oolving Tactile
~ Internet By
—akiNg PNysICS

by

Deniz Yildinm

to obtain the degree of Master of Science in Embedded Systems
at the Delft University of Technology,
to be defended publicly on Monday September 28, 2022 at 09:00 AM.

Student number: 5375010
Project duration: November 18, 2021 — September 30, 2022
Thesis committee: Dr. R. R. V. Prasad, Associate Professor, TU Delft, supervisor

Dr. A. Panichella, Associate Professor, TU Delft
K. Kroep, PhD Candidate, TU Delft
Dr. V. Gokhale, Postdoctoral Researcher, TU Delft

This thesis is confidential and cannot be made public until December 31, 2024.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

Tactile Internet (TI) allows kinesthetic interactions with a remote environment and haptic sensory feed-
back over a network, essentially adding a new sensory dimension to the internet. Tl has a wide range of
applications such as enabling remote work for professions that require human hands and tactile sensory
input like car repairs or medical operations. Most Tl applications have ultra low latency requirements
that limit T1 to short distances because the speed of light poses a constraint on how fast data can be
transmitted over a distance. This thesis attempts to relax the delay requirements for enabling Tl over
long distances. This is achieved by locally simulating the physical interactions and tactile properties of
the environment to provide instant haptic feedback regardless of network conditions.

Model Mediated Teleoperation (MMT) creates a local feedback loop using a model and lowers the
network delay requirements of the system at large. We propose utilizing a physics engine with haptic
functionalities as the local model, to create MMT based Tl applications that can cater for a variety of
complex scenarios. We implement a multi-purpose haptic framework attached to Unity that facilitates
creating various Tl testbeds and applications, and use it to analyze and benchmark our MMT design.
We show that haptic feedback from stationary objects is completely unaffected by network delay with
our MMT implementation, and narrow down the challenge to simulating dynamic objects. We demon-
strate that the model inevitably diverges from the environment it simulates when movable objects are
involved, and needs frequent corrections.

Deniz Yildirim
Delft, September 2022

Contents

Introduction 1
Related Works 7
2.1 Challenges Of Tactile Internet 7
2.2 Model Mediated Teleoperation. 7
23 Tactile Physics Engines e 8
Theory & Background 9
3.1 Model Mediated Teleoperation. 9
3.1.1 Bypassing Network Delay WithModels 9
3.1.2 MMT With Stationary Objects 10
3.1.3 MMT With Dynamic Objects 11
3.1.4 Resolving Model Divergence 14
3.2 Tactile Physics 16
3.2.1 Existing Physics Engines. 16
3.2.2 Proxy Algorithm. e 17
3.2.3 Finding The Point Of Contact With Ray Casting 19
3.2.4 Acceleration Structures For Contact Point Detection. 20
Implementation & Methodology 23
41 Hardware Setup e 23
4.2 Making The Physics EngineWork. 24
4.3 Enabling Mesh Objects. 26
4.4 Towards Model Mediated Teleoperation. 26
441 DifferentScenarios. L 26
4.4.2 Modular Software Design e 27
443 ControllerModule. 28
444 PhysicsModule. 29
445 NetworkModule 29
446 SensingModule 30
447 Thread Safety. 30
45 Loggingand Benchmark 31
Results 33
5.1 Experimental Setup L 33
5.2 Timing Performance Analysis 35
5.3 Static Model Divergence e 37
5.4 Dynamic Model Divergence 39
Conclusion 41

Introduction

Master Domain a Controlled Domain
O
Y

011010()

S
5

Figure 1.1: A schematic representation of Tactile Internet showing the master and controlled domains. This figure is taken from
Kroep et al. with the permission of the authors. [1]

Tactile Internet (Tl) aims to enable remote interaction with the physical environment at a distant
location while also getting haptic feedback. After vision and hearing, which make up the core of our
communication and transfer of information over the internet (and through many other mediums), touch is
arguably the next most useful sense to communicate. In essence Tl is two-way communication of haptic
data over the internet which enables not only sensing a remote environment, but also interacting with it
and manipulating it. This creates a wide range of use-cases from enabling remote work for professions
that require hands-on interaction and tactile feedback such as medical operations, to allowing human
tactile interaction in hostile environments such as deep sea exploration or external repairs on a space
station. The possibilities are limitless and Tl can make all of it a reality by creating a framework for
reliable, accurate and fast tactile control and feedback over the internet.

A Tl system consists of two main domains that communicate over a network. These domains
which used to be called master and slave domains, are more recently called master/controlled or op-
erator/teleoperator in literature. The master side consists of a human and a device that captures the
human’s movements and sends them to the controlled side over the network. The controlled side then
mimics the movements that it receives and sends back haptic feedback data such as forces and tex-
tures from the surfaces it touches. The master side then communicates the haptic feedback to the the
user. This feedback loop enables the user to in a sense embody the robot and physically be present
at a distant location. Everything the human does, the robot mimics, and everything the robot senses,
the human feels. There are different setups for both the master side and the controlled side, varied
by the available devices and the requirements of the environment. For example the master side can
provide haptic feedback by mimicking forces sent from the controlled side or simply with vibrations, the
master-side device can be a wearable device or a separate controller, the controlled side device can be

1

2 1. Introduction

a humanoid robot or just a robot arm etc. While all use cases come with their own set of requirements,
there are certain requirements of Tl that need to be fulfilled by any Tl application, which have been the
focus of Tl research for a couple of decades.

Arguably the biggest challenge among the requirements of Tl is delay, as is with any real-time sys-
tem. A Tl application always includes a feedback loop where the actions of the user directly effects
the feedback it receives, such as pushing an object and feeling a reactionary force. Sufficient delay
can render the system unusable where the sensory feedback no longer feels correlated with the action.
When one thinks of the many examples of future use-cases of Tl such as remote medical operations, it
quickly becomes apparent why low latency and reliability of sensory feedback are critical for a Tl appli-
cation. While each component needs to conform to these requirements, i.e. the actuators and sensors
also need to operate fast and reliably, the bottleneck especially in terms of latency is undoubtedly the
network communication between the nodes.

Research shows that the upper limit of acceptable delay for sensory feedback in a Tl applications
is 1ms, which is often called "the 1 ms challenge” or the Ultra Low Latency (ULL) requirement in
Tl research. A 1ms round trip means that even if the latency of every other component of the Tl
application is ignored, data should arrive from one node to the other in 0.5 ms. This creates a difficult
challenge where the distance between the nodes are limited by physical constraints, mainly the speed
of light. Considering it takes roughly 55.65 ms for light to travel from Delft, Netherlands to Sydney,
Australia, this requirements makes Tl impossible except for over short distances, unless a way to
loosen the requirement is found. It's not all bad news though, because the other network requirements,
reliability and throughput, do not pose such an impossibility. The throughput requirements are low for
a Tl application especially when compared to other types of data such as video streams. In terms of
reliability, TI community suggests an ultra-reliability requirement of 99.9999%. However this percentage
is mostly speculation unlike the experimentally quantified ULL requirement, and recent research that
does a variety of subjective experiments even with nearly 50% packet loss, operators barely feel any
disturbance at all [1]. This suggests that the proposed ultra reliability requirement is in truth not a
necessity for certain Tl applications that share the same properties as the ones tested in [1]. Thus, the
ULL requirement is unarguably the network bottleneck against a high quality Tl application, and it is
the challenge that this thesis aims to tackle.

The reason why low latency is so critical for a Tl system is that a delayed system can create not only
delayed but also inaccurate and unstable haptic feedback. Imagine the scenario depicted in Figure 1.2
where a finger at the master domain pushes a button in the controlled domain. In an ideal system
without delay, the finger's movement would instantly be mimicked the controlled domain, causing force
to be applied to the button and an equal reactionary force being applied at the master domain. In
the realistic case where there is network delay, the user will keep pushing until a sufficient reactive
force is felt, but with delay, they will push considerably past the point of contact. This will cause the
robot to apply more force on the table than the user intended, and as a result cause the user to feel a
much higher feedback force than expected. While there is research to minimize the effect of delay on
user experience such as lowering the spring constant when delay is present, network delay is always
detrimental to the user experiences and the quality of experience unavoidably drops below acceptable
limits past a certain distance. The logical conclusion from this is that either Tl is only feasible over short
distances, or a creative way to loosen this requirement must be found to enable Tl over long distances.
This thesis aims to introduce the idea of enabling high-quality Tl over long distances by reducing the
perceived delay by simulating physics.

Our idea is that both the controlled side and the master side can have local simulations of each
other that provide uninterrupted haptic data, the perceived delay of which is unaffected by the network
delay. Simulations would still make use of the real haptic data that arrives over the network but use it to
correct divergences in simulations. Since the local simulations would not be visually shown to the user,
one could be creative with fixing divergences without making the user realize something was wrong to
begin with. Theoretically speaking, if we were able to create a perfect model of the environment at the
other side, then the need for a network would disappear entirely once the model is created because the
model would be identical to the controlled environment. While such a perfect model is not possible with
the technology of our time and gaps in our current scientific knowledge, unlike the ULL requirement
limited by the speed of light there is no physical limit to this approach that we know of. The accuracy
of the model adds a new dimension for performance and loosens the network requirements that are
capped by the speed of light, which in turn make long distance TI communication possible.

ideal case realistic case

master domain master domain

Sy Y v

[[--23 [[A —— [cz==za

o [J
TN TN 2N o
t=0 t=1 t=2 t=0 t=1 t=2 t=3 t=4
controlled domain controlled domain
(a) (b)

Figure 1.2: lllustration of the detrimental effects of the network on Tl interaction. The operator intends to press a switch (blue
block) through the teleoperator (red circle) using a tactile glove virtually (dotted blue block). (a) In the ideal case, force is
experienced right at the instant of contacting the object. (b) In a realistic network case, the force feedback is transported with a
variable delay and causes significant performance degradation. This figure is taken from Kroep et al. with the permission of the
authors.[2]

This idea is fairly similar to a topic of research in control systems called Model Mediated Teleoper-
ation (MMT) which aims to solve problems that arise with delayed haptic data with a local model. In
simplest terms, a model of the controlled side environment is created at the master side, which pro-
vides instant haptic feedback to the user by simulating the controlled side, meanwhile the parameters
used by this model are extracted and/or estimated at the controlled side and sent over to the mas-
ter side to correct the model when it diverges. This design circumvents the network requirements by
moving the source of sensory data from the controlled side to the master side. While MMT is an old
topic of research in control systems, the idea is novel in Tl research and it fails to address several key
aspects of Tl. The focus on MMT is solely on static environments with stationary objects (except for
one preliminary paper [3]) so there is little to no consideration on the controlled-side interactions with
objects which is evident by only the master side having a local model. MMT only focuses on creating a
local loop at the master side and representations of MMT, such as Figure 1.3 indicate that the delayed
movement data from the master side is directly used by the controlled side. Another effect of only
considering stationary objects is that the master-side model can be fairly simple as it only needs to
account for haptic data from a stationary surface. While this led to many developments for simulating
haptic surfaces with varying textures and physical properties, it caused the developed models to spe-
cialize for static environments over time to the degree that some of them are completely unadaptable
to dynamic environments, such as black-box neural networks that estimate the feedback force from the
master-side controller movements which would practically never converge in a dynamic environment.
Lastly, sensing at the controlled-side and parameter extraction in MMT also specializes for static envi-
ronments and often only use positional and force data of the actuator interacting with the environment
which makes it impossible to simulate an object before a haptic interaction happens. That being said
there is research that makes use of point clouds (albeit being used only in static environments) which
can be adapted to dynamic environments.

Considering that creating a perfect physical model of an environment is presently impossible, any
local model would inevitably diverge from the environment it simulates. Because of this, the local model
must still rely on network communication to update its parameters when it diverges from the environ-
ment it simulates. For this reason, the parameters of the model are extracted and/or estimated and
are sent over to the model over a network which then uses them to determine if it diverged from the
environment and to update its parameters if so. In this regard, the network latency directly effects the
correctness of haptic feedback instead of its delay, so network conditions still directly affect user expe-
rience, but the burden is shared by the model depending on how accurate it simulates the environment.
Figure 1.3 shows the state-of-the-art MMT approach for this idea where a master-side local model pro-
vides data without delay, regardless of network conditions. Our approach also envisions a local loop at
the teleoperator side which we argue is crucial for dynamic environments. It is also important to note
that the video and audio feed are not traditionally part of the local model and are simply streamed from
the controlled side over the network. This choice can be justified by the fact that haptic feedback has
much lower latency requirements compared to visual and auditory feedback in a Tl application, and
it is not possible to simulate a video feed at the master side. That being said, there is research that

4 1. Introduction

model parameters

__ video/audio video/audio
< -
force [local model env. | force B
dnlo modeling<ssnsor \
- X y dag Q
pos./vel. local pos./vel.
operator haptic loop teleoperator
/master Islave

Figure 1.3: State-of-the-art MMT control flow. The environment modeling estimates the necessary parameters to update the
local model and sends them over network. The local model provides delayless force feedback to the operator and is updated
with new parameters when needed. [4]

proposes showing an artificial 3d environment to the user to mitigate visual delay which in theory simply
expands the existing MMT design by allowing the model to also provide visual data. For the purposes
of this thesis, it is assumed that delay in audio-visual data is less crucial for a good user experience
and that the difference in delay between the audio-visual and haptic output would not be noticeably
detrimental to the quality of experience.

In an environment with stationary objects, which is the case for almost all MMT research, the model
is only concerned with unchanging geometrical (position, orientation, shape) and texture properties of
surfaces that are interacted with. Since these properties of objects are assumed to be static, with correct
parameters the local model can yield near perfect real-time feedback and the divergence in this case is
for the most part only caused by the wrong sensor readings or external disturbances in the environment
at the controlled side. We claim that for a static environment, the MMT approach completely enables
Tl over long distances for most use cases. While the model still needs to be updated occasionally for
wrong sensor readings and external interactions but since the ground truths for model parameters are
unchanging, the model will eventually converge into near perfection. Furthermore, it is much harder to
argue for a 1 ms requirement in a static environment because keeping objects stationary significantly
reduces the amount of possible scenarios that can reduce the quality of experience. Since a static
environment both reduces the latency requirements and can be simulated by a model that is much
more accurate and reliable over time, this thesis aims to show that a local model solves Tl completely
for static environments.

This thesis then aims to expand MMT to work in environments with dynamic objects, discover the
challenges specific to dynamic environments and propose solutions to said challenges. A dynamic
environment brings numerous new challenges, first of which is that the required complexity of the model
increases considerably which will in turn cause bigger divergences from the environment it simulates.
In a dynamic environment by definition ground truth values of certain model parameters such as object
positions and rotations change over time which requires a model that is able to also predict the first and
second order derivatives of parameters like object position and rotation. Luckily, mechanical physics are
fairly well understood and numerous physics engines that accurately simulate dynamic environments
already exist. Furthermore, in a Tl system feedback loop, most of the changes in the controlled side
environment are directly caused by the master side movements and vice versa which means the model
has a good chance to accurately simulate changes made to the other side. This interaction is also our
reasoning for having a model of the master side at the controlled side that in theory simulates the master
side movements but in a more practical sense attempts to mimic the intent of the master side rather
than blindly copying movements. For example if the user at the master side pushes an object that was
mistakenly simulated as closer to the robot than it really is, then instead of mimicking the movements
of the user and not push the object, instead the controlled side attempts to mimic the intent of pushing
the object regardless of positional differences. This thesis argues that having this local model at the
controlled side aids minimizing the divergence of the model at the master side. While not explored in
this thesis, future work can also focus on predicting user movements with machine learning to create
a more complicated model of the master side. However this will undoubtedly be a more complicated
and error-prone method because unlike physics, human intent is not deterministic (even if one does
not believe in free-will, the technology simply isn’t there).

It is important to note here that there are fundamental differences between the master side and the
controlled side and that it is not a completely symmetrical system for the purposes of this thesis. Firstly
as just mentioned, the movements of the master side are made with human intent while the movements
at the controlled side are results of physics and interaction caused by master side movements. While
there are certainly Tl applications that have a human user at each side, this is not the focus of this
thesis and such a scenario could majorly reduce the effectiveness of the local model. This difference
causes master side model to be the main focus while giving the controlled side model a much more
simpler, auxiliary function. When there is a divergence between the master model and the controlled
environment, it could be that fixing the error at the controlled side is impossible. Imagine a box sitting
at the edge of a table, a small force could cause the box to fall on the ground and if it doesn’t fall in
the master-side model then there is no way to rewind time at the controlled side to change the position
of the box. As such, the controlled side model only takes on a preventative duty in reducing model
divergence, while the master side model also takes on a corrective duty of fixing divergences that
cannot be corrected at the controlled side. This aspect of dynamic environments is not addressed by
state-of-the-art MMT implementations and is novel to both MMT research and Tl research at large to
the extent of our knowledge. MMT research on using a physics engine as the master-side model is
non-existent to the best of our knowledge, predictably because they focus on static environments which
does not require a physics engine.

Contributions: In essence this thesis intends to relax the timing requirements of Tl. For this purpose
an MMT with a physics engine is theorized, implemented and analyzed. The specific contributions can
be listed as:

1. We added TI support to the Unity game engine which enables the creation of wide variety of Tl
applications.

2. Using reverse engineering we derived methods for haptic interactions in physics engines.

3. We propose an advanced MMT design that utilizes a physics engine as its local model to signifi-
cantly reduce delay requirements of Tl in complex scenarios.

4. We implemented support for MMT with a physics engine for both virtual and real environments,
in our Tl framework.

5. We demonstrated that the MMT implementation of our Tl framework met the required timing
requirements of 1 kHz refresh rate.

6. We demonstrated the our MMT implementation eliminated the negative effects of network delay
for static environments

7. We identified and demonstrated that enabling accurate interactions with movable objects in dy-
namic environments is the key challenge of MMT.

Related Works

2.1. Challenges Of Tactile Internet

There is extensive research in both the potential of haptic communications over the internet and its chal-
lenges. E. Steinbach et al. and A. El Saddik are good examples to preliminary research that looked into
the potential of haptic feedback over a network in late 2000s and early 2010s [5][6]. These early works
explored the design space for haptic communications, determined quality metrics and hypothesized
possible future use cases of the technology. Other papers further formulated and evaluated the many
challenges in tactile internet [7][8]. There is also research on effectively measuring these quality of a
tactile internet solution with quantifiable metrics [9]. One of the most important and hardest to achieve
requirements of tactile internet turned out to be the 1ms challenge, which asserts that a quality haptic
application would need to have a total end-to-end delay no higher than 1ms. Several studies show that
for haptic applications, delay will be noticeable if it is larger than 1 ms which can cause an unrealistic
and nauseating experience for the user. A big focus of 5G development has been on meeting the
low-delay real-time requirements of tactile internet [7][10][11][12].

While reducing the end-to-end delay to achieve the 1ms second challenge has been the goal of
much research, a big chunk of effort was also spent on finding ways to relax this tight constraint that
is impossible to achieve in some scenarios because of laws of physics. The yet unpublished paper
of Kroep et al. experiments with using virtual springs for feedback force calculation which they call
"network compensation spring” and reducing the spring constant relative to delay to improve the quality
of experience [2]. Such research hints that tactile internet with more than 1ms of delay can be further
relaxed by using solutions that improve user experience in scenarios with long delay.

2.2. Model Mediated Teleoperation
Using a model of the environment to circumvent the effects of delay in robot teleoperation with a tactile
feedback loop is a relatively old idea. A number of research articles exist from early 1990s that briefly
introduce it as a possible solution to reduce perceived delay [13][14]. These papers focus on robot
control over a distance with kinematic feedback but don’t delve deep into haptic feedback and the
field of tactile internet that was not a mature enough topic of research at that time. The idea of Model
Mediated Teleoperation (MMT) is only revisited in mid-2000s and had continued interest thereafter with
the increasing interest in VR and robot teleoperation, along with the improved models and simulations
that made it a viable option. A number of people did research on using models to solve the network
delay challenge of tactile internet during this time [15, 16, 17, 18, 19]. These papers from late 2000s
and early 2010s focus on simple scenarios with reduced degrees of freedom and simplified dynamics
such as stationary objects, and generally explore the main challenges of MMT in tactile systems which
is almost always related to the updating of the model. It was quickly discovered that the divergence
between the model and the environment is an issue even with static environments due to wrong sensor
readings etc. and the focus mostly shifted towards reducing these divergences with better parameter
estimation at the controlled side.

Most recent research on MMT and arguably the state of the art is set by multiple research articles by
a group of researchers led by X. Xu. The earlier research from Xu explores point-cloud based sensing

7

8 2. Related Works

of the environment and parameter extraction from point cloud data [20][21]. Data reduction is also seen
as a crucial step by this team of researchers and several data reduction techniques are proposed such
as deadband filters [22]. There is also some preliminary research on MMT with movable objects but
the focus is still on parameter estimation on from the slave-side environment [3]. In general, research
on the challenges of updating the master-side model is limited, especially with movable objects. A
survey of researches on MMT further shows that existing research almost entirely focuses on para-
metric environment modeling and online parameter estimation at the slave side, and data reduction
techniques to ensure the estimated parameters can be reliably sent to the master side [4]. While the
survey talks about existing research about how the master side can be updated during transition-state,
and the effects of model divergence, research on this topic is non-existent for movable objects.

2.3. Tactile Physics Engines
To the best of our knowledge, no MMT research considers using a physics engine as the master-side
model but many use haptic rendering algorithms which, if used along with a traditional physics engine,
make a tactile physics engine. Outside the field of MMT, tactile physics engines are used extensively
in Tl research as test beds that allow testing for different network conditions and techniques that aim
to improve user experience, in a controlled, simulated environment. When used in this matter, the
tactile physics engine is used as a replacement for the controlled side that would otherwise be a real
environment that a real robot interacts with. Since these test beds are already created to simulate
a realistic controlled environment, they are perfect for being used as master-side simulations of the
controlled environment.

Chai3d seems to be the gold standard and the most common haptic rendering tool used for creating
Tl test beds. Chai3D was developed at Stanford University in 2003 as a framework for haptic computer
applications. The early uses of Chai3D were mostly applied to virtual environments in AR and VR
research [23] [24]. While Chai3D is still frequently used in AR/VR research, it also started being used
for test beds for Tl research primarily led by E. Steinbach and X. Xu in the second half of 2010s which
is roughly when the research for 5G started to take off [25][26][27][28]. Besides Chai3d, V-REP and
its later offshoot Coppelia are used for building Tl test beds [29][30][31]. These papers are mostly
in the field of robotics which explains why V-REP and Coppelia which are mainly robotics simulation
frameworks are used as Tl test beds. More recently research by K. Kroep, V. Gokhale et al. aimed to
come up with quantifiable metrics to measure Tl and developed an all-purpose testbed for Tl that used
Chai3d for its virtual environment [9][1][32].

Theory & Background

3.1. Model Mediated Teleoperation

3.1.1. Bypassing Network Delay With Models

As discussed, traditional Tl applications have severe range restrictions capped by the speed of light
and this thesis aims to bypass this restriction by reducing the perceived delay with local models. It
is important to reiterate here that we were unaware of MMT as a research field until the late stages
of this thesis. Instead, the idea was to use our already working dynamic virtual environment (initially
developed as a test bed) to simulate a real environment, and reducing the perceived delay by doing
using this simulation at the master side. Because our simulation was already made for a dynamic
environment, we designed our Tl solution to accommodate movable objects from the get-go. Later
when we discovered MMT we realized that despite the similarity of the main idea several parts of our
approach was novel including dynamic environments or using a physics engine as a local model.

Figure 3.1 illustrates our vision for how MMT changes the traditional Tl control loop. The traditional
TI control loop has the master side controller (C) and the controlled side environment (G) separated by
network. Our design aims to create an internal control loop at each side that can run uninterrupted by
network, by using simulations of C and G, named C' and G'. While the traditional control loop network
is destabilized by poor network conditions, the MMT case is immune to these effects as long as ¢’ and
G' are accurate descriptions of € and G. To prevent models from diverging from the environments they
mimic, a network connection is still needed between the model and what it simulates. The relevant
parameters for the models are sent over network and are used by the models to fix their divergences.

When the master side user moves the controller C, on top of sending the movement data over
network to be mimicked by the controlled side, the same data is also used by the local G’ to produce
instant haptic feedback. At the controlled side, C’ attempts to mimic the intended behavior of the user
and then haptic feedback data along with object data extracted from the environment G are sent back
over the network. Upon receiving these G’ is updated according to newly received data if needed, in a
manner as unnoticeable to the user as possible. The haptic feedback received by the user always come
from G’ which enables undelayed feedback but also makes it critical to correct G’ over time because
in a dynamic environment G’ will inevitably diverge from G and this divergence will increase over time
if not corrected. Additionally, correcting these divergences instantly without care would bring back the
original problem of force spikes present in delayed tactile systems, nullifying the benefits of using local
model.

To initialize these models in the first place, relevant parameters from the environment need to be
sent. Some of these can be one time packets, such as which objects exist in the environment, while
others such as object positions can need periodical updates to detect and fix model divergence. Since
the master side consists of a haptic controller device and a human operator, initializing C' requires little
to no steps. If needed, device model and configurations can be sent at initialization. All the data required
for the initialization and maintenance of ¢’ comes from built-in sensors on the haptic controller device
so no additional hardware is required at the master side. G’ on the other hand attempts to simulate
a physical environment with dynamic objects that can be interacted with by moving the teleoperator

9

10 3. Theory & Background

/W
1
r/ NW /—l c c’
c| e
L/ NW /J G' G
A L
|
S ,/ NW /, _
Traditional tactile system Model mediated tactile system

Figure 3.1: Control system flowcharts for traditional and model mediated tactile feedback systems. C represents the master-
side controller while G represents the controlled environment. In the traditional system network conditions directly influence the
quality of the feedback loop. MMT implements C’ and G’ which are simulations of C and G which allow for a continuous control
loop uninterrupted by network conditions. C’ and G’ need periodic updates from their real counterparts but are able to provide
an output regardless of the frequency of updates.

robot, therefore data from the controlled side device is not enough to initialize or to maintain it. For this
purpose additional sensors that detect and track objects in the environment are needed at the controlled
side. In this thesis, this is done with a Kinect device that extracts a point cloud of the environment.

3.1.2. MMT With Stationary Objects

Even in an environment with stationary objects, an MMT system has additional requirements and chal-
lenges compared to a traditional tactile system. Firstly, the objects in the real environment need to be
simulated with correct properties such as friction and stiffness as well as shape and position, which
requires observing the environment at the slave side with sensors and extracting relevant model pa-
rameters from sensor data. This step is called parameter estimation in MMT research and needs to
happen continuously until model converges because wrong sensor readings and external changes to
the environment can cause the model to be wrong at first. However the static nature of the environment
dictates that the ground truth for parameters are unchanging without external interactions which makes
periodic model updates unnecessary. Secondly, a reliable and accurate model of the environment is
needed to make sure that the forces experienced by the user match those experienced by the robot,
with little perceived delay. When objects are static, this model only needs to implement a haptic ren-
dering algorithm for static surfaces. Lastly, as this sensor data can be wrong, the master side model
should be corrected over time so a sensible network protocol to continuously send new data and a way
to update the master side model are needed.

In summary, the requirements of an MMT system with stationary objects can be stated as follows:

1. Parameter estimation

Accurate parameter extraction from the environment is needed to initialize the master-side
model. In existing MMT research this is usually gathered from the actuators and sensors on
the robot although there is also research that uses point-clouds to extract geometrical infor-
mation from the environment which is what is done in this thesis. In a static environment, the
extracted parameters from the environment focuses mostly on haptic properties of objects
such as softness and friction, and simple geometric properties such as position and shape
of the static object.

2. Master side model (G')

The model of the static environment is concerned on estimating and mimicking the feed-
back force experienced by the teleoperator. In essence the ground truth for environment
parameters is assumed to be unchanging so the model only needs to have a reliable haptic
rendering algorithm for finding the feedback force and tune its parameters correctly at ini-
tialization. The model does not attempt to estimate the change of the environment either by
external effects or the effects of teleoperator’s interaction with the environment.

3. Teleoperator control scheme (simplified C')

3.1. Model Mediated Teleoperation 11

It is very difficult if not impossible to reliably simulate human intent so in our vision for MMT,
C' takes on more of an auxiliary spot. As previously mentioned in Introduction, the primary
raison d’étre of C' is to preventatively reduce model divergence. Since model divergence is
not a concern in static environments, C' can be very simple or even non-existent in theory.
In practice, a control scheme is still needed to determine how much force to apply on objects
after contact, which we argue can be represented as a simple form of C’. It's important to
note that G' needs the same input as G’ so if force determination is considered to be a part
of ', then the master side needs its own identical C’ as well.

4. Network transmission

A way to transmit data from C to ¢’ and G to G’ is needed. Since G' is mimicking a static
environment, network delay has no effect on model performance after convergence of its
parameters. Delay from C to ¢’ and G will cause the teleoperator to lag behind, but in a
static environment perfectly mimicked by the master side, the delay at the controlled side
has no risk of imitating the master-side movements wrongly. Thus, poor network conditions
are acceptable.

Most existing research on MMT focuses on stationary objects to simplify the problem and focus
on correct haptic force feedback at the surface level of an unmovable object. Past research on MMT
claims that even in static environments, the local model can require updates during which it enters
"transient state”. Several methods are proposed to maintain system passivity during transient state
such as adaptive damping or moving and scaling the environment and its objects in a manner that
doesn’t cause force spikes. We claim that this is unneeded for static environments because the model
needs to be updated only until its parameters converge to their true values. Likewise advanced control
schemes that aim to maintain transparency and equipment safety at the controlled side are unneeded
for static environments because transient state does not occur past the convergence of model param-
eters. Finally, MMT research puts much focus on data reduction methods such as deadbands that
attempt to reduce network load by reducing packet sizes and frequencies. It is our claim that for static
environments, network requirements are much more loose and that a satisfactory Tl experience has
been demonstrated with network delay upwards of 5 seconds. In our observation, when limited to
stationary objects, the state-of-the-art MMT fully addresses the latency concern of Tl and makes Tl
possible over long distances.

3.1.3. MMT With Dynamic Objects

In our view, dynamic objects are the main challenge in building a functional model-mediated Tl system.
One might think that if starting positions and physical properties of objects are known, one can use
these to find the acceleration and in turn velocity and position of each object with simple Newtonian
physics. In that case the only added difficulty of dynamic environments would be the higher number of
parameters and more complicated models. This is not the case however because the models can never
be as precise as real life. Even if the model technically has the right parameters, the simple fact that
parameters of a model are bound to be discrete makes small differences inevitable. This is the case for
static environments as well but unfortunately in a dynamic environment these differences accumulate,
causing the model to diverge further from reality over time. This inevitable unbounded divergence is
the core reason why dynamic environments are harder to model mediate. Another key difference is that
interactions at the controlled-side now matter. In a static environment, the controlled side mimicking
the master side would be practically useless except for making gestures or making sounds by hitting
stationary objects, as opposed to a dynamic environment where the master side movements directly
manipulate the controlled side environment.

The model of a dynamic environment also to be significantly more complex than a haptic rendering
algorithm for a stationary surface because it now also needs to simulate objects positions, orientations,
and their first and second order derivatives. Moreover the objects can now also collide with each other,
not just the haptic device. However besides model complexity, the most obvious requirement that stems
from this challenge is that the master side model needs frequent updates. Updating a model that the
user is actively interacting with can cause unexpected force spikes that can reduce user experience and
can harm the haptic controller. A sudden update to the model creates an effect similar to that created by
network delay in traditional Tl applications, where because of delay the controlled side penetrates too

12 3. Theory & Background

==
1 1
1 1
\, b] J \
| [E——— r [RN
4 4
AN ¢

Box falls in real environment Box falls in local model

H 1
1
_______ . _ R S——
[E—— ~ [
AN
/
7
~,
~/
Real environment Local model can Real environment Local model can
cannot be corrected be corrected can be corrected be corrected

Figure 3.2: Example scenario for model divergence where a blue box is at the edge of a brown table. Dotted lines show the
simulated objects in the local model. If the box falls off the table in the real environment this is an irreversible event so only the
model can be updated to resolve the divergence. If the instead simulated box falls in the model, then either side can be corrected
to resolve the divergence.

much into the object and experiences a sudden push back. In this case because of model divergence
user can penetrate too much into an object and experience the same phenomenon. The benefit of
using a model against the traditional Tl design in this case is that having full control over the model
allows updating its parameters gradually and smartly without making it noticeable to the user.

The network becomes a critical component as a result of the necessity of periodic model updates.
The divergence of the model gets worse over time which means the frequency of updates directly influ-
ence model accuracy and in turn user experience. Coupled with the increased number of parameters
for every object in the environment, the dynamic case introduces numerous additional network require-
ments. There is also an important result of network delay that the received parameters will have old
values. The positional and rotational parameters of objects constantly change and so when the model
receives a parameter over the network, its real value in the environment will have changed. If the model
does not take this delay into account and updates its values blindly, then the model will be delayed and
thus become completely useless. This means that upon receiving a parameter, the model needs to
take into account network delay (which now needs to be measured) and compare it to one of the past
values of the parameter (which now need to be recorded) to determine if the model actually diverged.
Then if there is indeed a divergence, the model needs to somehow derive the real current value of said
parameter using its received past value.

Another interesting property of dynamic environments is that the changes to the environment can
be irreversible. For example imagine a box at the edge of a table, as in Figure 3.2. Because of model
divergence, the box might fall on the floor in the real environment while it is still on top of the table in the
local model, or vice versa. If the box falls in the real environment, then it is not possible to rewind time
and bring it back to the top of the table, so the local model needs to be corrected. In the opposite case
however, if the box falls in the local model then one option is still correcting the local model but another
option is also possible: to correct the divergence by also pushing the box down in the real environment.
This phenomenon allows the controlled side to implement C' to aid in reducing the divergence between
G and G'. In this thesis C' is given a preventative role where it tries to mimic the intention of C to attempt
to reduce the divergence of G from G'. So in this example if the box did not fall in G’, then €’ could
reduce the applied force so that it also doesn’t fall in G. In our proposed version of MMT C’ does not
have a mechanism to correct past mistakes so it can tune the applied forces on objects and the position
of the haptic device in relation to other objects, but if that is not enough it will not make an attempt to
correct the divergence even if it is possible. If the box fell in G’, it will make it more likely that the box
will fall in G, but if the box still doesn’t fall C’ takes no further action to push the box down. Future work
can focus on exploring which dynamic scenarios create reversible and/or correctable situations and
develop a corrective C'.

3.1. Model Mediated Teleoperation 13

With these difficulties, the requirements of MMT with stationary objects are changed and new ones
are added among them. Below is a list of requirements for MMT with dynamic objects. The changes
to the requirements that also exist for the stationary case are emphasized.

1. Fast parameter estimation with additional parameters

On top of the haptic properties of objects such as softness and friction, and simple geometric
properties such as position and shape, a dynamic object has additional parameters such
as first and second order derivatives of its position and rotation, as well as its mass. The
positional and rotational properties of objects can change over time which requires not only
do objects need to be discovered and their parameters identified, but they also need to be
actively tracked.

2. Master side model (G") with dynamic physics

Models specialized for static surfaces lack the functionality to simulate dynamic interactions
between objects. Some methods such as neural networks that can work for static environ-
ments are rendered ineffective by the constantly changing parameters of a dynamic system.
A tactile physics engine that merge haptic rendering techniques with dynamic physics en-
gines is needed for an efficient model.

3. Stealthy Divergence Resolution

With constantly changing parameters, the divergence of the master-side model needs to be
fixed with periodic model updates. These updates must be done in a manner that prevents
instant and elevated changes to the feedback force when an over-penetration or under-
penetration happens due to divergence.

4. Teleoperator control scheme (smarter C')

A smart €' component to minimize model/environment divergence at the environment side
is needed. The irreversible nature of the real environment limits the functionality of C’ but it
can attempt to prevent divergence by smartly imitating the intentions of C rather than just its
position. A smart C' is a requirement with dynamic objects because divergence resolution is
a bottleneck and doing it on both sides is necessary with the current performance of models.
With a good enough model in the future where divergence happens slower, there can be
less need for C’.

5. Fast network transmission

Delays on both directions cause the local model to diverge more. In that sense MMT in a
dynamic environment does not fully solve the latency requirements but simply loosens them.
While the aim is to allow delays higher than 1ms, a fair amount of delay will still cause the
user experience to deteriorate as a result of increased model divergence. Additionally, the
network needs to accommodate bigger and more frequent packets compared to the static
case.

6. Parameter derivation with delay

If network delay is present, then the environment parameters will have changed by the time
they are received by the local model. The local model must take into account network delay
and find which past value of the parameter it corresponds to. Then if divergence exists it
must derive the present value of the received parameter. So a dynamic MMT system with
delay needs to measure network conditions, keep track of old model parameters, and have
a method of derivation to find present values of said model parameters.

Out of these requirements, this thesis mostly explores requirements 2, 3, 4 and 6. There is extensive
research on network requirements for Tl applications and ways to improve network conditions for Tl,
it is outside the scope of this thesis. Requirement 1 is the thesis topic of a fellow TU Delft student
Kilian and while our implementation for MMT which is a collaboration of multiple students includes his
implementation of point cloud sensing, it is not a part of this thesis. Out of the requirements focused on

14 3. Theory & Background

in this thesis, requirement 2 is further explored in the Tactile Physics section while the requirements 3, 4
and 6 are explored in the Resolving Model Divergence subsection of the Model Mediated Teleoperation
section.

While it can be argued that parts of existing research for MMT with stationary objects that we argued
to be unnecessary for static environments would cover many of these requirements, this is not fully
the case. The existing MMT solutions fall short when it comes to tackling dynamic objects because
they are designed to solve problems present in static environments. The models in these research
are unsuitable for dynamic environments. Some approaches such as neural networks that train to
estimate experienced force as a function of position are rendered completely useless by a fast changing
environment that the model cannot adapt to fast enough. The aim in existing MMT research is often
to reduce the time spent in transient state as much as possible while the transient state inevitably
happens periodically. This directs the focus of most research into perfecting parameter estimation and
better network conditions that they believe are the main influence behind transient state which we argue
is not only irrelevant for static environments, but also completely untrue for dynamic environments. The
only existing research on MMT with dynamic papers is from Xu et al. [3] which is a preliminary work that
in our opinion does a decent job in identifying new challenges but still fails to deliver results by focusing
on parameter estimation that still includes only includes unchanging variables and not positional and
relational variables which we believe are a necessity to reduce model divergence. On the bright side,
the paper existing solutions to reduce the network load such as fixed or perception-based deadband
implementations and other data reduction techniques can largely still be used for the dynamic objects
with similar results [3].

3.1.4. Resolving Model Divergence

Most requirements of dynamic MMT deal with model divergence in some way. In this subsection our
theorized solutions to these requirements are explained. Not all of these theorized solutions made
it to the final implementation due to timing constraints of the thesis project. In particular, we explore
how an MMT design with dynamic objects can address stealthy divergence resolution, a smart ¢’, and
parameter derivation with delay.

It is probably easiest to explain divergence resolution with another concrete example as shown in
Figure 3.3. In both scenarios depicted, the user attempts to get a dynamic box object through a static
gate. Similar to Figure 3.2, this can be an irreversible (or rather hard to reverse) event if the box gets
past the gate in the real environment, therefore if the local model gets stuck then the only option is
to update the local model. In the opposite case, either side can resolve the divergence. Since we
only task G' with divergence correction, our proposed solution in both cases (and in any case of model
divergence) is to resolve the divergence at the model rather than at the environment. Our model update
in theory would work by instantly updating the position of the object with the correct one and to move the
device and proxy pointers along with the object to attempt to keep the feedback force constant through
the update. In other words the model tries to keep object positions correct at all times but instead
updates the proxy and HIP positions gradually to prevent unstable haptic feedback. A challenge shown
in this example is that a divergence in object’s orientation can render it impossible to keep the proxy
to device vector equal in both magnitude and direction, depending on the object’'s shape. In this case
either the pointers can rotate along with the object which will keep the force magnitude unchanged
while changing it’s direction, or only the relative position of the device pointer to the object’s center can
be maintained in which case the direction of the force remains unchanged but the magnitude varies.
In the second option, the proxy pointer’s location needs to be recalculated. Further research and user
study is needed to determine which of these yields better results.

In the example given in Figures 3.2 and 3.3, a smart C’ could have prevented the divergence from
happening in the first place as well. In the first example a slightly higher or lower force applied to the box
can ensure that the environment gets the same result as the model. Likewise in the second example,
ensuring that the force is applied at the same relative point of the box in the environment as it was in
the model, can ensure that rotational divergence is minimal. We claim that a preventative approach
in C' can be critical for minimizing model divergence. We propose 3 different C’ implementations that
increase in complexity. While we theorize that the smartest €’ implementation will cause the highest
reduction of divergence, but different scenarios can favor one over the other and more research is
needed to quantify their effect on model divergence in different scenarios. The simplest implementation
of ¢’ would be to simply use an artificial spring to apply force in the direction from the robot’s HIP

3.1. Model Mediated Teleoperation 15

Figure 3.3: Two examples of divergence and how they are solved at the master side. At first example at the master side the
box is stuck at the gate but not on slave side, so the master side object is teleported to the correct location while the device and
proxy pointers are moved with it to keep the feedback force unchanged. The second example is the opposite scenario where
the box is stuck at slave side but not at master side, in which case the object is moved to the stuck position while the device and
proxy pointers are again moved along with it. The divergence in orientation can make it impossible to find pointer locations that
will keep the force unchanged.

to the received controller HIP, which is not included in the list. The following are our proposed C’
implementations:

1. Only use position from C. Move towards position in predetermined velocity if no collision, use
artificial spring to apply force if there is active collision.

2. Use position and force from € and G’. Move to position if no collision, apply given force if there
is active collision.

3. Use position, force, and position relative to closest object from € and G'. When in free space
move to position. When close to object move to relative position, when in active collision apply
given force.

The final point to consider in model divergence resolution is that both C’ and G’ need to take into
account network delays. As shown in Figure 3.4 blindly correcting with the latest received data at
either side causes the receiving side to lag behind, which eliminates the raison d’étre of MMT which is
to lower perceived delay using a model. If model itself is delayed then the model brings no benefit to the
system. To overcome this challenge, the network conditions must be constantly surveyed to estimate
the one-way delay over the network. The master-side model must keep a list of past local parameters
up to a certain point in the past. This delay must then be used to find which version of the object in the
past it must be compared to. If there is a divergence, the correct present parameters must be derived
from the old parameters of the object. If the received parameter is sufficiently bigger or smaller than
the local parameter at the same time step, then the rates of change at each time step since then can be
applied to the received parameter to derive its current value. Formula 3.1 provides a simple algorithm
to determine the master side position x at any time t. When new data x, arrives from the controlled
side, it is compared with the master side position with the same timestamp as the received position.

16 3. Theory & Background

- a e
(::. & v) ! |
v~ ../ \ \
t= > o) (

N

Wi
f-

Figure 3.4: The effect of network delay on divergence correction. Correcting blindly causes the receiving side to lag behind,
effectively nullifying the benefits of using a local model. The received parameters need to be compared to their past values in the
local model. The current time local parameters need to be derived from received parameters that were from an earlier timestep.

If the positions are different, then the new position is derived using the velocity x; received from the
controlled side. The algorithm can be improved by adding a filter to only fix when the error is larger
than a threshold, or by having a better way to derive the current position. A more accurate derivation
might be possible by also sending the second order derivative, acceleration, from the controlled side.
The first and second order derivatives can also be averaged with their counterparts at that timestamp
at the master side to get a more rounded result.

xETAE + % X (t — At) if xf AL = xEA

3.1
xk, otherwise (3.1)

Xm =

In cases where storing past values of model parameters becomes too expensive, the constantly
updated average rate of change of the parameter over a preset number of past time steps can be used
to derive the present value of the received parameter which can then be used, with the help of a filter
that accounts for error, to detect and correct model divergence. Neither of these proposed methods
for parameter derivation with delay are implemented in this thesis and further research is required to
determine their performance.

3.2. Tactile Physics

Since the main challenge of MMT is the divergence of the master-side model from the slave-side en-
vironment, the quality of the model at the master side is critical. The required frequency and efficiency
of model updates can be relaxed with better models that predict the slave side environment more ac-
curately for longer periods of time.

3.2.1. Existing Physics Engines

Both virtual physics, as well as 3D rendering and computer graphics, advanced tremendously over the
past years. Commercially available game engines such as Unity or Unreal Engine provide develop-
ers with every tool necessary to create high-end games or simulations, such as state-of-the-art GPU

3.2. Tactile Physics 17

accelerated 3D rendering or highly realistic physics. However, despite all the recent developments in
this area, these general-purpose physics engines fall short when it comes to tactile applications. The
reason for this is that these physics engines have fundamentally different goals and constraints. Tactile
physics demand precision in terms of the timing, position, direction, and intensity of the forces applied
to objects, meanwhile mainstream physics engines focus on quickly and efficiently resolving collisions
for as many objects as possible. Furthermore, the physics engine needs to be fast enough to not be a
bottleneck for the 1ms challenge which is a requirement that not all physics engines achieve.

In an application where a haptic controller device is interacting with a virtual environment, the
physics engine is responsible for making sure that the position of the controller is correct at each loop of
the physics engine, and that both the force applied by the controller on objects as well as the feedback
force applied to the controller are calculated correctly. It also needs to have a way for the controller to
communicate how much force should be applied to an object because often the only available controller
data is the position of the controller. None of these functionalities are available by default in non-tactile
physics engines as it is not their focus. A traditional physics engine tends to handle collisions by detect-
ing constraint violations when two volumes intersect, and resolve the violation by pushing objects out of
each other in the most efficient direction. While this is a computationally efficient algorithm that results
in a physically realistic behavior of objects, the actual forces applied to the virtual object representing
the haptic controller can be wrong or jittery. Also, this method of collision resolution is concerned with
the deepest point of penetration rather than the first point of contact, which makes it unsuitable for
tactile purposes.

Tactile physics engines and simulations that are commercially available and are open source are
few, provided that haptic simulations is an area of ongoing research. Chai3D is one of the most popular
of these and has been used in several research projects, but it isn't being maintained since 2016.
Perhaps more importantly, Chai3D isn’t a physics engine on its own but instead a haptic rendering
framework that focuses on force interaction with surfaces and textures. When a dynamic environment
is needed, Chai3D is used with another physics engine because it does not natively support simulating
a dynamic environment. Because of this, creating a simulation environment or making changes to an
existing one requires changes in the code can be time-consuming compared to a commercially available
game engine such as Unity. One needs to initialize objects in code and also determine interactions
between chai3d and the physics engine in the code such as applying force to objects when touched.

The options for this project were either adding missing functionality to a tactile framework like Chai3d
or picking a better-maintained game engine with most of the required functionality and adding the miss-
ing tactile components to it. The latter was chosen mainly for easier development and the opportunity
to better understand tactile physics while reverse engineering it. Particularly in this project Unity is
used for its clear documentation, well-maintained code base, and native functionality that allows easy
scene creation and editing through its editor. However, because Unity isn’t generally fast enough to
accommodate the 1ms challenge, Bullet Physics is imported to Unity. Unity is used to edit the scene
and to render the simulation, but physics is calculated by a separate thread running Bullet Physics with
which Unity communicates. Bullet Physics is chosen because it is well-maintained, open-source, and
fast. Tactile functionality is added to Bullet Physics code base by reverse engineering Chai3D. Doing
this allowed us to not only understand the inner workings of Chai3D better but also mainly to create a
Bullet-With-Tactile-Functionality library for Unity that allows fast and easy creation of environments in
Unity for Tl purposes.

3.2.2. Proxy Algorithm

As mentioned, there are precision requirements of a tactile framework in terms of the position, direction,
and intensity of the forces involving the tactile device, that are not solved by traditional physics engines.
Substantial work was put into reverse engineering algorithms used by Chai3D to create realistic haptic
renderings of virtual objects. The proxy algorithm is the core tool used by Chai3D to create such a
realistic experience.

The algorithm takes its name from the proxy object created in the virtual environment to be controlled
by the haptic device. It is in essence an idea that solves the challenge of communicating how much
force to apply to an object in the virtual environment using a haptic device that provides only positional
data. In the lack of collisions, the proxy mimics the position of the controller perfectly. However, when
there is a collision, the haptic device is allowed to move past the point of collision, through the object.
In the meantime, the proxy object respects the laws of physics and does not go through the object.

18 3. Theory & Background

Master Domain

o

Controlled Domain

N/
’ :
Applied force 1N 1N 1N
Spring Constant oo N/m 1000 N/m 100 N/m
Penetration depth 0mm 1 mm 10 mm
1 mm error yields oo N TN 0.1N

Figure 3.5: Interaction between a finger and a surface in a Tl application: As the operator pushes down into the virtual surface
(blue dashed line), the robot presses down on the real surface. An imaginary spring is drawn to the target position to calculate
the force applied on the surface. This figure is taken from Kroep et al. with the permission of the authors. [2]

The distance between the controller and its proxy determines how much force is applied to the colliding
object (and how much reactionary force is applied back to the controller). In other words, a spring
is drawn between the controller and its proxy to determine the applied force. The spring constant
corresponds to the rigidity of the surface. This part of the algorithm can be said to correspond to C’ in
the MMT control flow diagram depicted in Figure 3.1. While this figure is simplified and only contains
a C’ as an imitation of C at the slave side, in truth the master side also has a C’ to deduct what force
to apply on the objects in the local model. C’ at both sides can in theory use the same algorithm but
as discussed in the Model Mediated Teleoperation section, it is imperative to implement smarter C’
algorithms at the slave side to help reduce divergence between G and G'.

Figure 3.5 illustrates how the proxy algorithm determines the applied force and how different spring
constants yield different results. With a higher spring constant, feedback is arguably more realistic
because the user feels a rigid surface with little penetration. However higher spring constants also
cause a high amount of error in the feedback force if the position of the finger at the controlled domain
or the surface at the master domain are wrong by some amount.

The applied force as a function of the positions of the pointers and the spring constant can be
expressed as follows:

Fapplied = (xdev — xphy)kf- (3.2)

In theory, C’ can be any function that uses the position of the device to determine the applied force.
The formula can be extended for example by smoothing the effect of the position change on the force,
with a formula such as:

1 1

Fapplied = EFappIied + E(xdev — Xphy) k. (3.3)

In addition to calculating the force, the algorithm requires finding the exact point of contact in the path
from the proxy towards the controller, as well as sliding the proxy on the surface of the colliding object
if the tangent force is stronger than static friction. The fact that there can be additional collisions during
this sliding motion makes the algorithm even more challenging. The main 3 steps of the algorithm
are to check for collisions in the path from proxy to controller, move the proxy on that path until the
point of contact if a collision exists, and finally if there is a collision, slide the proxy along the normal
of the colliding surface towards the projection of the controller’s position on the normal plane. Figure
3.6 shows these steps in action. Since an additional collision can happen during the last step, Chai3D

3.2. Tactile Physics 19

o 'N > -
® @ !\o éo

Figure 3.6: A single pass of the proxy algorithm illustrated. The blue ball represents the proxy pointer while the green ball
represents the HIP of the controller. HIP is allowed to penetrate through objects to indicate force applied on the object. In this
example the two pointers are separated by a wall because the HIP penetrated through the wall. The algorithm finds if there are
objects on the path from the proxy to the HIP as shown in the second image. Then the proxy is moved towards HIP until the first
contact with a surface (if any) as shown in the third image. Lastly in the fourth image, the goal position (shown as purple X) for
the next pass is moved from the center of HIP to its projection on the surface + the radius of the proxy. The feedback force is
calculated as orthogonal to the collided surface, and its magnitude determined by an artificial spring between the proxy and the
HIP.

repeats steps 1 and 2 during sliding. In the worst-case scenario, the algorithm is run 3 times per physics
step:

1. Moving proxy towards the controller until contact.
2. Moving proxy towards the controller’s projection on the normal plane of the collision until contact.

3. Moving proxy towards the controller’s projection on the intersection of normal planes of the first
two collisions (which is a line), until contact.

3.2.3. Finding The Point Of Contact With Ray Casting

The most difficult part of moving the proxy pointer is finding the exact point at which the proxy will collide
with another object in a single physics step, if at all. In essence, it aims to find if a volume traversing
a path will intersect with another volume, and if so what will be the first point of intersection. This is a
highly specialized feature for tactile applications and there is no trivial solution to it within a non-tactile
physics engine framework. While it is possible to find whether or not there will be a collision, by utilizing
the engine’s built-in collision detection with a cylinder between two points (assuming the controller’s
Haptic Interaction Point is a sphere), it is not possible to find the first point of intersection along this
movement using the built-in collision detection. This is because as previously discussed, a traditional
physics engine would be considered with the deepest penetration point of the cylinder through the
object (or vice versa) which is often a different point from the first point of contact of the sphere along
the path of the cylinder.

The way Chai3D solves this problem is similar to ray casting used for high-quality graphical render-
ing of light and shadows in games and animations. The purpose of the algorithm is first and foremost
to find the exact point of touch between the tactile controller and any object in the virtual world. This is
similar in some sense to finding the exact points on objects where each ray of light touches which is a
key component of ray casting. The key difference is that in our case we find the point of touch of two
3d objects which, unlike in ray casting, is not necessarily on a straight line from one center to another.

Each object in the virtual environment consists of a mesh of triangles, and the ray casting method
is capable of finding the exact point on the exact triangle of the mesh that intersects with a given
line. The geometric algebra required for this task is fairly simple and ray casting algorithms have
additional acceleration structures to limit the number of objects and their triangles that are checked for
intersections which will be further explained in the next subsection. However, in the virtual environment,
the haptic controller is often represented as a sphere or an even more complicated shape, rather than
a point. While finding the nearest collisions of a point on a path is as easy as finding the intersection of
a line, doing the same for a sphere is significantly more complicated. To do so one would have to find
the areas of intersection between a cylinder along the path and virtual objects, then somehow figure
out which point in that area will be the first point of intersection for a sphere moving along that path.

To tackle this task in an easy and computationally fast manner, Chai3D inflates mesh triangles by
the radius of the proxy and finds the intersection of the path with the inflated triangle. Truly, finding the
intersection point with a sphere and another object is identical to finding the intersection point of the
sphere’s center with that object inflated at each point by the sphere’s radius. Likewise finding the first
intersection point of a moving sphere is the same as finding the intersection of its path with the inflated
object.

20 3. Theory & Background

(a) \ (b) x

Figure 3.7: Finding the point of contact of the proxy sphere on a single mesh triangle. The triangle is inflated on all sides by the
radius of the proxy sphere as shown in (a). Among the intersection points of this pizza slice with the path of the proxy, the one
closest to the current position of the proxy gives the new origin position of the proxy along that path. Image (b) shows where the
proxy sphere would end up on the mesh triangle after running the algorithm.

Figure 3.7 illustrates how this algorithm works. Given the proxy’s radius r, a mesh triangle is inflated
by creating 3 spheres centered at the corners with radius r, 3 cylinders along the sides with radius r,
and 2 triangles with the same size and orientation as the mesh triangles traversed by r along the normal
towards both directions. The combined shape draws the center of the tactile pointer if it were to slide all
around the triangle. Among the intersection points of the path with mesh triangles, the closest one is the
exact position of contact of the tactile pointer with the first object it collides with. Even more importantly
the normal at this intersection on either of the spheres, cylinders, or triangles gives the exact direction
of the feedback force the tactile controller would experience upon this contact.

In theory to find the exact point of contact of an object with the proxy moving on a path, every triangle
of the said object must be inflated by the proxy radius. However, in practice, several acceleration
structures are used to ensure the program doesn’t go through each triangle of a mesh to find the
contact point.

3.2.4. Acceleration Structures For Contact Point Detection

Physics engines already have some techniques they use to accelerate collision detection which other-
wise takes 0(n?) time complexity because each object needs to be checked against every other object.
These same methods are also used in ray casting for optimization. These optimizations are crucial for
a tactile application like this project because of the 1kHz constraint.

Collision detection is usually divided into two parts: broad-phase and narrow-phase. During the
broad-phase, collisions are detected quickly and inaccurately, such as by only checking collisions be-
tween bounding boxes of objects while ignoring any complicated shape. After eliminating objects that
are obviously not colliding in this step, then a computationally more demanding narrow-phase collision
detection algorithm is used to find the exact correct collisions.

There is a range of broad-phase algorithms that are optimal for different scenarios but both Chai3D
and this project uses Bounding Volume Hierarchy (BVH) for broad-phase, which is overall a popular
choice for both collision detection and ray tracing. BVH is a tree structure where the root is an axis
aligned bounding box (AABB) that contains every object in the environment, and every node is the
AABB of a single collision object. Each intermediary node is the AABB that contains its children. Using
axis aligned boxes enables easy calculation of intermediary boxes and also quickly checking if two
boxes intersect. The tree is traversed by comparing a node’s AABB to the AABB of another object, to
eliminate all those that have no collision. Because the boxes are aligned with the axes of the environ-
ment, they can simply be represented as a maximum and a minimum coordinate. Then to calculate the
parent of two AABBs one can simply take the biggest maximum and the smallest minimum coordinates.
Similarly, to see if two AABBs intersect, one simply needs to compare the minimum of one box with the
maximum of other, and vice versa. Keep in mind that BVH can eliminate objects that have no collision,

3.2. Tactile Physics 21

@“@

a) Inflated triangle for narrowphase b) Axis Aligned Bounding Box (AABB) of triangle for broadphase

Figure 3.8: The broadphase and narrowphase bounds used to find the exact point of collision on a triangle mesh. Image (a)
shows the narrowphase bounds for a single mesh triangle. To find the exact point where the HIP will stop when it collides with
the triangle, the triangle is inflated by the radius of HIP. The intersection point of the HIP’s trajectory with these bounds gives
the exact point where the HIP will stop after hitting the object. For simple calculation, the inflated triangle is represented by 3
spheres (shown in green), 3 cylinders (shown in red), and 2 triangles (shown in blue). Image (b) shows the broadphase bounding
box around the triangle. The narrowphase detection is only calculated if the ray intersects this axis aligned bounding box. The
bounding box is aligned with the axes of the environment so does not necessarily have the proportions depicted in this figure.

but it can still have false positives because the AABB of an object has a greater volume than the object
itself.

The BVH tree is usually a binary tree, which is also the case in this project. The optimal depth of the
tree i.e. how many objects are represented by the leaf nodes can be different for different applications.
Either more time is spent traversing the tree and less time on narrow-phase, or vice-versa. In our case,
because we have a very computation heavy narrow-phase where a single triangle is inflated by using 8
objects and each of them is checked for intersections with a line, we opt for an unconventionally deep
tree where each leaf is a triangle of an object. In practice however this project takes advantage of the
fact that the Bullet Physics engine already handles the broad-phase up to each object, we only extend
it by creating a BVH tree for each mesh object.

In our use-case, during the broadphase among environment objects, the BVH tree is traversed from
the root towards the leaves, where at each node we check if the AABB of that node intersects with the
AABB of a cylinder along the path of the proxy. The cylinder has the same radius as the proxy and
represents the entire volume in space where the proxy sphere passes through along the given path.
This cylinder is a ghost object which does not cause collision response with other objects and goes
through them, but still records when it collides or intersects with other objects.

If the broad-phase pass of the Bullet Physics engine finds colliding objects along the path of the
proxy, then among all the colliding objects the first point of contact along the proxy’s path needs to be
found. While it might seem enough here to just select the object that is closest to the starting point of
the path, this is not the case. An extremity of an object can be closer to the starting point of the proxy,
despite having its center further away than another object. The proxy’s first point of contact will be
with the closest extremity of any object in the environment, regardless of their origin positions. For this
reason, the BVH tree of each object’'s mesh is checked if the bounding box of the object shows and
intersection with the ghost cylinder.

Once the triangles of interest are found through BVH, then the most computationally expensive part
begins which is to find the exact point of intersection between the triangle and the tactile pointer over a
path. As mentioned in the previous subsection, this computation is simplified by inflating the triangle by
the radius of the tactile pointer and finding its intersection with the path line. This particular approach
is evidently the easiest if the tactile pointer is a sphere, otherwise, the rotation of the pointer along the
path would require inflating the triangle in a non-consistent way. Figure 3.8 shows the collision bounds
of mesh triangles at broad-phase and narrow-phase steps.

Implementation & Methodology

4.1. Hardware Setup

Figure 4.1: Hardware setup used for experiments and demos. The setup consists of a computer and one or two Novint Falcon
devices. When a virtual environment is used, only one Novint Falcon is used. The computer can simulate the network or can
connect to a second computer over a real network.

For this thesis, a Novint Falcon haptic device was chosen as both the controller and the controlled
haptic device. Novint Falcon is a an easy to use, commercial haptic device that is capable of precise
force output as well as precise positional readings. It is low-cost and a number of them were readily
available at the Embedded and Networked Systems department at TU Delft, to be used for the purposes
of this thesis. While there are other different haptic devices that can be used for this purpose, the price
and availability of Novint Falcon made it a strong choice for this thesis. Using the same device at
the master and controlled domains allows for perfect mimicking of movements and forces and easy
implementation.

The library we use for I/O with the Novint Falcon is developed by the company Force Dimension.
There are several haptic devices similar to Novint Falcon that are designed by this company. Our
framework technically supports all of their devices because we use their SDK which is mainly developed
for their own devices. Additionally the code is built in a way that would make adding support for other
devices low hassle.

The setup consists a minimum of one computer powerful enough to pass the performance require-
ments of the application and two Novint Falcon devices. While the exact hardware requirements re-
quired to run the application is beyond the scope of this thesis, a 3.30 GHz 11th Gen Intel Core i7 pro-
cessor and an Nvidia GeForce RTX 3060 graphics card were enough to run the application smoothly.

23

24 4. Implementation & Methodology

[—

Figure 4.2: The collision points found by Bullet Physics when the ghost cylinder collides with an object. The transparent cylinder
is the ghost cylinder and the green point shows the found point of collision. Instead of finding the first point of contact along the
trajectory of the cylinder, this method finds the most efficient point to apply force on to resolve the collision by pushing objects
out of each other. As the first image shows, the found point can be uncentered which would cause the proxy to diverge from its
path, and it can be at the wrong side of the object which would cause the proxy to tunnel through object. As the second image
shows there can even be cases where the collision point isn’t on the cylinder at all, such as when the object is in the middle of
the cylinder and it's more efficient to push the object out sideways than to push along the length of the cylinder.

The network can be simulated on one computer if both Novint Falcons are connected to it, or a real
network can be used between two computers each with their own Novint Falcon connected to them.
If the environment at the slave side is real rather than virtual, also a point-cloud device such as Xbox
Kinect is required.

4.2. Making The Physics Engine Work

At the beginning of my thesis, the idea of MMT was not there yet. Phu Nyugens, a masters student
before me, had worked on importing the functionality of Chai3D to Unity during his thesis for the pur-
pose of creating a testbed for Tl applications that had the haptic render features of Chai3d but also
the benefits that come with Unity such as an Editor with an easy GUI that allows fast creation and
modification of different scenes and the objects within them. This testbed which then became the local
model for our MMT design uses Unity with C# code for creating and displaying scenes but C++ running
on a separate thread which uses Bullet Physics engine to handle all the physics, the spring algorithm
for haptic feedback, and libnifalcon (an open source Novint Falcon 1/0 and kinematics library) to get
the position from and apply forces on a Novint Falcon.

Our general approach for design was to discover a problem with the program through testing, then
to check if the problem also exists in Chai3d, and if Chai3d seems to lack the problem try to reverse
engineer their code and reimplement it. This approach was established after theorizing about how
to solve a particular bug, discovering new problems along the way, then checking Chai3d after being
stuck. Once we understood the solution of Chai3d we realized that Chai3d often has an elegant solution
to challenges of haptic rendering, and that attempting to blindly solve the problem is often a waste of
time until we understand the requirements of tactile physics engines.

One of the first bugs we discovered that had to fixed,the proxy sphere behaving weirdly in some
cases. Namely the proxy sphere seemed to vibrate occasionally, was lagging behind when a collision
was happening even on surfaces with no friction, and the force feedback was acting drastically wrong
at times. It was quickly discovered that an earlier solution implemented to prevent the proxy from going
through thin objects was at the source of these bugs. At high speeds, the proxy was able to pass
through thin objects because the proxy could easily penetrate past the middle section of the object
causing the bullet physics engine to push the object towards the wrong side, or to pass through the
object without even a collision being detected. The solution implemented was to limit the speed of the
proxy if it had a collision in the last physics step, which among not addressing the occasional problem of
the collision not being detected at all, also introduced artificial delay in the system by making the proxy
lag behind. This artificial delay was causing the proxy to lag behind on all surfaces as if it had friction,
which was then causing a secondary collision to have an artificially high force spike which common in
delayed Tl applications.

After contemplating several solutions to this problem, as we already knew that Chai3D had a well

4.2. Making The Physics Engine Work 25

‘ . Nearest collision

N - point here

Figure 4.3: Collision point along a trajectory found in Chai3d. Unlike the collision points found by traditional physics engines,
Chai3d finds the exact position where the center of the proxy will end up on a given trajectory.

working haptic rendering algorithm without these bugs, the decision was made to tackle the daunting
task of going through the poorly documented Chai3D code and reverse engineering it. It was discovered
that Chai3D doesn’t use the traditional physics engine method of allowing objects to penetrate first and
then to push them out. Instead, the first point of contact on the path from the proxy to the HIP, and the
proxy is moved to the point of contact without actually penetrating the object. The proxy then slides
on the surface towards the HIP’s projection on the surface, which is done by repeating the algorithm
with but towards HIP’s projection on the surface instead of the HIP itself. Repeating the algorithm for
the new goal point on the surface allows detecting additional collisions that can happen while sliding.
While the Theory section of this thesis paper talks more in depth about how this algorithm works, it is
important to note here that at first it wasn’t obvious to us how this first point of contact was found. Our
first attempt involved creating a ghost cylinder between proxy and HIP, with the radius of the proxy, that
recorded all collisions with objects in the environment without actually applying or being applied any
force by these collisions. This method proved unusable because when the cylinder went through an
object, none of the collision points found by Bullet Physics were the point of interest for our algorithm.

This finding forced us to delve deeper into Chai3D code to understand how they find the first point
of contact along a path, which in return made us realize that traditional physics engines are unsuited
for many haptic rendering algorithms that are key to a Tl testbed or MMT local model. As explained in
depth in the Theory section, Chai3D uses a method similar to raycasting to find the contact point. The
algorithm takes the AABB tree algorithm that is traditionally used for broadphase collision detection
amongst objects, and applies is on a lower level down to each triangle. This was discovered during
reverse engineering the Chai3D code base, when printing the AABB tree nodes of a cube object yielded
12 leaf nodes rather than just 1 for the cube object. A cube has 6 sides each made out of 2 triangles,
which showed that the leaves of the AABB tree were in fact triangles of meshes. This broadphase step
allows fast elimination of far away triangles whose bounding boxes do not intersect with the path ray of
the proxy. Then a more costly narrowphase detection checks the exact point of contact on each triangle
(if any) and chooses the one closest to the proxy. Both the AABB of each triangle and the triangles
themselves are inflated by the radius of the proxy sphere. This is an ingenious method which is further
explained in the Theory section allows using only the line of the proxy’s path while also taking into
account its radius, and considerably simplifies the algorithm. Upon discovering this method, Chai3D’s
algorithm was implemented with minimal changes to suit our code base.

Finally, considerable effort was spent on understanding the many epsilon values used in the Chai3d
code and to adapt them to our code, because their default values initially did not work for the scale of
our environment. The main epsilon value is used for stopping a certain distance above a contact point
when moving the proxy. After the contact point is found with the previously discussed ray casting
algorithm, we calculate how much to move back along the trajectory to be of epsilon distance away
from the contact point’s normal plane. We make sure this distance does not surpass the radius of the
proxy. If the collision distance was smaller than epsilon, then we update the epsilon value to be equal
to that distance. There are also other epsilon values with their own purposes, to summarize:

+ epsilon: used for pushing away from contact point.

» epsilon_base: initial value of epsilon, also used as a margin to determine if the proxy reached
the goal.

26 4. Implementation & Methodology

+ epsilon_min: minimum value for epsilon when updating it.

+ epsilon_collision_detection: used to extend the path segment past the goal, a sort of look
ahead.

4.3. Enabling Mesh Objects

Upon finding out about Chai3D’s algorithm to find the first point of contact along a path which utilizes
meshes, enabling mesh objects in the simulation which was originally a stretch goal became a neces-
sity. A simple data structure is chosen for the core mesh implementation, which simply involves:

» A Triangle object that has 3 vertices, the max AABB point and the min AABB point.

 CollisionTree object mostly copied from the Chai3D and adapted to our codebase. The tree is
build from an array of Triangle objects.

» A TriangleMesh object which holds array of Triangles and their CollisionTree.

When the physics engine starts, first each object is created in the Bullet Physics environment, then
a TriangleMesh is initialized for each interactable object in the environment, and their AABB trees are
built. The TriangleMesh has a findClosestSegmentintersection which first checks its AABB tree to find
triangles whose AABB intersects with the given segment, then loops through them to find the exact
point of intersection on each triangle (if any) and returns the closest one. Observe that this function
does not involve the broader broadphase step that involves the objects in the environment rather than
their triangles. This is because it was decided that the Bullet Physics engine is already capable of
finding broadphase collisions between objects efficiently and since the engine needs to run anyways
to handle non-haptic interactions between objects in the environment, we might use it to simplify the
code without any performance drawbacks. At every time step, the Bullet Physics engine is ran and the
objects that had a collision with the ghost cylinder are looped through to find the closest point of contact
among them.

For creating the meshes at the beginning of the simulation, functions are made for simple native
objects in Unity and Bullet such as cubes that turned them into meshes. Additionally a library of meshes
is created where a folder held triangle mesh .obj files with specific names and if a mesh object was
added in Unity that matched the name of the .obj file, the TriangleMesh object is created for it by
reading said file. The mesh object is also added to the bullet environment to enable interaction with
other objects in the environment. Our TriangleMesh object is a separate entity from the mesh object
in the Bullet Environment so when finding the point of intersection, the relative position and orientation
of the ray to the mesh is used. It is also important to note here that an exception was made for sphere
objects where instead of triangulating them, a ray is cast on the sphere with its radius incremented by
the radius of the proxy sphere. For objects that can be easily inflated by a radius on all sides such as
sphere that can simply be scaled up, using a mesh is more complicated and time consuming.

4.4. Towards Model Mediated Teleoperation

4.4.1. Different Scenarios

Enabling meshes and fully implementing the proxy algorithm used in Chai3D produced a testbed that
has the haptic rendering capability of Chai3D and the flexibility and functionality of Unity. While the
original purpose was to use this as a simulation of the controlled environment for controlled testing of
Tl applications, we concurrently came up with the idea to use this model at the master-side to simulate
the controlled side environment and bypass network delay for haptic feedback. At the time we were not
aware of research on MMT and thought this was a completely novel idea that would solve Tl forever.
To change the direction of thesis towards implementing this idea, several scenarios were devised that
would allow us to test the effectiveness of our local model assisted Tl application against the traditional
model. These scenarios are the following:

» Scenario 1: Single node without network. The controller directly interacts with the virtual envi-
ronment. This allows us test and benchmark the physics engine in an isolated environment.

» Scenario 2: Traditional Tl implementation with a virtual environment. The controller and physics
engines of scenario 1 are separated into two different nodes that communicate via a network.

4.4. Towards Model Mediated Teleoperation 27

3 [N B!

C Gsim Gsim Greal
Scenario 1 Scenario 2 Scenario 3

S/ NW /- /N

1 Y 1 Y

c c’ c c'
G’ Gsim G’ Greal

A T 7y T

| |

---/NW /--- ---/NW /---

Scenario 4 Scenario 5

Figure 4.4: Control system flowcharts for all 5 scenarios.

This vanilla tactile internet implementation vith a virtual environment allows us to test the network
and observe the effects of network delay, while the controlled node being simulated ensures that
the results are deterministic.

» Scenario 3: Traditional Tl implementation with a real environment. This is the same as scenario
2 except the controlled side is no longer a simulation. Another Novint Falcon device is used for
the controlled side robot. This scenario serves as a benchmark for the vanilla tactile internet
implementation in the real world and enables anecdotal experiments.

» Scenario 4: MMT design with a virtual environment. An enhanced controller with an internal
virtual physics engine is implemented. This design aims to lower the perceived latency and relax
the network delay requirements which is the core point of this thesis. This scenario allows for
controlled tests and benchmarks of our MMT implementation.

» Scenario 5: MMT design with a real environment. The controlled node with a local physics
engine communicates with a robot in the real world. This scenario provides the final product and
allows qualitative analysis of our MMT implementation.

Note that Scenario 4 and 5 are in fact implementations of MMT where the local model is a physics
engine, except we did not know about the existence of MMT research until after starting to implement
these scenarios. These scenarios gave an incentive to separate the codebase into modules, some
running on their separate threads. Among other benefits of a modular design such as having a read-
able code base consisting of reusable blocks, it allows easily setting up several different scenarios for
different testing purposes.

4.4.2. Modular Software Design

The starting point of the software is always the Unity engine which initializes all the threads and modules
of the tactile application with desired parameters depending on the scenario and whether or not the node
is master or slave. It then communicates with these threads both to set up the virtual environment if
needed and to display the environment to the user. The software consists of at most 3 main threads for
4 modules (2 of the modules share a thread). While more threads can be created per each of these 3
main parts to increase performance, the separation between these 3 parts is always apparent. Figure
4.5 shows how these modules and threads interact with each other in Scenario 5. In accordance with
MMT, regardless of network conditions there is always a complete control loop between the Novint
Falcon (NF), Controller Module and Physics Module.

28 4. Implementation & Methodology

Master Node Slave Node

Controller Controller Controller
Controller L o
L Position Position _Position_|
Poslt\% | > — -4-----

Novint Controller Controller
Falcon Position

\ | — | DYl I
Force Object Data Object Data
+Force +Force

M controller & Physics Thread

M Network Thread -
AT

Sensing Thread

Position

Sensing
Object Data Object Module
+ Force Data

Force Point

Cloud

Position
+ Force

= =» Send Over Network

Figure 4.5: Modules of 2 nodes communicating

The first of the 3 main threads is the physics & controller thread which consists of the physics
module and the controller module. The controller module’s task is to provide the position of the haptic
controller, from the haptic controller itself or from packets over network. The physics module is tasked
with using the input from the controller module to move the controlled robot either in real world or
in the simulated world, and with running the physics engine in the latter case. The controller and
physics modules run on the same thread because they can run synchronously one after another as the
controller’s data is immediately used by the physics module. The network module is responsible for
sending data over network when needed and receiving data on a separate thread. While the receiving
functionality of the network module is done in its own asynchronous thread, sending happens in the
physics & controller thread. The data in question consists of positions of objects of interest in the
environment, the position of the robot, and the feedback force experienced by the robot. In the case
of the real environment, technically also a video stream from a camera feed would be included but that
is beyond the scope of this thesis. Finally, the sensing module is used to get the necessary data from
the controlled environment, directly from the physics engine in the case of a simulated environment, or
with the help of sensors in the case of a real world environment. When sensors are used, more threads
are used by this module to keep up with the performance requirements of the application.

4.4.3. Controller Module

The controller module is tasked with handling the 1/0 and kinematics of the controller, which is in our
case a Novint Falcon haptic device. Initially, an open-source library called libnifalcon was being used
for this purpose, along with forward kinematics and inverse kinematics code copied from one of the
examples in the libnifalcon codebase. The library allowed reading pure encoder positions values of
the device and apply forces by setting motor voltages. While this library allowed low level access to
the Novint Falcon device it required additional kinematics calculations and complex pieces of code for
simple actions.

Towards the end of this thesis we realized that the feedback force was occasionally in the wrong
direction, and the difference was wrong enough to be noticed which put the quality of the final demo
into danger. After debugging and verifying that the force calculation from the physics module was done
correctly, the only possibilities were either a problem with the device, or a problem with our kinematics
code. This was further proven by applying a constant upward force and observing that the force was
wrong at certain positions of the device, noticeably around the limits of its moving space. We tried with
a different Novint Falcon and saw that the same problem remained so the kinematics was certainly the
culprit. We did not want to repeat our past mistakes by trying to solve on our own something that works
seamlessly in Chai3D, we decided to use Chai3D’s code instead of fixing our kinematics code. During
this we discovered that Chai3D was using a closed source SDK library for controlling haptic devices.

The SDK used by Chai3D for this purpose is called DHD. Despite searching rigorously we could

4.4. Towards Model Mediated Teleoperation 29

not find what DHD stands for although we assume that the last two letters stand for "Haptic Device”.
This SDK is developed by Force Dimensions which is also the company that developed Chai3D, on
top of developing several other haptic devices similar to Novint Falcon. The library supports all haptic
devices made by Force Dimensions and the Novint Falcon. While it is closed source, the functions
provided by the SDK allow both high-level and low-level control of the devices. It is an incredibly easy
to use library that handles by default practically everything we used to have in our code with libnifalcon.
In the latest version of this project, all uses of libnifalcon are replaced with DHD which minimized the
code immensely while also solving the feedback force bug.

While this closed source SDK that supports a number of different devices makes up the bulk of the
controller module, the code is actually set up in a way that allows easy implementation of controls for any
new device. An abstract class HapticDevice has a child class called NovintFalcon which implements
all of HapticDevice’s virtual functions and calls the necessary DHD functions in them. Any new device
type can be added by making another extended class of HapticDevice and implementing its virtual
functions.

4.4.4. Physics Module

The physics module needs to keep track of object positions through its physics engine but also needs to
update them with incoming data if needed. The Bullet Physics engine is used for interactions between
objects other than the haptic device, and also for broad-phase collision detection for the proxy algorithm,
meanwhile implementations that are mostly adopted from Chai3d allow instant haptic rendering using
the proxy algorithm. To allow instant haptic feedback at master-side, each callback loop of the physics
engine needs to run in 1ms or less. We keep the average execution time at 1ms by checking at the
end of each loop the time passed since the end of the last loop and waiting until it is 1ms. If for some
reason a loop or a number of consecutive loops take longer than 1ms, the following loops wait less
than 1ms or don’t wait at all until the average execution time gets back to 1ms. This approach was
chosen because the initial implementation, which either waited until 1ms or continued to the next loop
cycle, caused the delays to accumulate and made the program lag behind.

4.4.5. Network Module

Before the idea of MMT and a local model, the idea was to just have a Tl testbed and so the scenarios
4 and 5 did not exist. So the initial idea for the network idea was to simply send NF positions from the
master side, and feedback force from the controlled side. Having a local model that needs periodic
updating required a slightly more complicated network module. Depending on the scenario and the
node type, the network module needs to handle sending and receiving packets for controller position,
applied or feedback force, and environment data to update the local model. The network module has
2 components for sending and receiving. Sending data is always synchronous with the controller and
physics thread and therefore is done in that same thread, however receiving has to be done asyn-
chronously so a separate thread is needed for receiving. The ports to listen to and to send packets to
are specified when starting the unity application, at the scenario selection step.

All packets are UDP packets due to real-time nature of the application. It might be argued that se-
curity might be a concern for certain Tl applications but since this thesis isn’t concerned the networking
aspect of Tl, we decided that UDP packets would suffice. For our purposes establishing a secure con-
nection and error checking is too time consuming. However, for some critical data such as initializing
a new object, the receiver has to send back an ack to ensure the packet was received correctly. For
these critical packets, the sender waits a set amount of time for an Ack, and if it is not received sends
the critical packet again. The Ack packet contains the hash of the contents of the received packet which
is used by the sender to ensure the packet was received without error.

The network communication between nodes serves 2 purposes: discovery of objects and mainte-
nance of objects. Discovery of the object and its initialization in the master side model is slower than
maintaining an objects position and other properties. The reason for this is that even with a library
of objects that ensures the collision tree for that object is pre-calculated, new memory needs to be
allocated for that object and it needs to be instantiated in the Bullet Physics library for broad-phase col-
lision detection and collisions between non-haptic objects. Furthermore, discovery of objects is much
more critical than maintaining of objects because in order to reduce the network load, object discovery
packets are only sent once. In contrast, an object on the move will constantly receive data to update its
positional and other parameters so missing a packet has minimal effect. This separation is the prime

30 4. Implementation & Methodology

Moster Cﬂ/?‘{‘r&‘“etj

Ger NF postion

Aepely pg.xz oncobot WF

to Mo Coienls pesition

G@— oLjex)« ko MK(/@;;
Poree e J)mm robor

Saes
sro\a A

e

en
Wayis
o

(e

Figure 4.6: Network flow

reason for the bilateral UDP packet implementation for critical packets.

4.4.6. Sensing Module

The sensing module is tasked with detecting the objects in the environment and to provide those objects’
properties to other modules. Only the slave node needs a sensing module since that is where the
controlled device interacting with the environment is.

A point-cloud input device, in our case Kinect, scans the environment and extracts a point cloud.
Then the separate objects are detected and classified with an object detection and classification Ma-
chine Learning (ML) algorithm. The module determines the relative position and orientation of the
objects and provides them to other modules. While in the future estimating properties of objects such
as mass or friction will also be necessary, this is outside the focus of this thesis. For the purposes of
this thesis, it is assumed that the masses provided in the library of objects are always correct.

Since object discovery is not the focus of this paper, this part of the project was largely covered by
the thesis of another fellow TU Delft student Kilian. His thesis delves deeper into the topic of object
discovery using point clouds.

4.4.7. Thread Safety

As mentioned, the program is multi-threaded and share data with each other. Some examples to
this are the Unity thread reading position data from the physics thread or the physics thread reading
received data from the network thread. To keep these read and write operations thread-safe, a number
of mutexes are used. While atomic variables in C++ provide better performance compared to mutexes,
using mutexes is a necessity when thread-safe writing to multiple data addresses are needed. Since
most of the data involved in our case are vectors that hold positions or forces, the only way to update
them or read them safely is with a mutex. If one thread reads a vector while another is actively changing
its value, even if each element of the vector is atomic, the reading thread can read the vector when only
one or two of the vector’s 3 elements are updated. Depending on the context, this can cause the force
feedback to be wrong or cause objects to get wrong updated positions causing the model to diverge
significantly.

When a thread attempts to lock a mutex when it is already locked by another thread, its execution
holds until the other thread unlocks it. To minimize the time spent waiting by each thread and to reduce
overhead, mutexes are only used before and after critical sections of the code where a variable used by
multiple threads is read or updated. In our case these consist of variables received over the network,
and variables sent to or received from the Unity thread to display the scene and other information on
Unity or to get object data from Unity to create instantiate in the Physics thread.

4.5. Logging and Benchmark 31

7,000 {5 : A : ; 587,500 ps) ; : : 586,000 s

m "~ physicsLoop
UpdatePositionP hysicsPointer ApplyForceFeedback wait

Figure 4.7: Benchmark visualization example with Scenario 1. Zoomed in to show one loop of the physics thread.

4.5. Logging and Benchmark

To benchmark the performance of the program in different scenarios and conditions as well as to op-
timize the code, logging the execution time of different components is needed. In early stages of
development prints to the console were used for both debugging and to benchmark when needed.
Additionally the execution time of the physics thread was sent to Unity to be displayed on the screen.
Then logging to a file was implemented which simply opened a CSV file and dumped timestamps along
with other data of interest such as the number of collisions. Finally, a piece of code by a youtuber called
TheCherno that allowed easy benchmarking of separate functions.

The benchmark code writes the start and duration of every loop iteration of the callback function
of the physics thread, as well as the start and duration of every function called in the loop. Thanks to
the modulated software design that separated the code into neat functions, this helps tremendously
in figuring out which parts of the code present bottlenecks and which functions are affected the most
by certain scenarios. For visualizations, Google Chrome’s Trace Event Profiling Tool is used. The
benchmark logs are put into a JSON file that can be parsed automatically by this tool. The tool creates
a timeline of function calls and can also visualize concurrent threads. Figure 4.7 shows a zoomed in
example of this visualization tool for a single physics thread execution in Scenario 1.

Results

5.1. Experimental Setup

In this chapter, the different scenarios and conditions that are discussed in previous chapters are exper-
imented with to put our claims to test and to gain new insights when possible. Firstly a timing analysis
is made to ensure the program itself is fast enough to accommodate the 1 ms challenge regardless of
network. Different configurations are tested to examine the effects of different components on timing
performance. Next, traditional and MMT designs are compared in a static environment to see how
they affect haptic feedback differently in varying network conditions. Finally, the model divergence of
MMT is examined in depth for dynamic environments and the efficacy of periodic model corrections is
discussed.

The way our application is designed allows quick and easy creation of test beds. Unity editor allows
us to add or remove objects to the environment or to change object properties without effort. This
allows us to change the environment used in the experiments according to our needs. Furthermore
the program has different scenarios that represent different designs and conditions. These different
scenarios allow us to use the same program for different Tl designs such as with or without a master-
side local model.

The 5 different scenarios can be summarized as:

» Scenario 1: Single node physics simulation, no network

» Scenario 2: Traditional Tl design without local model. Virtual environment.
» Scenario 3: Traditional Tl design without local model. Real environment.

» Scenario 4: MMT design with local model. Virtual environment.

» Scenario 5: MMT design with local model. Real environment.

Out of these scenarios, we will investigate the performance of scenarios 1, 2 and 4. These scenarios
involve virtual environment instead of a real environment and a real haptic actuator at the controlled
side. Using a virtual environment makes it easy to create deterministic, repeatable experiments unlike
a real environments which would introduce the risk of external interactions. Among these scenarios,
scenario 1 is used solely to analyze the timing performance of the physics engine. Scenario 1 can
be used for this purpose because G’ or the Controller & Physics thread runs independent of network
conditions, in terms of performance. Scenario 2 and 4 are used to represent the traditional Tl application
and model-mediated Tl application respectively. For the rest of the chapter these scenarios 2 and 4
are referred to as "Traditional TI” and "MMT”.

The first experiment of this chapter is timing performance analysis. he 1 ms challenge that is often
framed as a network requirement, also introduces upper bounds for program execution times. What
matters is the latency of the full round-trip delay from the movement of the controller to the haptic
feedback. This means that all components of a Tl application share the burden of the same latency
constraint. For this reason we aim to measure the execution time of the Physics & Controller thread
which has the main bulk of the program, and ensure that it achieves the necessary timing requirements.

33

34 5. Results

(a) Static Environment

(b) Dynamic Environment (1) (c) Dynamic Environment (2)

Figure 5.1: The setup of the virtual environment for testing model diverge. The circular & sinusoidal trajectory shown in yellow
is used to examine the difference in feedback force between the master and controlled domains. The HIP makes a circle on the
the X-Z plane that takes 10 seconds, while also following a sine wave trajectory on the Y axis. The static environment is shown
in (a) while (b) and (c) show the dynamic environment in motion. In the static environment a stationary white sphere is put on
the trajectory to make the test less artificial. In the dynamic environment the static white sphere is replaced with a movable box.
Images (a) and (b) show the movement of the box over time as the HIP pushes it.

The timing performance is measured by logging the execution time of each loop of the Controller
& Physics Thread, writing it to a CSV file. The thread tries to achieve a 1 ms execution time at each
loop, and if the execution takes longer it makes up for the delay in the following loops by waiting less
than 1ms. As such, an average of 1 ms execution time is achieved unless the thread is consistently
late. A 1 ms thread period means that running the program for 15 seconds produces 15000 data points
which don’t give much useful information when directly plotted. For this reason a CDF graph is used
to visualize the cumulative probability of the execution time being below a threshold. A python script is
created to parse the CSV file which has a timestamp for every time the loop is ran. The timestamps can
then be used to find the total execution time of each loop including time spent waiting. These execution
times along the entire time the program was ran are then plotted into a CDF graph using the matplotlib
library. We do this first for scenario 1 to analyze the thread being run without interacting with other
threads. Then scenarios 2 and 4 are used to ensure both of our traditional TI and MMT designs run
sufficiently fast.

After timing analysis, the strengths and weaknesses of the traditional Tl design and the MMT design
are compared. For this, we separate our experiments by static and dynamic environments. The static
environment provides a simpler case where none of the objects are movable. By contrast the dynamic
environment has one movable object that can be interacted with. In the static case the effect of network
delay on traditional Tl is compared with that on MMT. Additionally the error introduced by wrong local
model parameters is explored. Then in a dynamic environment, the divergence caused by a movable
object is examined and the efficacy of correcting the model is discussed.

In order to keep tests between different setups comparable, the same predetermined path is used in
each test run. The environment is also kept the same among test runs with a few exceptions. Namely
for testing MMT with wrong model parameters in a static environment, the ground surface is wrongly
modeled as slanted by 10 degrees, and the sphere’s location is moved so that the collision happens
earlier. Additionally when testing the dynamic environment, the stationary sphere is replaced with a
movable cube. Figure 5.1 shows the trajectory of the HIP in yellow. A sinusoidal movement in the Y

5.2. Timing Performance Analysis 35

axis while moving around a circle on the X-Z plane was chosen to create a predetermined but sufficiently
complicated trajectory in 3 axes. The trajectory goes through the ground which makes the proxy pointer
slide along the surface as shown in the figure. This trajectory was programmed as a function that takes
a timestamp and outputs a 3D position which enables different runs to follow the exact same trajectory
despite each of their thread loops running in different times. For static environment tests stationary
sphere in put in the path to introduce an additional source of feedback force different than the uni-
directional reactionary force from the ground. In the dynamic environments, there is a movable box
that the HIP pushes around to simulate a dynamic haptic interaction.

EFZHFmas_Fcon” (5-1)

As a quantifiable measure of divergence between the model and the static environment, the feed-
back force is chosen. Both the force and error in force are graphed and examined Formula 5.1 shows
how the error in force (written as Eg) is calculated. Fmas represents the master side force vector and
I?Con represents the controlled side force vector. To illustrate the difference in force, the magnitude of
the difference of the two force vectors is found. This method accounts for differences in all 3 axes as
opposed to directly comparing force magnitudes which would yield O error if the same amount of force
is experienced in a wrong direction. For dynamic tests, the same measure is used but the position of
the movable object is also plotted over time. For dynamic tests, the same measure is used but the
position of the movable object is also plotted.

The data for force feedback and object position are logged in CSV files similar to the one used
for timing performance analysis. The two nodes of the program are run simultaneously and the pre-
determined trajectory is activated with a button push. Each row of the CSV file has a time since epoch
timestamp in microseconds, the 3D components of the feedback force at that instant, and the 3D
position of the dynamic object at that instant if needed. A python file then plots the force or position
over time using the matplotlib library. For plotting the force difference, two CSV files generated by the
master and controlled nodes are read and the forces that were being experienced at the beginning
of each millisecond are subtracted from each other and their magnitudes stored. These force error
magnitudes are then plotted over time.

5.2. Timing Performance Analysis

In this section, the execution time of the Physics & Controller thread is analyzed to ensure it achieves
the timing performance required for Tl applications. We first check Scenario 1 which consists of a single
node, a single thread, and no network connections. Then the execution times of traditional Tl design
and the MMT design are examined. In all experiments a virtual environment is used.

Figure 5.2 shows the CDF graph for execution times of Scenario 1, where 90% of thread executions
ran in below 1.05ms. The symmetry around 1ms is caused by the software attempting to get the
average execution time fixed at 1ms and running less than 1ms if the average is above 1ms. This shows
that in our program can read the position of the controller, simulate its movements and interactions in
a virtual environment, calculate the resulting feedback force and apply said force to the device, all in a
single thread and quick enough for the big majority of the time. The exceptional occasions where the
thread is not fast enough, the program can always correct the delay by making future executions last
shorter.

Inference 1: The physics engine and controller communication can achieve the necessary timing
requirements in a single uninterrupted thread.

In a Tl application the main thread can be interrupted when communicating with other threads, such
as when asynchronously receiving data over the network. When multiple threads are involved, mutexes
are used to ensure data isn’'t accessed by two parallel processes at the same time. If a thread attempts
to unlock a locked mutex, it halts until the mutex is unlocked again which can introduce significant over-
head. Both traditional and MMT designs make use of a network and thus multiple threads that share
data with each other, thus they both experience the same detriments on time performance. Both the
traditional Tl application and the MMT design are used to determine the effect of network communica-
tion on execution time. By comparing the two, we can also see if periodic model corrections have a
significant effect on execution time.

Figure 5.3 shows the timing performance CDF graph for the master and controlled nodes for both
designs. In both cases the controlled side is essentially the same as scenario 1 except instead of

36 5. Results

Single Node Physics Thread Execution Time ECDF

1.0 1.0
0.8 - L 0.8
2
g
8
§ 061 - 0.6
a
(9]
2
© 0.4 0.4
=}
£
3
)
0.2 - L 0.2
0.0 . . . ; ; 0.0
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 120 1.25

time [ms]

Figure 5.2: Scenario 1 Timing Performance CDF Graph. In this scenario only there is only one node communicating with a
single haptic device which interacts with a virtual environment. There is only 1 thread and no network component.

I/0 with the Novint Falcon, the controlled node sends data to the master node over a network. In the
meantime a separate network thread receives position data which is accessed by the physics thread
with a mutex. The plots for both nodes of both scenarios still show 1ms at 50% but especially the
controlled side is a lot more horizontal. This shows that there are many more cases when the execution
takes longer significantly longer than 1ms, but they are always accounted for by making later threads
shorter. All things considered, the fact that both nodes show symmetry around the 50% mark of the
CDF graph assures that while the performance can be poor at times, it is not a consistent phenomenon
and it can be accounted for by making future loops shorter. 90% of the time the thread executes in less
than 1.15 ms in both scenarios which we argue is not a very significant amount of variation but is still
indicative that there is need for optimization. Having relatively frequent execution times above 1 ms
would introduce additional delay to the system, which would not only harm quality of experience but
also make it difficult to accurately test the effects of different network conditions.

Inference 2: The execution time of the physics thread is affected negatively by multiple threads that
share resources. However the effect is not consistent and the average execution time can always be
restored to 1 ms.

For both nodes, the MMT scenario and the traditional Tl scenario have almost identical CDF graphs.
While there are some differences, neither line is consistently below or above the other when it comes
to executions that took longer than 1 ms which means neither outperforms the other consistently. This
indicates that MMT introduces no additional overhead in execution time compared to the traditional
TI applications. MMT is different mainly in its master node running its own physics thread as a local
model. Running this additional physics engine on top of the one running at the controlled node on the
same computer does not seem to affect the execution time, which is expected to be the case as long
as the CPU has enough cores to spare for these threads.

Inference 3: As long as the CPU has enough cores and the communication overhead is negligible,
running multiple instances of the application causes negligible increase execution times.

An interesting observation from these plots is the vast difference between the two nodes. The
execution times of the controlled side are significantly worse than those of the master side. If this
was only for the traditional Tl application, this could be explained by the lack of a physics engine at
the controlled side, however in MMT both nodes run an identical physics engine which disproves this
explanation. This is a peculiar behavior because for MMT, the master side has not only the same
physics engine and network communication, but also controller I/O which we later found to be one of
the biggest contributors to the overall execution time. We believe that the a possible explanation for
the poor performance of the controlled side is that the mutex for the controller position is much more
detrimental to the execution time than the mutex for object data or feedback force used in the master
node of both designs. A big target for optimization in this case would be to reduce the frequency of
mutex locks in the code.

5.3. Static Model Divergence 37

Master Side Physics Thread Execution Time ECDF Controlled Side Physics Thread Execution Time ECDF
1.0 .

g
o

-
o
-
=)

—— Traditional Tl Design —— Traditional Tl Design
—— MMT Design —— MMT Design
ro0.8

o
=)
\
o
=)
\

ro0.8

o
o
L

r0.6

o
o
L

r0.6

I
>
I
IS
L

r0.4 r0.4

Cumulative Probability
Cumulative Probability

o
N}
N

ro.2

o
N}
N

ro.2

0.0 T T T T T T T T T T T 0.0 0.0 T T T T T T T T T T T 0.0
0.65 0.70 0.75 0.80 0.85 090 095 1.00 1.05 110 115 1.20 1.25 0.65 0.70 0.75 0.80 0.85 090 0.95 1.00 1.05 110 115 1.20 1.25
time [ms] time [ms]

(a) Master Side Performance (b) Controlled Side Performance

Figure 5.3: Timing Performance CDF Graph for the Traditional Tl design (in red) and the MMT design (in blue). In both
scenarios the controlled side runs a physics engine as the virtual environment and sends & receives similar data to/from the
master side. The master side simply handles controller I/O in traditional Tl, but also has a local physics engine in the MMT
design. The two design show no significant difference in timing performance.

5.3. Static Model Divergence

In this section, we compare MMT to the traditional Tl design, and see what kind of results an inaccurate
model can create. A major claim of this thesis is that the local model of MMT is a perfect copy of the
controlled side environment, then MMT solves Tl completely. While the traditional Tl suffers from de-
layed haptic feedback as a direct result of network latency, a perfect model could provide perfect instant
feedback to the user. Unfortunately, no model can the perfect representation of the real environment.
Even if all the parameters of the model converge to their true values over time, model is a simplifica-
tion of the real world and does cannot simulate every physical interaction perfectly. Additionally, its
parameters are not continuous and have limited precision.

Figure 5.4 (a) shows the Y-axis component of the feedback force experienced at the master side
over time. The delay of the traditional Tl system shown in blue causes a shift in the force as expected,
meanwhile MMT with the inaccurate model parameters have the peaks at correct times but in wrong
magnitudes because the network delay is eliminated but the ground is incorrectly modeled as slanted.
It's also visible that earlier collision with the sphere not only changes the timing of the force caused by
it but also its intensity and direction. The correct timing of the peaks indicates that MMT is completely
unaffected by delay in a static environment. While not plotted here, repeating the same experiment
with no network delay yields identical results. A model with perfectly accurate parameters yields no
error regardless of delay. The only source of inaccuracy is the inaccuracy of model parameters.

Figure 5.4 (b) shows the magnitude of the force error calculated as in equation 5.1. This mea-
sure takes into account all axes so it allows a better view of how wrong the feedback force was. As
expected, wrongly modeling the ground as slanted and changing the position of the sphere causes
consistently wrong force feedback. The average magnitude of force error in this experiment is 1.4 N for
MMT with wrong parameters which one might say is unacceptably inaccurate. However perhaps more
importantly than these quantitative measures is that the user is interacting with a fake environment and
the interactions are consistent in that fake environment. While it would be immediately obvious if the
sphere is felt to be in a completely different spot than it actually is in this case, mismatch between visual
and haptic sensory data can be unnoticeable in some cases. The parameters were chosen to be highly
wrong on purpose for this experiment to magnify the effect, but with small differences the effect might
be ignored. Even with these highly wrong parameters, the force error is consistently lower than that of
the traditional Tl with 100ms delay, which experiences an average of 3.25 N. When the shift caused by
delay is accounted for, the error drops down to same levels as MMT with correct parameters but it is
important to reiterate that in a read feedback loop network delay causes additional error as a result of
over-penetrating surfaces. Future study is needed to quantitatively compare the effects of realistically
wrong MMT parameters to the effects of network delay in traditional systems. The current data makes
us believe that in a static environment, MMT vastly outperforms traditional Tl systems under delay.
This is augmented by the fact that traditional Tl systems deteriorate more as network delay increases
meanwhile MMT systems are completely unaffected by it.

Inference 4: The feedback force error in MMT is not affected by network delay for static objects.

38 5. Results

Feedback Force With 100 ms Network Delay, Static Environment Force Deviation With 100 ms Network Delay, Static Environment
1

=
N}
—
N
~

—— Traditional TI Design
—— MMT With Correct Parameters |
MMT With Wrong Parameters

-
=)
-
o

>
=
2

o
@

o
o

e
———
=__[_

IS

o N & 0 ®
¢ N L L \
jI————

 ————

—— Traditional Tl Design L
MMT With Wrong Parameters
=== Correct Feedback Force L4

|
N
N
N}

Magnitude of force on the Y-Axis (Newtons)
Magnitude of force difference (Newtons)

R

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
time [ms] time [ms]

|
IS
L

(@) (b)

Figure 5.4: Effects of MMT and traditional Tl design on the feedback force in static environment with network delay. Plot (a)
shows the force experienced on the Y-axis. Plot (b) shows the magnitude of force error (on all axes). The Y-axis force is not
plotted for the MMT with correct model parameters, because it is almost identical to the correct force. Its slight differences are
plotted in green in the second plot.

The delayed force experienced in the traditional Tl design is shifted by network delay but the pre-
viously mentioned force spike cannot be seen. This is because the HIP follows a pre-programmed
trajectory and does not get affected by the feedback force. Eliminating the effect of the feedback force
on the position of HIP breaks the feedback loop in a sense. The amount of penetration does not change
by the force in this experiment meanwhile a real person would keep pushing until a sufficient force is
felt. This shows that using pre-determined path for HIP is not adequate for testing the feedback loop of
traditional Tl systems under delay. We still used this pre-determined path in our experiments because
the focus of this thesis is MMT which can be accurately tested with a pre-determined path. When com-
paring MMT with traditional TI, enough insight can be gathered without the effects of over-penetration.
Inference 5: Using a pre-determined path for HIP does not allow analyzing closed loop feedback be-
havior of traditional Tl systems.

In Figure 5.4 (b), the force error of MMT with perfect model parameters is also plotted over time.
While the error is mostly 0, slight errors can be seen during collisions. We believe this is caused by
the master and controlled nodes running out of sync and the feedback force being calculated asyn-
chronously. When plotting, the forces experienced at the beginning of each millisecond are compared
because both nodes run at 1kHz but the actual timestamps are out of sync by various amounts of
microseconds. This means that the experiment is not fully deterministic and no two runs of the ex-
periment will yield identical results. The same error is also visible for the traditional Tl system with 0
delay so it is same to say this is a baseline amount of error that cannot be eliminated from the system
unless the two nodes are perfectly synced in time. The average magnitude of the force error in MMT
with perfect parameters is 0.02 N which is not only extremely low, but is too precise a force for the
Novint Falcon device that we used for our experiments [33]. For this reason these small errors across
repeated simulations are insignificant.

Inference 6: The experiments are not fully deterministic. However small errors across repeated sim-
ulations are not significant.

A final important finding from this experiment is that as expected, the model error is not divergent
in a static environment. Both the force and its error would repeat the same pattern forever in time if
the HIP kept looping on the same pre-determined path. The ground truth values of the parameters do
not change over time so a parameter value cannot get more wrong over time. If the parameter error
was plotted, it would be a straight horizontal line. This means that model parameters do not need to
be updated periodically unless a more accurate sensor reading arrives. This significantly relaxes the
load on network and simplifies the master side local model.

Inference 7: In a static environment, the local model does not diverge over time. The error of the
model stays constant unless a new sensor reading provides more accurate results. This means the
master side model can be corrected much less frequently.

With these results, we reiterate our claim that MMT effectively solves Tl for static environments, with
a few small caveats. Wrong sensor readings and weak models can cause errors in haptic feedback.
However the effect of network delay is completely eliminated which enables Tl over long distances
without reducing quality of experience.

5.4. Dynamic Model Divergence 39

5.4. Dynamic Model Divergence

In this chapter we explore model divergence in MMT for dynamic environments, where at least some
objects are movable. It is claimed in this thesis that dynamic objects are the crux of the problem
with MMT which makes this the most important area of exploration. Even if all parameters of the
model converge to their true values, some parameters of the dynamic environment change over time
by nature. This causes inevitable divergence of the local model. To put this hypothesis to test, the a
dynamic environment with a movable cube is used. The cube’s unchanging parameters such as mass,
friction and starting position are assumed to be perfectly known by the master side model of MMT. We
examine model divergence both with and without model corrections. Looking at MMT without model
corrections allows us to observe the divergence uninterrupted and compare it to the static environment.
Then, by looking at MMT with periodic corrections we see the efficacy of our method of correction.

Before starting to experiment with MMT with dynamic objects, the dynamic setup was tested with
the traditional Tl implementation to first see if there are any additional force error introduced to the
system by movable objects when no local model is involved. This sanity check showed expected
results where the average magnitude of force error was 0.017 N with 0 ms delay, and 0.009 N with
100 ms delay (when adjusted for delay). As previously discussed this is the baseline error caused by
our nondeterministic testbed. This sanity check ensures that whether or not an object is dynamic has
no effect on the correctness of the haptic feedback for traditional Tl systems.

Model divergence is best illustrated by the positional error of the dynamic cube which consistently
increases over the course of the experiment from the beginning of the first contact with the proxy pointer.
Figure 5.5 (b) shows the distance between the origin of the box at the master side and at the controlled
side. As seen in the plot, not only does the divergence increase over time when the dynamic interaction
is occurring, but also unlike the feedback force, this divergence is permanent. The distance between
the two cubes are fairly small in this experiment but the fact that the error increases over time makes
it obvious that even if every parameter of the model converged to their ground truth values, changing
parameters of a dynamic environment such as position and velocity need to be consistently updated
with their real values.

Inference 8: Interacting with dynamic objects causes the local model to diverge from the environment.

In the same graph, the benefits of correcting the model is obvious: the error gets reduced. While
error is still present when interacting with the dynamic object, it is much lower than the case without
model corrections. More importantly, the error does not increase over time and does not persist after
the interaction ends. Instead, the error completely disappears after enough time has passed.
Inference 9: Periodically correcting the model with correct parameter values reduces model diver-
gence.

One might ask how can a perfect model diverge. While there are no perfect models in real life,
using a virtual environment in our experiments ensures that we can have the identical model at the
master and controlled sides. If the models are identical, why do they diverge? In our belief, this
divergence is caused by the nondeterministic behavior of our experiments where the nodes can run
out of sync. Applying the force at slightly different timestamps causes the force to be applied in slightly
different locations, directions and magnitudes. Over time, these differences accumulate and produce
visible errors in object position. This behavior is not unique to virtual environments. On the contrary, the
discrete nature of the computer program causes inevitable loss of precision both in time and in 3D space
which would create similar effects. Even more importantly, inaccurate sensor readings that estimate
the wrong starting position or the wrong mass for the object would cause even faster deterioration of
model accuracy.

Inference 10: What causes identical models to diverge from each other is the nondeterministic nature
of the experiments. The effect would be amplified for real world environments.

Itis possible to see in the object position graph that the correction seems to cause the object to jitter.
The main reason for this jitter is likely that only position and rotation are updated but not their derivatives.
The physics engine of the local model keeps track of not only positions but also impulses of objects,
which remains unchanged when the object’s position is updated. This means that an object that had a
wrong amount of velocity towards a direction will keep the object sliding in that direction. In this case
the model is not fully converged to the controlled side environment as some of its parameters are still
different, which then causes the corrected parameters to diverge faster. Since the wrong parameters
are the derivatives of the corrected parameters, they directly affect the rate of divergence. Not only
does this cause overall higher levels of error, but also causes objects to shake around in the local

40 5. Results

Fay
=]
s
-~
=]

14 14
2
@ £ 35 35
5 12 t12
2 2
H £ 3.0 3.0
= =}
£ 10 Fio T
] S 2.5 2.5
2 g
] 8 220 2.0
H =
E 2
y 6 6 2 15+ 15
= =
8 c
c ad 4 g 104 10
g]
g S s |
g 2 1, gos 05
= a
g 0.0 Loo
0 EE— 4 -0 T T T T
. . , ! 0 2000 4000 6000 8000 10000
0 2000 4000 6000 8000 10000

time [ms]
time [ms]

(b) Positional error of the movable box over time. For reference, the

(a) Magnitude of force error over time. movable box is a 15x15x15 cube.

Figure 5.5: Divergence of the master side local model in a dynamic environment, if the local model is never updated. As both
plots show, the error in feedback force and object position increase over time when there is dynamic interaction. While not huge,
the difference in object position is permanent. Thus, model needs to be periodically updated.

model until their momentum dissipates through friction. Interacting with these shaking objects, despite
creating less error in numbers, creates an unrealistic experience where the object being touched feels
to be vibrating.

Inference 11: Instantly updating the position and rotation of a dynamic object without also updating
their derivatives causes the object to jitter.

To better examine the effects of this jitter on quality of experience, the force feedback must be
analyzed. Figure INSERT FIG plots the Z component feedback force over time for both with and without
model corrections. The Z axis is chosen because the box is mostly pushed towards the positive Z
direction in the experiment. Figure INSERT FIG plots the magnitude of the force error calculated in
the same manner as before. When the model is never corrected, it can be seen that the force error
tends to increase over time as long as the dynamic object is interacted with. The force error is greatly
reduced by model corrections but a significant jitter in force is visible which indicates that the jitter
in object position also affects the feedback force. Quantitatively the feedback force is more correct,
but the model correction scheme introduces effects that are detrimental to the quality of experience.
A qualitative survey is needed to fully determine the effect of this jitter on user experience but it is
apparent that better model correction schemes are needed to perfect interaction with dynamic objects
in an MMT based Tl application.

Inference 12: Object jitter caused by the overly simplistic model correction scheme directly translates
to jitter in feedback force. Better model correction algorithms are needed.

Conclusion

Tactile Internet (TI) applications introduce countless new possibilities by enabling haptic interactions
over the internet, but they are extremely limited by timing constraints. Even minimal amounts of net-
work delay can cause poor quality of experience, which limits the applications of Tl to short distances.
Because of this, the majority of Tl research focuses on reducing delay in Tl applications. In this the-
sis we take a different approach and instead we relax the delay requirements. For this purpose we
came up with a Model Mediated Teleoperation (MMT) approach which uses a physics engine as the
local model of the environment that simulates the physical interactions in that environment. This local
simulation provides instant haptic feedback regardless of network delay. With our proposition to use
a physics engine as the local model, we open up new possibilities for model mediated Tl in complex
scenarios.

To implement an MMT that utilizes a physics engine, we reverse engineered an existing haptic
rendering framework and implemented an enhanced local model for MMT by adding functionality for
haptic interactions to an existing physics engine. We developed a multi-purpose Tl framework attached
to Unity that facilitates creating a variety of Tl applications and testbeds, then we added our MMT
implementation to this framework for both real and virtual environments. Using our Unity Tl framework,
we created testbeds to analyze our enhanced MMT implementation and to compare it with traditional
Tl designs. We performed timing analysis to ensure that the MMT implementation of our Tl framework
met the 1kHz refresh rate requirement. We experimented with our enhanced MMT by interacting
with static and dynamic objects in virtual environments. We demonstrated that our MMT approach
eliminated the effects of network delay on haptic feedback for stationary objects. Finally, we identified
that dynamic objects cause the local model to diverge from the environment, which makes correcting the
model divergence with dynamic models the key challenge against making long distance Tl in complex
environments a reality.

41

(1]
(2]

(3]

[4]
[5]
[6]

[7]

(8]

[9]

[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Bibliography

H.J.C. Kroep et al. “ETVO: Effectively Measuring Tactile Internet with Experimental Validation”.
In: ArXiv abs/2107.05343 (2021).

Kees Kroep et al. “Quantifying User Experience in Sessions of Tactile Internet: The QUEST for
a realtime objective metric”.

Xiao Xu, Sili Chen, and Eckehard Steinbach. “Model-mediated teleoperation for movable ob-
jects: Dynamics modeling and packet rate reduction”. In: 2015 IEEE International Symposium on
Haptic, Audio and Visual Environments and Games (HAVE). IEEE. 2015, pp. 1-6.

Xiao Xu et al. “Model-mediated teleoperation: Toward stable and transparent teleoperation sys-
tems”. In: IEEE Access 4 (2016), pp. 425-449.

Abdulmotaleb El Saddik. “The Potential of Haptics Technologies”. In: IEEE Instrumentation &
Measurement Magazine 10.1 (2007), pp. 10-17. DOI: 10.1109/MIM.2007.339540.

Eckehard Steinbach et al. “Haptic Communications”. In: Proceedings of the IEEE 100.4 (2012),
pp. 937-956. DOI: 10.1109/JPROC.2011.2182100.

Konstantinos Antonakoglou et al. “Toward Haptic Communications Over the 5G Tactile Internet”.
In: IEEE Communications Surveys & Tutorials 20.4 (2018), pp. 3034-3059. DOI: 10.1109/
COMST.2018.2851452.

Daniél Van Den Berg et al. “Challenges in Haptic Communications Over the Tactile Internet”. In:
IEEE Access 5 (2017), pp. 23502—23518. DOI: 10.1109/ACCESS.2017.2764181.

J.P. Verburg et al. “Setting the Yardstick: A Quantitative Metric for Effectively Measuring Tactile
Internet”. In: (2020), pp. 1937-1946. DOIl: 10.1109/INFOCOM41043.2020.9155540. URL:
https://doi.org/10.1109/INFOCOM41043.2020.9155540.

Adnan Aijaz et al. “Realizing the tactile Internet: Haptic communications over next generation 5G
cellular networks”. In: IEEE Wireless Communications 24.2 (2016), pp. 82—89.

Meryem Simsek et al. “6G-enabled tactile internet”. In: IEEE Journal on Selected Areas in Com-
munications 34.3 (2016), pp. 460—473.

Dimitris Mourtzis, John Angelopoulos, and Nikos Panopoulos. “Smart Manufacturing and Tactile
Internet Based on 5G in Industry 4.0: Challenges, Applications and New Trends”. In: Electronics
10.24 (2021). ISSN: 2079-9292. DOI: 10.3390/electronics10243175. URL: https://
www.mdpi.com/2079-9292/10/24/3175.

Blake Hannaford. “A design framework for teleoperators with kinesthetic feedback”. In: IEEE
transactions on Robotics and Automation 5.4 (1989), pp. 426-434.

Tetsuo Kotoku. “A predictive display with force feedback and its application to remote manipula-
tion system with transmission time delay”. In: Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. Vol. 1. IEEE. 1992, pp. 239-246.

Tim Burkert, Jan Leupold, and Georg Passig. “A photorealistic predictive display”. In: Presence:
Teleoperators & Virtual Environments 13.1 (2004), pp. 22—43.

J Sheng and MW Spong. “Model predictive control for bilateral teleoperation systems with time
delays”. In: Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.
04CH37513). Vol. 4. IEEE. 2004, pp. 1877-1880.

Probal Mitra and Gulnter Niemeyer. “Model-mediated telemanipulation”. In: The International
Journal of Robotics Research 27.2 (2008), pp. 253-262.

Carolina Passenberg, Angelika Peer, and Martin Buss. “Model-mediated teleoperation for multi-
operator multi-robot systems”. In: 2070 IEEE/RSJ International Conference on Intelligent Robots
and Systems. |IEEE. 2010, pp. 4263—4268.

43

https://doi.org/10.1109/MIM.2007.339540
https://doi.org/10.1109/JPROC.2011.2182100
https://doi.org/10.1109/COMST.2018.2851452
https://doi.org/10.1109/COMST.2018.2851452
https://doi.org/10.1109/ACCESS.2017.2764181
https://doi.org/10.1109/INFOCOM41043.2020.9155540
https://doi.org/10.1109/INFOCOM41043.2020.9155540
https://doi.org/10.3390/electronics10243175
https://www.mdpi.com/2079-9292/10/24/3175
https://www.mdpi.com/2079-9292/10/24/3175

44

Bibliography

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

Bert Willaert et al. “Towards multi-DOF model mediated teleoperation: Using vision to augment
feedback”. In: 2012 IEEE International Workshop on Haptic Audio Visual Environments and
Games (HAVE 2012) Proceedings. IEEE. 2012, pp. 25-31.

Xiao Xu, Burak Cizmeci, and Eckehard G Steinbach. “Point-cloud-based model-mediated tele-
operation.” In: HAVE. 2013, pp. 69-74.

Xiao Xu et al. “Point cloud-based model-mediated teleoperation with dynamic and perception-
based model updating”. In: IEEE Transactions on Instrumentation and Measurement 63.11 (2014),
pp. 2558-2569.

Xiao Xu et al. “Haptic data reduction for time-delayed teleoperation using the time domain pas-
sivity approach”. In: 2015 IEEE World Haptics Conference (WHC). 2015, pp. 512-518. DOI:
10.1109/WHC.2015.7177763.

F. Conti and O. Khatib. “Spanning large workspaces using small haptic devices”. In: First Joint Eu-
rohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoper-
ator Systems. World Haptics Conference. 2005, pp. 183—188. DOI: 10.1109/WHC.2005.118.

Jongeun Cha et al. “An AR System for Haptic Communication”. In: Proceedings of the 2005
International Conference on Augmented Tele-Existence. ICAT '05. Christchurch, New Zealand:
Association for Computing Machinery, 2005, pp. 241-242. ISBN: 0473106574. DOI: 10.1145/
1152399.1152444. URL: https://doi.org/10.1145/1152399.1152444.

Amit Bhardwaj et al. “A candidate hardware and software reference setup for kinesthetic codec
standardization”. In: 2017 IEEE International Symposium on Haptic, Audio and Visual Environ-
ments and Games (HAVE). 2017, pp. 1-6. DOI: 10.1109/HAVE.2017.8240353.

Xiao Xu, Qian Liu, and Eckehard Steinbach. “Toward QoE-driven dynamic control scheme switch-
ing for time-delayed teleoperation systems: A dedicated case Study”. In: 2017 IEEE International
Symposium on Haptic, Audio and Visual Environments and Games (HAVE). 2017, pp. 1-6. DOI:
10.1109/HAVE.2017.8240352.

Siwen Liu et al. “QoE-Driven Uplink Scheduling for Haptic Communications Over 5G Enabled
Tactile Internet”. In: 2018 IEEE International Symposium on Haptic, Audio and Visual Environ-
ments and Games (HAVE). 2018, pp. 1-5. DOI: 10.1109/HAVE.2018.8547503.

Massimo Condoluci et al. “Soft Resource Reservation for Low-Delayed Teleoperation Over Mo-
bile Networks”. In: IEEE Access 5 (2017), pp. 10445-10455. DOI: 10.1109/ACCESS.2017.
2707319.

Kurian Polachan et al. “Towards an Open Testbed for Tactile Cyber Physical Systems”. In: 2079
11th International Conference on Communication Systems & Networks (COMSNETS). 2019,
pp. 375-382. DOI: 10.1109/COMSNETS.2019.8711100.

Kurian Polachan et al. “TCPSbed: A Modular Testbed for Tactile Internet-Based Cyber-Physical
Systems”. In: [IEEE/ACM Transactions on Networking 30.2 (2022), pp. 796—811. DOI: 10.1109/
TNET.2021.3124767.

Muhammad Zubair Islam et al. “loTactileSim: A Virtual Testbed for Tactile Industrial Internet of
Things Services”. In: Sensors (Basel) 21.24 (Dec. 2021).

Vineet Gokhale et al. “TIXT: An Extensible Testbed for Tactile Internet Communication”. In: IEEE
Internet of Things Magazine 3.1 (2020), pp. 32-37.DOI: 10.1109/I0TM.0001.1900075.

Nima Karbasizadeh et al. “Dynamic Identification of the Novint Falcon Haptic Device”. In: Oct.
2016.DOI: 10.1109/ICRoM.2016.7886795.

https://doi.org/10.1109/WHC.2015.7177763
https://doi.org/10.1109/WHC.2005.118
https://doi.org/10.1145/1152399.1152444
https://doi.org/10.1145/1152399.1152444
https://doi.org/10.1145/1152399.1152444
https://doi.org/10.1109/HAVE.2017.8240353
https://doi.org/10.1109/HAVE.2017.8240352
https://doi.org/10.1109/HAVE.2018.8547503
https://doi.org/10.1109/ACCESS.2017.2707319
https://doi.org/10.1109/ACCESS.2017.2707319
https://doi.org/10.1109/COMSNETS.2019.8711100
https://doi.org/10.1109/TNET.2021.3124767
https://doi.org/10.1109/TNET.2021.3124767
https://doi.org/10.1109/IOTM.0001.1900075
https://doi.org/10.1109/ICRoM.2016.7886795

	Introduction
	Related Works
	Challenges Of Tactile Internet
	Model Mediated Teleoperation
	Tactile Physics Engines

	Theory & Background
	Model Mediated Teleoperation
	Bypassing Network Delay With Models
	MMT With Stationary Objects
	MMT With Dynamic Objects
	Resolving Model Divergence

	Tactile Physics
	Existing Physics Engines
	Proxy Algorithm
	Finding The Point Of Contact With Ray Casting
	Acceleration Structures For Contact Point Detection

	Implementation & Methodology
	Hardware Setup
	Making The Physics Engine Work
	Enabling Mesh Objects
	Towards Model Mediated Teleoperation
	Different Scenarios
	Modular Software Design
	Controller Module
	Physics Module
	Network Module
	Sensing Module
	Thread Safety

	Logging and Benchmark

	Results
	Experimental Setup
	Timing Performance Analysis
	Static Model Divergence
	Dynamic Model Divergence

	Conclusion

