide a combination of stimuli to the driver, known as cues.
Important cues are visuals, sound and force feedback of the steering wheel. Many driving simulators
include a platform that provides motion cues, which can yield an increase in the behavioral validity of a
simulator experiment as a means to substitute a real driving experiment [5, 6]. Moreover, motion cues
can decrease simulator sickness, which is a common cause for the drop-out of participants in simulator
experiments [7]. Due to the limits on the acceleration, velocity and deflection of the actuators of motion
platforms, a one-to-one reproduction of the dynamics of a simulated vehicle is seldom possible. The
calculation of realizable platform motions is performed by a motion cueing algorithm (MCA). Many types
of MCAs exist, ranging from simple filter-based approaches to advanced optimization-based solvers.
Providing motion cueing is not trivial and often results in missing cues, cues where no stimulus is de-
manded (false cues), phase errors and scaling errors. [8]

A distinction can be made between passive driving experiments, where a participant is driven around,
and active driving experiments, where the participant controls the virtual vehicle. In the latter case, mo-
tion cueing is complicated by the lack of knowledge on the oncoming sequence of maneuvers, while
having to provide cues in real-time. This lack of knowledge mostly applies to longitudinal behavior,
which is highly influenced by the participant’s driving style, compared to lateral dynamics, which is
mostly influenced by the roughly predefined trajectory [9].

Conventionally, only the outputs from the model of the simulated vehicle are used as inputs for MCAs.
This leaves potentially useful information from the driver inputs and the road environment unused. The
aim of this research is to increase the understanding of the predictive value of this information and its
potential to improve online motion cueing. This project is done in cooperation with the BMW Group,
which operates a number of motion-based driving simulators and is continually seeking to improve their
motion cueing. Recorded data logs of 37 drives from a previously performed experiment in a static sim-
ulator at the BMW Group [10] will be analyzed in a search for ways to predict braking and acceleration
in a simulated environment and a method to exploit knowledge of future maneuvers in active driving
experiments.



2 Introduction

Research scope, objective and questions

The effectiveness of predictions in motion cueing will not only depend on the accuracy of the predictions,
but also on the MCA to which the predictive feature are added and on the method used to incorporate
predictions in simulator movement. The classical washout filter MCA is a well-known MCA capable of
providing motion cueing in active driving tasks. BMW has an in-house developed version available,
which will be adapted for this study. Considering the conversion of predictions to simulator movement,
the focus will be on simulator prepositioning, an established predictive feature in motion cueing with
classical washout filter MCAs [9, 11? , 12]. Lastly, the scope is defined by the set of recorded simulator
drives made available by BMW, which contains rural road with curves, hilltops, changing legal speed
limits and a passage through a village. Based on the previously described problem and resources, the
following research objective is stated:

The objective of this research is to assess the suitability of driver inputs and information from
the simulation environment as triggers for prepositioning of a dynamic driving simulator, by
means of establishing a prediction model from driving data and evaluating prepositioning
rules as extension to a classical washout filter MCA for a small hexapod motion platform.

In order to achieve this research objective, various sub-objectives are defined:

» SO1: Review the state-of-the-art of longitudinal prepositioning in motion cueing for driving simu-
lation.

» SO2: Review the state-of-the-art of longitudinal driver modeling and maneuver prediction.
» SO3: Propose and evaluate prediction models to predict longitudinal maneuvering.

» SO4: Design prepositioning based on these prediction models.

+ SO5: Perform a human-in-the-loop experiment to evaluate the proposed prepositioning.

These sub-objectives define the work packages for this project, of which a graphical overview including
interactions is provided in Figure 1.

driving
data

prediction
literature 5| SO2: Literature review N S03: Maneuver
driver modeling “]  prediction modeling
A
prepositioning experiment
Y
conclusions N
literature SO1: Literature review 4| SO04: Prepositioning | SO5: Human-in-the-loop ”
—_—> L > ) > . ;
prepositioning design experiment recommendations >
driving MCA

data

Figure 1: Schematic overview of the project.
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In line with the stated objectives, the following research questions are defined:

* RQ1: To what extent can longitudinal maneuvers be predicted in a driving simulation environ-
ment?

a) What information can be used to predict longitudinal driving maneuvers?
b) Under what conditions can longitudinal driving maneuvers be predicted accurately?

* RQ2: To what extent can motion cueing quality of a classical washout filter MCA be improved
using prepositioning based on predictions of longitudinal maneuvers?

a) How should predictions be converted to prepositioning that can be incorporated in a classical

washout filter MCA?

b) What is the effect of prepositioning based on predictions of longitudinal maneuvering on the

workspace usage of a hexapod-based driving simulator?

c) What is the effect of prepositioning based on predictions of longitudinal maneuvering on

motion cueing quality as perceived by driving simulation participants?

Report Outline

Part I:

Part II:

Part Il

Scientific paper

In the scientific paper, the knowledge from the literature reviews and preliminary analysis
as presented in the Preliminary thesis, was used to create a prediction model and
prepositioning algorithm. Moreover, the results of the human-in-the-loop experiment
performed to test the algorithm are discussed. From these results, conclusions are
drawn and recommendations for future research were presented.

Preliminary thesis

The preliminary thesis consists of a literature reviews on i) the state-of-the-art of
prepositioning in driving simulation and ii) driver modeling, both with a focus on
longitudinal dynamics. Moreover, a preliminary analysis was done wherein the
preliminary set of driving data was analyzed. Lastly, an experiment design was drafted,
to evaluate the final PP design.

Appendices

Eight appendices are attached to this thesis. In the first appendix, the effect of the
workspace limiting on motion cueing quality is described. Appendix B provides results of
the post-hoc questionnaire, which were omitted in the scientific paper. The subsequent
appendices describe the briefing, post-hoc motion cueing questionnaire and Latin
square design used in the human-in-the-loop experiment. A potential effect of the drive
number on the subjective ratings is discussed in Appendix F. The effect of the thresholds
on the prediction scores is shown in Appendix G. Lastly, Appendix H provides a
comparison between the prepositioning algorithm proposed in this thesis and a
prepositioning algorithm available in literature.
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Probabilistic Maneuver Prediction for Motion
Cueing in Driving Simulation

J.M. Eppink
Control & Simulation, Faculty of Aerospace Engineering
Delft University of Technology
email: jesseeppink@gmail.com

Abstract—Potential usage of the workspace of driving sim-
ulators is restricted by a lack of knowledge on oncoming
maneuvers, due to the unpredictable nature of human drivers.
This research aims to explore the possibility of using information
from driver inputs, dynamic vehicle states, and features of the
road environment to improve motion cueing through simulator
prepositioning. Probabilistic models were established to predict
longitudinal maneuvering for a short scenario consisting of a
drive on a two-lane road through a rural area. By combining
the accelerator deflection, the vehicle’s velocity and the future
speed limit in a logistic regression model, the area under the
receiver operating characteristic curve was (.84 for acceleration
prediction and 0.77 for deceleration prediction, using a look-
ahead time of 5 seconds. In order to use these predictions
for motion cueing, the prediction model was extended to a
prepositioning module. The proposed design was tested in com-
bination with a classical washout algorithm on a small hexapod-
based driving simulator in a human-in-the-loop experiment. No
distinguishable results were obtained in objective and subjective
evaluation of the motion cueing quality, as possibilities to improve
motion cueing were limited with the experimental setup used.
Nevertheless, the workspace usage was improved significantly.
The average distance that could be maintained from the edge of
the simulator’s workspace, could be increased from 0.025 meter
to 0.084 meter, for equivalent motion cueing.

Index Terms—motion cueing, driving simulation, preposition-
ing, maneuver detection

I. INTRODUCTION

Driving simulators are used since the early 1960s as cost-
efficient means to obtain insights in interactions between
drivers, the car automation and the road environment [1].
They offer a controlled environment, assure safety and improve
reproducibility. Currently, many simulator experiments in the
field of driving with higher levels of automation are becoming
cunducted, introducing new use cases. Examples of novel
experiments on user behavior focus on system acceptance [2],
takeover behavior [3] and cooperative strategies [4].

Various cues (i.e., stimuli) can be provided to the driver in
a simulator. Many driving simulators contain a motion system,
as motion cueing can yield an increase in the behavioral
validity of a simulator experiment [5], [6]. Moreover, motion
cueing can reduce the risk of simulator sickness, a common
cause of drop-out of participants [7].

Due to the limits on the acceleration, velocity and deflection
of the actuators of motion simulation systems, a one-to-one
reproduction of the dynamics of a real vehicle is seldom

possible. Translation of vehicle motion into simulator displace-
ments within the limited workspace of a motion system is
performed by a motion cueing algorithm (MCA) [8]. Vari-
ous types of MCAs exist, ranging from simple filter-based
approaches to advanced optimization-based solvers [9].

Providing motion cueing can be complicated and often
results in missing cues, false cues (i.e., cues where no stim-
uli are demanded), phase errors, and scaling errors [9]. In
simulator experiments where participants actively control the
virtual vehicle, motion cueing is often tuned conservatively, to
account for the lack of knowledge on oncoming maneuvers.
This lack of knowledge especially applies to longitudinal man-
euvering, as differences in driving styles result in a high inter-
driver variability of longitudinal acceleration when compared
to lateral acceleration [10].

Some driving maneuvers cause motion renderings that are
almost unidirectional. In this case, a simulator generally moves
in this direction during a maneuver and returns to the neutral
position when the maneuver ends. If it is possible to predict
future motion renderings, the simulator’s neutral position
can be offset with a displacement opposing the direction
of the predicted motion. This displacement is referred to
as prepositioning (PP) [11]. As successful PP makes more
workspace available in the direction of the expected maneuver,
one can intensify cueing. This is not without risk, however, as
movements in unanticipated directions can bring the simulator
closer to the edge of its workspace [11].

Hansson & Stenbeck [12] assumed it impossible to predict
whether acceleration or deceleration will occur, due to the non-
deterministic human nature. In their PP implementation for a
curvy race track, the possibilities of braking and accelerating
were taken into account at all times. The mean of the range
of possible vehicle accelerations was then calculated from the
maximum possible acceleration and deceleration, depending
on the vehicle’s velocity. From this mean, a reference PP offset
was calculated.

Pitz et al. [13] used legal speed limit signs, road crossings,
pedestrian crossings, and traffic lights as potential triggers for
PP. Without reporting on the exact PP implementation, they
reported no significant differences in objective and subjective
motion cueing quality when comparing an MCA with lon-
gitudinal PP to another MCA without longitudinal PP. It is
reasoned that this was a consequence of longitudinal driving
behavior being dominated by individual driving style rather



than road layout.

Being merely a tool to improve workspace usage, not
motion cueing quality, PP ideally happens imperceptibly. Con-
sequently, it is usual to limit a reference PP signal on an
acceleration- and jerk level [12], [13], as both were found
to have an effect on how motion is perceived [14]. A control
scheme with saturation limits, a PD-controller and a feedfor-
ward loop from Fischer [15] can be used for this purpose [12].

Next to motion cueing implementations in which PP is
calculated explicitly, a class of MCAs exist in which PP can
result from optimization. In these MCAs, which are based
on model predictive control (MPC), an optimal sequence of
dynamic simulator states is calculated for a limited time hori-
zon by means of minimizing a cost function, while explicitly
taking into account workspace constraints [16]. Grottoli et al.
[17] showed that in the hypothetical case of having perfect
predictions of future vehicle dynamics, the performance of
MPC-based cueing improves. As in reality, these are unknown,
constant dynamics were conventionally assumed [16]. Re-
cently, efforts have been made to obtain better predictions in
the real-time simulation environment. Mohammadi et al. [18]
used an artificial neural network to predict future accelerations
out of historic accelerations to objectively improve motion
cueing of an MPC-based MCA.

Generally, only current dynamic vehicle states are used as
inputs for MCAs. This leaves potentially useful information
from the driver inputs and the road environment unused.
Efforts have been put into predictions of future vehicle
movement to improve MCAs [8], [12], [18]-[21], but none
combined driver inputs, dynamic vehicle states and features
of the road environment. The current research aims to assess
the suitability of these sources of information as triggers for
PP of a dynamic driving simulator, by means of i) establishing
prediction models for longitudinal maneuvering from driving
data, and ii) evaluating PP logic based on those predictions.
The effect of this PP design on workspace usage and motion
cueing quality are evaluated in a human-in-the-loop experi-
ment using a classical washout MCA and a small hexapod-
based driving simulator.

This paper is structured as follows: First, Section II de-
scribes how recorded data logs were analyzed to create an
acceleration prediction model for a simulated environment.
Hereafter, the prediction model was extended to a PP al-
gorithm, which is described in Section III. The human-in-the-
loop experiment done to evaluate the PP algorithm is described
in Section I'V. Results are provided in Section V, followed by
a discussion in Section VI and conclusions in Section VII.

II. PREDICTION
A. Scenario

The scenario investigated in this paper involves driving
along a two-lane road through a rural area, containing multiple
speed limit signs, a small village, various curves (maximum
curvature: 0.029 m~!) and a number of hills (maximum slope:
14%). An overview of the scenario is provided in Figure 1. The
scenario is driven in both directions, southward and northward.

The preliminary data set used to fit and evaluate the pre-
diction models is taken from a previously performed simulator
experiment [22]. It contains 21 southward drives and 16 north-
ward drives. The sections in which longitudinal maneuvering
takes place are denoted S1 to S4 and N1 to N4. An overview
of the characteristics of these sections is provided in Table I.
Starting and stopping maneuvers were excluded, as these are
considered exceptions to normal continuous driving behavior
and would therefore need a separate approach. Traffic was only
present on the opposite lane. The vehicle model constitutes a
2018 BMW 530i with a 4 cylinder 2.0 L engine and automatic
transmission.

@ (a) Southward -
__®
S4 $3 o X -

N (b) Northward

1000 m N4 ™~

Fig. 1. Scenarios used to fit and evaluate the prediction models.

Table T
SECTIONS WITH SUSTAINED ACCELERATION/DECELERATION

Description Speed limits (km/h)
S1 Entering village 100 — 50
S2 Leaving village 50 — 100
S3 Sharp turn, reduced speed limit 100 — 70
S4 Sharp hilltop, increased speed limit 70 — 100
N1 Sharp hilltop, reduced speed limit 100 — 70
N2 Sharp turn, increased speed limit 70 — 100
N3 Entering village 100 — 50
N4 Leaving village 50 — 100

B. Model output

As the output of the designed prediction model will be
used as input for a PP module, it could have been opted to
predict the future platform excursion that is to be anticipated.
However, this would have made the prediction algorithm
restricted to the MCA and dependent on its tuning parameter
set. The vehicle’s surge acceleration, a,, is the input for the
MCA’s surge channel and will be used as model output instead.
It is found that an imperceptible PP excursion of 0.30 m (i.e.,
covering most of the workspace of the small hexapod-based
simulator used in this paper) can take up to 4.1 seconds [23]. In
order to be able to apply PP before a maneuver commences, it
is desired to predict oncoming accelerations with a larger look-
ahead time. For this purpose, the peak acceleration between



the current time and 5 seconds ahead, ay peqk[t---t+5] as in
(1) was predicted. More specifically, the probability that this
peak acceleration is larger than 0.5 m/s? or smaller than -0.5
m/s? was estimated. Instances where this holds, were labeled
acceleration and deceleration, respectively. A histogram of
Qg peak|t -+t + 5] for the recorded drives is shown in Fig.
2. The classes acceleration and deceleration both make up
33% of the data points, whereas in 34% of the data points no
maneuver is about to occur.

g peanlt] = max (a[t]) max(a[t]) > |min(a;[t])]

min(a,[t])

[ deceleration [__Inone [Jacceleration

frequency (%)

I S -

-4.5 35 25 -15 -0.5 0.5 1.5 2.5 3.5 4.5
Qg peak[t -t + 5s] (m/s?)

Fig. 2. Distribution of ay peqr|t- -t + 5s] for all drives combined.

C. Model type

MCAs are generally re-tuned for each scenario and motion
platform [24]. It was therefore desired to create a predic-
tion model of which the decisions are easy to understand,
as this simplifies adaptation and potential troubleshooting.
Conditional probability tables (CPTs) and a logistic regression
model were evaluated as means to achieve this goal.

1) CPTs: Possible values for model inputs were subdivided
into segments. The probability that a maneuver occurs in
the near future, p, was calculated for all combinations of
model input segments and assumed valid for the center of
these segments. The resulting CPTs were linearly interpol-
ated/extrapolated to calculate p for any exact set of model
inputs. Each CPT contained [}, m; parameters, where n is
the number of predictor variables and m; is the number of
segments of variable ¢. For simplicity, equally sized segments
spanning the complete range of sample data were used. The
amount of segments was a trade-off between resolution (i.e.,
more segments) and accuracy (i.e., more data per segment).
Empirically, an m; of 8 was chosen when one predictor
variable was used. When using two predictor variables, a
lower m; of 5 was chosen, to compensate for the further
segmentation of the data. CPTs were used to compare predictor
variables, as they were straight-forward to use. A drawback of
the CPTs was the large amount of parameters.

2) Logistic regression: The best predictor variables found
using the CPTs were used to train a logistic regression model.
In logistic regression, a linear relationship as in (2) is assumed

between the predictor variables, z, and the log-odds of the
probability that a maneuver occurs in the near future, ¢
[25]. Each model contained only n + 1 parameters. Matlab’s
mnrfit function was used to fit the model’s parameters, 5.

E:10g71€p=50+25i$i 2
i=1

D. Model inputs

The vehicle’s velocity, legal speed limits and driver control
inputs were considered as potential predictor variables (i.e.,
model inputs). Earlier analysis showed that other road environ-
ment attributes, such as road curvature, slope and road width,
are less relevant for velocity control in the current scenario
[23].

1) Vehicle velocity and legal speed limits: As Hansson &
Stenbeck’s PP algorithm [12] uses the vehicle’s velocity as
the only input, predicting acceleration behavior from solely
velocity was also tried in the current analysis. It could be
expected that the vehicle’s velocity in itself is not very
informative, as acceleration can occur at high velocities and
likewise, deceleration can occur at low velocities.

Another predictor is obtained by subtracting the legal speed
limit, V., from the vehicle’s velocity, V,.p. Drivers anticipate
to upcoming road signs well before reaching them. To account
for this, another predictor was created using the speed limit
further down the road instead of the speed limit at the
vehicle’s position. For this purpose, the speed limit that applies
dt seconds in advance, VnH_dt, is calculated, assuming the
vehicle velocity to remain constant.

2) Control inputs: Next to information from the road en-
vironment and the vehicle’s velocity, control inputs were used
to predict future maneuvering. As the model aims to predict
longitudinal maneuvering, the accelerator- and brake pedals
(denoted d, and dy, respectively) were considered. The relative
pedal deflections in a [0, 1] range, and the time derivative of
the relative accelerator deflection (denoted d,) were tested as
potential predictor variables.

E. Model selection

To prevent overfitting of the model on the training
data, the southward drives were used for model cre-
ation and northward drives were used for model evalu-
ation. The outputs of CPTs and logistical regression mod-
els are the probabilities that acceleration and decelera-
tion is about to occur, i.e., p(@zpeak(t---t+ 5s] > 0.5)
and p (ag peak[t - - -t + 5s] < —0.5). Generally, a classification
threshold is selected to determine above which p-value a
maneuver is predicted. Receiver operator characteristic (ROC)
curves [26] were created to be able to see how the true positive
rate (TPR) and false positive rate (FPR) change for various
threshold values. The area under the curve (AUC) was used
as a performance metric independent of the selected threshold.
Moreover, Fi-scores [27] were calculated for each threshold,
so as to find the optimal classification thresholds and their



Table II
AUCS AND OPTIMAL F-SCORES FOR ACCELERATION- AND
DECELERATION CPTS MADE USING VARIOUS PREDICTORS

Acceleration Deceleration
Predictor variable(s) AUC Fq AUC Fq
Vien 0.54 0.46 0.50 0.39
Ve — Vi 0.66 0.47 0.53 0.38
Vieh — Vi ttas 0.73 0.51 0.65 0.42
Ve — Vittas 0.74 0.54 0.75 0.55
ba 0.81 0.60 0.71 0.53
5 0.54 0.45 0.64 0.43
Sar Op 0.81 0.60 0.73 0.51
8as O 0.81 0.60 0.70 0.53
Vien = Vit 486 0a 0.84 0.64 077 053
Vieh — Vi t48s: 0p 0.74 0.54 0.76 0.57

corresponding scores. Both scores are in a [0, 1] range, where
1 indicates perfect predictions.

The AUCs and optimal F;-scores for the models of various
(combinations of) predictor variables are provided in Table
II, where the best scores are underlined. It can be seen that
subtracting the legal speed limit from the vehicle velocity yiel-
ded improved predictions. Even better results were obtained
when a look-ahead time of 8 seconds was used for speed
limits. When looking at the control inputs, it was found that
the accelerator pedal deflection predicts both acceleration and
deceleration better than the brake pedal deflection. Adding the
time derivative of the accelerator deflection did not improve
predictions and even yielded a reduced AUC for deceleration
prediction. Generally, the best prediction scores were obtained
using the vehicle’s velocity w.r.t. the legal speed limit 8
seconds ahead combined with the accelerator pedal deflection

(Voen — ‘/r,t—i-Ss, 511)-

A graphical representation of the CPTs based on V., —
‘A/T,H_gs and J, is given in Fig. 3. These probabilities were
interpolated to obtain finer predictions. In the top right corner,
probabilities are unknown, as this represents a considerable
accelerator deflection while the vehicle’s velocity is much
higher than the legal speed limit, which does not occur in the
training data. Model outputs in this region are obtained through
linear extrapolation. It can clearly be seen that generally, a
higher Vep — IA/T,Hg decreases the chance of acceleration
and increases the chance of deceleration, whereas a higher J,
increases the chance of acceleration and decreases the chance
of deceleration.

Using the optimal predictors from the CPT-based models
for logistic regression, the models displayed in Figure 4 were
obtained. One can see that they roughly show the same
behavior as the CPT-based models, but now no interpola-
tion/extrapolation is required. The ROC curves of both model
architectures are shown in Fig. 5. Points with optimal F-
scores are denoted +. No large differences are found between

(a) Acceleration (b) Deceleration
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Fig. 3. CPTs for acceleration/deceleration prediction with predictor variables

V'Ueh - V'r‘,t+85 and 6(1-

the two model types. Table III presents the AUC and op-
timal F;-scores for both model architectures. For acceleration
prediction, the AUC and F;-score are slightly better for
the CPT. For deceleration prediction, the optimal Fi-score
is slightly better for the logistic regression model. As the
logistic regression model consists of only 3 parameters per
maneuver, compared to the 25 parameters of the CPT, it is used
throughout the remainder of this paper. The exact relationships
between the predictor variables and the predicted probabilities
of acceleration, deceleration and no maneuver (Pgcce, Pdec and
Prones respectively) are provided in Eq. (3).

(a) Acceleration (b) Deceleration

0.75 A 0.75 SURESREEE
0.75
<05 T 0.5 e O
< 3 0.5 <
025 ................. 025
0 0

10 0 10
Vveh — Vr,t+85 (m/s)

-10 0 10

Viven — Vi t48s (/s)

Fig. 4. Logistic regression models for acceleration/deceleration prediction
with predictor variables Vyep, — Vit 485 and dq.

CPT logistic regression
(a) Acceleration (b) Deceleration
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0 02 04 06 08 1 0 02 04 06 08 1
FPR FPR
Fig. 5. ROC curves for acceleration/deceleration prediction models with

predictor variables Viep — Vi ¢48 and d,. Points with optimal F1-scores
are denoted +.



Table III
AUCS AND OPTIMAL F-SCORES FOR ACCELERATION- AND
DECELERATION USING CPTS AND LOGISTIC REGRESSION WITH
PREDICTOR VARIABLES Ve, — Vi 148 AND dq

Acceleration Deceleration
Model architecture AUC Fi AUC Fi
CPT 0.84 0.64 0.77 0.53
Logistic regression 0.83 0.62 0.77 0.55

Pace(t) = (1 + 63'3%'35(‘/”%*‘A’r,t+s)75.65a)_1 (3a)

ﬁdec(t) =1- (1 + 6_0'62+0'25(Vveh—‘77‘,1,-*—8)—2.65@)71 (3b)

ﬁnone (t) =1- ﬁacc(ﬂ - ﬁdec(t) (30)

III. PREPOSITIONING
A. Design

The suitability of the newly designed prediction model for
PP was tested in combination with the classical washout MCA
implementation from Ellensohn [10], which was chosen for
its simplicity and widespread use. A schematic representation
is given in Fig. 6. In this MCA, linear high-pass filters
(HPFs) and low-pass filters (LPFs) are used to present high
frequency vehicle accelerations in the translational channel
and provide low frequency vehicle accelerations in the tilt
coordination channel, respectively. Translational accelerations
are transformed from body reference frame B to inertial
reference frame [ using the simulator’s orientation (s,
Osim»> Ysim)- More HPFs are present in the translation and
rotation channels to facilitate washout in the inertial frame.
Linear scaling and cut-off frequencies are set independently
per degree-of-freedom.

¢sim
esim
Qg veh > Ysim Pm,szm
Ay veh Translation Py sim
a h . transf. P si
zee scaling [ HPFp [ g% [ HPF; [ & Z,00m
Tilt coordination
scaling (> LPF
¢'ueh
Oven Rotation
wveh .
>l scaling > HPF

Fig. 6. Classical washout MCA used in this paper.

In the current section, a PP logic is designed that calculates
a reference PP signal from the acceleration and deceleration

probabilities calculated using the proposed prediction model.
The acceleration and jerk of this reference signal will be
limited by a controller proposed by Fischer [15], as shown
in Fig. 7. Thresholds for acceleration and jerk will be set to
0.05 m/s? and 0.1 m/s3, respectively, as these values have
empirically been found acceptable for PP [12]. The final
PP output is added to the MCA’s output before being sent
through the workspace limiting block, which ensures smooth
behavior in case one of the simulator’s actuators exceeds 95%
of the maximum deflection potential. The remaining 5% of
the deflection potential was empirically found sufficient to
smoothly stop the simulator. An overview of the proposed
architecture is given in Figure 8.

Fig. 7. PP controller with acceleration and jerk limiting. Adapted from [12]

Oz veh + Pw,sim

MCA workspace

limiting

\ 4

Prepositioning

ﬁacc
PP PP

Pdec logic controller

Fig. 8. Merging of prediction-based PP with the MCA’s surge output.

Two types of logic were used to calculate a reference PP
signal from the acceleration/deceleration probabilities. In both
types, the longitudinal simulator position shifts to anticipate
acceleration and deceleration (Ppp qcc and Py, gec, T€Spect-
ively), are calculated separately at every sampling instance. In
both PP algorithms, these two PP results are summed before
being forwarded to the PP controller.

1) Threshold-based PP logic: If the probability of ac-
celeration/deceleration exceeds a threshold, the platform is
commanded to its maximum PP offset, denoted P, ,,:n and
Ppp maz for the maximum rear and front positions, respect-
ively. The thresholds for acceleration and deceleration were
set 0.51 and 0.30, respectively, as with these thresholds op-
timal F; scores were obtained in Section II-E. Note that the
corresponding points on the ROC curves are shown in Fig. 5.
The resulting logic is shown in (4).

0 ﬁacc(t) < 0.51

Ppp,aw(t) = . (4a)
Ppp min Pace(t) > 0.51
0 ﬁdec(t) < 0.30

Ppp,deC(t) = (4b)

ﬁdec (t) > 0.30

Ppp,maz



2) Linear PP logic: In this second PP logic, the platform
is prepositioned based on a linear scaling with the accelera-
tion/deceleration probabilities, as in (5).

Ppp,acc(t) = ﬁacc(t) . Ppp,min (Sa)
Pp;mdec(t) = ﬁdec(t) . Pppmwx (Sb)

Fig. 9 shows the PP reference signal resulting from both
types of PP logic and the limited signal resulting from the
PP controller, for a part of one drive including section N3.
It can be seen that the PP controller yields a smooth output
for both approaches, which is slightly delayed w.r.t. the
reference signal. When using the threshold-based logic, a short
excitation of the reference position yields almost no response
in the final PP signal.

(a) Threshold-based

— — — reference

200 205 210 215 220 225 230 235
t (s)

(b) Linear — — — reference final

200 205 210 215 220 225 230 235
t (s)

Fig. 9. Threshold-based and linear PP for a drive including section N3.

B. Evaluation

The described types of PP logic were evaluated using
computer simulations (i.e., without the actual driving simu-
lator). For both types, the potential increase of surge motion
cueing intensity that could be provided without exceeding the
workspace limits of BMW’s Portable Motion Simulator (PMS)
in any of the 16 recorded northward drives was calculated. The
PMS is a small hexapod-based motion system with 400 mm
stroke actuators. Further details on the simulator are given in
Section IV-D. The tuning set shown in Table IV was used as a
starting point. It was previously created for the same simulator
and scenario [22].

Intensifying surge motion cueing could be either done by
decreasing the cutoff frequency of the high-pass filter for
translational surge acceleration (wg pF,), or by increasing the
translational surge gain, K. The latter method was chosen for
its straightforwardness, as a multiplication of the gain yields
an equal multiplication of the magnitude of the simulator’s
response. The maximum £, that could be set without activ-
ating the workspace limiting in any of the 16 drives, K, yqa,
was calculated for both types of PP logic. A grid search
was performed to find the optimal combination of P,y min

Table IV
MCA TUNING PARAMETERS FROM A FORMER EXPERIMENT [22]

x Yy z (0] 0 P

K 0.13 0.10 0.13 430 4.00 2.00
wypr (rad/s) 430 4.00 2.00 - - 0.80
Ky 0.13  0.10 - - - -
wr pF,tit (rad/s) 035 150 - - - -
WHPF,washout (tad/s) ~ 0.15 020 100 080 120 0.50
CHPF,washout 1.50  1.50 1.00 - - -

and Py, ma, for each type of PP logic. The final results are
presented in Table V.

Table V
MAXIMUM SURGE GAIN AND CORRESPONDING Ppp, min AND Ppp max

PP logic Kz, max Ppp,min Ppp,max
None 0.24 - -
Threshold-based 0.34 -0.10 m 0.14 m
Linear 0.33 -0.14 m 0.20 m

K. mae was found to be 0.34 and 0.33 for the threshold-
based and linear PP logic, respectively. As these values are
equivalent, more performance criteria were used to choose
between these PP logic types. These extra criteria were the
amount of movement induced by PP (i.e., false cues) and
the minimum margin kept from the edge of the simulator’s
workspace (i.e., the available workspace to improve motion
cueing) per drive. In order to allow for a fair comparison, K,
was set to 0.33 for both types of PP logic in this analysis.

The root mean square of the acceleration induced by PP,
Gpp,rms> Was calculated per drive to compare the amount of
false cues due to PP activity. The minimum margin from the
workspace edge in surge direction, dys z,min, Was calculated
discretely using the constant orientation workspace (COW)
as in Kurutas [28]. Due to coupling between the degrees-
of-freedom of a hexapod system, the workspace differs per
platform orientation. This is accounted for by recalculating
the workspace using the orientation at each time step.

An example of the COW of the current simulator in its neut-
ral position is given in Fig. 10(a). Only 95% of the maximum
actuator deflection was accounted for, as hereafter workspace
limiting overrides the MCA. In the 2D cross-section at the
simulator’s heave position shown in Fig. 10(b), the front
and rear distances between the platform’s centroid and the
workspace edge, duys, front and dys g reqr are indicated. The
minimum of dys, front and duys g rear Over each drive was
taken as dys z,min-

Box plots of the two additional PP performance metrics for
the 16 northward drives are shown in Figure 11. For equivalent
motion cueing, the linear PP logic maintained a larger margin
from the workspace edge, with lower PP accelerations. For



this reason, the linear PP logic is considered more effective
than the threshold-based approach and is used throughout the
remainder of this paper.

(a) 3D

(b) 2D

dws,front

P (m)
Py (m)

Fig. 10. COW of the Portable Motion Simulator, where e indicates the
platform’s centroid.

(a) PP movement (b) Workspace margin
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Fig. 11. PP movement and workspace margin for the threshold-based and

linear PP logic.

IV. EXPERIMENT

The effectiveness of the proposed PP design was invest-
igated with a within-subjects experiment, where participants
drove the northward scenario shown in Fig. 1(b) with various
motion conditions. The goal of the experiment was to invest-
igate the effect of the proposed PP on workspace usage and
the possibility to noticeably improve motion cueing quality.

A. Experimental conditions

The tested experimental conditions are shown in Table VI
Condition C1 served as baseline, against which the effects
of adding PP and increasing the translational surge gain (K,)
were tested. All other MCA tuning parameters are as shown in
Table IV. In condition C2, PP was active, but K, was kept as
in condition C1. This condition is added to test the hypotheses
that adding PP improves the workspace management and that
adding PP does not have an effect on the motion cueing
quality, which is made based on the limiting of the jerk and the
acceleration with the PP controller. In condition C3, K, was
increased to 0.33, so as to completely use the workspace that
was expected to be made available by PP. It was hypothesized

that the combined effect of adding PP and intensifying surge
motion results in an increase in motion cueing quality, as PP
was assumed to happen imperceptibly and intensifying surge
motion would reduce the error between the specific forces
in the simulated vehicle and the platform. The difference
between the motion cueing between the three conditions for
an acceleration maneuver is demonstrated in Fig. 12, where
fs.« denotes the forward specific force.

— — — vehicle sim., C1 sim., C2 sim., C3
%, N——— " 7/
E 05 - // \/ ~ ~
s /
«2 m
0 7 — T T
442.5 443 4435
t (s)

Fig. 12. Response to an acceleration maneuver per experimental condition.

Table VI
EXPERIMENTAL CONDITIONS

Condition PP Ko
Cl off 0.24
C2 on 0.24
C3 on 0.33

B. Dependent measures

1) Workspace management: Evaluation of the workspace
management was done by comparing the minimum margin
from the workspace edge in surge direction, ds, o, min, Which
was calculated post-hoc from recorded time traces of the
summed MCA and PP outputs as explained in Section III-B.
The starting and stopping procedures were not included in
this analysis, as the MCA and the PP module were not
tuned for those. To allow for a fair comparison, the effect
of the workspace limiting block (see Fig. 8) was omitted in
this analysis. A larger margin indicates that there is more
workspace available to potentially intensify cueing or anti-
cipate unexpected maneuvering, without activating workspace
limiting.

2) Motion cueing quality: Evaluation of the motion cue-
ing quality was done both objectively and subjectively. The
absolute difference (AD) as introduced by Grottoli et al.
[17] was used as an objective measure. It represents the
normalized error between the specific forces in the vehicle
and the simulator. The AD was calculated post-hoc from the
recorded time traces of the vehicle and simulator dynamics
using (6). Only the specific force in surge direction was
considered, as for all other degrees-of-freedom, the motion



condition was equivalent for all conditions. Again, starting
and stopping maneuvers were excluded from the analysis.

f |fs,veh - fs,sim|dt

AD =
f |fs7veh‘dt

(6)

As a subjective measure, the perceived motion incongruence
(PMI) was orally rated by the participants. The PMI is defined
as the deviation between the expected vehicle motion and the
perceived simulator motion [29]. An 11-point scale from 0-10
was used, where O indicates perfect motion and 10 indicates
that the motion is highly unrealistic. Participants were asked to
only rate the longitudinal motion, as this was the only degree-
of-freedom that was varied throughout the experiment. The
PMI data were collected by means of post-hoc ratings (PR)
and section-wise post-hoc ratings (SPR). In PR, participants
rated the PMI of an entire drive after it has ended. SPR is a
novel measurement method, in which the PMI is orally rated
at the end of each section of interest as announced by the
experiment leader [10]. For this purpose, sections N1 to N4
as described in Table I were used.

Moreover, the statements shown in Table VII were queried
in a post-hoc motion cueing evaluation questionnaire after each
drive, to obtain insights into possible causes of differences
in PMI ratings. All statements were evaluated using 5-point
Likert scales [30]. For statements Q1 to Q4, the agreement was
asked (strongly disagree, disagree, undecided, agree, strongly
agree). For statements Q5 and Q6, the occurence was asked
(never, rarely, sometimes, often, always).

Table VII
MOTION CUEING QUESTIONNAIRE

Statement Scale
Q1  Acceleration felt realistic agreement
Q2 Braking felt realistic agreement
Q3  Motion was too weak agreement
Q4 Motion was too strong agreement

Q5 No motion was provided when motion was expected occurence

Q6  Motion was provided when no motion was expected occurence

C. Farticipants

Due to participant recruitment limitations imposed by the
COVID-19 pandemic, the participant group consisted of 34
employees of the BMW Group (32 males, 2 females). They
were aged between 18 and 63 years (u = 37.7 years, o =
13.4 years). All were in possession of a driver license. The
yearly mileage was on average 18,161 km (¢ = 9,585 km).
Participation was on a voluntary basis and informed consent
was provided before an experiment commenced. The study
was approved by the BMW Group and TU Delft’s Human
Research Ethics Committee.

D. Apparatus

The simulator used for the experiment was BMW’s Portable
Motion Simulator, as shown in Fig. 13. The simulator has an
open cabin and is based on the Cruden 406 hexapod, with 400
mm stroke actuators. High-frequency vibrations from the road
surface and engine were provided using a separate vibration
system. Visuals were shown on three 42" screens. The steering
wheel provided haptic feedback. Sounds from the engine, other
vehicle’s and wind were provided. BMW’s SPIDER simulation
environment [31] was used to control the distributed real-time
simulation. The vehicle model is the same as in the preliminary
data (i.e., a 2018 BMW 530i with a 4 cylinder 2.0 L engine
and automatic transmission).
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Fig. 13. Portable Motion Simulator at the BMW Group.

E. Procedure

Preceding the measurement phase, several training sessions
with all motion conditions were performed, to get participants
used to the simulator and the rating method. Thereafter, each
participant drove each condition twice, resulting in a total
of six measurement drives per participant. A 5-minute break
was held after the third measurement drive. Randomized Latin
square matrices were used to balance out order effects in
condition testing. Participants were asked to drive a predefined
trajectory on a rural two-lane road as they would do during
everyday driving, without time pressure and while respecting
road regulations. Simulated traffic was only present in the
opposite lane.

V. RESULTS

The results are subdivided into two parts. Section V-A
discusses the accuracy of the prediction model throughout
the experiment. Section V-B presents the effects of adding
PP based on this prediction model on motion cueing.

A. Prediction

The AUC of the maneuver prediction model across all
experimental drives was 0.80 for acceleration and 0.73 for
deceleration. Both scores were lower than those calculated
using the preliminary data set and presented in Table III. When
averaging over all drives, the RMS of the longitudinal vehicle



acceleration found for the experimental data (1 = 0.77 m/s?)
was 34% higher than that of the preliminary data (@ = 0.54
m/s?). This indicates that participants drove more aggressively
in the current experiment when compared to [22].

As a means to analyze the prediction performance over
distance, the acceleration and deceleration prediction errors
(€p... and €, , respectively) are calculated using (7a-b).
In these equations, Y4.. and yg4.. denote binary variables
indicating whether ay peqx[t - - -t + 5s] exceeded the accelera-
tion/deceleration threshold, as in (7c-d).

Fig. 14 shows the median and IQR of the prediction errors
against the track distance. A positive prediction error indicates
an overestimation of the probability that maneuvering will
occur (i.e., false positives), and likewise, a negative prediction
error indicates an underestimation (i.e., false negatives). An ¢;
of zero indicates correct predictions. This was approximately
true for a major part of the track distance. Identified causes
of poor predictions are anticipation to slope, speeding and
anticipation to road curvature. Examples of these phenomena
are denoted by (D, @ and () in Fig.14, respectively, and will
be discussed in more detail.

eﬁacc (t) = ﬁaCC(t) - yacc(t) (7a)
€pace () = Pdec(t) = Yaec(t) (7b)
1 agpearlt - t+5s] > 05
yacc(t) P (7¢)
0 am,peak[t' <t + 5S} < 0.5
1 Ay, eak[t"'t+58] < —0.5
Ydee(t) b (7d)

0 Guwpearlt---t+5s] >—05

(a) Acceleration prediction error

false pos.
0]

N2 N3 N4
false neg.
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| (b) Deceleration prediction error
false pos.
N2 ©) N3 N4

false neg.

5000 6000 7000 8000

s (m)

Fig. 14. Medians and IQRs of the acceleration and deceleration prediction
errors of all experimental drives against track distance.

1) Slope: A preliminary analysis showed that the slope of
the road did not play a major role in the velocity choice in the
current scenario [23]. However, Fig. 15 shows that in example
(D , the accelerator deflection is increased so as to maintain a
desired velocity while driving a road with a varying slope, «.
As the accelerator deflection was increased merely to maintain
speed, and thus not to accelerate, p,.. was overestimated.
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Fig. 15. Medians and IQRs of the road’s slope, accelerator pedal deflection,
vehicle’s velocity (the legal speed limit is denoted by ---) and acceleration
prediction error while driving uphill.

2) Speeding: At (2), many participants drove faster than the
legal speed limit, which is clearly visible in Fig. 16(a). When
the velocity is higher than the legal speed limit, a deceleration
maneuver is expected. However, since drivers maintained their
velocity (or even increased it, as speeding was apparently
intended) pg.. Was overestimated.

c(,: 301 N2
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veloc1ty E 284 & e
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=
error &
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Fig. 16. Medians and IQRs of the vehicle’s velocity (the legal speed limit is
denoted by ---) and deceleration prediction error while speeding.



3) Curvature: Compared to speed limits, road curvature
only played a small role in velocity choice in the current
scenario. An exception to this was found at (3), where drivers
brake as a response to the curvature shortly after section N3.
This is shown in Fig. 17, where s denotes curvature. As
road curvature is not accounted for in the proposed prediction
model, pge. Was underestimated.
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Fig. 17. Medians and IQRs of the road’s curvature, vehicle’s velocity (the
legal speed limit is denoted by ---) and deceleration prediction error while
negotiating a curve.

B. Prepositioning

This subsection discusses the findings on the proposed PP
resulting from the human-in-the-loop experiment. An analysis
of the workspace management is presented in Section V-B1.
Measurements of objective and subjective motion cueing qual-
ity are presented in Sections V-B2 and V-B3, respectively.
As each participant drove twice with each motion condition,
averaged data points are used in these analyses.

1) Workspace management: The position of the simulator
against the track distance for all experimental drives per
experimental condition is shown in Fig. 18. Cases in which
workspace limits of the simulator were reached are denoted
by e. The number of involved drives, n, is shown per cluster.
By comparing conditions C1 and C2, it can clearly be seen
that adding PP centered the simulator’s trajectory around the
neutral point. This generally prevented reaching the workspace
limits in sections N1, N3 and N4. Increasing K, in condition
C3 re-introduced occurrences where workspace limits were
reached in sections N1 and N3.

The measurement variable used to evaluate workspace mar-
gin (i.e., the minimum workspace margin kept per drive for
each condition) is shown in Fig. 19. A significant overall effect
was found using a repeated measures ANOVA, F'(2,66) =
37.8,p < 0.05. Post-hoc testing revealed that when comparing
C1 (= 0.025 m) to C2 (v = 0.084 m), a significant increase
in workspace margin was found, ¢(33) = 7.38, p < 0.05.
The increase in margin obtained using PP is used to intensify
cueing in C3, resulting in a decreased workspace margin
(¢ = 0.020 m). The presence of negative workspace margins
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Fig. 18. Demanded simulator position against track distance for all drives,
where e denotes that workspace limiting was activated.

indicates that workspace limits were reached in a considerable
number of drives. This was the case for 37%, 4% and 34%
of the drives under conditions C1, C2 and C3, respectively.
Reaching the workspace limits could result in false cues due to
braking of the simulator and missing cues due to the inability
to accelerate further in the direction of the workspace edge.
As further elaborated in Appendix A, this could negatively
influence both the objective and subjective motion cueing
quality. For this reason, drives where workspace limits were
reached were omitted in the following analysis on motion
cueing quality.

= n = 34
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. 2 .
0 L .
e 0.1 . .’.- ':
g v .. .
5 < [ Lo
£ nd ¢ ‘. Jd
g v, . &8
:; 0 X . :-.
Ndﬁ " © 2
S workspace N
°, limits <
01 reached
Cl C2 C3
Fig. 19. Minimum workspace margin.



2) Objective motion cueing quality: The objective motion
cueing quality per experimental condition is shown in Fig.
20. A repeated measures ANOVA was used to test statistical
significance. Drivers with missing data due to reaching the
workspace limits were completely excluded from this analysis.
A significant main effect was found, F'(2,44) = 10.6, p <
0.05. It can be seen that the absolute difference in conditions
C1 and C2 was comparable, which is in line with the hypo-
thesis that PP itself does not have an effect on the motion
cueing quality. When comparing condition C1 (4 = 0.934)
to C3 (u = 0.927), a paired samples t-test indicated a
significant difference, t(22) = 4.27, p < 0.05. This confirms
the hypothesis that simultaneously adding PP and increasing
surge motion yields an improvement in motion cueing quality.
Nevertheless, the small magnitude of this difference makes it
questionable whether this effect is meaningful.

n=25
R n =34
0.96 o
. n =26
. e+
A 0.94 Yo e ..
< F 2 °
s * -:-
* e °
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0921 . LA I 1
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Fig. 20. Objective motion cueing quality, excluding drives in which workspace
limits were reached.

3) Subjective motion cueing quality: The SPR results are
presented in Fig. 21. No substantial differences are found
between conditions in any of the sections. The post-hoc motion
cueing questionnaire and the PR measurements are omitted,
as they included the starting and stopping maneuver, in which
workspace limits were reached in most of the drives, and it
is not possible to distinguish the effect of workspace limiting
and motion cueing. For completeness, those data are shown in
Appendix B.

VI. DISCUSSION
A. Prediction

Although acceleration behavior differs per driver, it could
be predicted with reasonable accuracy for the current scenario
using only the accelerator, vehicle velocity and speed limits.
In literature, predicting longitudinal driving behavior was
considered hard or impossible, due to the non-deterministic
nature of longitudinal driving behavior [12], [13]. In the
current research, a stochastic approach was applied in order
to account for this. AUCs of 0.80 and 0.73 were obtained for
acceleration and deceleration prediction, respectively.

That the acceleration and deceleration prediction AUCs
obtained using the experimental drives were respectively 8%
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Fig. 21. Subjective ratings of the motion cueing quality per section, excluding
drives in which workspace limits were reached.

and 5% lower than those in the drives initially used for
model evaluation in Section II-E, is believed to be caused by
a difference in driving style. The RMS of the longitudinal
vehicle acceleration was 43% higher for the experimental
drives. This could be due to the result of intrusiveness of the
current subjective measurement paradigm. That is, even though
participants were explicitly asked to drive as they would do
in everyday driving, having to rate longitudinal motion cueing
might have been an incentive to drive more aggressively.
The working principle of the current model (i.e., a high
velocity w.r.t. the speed limit and a larger accelerator deflection
yield a higher chance of acceleration and vice versa), is likely
to be generally applicable. The risk of overfitting on the
current scenario was mitigated by using only three model
parameters per maneuver. Nevertheless, one should be careful
when extending the findings in this research to other driving
tasks and scenarios, where driving behavior might differ.
Shortcomings of the prediction model as encountered in the
current experiment are the inability to account for slopes and
curves. Moreover, maneuvers other than continuous driving
(e.g., a stopping maneuver) will be poorly predicted by the
current model. As a one-size-fits-all approach is expected to
complicate modeling, a more effective approach would be to
use a separate prediction logic for such maneuvers.
Improvement of the prediction accuracy of the current
model can likely be achieved by correcting the accelerator



pedal position for the slope of the road. If successfully
implemented, accelerator deflections aimed to compensate for
the slope will not yield erroneous predictions. The correction
would have to be calculated using a simplified vehicle model.
Moreover, road curvature could be incorporated in the model.
In literature, various relationships are found between road
curvature and the maximum velocity [32], [33]. It can be opted
to use the maximum (future) curve-driving velocity instead of
the legal speed limit at instances where it is lower than the
legal speed limit.

The success of prediction-based PP in the current scenario
can clearly be seen when comparing the simulator traces in
Fig. 18(a-b), where it can be seen that reaching the workspace
limits was generally prevented when the simulator was pre-
positioned based on the proposed prediction model. Fig. 18(c)
shows that in the high surge gain condition, the workspace
is likely to be reached in sections N1 and N3. This can be
explained by erroneous predictions. Looking at Fig. 14, it
can be seen that at these locations in section N2 and N3,
the probability that a deceleration is about to occur was often
underestimated.

In the current paper, the AUC was used as the metric to
select the optimal predictor, as it is a frequently used method
to calculate test scores for classification models [34]. For the
use case of PP, however, the severity of an incorrect prediction
can differ per situation. A false positive acceleration prediction
is for instance worse when decelerating than when driving
stationary, as in the first case the MCA output and the PP
yield a simulator excursion in the same direction. A model
score tailored to the use-case of PP that emphasizes on critical
instances could help to select a more suitable prediction model.

With more driving data, that contain a larger range of
driving behavior in more diverse driving scenarios, more
advanced prediction models could be trained with the aim of
reaching higher prediction accuracy, which would lead to an
improvement of the PP. In the field of driver intent detection,
time-series techniques such as hidden Markov models [35]
and long short-term memory algorithms [36] were used to
predict driving behavior. Moreover, it was found that adding
driver gaze can improve prediction scores [37]. It could be
worthwhile to develop comparable models for the driving
simulation environment, so as to obtain a higher prediction
accuracy at the cost of increased model complexity.

B. Prepositioning

The human-in-the-loop experiment demonstrated that PP
based on the proposed prediction model was able to improve
workspace usage of a classical washout MCA for the current
driving scenario, as for equivalent motion cueing settings
the average margin that was kept from the workspace, was
increased from 0.025 m to 0.084 m. With this improved
workspace usage, cueing was objectively improved slightly by
increasing the surge gain. The mean AD of the condition with
PP and intensified motion cueing (C3) was 0.927, whereas
that of the condition without PP (C1) was 0.934. That this
difference is only small when compared to ranges of AD
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found in previous research [17], [24] could explain the lack
of distinction between the subjective ratings.

Various causes are identified for the lack of significant
differences in the subjective ratings when activating PP and
increasing the surge gain. First, the simulator has a small
workspace due to its maximum actuator stroke of just 400
mm. To provide motion cueing with this limited workspace,
low gains (0.24 and 0.33) and a high cut-off frequency (4.30
rad/s) are set for surge motion, resulting in little movement. A
38% higher K ,-value resulted in a stronger representation of
high-frequency surge motion. However, still only little surge
motion can could be represented by translational movement of
the platform. In previous works where PP was tested, larger
motion systems consisting of both a hexapod and a x, y-sled
were used [12], [19]. Consequently, this is advised for future
research on prepositioning in motion cueing.

Second, increasing the motion cueing gain to intensify
cueing amplifies the shortcomings of the classical washout
MCA. This is clearly visible in Fig. 22, which shows the
forward specific force of the MCA’s response to a step input.
Here, @, 3 and (©) indicate translational simulator movement
at the onset, low frequency tilt coordination and the false
cue after the response, respectively. Clearly, cueing at the
onset at (@) resembles the vehicle’s motion more closely when
increasing K, from 0.24 (conditions Cl and C2) to 0.33
(condition C3). However, this comes at the cost of an increased
magnitude of the false cue at (§). A nonlinear extension that
prevents false cues as in [19] can be implemented to prevent
this phenomenon in future work.

— — —vehicle ——sim., K; =0.24 sim., K = 0.33

t (s)

Fig. 22. Step response of the MCA for both experimental gain settings.

In previous research on predictive cueing, more sophistic-
ated methods were applied to make use of improved workspace
management due to PP. Hansson & Stenbeck [12] decreased
the cut-off frequencies of the complementary HPF and LPF
that split surge motion between tilt-coordination and trans-
lational movement. This was not opted for in this paper, as
in the original tuning set, tilt coordination and translation
filters were not complementary (i.e., mid-frequency motion
was not presented by the platform). It was chosen not to re-
tune tilt coordination, to make a fair comparison possible.
In the work of Pitz [19], the classical washout MCA was
replaced by an MCA based on non-linear scaling, to optimally
utilize the asymmetrical workspace obtained by PP. Testing the
PP approach presented in this paper with more sophisticated



MCAs is an essential next step. Ultimately, it is advised
to integrate probabilistic prediction models in MPC-based
MCA:s, so as to improve the state-of-the-art of motion cueing.

Another undesired effect of increasing K, in the setup
used in the experiment is the amplification of vehicle model
imperfections. For example, it is known that the vehicle model
used throughout this experiment contains gear switches which
are found to be obtrusive, considering that it should model
automatic transmission of a modern luxury car (i.e., a 2018
BMW 530i). An example of this phenomenon is shown in Fig.
23. The upper plot shows an increasing accelerator input in a
section of one of the experimental drives. The lower plot shows
the resulting surge acceleration, a,, where the effect of two
gear switches are marked (7). As these contain high-frequency
motion, a higher K, -value will increase the cueing intensity of
this undesired motion more than that of desired low frequency
accelerations. In conclusion, obtaining an improved vehicle
model is essential, before the gain on high-frequency motion
cueing can be further increased.
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(b) Vehicl 2
ehicle RS
. £ @ @)
acceleration =
8 O 4
3
41 42 43 44

t (s)

Fig. 23. Accelerator deflection and the resulting longitudinal acceleration,
including automatic gear switches.

Moreover, it is advised to test interaction effects with
lateral PP, of which various implementations can be found
in literature [11], [12], [19], [38]. In case of using a hexapod-
based motion system, interaction effects can occur, as the
degrees-of-freedom are coupled. In the driving scenario used
in this paper, the route was predefined. Work of Ellensohn
[10] showed that for predefined routes, the variability of lateral
accelerations and yaw rates between drivers is relatively low.
Consequently, a deterministic approach can be suitable here.
In case drivers are allowed to navigate freely, a probabilistic
approach as presented in this paper can be applied.

The section-wise post-hoc measurement method has been
shown particularly useful, as the post-hoc measurements were
obscured, due to reaching the workspace limits in the start-up
and stopping procedures. Nevertheless, it remains questionable
whether this method is suitable to identify small differences
in motion cueing. It is therefore advised to first examine the
results in AD, before designing the experiment. In case of
small differences, a continuous rating (CR) technique could
be used, as it can yield insights into the motion incongruence
during driving simulation with a higher spatial resolution [39].
CR can, however, not be used in active driving tasks, as the
measurement method would be intrusive.
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VII. CONCLUSIONS

Driver inputs, dynamic vehicle states, and features of the
road environment that are available in a real-time driving
simulation can be effectively combined to predict probabilities
of longitudinal driving maneuvers. The area under the receiver
operator characteristic curve was 0.84 for acceleration predic-
tion and 0.77 for deceleration prediction, using a model based
on the accelerator pedal position, the vehicle’s velocity, and
the future speed limit. In a human-in-the-loop experiment with
a short scenario of a two-lane road through a rural area, the
prediction scores were slightly lower (i.e., 0.80 and 0.73), but
still accurate enough to improve the workspace management
of a classical washout algorithm for a small hexapod-based
simulator.

As a result, the average distance that was kept from the
workspace edge was increased from 0.025 m to 0.084 m,
while providing equivalent motion cueing. Increasing the surge
gain of the motion cueing algorithm to utilize the improved
workspace management, yielded a small decrease in the nor-
malized absolute error between the specific force of the vehicle
and platform, from 0.934 to 0.927. Subjective ratings did not
provide evidence for improved nor deteriorated motion cueing
quality using the current setup. Nevertheless, the observed
improvement in workspace management demonstrated the po-
tential of combining information from dynamic vehicle states,
driver inputs and the road environment within the real-time
simulation environment.
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Prepositioning a driving simulator

Some driving maneuvers cause motion renderings which are almost unidirectional with respect to a lin-
ear degree of freedom. In this case, the simulator will leave its neutral position to move in this direction
during a maneuver and return to the neutral position at the end of the maneuver. When it is possible
to predict future motion renderings, it can be helpful to offset the simulator’s neutral position with a
displacement opposing the predicted simulator excursion. This displacement is called prepositioning
(PP) [13]. As there is now more space available in the direction of the expected maneuver, one can
make use of the larger motion capabilities by modifying the MCA tuning parameters. However, this is
not without risk. If a less conservative MCA tuning is chosen, movements in unanticipated directions
can drive the simulator into its limitations.

This chapter will start with a description of the kinematics and workspace definitions for hexapod motion
systems in Section 1.1, in order to clarify its limitations. The rest of this chapter will describe motion
cueing implementations. When designing a PP algorithm, one can distinguish between the logic that
determines the PP reference position and the controller used to reach this desired position while pre-
venting false cues. These are discussed in Sections 1.2 and 1.3, respectively. Section 1.4 covers
model predictive control (MPC)-based MCAs, which do not explicitly include PP, but can nevertheless
yield PP as result of optimization schemes based on predictions. The chapter will be concluded with a
discussion of the state-of-the-art in Section 1.5.

1.1. Workspace of a hexapod motion platform

The hexapod motion platform is a parallel robotic manipulator first described by Gough and Whitehall
[14] as a means to test tires for automobiles in 1956. Nine years later, Stewart [15] developed a
comparable concept for a flight simulator motion base, which is shown in Figure 1.1. Ever since, the
hexapod platform is extensively used in flight- and driving simulation. It is characterized by high force-
torque capacity and high structural rigidity [16].

Figure 1.1: Stewart’s flight simulator design. [15]
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1.1.1. Topology

Figure 1.2 shows the topological structure of a hexapod-based simulator [17]. The system consists of
a fixed basis and a moving platform, interconnected by 6 linear actuators (L,-Lg). The position and
orientation of the platform are determined by the length of the actuators, which provide a total of 6
degrees of freedom (DOF).

piston .‘ 5 virtual joint

Figure 1.2: Topological structure of a hexapod motion system. The symbol & denotes a universal joint, @ denotes a sliding
joint and © denotes a ball joint. The virtual joint has three rotational (R) and three translational (P) degrees of freedom. [17]

1.1.2. Inverse kinematics

Inverse kinematics is the inference of the length of each actuator with the knowledge of the position
and orientation of the platform. It can be useful to analyze a motion system’s limitations. A schematical
representation of a hexapod motion system is given in Figure 1.3. Two reference frames are used for
calculation of inverse kinematics. The inertial reference frame, 0, is fixed to the center of the basis. The
body reference frame, C, is fixed to the center of the platform. Both reference systems are right-handed,
as in Figure 1.4,

R‘,cﬂ-i;": br,i

Figure 1.3: Schematical representation of a hexapod motion system. [17] Figure 1.4: Right-handed reference system.

For each actuator i, the distance between the lower hinge point (4;) and the center of the basis is
constant and denoted by vector a;. The distance between the (rotated) upper hinge point (B,,;) and the
center of the platform is constant too and denoted b, ;, in the body reference frame. In order to express
vector b; in the inertial reference frame, rotation matrix R4y, is used as given in Equations 1.1 and 1.2.



1.2. Prepositioning logic 25

Note that the first rotation is around the z-axis (yaw), followed by the y-axis (pitch) and x-axis (roll).

cos(¢p) —sin(¢p) O cos(6) 0 sin(0) 1 0 0
Ry = [sin(¢) cos(¢) 0|, Rg= 0 1 0 |, Ry=10 cos(¥) —sin(y) (1.2)
0 0 1 —sin(@) 0 cos(8) 0 sin(¥) cos(y)

The length of actuator i, p;, is defined by the distance between hinge points 4; and B, ; and can be
calculated using Equation 1.3, where r denotes the position of the platform’s center in inertial frame 0.

pi=71r—a; + Rd)(-hpbr,i (1 3)

1.1.3. Workspace definitions and visualization

The workspace can be defined as the reachable set of positions and orientations by the platform’s
center [17]. For hexapod-based simulators, this is limited by the actuator length range [pmin Pmax]-
Since coupling exist between all 6 DOFs, the workspace of a hexapod simulator is 6-dimensional. A
possible approach for representing the workspace of a hexapod is to fix the position/orientation in one
or more dimensions [18]. The workspace can then be plotted for the remaining DOFs. When fixing all
three rotational DOFs, one obtains the constant orientation workspace (COW), as shown in Figure 1.5.
In case of fixing all translational DOFs, the orientation workspace (OW) is obtained, as shown in Figure
1.6. Other definitions of workspace are given in Table 1.1. [17]

yim

2 x[m]

Figure 1.5: COW of DLR’s SimCar driving simulator. [17] Figure 1.6: OW of DLR’s SimCar driving simulator. [17]

Table 1.1: Workspace definitions. [17, 19]

Nomenclature Definition

Maximal workspace (MW) All positions reachable in at least one orientation.
Constant orientation workspace (COW)  All positions reachable in a defined orientation.

Total orientation workspace (TOW) All positions reachable for a defined range of orientations.
Orientation workspace (OW) All orientations reachable at a defined position.

1.2. Prepositioning logic

Various studies on motion cueing contain an implementation of longitudinal PP [9, 11-13]. One can
distinguish between two types of PP logics. In the first variant, one identifies a driving situation and
deduces that a certain maneuver is expected. This will be referred to as situation-based PP and is
described in Section 1.2.1. The second variant uses only the vehicle’s current velocity, is referred to as
velocity-based PP and is discussed in Section 1.2.2. Note that PP can also be applied laterally [9, 11?
, 12], but this is considered to be outside the scope of the current study.
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1.2.1. Situation-based

The first documented effort on PP in driving simulation was by Weif3 [13]. It is proposed to start at a
PP position (i.e., at an offset from the original neutral position) when a driving situation is detected in
which an approximately unidirectional linear movement is expected. At the end of the driving situation,
the simulator will return to the former neutral position. The solution presented by Weil} allowed the
longitudinal PP to be either off, to the front or to the rear. Weil} does not describe an implementation
and evaluation of PP logic. Nevertheless, the suggestions as shown in Table 1.2 are provided. Lastly,
Weil} claimed that a vast amount of information is needed in order to provide reasonable PP.

Table 1.2: Suggestions for maneuver prediction based on situations by Weil3 [13].

Maneuver Situation

Braking Presence of other vehicles in the vicinity
Transition from straight road to curve
Traveling at a speed near to or above the speed limit

Acceleration  Driving at a low speed
Transition from a curve to straight road

Work by Pitz [9] on predictive cueing uses legal speed limits and presence of road crossings, pedestrian
crossings and traffic lights as triggers for PP. A situational analysis functionality with a finite prediction
horizon is established to process information from the environment. Road and environment attributes
have a discrete form and are positioned w.r.t. the track distance variable s. Figure 1.7 shows some
environment attributes on a road. Pitz did not elaborate on how the desired PP position was obtained
from these attributes, however.
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Figure 1.7: Attributes of the road and environment. [20]

Pitz noted that high-pass filters used in classical washout filter MCA’'s have symmetric behavior, and
thus do not optimally exploit the workspace, which has become asymmetric due to PP. In order to
solve this, nonlinear scaling is applied to the acceleration of the MCA. Figure 1.8 shows what scaling
factor is used, depending on the simulator position and velocity, which are denoted by P;;,,, and V;;,,
respectively. In contrast to a classical washout filter, non-linear scaling does not return the simulator
to its center position. A PD-controller is added, to provide a neutral push. When looking at the RMS
values of accelerations, no significant differences were found between the Predictive MCA as proposed
by Pitz and a classical washout filter MCA without PP. This is explained by longitudinal behavior being
dominated by the driving style of the test person and not just the road layout [9].
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Figure 1.8: Nonlinear scaling used by Pitz [20] to obtain asymmetric workspace usage.

1.2.2. Velocity-based

Chapron & Colinot [11] implemented longitudinal prepositioning based on the modeled vehicle accel-
eration/deceleration characteristics. These are time-varying and depend on the vehicle’s velocity as
well as the gear ratio. Hansson & Stenbeck [12] implemented longitudinal PP using the same principle
and documented the specifications of their implementation. Considering it impossible to predict when
acceleration or braking was to occur due to the non-deterministic human nature, both possibilities are
taken into account at any time. The mean of the range of possible vehicle accelerations, a, as a func-
tion of the vehicle’s velocity, (V), is calculated from the maximum possible acceleration, a,ccmayx, and
the maximum possible deceleration, ay,qremax @s in Equation 1.4. Equation 1.5 is used to convert
this value to an ideal platform neutral point. In the latter equation, xpp ;4 denotes the maximum PP
position.

aQv) = aacc,max(V);' Aprake,max (1.4)
V) — a(l) (1.5)
PP - pPmax max (d(Vmax)i |C_l(Van) |) |

The relationship between ag..mq, and V for each gear of the Saab 93 model used by Hansson &
Stenbeck is given in Figure 1.9. A piecewise function as shown in Figure 1.10 and described in Equation
1.6 was fitted. ap,qkemax is independent of the vehicle’s velocity and equal to -5 m/s?. Figure 1.11
shows the mean of the vehicle’s maximum possible acceleration and deceleration against the vehicle’s
velocity.

1st gear
--- 2nd gear
----3rd gear
4l —-4th gear
. 5th gear

U gce,max {111/52}
Qacc,max {111/52}

4 | | I | e | |
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V' [km/h] V [km/h]

Figure 1.9: Maximum acceleration w.r.t. velocity per gear. [12] Figure 1.10: Curve fitted max. acceleration w.r.t. velocity. [12]

6 V < 8.64 (m/s)

Qace;max z{ 51.84-V™1 V> 864 (m/s) (16)
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Figure 1.11: Mean of the maximum possible acceleration and deceleration against velocity velocity. [12]

Hansson & Stenbeck made use of the virtually enlarged workspace resulting from PP by decreasing
wspiit,.» the cut-off frequency used to split longitudinal vehicle acceleration into translational motion rep-
resented by a motion sled and tilt coordination of a hexapod platform. This yields the two conditions
as shown in Table 1.3, which are evaluated both analytically and by means of a human-in-the-loop
experiment. Computer simulations show that in Condition 2, an increase of 25% RMS translational ac-
celeration by the motion sled was obtained, while reducing the maximum longitudinal tilt rate throughout
the ride by 29.9%. The study is concluded with a subjective evaluation, where participants are asked
to drive a rural road, for both motion conditions. Significant differences in favour of the PP condition
were found for the questions "Did the acceleration feel realistic?” and "Did the braking feel realistic?”.

Table 1.3: Experimental conditions tested by Hansson & Stenbeck [12].

Condition Prepositioning  wg,;,

1 off 0.65
2 on 0.55

1.3. Prepositioning controllers

The goal of a PP controller is to reach a desired reference position, while minimizing perceived stimuli
by the driver. Knowledge of human perception (thresholds) is thus key and will be discussed in Section
1.3.1. Hereafter, two types of controllers used in literature will be discussed in Sections 1.3.2 and 1.3.3.

1.3.1. Perception thresholds

Human self-motion perception is imperfect. Motion of low amplitude can in some cases not be per-
ceived by humans. Benson et al. [21] studied perception thresholds for linear horizontal acceleration,
while eliminating all auditory and visual cues. Thresholds for longitudinal acceleration were found to
differ between participants. A mean threshold for longitudinal acceleration of 0.063 m/s? was found
when using a cosine-shaped velocity trajectory with a duration of 3 seconds. Moreover, it was found
that higher thresholds are found when the acceleration is achieved at a lower rate. It was thus con-
cluded that the sensory system that senses linear movement is sensitive to both acceleration and jerk
(i.e., the rate of change of acceleration).

In later work of Grant and Haycock [22], the paired-comparison methodology was used to compare
profiles of longitudinal translation with various acceleration profiles consisting of jerk-limited accelera-
tion square waves. A plot of the test scores for all profiles can be found in Figure 1.12, where a higher
score denotes a higher relative motion strength. It was confirmed that the perceived motion strength
depends on acceleration and jerk. Moreover, it was found that an increase of the duration of accel-
eration significantly affects the perceived motion strength. Although as of yet, no explicit thresholds
are known, it can be concluded that both acceleration and jerk will thus have to be limited in order to
minimize perception of PP.
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score

Figure 1.12: Paired-comparison scores for the perceived motion strength of jerk-limited square wave accelerations [22].

1.3.2. Low-pass filter

As discussed in Section 1.2.1, Weil} [13] proposed longitudinal PP that is either inactive, to one specified
position in the front or to one specified position in the rear. Adding this signal to the longitudinal position
resulting from the MCA would yield an undesirable uncontrolled transition. In order to prevent this, the
PP position signal is low-pass filtered. Weil® noted that the most important characteristics of a PP
controller are the time to reach a desired position and the shape of the step-response of the controller.
The first has to comply with the look-ahead of the PP logic, while the second has to result in minimal
perception by the human test participant. In order to attain smoothness, filters with a minimum order
n = 2 were tested. Step-responses of filters ranging from n = 2 till n = 5 that reach 95% of the intended
excursion within 3 seconds have been examined. Weil} recommended the second order filter, since
higher order filters need more time to reach the intended position. Moreover, it was noted that when
filters are tuned so that overshoot is prevented, noticeable accelerations are obtained. In order to
reduce these, second order filters with a slight overshoot (damping ratio < 1) as shown in Table 1.4 are
suggested. Here, f;  denotes the maximum specific force throughout the excursion in case of a PP
excursion of 0.7 m within 3 seconds. A maximum overshoot of 3% is chosen, because it is found to
yield a good result with the PP excursion magnitude and workspace of the simulator used. It can be
seen that a reduction of f; s obtained when the overshoot is increased.

Table 1.4: Prepositioning controllers proposed by Weif3 [13].

Overshoot (%) Transfer function f,

1
0.705652+1.39445+1
1

1 0.4271

_ 371
0.902552+1.42505+1 0.3719

5 — 1 02807
1.08165+1.9968s5+1

1.3.3. Acceleration and jerk limiter

As opposed to the discrete PP logic proposed by Weil, the logic implemented by Hansson & Stenbeck
[12] yields a reference position that is continuous and can have any value within predefined range
[Preppmin Prppmax]- Nevertheless, high amplitudes of acceleration and jerk have to be prevented while
reaching the desired position. In order to do so, a controller from Fischer [23] is used, which can be
found in Figure 1.13. Saturation blocks are used to limit acceleration and jerk to 0.05 m/s? and 0.1
m/s3, respectively. The first is chosen to be below the 0.063 m/s? threshold as found by Benson et al.
[21]. The latter was tuned empirically by the authors, so that no movement was noticed at the onset of
the proposed PP. A PD controller is used in combination with a feedforward loop to prevent sustained

oscillations.



30 1. Prepositioning a driving simulator

w| =
[‘j

Acc. lim ‘ Jerk. lim

e IS s M

Figure 1.13: Acceleration and jerk limiter as proposed by Hansson & Stenbeck [12].

The effect of the controller on a position-level can be seen in Figure 1.14. One can note that the
controller yields a delay in case of large fluctuations of the desired PP position. This delay is not
necessarily a problem, since the motion is not perceivable. Chapron & Colinot [11] and Pitz [9] also
report the use of nonlinear filters that limit acceleration and jerk.
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Figure 1.14: Desired and limited PP signal using the controller proposed by Hansson & Stenbeck [12].

1.4. Prepositioning in MPC-based MCAs

PP consisting of a PP logic and PP controller as described in Sections 1.2 and 1.3 are designed for
use in combination with conventional MCAs that are based on filters. A novel MCA type first described
by Dagdelen et al. [24] is based on model predictive control (MPC). A brief explanation on the working
principles, advantages and disadvantages of MPC-based MCAs is given in Section 1.4.1. MPC-based
MCAs optimize simulator motion using expectations of future vehicle motion, which can result in the
use of PP. Sections 1.4.2 until 1.4.4 discuss efforts to describe the effectiveness of various predictors
used in MPC-based MCAs.

1.4.1. MPC-based MCA

In MPC-based MCAs, the system behavior is predicted for a finite prediction horizon H,, at each time
step, k. An optimal sequence of control input commands (i.e., dynamic simulator states) is calculated
for a limited control horizon H,, by means of minimizing a cost function which penalizes e.g. the differ-
ence between vehicle and simulator motion, deviations from the neutral state and deviations between
two successive inputs. Constraints such as those on the simulator workspace are taken into account
explicitly for a limited constraint horizon H,.. The first input of the optimal control sequence is applied
and hereafter the process is repeated for the next time step. An example of a scheme showing relevant
signals and horizons is shown in Figure 1.15. Here, u; and ug,,,, denote the angular rates and trans-
lational accelerations provided to the platform, and their maxima. dg, and d; ,,,4, denote the platform’s
positions and its maxima [25].
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Figure 1.15: Schematic diagram of MPC horizons. [25]

Multiple studies have reported superiority of MPC-based concepts w.r.t. classical washout filter MCAs.
It is found that MPC-based MCAs use a larger part of the simulator’s workspace and yield a reduced
difference between vehicle and simulator dynamics [24, 26]. Moreover, experiments have been per-
formed in which MPC-based MCAs have outperformed classical washout filter MCAs using subjective
ratings [24, 27]. Taking the simulator’s workspace constraints into account is a clear advantage when
comparing to classical washout MCAs, since it eliminates the need to tune for the worst-case scenario
[8]. Moreover, it is possible to include a model of human perception in the optimization scheme of an
MPC-based MCA, in order to optimally reduce sensory conflicts [24].

A major disadvantage associated with MPC is the computational expensiveness, given that an opti-
mization problem is solved for a larger time horizon at each individual time step [26]. This is further
complicated by a varying computation time per time step [28]. Another disadvantage of MPC-based
MCA:s is their complexity in comparison to a filter-based MCA, which complicating implementation and
modification of such algorithms [8]. Lastly, a notable difficulty considering MPC is the lack of knowl-
edge on the vehicle motion throughout the prediction horizon, as the input from the driver to the motion
simulator is not known beforehand. This problem is usually worked around by assuming the future
vehicle accelerations to be equal to the acceleration at the latest time step. This unrealistic assumption
prevents providing optimal results [29].

1.4.2. Effectiveness of improved predictions

Grottoli et al. [30] noted that next to actually improving predictions, it is also of key importance to obtain
an understanding of the effect of improved predictions on the motion cueing quality of MPC-based
MCAs. In their study, the MCA'’s output is compared for two prediction strategies. The first strategy is
a constant reference strategy, as conventionally used in MPC-based MCAs [29]. The second strategy
uses perfect prediction (i.e., the future vehicle dynamics are known exactly) and is referred to as oracle.
Note that the oracle strategy is not possible in active driving tasks, where time traces of future vehicle
dynamics are never fully known. The quality of motion cueing is observed in terms of correlation,
delay and absolute error. It was found that all are superior in case of perfect prediction, confirming the
assumption that the cueing quality of MPCs can be improved by increasing the accuracy of predictions
of future vehicle accelerations. Moreover, it was noted that PP is applied by the MCA in case of a
known future maneuver. Lastly, it was found that the workspace is used more extensively in case of
improved predictions. This evaluation is done by means of comparing the volumes of the convex hulls
of the simulator positions and orientations throughout the experiments.

1.4.3. Predictions using reference drives

Bruschetta et al. [28] used a recorded reference drive to predict future vehicle accelerations, by means
of aligning the current vehicle position with a position on the reference drive and extracting the future ac-
celerations in the time domain. In case the reference provides unreliable predictions, the implemented
algorithm switches to constant predictions instead. A case study is performed, considering only vertical
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accelerations. Itis noted that the reference-based predictions improve cueing performance when using
a large enough look-ahead time. This comes at the cost of a higher computational load, which typically
increases exponentially with the size of the prediction horizon [31]. It should be noted that since this
case study is performed for vertical acceleration only, it does not guarantee success for the case of lon-
gitudinal acceleration, which is considered highly dependent on driving style opposed to road layout [9].

In an implementation proposed by Ellensohn et al. [32], optimized cueing is calculated offline using an
optimization-based MCA and deviations between the reference drive and actual drive are accounted for
online by a classical washout filter MCA. The offline cueing is aligned based on the coordinates in the
virtual environment and cued together with the classical online MCA. This concept is only applied to lat-
eral dynamics, since variations between drivers are found to be too large for longitudinal maneuvering.
The optimization-based MCA which is used offline can be viewed as an MPC with a prediction horizon
spanning the whole ride. The novel MCA is compared with a classical washout MCA in a human-in-the
loop experiment. Here a significant decrease of perceived motion incongruence (PMI) is found, which
indicates improved motion cueing.

1.4.4. Predictions without reference drives

Augusto & Loureiro [26] compared the performance of an MPC-based MCA for three prediction meth-
ods without any reference information on the future trajectory. The three models that are compared are
i) assuming constant accelerations (conventional approach), ii) assuming constant control inputs and
predicting vehicle dynamics by using a simplified vehicle model and iii) assuming constant derivatives
of control inputs, again combined with a simplified vehicle model. Simplification of the vehicle model
is necessary to reduce computation times. It was found that the controllers using the vehicle model
did not have better results than the controller that assumed constant acceleration. Only the resulting
cueing was evaluated, and thus no comparison of the accuracy of the predictions is provided.

Mohammadi et al. [29] used an artificial neural network (NN) to predict future accelerations u; out of
historic accelerations 1,;,. A limited time history and future are divided into regions of varying intervals,
as shown in Figure 1.16. Higher resolutions are taken for regions closer to the current sampling time.
An implementation is made and evaluated for longitudinal motion, with a prediction horizon of 0.4 sec-
onds. It is found that the RMS error of the specific force of the MPC-based MCA is decreased using
the proposed prediction in comparison to the same MPC-based MCA that predicts constant vehicle
accelerations.
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Figure 1.16: Intervals of historic and future samples as proposed by Mohammadi et al. [29].
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1.5. Discussion

Explicit use of PP is currently limited to filter-based MCAs. Accurate logic is required, since maneuvers
in unanticipated directions can yield a conflict with the simulator’'s workspace boundaries, which are
strongly coupled for hexapod-based simulators. Considering PP logic, one can distinguish between
situation-based and velocity-based PP. In situation-based PP, driving situations are identified and ap-
propriate PP is calculated based on these situations. Although suggestions are given in literature, no
implementations are described. It is assumed that a vast amount of information is needed in order to
reasonably perform situation-based PP. In contrast, velocity-based PP is only based on the current
velocity of the vehicle. The physical capabilities of the vehicle are considered, while not making as-
sumptions on the likeliness of acceleration and braking maneuvers. Since detailed implementation is
provided in literature, this form of PP can be used as a baseline throughout the current study. Since a
PP excursion does not resemble vehicle motion, it is key to minimize the perceptiveness of it. In the
maijority of literature on PP, an acceleration- and jerk limiter are used, since both are known to play a
role in human motion perception. Such controller will be used in the current study to calculate a PP
position that can be fed to the simulator out of a desired PP position.

MPC-based MCAs, which can yield PP as output of more advanced optimization schemes, also depend
on predictions of future vehicle states. Predictions based on previously recorded reference drives have
been proven successful for cueing in y- and z-direction, but not for accelerations and braking, since
these are considered harder to predict. Inclusion of a vehicle model does not necessarily improve
predictions, since one would still need to predict future inputs to this vehicle model. The only successful
approach for longitudinal prediction improvements in MPC-based MCAs is using NN. However, no
details are given on the complexity of the driving task. Furthermore, the short prediction window of 0.4
s suggests that it is more a matter of improved scaling than of PP, since the latter would need more time.
Lastly, it should be noted that for the described predictions in MPC-based MCA's, features such as road
curvature and legal speed limits are not taken into account. It can be concluded that although the use
cases for prediction in motion cueing are plentiful, little is known about the acquisition of predictions of
longitudinal maneuvering in a driving simulation environment.






Driver modeling

Understanding human driving behavior in the context of the driving scene and surrounding environment
is considered of interest for multiple reasons. In the field of road design, knowledge on human driving
behavior is used to strive for design consistency, ensuring harmonized driver behavior and thereby
minimizing accidents [33]. In the field of vehicle design, the human-like models are required to increase
system acceptance at higher levels of automation [34]. Although driving a car is a familiar task for many
people, its stochastic nature makes modeling driver control far from straightforward [35]. Section 2.1
aims to describe characteristics of the human driver using control theory. Sections 2.2.1 and 2.2.2
describe acceleration and velocity in everyday driving. The latter contains a focus on velocity choice
in curve negotiation, as for this confined task various general mechanisms have been proposed that
describe how the human driver chooses longitudinal velocity in real world driving tasks. Where the
aforementioned fields focus on how drivers control a vehicle, the emerging field of driver intent detection
(DID), solely aims to detect driving intent in real-time using advanced data-based models. The state-
of-the-art of DID will be discussed in Section 2.3. Lastly, Section 2.4 provides an overview of the driver
modeling techniques discussed in this chapter, as well as a discussion of their suitability to be used for
prepositioning in driving simulation.

2.1. Driving from a control perspective

Limited tasks, such as path-following and headway control, can be investigated from the perspective
of control theory [36—-38]. Here, the human driver is considered a control system: a system consisting
of subsystems and processes (or plants) assembled for the purpose of obtaining a desired output with
desired performance, given a specified input [39]. A simplified description of such system is given in
Figure 2.1. The human driver can be considered an adaptive, nonlinear controller, of which the human
physiology, adaptability and preview utilization are important aspects [36].

Input; stimulus Control | Output; response

Desired response system Actual response

Figure 2.1: Simplified description of a control system. [39]

2.1.1. Physiology

Physiological limitations influence the human as a control system. Processing times and information
transmission times cause delays. Information can only be sensed by a human when it exceed certain
thresholds. Moreover, human cognition imposes limitations on the human control capabilities. This
makes us for example unable to optimally predict ahead and estimate rate information [36]. Inputs for
drivers are vision, motion, tactile and auditory inputs. Often, there is redundancy in information during
driving, which can help drivers to confirm decisions more quickly or yield better estimations [36]. The
visual system can extract position and velocity information separately, where the saccadic (jump-like)
response of the eye is used for position determination and the smoother pursuit mode is used to track
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velocity [40]. Extracting velocity from visual scenes is done using optical flow from the surrounding
visual scenes [41]. When a moving visual scene is observed, a feeling of self-motion is induced. If this
happens for a stationary observer, this is referred to as vection [6]. As a means of driver aid, velocity
is also shown on a velocity gauge and for some vehicles numerically on a digital display. Driving sim-
ulator studies have shown that motion perceived by the vestibular system in the inner ear also plays a
role when controlling a vehicle [5, 6]. Tactile forces are noticed by humans using the somatosensory
system, which consists of various receptors sensitive to pressure, stretch and vibration [42]. Lastly, it
is known that velocity estimations are enhanced using auditory inputs [43].

2.1.2. Adaptability

A key property of the human driver is its ability to adapt to the controlled vehicle dynamics as well as
the operating conditions. This feature, referred to as adaptability, was observed by McRuer & Jex [44]:
"The human is a multimode, adaptive, learning controller capable of exhibiting an enormous variety of
behavior”. For the general case of controlling a visual-only, single-axis, compensatory tracking task
with (quasi-)random perturbations as illustrated in Figure 2.2, McRuer & Jex proposed the generally
accepted simplified precision model to describe the linear portion of the human error response, H,,.
In this model, which can be found in Equation 2.1, 7,, denotes the human’s time delay, resulting from
physical delays. Gain K,, lead and lag time constants T, , and T;, are parameters that the human
operator adapts in order to make open-loop system dynamics in the crossover region (i.e., the region
in the frequency domain where the open-loop gain equals 1) resemble a single integrator.
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Figure 2.2: Control diagram of a human performing a compensatory target-tracking task with a (quasi-)random target signal.
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2.1.3. Preview

Another key property of the human driver is the use of preview information about the trajectory that
is to be followed in the future. By means of preview, upcoming maneuvers are anticipated [45]. This
implies a substantial difference with compensatory tracking tasks, for which the crossover model was
developed. Preview models proposed by Sheridan [46] that make use of preview, form the basis for
many later models. The investigated task here was forced-paced, indicating that the human controller
only manipulates lateral maneuvering. This is a simplification of real driving, where drivers also con-
trol the velocity of a vehicle (referred to by Sheridan as self-paced). More recent work of Van der El
[45] on forced-paced driving showed that drivers use two distinct feedforward responses, based on a
near and far viewpoint. An illustration of the driving task and control loop as used by Van der El is
provided in Figure 2.3. Longitudinal maneuvering is studied and modeled less extensively than lateral
maneuvering. Control traits such as delay and preview are assumed to apply to longitudinal control too
[36]. However, fundamental experimental studies that address these, as done for lateral dynamics by
McRuer & Jex, Sheridan and Van der El, are lacking.
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Figure 2.3: lllustration of the closed-loop task of driver steering on a winding road (top), with a detailed view of the human’s
stimulus-response relation (bottom). [45]

2.2. Naturalistic driving behavior

In contrast to the forced-paced studies discussed using control theory, naturalistic driving studies study
everyday driving tasks, either with the use of instrumented vehicles, or with driving simulators. The
focus in naturalistic driving studies is on driver behavior. This differs from control theoretic modeling
(Figure 2.1), since in real driving, the desired response can have many forms. In Section 2.2.1, levels of
acceleration common in naturalistic driving are discussed. Section 2.2.2 describes how drivers choose
their velocity. For the confined task of curve driving, various theories that have been developed to
describe how drivers choose their velocity will be discussed in detail.

2.2.1. Acceleration levels in naturalistic driving

Lechner and Perrin [47] studied longitudinal and lateral acceleration in everyday driving and compared
the occuring accelerations to the vehicle’s capabilities. The latter is often referred to as the tire friction
circle or friction ellipse and describes the maximum simultaneous longitudinal and lateral acceleration
that can be sustained without loss of control of the vehicle. Large differences are found between in-
dividuals when driving the same vehicle on the same road, but generally drivers operate well within
the boundaries posed by the vehicle. Later work of Bielaczek [48] confirms this finding. Bielaczek dis-
tinguished between average and sportive drivers and plotted acceleration maxima as shown in Figure
2.4. It can be concluded that although tire friction constrains vehicle control, these friction constraints
are not a suitable basis to model a driver during everyday driving.
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Figure 2.4: Acceleration maxima for average and sportive drivers compared to average and maximum vehicle acceleration. [48]
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When a driver requires deceleration, this can be achieved either by pressing the brake pedal or by
releasing the accelerator pedal to make use of engine braking, rolling resistance and aerodynamic
drag. In a data set containing real driving data from urban roads, extra-urban roads and motorways
with roundabouts, ramps and intersections, Bosetti et al. [49] found the imperical distribution shown in
Figure 2.5. Peaks are found at 0 m/s? for stationary driving and around -0.35 m/s? for engine braking.
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Figure 2.5: Distribution of longitudinal acceleration from Bosetti et al.’s [49] data.

Ritchie et al. [50] compared levels of acceleration for various levels of forward velocity when driving
curves and found a strong inverse relationship for velocities higher than 10 m/s. Later research con-
firmed this finding [47—49, 51]. Itis hypothesized that the observed decrement in lateral force maxima is
due to a decreased sense of safety at higher velocities [50]. Bosetti et al. [49] have visualized this with
scatter plots of lateral and longitudinal accelerations versus forward velocity as shown in Figures 2.6
and 2.7. It is found that unlike lateral acceleration, longitudinal acceleration levels seem to be relatively
independent of forward velocity. Lateral acceleration is usually a consequence of curve negotiation,
which will be discussed in further detail in Section 2.2.2.
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Figure 2.6: Lateral acceleration vs. forward velocity. [49] Figure 2.7: Longitudinal acceleration vs. forward velocity. [49]

2.2.2. Velocity choice in naturalistic driving

Next to levels of acceleration, the choice of velocity for certain driving scenarios is a characteristic
that attracted attention from various researchers. Levison [52] used the term free speed for the driver’s
desired speed when there is no need to slow down or stop for an event such as a crossing or interfering
traffic. The following factors are distinguished for the determination of free speed:

1. Legal considerations: maximum velocity chosen w.r.t. the speed limit, based on driving style
2. Vehicle limitations: maximum velocity reachable by the vehicle

3. Comfort: maximum velocity which is considered comfortable (e.g. accelerations, vibrations)
4. Safety: maximum velocity under which the driver assumes adequate control of the vehicle
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The first factor, legal considerations, can be related to the driving environment. The second, vehicle
limitations, is considered primarily relevant for heavy utility vehicles. Relating comfort and safety to
a driving scenario is complex. However, various statistical studies have been performed that directly
relate environment attributes to the velocity chosen by drivers. As an example, Cruzado & Donnel [53]
investigated factors affecting driver velocity choice using a large data set containing 2,859 drivers along
20 transition zones of two-lane rural highways. Linear regression is used to estimate the reduction in ve-
locity between high-speed and low-speed zones, which is referred to as the velocity differential. Higher
velocity differentials were found for larger initial speeds, reduced road widths, an increased amount of
driving lanes, presence of intersections, warning signs and the presence of curves. Real world driving
scenarios generally consist of a multitude of such attributes and the chosen anticipation is known to
vary considerably between drivers [32].

Of all factors that influence the velocity choice, road curvature is studied most extensively [33]. Over
the course of the last decades, a vast quantity of curve velocity models have been developed in the
fields of road and vehicle design. Four models with different underlying mechanisms are discussed in
this section. Next to these studies, a large quantity of statistical research has been performed, of which
an overview is provided by Misaghi & Hassan [33]. These studies will not be discussed in this chapter,
as they do not propose an answer to the more fundamental question why the human driver exhibits
certain driving behavior.

2.2.3. Time to Line Crossing

Van Winsum & Godthelp [54] argued that only if the steering wheel angle perfectly matches the required
steering wheel angle, the speed with which a curve can be driven is restricted by the vehicle’s friction
characteristics. They hypothesized that steering errors play a role in the safety as perceived by the
driver and ultimately in the velocity choice. It is found that the increase in required steering wheel angle
needed to negotiate curves of higher radii results in larger steering error, and it is assumed that this
is accounted for by choosing a lower speed, so as to keep the time to line crossing (TLC), a concept
earlier developed by Godthelp et al. [55], above a threshold acceptable for the driver. The TLC repre-
sents the time necessary for the vehicle to reach either edge of the driving lane and depends on the
steering error, velocity, road width and offset from the lane center. Various ways to calculate the TLC
exist, ranging from exact geometric methods to simple approximations [56, 57]. Godthelp et. al did not
elaborate which method is applied in their study.

The results in Table 2.1 show the velocity, required steering wheel angle, steering error, steering error
ratio and minimum TLC (V, Ssrequim, Serror? 6Semr/55muim and TLC,,;,, respectively) for four curves
with different radii, averaged over all 16 participants. Note that the steering error ratio and TLC are
approximately constant and that the absolute steering error increases as the curve radius decreases,
which supports the hypotheses. In another experiment presented in this study, it is found that the TLC
margin principle also holds for straight roads, where steering errors caused by reduced steering com-
petence are compensated for by choosing a lower speed [54].

Table 2.1: Dependent variables averaged per curve in the experiment of Van Winsum & Godthelp [54].

RCMTUE (m)
40 80 120 180
V (m/s) 1123 1492 1758 17.99
8srpuirea (0€Q) 12144 7464 5656 4347
8, . (deg) 1420 747 554 475

Serror/Ssromure () 012 010 010 0.11
TLCpnin (5) 252 270 289 279
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2.2.4. Lateral acceleration margin

Reymond et al. [57] investigated the relation between velocity and road curvature by means of plotting
the lateral acceleration envelope, which is defined by the convex set formed by all lateral accelerations
plotted against velocity. They noted that when using the minimum TLC as an estimator for the curve
speed, a significant decrease in maximum lateral acceleration with speed only occurs at small curve
radii. This is depicted in Figure 2.8. Their set of experiments contradicted these findings. A sharper
decrease in maximum lateral acceleration was found at higher speeds, both for real and simulated driv-
ing. Moreover, the lateral acceleration envelopes found in this data resembled a parabola, in contrast
to the hyperbola as yielded with the TLC model.

A new model was proposed to describe their experimental data, in which it is assumed that drivers
adjust speed in curves so as to keep the maximum lateral acceleration I,,,, below a constant threshold
based on their own experience, vehicle characteristics, road and weather conditions and a personal
level of acceptable risk. It is argued that a driver wants to be able to deviate from the driven trajectory
with a correcting maneuver with a curvature of magnitude AC at all times, which would result in an
increased lateral acceleration AT of AC x V2. Similar to T,,,, the magnitude of AC is assumed to be
constant, yet driver dependent. Considering that the total of the acceleration without such deviation (T')
and this increased lateral acceleration can not exceed the driver’s maximum lateral acceleration level,
one yields Equation 2.2.

T < Toax — ACmaxV? (2.2)

Moreover it is noted that at lower speeds, the maximum lateral acceleration is limited by the physical
constraint of the steering angle. The lateral acceleration is then limited to k x V2, where k accounts
for the vehicle’s restrictions on the trajectory’s curvature. Together with the constraint from the lateral
acceleration margin as given in Equation 2.2, this yields a lateral acceleration envelope as given in
Figure 2.9.
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Figure 2.8: Lateral acceleration envelope for different TLCs. Figure 2.9: Model of the lateral acceleration envelope as a
[57] function of the velocity as proposed by Reymond et al. [57].

Linear regression is used to fit the acceleration envelope for each driver using data collected with a real
vehicle, driving simulator with motion feedback and driving simulator without motion feedback. Results
are shown in Table 2.2. No conclusions were drawn that relate the vehicle data to the simulator data,
since the participant groups were dissimilar and small. Looking at the simulator data, the coefficient AC
was found to decrease significantly when comparing the dynamic and static conditions. For illustrative
purposes, Figure 2.10 shows the lateral acceleration envelope for one participant in both conditions.
One can clearly see that the slope of the right part of the envelope is less steep for the static condition,
which is the cause for the lower AC. Differences between the models for the different motion condition
contribute to the view that non-visual cues are taken into account in driving.
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Table 2.2: Regression coefficients for the lateral acceleration margin model fitted for data collected with a real vehicle, dynamic
simulator and static simulator. Standard deviations are added in parentheses. [57]

Vehicle Dynamic simulator Static simulator

[ (m/s?)  7.64 (+0.58) 7.99 (+0.76) 8.34 (+ 0.66)
AC (km™) 6.32 (+1.88) 8.34 (+0.66) 3.82 (+ 0.77)
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Figure 2.10: Lateral acceleration for one participant in a dynamic simulator (left) and static simulator (right). [57]

2.2.5. Two-thirds law

Bosetti et al. [49] noted that an inverse correlation between (angular) speed and curvature is known to
be a general feature of human movement. Various studies have shown that when hand-tracing an arc,
angular velocity is limited by two-thirds power of the local arc curvature [58—60]. A similar relationship
is observed when humans walk curved paths [61]. This relationship is referred to as the two-thirds law
and can be found in Equation 2.3, where k denotes curvature and « is a task-specific constant. Flash
et al. [60] showed that when describing a hand tracing ellipses, the minimum jerk trajectory shows an
exponent that closely resembles Equation 2.3. Minimizing jerk ensures smooth movements, a general
computational principle of sensorimotor control [62]. This principle is generally referred to as minimum
variance and is believed to be a byproduct of controlling movements in a way in which motor neuron
noise is minimized by achieving an optimal trade-off between accuracy and speed.

wiN

w = akK (2.3)
When relating velocity instead of angular velocity to curvature, Equation 2.4 is obtained. Bosetti et
al. plotted velocity against radius of curvature on a log-log scale, using samples collected with an
instrumented vehicle on urban roads, extra-urban roads and motorways. When fitting the two-thirds
law as given in Equation 2.4, a value of a = 3.7 m?/3s~* was found to represent 99.9% of the observed
data, whereas a = 3.34 m?/3s~1 represents the median driver. It is noted that a speed limit of 90
km/h (25 m/s) restricts the speed at larger curve radii. Consequently, road radii larger than 1 km are
considered irrelevant. A scatter of the collected data and lines representing the two-thirds law, the
lateral acceleration margin theory as proposed by Reymond et al. [57] and a statistical relationship
found by Levison [63] can be found in Figure 2.11. Bosetti et al. noted that using Reymond’s model an
overestimation of the speed envelope is obtained, due to using test track data opposed to real-world
roads. After reparameterization of Reymond’s model, it is slightly superior over the two-thirds power
law at large curve radii. However, as previously stated, at large curve radii the speed is more likely to
be determined by legal restrictions than by curve negotiation incentives.

V=ax s (2.4)



42 2. Driver modeling

~———— Two Thirds law
20k Modified Levinson ey,
Reymond (new parameters) .-’
-------- Reymond ’
20
z
E 151
b=l
g
)
10
'/" L

10 30 100 300 1000 3000

Radius of curvature (m)

Figure 2.11: Velocity against radius of road curvature for Bosetti’s data. [34]

Next to describing the maximum velocity while negotiating turns, Bosetti et al. [34] propose a kinematic
human curve speed model, in which optimal control is used to keep velocity according to the two-thirds
law. An optimization scheme is used to minimize a cost function that contains jerk and travel time.
In the proposed model, this optimization is is solved for free flow as well as for curves ahead within
a limited receding horizon. The maneuver with the lowest initial jerk is executed. This is illustrated
in Figure 2.12, where v, and a, are the vehicle’s initial velocity and acceleration, v, is a prediction of
the desired velocity when neglecting road curvature and v; and v, are predictions of velocity used to
anticipate curves 1 and 2, respectively. In this example, the maneuver from A to € would be executed,
due to its lowest initial jerk. A trace of velocity calculated using the proposed model is shown in Figure
2.13. As can be seen, the model produces a velocity that approximately resembles the recorded drives.
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Figure 2.12: Maneuver planning for free speed and the anticipation of two curves. [34]
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Figure 2.13: Velocity from data, as determined using the two-thirds law, and determined using an optimal driver model. [34]
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2.2.6. Time to Extended Tangent Point

While investigating recordings of steering wheel angle and gaze direction along curved roads, Land &
Lee [64] found that drivers pay a particular amount of attention to the tangent point (TP) on the inside
of each curve. It is noted that the direction of this point provides a prediction of the curvature of the
road ahead. However, it is also known that drivers do not solely fixate on this point, but scan areas
further up the road and that in particular attention is paid to the far road triangle, which consists of the
TP, the occlusion point (OP), which is the furthest point of the road that is not blocked by obstacles
in the field of vision, and the opposite lane edge [65]. Gruppelaar proposed a velocity choice model
using the extended tangent point (ETP), which is the point where the driver’s line of vision through the
TP intersects the opposite lane edge, as depicted in Figure 2.14. The time to extended tangent point
(TETP) is defined as the time it would take for the vehicle to reach the ETP in a straight line, asuming
a constant speed. The TETP depends on the vehicle’s lateral offset from the lane center and can be
interpreted as a measure of how much the road ’opens up’ after a turn.

Next to modeling velocity, Gruppelaar proposed a model relating velocity choice of individual drivers to
accelerator and brake pedal control. The proposed control model distinguishes between acceleration,
deceleration, braking, brake release and re-acceleration, which each have a distinct set of equations
for pedal control. Phase determination is based on the TETP and the time derivative of the TETP. When
the TETP is above deceleration threshold Ty, the vehicle is accelerated. When the TETP is between T,
and braking threshold T;,, the vehicle is either in the deceleration or re-acceleration phase, depending
on the time derivative of the TETP w.r.t. TETP rate of change threshold dT,. When the TETP is below
Ty, the model assumes the driver to be either in the braking or brake release phase, again depending
on the derivative of the TETP. This is depicted in a flowchart in Figure 2.15.
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Figure 2.14: Location of the TP and ETP for two
curves with different radii and deflection angles. Figure 2.15: Flowchart of phase decision based on the TETP.
[66] [66]
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Next to the TETP thresholds, the driver model contains gains that specify how quickly the driver lets go
of the gas pedal, how strongly the driver presses the brake pedal and how strongly the driver presses
the accelerator pedal. Validation using a road section that is not included in parameter estimation
yields an averaged Variance Accounted For (VAF) of above 60%, implying that driver speed can be
accurately described using the proposed model. The VAF found for acceleration accelerator control
are below 30%. The lowest VAF scores are found for braking, which is assumed to be a result of the
low variance caused by the sparsity of braking maneuvers.

2.3. Driver Intention Detection

Driver intention detection (DID) is attracting an increasing amount of interest [67-69]. It is believed that
maneuver recognition can help to avoid mismatches between the driver’s intention and the system’s
reaction in Advanced Driver Assistance Systems (ADAS) [70]. For example, a collision warning can be
considered undesirable, in case a driver intends to overtake another vehicle. Another example use case
of DID in vehicle design is improved gear shifting that incorporates estimates of future accelerations,
yielding increased fuel efficiency [71]. DID models have been developed based on driver control inputs,
dynamic vehicle states, gaze data and traffic situations as means to detect acceleration, braking, turns,
lane changes and passing maneuvers. In the current section, the DID models are subdivided based
on the model types, which are fuzzy logic, hidden Markov, and artificial neural networks.

2.3.1. Fuzzy logic

Peng et al. [72] noted that being often an effective means to simulate human reasoning, fuzzy logic can
be used to describe driver intent. A fuzzy model is set up that relates the accelerator pedal position
and velocity to membership of the fuzzy subset [N, S, M, B], indicating negative, small, medium and big,
respectively. Membership functions are shown in Figures 2.16 and 2.17.
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Figure 2.16: Membership functions of the accelerator pedal Figure 2.17: Membership functions of the accelerator pedal

deflection. [72] velocity. [72]

Fuzzy inference rules as shown in Table 2.3 are applied to relate the fuzzy subsets to driver intent,
subdivided into adjustment acceleration (A) and emergency acceleration (E). In the latter case, large
acceleration is required rapidly. Hereafter, both the membership functions and fuzzy inference rules
are used together with a comparable fuzzy intention detection model for lateral maneuvering to improve
torque distribution for an electric vehicle with in-wheel motors. The proposed method is found to be
successful by means of improved vehicle control. Moreover, it is concluded that the lack of accuracy
of the fuzzy rules limits the effectiveness of the solution.
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Table 2.3: Fuzzy inference rules relating fuzzy subsets to driving intention, where A denotes adjustment acceleration and E
denotes emergency acceleration. [72]

Pedal deflection Pedal deflection rate

N S M B
N A A A A
M A A A E
B A E E E

2.3.2. Hidden Markov models

Liu & Pentland [73] were the first to use hidden Markov models (HMMs) for driver intention detection.
In an HMM, it is assumed that an underlying process is happening, which consists of multiple discrete
states. These states are unobservable, but the likelihood of transitions between states are constants
obtained using model training. In later work, it was found that an increased similarity was found in
maneuvers, when using predictions of the car’'s motion states made using the driver’s control input,
instead of raw control inputs [74]. It is reasoned that this is due to that the driver finds the sequence
of control inputs less important than the actual vehicle movement. In a simulator study in which com-
mands for maneuvers are provided to the driver making use of a display, over 95% of lane changes
are discovered at 1.5 seconds after the beginning of lane changing. As can be seen in Figure 2.18, this
is well before the part of the maneuver that contains that contains the most dynamics. As a remark,
authors noted that this method of demanding maneuvers differs from naturalistic driving, where drivers
choose a to-be-executed maneuver themselves.
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Figure 2.18: Recognition accuracy against time. [74]

In recent work of Zhao et al., [75] brake pedal and vehicle speed data are used to identify braking
intention. The proposed model consists of three HMM models that determine the likelihood of slight,
normal and emergency braking, based on the vehicle speed and brake pedal force, displacement and
speed. It is found that the accuracy of the prediction can be improved by training NN models that
relate the likelihoods of all three braking classes as calculated by the HMM models to the likelihood of
each individual braking class. The resulting model identifies slight and normal braking with accuracies
of over 95% within 0.7 seconds after actuation of the brake pedal. An illustration of the ANN model
structure is provided in Figure 2.19.
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Figure 2.19: lllustration of NN model structure for enhancement of HMM outputs. [75]

Oliver & Pentland [76] first investigated the use of gaze data for DID purposes. In their proposed model,
they used coupled hidden Markov models (CHMMs) to detect passing, lane changes, turning, starting
and stopping of data collected with an instrumented test vehicle. CHMMs can be viewed as multiple
HMMSs coupled by conditional probabilities between hidden state variables [77]. Gaze was used as
a discrete signal with six possible values: front road, rear view mirror, right mirror, right window, left
window. On average, the models are able to recognize the maneuvers 1 second before the start of
the dynamic part of a maneuver (i.e., 20% deviation of vehicle dynamics). It is concluded that gaze
behavior is a relevant feature for driving maneuver prediction and recognition, especially when detecting
lane changes, overtaking, and turns. More recently, Wu et al. [78] used gaze data as sole input for
DID, to detect braking and turning maneuvers. Probabilistic Dynamic Time Warping (DTW) is used
together with an HMM in order yield superior results when compared to a conventional HMM model.
The proposed model can predict a driver maneuver 3 seconds before it occurs with an accuracy of
90%.

2.3.3. Artificial neural networks

Lethaus et al. [70] proposed artificial neural networks (NN) with one hidden layer to detect driving ma-
neuvers. This NN converted gaze data as standalone predictor for lane change maneuvers. The data
set used to train and validate the models is obtained with a dynamic driving simulator. Analogue to the
work by Oliver & Pentland [76], gaze is subdivided into viewing zones. Two prediction window sizes are
compared, consisting of the last 5 and 10 seconds. Both windows are split up in smaller sub-windows
that form the inputs for the NNs. The labeled data set used to train the NNs, contains binary output
data, since a maneuver of interest is either happening or not happening. Due to the structure of the
NN, however, it outputs a value within the range of [0, 1]. A threshold is set to convert the non-binary
NN output into a definitive maneuver estimate.

When choosing a higher threshold, false positives are reduced at the cost of a decrease in true positives.
This is graphically shown in the Receiver Operating Characteristic (ROC) curves in Figures 2.20 and
2.20. In these plots, scores of identification are given for a look-ahead ranging from 0 to 2 seconds. A
perfect score in an ROC curve would be true positive rate (TPR) of 1 and a false positive rate (FPR)
of 0, which is found in the upper left corner of the plotting area. It can clearly be seen that higher
performance is obtained for shorter look-ahead times. Moreover, it can be seen that the model with
a 5 second detection window outperforms the model with a 10 seconds window. It is noted that this
detection window should be chosen so as to include enough information to detect the pattern of interest,
without including irrelevant previous behavior. The predictive value of the ANNs is validated by the fact
that all points of the ROC curve are in the lower left half of the plot, indicating that the models outperform
random classification.
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Figure 2.20: ROC curve for detection of left lane change Figure 2.21: ROC curve for detection of left lane change
maneuver using a 5 second detection window. [70] maneuver using a 10 second detection window. [70]

Liu et al. [71] noted that traditional NNs may result in suboptimal identification results, as they do not
consider inputs as time series. In contrast, Recurrent Neural Networks (RNNs), use internal memory
states to be able to process sequences of inputs as time series. Various prediction models have been
set up in the field of DID using RNNs [69, 79]. In the model proposed by Liu et al. a long short-term
memory (LSTM) algorithm is trained to classify the driving behavior at the current time based on the
(historical) degree of opening of the accelerator pedal, vehicle speed and brake pedal force. An LSTM
is an enhanced RNN with a forgetting factor in each hidden layer that prevents gradient explosion, a
major drawback from traditional RNNs. In a comparative study, both an LSTM and a traditional NN
are trained to detect longitudinal driver intention using data collected with an instrumented vehicle.
The models predicts 5 classes of longitudinal driving behavior, i.e.: acceleration, rapid acceleration,
deceleration, rapid deceleration and cruise. Labeling of these subsets is done based on the actual
vehicle acceleration, using K-means clustering. Recognition accuracies of 92.5% and 80.4% are found
for the LSTM and traditional NN, respectively, implying that the LSTM model outperforms the traditional
NN.

2.4. Discussion

From a control-theoretic viewpoint, the human driver is a non-linear element that adapts to situations
and uses preview information so as to optimally control a vehicle. This would imply, that features that
appear further ahead will have to be taken into account when modeling driving behavior. Research
on forced-paced steering behavior using control theory is at an advanced stage, in contrast to velocity
control. The latter is relatively complex, since the unknown desired velocity depends on the driver as
well as many features of the driving scenario. Acceleration limits play a constraining role in vehicle
maneuvering. Nevertheless, they do not define naturalistic driving, wherein levels of acceleration are
generally much lower. Longitudinal acceleration maxima are only loosely related to the vehicle’s veloc-
ity, which can be explained by that braking also occurs at lower velocities and that at higher velocities,
accelerations also occur. This shows a limitation of solely basing PP on the vehicle’s velocity. To what
extent factors play a role depends on both the task and scenario and will thus have to be investigated
for the data at hand.

As PP only has to offset the simulator to make a larger part of the workspace available for cueing,
predicting exact specifications of future maneuvering is not required. For this reason, it could be useful
to include simple relationships. The two-thirds law, as applied to curve velocity by Bosetti et al., could
be such a relationship and will be investigated in this project. It contains only one parameter and is
used do describe real world driving behavior, in contrast to the confined experimental tasks in control-
theoretic studies. Control inputs can also be used in predictions and will also be included in this project.



48 2. Driver modeling

Using control inputs in combination with gaze data and dynamic vehicle states is common in the field
of DID. Here, high prediction scores are obtained with advanced models, but at best only a short
instance before the maneuver is performed. This would most likely not suffice for the provision of PP,
as offsetting the simulator’s neutral point imperceptibly takes time. How much time is needed will have
to be investigated for the current simulator. The geometry of the road ahead and legal speed limits
have not been included in DID research described in literature. It is highly probable that these play
a large role in velocity choice. A take-away from the advances in DID, is that a modeling technique
suitable for time series is preferred over one that does not explicitly have a time dimension. However,
this generally comes at the cost of higher model complexity. Noting the large gap between the state
of the art of PP in literature and the advances in the field of DID, and assuming that in PP an accurate
prediction is not always needed, a simpler approach such as regression could be a logical starting point
for maneuver prediction in motion cueing. A probabilistic approach could be suitable, as deterministic
models might be too rigid to describe driving behavior of all possible test drivers with realistic and thus
complex driving task.



Preliminary results

In this chapter, initial results are presented that relate the literature as described in Chapters 1 and 2
to the driving data and MCA made available by the BMW Group. Section 3.1 provides an overview of
the driving scenario, and aims to find a preliminary answer to RQ7: To what extent can longitudinal
maneuvers be predicted in a driving simulation environment? In Section 3.2, initial steps are taken to
answer RQ2: To what extent can motion cueing quality of a classical washout filter MCA be improved
using PP based on predictions of longitudinal maneuvers? Section 3.3 provides a discussion of the
results provided in this Chapter and the implications for the subsequent work in this thesis.

3.1. Prediction

This section aims to provide a preliminary analysis on what data could be useful for the purpose of
longitudinal maneuver prediction in the driving scenario at hand. It will start with a description of the
scenario and data set in Section 3.1.1. Section 3.1.2 aims to describe the relation between the chosen
velocity and environment features. Lastly, the possibility of using driver control inputs for motion cueing
is discussed in Section 3.1.3.

3.1.1. Dataset

The provided set of driving simulator data consists of 154 csv-files, logged during an experiment in a
static driving simulator [10]. Participants are asked to drive a predefined trajectory on a rural two-lane
road as they would do during everyday-driving without time pressure and while respecting the road
traffic regulations. No secondary tasks are performed. The data set contains logged time traces of
vehicle states, control inputs and information on the driving environment, such as the road curvature
and the offsets from the vehicle to the lane edges. The road is driven in both directions. Traffic is only
present on the opposite driving lane. The vehicle model used is a 2018 BMW 530i with a 4 cylinder 2.0L
engine. Figure 3.1 shows the trajectories and legal speed limit changes in both directions. Sections
in which sustained longitudinal acceleration occurs are numbered and described in Table 3.1. This
numbering will be used throughout the current report.
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Figure 3.1: Course including legal speed limits and marked sections in which sustained acceleration/deceleration occurs.

Table 3.1: Sections in which sustained acceleration/deceleration occurs.

Index Description Legal speed limit change
(1) Entering village 100 — 50
(2) Leaving village 50 —100
(3) Sharp turn, reduced speed limit 100 — 70
(4) Sharp hilltop, increased speed limit 70 —100
(5) Approaching roundabout 100 —» 50
(6) Leaving roundabout 50 —100
(7) Approaching roundabout 100 — 50
(8) Leaving roundabout 50 —100
(9) Sharp hilltop, reduced speed limit 100 — 70

(10)  Sharp turn, increased speed limit 70 —100
(11)  Entering village 100 — 50
(12) Leaving village 50 —100

The data set contains long drives spanning the whole scenario, as well as shorter drives. All drives that
do not completely span one of the two trajectories shown in Figure 3.1 are removed from the dataset,
so as to make sure that no start-up and stopping procedures are included, as these are considered
exceptions and are therefore not included in the initial scope of this thesis. Hereafter, cleaning is
done based on the RMS difference between individual drives and an average of all drives at the same
location. One drive is ignored, since its velocity diverged on average more than 15% from the average
velocity. As can be seen in Figure 3.2, the removed drive contains speeding throughout a large part of
the scenario. After cleaning, 21 drives to the south and 16 drives to the north remain.

all (avg) included removed

4500 5000 5500 6000 6500 7000 7500 8000
s (m)

Figure 3.2: Cleaning of rides to the north, based on the RMS deviation from the average drive.
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3.1.2. Velocity choice

In this section, aspects of the scenario will be related to the velocity choice. As described in Section
2.2.2, velocity choice with respect to road curvature has been studied extensively. The scenario as
shown in Figure 3.1, contains several curves. The local road curvature at the middle of the lane, «,
is an attribute of the data and is available at each time step. It is defined as 1/R, where R is the
local road radius in meters. Per definition, left curves have a negative curvature, and right curves
have a positive curvature. The logged road curvature as available in the simulation environment is not
smooth and contains many outliers. As this seems unrealistic, the curvature is recalculated using the
x— and y—coordinates of the road." Figure 3.3 shows the logged curvature as well as the recalculated
curvature, for a part of a drive. The recalculated curvature will be used in further analysis in this chapter.

logged recalculated
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Figure 3.3: Logged and corrected road curvature of a part of a drive to the north.

As discussed in Section 2.2.2, the two-thirds law is used to relate the maximum velocity to the road
radius for a real driving scenario. Figure 3.4 shows the velocity plotted against the road radius for all
data points of the current data set, on a log-log scale. In contrast to Bosetti et al.’s data [34], one
can observe a step-wise increase of velocity against curve radius for the current data set. This could
be a result of the lack of variation of curves throughout the data set. The levels of 9, 16 and 31 m/s
correspond to the maximum velocities driven on the roundabout, in the village and at the rural road when
speed is unrestricted. When comparing the two-thirds law with @ = 3.34, corresponding to Bosetti et
al.’s median driver, one sees that in the current data set, the chosen velocity is often higher. This can be
the result of that the data set is obtained using a fixed-base simulator, whereas it is known that drivers
drive faster in fixed-base simulators than when driving a real vehicle [6]. For this reason, the two-thirds
law is re-fitted per driver, to account for 99.9% of the driver’s data points. The resulting values for a
range between 3.97 and 4.91, with a median of 4.36.
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Figure 3.4: Velocity against road curvature, fitted with the two-thirds law.

"https://nl.mathworks.com/matlabcentral/fileexchange/32696-2d-line-curvature-and-normals
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When plotting the maximum two-thirds law velocity for the median driver together with the actual velocity
and legal speed limits as in Figure 3.5, one can see that for the current scenario, the maximum velocity
seems to be determined more by the legal speed limit, than by road curvature. Clear exceptions are
the roundabout (sections 5, 6, 7 and 8) and a curve in section 10.
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Figure 3.5: Chosen, two-thirds law and legal velocities for the drives to the south (top) and north (bottom).

Since in the current scenario, legal speed limits are the most defining factor for the velocity choice, it
would be of interest to know where and when drivers anticipate to these. The current scenario only
contains 4 speed limit signs that are not obstructed from sight in the preceding 200 m of road. These
signs, located in sections 4, 5, 9 and 11, are examined to obtain insights into when the driver starts
anticipating. Figure 3.6 shows the velocity and acceleration, for each driver and averaged over all
drivers, plotted against the distance relative to the speed limit change. For the current analysis, accel-
eration/deceleration is detected when the magnitude of acceleration is larger than 0.5 m/s?.
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Figure 3.6: Detection of anticipation to changing legal speed limits.
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The left plot in Figure 3.7 shows box plots of the detected anticipations to speed limits per location (4,
5, 9 and 11) and altogether. On average, anticipations occur at 99 m before a speed limit sign. Braking
happens earlier in sections 5 and 11, which could be the result of the larger change in the legal speed
limits. General conclusions like these can however not be drawn, since the amount road sections in
this analysis is limited, and other factors could play a role. As described in Chapter 2, theories used to
model drivers often assume that the driver makes use of time thresholds when controlling the vehicle.
It would therefore be of interest to examine at what time anticipation to changes in speed limits takes
place. Moreover, a constant look-ahead time would be preferred when using PP, since it could assure
enough time to preposition the platform. The box plot on the right in Figure 3.7 shows the time at which
the maneuver starts with respect to the time at which the speed limit sign is reached. On average,
anticipation occurs 4.6 s before.
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Figure 3.7: Distance and estimated time at which anticipation to changing legal speed limits is performed.

Whether look-ahead distance or look-ahead time is a more consistent predictor, can be assessed by
normalizing the standard deviation using the absolute mean, yielding the coefficient of variation (CV).
The means, standard deviations and CV's for both variables are shown in Table 3.2. The lower CV
of distance w.r.t. time, indicates that for the four maneuvers in the current analysis, time is not more
consistent than distance. Figure 3.5 has shown that the velocity at which a maneuver is driven, differs
per maneuver and per driver. However, faster drivers do not necessarily anticipate at a larger distance
ahead of the road sign.

Table 3.2: Mean, standard deviation and coefficient of variation of the distance and time at which anticipation for speed limit
changes occurs in sections 4, 5, 9 and 11 together.

u o cv

s -9m 60m 0.60
t -46s 29s 0.63

3.1.3. Driver control inputs

This section provides a preliminary assessment of the suitability of control inputs for PP. Since the aim
is to predict longitudinal acceleration, the accelerator- and brake pedals will be looked at. That an input
on the accelerator yields an acceleration, and an input on the brake pedal results in a deceleration, is
evident. However, to be useful for PP, it is of interest to know what time in advance a maneuver can
be predicted. Moreover, it would be of interest to know whether the deflection rate could be of added
value. Figure 3.8 shows the acceleration and pedal inputs during an acceleration and braking maneu-
ver in sections 4 and 7 for one exemplary file. Generally, other drivers show comparable behavior.
Again, acceleration and deceleration are detected at the first instance where the acceleration is larger
than 0.5 m/s?2, or smaller than -0.5 m/s?, respectively. The time on the x-axis is shown relative to the
time of the detected maneuver, so as to show the offset at which pedal inputs are given.
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The acceleration maneuver in the left of Figure 3.8 clearly results from the increased accelerator input.
The vehicle accelerates before the desired accelerator position is reached. In conclusion, basing pre-
dictions solely on the accelerator position will not provide much time to preposition the platform. The
accelerator’s position is increased starting at 0.7 s before the vehicle accelerates, which means that
an earlier detection could be possible when including the pedal velocity.

When looking at the braking maneuver in the right of Figure 3.8, one can see that the input on the
brake pedal only occurs shortly before the vehicle accelerates (i.e., 0.2 s before the threshold of -0.5
m/s? is reached). However, the braking maneuver could for the current drive be detected earlier when
looking at the accelerator pedal, which is released already 5 s before the vehicle is decelerating. When
speaking in terms of the speed control phases as done by Gruppelaar et al. [66], the braking phase, in
which a brake pedal is pushed, is usually preceded by a deceleration phase, in which the accelerator
is released.
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Figure 3.8: Pedal positions during accelerating in section 4 (left) and braking in section 7 (right) for one driver.

The third control input, the steering wheel angle, is not likely to be of added value for predictions of
longitudinal maneuvers in the scenario at hand, in which the driver has to follow a predefined trajectory
and steering will thus be done so as to follow the predefined trajectory. In conclusion, road curvature
as discussed in Section 3.1.2 would be a more suitable predictor, as it is known further in advance.

3.2. Prepositioning

In the current section, preliminary findings on PP for the driving scenario, MCA and simulator at hand
are discussed. The classical washout filter-based MCA is described in Section 3.2.1. Section 3.2.2
discusses the performance of the acceleration and jerk limiter used to preposition the simulator imper-
ceptibly. Section 3.2.3 assesses optimal PP in the hypothetical case a future maneuver is completely
known beforehand.

3.21. MCA

The MCA used throughout this report, is a simple classical washout filter MCA that is previously used
and described in the work of Ellensohn [80]. A graphical overview is provided in Figure 3.9. Linear
scaling is applied. Vehicle accelerations are split into high and low frequency content by high- and
low-pass filters, respectively. High-frequency content leads to simulator translation. Low-frequency
content leads to tilt coordination. No tilt rate limiter is present, which is overcome by using low cut-off
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frequencies and gains on the tilt channel. The simulator position and orientation outputs of the MCA
are sent through a workspace limiting block that ensures smooth behavior in case the they exceed the
simulator’s workspace.
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Figure 3.9: Schematic overview of the classical washout filter MCA used throughout this study.

3.2.2. Prepositioning controller

As discussed in Chapter 1, one can distinguish between the logic that determines a PP reference posi-
tion from available information in the driving simulation environment, and the controller used to reached
this desired position. Schematically, the prepositioning subsystem in coorporation with the MCA can
be as in Figure 3.10. Note that the PP output is added to the MCA output, before being sent through
the workspace limiting block, in order to ensure smooth behavior in case the combined output exceeds
the workspace limits.
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Figure 3.10: Schematic overview of the prepositioning subsystem.

The controller designed by Fischer [23] and applied for PP by Hansson & Stenbeck [12] is chosen, as
it explicitly limits acceleration and jerk. A detailed description is given in Section 1.3. The acceleration
and jerk limits for the controller are kept identical, but other parameters of the controller need to be
tuned to the input signal. The magnitude of the uncontrolled PP signal depends on the workspace of
the simulator. The small hexapod-based simulator used for the current analysis is described in detail in
Section 4.3 and has an asymmetric workspace. When the platform is in its neutral position in all other
DOFs, the extreme front and rear positions that it can reach are at 0.29 m and -0.36 m, respectively.
A step input with a magnitude of 0.30 m will for now be used to tune the controller, as it covers a large
part of the simulator’'s workspace. The parameters to be tuned are the inner loop gain K, and the P-
and D-parameters of the PD-controller in the outer loop.
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The controller has been tuned for the step input with the aim of reaching the desired position fast, with-
out oscillations and with an overshoot that does not exceed the workspace boundaries. With the tuning
parameters presented in Table 3.3, the response shown in Figure 3.11 is achieved. 95% of the final
position is reached after 4.1 s. With an overshoot of 13%, the maximum excitation is 0.34 m. When
the step input is applied, the jerk limit is directly reached, followed by the acceleration limit.
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Figure 3.11: Step response of the prepositioning controller.

Table 3.3: Parameters of the prepositioning controller tuned for a step input of 0.3 m.

Parameter Value Unit Description

Aim 0.05 m/s?  acceleration limit

Jiim 0.1 m/s®  jerk limit

K 5 - inner loop gain

Pop 0.3 - P-value of the PD-controller
Dpp 1 - D-value of the PD-controller

3.2.3. Oracle

In order to assess the potential effect of PP in combination with the MCA and simulator, PP is applied
to a maneuver isolated from the data set. Perfect knowledge of the future maneuver (i.e., oracle) is
assumed, so that it can optimally be anticipated. The maneuver is an acceleration from 47 to 104 km/h,
of which the velocity and longitudinal acceleration of the vehicle are shown in Figure 3.12. For the sake
of simplicity, vehicle motion other than surge acceleration is ignored and intensifying motion cueing
will be done by means of increasing the translational surge gain, K,.. Alternatively, it could be opted
to decrease the cut-off frequency of the high-pass filter for surge acceleration, wy, ¢rqnsx, Which would
alter both the shape and the intensity of the cueing.
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Figure 3.12: Velocity and acceleration of a pull-up maneuver after leaving a village.
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The upper plot in Figure 3.13 shows the position output of the MCA without PP, together with the COW
workspace limits as defined in Section 1.1.3. K, is increased to 0.34, which is the highest possible
value that can be reached without exceeding the simulator’s workspace. All other MCA parameters
are taken from the parameter set that is tuned for the current scenario and can be found in Section IlI
of the scientific paper in Part | of this report. Note that next to translational platform acceleration, filt
coordination is applied. In order to anticipate the maneuver, it could be opted to set the input of the PP
controller to -0.30 between t = 0 and 18 s, and 0 at any other time. As a result, the simulator’s neutral
position will be shifted, and a larger part of the simulator’s workspace can be used. This is shown in
the lower plot in Figure 3.13, where K, is increased to 0.74, to exploit the improved workspace usage.
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Figure 3.13: Simulator position with and without PP, with adapted gain settings.

Figure 3.14 shows the specific force in x-direction in the simulated vehicle and in the platform, for the
previously described cases with and without PP. Although generally multiple phenomena occur simulta-
neously, one can clearly identify cues caused by the PP, translational cues of the MCA, tilt coordination
cueing of the MCA, and false cues caused by the MCA. PP, denoted (D, consists of a small negative
acceleration followed by a small positive acceleration, applied before the vehicle starts accelerating.
When comparing the two MCA settings, no different perception is expected, due to the low magnitude
of the acceleration and jerk of the prepositioning. The vehicle’s acceleration consists of two stages,
which are divided by a gear switch. The high-frequency content of both acceleration stages are cued
by the platform by means of translation, denoted 2. Note that in the case where K, is increased, the
magnitude of the translational acceleration of the platform increases. The lower frequency content is
cued by means of tilt coordination, which is denoted @). Since the MCA’s parameters for tilt coordina-
tion are the same for both cases, the specific force due to tilting remains unchanged. At the end of the
maneuver, the filters cause false cues, denoted @. It can be seen that with a higher K, the magnitude
of false cues is increased.
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Figure 3.14: Specific force of the vehicle and simulator with and without PP, with adapted gain settings.
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3.3. Discussion

In the current chapter, a preliminary analysis is made on what information can be of use to make predic-
tions on longitudinal driving behavior and on how predictions could be exploited using PP. When using
Bosetti et al.’s [49] two-thirds law to relate road curvature to velocity choice, it is found that it can be used
to explain anticipation to some curves. However, for the available data, the velocity choice seems to
be more related to the legal speed limits. The location and time at which anticipation to changes in the
legal speed limits occurs are examined for four sections. When looking at the location, it is found that
on average, anticipation occurs 99 m before the speed restriction sign. Looking at the timing, it is found
that on average, anticipation takes place 4.6 s before reaching a speed limit sign. Clearly, road signs
will have to be incorporated in a prediction model before they are reached. The coefficient of variation
is calculated for both measures in order to examine consistency, where it is found the consistency is
comparable. The speed limit at a time interval ahead will be evaluated as input for a prediction model
in the remainder of this project, so as to ensure enough time for PP when driving at a higher velocity. It
should be noted that during any realistic driving scenario, including the one at hand, more factors play
a role than discussed here. The width and longitudinal slope of the road are known to play a role in
velocity choice [53, 81]. However, these are assumed to be less relevant for the current scenario and
therefore not taken into account in this project.

Next to information from the scenario, driver control inputs could provide hints on future maneuvers.
By means of examples, it is shown that the time derivative of the pedal position can be used to predict
a maneuver slightly earlier compared to only using the pedal positions. Moreover, it is shown that the
position of the accelerator pedal can be useful to predict deceleration, since drivers release it before
pushing the brake pedal. When one would want to accurately relate pedal positions to (future) vehicle
accelerations, the (non-linear) vehicle model and the slope of the road should be taken into account.
However, for the sake of simplicity, these will for now not be taken into consideration.

As elaborated in Chapters 1 and 2, the use of information from the driving environment and control in-
puts in motion cueing is fairly limited, in contrast to the more advanced models used in the field of driver
intention detection. In the current thesis, the aim will be to obtain improved cueing using prediction.
Longitudinal driving behavior is highly unpredictable due to differences between drivers. This does not
necessarily have to be a problem, since instead of basing PP on exact predictions of future acceler-
ations, a probabilistic approach might be suitable. Note that PP is only there to improve workspace
management, while not providing any perceivable cues. As a next step, a model will be trained to
identify the probability of a longitudinal driving maneuver continuously throughout a drive.

When choosing a model structure, the prediction accuracy is not the only criterion. As motion cue-
ing is tuned for a driving scenario, simulator and use-case [82], the interpretability of any subsystem
of the MCA can improve its usability. Interpretability of a model is the degree to which a human can
understand the cause of a decision [83]. The high performance that can be reached with advanced
ML methods as described in Section 2.4 can come at the cost of high complexity and reduced inter-
pretability. For this reason, it would be preferred to use a simpler model, such as regression. Logistical
regression will be applied in the remainder of this project, as it is a straight-forward method to predict
probabilities of categorical dependent variables from multiple independent variables [84]. As model
inputs, (future) speed limits and control inputs will be used.

In case of perfect knowledge on a future acceleration maneuver, an 118% increase in gain can be ob-
tained for the onset of the movement with the small hexapod-based simulator that will be used through-
out this thesis. Other ways to exploit the improved workspace usage exist, but are for now not taken
into consideration. 4.1 s are needed to reach 95% of the 0.3 m PP without perceivable false cues. The
prediction model that will be trained in the remainder of this project, will thus require a look-ahead of at
least 4.1 s, so as to be able to finish PP before a predicted driving maneuver commences.



Preliminary experiment design

This chapter describes the design of the human-in-the-loop experiment that will be performed at the
BMW Group in Munich. The purpose of this experiment is to investigate the effectiveness of the pro-
posed PP design. The research questions and hypotheses can be found in section 4.1. Section 4.2
provides a description of the participant group. The apparatus used for this experiment, a hexapod-
based dynamic driving simulator, will be discussed in section 4.3. The conditions and measurements
are elaborated in sections 4.4 and 4.5, respectively. Section 4.6 describes the procedures that will
be followed during the experiment, including a detailed planning. The methods used to analyze the
measurements are explained in section 4.7.

4.1. Research questions and hypotheses
The research questions (as posed in section ) that will be answered with the experiment, are:

* RQ2b: What is the effect of PP based on predictions of longitudinal maneuvering on the
workspace usage of a hexapod-based driving simulator?

* RQ2c: What is the effect of PP based on predictions of longitudinal maneuvering on
motion cueing quality as perceived by driving simulation participants?

PP itself is not likely to improve the motion cueing quality, as the goal of PP is to provide the simu-
lator with a position imperceptibly. Only when improved workspace usage is exploited by changing
the MCA tuning, improved motion cueing quality is expected. The independent variables are thus
split into PP (on/off) and the MCA’s surge motion cueing parameters (conservative/moderate tuning).
Increasing surge motion will be done by re-tuning the classical washout filter MCA, in which the aim
is to provide optimal motion cueing within the workspace of the hexapod, including a safety margin
equal to 5% of the actuator deflection. Reviewing tuning sets will be done subjectively by experts. The
methods that can be used to increase the surge motion are increasing the gain and decreasing the
cut-off frequency (high-pass filter).

The dependent measures used to describe the motion cueing quality, are the absolute difference
(AD) and the perceived motion incongruence (PMI). The AD is an objective motion cueing criterion
which represents the error between the vehicle dynamics and the simulator dynamics. It is defined
as the area of the error signal divided by the area of the reference signal [30]. The PMI is defined as
the perceived deviation between expected vehicle motion and perceived simulator motion [85]. The
dependent measure used to describe the workspace usage is the minimum workspace margin in x-
direction. The workspace margin is the distance between the platform’s center and the edge of the
COW as described in Section 1.1.3. The simulator will make excursions outside of the center in order
to provide motion cueing to the participants. Classical washout filter MCAs are generally tuned so as
to keep a workspace margin at the anticipated worst-case vehicle acceleration [8]. Ranges of possible
tuning parameters are thus constrained by the worst-case scenario. The minimum workspace margin
for each drive provides an indication of how much more motion could be given to the platform.

59



60 4. Preliminary experiment design

The following hypotheses are formulated and will be tested with the experiment, based on the findings
in literature described in Chapters 1 and 2 and results of simulations in Chapter 3:

* H1: Simultaneously adding PP and increasing surge motion decreases the AD and PMI.
* H2: Adding PP increases the minimum workspace margin.

* H3: Adding PP does not have an effect on the AD and the PMI.

* H4: Increasing surge motion decreases the AD and the PMI.

4.2. Sample description

The participant group will consist of around 50 BMW employees, in the possession of a valid driving
license. Since motion perception is known to be correlated with gender and age [86], a diverse partic-
ipant group will be aimed for. A within-subjects design will be used, in order to account for differences
between individuals and in order to require less participants overall. Participants will not be compen-
sated for their participation apart from their regular salary. They should give informed consent before
taking part in the experiment. The Human Research Ethics Committee of Delft University of Technology
has approved the procedures (application ID: 1103).

4.3. Apparatus

A Cruden AS1 hexapod-based driving simulator will be used in the experiment (see Figure 4.1). Mo-
tion is provided by a 6 DOF motion system with 400 mm stroke actuators. The simulator’s workspace
maxima and dynamic capabilities of the simulator are provided in Table 4.1. High frequency vibrations
from the engine and road surface are provided using a separate vibration system. Visuals are shown
on three 42” screens.! The steering wheel provides haptic feedback. Participants will be provided with
sound from the engine, the vehicle’s aerodynamics and other vehicles. The climate within the simulator
room is controlled.

Figure 4.1: The Cruden AS1 driving simulator.

Table 4.1: Dynamic capabilities of the Cruden AS1 driving simulator.

min. position max. position max. velocity max. acceleration

x -0.37 m 0.36 m 0.6 m/s 11 m/s?
y -0.38 m 0.38 m 0.6 m/s 11 m/s?
z -0.26 m 0.26 m 0.5m/s 12 m/s?
¢ -23° 23° 40 °/s 500 °/s?
0 -23° 26° 40 °/s 500 °/s?
P -22° 22° 40 °/s 700 °/s?
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4.4. Experimental conditions

Participants will drive the trajectory shown in Figure 4.2 six times, with varying motion conditions. A
detailed description of the numbered sections is given in Section 3.1.1. An overview of the conditions
can be found in Table 4.2. Condition C1 is included as a baseline, against which the effects of adding
PP and increasing surge motion will be tested. In condition C1, the surge motion will be tuned such that
the simulator workspace is almost fully exploited, except for a safety margin to account for inter-driver
variability. In conditions C2 and C3, the developed PP is active. In condition C2, the MCA motion
cueing parameters will be kept unchanged w.r.t. the baseline condition, so as to be able to examine
the effects of the PP by itself. In condition C3, surge motion will be intensified so as to exploit the
increased simulator workspace made available by adding PP. Again, surge motion will be tuned such
that the simulator workspace is almost fully exploited. Each of the three motion conditions will be driven
two times per participant. A randomized latin square design will be used to sequence the experiment
conditions differently per participant, in order to ensure a fair comparison. Participants will be briefed
to drive as they would do in real life. Traffic will be present only on the opposite lane.
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Figure 4.2: Experiment course including legal speed limits and marked sections in which sustained acceleration/deceleration
occurs.

Table 4.2: Experimental conditions.

Condition Prepositioning Surge motion

C1 off conservative
Cc2 on conservative
C3 on moderate

4.5. Measurements

The PMI will be collected by means of post-hoc rating (PR) and section-wise post-hoc rating (SPR).
In PR, participants are asked to orally rate the PMI on a scale from 0-10, where 10 indicates high
PMI, thus indicating unrealistic motion. SPR is a novel measurement method, in which oral ratings
similar to those in PR are given at the end of each section of the driving scenario as announced by
the experiment leader [80]. The sections used for SPR are sections 9-11 as described in Table 3.1 in
Section 3.1.1. Participants will be asked to only rate the longitudinal motion, since this is the only aspect
that will change per condition. In order to obtain qualitative insights into the motion cueing provided in
the three conditions, the following motion cueing questionnaire will be asked using 5-point Likert scales
for agreement (strongly disagree, disagree, undecided, agree, strongly agree) and frequency (never,
rarely, sometimes, often, always) [87]:

* Q17: Accelerating felt realistic. (agreement)

» Q2: Braking felt realistic. (agreement)

» Q3: Motion was too weak. (agreement)

* Q4: Motion was too strong. (agreement)

* Q5: No motion was provided at times motion was expected. (frequency)
* Q6: Motion was provided at times no motion was expected. (frequency)

"https://www.cruden.com/automotive-driving-simulators/
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The minimum workspace margin will be calculated post-hoc from the recorded time traces of the sim-
ulator position using inverse kinematics as described in Section 1.1.2. A graphical representation of
the forward and backward workspace margins for an exemplary position and orientation are shown in
Figure 4.3. The minimum of both margins is defined as the minimum workspace margin.
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Figure 4.3: Forward (+) and backward (-) workspace margins for [x y z] = [0.1 —0.2 0] mand [¢ 6 Y] = [0 0 0] rad.

4.6. Procedure

An overview of the procedure can be found in Table 4.3. Participants will start filling out the informed
consent form. Hereafter, instructions will be given at the desk and at the simulator, including safety
instructions. The first drive will be a training drive, in which the participant will be able to get used to
driving the simulator and reviewing motion queing using SPR, PR and the motion cueing questionnaire.
Hereafter, the participant will drive the same trajectory six times. Note that the order differs per partic-
ipant, using the randomized latin square. While driving, the participant will do SPR. At the end of each
drive, participant will provide PR and fill out the motion cueing questionnaire. After the last drive, there
is time for a Q&A. A buffer of 35 minutes is planned between experiments in order to ventilate the room,
clean the setup and solve technical failures.

Table 4.3: Planning of the experiment procedures.

Procedure Duration (minutes) Notes

Pick-up and welcome 5

Instructions at desk 5 incl. informed consent
Instructions in simulator 5 incl. safety instructions
Familiarization drive 8

Measurement drive (1) 7 incl. questionnaires
Measurement drive (2) 7 incl. questionnaires
Measurement drive (3) 7 incl. questionnaires
Break 5

Measurement drive (4) 7 incl. questionnaires
Measurement drive (5) 7 incl. questionnaires
Measurement drive (6) 7 incl. questionnaires
Q&A 5

Departure 5

Sum 80
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4.7. Data analysis

Statistical significance will be tested for the four hypotheses stated in Section 4.1. In every hypothesis,
two motion conditions are compared. Since the experiment is within-subjects, a dependent t-test will
be performed for data that meet the assumptions for parametric tests, whereas a Wilcoxon signed-rank
test will be performed for data that do not meet these assumptions.

The minimum workspace margin, AD and PMI are considered interval data. The Lilliefors-test will be
used to assess normality of the samples. In case normality holds, the paired t-test will be performed
to test statistical significance of results. In case the samples are not normally distributed, the Wilcoxon
signed-rank test will be performed. The Likert data from the questionnaire (Q1-Q6) are considered or-
dinal data, implying that a non-parametric test will be used, regardless of the normality of the samples.
Thus, the Wilcoxon signed-rank test will be performed for the questionnaire data.






Preliminary conclusions

The objective of this research is to assess the suitability of driver inputs and information from the simula-
tion environment as triggers for PP of a dynamic driving simulator. In order to achieve this, a prediction
model will be established from driving data, and prepositioning rules will be evaluated as extension to
a classical washout filter MCA for a small hexapod-based simulator. As a first step, this preliminary
thesis report discusses literature relevant to answer RQ1: To what extent can longitudinal maneuvers
be predicted in a driving simulation environment? and RQ2: To what extent can motion cueing quality
of a classical washout filter MCA be improved using prepositioning based on predictions of longitudi-
nal maneuvers? Moreover, a preliminary analysis of data from previously recorded simulator drives is
presented in this report. Together with the literature review, this analysis forms the basis for the PP
algorithm that will be designed and evaluated later.

In contrast to simpler tasks usually described in control-theoretic modeling, the desired longitudinal
response in real driving can have many forms. Real world driving scenarios generally consist of a
multitude of features that form the basis for the velocity choice. The complexity of the driving scenario,
combined with a high inter-driver variability, makes longitudinal driving behavior highly unpredictable.
This is probably the reason that predictions in the field of driving simulation described in literature are
fairly limited. In classical washout filter-based MCAs, predictions can be used by means of PP. A
simulation has shown that for a small hexapod-based driving simulator, the gain of the translational
x-acceleration can be increased with 118% in the hypothetical case a pull-up maneuver is completely
foreseen. However, the only PP model that is fully described in literature assumes that it is not pos-
sible to predict whether acceleration or braking will occur and takes both possibilities into account at
any time. Meanwhile, novel MPC-based MCAs depend on predictions of future vehicle movement, but
as of now, prediction windows are short and highly relevant features of the environment such as road
curvature and speed limits are not taken into account.

A preliminary data analysis is done to deduce how drivers choose their velocity in a driving scenario
provided by BMW, which contains a rural area including a small village and roundabout. It is found
that for this scenario, the legal velocity restrictions are leading. Road curvature only plays a role at a
few locations. When a sign indicating a legal velocity restriction change is not obstructed from sight,
anticipation occurs on average 4.6 s before the sign is reached, indicating that preview information
should be taken into account when predicting longitudinal maneuvering. In a case study of one drive, it
is shown that control pedal positions can also be valuable predictors. Especially the accelerator pedal
is promising, as it is in many cases released a long time before a braking maneuver is performed.

In the remainder of this project, features of the environment and control inputs will be used to train a
probabilistic model. A suitable candidate could be multinomial logistical regression, as it can handle
multiple inputs to predict multiple outputs categories, with a low model complexity. Multiple combi-
nations of predictors will be compared. Out of the predicted maneuvers, ideal PP will be calculated.
The logic that transforms predictions to an ideal PP position will still have to be decided, based on the
characteristics of the prediction model. The ideal PP position will be reached by the simulator using an
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acceleration- and jerk limiter, to prevent false cues. Simulations presented in this preliminary thesis re-
port have shown that a PP position that uses the majority of the workspace of the small hexapod-based
simulator can be reached in 4.1 s. One thus needs a larger look-ahead in order to be able to finish PP
before a maneuver takes place. The final implementation will be tested in a human-in-the-loop exper-
iment of which the set-up is described in this report, to investigate the effectiveness of the workspace
usage by the PP algorithm and the potential benefit in terms of motion cueing quality.

With an increasing amount of use cases for driving simulation, comes an increased relevance to ob-
tain the most realistic motion feedback possible for a motion platform. Since the limited workspace
of a simulator makes it impossible to exactly replicate the motion of a simulated vehicle, improving
workspace usage can yield possibilities for motion cueing improvement. In the current thesis, this will
be demonstrated using PP in combination with a classical washout filter-based algorithm, which is of-
ten used in driving simulation for its simplicity. Moreover, novel MPC-based MCAs use predictions of
future maneuvers and could thus benefit from findings in the current thesis.
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Appendices






Effect of workspace limiting on motion
cueing quality

In the scientific paper presented in Part | of this report, drives wherein workspace limits were reached,
were excluded in the analysis of the motion cueing quality results. The current appendix presents a
comparison between the motion cueing quality of limited drives and that of clean drives (i.e., drives in
which the simulator’s workspace limits were not reached). As in the current analysis individual drives
are looked at, no averaging of double data points was performed.

Figure A.1 shows the objective motion cueing criterion results for the whole drive except the starting
and stopping maneuvers. Note that the AD denotes the normalized difference between the specific
forces in the platform and the simulated vehicle, and that an AD score of 0 indicates perfect cueing
[30]. It is clearly visible that in all conditions, the drives in which limiting occurs yielded a larger AD
w.r.t. the clean drives.
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Figure A.1: Subdivision of objective motion cueing quality over the whole drive except the starting and stopping maneuvers into
clean and limited drives.

Figure A.2 shows the subjective PMI ratings for sections N1 to N4. Most limiting cases occurred in
sections N1 and N3. In section N1, no clear differences are found between the clean and limited drives.
In section N3, however, higher PMI scores were obtained for the limited rides under all conditions. The
latter is in line with the findings on the AD. In conclusion, it would have been better to opt for a more
conservative tuning in the human-in-the-loop experiment, so as to not obscure results with the effect
of limiting.
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Figure A.2: Subdivision of subjective motion cueing quality per section into clean and limited drives.



Post-hoc questionnaire results

The current appendix provides the results obtained using the post-hoc motion cueing questionnaire
described in Appendix D. Workspace limits were reached in the starting and stopping procedures of al-
most all drives. Workspace limiting could induce false cues due to braking of the simulator and missing
cues due to the inability to accelerate further in the direction of the workspace edge. Consequently, it
was not possible to observe the effect of adding PP and increasing the translational surge gain of the
MCA. For completeness, measurements are presented here.

The resulting PMI per experimental condition as presented in Figure B.1 shows that in the post-hoc
ratings of the complete drives, no clear differences were found when comparing the three motion con-
ditions. This is in line with the inconsistency found in the SPR ratings as presented in the scientific
paper in Part | of this report. Figure B.2 shows the response to the motion cueing questionnaire. The
aim was to provide qualitative insights that could explain the resulting PMI ratings. Nevertheless, again
no clear differences were found between the three conditions.
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Figure B.1: Subjective ratings of motion cueing quality.
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B. Post-hoc questionnaire results
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Figure B.2: Motion cueing questionnaire responses.



Experiment briefing

C.1. Allgemeine Information fur Teilnehmende

In der heutigen Studie wird es um die Qualitat der Simulatorbewegung gehen. lhre aufgabe als Fahrer
wird sein, die strecke zu fahren in lhrem normalem Fahrstil und Abweichungen zwisschen der er-
warteten und der gegebenen Bewegung zu bewerten.

C.2. Aufgabe und Messungen wahrend der Fahrt

Die Bewegung des Simulators unterscheidet sich von der Bewegung eines realen Fahrzeugs. Diese

Abweichungen kénnen in verschiedenen Formen auftreten. Einerseits kdnnen Bewegungen zu schwach
anfuhlen oder ganz fehlen, das heil3t es ist zu wenig Bewegung bei einem spezifischen Fahrmandéver

spurbar. Andererseits kann Simulatorbewegung zu stark sein im Vergleich zum realen Fahrzeug und

kann der Simulator sich bewegen, wahrend das reale Fahrzeug das nicht tut. Die Abweichungen

zwischen der Bewegung des Simulators und des realen Fahrzeugs sollten nach eigenem Empfinden

beurteilt werden. Die Skala reicht von 0 bis 10, wobei 0 keine Abweichung zu einer realen Fahrt und

10 eine sehr GrolRe Abweichung zur Realfahrt reprasentiert:

Reales Fahrempfinden Sehr groRe Abweichung

0 1 2 3 4 5 6 7 8 9 10

Ziel ist, fur verschiedene Abschnitte die Abweichung pro Abschnitt zu bewerten. Der Versuchsleiter
wird wahrend der Fahrt anzeigen wann ein Abschnitt beginnt und endet. Wen ein Abschnitt endet,
Sie bewerten die Bewegung im gesamten Abschnitt mindlich. Bitte bewerten Sie ausschlief3lich die
Langsbewegung des Simulators (gefiihl beim beschleunigung und bremsen). In die Bewertung nicht
mit einflieRen sollen:

* Querdynamik des Simulators (gefiihl beim drehen)

* Visualisierungsfehler, bspw. Verpixelungen, Rand vom Bildschirm

» Fehlende Strallenbeschaffenheiten, bspw. Schlaglécher, Abwasserdeckel
» Soundeffekte, bspw. Motorsound, Fahrtwind

» Storgerausche vom Simulator, bspw. von Elektromotoren

» Unmittelbarer Beginn und Ende der Fahrt. Der Simulator fahrt in die neutrale Position, dies ist
nicht Bestandteil der Messfahrt ist

+ Unrealistische Gegebenheiten im Fahrerraum, bspw. Lenkrad und Ful3pedale bewegen sich nicht
» Gerliche
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C. Experiment briefing

C.3. Ablauf der Studie

Das Experiment besteht aus 6 vierminitige Fahrten. Insgesamt dauert das Experiment etwa 1 Stunde
und 10 Minuten. Die Studie wird dabei nach folgendem Ablaufplan durchlaufen:

Nachdem Sie diese Studieninformation gelesen haben, werden Sie einen Fragenbdgen ausfillen.

Danach durfen Sie in den Simulator einsteigen. Nachdem Sie Platz genommen haben, werden
Sie eine kurze Einweisung bekommen. Auch die mindliche Bewertung von Abschnitte in eine
Testfahrtwird hier geibt.

Nachdem die Testfahrt abgeschlossen ist und Sie keine weiteren Fragen haben, beginnt die erste
Messfahrt.

Wahrend der Messfahrt fiihren Sie die beschriebenen Aufgaben aus. Bitte teilen Sie dem Ver-
suchsleiter unbedingt mit falls Innen unwohl ist. Sie kdnnen zu jeder Zeit den Versuch abbrechen.

Nach jeder Messfahrt, wird die Simulation kurz unterbrochen, und werden Sie ein paar Fragen-
bogen ausfillen.

Zum Abschluss des Experiments, wenn Sie wieder aus dem Simulator ausgestiegen sind, werden
Sie noch einen Fragenboge ausflllen. Anschlief3end ist die Studie beendet.

Wer vor der Fahrt auf die Toilette mdchte, hat jetzt die Gelegenheit dazu.

Ich bitte Sie auRerdem, flr die Zeit der Studie Ihr Handy auf lautlos zu stellen und wahrend der
Fahrt nicht Ihr Handy zu benutzen.

Sollten Sie noch Fragen haben wenden Sie sich bitte an den Versuchsleiter.



Post-hoc motion cueing questionnaire

Reales Fahrempfinden

Sehr groRe Abweichung

0 1 2 3 4 5 6 7 8 9 10
Trifft nicht Trifft eher Teils-teils Trifft eher Trifft zu
zu nicht zu zu
Beschleunigung flihlte sich
realistisch an
Bremsen fiihlte sich realistisch
an
Bewegung war zu schwach
Bewegung war zu stark
Nie Selten Manchmal Oft Immer

Es gab kein Bewegung wenn
Bewegung erwartet war

Es gab Bewegung wenn kein
Bewegung erwartet war
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Latin square design

Ordering of experimental conditions was done as in Table E.1. Here, 4; is the i-th realization of a row-
and column-randomized version of matrix 44, which is shown in Equation E.1.

Table E.1: Latin square matrix design used in the experiment.

Drive 1 Drive 2 Drive 3 Drive 4 Drive 5 Drive 6
Participant 1
Participant 2 A, 4,
Participant 3
Participant 4
Participant 5 As A,
Participant 6
C1 C2 C3
A, =1C2 C3 Ci1 (E.1)
C3 C1 C2
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Effect of drive number on subjective
ratings

The Latin Square design as described in Appendix E was applied in order to balance out order effects.
In order to provide a look into these effects, Figure F.1 shows the PMI ratings of all of the drives per
drive number. After the third drive, a 5-minute break was held. Hereafter, the PMI is rated slightly lower
than before the break. It is hypothesized that the increased acceptance of motion cueing over time is
a result of that participants tend to forget the experience of realistic motion.
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Figure F.1: Subjective ratings over the whole ride per drive number, not distinguishing between conditions.
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Sensitivity of F1-scores to detection
thresholds

In section Il of the scientific paper in Part |, the use of detection thresholds was proposed for preposi-
tioning. The F;-score [88] was calculated for each threshold and the thresholds that yielded the highest
scores were used in the proposed prepositioning logic. The current appendix is added to show the
sensitivity of the F;-scores to the detection thresholds, for the logistic regression model with predictor
variables V., — V.. and &, (i.e., the selected model).

In Figure G.1, the thresholds are indicated on the ROC curves for acceleration and deceleration de-
tection. It can be seen that for equivalent thresholds, the TPR of deceleration detection is lower than
that of acceleration detection. Consequently, a lower threshold has to be chosen in order to detect
maneuvers.

N (a) Acceleration 1 (b) Deceleration
08} 0.8 0.1
0.2
2067 0.6 0.3
g & 0.4
F 0.4 ] 0.8 AUC = 0.83 F 041/ g5 AUC = 0.77
0.9 0.6
0.2{ 0.2} 07
0.8
0.9
0 02 04 06 08 1 0 02 04 06 038 1
FPR (-) FPR (-)

Figure G.1: ROC curves with indication of detection thresholds.
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88 G. Sensitivity of F1-scores to detection thresholds

Figure G.2 shows the F;-scores against threshold values for the acceleration and deceleration pre-
diction models. It can be seen that the F;-score of the deceleration prediction is more sensitive to the
detection threshold than the F;-score of the acceleration prediction. Note that even though the F;-score
of the acceleration detection is relatively insensitive to the detection threshold, changing the detection
threshold still changes the characteristics of the classifier. As can be seen in Figure G.1, a higher
acceleration detection threshold yields an increased TPR at the cost of an increased FPR.
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Figure G.2: F;-scores plotted against the detection thresholds. The optima are denoted by x.



Comparison with velocity-based
prepositioning

The only prepositioning algorithm that is explicitly described in literature, is that of Hansson & Stenbeck
[12]. In their implementation for a curvy race track, the possibilities of braking and acceleration were
taken into account at all times. The mean of the range of possible vehicle accelerations was calculated
at each time step, and from this mean, a reference PP offset was calculated. As the range of possible
vehicle accelerations was assumed to be a function of the vehicle’s velocity only, this will be referred
to as velocity-based PP.

In the scientific paper presented in Part |, low AUCs and F,-scores were obtained for the prediction of
acceleration and deceleration when the vehicle’s velocity was used as only predictor variable. For this
reason, a comparison between the PP algorithm proposed in the scientific paper and the PP algorithm
proposed by Hansson & Stenbeck was omitted. For completeness, itis included in the current appendix.

H.1. Equations

) V <8.64 (m/s) H 1
Qacemax =) 5184.V-1 V> 8.64 (m/s) (H1)
The mean possible acceleration is calculated using to Equation H.2, where the maximum deceleration
is equal to -5 m/s and thus independent of the vehicle’s velocity.

aacc,max (V) + abrake,max

a(v) = .

(H.2)

Equation H.3 was used to calculate a PP offset (xpp) out of the mean of possible accelerations, which
cannot exceed the maximum allowed PP offset (xpp 14y )-
a(v)
—x _ _
PPmax max (a(Vmax)' |a(Vmin) |)

xpp(V) = (H.3)

H.2. Evaluation

Equivalent to the comparison between the threshold-based and linear PP types in Section IlI-B of
the scientific paper presented in Part |, a grid search was performed to find the optimal settings for
the velocity-based PP described in the current appendix. The maximum translational surge gain that
could be set without activating the workspace limiting in any of the 16 drives (K, ,qx), Was calculated
for various settings of Py, ... Results are shown in Table H.1. Note that for the velocity-based PP,
Bypmin is NOt an optimization parameter, as it is defined as -P,, nmqx- The velocity range parameters
Vmin @nd V., were set to 0 and 120 km/h, respectively.
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90 H. Comparison with velocity-based prepositioning

Table H.1: Maximum surge gains and corresponding Ppy, min @nd Ppp max Values per PP type.

PP |°gic Kx,max Ppp,min Ppp,max (m)
None 0.24 - -
Velocity-based (Hansson & Stenbeck) 0.26  -0.06 m 0.06 m
Linear (proposed in this thesis) 033 -0.14m 0.20m

As can be seen in Table H.1, higher gains could be set using velocity-based PP than when not using
PP. Nevertheless, the potential increase in surge gain was 8.3 %, which is litle compared to the 38
% increase that was could be obtained using the linear PP logic proposed in this thesis. In order to
be able to elaborate on the shortcomings of velocity-based PP, H.1 shows the vehicle velocity, PP
(reference and final) and the simulator position (with and without PP) for one of the drives, with a K,
value of 0.27 (i.e., slightly higher than possible within the simulator’s workspace). One can see that the
critical maneuver in this drive occurs in section N3. In this maneuver, the vehicle decelerates from 28
m/s (£100 km/h) to 14 m/s (x50 km/h). At the end of this deceleraton maneuver, the velocity is low and
consequently, PP is approximately zero. Nevertheless, the simulator is still located in the rear. Conse-
quently, the simulator reaches the workspace limits, despite the slight compensation by PP. Increasing
the value for B, ., Would improve workspace management in this deceleration maneuver, but would
yield the same problem at the end of acceleration maneuvers.

Vehicle velocity
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g 25
< 20
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0.2 . ! . ' ; ' ; ; :
120 140 160 180 200 220 240 260 280
Simulator position — — — without PP with PP workspace
N1 N2 N3 N4

PJ:,sim, (m)

120 140 160 180 200 220 240 260 280

Figure H.1: Vehicle velocity, velocity-based PP and the resulting simulator surge position.
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Figure H.2 shows the PP (reference and final) and the simulator position (with and without PP) for the
same drive, but now using the linear PP as proposed in this thesis. Larger PP excursions (i.e., ranging
between -0.14 and 0.20 m) could be made, as the velocity, speed limit and accelerator pedal deflection
accurately predicted future maneuvering. Consequently, the prepositioned simulator did not reach the
workspace limits in section N3.
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Figure H.2: Linear PP and the resulting simulator surge position.
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