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Abstract
It was shown by Cipriani et al. in [5] that the odometer function for a divisible sandpile with
i.i.d. weights on Zdn converges to a continuum bilaplacian field on Td after an appropriate
scaling. In this thesis, we consider an odometer function associated with correlated Gaussian
weights (σ(x))x∈Zdn , with E[σ(·)] = 0 and

E[σ(x)σ(y)] = K(x− y),

where K : Zd → R is a stationary covariance function. We obtain our main result in Theorem 6.1,
where we show that after an extra scaling factor depending on K, the odometer still converges
to the bilaplacian field on Td.
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1 Introduction
The world around us is getting more complex every day. Not only is technology advancing rapidly,
we are also living with more people than ever, all with their own weird quirks. More than ever
now, we need to be able to cope with large, complex systems to make sense of everything. We take
as an example the modern financial market: a gigantic, complex system with an enormous amount
of participants. At small enough timesteps, a stock price can either go up or down, depending on
how much the participants are buying or selling. In a sense, this behaviour resembles a random
walk. However, as there are too many players to take into account in the financial market, we
approximate our discrete model with a continuous model, the Brownian motion, which is much
easier to work with.

Figure 1: Brownian motion on the interval [0, 1].

This is one of the goals of modern probability theory: taking a complex, random system, that
is defined through micro-interactions, and applying abstract theory to say something about the
behaviour of the system at large. In the above example, we had our financial market, which was
our complex system, our micro-interactions were defined by the buyers and sellers, and using our
theoretical tools we obtained the Brownian motion.

Now, modern probability theory has more applications than just modelling the behaviour of
stocks in order for you to buy a supercharged Range Rover or a preposterous yacht. We can
use the above approach in applications in physics, biology and engineering. The idea stays the
same, we take a discrete model with micro-interactions defined on it, and prove a limit theorem
to obtain the behaviour for a large-scale system.

One particular example is the Abelian sandpile model, which was introduced by Bak et al.
in [14]. In this model, we start out with a finite graph V and for each vertex x ∈ V we assign
an integer height s(x), representing a certain amount of particles. In each timestep, we now
uniformly at random distribute particles over the vertices x ∈ V in the graph. We fix a c ∈ N.
If we now have s(x) > c for a certain vertex, we call x unstable, and it topples by distributing
its particles to its neighbors. Now, if one vertex topples, it can of course cause the toppling of
another vertex, which can in turn create a so-called avalanche of toppling. This procedure is
repeated until all vertices are stable again. In order for this process to become stable, we also
have some vertices that act as sinks, which absorb the particles. These are usually associated
with the boundary when we are working on subsets of Zd.

This model has applications in for example neuroscience (see for instance [2]), where neurons
fire off electrical signals. Neurons are associated with the vertices in the graph, and synapses
with the edges. If a neuron reaches a certain amount of electrical charge, it fires off charge to
the next neurons through the synapses, and so on.
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An extension of the Abelian sandpile, the divisible sandpile was introduced by Levine and
Peres in ([15],[16]), where they consider a sandpile model with continuous heights, whereas the
Abelian sandpile had discrete heights. The divisible sandpile model we will be working with is
based on the model in [1] and [5], and is defined in the following way. We start with a collection
of i.i.d. standard normals (σ(x))x∈Zdn . Here we think of Zdn as a discrete, d-dimensional box of
side length n. Our initial sandpile configuration now is a function s : Zdn → R defined for all
x ∈ Zdn by

s(x) = 1 + σ(x)− 1

nd

∑
z∈Zdn

σ(z).

We think of s as representing the heights at each vertex in the beginning. In the divisible
sandpile, a site topples if it has mass > 1. It will then uniformly distribute its excess mass to
its neighbors, while keeping mass 1 to itself. Note that this process is completely deterministic,
the only randomness is in the initial distribution. Subsequently, for each timestep t, we can
look at the amount of mass a vertex has distributed to any of its neighbors. Call this function
e(t) : Zdn → R. As sites can only emit mass, and can’t “un-emit” mass, we see that e(t) ↑ e as
t→∞. We call e : Zdn → R the odometer function. If the sandpile stabilizes, we have e(x) <∞
for all x ∈ Zdn. As e depends on the initial configuration, (e(x))x∈Zdn is a collection of random
variables, more specifically it was shown in [1] that e is a shifted, discrete bilaplacian field. This
roughly means that the odometer e is distributed, up to a constant, like a collection of Gaussians
(η(x))x∈Zdn such that

∆2E[η(x)η(y)] = δx(y)− 1

nd
.

Subsequently, as n−1Zdn → Td, the scaling limit of this odometer was considered in [5], where it
was shown that the scaling limit of the odometer on Td is still a, this time continuous, bilaplacian
field. Now this brings us to the main research question of this thesis is:

What is the scaling limit of the odometer if we start with an initial configuration of
correlated Gaussians?

In order to answer this question, we first recall the most relevant (for this project) concepts
from Probability and Fourier analysis in the Preliminaries section.

In Section 3, we first walk through the basic theory of divisible sandpiles and recall the most
important results from [1]. After this we derive a new identity for the odometer of correlated
Gaussians in Section 3. This result is similar to Proposition 1.3 in [1].

Section 4 is not integral to answering our main research question, but it is nevertheless
another new result related to the divisible sandpile. We consider the speed at which the sandpile
stabilizes. In particular, we will see that in the continuous case the divisible sandpile almost
surely does not stabilize in finite time, meaning that the properties of the odometer function
only hold in the limit.

After this, in Section 5, we go into considerable detail in the proof of the scaling limit for the
odometer of i.i.d. Gaussians, Theorem 1 in [5]. We also derive a new identity for the pairwise
correlations of the bilaplacian field.

Section 6 contains the main result of this thesis, and we answer our research question. We
prove that after an extra scaling factor, depending on the covariance structure, our discrete field
still converges to the bilaplacian field, where the convergence holds in the same way as Theorem
1 in [5]. We also compare the maxima of odometers under different covariances.

Now in [5], the result for i.i.d. Gaussians is extended for general i.i.d. weights with mean zero
and finite variance. In Section 7 we outline the problems that arise when we try to generalize
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the result in the correlated, Gaussian case to general correlated weights. We also want to obtain
an upper bound as to how fast the sandpile converges to the stable configuration.

We want to stress here that the actual new results are Section 3.3, the entire Section 4,
Section 5.6, and the entire Section 6.
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2 Preliminaries: a crash course in Probability and Fourier analysis
In this project, we will repeatedly throw around notions from both Probability theory and Fourier
analysis, and in fact, we won’t do much else. However, as we can not expect from the reader to
have followed the 3rd year courses Advanced Probability and Fourier Analysis, we will attempt
to give a crash course here. This section is split up in three parts: we will first lay out the basics
of measure-theoretic probability, after that we will look at Fourier analysis and analysis on the
torus Td, at last, we will introduce the basics of infinite-dimensional probability theory.

2.1 A crash course in probability theory
This section is set up in the following way: we will first state the basic definitions of probability
theory, after that we will have a look at some limit theorems. For a more thorough explanation,
we refer the reader to [12].

Definition 2.1. Let (Ω,F ,P) be a measure space, i.e. F is a σ-algebra on Ω, and P : F → R+

is a measure. If P(Ω) = 1, we call (Ω,F ,P) a probability space.

In otherwords, a probability space is just a measure space with total measure of 1. We say
that an event F ∈ F happens almost surely if P(F ) = 1.

Definition 2.2. Let (Ω,F ,P) be a probability space. We call a measurable function X : Ω→ R
a random variable. Equivalently, X is called a random variable if for all B ∈ B(R), the Borel
σ-algebra, we have

X−1(B) ∈ F .

We are often interested in P(X ∈ B), where B is a Borel set. Now the measure B 7→ P(X−1B)
has name, it’s called the distribution of X.

Definition 2.3. The measure µ : B(R)→ R+ defined by

µ(B) := P(X−1B) = P(X ∈ B),

is called the distribution of X. We call

FX(x) := P(X ≤ x) = µ((−∞, x])

the distribution function of X.

Definition 2.4. For X a random variable on the probability space (Ω,F ,P) we define the
expectation as

E[X] =

∫
Ω

X dP,

where the integral is the Lebesgue integral over Ω with respect to the measure P.

Definition 2.5. For X a random variable on the space (Ω,F ,P), we define the variance,

Var(X) = E[X2]− (E[X])
2
.

We will also be dealing with a notion of “independence” in this thesis, we see that in some
way the outcome of one random variable can influence the outcome of another.
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Definition 2.6. For any two random variables X and Y , we say that X and Y are independent
if we have for any two Borel sets B1, B2 ∈ B(R),

P(X ∈ B1 and Y ∈ B2) = P(X ∈ B1)P(X ∈ B2).

Furthermore, we define the covariance as

Cov(X,Y ) = E[XY ]− E[X]E[Y ].

In a sense, the covariance measures “how” dependent X and Y are. If X and Y are indepen-
dent, we have E[XY ] = E[X]E[Y ], but be careful here: zero covariance does not imply
independence!

However, what we will repeatedly do here is look at a sequence of random variables (Xn)n∈N.
We write that (Xn)n∈N is an i.i.d. sequence if the Xn’s are all (I)ndependent and (I)dentically
(D)istributed. The independence is defined pairwise, for all i, j ∈ N with i 6= j, Xi and Xj are
independent. We want to consider a notion of “convergence” for this sequence. There are many
forms of convergence in probability theory, but here we will just state convergence in distribution,
also called convergence in law, as this is the main one we will be using in this project.

Definition 2.7. Let (Xn)n∈N be a sequence of random variables with distribution functions
FXn . We say that Xn converges to X in distribution (or in law) if, for all x ∈ R such that FX
is continuous in x,

FXn(x)→ FX(x) as n→∞.
If this is the case, then we write

Xn
d→ X.

As it will turn out, we practically never use the above definition to prove convergence in law.
The most common for proving that a sequence Xn

d→ X is by using Levy’s Continuity Theorem.
We first define the characteristic function

Definition 2.8. Denote with ι the complex unit and let X be a random variable on some
probability space (Ω,F ,P). We define the characteristic function to be

ϕX(t) := E [exp(ιtX)] =

∫
Ω

exp(ιtX) dP, t ∈ R.

Now we can state Levy’s Continuity Theorem. A more thorough explanation can be found
in the lecture notes of my supervisor’s course on Advanced Probability.

Theorem 2.1. Let (Xn)n∈N be a sequence of real valued random variables. and ϕXn their
corresponding characteristic functions. Let ϕX be the characteristic function of a random variable
X. Moreover, assume that

ϕXn(t)→ ϕX(t),

for all t ∈ R. Then Xn
d→ X.

We immediately use this theorem to prove a theorem that will be important later on:

Theorem 2.2. Let (Xn)n∈N be a sequence of Gaussian random variables with E[Xn] = mn and
Var(Xn) = σ2

n, and σ2
n → σ2, mn → m. Then

Xn
d→ X,

where X ∼ N (m,σ2).
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Proof. From Levy’s Continuity Theorem we have

Xn
d→ X ⇔ ϕXn(t)→ ϕX(t), ∀t ∈ R.

Here we write ϕXn and ϕX for the characteristic functions of Xn and X. Now,

ϕXn(t) = exp

(
ιtmn −

1

2
σ2
nt

2

)
.

Subsequently, since exp is continuous, we have

lim
n→∞

ϕXn(t) = lim
n→∞

exp

(
ιtmn −

1

2
σ2
nt

2

)
= exp

(
lim
n→∞

ιtmn −
1

2
σ2
nt

2

)
= exp(

(
ιtm− 1

2
σ2
nt

2

)
= ϕX(t).

So the claim follows.

In other words, to show convergence of a sequence of Gaussians, it is enough to consider only
the first and second moment. Now we finally state the Central Limit Theorem, which forms the
basis for most of Statistics and a large part of Probability.

Theorem 2.3. Let (Xn)n∈N be a sequence of i.i.d. random variables with E[X1] = m and
Var(X1) = σ2. Then ∑n

i=1 (Xi −m)√
σ2n

d→ Z,

with Z ∼ N (0, 1).

This theorem is very powerful, as it says that we can approximate a large sum of i.i.d. random
variables of any distribution with a Gaussian random variable, after an appropriate scaling. In
fact we can extend this result to more general random variables. We state the Lindeberg-Levy-
Feller CLT:

Theorem 2.4. Let (Xn)n∈N be a sequence of random variables with E[Xk] = mk and Var(Xk) =
σ2
k > 0. Set s2

n =
∑n
k=1 σ

2
k. If we have for all ε > 0 that

lim
n→∞

1

s2
n

n∑
k=1

E((Xk −mk)21|Xk−mk|>εsn) = 0,

then
1

sn

n∑
k=1

(Xk −mk)
d→ Z,

with Z ∼ N (0, 1).

2.2 Fourier analysis and analysis on the torus Td

We will do most of our analysis on the torus Td, which can be viewed as a generalization of
a donut. In the case d = 2, T2 is exactly the shape of a regular donut as we, 3-dimensional
humans, know it. In some sense, the torus is the perfect space to do analysis on. Because first of
all, it is compact, so any smooth function will automatically be integrable. On the other hand,
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the torus is a group: we can never “escape” the torus just by walking around. This is different
than looking at for example a compact interval [a, b] ⊂ R, which is not a group. In this way
it has all of the good features of spaces like R and C, without the drawbacks of integrability,
convergence that come with infinite spaces. We like to view the torus as (R/Z)d. The intuition
behind this quotient group (consider for a moment d = 1) is the following: we put each x ∈ R
in an equivalence class [x] ∈ (R/Z), such that y, x ∈ [x] if and only if there exists an n ∈ Z such
that x− y = n. In a sense now, we can say [0, 1]“ = ”(R/Z), however there is one thing different.
If we take any x ∈ R/Z, then x+ 1 ≡ x ∈ R/Z. In this way, we walk out of our interval [0, 1] on
one inside, and again walk in on the other side to end up on the same spot after a distance of 1.
A visualisation is given in Figure (2).

Figure 2: Visualisation of the identification Td ' (R/Z)
d. First we slice the torus through the

red line, and end up with a cylinder. We subsequently cut the cylinder along the blue line and
roll it out to obtain a square.

Whenever necessary, we will identify Td with [− 1
2 ,

1
2 ]d ⊂ Rd, under the equivalence relation

as above (“glueing” the ends to each other). Both definitions are equivalent. We define the space
C∞(Td) to be the space of all infinitely differentiable functions on Td. It is now important to
remark that this space is not equivalent with the space C∞([− 1

2 ,
1
2 ]d) or C∞([0, 1]d). For the

former we require f (n)(0) = f (n)(1), or equivalently f (n)
(
− 1

2

)
= f (n)

(
1
2

)
, for all n ∈ N0, while

in the latter case this is not necessary.
Because Td is a group, it admits a Fourier transform. Denote with ι the complex unit. We

define for any u ∈ L1(Td),

û(ξ) =

∫
Td
u(z) exp(2πιξ · z) dz, ξ ∈ Zd.

The Pontryagin dual group of Td is identified with Zd, what this means is that the Fourier
transform of u is a function û : Zd → C. This is the reason why the inverse Fourier transform of
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Td is a series. For u ∈ L2(Td), we have

u(z) =
∑
ξ∈Zd

û(ξ) exp(−2πιξ · z), z ∈ Td

almost everywhere. For more information regarding Pontryagin duality, see [13]. Recall that in
the case where u is defined on the real line, we have that both the Fourier transform, and the
inverse Fourier transform are integrals over the real line. This is because the Pontryagin dual
group of R is again R. Keeping this idea of Pontryagin duality in the back of our minds, we take
a look at another group: Zdn = (Z/nZ)d, the additive group of integers modulo n. Whenever
necessary, we view Zdn as [−n2 ,

n
2 ]d ∩ Zd. Note that Zdn in some sense resembles our torus, as

n ≡ 0, we again “walk out” on one side, only to enter Zdn again on the other side. This time, Zdn
has side length n, whereas the torus had side length 1.

Figure 3: Zdn is just a grid with side length n. If we walk out on one side, we enter the grid again
on the opposite side.

Now, as Zdn is a group we can again define a Fourier transform on it. We set for u ∈ `1(Zdn),

û(ξ) =
1

nd

∑
z∈Zdn

u(z) exp
(

2πιξ · z
n

)
.

The Pontryagin dual group of Zdn is again identified with Zdn, so the Fourier transform is again
a function on Zdn. We have as inverse transform (z ∈ Zdn):

u(z) =
∑
ξ∈Zdn

û(ξ) exp
(

2πιξ · z
n

)
.

We can now watch the beauty of this slowly unfold. We set Tdn := 1
nZ

d
n for the discretization

of Td with nd gridpoints. As we have already seen, Zdn is a torus-like grid of side length n, so
Tdn will have side length 1. What we can do next is, using the Pontryagin duality of Zdn with
itself, “prove” the duality of Td with Zd. To this end, for any C1-function u : Td → R we denote
un : Zdn → R for the discretized version un(·) = u

( ·
n

)
. As un is defined on Zdn, we can take the

Fourier transform to find

ûn(ξ) =
1

nd

∑
z∈Zdn

un(z) exp
(

2πιξ · z
n

)
=

1

nd

∑
z∈Zdn

u
( z
n

)
exp

(
2πιξ · z

n

)
.

Here the Fourier transform is defined on Zdn = [−n2 ,
n
2 ] ∩ Zd, i.e. ξ ∈ [−n2 ,

n
2 ] ∩ Zd. If we now let

n→∞, the following happens with the Fourier transform,

lim
n→∞

ûn(ξ) = lim
n→∞

∑
z∈Zdn

1

nd
un(z) exp

(
2πιξ · z

n

)
=

∫
Td
u(z) exp(2πιz · ξ) dz.
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This is because the summation approximates a Riemann integral. But note that this is exactly
the Fourier transform as defined on Td! On the other hand, we see that ξ takes values in
[−n2 ,

n
2 ] ∩ Zd, so if n→∞, we obtain that ξ can actually take values in the whole of Zd. We’ve

come full circle now, and in this way we see that Td is the Pontryagin dual of Zd.

Figure 4: The Pontryagin duality between Zdn with itself, and Td and Zd visualized. We can see
that on the left side, Tdn(= 1

nZ
d
n) grows inwards to approximate the torus. On the right side, Zdn

expands outwards to form Zd.

In this project, we will frequently approximate functions u on Td with the discretized version
un, and use the above to find that

lim
n→∞

ûn(ξ) = û(ξ), ξ ∈ Zd.

At last, we state and prove the Plancherel theorem for Zdn.

Theorem 2.5. Let f, g ∈ L2(Zdn) and f̂ , ĝ be their Fourier transforms. Then∑
ξ∈Zdn

f̂(ξ)ĝ(ξ) = n−d
∑
z∈Zdn

f(z)g(z).

Proof. The proof is a straightforward computation. We have

∑
ξ∈Zdn

f̂(ξ)ĝ(ξ) =
∑
ξ∈Zdn

n−d ∑
z∈Zdn

f(z) exp
(

2πιξ · z
n

)n−d ∑
z′∈Zdn

g(z′) exp

(
−2πιξ · z

′

n

)
= n−d

∑
z,z′∈Zdn

f(z)g(z′)

n−d ∑
ξ∈Zdn

exp

(
2πιξ · z − z

′

n

)
= n−d

∑
z,z′∈Zdn

f(z)g(z′)1{z=z′} = n−d
∑
z∈Zdn

f(z)g(z).
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2.3 Abstract Wiener Spaces

This section aims to outline the basics of infinite-dimensional probability theory, for a more
in-depth look we refer the reader to [7] or [11]. In this project we will be dealing with a random
variable Ξ (our Gaussian field) that is infinite-dimensional. We would like to view Ξ as a function
Ξ : Td → R, however this is not possible. For our definition of the Gaussian field Ξ to make sense,
we need to be able to define a Gaussian random variable on some infinite-dimensional space. Let
us start with a finite-dimensional example. For R3 we can define the following random vector:

X =

X1

X2

X3

 ,

where the Xi ∼ N (0, 1) and are independent for i = 1, 2, 3. For any other vector a ∈ R3 with∑3
i=1 ai = 0, a simple calculation shows that

E[〈X,a〉] = 0,

and

E[〈X,a〉2] =
3∑
i=1

a2
i = |a|2.

The characteristic function of X in this case is equal to (for t ∈ R3):

E[exp(ι〈X, t〉)] = exp

(
−1

2
|t|2
)
.

The question now becomes whether, using this characteristic function, we can extend this result
to infinite dimensional Hilbert spaces in order to define a Gaussian random variable indexed
on Td, but as it turns out: we can’t. Corollary 2.3.2 in [7] tells us for a Hilbert space H with
dimH = ∞, that ϕ(x) = exp

(
− 1

2‖x‖
2
)
can NOT be the Fourier transform of any countably

additive measure. A different approach then to constructing a Gaussian measure on our infinite
dimensional Hilbert space H leads to the Abstract Wiener Space (AWS), the idea is to define the
Gaussian measure on a larger Banach space B containing H, but with a different norm ‖ · ‖B
than the norm ‖ · ‖H on H. In the following part we will use the same construction of our AWS
as in [8].

Definition 2.9. An Abstract Wiener space is a triple (H,B, µ), where

1. H is a Hilbert space with inner product (·, ·)H and norm ‖ · ‖H .

2. B is the Banach space completion of H under the new measurable norm ‖ · ‖B , with the
Borel σ-algebra induced by ‖ · ‖B .

3. µ is the unique Borel probability measure on (B,B) such that for all φ ∈ B∗, we have
µ ◦φ−1 = N (0, ‖φ̃‖2H), where φ̃ is the unique element of H such that φ(h) = (φ̃, h)H for all
h ∈ H.

Note that the measure µ here is exactly what we want. Since H ↪→ B densely, we have
B∗ ⊂ H∗, so note that the functional here is well defined for all φ ∈ B∗, since we can always find
such a φ̃ ∈ H. The definition of a measurable norm is quite technical, and we will not state it
here. Intuitively, a measurable norm on B is a norm such that we can capture most mass of B
in finite dimensions. We refer the enthousiastic reader to [8]. We do however, state the following
lemma:
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Lemma 2.6. Let H be a Hilbert space with norm ‖ · ‖H and {fj : j ∈ N} an orthonormal basis
of H. If T : H → H is a Hilbert-Schmidt operator, meaning

∞∑
j=1

‖Tfj‖H <∞,

then ‖T · ‖H is a measurable norm on B.

Observe that this norm is well defined since T is densely defined on B. Intuitively speak-
ing, the Hilbert-Schmidt operator squeezes our orthonormal basis down to something that is
summable, this again ties in with the concept of a measurable norm, which tries to capture most
mass in finite dimensions.
Recall that we originally wanted to define a Gaussian measure on H−1(Td). We are going to do
this by finding a suitable Hilbert-Schmidt operator and using the construction above, in exactly
the same way as in [5]. To this end, let ∼ be the equivalence relation on C∞(Td) defined by
f ∼ g if and only if f and g differ by a constant. We define the inner product

(f, g)a =
∑

ν∈Zd\{0}

‖ν‖4af̂(ν)ĝ(ν) = ((−∆)af, (−∆)ag)L2(Td),

and write Ha(Td) for the completion of C∞(Td)/ ∼ with respect to this inner product. An
important remark to make here is that the space Ha(Td) does not agree with the usual definition
of the Sobolev space Ha(U) for U ⊂ Rd and a ∈ N. Next, define the Hilbert space

Ha := {u ∈ L2(Td) : (−∆)au ∈ L2(Td)}/ ∼,

equipped with the norm
‖u‖2Ha := ((−∆)au, (−∆)au)L2(Td).

We wantHa to be our Banach space completion ofHa(Td), to this end, note that {(−∆)−aeν}ν 6=0

(we can take e0 ≡ 0, since we look at the space over the equivalence relation ∼, so set the first
coefficient to 0) forms an orthonormal basis for Ha(Td). Indeed,

((−∆)−aeν(ϑ), (−∆)−aeκ(ϑ))Ha(Td) =
∑

k∈Zd\{0}

‖k‖4a ̂(−∆)−aeν(k) ̂(−∆)−aeκ(k)

=
∑

k∈Zd\{0}

‖k‖4a
(
‖k‖−4aêν(k)êκ(k)

)
=

∑
k∈Zd\{0}

‖k‖4a‖k‖−4aδν=kδκ=k = δν=κ.

Since Ha(Td) is a subspace of L2(Td) and (−∆)−aeν is just a rescaling of the Fourier coefficients,
this is also a basis for Ha(Td). We will now see that T := (−∆)b−a is a Hilbert-Schmidt operator
on Ha(Td), whenever b < a− d

4 . Subsequently we find, in the same way as in Section 6.2 of [8],
the following for all ν 6= 0:

‖T (−∆)−aeν‖Ha(Td) = ((−∆)a(−∆)b−a(−∆)−aeν , (−∆)a(−∆)b−a(−∆)−aeν)L2(Td)

= ((−∆)b−aeν , (−∆)b−aeν)L2(Td)

=
∑

k∈Zd\{0}

‖k‖4(b−a)δν=k = ‖ν‖4(b−a) ≤ ‖ν‖−(d+δ),
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for some δ > 0. Now by the Euler-Maclaurin formulas,∑
ν∈Zd\{0}

‖T (−∆)−aeν‖Ha(Td) ≤
∑

ν∈Zd\{0}

‖ν‖−(d+δ) ∼
∫ ∞

1

ρd−1ρ−(d+δ) dρ

=

∫ ∞
1

ρ−(1+δ) dρ <∞.

So in fact T is a Hilbert-Schmidt operator and ‖T · ‖Ha(Td) is a measurable norm on our Banach
space Ha. We now set a := −1, and −ε := b < 0 such that ε > 1 + d

4 . In conclusion, we now
have a unique Gaussian measure µ−ε on our space H−ε, and (H−1(Td),H−ε, µ−ε) is our AWS,
where µ−ε has characteristic function

Φ(u) := exp

(
−
‖u‖2−1

2

)
.

Now the operator ∆−2 is our infinite-dimensional analog of the covariance matrix.
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3 Divisible Sandpiles

3.1 Introduction
Before we dive into the scaling limit, we first build up some theory around divisible sandpile
models. The presentation here is based on [1]. Consider a connected, undirected graph G =
(V,E). Write x ∼ y if (x, y) ∈ E and deg(x) = #{y ∈ V : y ∼ x}. We want to start with some
initial configuration s : V → R, think of this as a mass assigned to each vertex. If s(x) > 1,
then the site x is called unstable, otherwise x is called stable. Whenever x is an unstable site,
it topples, meaning that it distributes its excess fat evenly among its neighbors, while keeping
mass 1 to itself. At each discrete time step, all unstable sites topple at the same time. Consider
the following example of a graph with 5 vertices, the number in each vertex denotes the mass:

2 3
4

3
4

3
4

3
4

2 3
4

3
4

3
4

3
4

1
4

1
4

1
4

1
4

1 11

1

1

Figure 5: Left: the initial configuration, Middle: the unstable site (red) topples, Right: stabilized.

Once every site has mass ≤ 1, we call the sandpile stabilized. We see in the example above,
that each vertex will have total mass of 1, and thus this sandpile has stabilized after one discrete
time step. A natural question that arises is whether the sandpile stabilizes or not. In our case it
is enough to consider only finite, connected graphs, and as it turns out, we are in luck: Lemma
7.1 in [1] states that for an initial configuration s : V → R with

∑
x∈V s(x) = |V |, the sandpile

stabilizes to the all-one configuration. We will come back to this later. Now consider for any
site x the amount of mass emitted to any neighbor, up to and including the discrete time step
t, denoted by e(t)(x). We see that e(t) is an increasing sequence (a site can not “un-emit” mass),
and if the sandpile stabilizes, converges to some function e,

e(t) ↑ e <∞.

We call this e : V → R the odometer function. Note that if s does not stabilize, the odometer
blows up. Consider the following sandpile:

2 1 2 1
1

1 2

Figure 6: The odometer function e(x) explodes.

In the above example, the t-th odometer satisifes

e(t)(x) =

{
1 + b t2c, if x is the left vertex
b t2c, if x is the right vertex

.

17



In this case e(t)(x) ↑ ∞ for all x ∈ V , this is because V is finite and
∑
x∈V s(x) > |V |.

Given an initial configuration s : V → R, the sandpile evolves deterministically, so the
odometer function e is dependent only on the initial configuration s. Before we make all of this
rigorous, we need some definitions.

3.2 Theoretical Background
In the following section (based on Section 2 in [1]), G = (V,E) is a finite, connected, undirected
graph, and we write X = RV for the set of all divisible sandpile configurations on G. We define
for u : V → R the graph Laplacian to be

∆e(x) :=
∑
y∼x

(e(y)− e(x)) .

What this intuitively does is taking the unweighted average of e(x) with its neighbors, and this is
no surprise: the continuous Laplace operator in fact does something similar (this can be seen by
taking for example a finite difference approximation of continuous ∆). Now, as we have already
seen before, in each timestep a site can “topple”, meaning that it distributes its extra mass among
his neighboring sites.

Definition 3.1. Let T ⊂ [0,∞) be a well-ordered set of toppling times such that 0 ∈ T and T
is a closed subset of [0,∞). A toppling procedure is a function T × V → [0,∞) defined by

(t, x) 7→ e(t)(x),

such that for all x ∈ V
1. e(0)(x) = 0.

2. e(t1)(x) ≤ e(t2)(x) for all t1 ≤ t2.

3. If tn → t then e(tn)(x) ↑ ut(x).

A toppling procedure is essentially the amount of mass emitted from site x, up to and including
time t. We can then quantify the amount of mass st(x) for any site x ∈ V and t ∈ T by the
following equation

st(x) = s(x) + ∆e(t)(x).

Here ∆e(t)(x) acts as the net gain of site x in the time [0, t] ⊂ T , and s ∈ X is the initial mass.
Now write a+ := max(a, 0) and t− := sup{r ∈ T : r < t}.
Definition 3.2. We call a toppling procedure legal for initial configuration s if for all x ∈ V
and t ∈ T \ {0},

e(t)(x)− e(t−)(x) ≤ (st−(x)− 1)+

deg(x)
.

This is saying a few things at once. Consider first the case st−(x) > 1. Then the mass emitted
at timestep t is less than the excess mass, divided by the degree of x. In other words: it has to
distribute its mass equally over its neighbors. Second, if st−(x) ≤ 1, then ut(x) − e(t−)(x) ≤ 0,
so it can not distribute any mass at all.

Definition 3.3. A toppling procedure e is called finite if for all x ∈ V we have

e(∞)(x) := lim
t→supT

e(t)(x) <∞.

Note that since e(t)(x) is non-decreasing, this limit exists in [0,∞]. If e(∞)(x) =∞, then we call
the procedure infinite.
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Definition 3.4. Let s ∈ X . A toppling procedure e is called stabilizing if e is finite and s∞ ≤ 1
pointwise. We say that s stabilizes if there exists a stabilizing toppling procedure for s.

Now we are finally getting to the most important definition of this section.

Definition 3.5. Let s ∈ X . The function e(∞) : V → [0,∞] is called the odometer of s. If s
stabilizes, then its stabilization is the configuration

s∞ = s+ ∆e(∞).

To sum up all of the above: for our initial configuration s, our toppling procedure e(t)(x)
describes the mass distributed to any neighbor of x, in the time [0, t]. This toppling procedure
can either be finite (whenever it stabilizes), or infinite (if it does not stabilize). The limit of the
toppling procedure is called the odometer.

We may now prove a very useful lemma (Lemma 7.1 in [1]):

Lemma 3.1. Let G = (V,E) be a finite connected graph with |V | = n and let s : V → R be
a divisible sandpile with

∑
x∈V s(x) = n. Then s stabilizes to the all 1 configuration and the

odometer of s is the unique function e satisfying{
s+ ∆e = 1

minu = 0
.

Proof. We begin the proof by showing some fundamental properties of the discrete Laplacian.
First note that all harmonic functions f : V → R (i.e. ∆f = 0) are constant. Indeed, assume that
∆f = 0 and f is not constant on V . Since V is finite we can find x ∈ V such that f(x) > f(y)
for all y ∈ V . For this x we have

∆f(x) =
∑
z∼x

(f(z)− f(x)) < 0,

a contradiction, so f must be constant on V . As we can view ∆ as a linear operator acting on
vectors in R|V |, we can say that ∆ has a 1-dimensional kernel spanned by the constant function.
In this way we see that ∆ must have rank n− 1. Next, we have

∑
x∈V ∆f(x) = 0. Indeed,

∑
x∈V

∆f(x) =
∑
x∈V

∑
y∼x

(f(y)− f(x)) =
∑
x∈V

[
− deg(x)f(x) +

∑
y∼x

f(y)

]
= −

∑
x∈V

deg(x)f(x) +
∑
x∈V

∑
y∈V

1y∼xf(y)

= −
∑
x∈V

deg(x)f(x) +
∑
y∈V

∑
x∈V

1y∼xf(y)

= −
∑
x∈V

deg(x)f(x) +
∑
y∈V

deg(y)f(y) = 0

In our case we want to solve ∆v = 1 − s, and since
∑
x∈V (1 − s(x)) = 0, the problem has a

solution. Let w = v −min v, then w ≥ 0 and s+ ∆w = 1, so s stabilizes. Now for any function
u that satisfies s+ ∆u ≤ 1,∑

x∈V
(s+ ∆u)(x) =

∑
x∈V

s(x) +
∑
x∈V

∆u(x) = n.
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We see that we need to have s+ ∆e = 1, so in fact the sandpile stabilizes to the all one configu-
ration, and any two functions e that satisfy s+ ∆e ≤ 1 differ by only a constant. Proposition 2.5
in [1] then tells us that the odometer is the smallest non-negative one, in other words, we have
min e = 0.

We are interested in the case where the initial configuration is Gaussian. Let (σ(x))x∈V be a
collection of i.i.d. standard normals, and set s(x) = 1 + σ(x)− 1

|V |
∑
z∈V σ(z). If our graph is a

50×50 grid (more precisely, Z2
50) our sandpile will look something like in Figure (7).

Figure 7: Sandpile with Gaussian heights.

Now if we let each site x topple as described above (by keeping mass 1 to itself, and distributing
the rest to its neighbors), then we may a run simulation to see what our odometer will look like
as n → ∞ by taking sufficiently many timesteps. A result of such a simulation is shown in
Figure (8). We stress that this is not the configuration st, but instead a surface plot of an
approximation of the odometer e(∞). Note that this is a much nicer, smoother surface than the
initial configuration.

Figure 8: Odometer after 10000 timesteps.

Since the odometer e satisfies s+∆e = 1, and s is a random variable, then e is also a random
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variable. Proposition 1.3 in [1] tells us that e is in fact Gaussian as well. We will state both the
proposition and its proof (as found in [1]) here, as the proof contains many valuable techniques
we will also use in the next section.

Theorem 3.2. (Proposition 1.3 in [1]) Let G = (V,E) be a finite connected graph and (σ(x))x∈V
a collection of i.i.d. standard normals. Consider the divisible sandpile

s(x) = 1 + σ(x)− 1

|V |
∑
y∈V

σ(y).

Then s stabilizes to the all 1 configuration and the distribution of its odometer e : V → [0,∞) is

(e(x))x∈V
d
= (η(x)−min η)x∈V ,

where the η(x) are again Gaussian with mean zero and covariance

E[η(x)η(y)] =
1

deg(x) deg(y)

∑
z∈V

g(z, x)g(z, y).

Here g is defined by g(x, y) = 1
|V |
∑
z∈V g

z(x, y) and gz(x, y) is the expected number of visits to
y by a simple random walk started at x before hitting z.

Proof. Define for x, y, z ∈ V ,

gz(x, y) = E [number of visits to y from a random walk starting in x before hitting z] .

For x, z ∈ V fixed we find that ∆ gz(x,y)
deg(y) = δz − δx and gz(x, z) = 0 (see for a more thorough

discussion of this fact Appendix A.1, where we perform this calculation in the case V = Zdn). We
subsequently set g(x, y) := gz(x, y).

As we have already seen above in Lemma 3.1, the divisible sandpile stabilizes since
∑
x∈V σ(x) =

n, and the odometer u satisfies s+ ∆e = 1, with min e = 0. Now set

vz(y) :=
1

deg(y)

∑
x∈V

gz(x, y)(s(x)− 1).

Since ∆ gz(x,·)
deg(·) = δz − δx, we have the following for y 6= z (note δz(y) = 0 in this case),

∆vz(y) =
∑
x∈V

∆
gz(x, y)

deg(y)
(s(x)− 1) =

∑
x∈V

(δz(y)− δx(y))(s(x)− 1)

= 1− s(y).

On the other hand, if y = z, then

∆
gz(x, z)

deg(z)
= δz(z)− δx(z) = 1− δx(z).

So in fact

∆vz(z) =
∑
x∈V

(1− δx(z))(s(x)− 1)

=
∑
x∈V

(s(x)− 1)−
∑
x∈V

δx(z)(s(x)− 1) = 1− s(z).
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We find then that ∆(e − vz) = ∆e −∆vz = 0, so e − vz is constant. Now let v = 1
n

∑
z∈V v

z.
Because e− vz is constant, we also have that e− v is constant, furthermore

v(y) =
1

n

∑
z∈V

vz(y) =
1

n

∑
z∈V

1

deg(y)

∑
x∈V

gz(x, y)(s(x)− 1)

=
1

deg(y)

∑
x∈V

(
1

n

∑
z∈V

gz(x, y)

)
(s(x)− 1)

=
1

deg(y)

∑
x∈V

g(x, y)(s(x)− 1).

We now explicitly calculate the covariance of v, note first that

E[(s(z)− 1)(s(w)− 1)] = E

σ(z)− 1

n

∑
y∈V

σ(y)

σ(w)− 1

n

∑
y∈V

σ(y)


= E[σ(z)σ(w)]− 1

n
E

σ(w)
∑
y∈V

σ(y)


− 1

n
E

σ(z)
∑
y∈V

σ(y)

+
1

n2
E

∑
y∈V

σ(y)

2

= 1z=w −
1

n
− 1

n
+

1

n
= 1z=w −

1

n
.

Then,

E[v(x)v(y)] =
1

deg(x) deg(y)

∑
z,w∈V

g(z, x)g(w, y)E[(s(z)− 1)(s(w)− 1)]

=
1

deg(x) deg(y)

(∑
z∈V

g(z, x)g(z, y)− 1

n

(∑
z∈V

g(z, x)

)(∑
w∈V

g(w, y)

))
.

Define K(y) :=
∑
w∈V

g(w,y)
deg(y) . Then ∆K =

∑
z,w∈V

1
n (δz − δw) = 0, so K is constant. The

second term on the right then equals K2

n , so define Y ∼ N
(

0, K
2

n

)
, independent of v. Now if η

is as given in Theorem 3.2, then
η
d
= v + C.

Indeed, since v and C are both centered Gaussians,

E[η(x)] = E[v(x) + C] = 0.

Furthermore,

E[(v(x) + C)(v(y) + C)] = E[v(x)v(y) + Cv(x) + Cv(y) + C2]

= E[v(x)v(y)] + E[C2] =
1

deg(x) deg(y)

∑
z∈V

g(z, x)g(z, y) = E[η(x)η(y)].

So the result is indeed consistent. Now, e− v is constant and min e = 0, so we need to have

e = v −min v
d
= η −min η.
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3.3 Sandpiles with correlated initial distribution
In this section, we will use the same techniques as in the previous section and in [1] to derive
similar results for the odometer under a correlated initial distribution. Recall that in last section
we were working with the sandpile given by

s(x) = σ(x) + 1− 1

|V |
∑
z∈V

σ(z),

where (σ(z))z∈V was a collection of i.i.d. standard normal random variables. The question now
is what happens if we correlate (σ(z))z∈V according to a covariance function,

E[σ(x)σ(y)] = K(x, y).

Here we will only consider the case where V = Zdn := [−n2 ,
n
2 ] ∩ Zd, because this is

our main interest in the next section where we calculate the scaling limit. Note that we have
|Zdn| = nd. In this section we will state and prove the correlated analog to Proposition 1.3 in [1],
we only consider the case where K(x, y) = K(x−y). Covariance functions of this form are called
stationary covariance functions.

Theorem 3.3. Let (σ(x))x∈Zdn be a collection of centered Gaussian random variables with co-
variance E[σ(x)σ(y)] = K(x− y) and consider the divisible sandpile on Zdn given by

s(x) = 1 + σ(x)− 1

nd

∑
z∈Zdn

σ(z)

for each z ∈ Zdn. Then the sandpile stabilizes to the all one configuration and the distribution of
the odometer e(x) is given by

e(x)
d
= η(x)− min

z∈Zdn
η(z).

Here (η(x))x∈Zdn is a collection of centered Gaussian random variables with covariance

E[η(x)η(y)] =
1

(2d)2

∑
z,z′∈Zdn

K(z − z′)g(z, x)g(z′, y).

Proof. The proof follows the same strategy as the proof of Proposition 1.3 in [1], and in fact the
first part of the proof is exactly the same. A simple calculation shows us that∑

z∈Zdn

s(z) = nd,

so by Lemma 7.1 in [1] the sandpile stabilizes and the odometer e satisfies min e = 0 and

∆e = 1− s.

Now, since ∆ gz(x,y)
2d = δz − δx, we get that

vz(y) :=
1

2d

∑
x∈Zdn

gz(x, y)(s(x)− 1))

satisfies the equation ∆vz(y) = 1 − s(y) for all y ∈ Zdn. But then ∆(e − vz) = 0 for all
z ∈ Zdn, and thus it must hold that e − vz is constant on Zdn. Setting v = 1

nd

∑
z∈Zdn

vz =
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1
2d

∑
x∈Zdn

g(x, y)(s(x)− 1), we can see in a similar way that e− v is constant. So e = v + c for
some constant c ∈ R, but because minu = 0, it must hold that

u = v −min v.

Now, since each v(x) is a linear combination of (possibly) correlated Gaussian random variables,
v is again Gaussian with covariance

E[v(x)v(y)] =
1

(2d)2

∑
z,z′∈Zdn

g(z, x)g(z′, y)E[(s(z)− 1)(s(z′)− 1)]. (1)

We first observe that ∑
w∈Zdn

K(z − w) =
∑

w′∈{z−w|w∈Zdn}

K(w′) =
∑
w∈Zdn

K(w),

so
∑
w∈Zdn

K(z−w) does not depend on z anymore, so say
∑
w∈Zdn

K(z−w) = C. The expectation
in the summation can be calculated in the following way:

E[(s(z)− 1)(s(z′)− 1)] = E

σ(z)− 1

nd

∑
w∈Zdn

σ(w)

σ(z′)− 1

nd

∑
w∈Zdn

σ(w)


= E[σ(z)σ(z′)]− E

σ(z′)
1

nd

∑
w∈Zdn

σ(w)


− E

σ(z)
1

nd

∑
w∈Zdn

σ(w)

+
1

n2d
E

 ∑
w,w′∈Zdn

σ(w)σ(w′)


= K(z − z′)− 1

nd

∑
w∈Zdn

[K(z′ − w) +K(z − w)] +
1

n2d

∑
w,w′∈Zdn

K(w − w′)

= K(z − z′)− 2C

nd
+
ndC

n2d
= K(z − z′)− C

nd
.

If we now plug this into 1, we obtain

E[v(x)v(y)] =
1

(2d)2

∑
z,z′∈Zdn

K(z − z′)g(z, x)g(z′, y)− C

nd(2d)2

 ∑
z,z′∈Zdn

g(z, x)g(z′, y)


=

1

(2d)2

∑
z,z′∈Zdn

K(z − z′)g(z, x)g(z′, y)− C

nd(2d)2

∑
z∈Zdn

g(z, x)

2

.

Here we used the fact that
∑
z∈Zdn

g(z, x) does not depend on x anymore. CallR = C
nd(2d)2

(∑
z∈Zdn

g(z, x)
)2

,
and define Y ∼ N (0, R) independent of v. Then

(v + Y )x∈Zdn
d
= (η(x))x∈Zdn .

Where (η(x))x∈Zdn is a collection of centered Gaussians with

E[η(x)η(y)] =
1

(2d)2

∑
z,z′∈Zdn

K(z − z′)g(z, x)g(z′, y),
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Now since e− v is constant and min e = 0, we find

e
d
= η − min

z∈Zdn
η(z).

3.4 Brief summary
In this section, we have first defined our divisible sandpile. On a finite, connected graph G =
(V,E) we defined s : V → R, where for each discrete time step, a site x ∈ V topples if s(x) > 1.
If x topples, it distributes mass s(x)− 1 equally to its neighbors while keeping mass 1 to itself.
The sandpile stabilizes if each site x has mass s(x) ≤ 1.

Consider e(t) : V → R to be the mass emitted by a site up to and including discrete time-step
t. If the sandpile stabilizes, we call e = limt→∞ e(t) the odometer of the sandpile. We then saw
(Lemma 3.1, Lemma 7.1 in [1]) that if

∑
x∈V s(x) = |V |, then the sandpile stabilizes and the

odometer e satisfies
s+ ∆e = 1,

with min e = 0. As the sandpile evolves deterministically, our main interest was the probabilistic
distribution of the odometer e when the sandpile is defined by

s(x) = σ(x) + 1− 1

|V |
∑
z∈V

σ(z),

where (σ(z))z∈V is a collection of i.i.d. standard normals. Now Theorem 3.2 (Proposition 1.3 in
[1]) tells us that e is again Gaussian,

e
d
= η −min

x∈V
ηx,

where (ηx)x∈V is a collection of centered Gaussians with covariance

E[η(x)η(y) =
1

deg(x) deg(y)

∑
z∈V

g(z, x)g(z, y).

The question we have attempted to answer in this section is what happens when we take the
(σ(z))z∈V to be correlated according to some correlation function K,

E[σ(x)σ(y)] = K(x− y).

We have taken V = Zdn, and using the same proof techniques as [1], our key result is Theorem
3.3, which tells us that for K a stationary covariance function, our odometer is again distributed
as

e = η − min
x∈Zdn

ηx,

with this time
E[η(x)η(y)] =

1

(2d)2

∑
z,z′∈Zdn

K(z − z′)g(z, x)g(z′, y).
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4 Stabilization speed for the divisible sandpile

4.1 Introduction
We consider again the divisible sandpile on Zdn for n ≥ 3 with initial configuration given by

s(x) = 1 + σ(x)− 1

nd

∑
z∈Zdn

σ(z),

where (σ(z))z∈Zdn is a collection of i.i.d. N (0, 1) random variables. We write st(x) = s(x) +

∆e(t)(x) for the mass present at site x ∈ Zdn at discrete timestep t ≥ 1 and we set s0(x) := s(x).
Now one might think that after enough timesteps, the divisible sandpile stabilizes to the all-one
configuration. At the end of the day, there is only a finite amount of mass we are shuffling around
on a finite grid, so as Jeremy Clarkson would say: “how hard can it be?!” As it turns out, very
hard. In this section we will show that this intuition is wrong and the divisible sandpile does
NOT stabilize in finite time, and we have the relation

s+ ∆e = 1,

only in the limit. We first consider a simulation of the divisible sandpile on Z2
50, we have a

“before” and an “after” picture

Figure 9: Sandpile: initial configuration and after 10.000 timesteps.

At first look, it may seem like we have made a programming error, as the sinks look unusual:
it looks like we have “lost” mass in our graph. This is, however, not the case: analysing the
image reveals that the rest of the graph actually does not have mass 1, but is in fact higher than
1 by a small amount, making all these sites unstable. In each iteration, the heights get shuffled
around, and only a very small amount will end up in the sink.

4.2 Main proof for n ≥ 3

Our main theorem of this section then is:

Theorem 4.1. The divisible sandpile (s(x))x∈Zdn for n ≥ 3, where s is as defined before, does
not stabilize in finite time almost surely.

We will prove this theorem in a few steps, but the idea is very basic: once we find two nodes
x, y that are adjacent to each other, where at least one has mass > 1, and the other mass ≥ 1,
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we are done. Indeed, the unstable site x will distribute some mass to its neighbor y, making y
unstable in the next iteration. In the next step then, y will topple and give some mass to x.
Again now x is unstable, and will give some mass to y again, and we can continue like this. This
mass will decrease in each iteration, but it will only be zero in the limit.

1 + c 1
c
4

c
4

c
4

c
4

≥ 1 ≥ 1 + c
4

c
16

c
16

c
16

c
16

Figure 10: The idea behind our proof: there will always be at least one unstable node.

Lemma 4.2. Let s be a divisible sandpile as given above. If at any timestep t we find x ∼ y
such that st(x) > st(y) ≥ 1, then we have that st+1(y) > 1. As a consequence, the sandpile does
not stabilize in finite time.

Proof. Assume that we find x, y ∈ Zdn and t ≥ 0 such that x ∼ y and st(x) > st(y) ≥ 1. We write
st(x) = 1 + c for some c > 0. As st(x) > 1, vertex x is unstable and topples in this timestep,
distributing its mass equally over its neighboring vertices. Now y ∼ x and we consider two cases,
in the first case st(y) = 1. Then st+1(y) ≥ 1 + c

2d > 1, as y receives c
2d mass from x. If st(y) > 1,

then y topples and keeps mass 1 to itself. Because x also topples in the same timestep, we again
find st+1(y) ≥ 1+ c

2d > 1, thus proving the claim. In the same way, we see that in timestep t+2,
we have st+2(x) > 1. Proceeding inductively, the result follows.

The problem then reduces to finding two sites x, y ∈ Zdn with x ∼ y, of which at least one has
mass > 1. Indeed, if we find this we can use the above lemma to show that the sandpile does
not stabilize in finite time. Our next claim is that we can always find such x ∼ y after just one
iteration.

Theorem 4.3. At timestep t = 1, there are x, y ∈ Zdn with x ∼ y such that st(x) > st(y) ≥ 1.

If we have proven this theorem, we can utilize Lemma 4.2 to obtain that the sandpile does
not stabilize in finite time. The idea behind the proof and the theorem is that there is “too much
mass” in the graph for this not to happen.

Proof. We write
V + := {z ∈ Zdn : s(z) > 1} ⊂ Zdn,

for the collection of all sites that topple in the first iteration. V + is non-empty, this is easy to
see: if V + is empty, then s(z) < 1 for all z ∈ Zdn, because we have P(s(x) = 1) = 0 for all x ∈ Zdn.
If s(z) < 1 for all z ∈ Zdn, then

∑
z∈Zdn

s(z) < nd, and this is a contradiction. Now, if there exist
two x, y ∈ V + such that x ∼ y, then we are done, as we will have s1(x), s1(y) > 1 by Lemma 4.2.
Therefore it is enough to consider only the case where each x ∈ V + is isolated in the sense that
we have for no x, y ∈ V + that x ∼ y. In this case, we have for all x ∈ V + that s(y) < 1 for all
y ∼ x. Choose x ∈ V +. We can either find y with y ∼ x such that s(y)+ 1

2d

∑
z∼y(s(z)−1)+ > 1,

or we have for all y ∼ x that s(y) + 1
2d

∑
z∼y(s(z) − 1)+ ≤ 1. We will show that the first case

leads to the desired result, while the second case gives a contradiction almost surely for n ≥ 3.
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In the first case, we find that since for all z ∈ V +, we have s(z) > 1, these sites topple. Now
as there is a y such that

s1(y) = s(y) +
1

2d

∑
z∼y

(s(z)− 1)+ > 1,

with y ∼ x, and x ∈ V +, the result follows because s1(x) ≥ 1.
Now consider the second case: Fix x ∈ V +. Then for all y ∼ x we have that s(y) +

1
2d

∑
z∼y(s(z) − 1)+ ≤ 1. In words: after the first toppling, all sites adjacent to any site in V +

still have mass of at most 1. In this case, we either find a y ∼ x for some x ∈ V + such that

s(y) +
1

2d

(∑
x∼y

(s(x)− 1)+

)
< 1,

or we have for all x ∈ V +, and y ∼ x that

s(y) +
1

2d

(∑
x∼y

(s(x)− 1)+

)
= 1.

We show now that the first case leads to a contradiction. We write

Ṽ + := V + ∪ {z ∈ Zdn : z ∼ x for some x ∈ V +} = V + ∪ { all neighbors of V +}

and look at ∑
z∈Zdn

s(z) =
∑
z∈Ṽ +

s(z) +
∑

z∈Zdn\Ṽ +

s(z). (2)

As we have for all z ∈ Zdn \ Ṽ + by definition that s(z) < 1,∑
z∈Zdn\Ṽ +

s(z) ≤ |Zdn \ Ṽ +| ≤ nd − |Ṽ +|. (3)

Note that equality in the above occurs in the case where Zdn \ Ṽ + is empty. Now, if z ∈ V +

topples, it distributes its mass over the neighbors, and by definition we have that these are in
Ṽ +, so in fact ∑

z∈Ṽ +

s(z) =
∑
z∈Ṽ +

s1(z).

We have already seen that each z ∈ V + is isolated, so that it does not receive any mass from
toppling neighbors, then∑

z∈Ṽ +

s1(z) =
∑
z∈V +

s1(z) +
∑

z∈Ṽ +\V +

s1(z)

= |V +|+
∑

z∈Ṽ +\V +

[
s(z) +

1

2d

∑
x∼y

(s(x)− 1)+

]

< |V +|+ |Ṽ +| − |V +| = |Ṽ +|.

The last inequality is due to the fact that we could find at least one y ∈ Ṽ + with s(z) +
1
2d

∑
x∼y(s(x) − 1)+ < 1. However, taking the above result together with Equation (3) and
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Figure 11: Visualisation of the proof on Z2
6. The blue nodes are the nodes in Ṽ + \ V +, while

the red nodes are the nodes in V +. A + denotes nodes with mass > 1, a − denotes nodes with
mass < 1.

plugging it back into Equation (2), we obtain∑
z∈Zdn

s(z) =
∑
z∈Ṽ +

s(z) +
∑

z∈Zdn\Ṽ +

s(z)

< |Ṽ +|+ nd − |Ṽ +| = nd,

and this is a contradiction as
∑
z∈Zdn

s(z) = nd by definition of s. Now we still have to show that
for all x ∈ V + and y ∼ x

s(y) +
1

2d

∑
x∼y

(s(x)− 1)+ = 1

almost surely does not happen when n ≥ 3. We prove this in a separate theorem.

Theorem 4.4. In the notation of above, we have for fixed x ∈ V + and y ∼ x, that

P

(
s(y) +

1

2d

∑
z∼y

(s(z)− 1)+ = 1

)
= 0,

for n ≥ 3.

Proof. For more convenient notation, we write

Λ(x) := σ(x)− 1

nd

∑
w∈Zdn

σ(w).
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Note first that

P

(
s(y) +

1

2d

∑
z∼y

(s(z)− 1)+ = 1

)
= P

(
Λ(y) +

1

2d

∑
z∼y

1Λ(z)>0Λ(z) = 0

)
.

Next, enumerate the neighbors of y from 1 to 2d. It is then clear that proving the above
probability is zero is equivalent to proving that for any combination of neighbors x1, . . . , xk of
y, 1 ≤ k ≤ 2d, we have

P

Λ(y) +
1

2d

k∑
j=1

Λ(xj) = 0

 = 0.

Explicitly calculating the above gives

Λ(y) +
1

2d

k∑
j=1

Λ(xj) = σ(y)− 1

nd

∑
w∈Zdn

σ(w) +
1

2d

k∑
j=1

σ(xj)−
1

nd

∑
w∈Zdn

σ(w)


= σ(y) +

1

2d

k∑
j=1

σ(xj)−
(

1 +
k

2d

)
1

nd

∑
w∈Zdn

σ(w).

As we are only interested in the case where the above equals zero, we multiply everything with
nd and find that the above is equal to(

nd −
(

1 +
k

2d

))
σ(y) +

(
nd

2d
−
(

1 +
k

2d

)) k∑
j=1

σ(xj)−
(

1 +
k

2d

) ∑
w∈Zdn\{x1,...,xk,y}

σ(w).

This is a linear combination of the i.i.d. Gaussians (σ(x))x∈Zdn , which is never equal to zero
unless all coefficients are equal to zero. However, as we have taken n ≥ 3, and k ≤ 2d, the first
coefficient is always > 0. This proves the claim.

Now putting the above theorems together, gives the claim that the divisible sandpile on Zdn
almost surely does not stabilize in finite time.
Remark: Note that the above proof also works for more general variables. We can repeat the
proof for any sandpile configuration with continuous, i.i.d. weights (σ(x))x∈Zdn .

4.3 The case n = 2, d = 1

Note that in the case Zdn = Z2, the sandpile stabilizes after the first iteration. There are a few
reasons why the above proof fails in this case. As we have taken n ≥ 3, we find that each node
has 2d neighbors, however this does not generalize to the case n = 2, where there are only two
nodes, each has only the other as neighboring node. Here we indeed have

P

(
s(y) +

1

2d

∑
z∼y

(s(z)− 1)+ = 1

)
= 1. (4)

This is seen in the following way: as deg(x) = 1 for x ∈ Z2, we constantly replace the factor 2d
by 1 in the proof of Theorem 4.4. Note that the only neighbor of y, has to have s > 1. Looking
at the last line, we see that this becomes for k = 0, 1

(2− (1 + k))σ(y) + (2− (1 + k))σ(x)− (1 + k)
∑

w∈Zdn\{x,y}

σ(w). (5)
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For k = 1, the first and second coefficient are equal to zero, and as Z2 \ {x, y} = ∅, the last term
vanishes as well. As a consequence, we see that Equation (5) simplifies to 0, so that indeed (4)
holds.

Brief Summary
We have seen that the divisible sandpile, defined as before, almost surely does not stabilize in
finite time. We have first observed that, whenever we find two neighboring sites x, y, of which
one has mass ≥ 1, and one > 1, then the process only stabilizes in the limit. In order to find two
of these sites, we partitioned our graph in V +, the sites with initial mass > 1, Ṽ + \V +, the sites
which receive mass in the first toppling, and Zdn \ Ṽ +, the sites which don’t receive any mass in
the first toppling, and have initial mass < 1. We have seen that it is enough to only consider the
case where each x ∈ V + is isolated, in other words, no two x, y ∈ V + are neighbors. In this way,
no x ∈ V + receives mass after the first toppling. In this way we have seen that∑

z∈Zdn\Ṽ +

s1(z) ≤ |Zdn \ Ṽ +| and
∑
z∈V +

s1(z) = 1.

Now if we can not find a y ∈ Ṽ + \ V + with mass > 1 after the first toppling, then either all
y ∈ Ṽ + \ V + have mass 1, and we have shown that this almost surely does not happen. In the
other case, we can find y ∈ Ṽ + \ V + with s1(y) < 1. In this case

∑
z∈Ṽ +\V + s1(z) < |Ṽ + \ V +|.

This leads to a contradiction, as

nd =
∑
z∈Zdn

s(z) =
∑
z∈Zdn

s1(z) =
∑

z∈Zdn\Ṽ +

s1(z) +
∑
z∈V +

s1(z) +
∑

z∈Ṽ +\V +

s1(z)

< |Zdn \ Ṽ +|+ |V +|+ |Ṽ + \ V +| = nd.

So there must be at least one y ∈ Ṽ + \ V + with mass > 1. As y ∼ x for some x ∈ V +, and x
has mass 1, we are done.
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5 Scaling Limit for i.i.d. Gaussians

5.1 Introduction
Consider a simple random walk on Z. That is, define X0 = 0, and for all n ∈ N

Xn =

{
1, w.p. 1

2

−1, w.p. 1
2

.

Now set Sn :=
∑n
k=0Xk. We can make a plot now of the random walk, as it will look something

like in Figure 12. In this picture we see that we first jump down, then make two jumps upwards,
a jump down again, and so on.

Figure 12: A plot of (Sn)n≥0 for n ≤ 50.

In general, we want to be able to quantify our random walk. For example, we might want
to know the probability of Sn ≥ 10 for n very large. As Sn takes values in [−n2 ,

n
2 ] ∩ Z, we

can explicitly calculate this probability. Consider P(Sn = k). If n is even, then Sn takes only
even values, and if n is odd, Sn takes only odd values. To this end, assume that both n and
k are even. As we require Sn = k, we need to have k jumps up, n−k

2 jumps down, and again
n−k

2 jumps down, not necessarily in that order. The problem is then equivalent to computing
how many combinations there are where we have n+k

2 jumps up, and n−k
2 jumps down, and this

follows essentially a binomial distribution. We have, for k even,

P(Sn = k) =

(
n
n+k

2

)(
1

2

)n
.

Subsequently,

P(Sn ≥ 10) =
∑

10≤k≤n
k even

(
n
n+k

2

)(
1

2

)n
.

Now, even though it is possible in theory to explicitly compute this probability, it is usually not
very practical as the binomial coefficients are computationally expensive to calculate. Another
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approach then is to use a limit theorem, the Central Limit Theorem roughly states that for a
sequence of reasonable enough i.i.d. random variables (Xn)n≥1, the following convergence holds∑n

k=1Xk − E[X1]

σ
√
n

d→ Z,

with Z ∼ N (0, 1). In our case we have E[X1] = 0 and σ = 1. Now, by the Central Limit
Theorem Sn/

√
n→ Z in distribution, and for large n we have 10/

√
n→ 0, so we obtain

P(Sn ≥ 10) = P
(
Sn√
n
≥ 10√

n

)
≈ P(Z ≥ 0) =

1

2
.

Note that this is a much quicker and easier way to approximate the probability we could not
explicitly calculate before. This is exactly the reason why studying scaling limits is so useful,
because instead of working on a gigantic discrete space, we can circumvent the combinatorics
and approximate our probability with a continuous model. In a lot of cases this simplifies our
computation significantly.

This Section, with the exception of subsection 5.6, is entirely based on Cipriani et al. [5], and
the purpose of this section is to explain the techniques they used to prove Theorem 1 in [5]. It
is perhaps important to remark now that we will not go into full detail with their proof, as we
believe it is more important to explain “the big picture” of what is happening.

5.2 Scaling limit of the odometer in the i.i.d. case: the limiting field
We consider a divisible sandpile s on Zdn associated with the initial i.i.d. weights (σ(z))z∈Zdn , as
described in Theorem 3.2. Write en : Zdn → R for the odometer in this case, as we have seen

en
d
=

(
η − min

z∈Zdn
η(z)

)
,

with (η(z))z∈Zdn centered Gaussians with

E[η(x)η(y)] =
1

deg(x) deg(y)

∑
w∈Zdn

g(x,w)g(w, y).

As we want to calculate the scaling limit, we are interested in the behaviour of en as n → ∞.
Now, en is defined on Zdn, and in a sense we can view 1

nZ
d
n as a discretization of the torus Td.

Our limiting field will then also be some sort of function on Td, however it will turn out to be a
bit more subtle than that. First of all, note that we have, for ∆ the graph Laplacian,

∆2
yE[η(x)η(y)] = ∆2

y

 1

deg(x) deg(y)

∑
w∈Zdn

g(x,w)g(w, y)


= ∆y

∑
w∈Zdn

g(x,w)

deg(x)
∆y

g(w, y)

deg(y)

 .
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Now recall our previous calculations with the graph Laplacian (see for example the calculations
in the proof of Theorem 3.2). We find

∆y
g(w, y)

deg(y)
=
∑
z∈Zdn

1

nd
∆yg

z(w, y) =
∑
z∈Zdn

1

nd
(δz(y)− δw(y))

=
1

nd

∑
z∈Zdn

δz(y)− 1

nd

∑
z∈Zdn

δw(y) =
1

nd
− δw(y).

Plugging this into the above yields

∆y

∑
w∈Zdn

g(x,w)

deg(x)

(
1

nd
− δw(y)

) = ∆y

 1

nd

∑
w∈Zdn

g(x,w)

deg(x)
− g(x, y)

deg(x)


= δx(y)− 1

nd
.

This is because 1
nd

∑
w∈Zdn

g(x,w)
deg(x) is constant, and thus vanishes under the graph Laplacian. For

the second term, we can repeat the same computation as above. All of this together gives us
that

∆2E[η(x)η(y)] = δx(y)− 1

nd
.

So in a certain sense, our covariance matrix approximates the inverse of a discrete bi-Laplacian.
We will call the limiting field Ξ. It might now be tempting to simply take the limit n → ∞ in
the above and to conclude that the continuous limit is exactly the inverse bi-Laplacian, but there
are a few problems with this. First of all, the limiting field Ξ is infinite-dimensional, so how do
we quantify a covariance matrix in this case? Second, how does one go about rigorously proving
convergence for random variables taking values in infinite dimensional spaces?

Before answering these questions, we first need to build up some theory around Fourier
analysis and Sobolev spaces on the torus Td.

5.3 Sobolev spaces on the torus Td

For any smooth, rapidly decaying function ϕ on R, we define the Fourier transform on R to be

ϕ̂(ξ) =

∫
R
ϕ(x)eιξx dx.

Now note that, by integration by parts,

ϕ̂(n)(ξ) =

∫
R

dn

dxn
ϕ(x)eιξx dx = (−1)n

∫
R
ϕ(x)

dn

dxn
eιξxdx = (−ιξ)nϕ̂(ξ).

Funny thing really, since we found that ϕ̂(n)(ξ) = (−ιξ)nϕ̂(ξ), we can in this way define fractional
and negative order derivatives in the following way, for a ∈ R we can say

ϕ(a)(x) :=
(

(−ιξ)aϕ̂(a)(ξ)
)∨

.

Now, since the Fourier transform is also defined on Td, we can do something similar to what
we have seen above. We define for any function f ∈ L2(Td) and ν ∈ Zd,

f̂(ν) =

∫
Td
f(x)e2πιν·x dx.
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Subsequently for all x ∈ Td,
f(x) =

∑
ν∈Zd

f̂(ν)e−2πιν·x.

We can define for any a ∈ R the operator (−∆)a by the action of its Fourier transform, let
(eν)ν∈Zd denote the Fourier basis of L2(Zd) (i.e., eν := exp(−2πιν)) and u(ϑ) =

∑
ν∈Zd û(ν)eν(ϑ).

Similar to what we have seen on Rd, we define

(−∆)a
∑
ν∈Zd

û(ν)eν(ϑ) =
∑

ν∈Zd\{0}

‖ν‖2aû(ν)eν(ϑ).

Note that û(0) = 0 since u is a mean zero function. We define the Sobolev space of order −1
H−1(Td) to be the subset of L2(Td) such that the norm

‖u‖2−1 := (u,∆−2u)L2(Td).

is finite. Using the Fourier transform, we can now see what this norm actually means:

‖u‖2−1 =
∑

ν∈Zd\{0}

‖ν‖−4|û(ν)|2.

We have essentially just rescaled the Fourier coefficients. This norm will turn out to be very
important in the construction of our field Ξ, as we will see in the next section!

5.4 Construction of the limiting field Ξ

The presentation here is based on [5] and is a quick rundown of the “Abstract Wiener Spaces”
section in the preliminaries section. We write en(·) for the odometer on Zdn associated with the
i.i.d. weights (σ(z))z∈Zdn . Set

Ξn(x) := 4π2
∑
z∈Tdn

n
d−4
2 en(nz)1B(z, 1

2n )(x),

for x ∈ Tdn. Here we have taken B
(
z, 1

2n

)
in the `∞ norm, so instead of a ball, this will look

like a box. Theorem 1 in [5] tells us that, as n→∞, Ξn
d→ Ξ in the Sobolev space H−ε(Td) for

ε > max{1 + d
4 ,

d
2} (don’t worry about this last part just yet). However, up until now we have

not really explained what Ξ actually is. In this section we will explain and quantify what Ξ is.
As Ξn is a function on Td, we might expect our field Ξ to be that as well. However, as it turns
out Ξ can be seen as a random distribution on Td. In this way, we consider Ξ as a collection of
random variables {〈Ξ, u〉 : u ∈ H−1(Td)}, where 〈·, ·〉 is the usual L2-inner product. Each 〈Ξ, u〉
now is a Gaussian random variable with E[〈Ξ, u〉] = 0 and

E
[
〈Ξ, u〉2

]
= ‖u‖2−1 := (u,∆−2u)L2(Td).

Now for a more rigorous construction of Ξ, we refer the reader to the Preliminaries section. Here
we will state just the essentials to understand the proof of Theorem 1 as given in [5]. Define the
equivalence relation ∼ such that f ∼ g if they differ only by a constant. We set for any a ∈ R:

Ha(Td) := {u ∈ L2(Td) : (−∆)au ∈ L2(Td)}/ ∼,

and supply Ha(Td) with the norm

‖u‖2Ha = ((−∆)au, (−∆)au)L2(Td).
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Then Ξ ∈ H−ε(Td) for ε > 1 + d
4 . Note that actually Ξ is the random distribution associated

with the Gaussian probability measure µ−ε on H−ε(Td). Here µ−ε has characteristic functional

Φ(u) := exp

(
−
‖u‖2−1

2

)
.

However strange this definition may seem, it is in fact the infinite-dimensional version of a random
variable X taking values in the 1-dimensional space R, with characteristic function

E
[
eιtX

]
= e−

t2

2 .

For now, just think of Ξ as a random surface, that we can only quantify through
inner products.

5.5 Proving convergence of Ξn

We repeat Theorem 1 in [5],

Theorem 5.1. Let d ≥ 1 and (σ(x))x∈Zdn be a collection of i.i.d. standard Gaussians. Let
en(·) := eZdn(·) be the odometer on Zdn associated to these weights. The formal field

Ξn(x) := 4π2
∑
z∈Tdn

n
d−4
2 en(nz)1B(z, 1

2n )(x), x ∈ Td

converges in law as n→∞ to the bilaplacian field Ξ on Td. The convergence holds in the Sobolev
space H−ε(Td) with the topology induced by the norm ‖ · ‖H−ε(Td) for any ε > max{1 + d

4 ,
d
2}.

In this section we will dissect the proof of this theorem as given in [5], and explain the
motivation behind the steps taken.

For random variables (Xn)n∈N taking values in the 1-dimensional space R, proving conver-
gence Xn

d→ X is relatively simple. A common technique is to look at the convergence of their
characteristic functions. Write ϕn(t) := E[exp(ιtXn)] for the characteristic function of Xn and
ϕ(t) := E[exp(ιtX)] for the characteristic function of X. If

ϕn(t)→ ϕ(t), ∀t ∈ R,

then Xn
d→ X. As we have already hinted at before, a similar approach is necessary in the

infinite dimensional case: in our case we will be dealing with the sequence (Ξn)n∈N in the space
H−ε(Td), with limit Ξ ∈ H−ε(Td). Now, a remark under Lemma 2.2 in Section 2.1 in [11] states
that for random variables Xn taking values in a Banach space B, Xn

d→ X as soon as for all
f ∈ B′ we have f(Xn)

d→ f(X) as a sequence of real-valued random variables, and the sequence
(Xn)n∈N is tight, meaning for all ε > 0 there exists a compact K ⊂ B such that for all n ∈ N,

P(Xn ∈ K) ≥ 1− ε.

Subsequently, to show that the convergence Ξn
d→ Ξ holds in H−ε(Td), we need to show two

things:

1. The sequence (Ξn)n∈N is tight in the space H−ε(Td).
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2. For all mean zero u ∈ C∞(Td), we have

〈Ξn, u〉
d→ 〈Ξ, u〉 as n→∞.

The proof of 5.1 is then split up in two parts, we first show the convergence of the real valued
random variables (〈Ξn, u〉)n∈N for any mean zero u ∈ C∞(Td), so

〈Ξn, u〉
d→ 〈Ξ, u〉, ∀u ∈ C∞(Td).

The authors of [5] call this (P2). Now by Theorem 2.2 it is enough to show E [〈Ξn, u〉] →
E [〈Ξ, u〉] = 0 and

E
[
〈Ξn, u〉2

]
→ E

[
〈Ξ, u〉2

]
= ‖u‖2−1.

The authors of [5] prove this in a few steps. They first show 〈Ξn, u〉 is a centered Gaussian
random variable for all n ∈ N through a straightforward argument:

〈Ξn, u〉 = 4π2
∑
z∈Tdn

n
d−4
2 en(nz)

∫
Td
u(x)1B(z, 1

2n )(x) dx = 4π2
∑
z∈Tdn

n
d−4
2 en(nz)

∫
B(z, 1

2n )

u(x) dx.

Now, recall that en(nz)
d
=
(
χnz −minz′∈Zdn χz′

)
. If we then plug this into the above equation,

we obtain

4π2
∑
z∈Tdn

n
d−4
2 en(nz)

∫
B(z, 1

2n )

u(x) dx
d
= 4π2

∑
z∈Tdn

n
d−4
2

(
χnz − min

z′∈Zdn
χz′

)∫
B(z, 1

2n )

u(x) dx

= 4π2
∑
z∈Tdn

n
d−4
2 χnz

∫
B(z, 1

2n )

u(x) dx−
(

min
z′∈Zdn

χz′

)
4π2n

d−4
2

∑
z∈Tdn

∫
B(z, 1

2n )

u(x) dx

As we have taken u ∈ C∞(Td) to have integral 0, we see that the last term vanishes, so in fact

〈Ξn, u〉
d
= 4π2

∑
z∈Tdn

n
d−4
2 χnz

∫
B(z, 1

2n )

u(x) dx.

Now we recall from 3.2 that χnz are centered Gaussians, so E[χnz] = 0 for all z ∈ Tdn. Further-
more, note that 〈Ξn, u〉 is a Gaussian random variable again, as it is a linear combination of a
finite amount of Gaussians. The claim then follows, as E [〈Ξn, u〉] = 0 for all n ∈ N, so the limit
agrees with E [〈Ξ, u〉] = 0. The proof for the second moment is way more technical, and to this
end the authors of [5] start off by proving the following Lemma (Proposition 4 in [5]):

Lemma 5.2. The odometer en(·) on Zdn admits the representation

(en(x))x∈Zdn
d
=

(
χx − min

z∈Zdn
χz

)
,

where the χx are centered Gaussians with correlation

E[χxχy] =
n−d

16

∑
z∈Zdn\{0}

exp
(
2πι(y − x) · zn

)(∑d
i=1 sin2

(
π zin
))2 . (6)
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The proof relies on the Fourier transform of gx(a) := g(x, a) = g(a, x), where g is as defined
before. We have for all a 6= 0,

λaĝx(a) = −2dn−d exp
(
−2πιx · a

n

)
.

Here we set

λw = −4

d∑
i=1

sin2
(πwi
n

)
, w ∈ Zdn.

For a = 0 we find
ĝx(0) = n−d

∑
y∈Zdn

gx(y) =: L.

Now the proof of the above assertion follows from applying the Plancherel Theorem to the
covariance function in 3.2, and using the above facts for the Fourier transform of gx. For the
second moment, we approximate the integrals by their value at the centre,∫

B(z, 1
2n )

u(x) dx = n−du(z) +Kn(u).

We obtain

〈Ξn, u〉 = 4π2
∑
z∈Tdn

n
d−4
2 χnz

∫
B(z, 1

2n )

u(x) dx = 4π2
∑
z∈Tdn

n
−(d+4)

2 χnzu(z) +Rn(u).

For now, we will disregard the Rn(u) term, but it can be shown that E[(Rn(u))2]→ 0. Our focus
here is on the first term, by neglecting Rn(u), we find the following:

〈Ξn, u〉2 =

4π2
∑
z∈Tdn

n
−(d+4)

2 χnzu(z)

4π2
∑
z′∈Tdn

n
−(d+4)

2 χnz′u(z′)


= 16π4

∑
z,z′∈Tdn

n−(d+4)χnzχnz′u(z)u(z′).

The beauty now comes when we take the expectation and plug in the covariance from (6). We
see that

E
[
〈Ξn, u〉2

]
= π4

∑
z,z′∈Tdn

n−(2d+4)u(z)u(z′)
∑

w∈Zdn\{0}

exp (2πι(z − z′) · w)(∑d
i=1 sin2

(
πwin

))2 . (7)

Note that the above sums are finite, so we can exchange their order:

(7) =
∑

w∈Zdn\{0}

π4n−4(∑d
i=1 sin2

(
πwin

))2

n−d ∑
z∈Tdn

u(z) exp (2πιz · w)

n−d ∑
z′∈Tdn

u(z′) exp (−2πιz′ · w)

 .

We denote by un : Zdn → R the function defined by un(·) := u
( ·
n

)
. Recall the Fourier transform

on Zdn, and one might now notice that

n−d
∑
z∈Tdn

u(z) exp(2πιz · w) = n−d
∑
z∈Zdn

un(z) exp
(

2πιz · w
n

)
= ûn(w).
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Notice as well how the above approximates a Riemann integral, and since u is sufficiently smooth
we have the convergence ûn(w) → û(w), where û is just the regular Fourier transform on Td.
Similarly, we see that the third term is equal to ûn(w), so plugging this into the above, we find
that it simplifies to ∑

w∈Zdn\{0}

π4n−4(∑d
i=1 sin2

(
πwin

))2 |ûn(w)|2.

To deal with the fraction term in the summation, Cipriani et al. have made a sharp observation:
Lemma 7 in [5] says

Lemma 5.3. There exists c > 0 such that for all n ∈ N and w ∈ Zdn \ {0} we have

1

‖πw‖4
≤ n−4

(
d∑
i=1

sin2
(πwi
n

))−2

≤
(

1

‖πw‖2
+

c

n2

)2

.

Multiplying by π4 and subsequently taking the limit of n→∞ in the above, we see what it’s
really about. We find

π4n−4(∑d
i=1 sin2

(
πwin

))2 →
1

‖w‖4
.

The proof is based on the approximation sin(x) ≈ x for small x. Now, as n→∞, the argument
in our sin’s also tends to 0, so heuristically speaking,

d∑
i=1

sin2
(πwi
n

)
≈

d∑
i=1

(πwi
n

)2

= n−2‖πw‖2.

In this way we can see, (
d∑
i=1

sin2
(πwi
n

))−2

≈ n4

‖πw‖4
.

Now Lemma 5.3 follows by scaling appropriately. For a more rigorous proof, we refer the reader
to [5]. Using this approximation then, it is enough to show the convergence of∑

w∈Zdn\{0}

‖w‖−4|ûn(w)|2 =
∑

w∈Zd\{0}

1w∈Zdn‖w‖
−4|ûn(w)|2. (8)

Ultimately, we would like to switch limit and integral in the above, to obtain (note 1w∈Zdn → 1w∈Zd
and ûn → û):

lim
n→∞

∑
w∈Zd\{0}

1w∈Zdn‖w‖
−4|ûn(w)|2 =

∑
w∈Zd\{0}

‖w‖−4|û(w)|2 = (u,∆−2u)L2(Td). (9)

In the case d ≤ 3, we see that for some C > 0 and n large enough,

|ûn(w)| =

∣∣∣∣∣∣ 1

nd

∑
z∈Zdn

u
( z
n

)
exp

(
2πιw · z

n

)∣∣∣∣∣∣ ≤ 1

nd

∑
z∈Zdn

∣∣∣u( z
n

)∣∣∣
≤ C

∫
Td
|u(z)| dz ≤ C‖u‖L1(Td) <∞.
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So 1w∈Zdn‖w‖
−4|ûn(w)|2 ≤ C2‖w‖−4‖u‖2L1(Td). As this function is integrable over Zd when

d ≤ 3, we can use the dominated convergence theorem to switch limit and integral as in 9, and
the required convergence follows. The case d ≥ 4 is more complicated, as we can not easily
bound our function by an integrable function anymore. The strategy used in [5] (and we will
repeatedly use in the next section as well) is to use a mollifier. For now, we will only heuristically
explain what is happening in their proof. Take any φ ∈ S(Rd) with compact support on [− 1

2 ,
1
2 ]d

and
∫
Rdφ(x) dx = 1. Write φκ(x) := κ−dφ

(
x
κ

)
. We now know a few things about the Fourier

transform φ̂κ. First of all, as φ is smooth, the rescaled φκ is smooth as well, so the Fourier
transform φ̂κ(ξ) decays rapidly as |ξ| → ∞. Second, φκ will resemble a delta peak, so we would
expect the Fourier transform to φ̂κ(ξ) → 1 pointwise as κ → 0. The fact that φ̂κ(ξ) → 1

pointwise as κ→ 0, and that φ̂κ(ξ) decays rapidly in ξ for all κ > 0 makes this a very useful tool
in proving convergence. Cipriani et al. use this to split up (9) in two parts. We have∑

w∈Zdn\{0}

(1− ϕ̂κ(w)) ‖w‖−4|ûn(w)|2 +
∑

w∈Zdn\{0}

ϕ̂κ(w)‖w‖−4|ûn(w)|2. (10)

We will be taking the limit n→∞ and κ→ 0. First, they derive a clever bound. We have

|ϕ̂κ(w)− 1| ≤ Cκ‖w‖,

for some C > 0 and all w ∈ Zd. We then use this to swiftly bound the first term in (10),∑
w∈Zdn\{0}

(1− ϕ̂κ(w)) ‖w‖−4|ûn(w)|2 ≤ Cκ
∑

w∈Zdn\{0}

‖w‖−3|ûn(w)|2 ≤ Cκ
∑

w∈Zdn\{0}

|ûn(w)|2

≤ Cκ‖u‖2L2(Td) → 0,

as κ→ 0. For the second term now, we will first be taking the limit n→∞, and then the limit
κ→ 0. Note that we now have our Fourier transformed mollifier in the summation, which goes
to 0 rapidly, thus it justified to use the dominated convergence theorem to obtain

lim
n→∞

∑
w∈Zdn\{0}

ϕ̂κ(w)‖w‖−4|ûn(w)|2 =
∑

w∈Zd\{0}

ϕ̂κ(w)‖w‖−4|û(w)|2.

Now we have done away with the ûn(w) terms. Moreover, we have the bound |ϕ̂κ(w)| ≤ 1 for all
w ∈ Zd, so again we can bound the function in the summation by an integrable function. Using
the dominated convergence theorem again, we find

lim
κ→0

∑
w∈Zd\{0}

ϕ̂κ(w)‖w‖−4|û(w)|2 = (u,∆−2u)L2(Td).

So by Theorem 2.2, we have now proven for any u ∈ C∞(Td) with integral 0, that

〈Ξn, u〉
d→ 〈Ξ, u〉,

with 〈Ξ, u〉 ∼ N (0, ‖u‖2−1). Assertion (P2) as in [5] is proven now, however we are not done yet,
as we still have to show tightness of the sequence (Ξn)n∈N in the space H−ε(Td). We closely
follow the proof from Section 4.2 in [5]. By Section 2.1 in [11], we have to find a compact
K ⊂ H−ε(Td) such that for all n ∈ N we have

P(Ξn ∈ K) ≥ 1− ε.
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Note that proving this is equivalent with showing that for all δ > 0, we can find K compact such
that

sup
n∈N

P(Ξn /∈ K) ≤ δ. (11)

Before we proceed, we state Rellich’s Theorem (as can be found in [5] or [6]), which will turn
out to be very useful in the next step of our proof:

Theorem 5.4. For k1 < k2, the inclusion operator Hk2(Td) ↪→ Hk1(Td) is a compact operator.
Equivalently, if V ⊂ Hk2(Td) is bounded, then V ⊂ Hk1(Td) is compact.

From Section 2 in [5] (or see Appendix 2.3), we know that for any a there is an isomorphism
between Ha(Td) and Ha(Td), so the above theorem will also apply for the spaces we are working
with. The strategy for showing tightness then is the following: as H− ε2 (Td) ↪→ H−ε(Td) is a
compact embedding, it suffices to find a boundedK ⊂ H− ε2 (Td) such that supn∈N P(Ξn /∈ K) ≤ δ.
Because if we have found such a K, then K is compact in H−ε(Td), and the required condition
(Equation 11) holds for K.

We will show, as in the proof of (P1) in [5], that for any δ > 0, there exists Rδ such that
supn∈N P(Ξn /∈ BH− ε

2
(0, Rδ)) ≤ δ. By Theorem 5.4, this is sufficient. Note that this is just

equivalent to showing
sup
n∈N

P
(
‖Ξn‖H− ε

2
≥ Rδ

)
≤ δ.

We now use Markov’s inequality to obtain,

P
(
‖Ξn‖H− ε

2
≥ Rδ

)
≤

E
[
‖Ξn‖2H− ε

2

]
R2
δ

.

Putting sup’s in front of everything above, we see that it is enough to show that E
[
‖Ξn‖2H− ε

2

]
is uniformly bounded in n. First of all,

‖Ξn‖2L2(Td) = 16π4nd−4
∑

x,y∈Td

(
χnx − min

w∈Zdn
χw

)(
χny − min

w∈Zdn
χw

)
.

So for n fixed, we have Ξn ∈ L2(Td) almost surely, as it is just a finite combination of Gaussians.
Now, since Ξn ∈ L2(Td) it admits a Fourier representation, so we have

‖Ξn‖2H− ε
2

=
∑

ν∈Zd\{0}

‖ν‖−2ε
∣∣∣Ξ̂n(ν)

∣∣∣2 ,
with

Ξ̂n(ϑ) =

∫
Td

Ξn(ϑ)eν(ϑ) dϑ = 4π2
∑
x∈Tdn

n
d−4
2 χnx

∫
B(x, 1

2n )

eν(ϑ) dϑ.

Now explicitly calculating the expectation,

E
[
‖Ξn‖2H− ε

2

]
= 16π4

∑
ν∈Zd\{0}

∑
x,y∈Tdn

‖ν‖−2εnd−4E[χnxχny]

∫
B(x, 1

2n )

eν(ϑ) dϑ

∫
B(y, 1

2n )

eν(ϑ) dϑ

= 16π4
∑

ν∈Zd\{0}

∑
x,y∈Tdn

‖ν‖−2εnd−4H(nx, ny)

∫
B(x, 1

2n )

eν(ϑ) dϑ

∫
B(y, 1

2n )

eν(ϑ) dϑ.
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We write Fn,ν : Tdn → R for Fn,ν(x) :=
∫
B(x, 1

2n )
eν(ϑ) dϑ. Now eν ∈ L2(Td), so by Cauchy-

Schwarz we have that Fn,ν is bounded, and therefore integrable on Tdn. We make the following
claim: there exists C ′ > 0 such that

sup
ν∈Zd

sup
n∈N

∑
x,y∈Tdn

nd−4H(nx, ny)Fn,ν(x)Fn,ν(y) ≤ C ′. (12)

If this holds true, we find that (because −ε < −d2 ),

E
[
‖Ξn‖2H− ε

2

]
= 16π4

∑
ν∈Zd\{0}

‖ν‖−2ε
∑

x,y∈Tdn

nd−4H(nx, ny)Fn,ν(x)Fn,ν(y)

≤ C ′
∞∑
k=1

kd−1−2ε ≤ C <∞.

Since the last constant C does not depend on n, we have that the expectation is uniformly
bounded in n, which is exactly what we needed. Now in proving (12), we will stray off the beaten
path, as we believe we have found a shorter proof of this claim. First we denote Gn,ν : Zdn → R
for the rescaled version of Fn,ν , set Gn,ν(·) := Fn,ν

( ·
n

)
. We have∑

x,y∈Tdn

nd−4H(nx, ny)Fn,ν(x)Fn,ν(y) = C
∑

x,y∈Zdn

∑
w∈Zdn\{0}

n−4 exp
(
2πι(x− y) · wn

)(∑d
i=1 sin2

(
πwi
n

))2 Gn,ν(x)Gn,ν(y).

(13)

From [5], and 5.3 before, we can bound n−4
(∑d

i=1 sin2
(
πwi
n

))−2

≤ C‖w‖−4 for some C > 0.
Furthermore,

(13) ≤ C
∑

x,y∈Zdn

∑
w∈Zdn\{0}

exp
(
2πι(x− y) · wn

)
‖w‖4

Gn,ν(x)Gn,ν(y)

= Cn2d
∑

w∈Zdn\{0}

‖w‖−4
∣∣∣Ĝn,ν(w)

∣∣∣2 ≤ Cn2d
∑
w∈Zdn

∣∣∣Ĝn,ν(w)
∣∣∣2 .

Now using the Plancherel Theorem, we obtain the following bound for some C ′ > 0 (this is
calculation (4.18) in [5]),∑

w∈Zdn

∣∣∣Ĝn,ν(w)
∣∣∣2 = n−d

∑
w∈Zdn

Gn,ν(w)Gn,ν(w) = n−d
∑
w∈Tdn

Fn,ν(w)Fn,ν(w)

≤ n−2d
∑
w∈Tdn

∫
B(w, 1

2n )

|eν(ϑ)| dϑ = n−2d

∫
Td
|eν(ϑ)| dϑ

≤ n−2d‖eν‖L1(Td) ≤ C ′n−2d.

Here we have used, in the second to last line, that |Fn,ν(w)| ≤ n−d: this fact is easily proven
as we are integrating a function bounded in modulus by 1, over an area of measure n−d. Now
putting all of this together, we have

(13) ≤ Cn2d
∑
w∈Zdn

∣∣∣Ĝn,ν(w)
∣∣∣2 ≤ Cn2dC ′n−2d ≤ C.

This proves the tightness, and we are done.
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5.6 Calculating the covariance of the random variables 〈Ξ, f〉
In the previous parts, we have shown the convergence of the real-valued random variables 〈Ξ, u〉.
We obtained that for each u ∈ C∞(Td), 〈Ξ, u〉 ∼ N (0, ‖u‖2−1). Considering now {〈Ξ, u〉 : u ∈
H−1(Td)} as a collection of real-valued random variables, we might be interested in the covariance
of any two 〈Ξ, f〉, 〈Ξ, f ′〉. We can do this in the same way as the proof of 5.1, however here
and there we will tweak the argument to make everything work out. We state and prove the
following:

Theorem 5.5. For any pair f, f ′ ∈ C∞(Td) of mean zero smooth test functions, we have the
following identity:

E[〈Ξ, f〉〈Ξ, f ′〉] = (∆−1f,∆−1f ′)L2(Td).

Proof. We find from [5], that

〈Ξn, u〉 = 4π2n−
d+4
2

∑
z∈Tdn

χnzu(z) +Rn(u).

Now,
E[〈Ξn, f〉〈Ξn, f ′〉] = 16π4n−(d+4)

∑
z,z′∈Tdn

f(z)f ′(z′)E[χnzχnz′ ] +Rn(f, f ′). (14)

We first show that the first term converges to the required result, in the end we will specify
Rn(f, f ′) and show that it goes to 0 as n→∞. Recall the covariance from equation (3.3) in [5].
Plugging this into the above equation yields

(14)−Rn(f, f ′) = π4n−2dn−4
∑

z,z′∈Tdn

f(z)f ′(z′)
∑

w∈Zdn\{0}

e2πι(z−z′)·w(∑d
i=1 sin2

(
πwi
n

))2

= π4n−4
∑

w∈Zdn\{0}

f̂n(w)f̂ ′n(w)(∑d
i=1 sin2

(
πwi
n

))2 . (15)

Here we have defined fn : Zdn → R by fn(z) = f
(
z
n

)
for more convenient notation. Subsequently,

we want to say something about the behaviour of the denominator as n→∞. We claim that it
gets arbitrarily close to ‖w‖−4. Consider the following:∣∣∣∣∣∣(15)−

∑
w∈Zdn\{0}

f̂n(w)f̂ ′n(w)

‖w‖4

∣∣∣∣∣∣ ≤
∑

w∈Zdn\{0}

|f̂n(w)f̂ ′n(w)|

∣∣∣∣∣∣∣
π4n−4(∑d

i=1 sin2
(
πwi
n

))2 −
1

‖w‖4

∣∣∣∣∣∣∣ .
We know from Lemma 7 in [5] that for some C > 0 and all n ∈ N, we have∣∣∣∣∣∣∣

π4n−4(∑d
i=1 sin2

(
πwi
n

))2 −
1

‖w‖4

∣∣∣∣∣∣∣ ≤
C

n2
.

On the other hand, we claim that
∑
w∈Zdn\{0}

|f̂n(w)f̂ ′n(w)| is uniformly bounded in n. First of
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all, by the Cauchy-Schwarz inequality ∑
w∈Zdn\{0}

|f̂n(w)f̂ ′n(w)|

2

≤

 ∑
w∈Zdn\{0}

|f̂n(w)|2
 ∑

w′∈Zdn\{0}

|f̂ ′n(w′)|2


=

n−d ∑
w∈Zdn

∣∣∣f (w
n

)∣∣∣2
n−d ∑

w′∈Zdn

∣∣∣∣f ′(w′n
)∣∣∣∣2
 .

Now, n−d
∑
w∈Zdn

|f(w/n)|2 →
∫
Td f(x)2 dx < ∞, so indeed the previous term is uniformly

bounded in n. Subsequently,∣∣∣∣∣∣(15)−
∑

w∈Zdn\{0}

f̂n(w)f̂ ′n(w)

‖w‖4

∣∣∣∣∣∣ ≤ Cn−2 → 0.

It is now enough to consider only the convergence of

∑
w∈Zdn\{0}

f̂n(w)f̂ ′n(w)

‖w‖4
= n−2d

∑
z,z′∈Tdn

f(z)f ′(z′)
∑

w∈Zdn\{0}

e2πι(z−z′)·w

‖w‖4
. (16)

Next we split our proof. The case d ≤ 3 is more straightforward, since ‖w‖−4 is integrable on
Zd. First of all, note that

f̂n(w) = n−d
∑
z∈Zdn

f(z)e2πιw· zn →
∫
Td
f(x)e2πιw·x dx = f̂(w).

Using this fact, we can use the dominated convergence theorem in the same way as [5]. We find

(16)→
∑

w∈Zdn\{0}

f̂(w)f̂ ′(w)

‖w‖4
= (∆−1f,∆−1f ′)L2(Td).

Next consider d ≥ 4. In this case another approach is necessary since ‖w‖−4 is not integrable on
Zd. To this end, take any φ ∈ S(Rd) with support in [− 1

2 ,
1
2 )d and

∫
Rd φ(x) dx = 1. For κ > 0

define φκ(x) := κ−1φ
(
x
κ

)
. It is now sufficient to consider

lim
κ→0

lim
n→∞

∑
z,z′∈Tdn

f(z)f ′(z′)
∑

w∈Zdn\{0}

φ̂κ(w)
e2πι(z−z′)·w

‖w‖4
,

as we claim

lim
κ→0

lim sup
n→∞

n−2d
∑

z,z′∈Tdn

f(z)f ′(z′)
∑

w∈Zdn\{0}

(
φ̂k(w)− 1

) e2πι(z−z′)·w

‖w‖4
= 0.

To prove this, we recall from [5] that∣∣∣φ̂κ(w)− 1
∣∣∣ ≤ Cκ‖w‖.
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Subsequently we have∣∣∣∣∣∣n−2d
∑

z,z′∈Tdn

f(z)f ′(z′)
∑

w∈Zdn\{0}

(
φ̂k(w)− 1

) e2πι(z−z′)·w

‖w‖4

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

w∈Zdn\{0}

φ̂κ(w)− 1

‖w‖4
f̂n(w)f̂ ′n(w)

∣∣∣∣∣∣
≤ Cκ

∑
w∈Zdn\{0}

‖w‖−3|f̂n(w)f̂ ′n(w)|

≤ Cκ
∑

w∈Zdn\{0}

|f̂n(w)f̂ ′n(w)|.

As we have already seen before,
∑
w∈Zdn\{0}

|f̂n(w)f̂ ′n(w)| <∞ uniformly in n. Now letting κ→ 0
in the above expression gives the required result. We now look at the convergence of the other
expression,

lim
κ→0

lim
n→∞

∑
z,z′∈Tdn

f(z)f ′(z′)
∑

w∈Zdn\{0}

φ̂κ(w)
e2πι(z−z′)·w

‖w‖4
.

Since φ is a smooth function, transformed φ̂κ(w) decays fast at infinity, resolving the issue with
the integrability of ‖w‖−4. We can now apply the dominated convergence theorem:

lim
n→∞

n−2d
∑

z,z′∈Tdn

f(z)f ′(z′)
∑

w∈Zdn\{0}

φ̂κ(w)
e2πι(z−z′)·w

‖w‖4
=

∑
w∈Zd\{0}

φ̂κ(w)
f̂(w)f̂ ′(w)

‖w‖4
.

Now since |φ̂κ(·)| ≤ 1 uniformly in κ, we again utilize the dominated convergence theorem to
obtain

lim
κ→0

∑
w∈Zd\{0}

φ̂κ(w)
f̂(w)f̂ ′(w)

‖w‖4
=

∑
w∈Zd\{0}

f̂(w)f̂ ′(w)

‖w‖4
= (∆−1f,∆−1f ′)L2(Td).

It now rests us to prove that Rn(f, f ′)→ 0 as n→∞. The rest term is given by

Rn(f, f ′) = E

Rn(f ′)4π2n−
(d+4)

2

∑
z∈Tdn

f(z)χnz

+E

Rn(f)4π2n−
(d+4)

2

∑
z′∈Tdn

f ′(z′)χnz′

+E[Rn(f)Rn(f ′)].

For the first and second term, we apply Cauchy-Schwarz and see:E

Rn(f ′)4π2n−
(d+4)

2

∑
z∈Tdn

f(z)χnz

2

≤
(
E[R2

n(f)]
)
E

4π2n−
(d+4)

2

∑
z∈Tdn

f(z)χnz

2

≤ C · E[R2
n(f)]‖f‖2−1 → 0.

The convergence to 0 follows from Proposition 6 in [5], which states that E[R2
n(f)]→ 0. For the

last term, we use Cauchy-Schwarz again:

E[Rn(f)Rn(f)]2 ≤ E[R2
n(f)]E[R2

n(f ′)]→ 0.

Lastly, note that for large n ∈ N there exists C > 0 such that

E[〈Ξn, f〉〈Ξn, f ′〉]2 ≤ E[〈Ξn, f〉2]E[〈Ξn, f ′〉2] ≤ C‖f‖2−1‖f ′‖2−1.
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Now by the dominated convergence theorem (again), we have

E[〈Ξ, f〉〈Ξ, f ′〉] = lim
n→∞

E[〈Ξn, f〉〈Ξn, f ′〉] = (∆−1f,∆−1f ′)L2(Td).

5.7 Brief summary
We will now give a brief overview of what we have seen so far. Recall our definition of the
sandpile on Zdn. We had initial configuration given by,

s(x) = 1 + σ(x)− 1

nd

∑
z∈Zdn

σ(z),

where the (σ(x))x∈Zdn are i.i.d. standard normals. In the previous section, we have already seen
that the odometer en : Zdn → R is distributed as

en(·) d
=

(
η − min

z∈Zdn
η(z)

)
,

with η correlated, centered Gaussians. An interesting observation now comes looking at the
covariance of (η(x))x∈Zdn , we find (here ∆g denotes the discrete Laplacian, as can be found in
the previous section),

∆2
gE[η(x)η(y)] = δx(y)− 1

nd
.

In some sense, our covariance structure approximates an inverse bilaplacian. It can also be
thought of as a Green’s function for the discrete bilaplacian. The question now is whether our
field is still bilaplacian if we take the limit n→∞ and consider our sandpile on 1

nZ
d
n. To answer

this question, we walked through the proof of Theorem 1 in [5], step by step. We have defined
a rescaled version of the odometer, Ξn, and we have seen that our limiting field is defined as a
distribution, Ξ = {〈Ξ, u〉 : u ∈ H−1(Td)}, with

E
[
〈Ξ, u〉2

]
= (u,∆−2u)L2(Td).

The inverse bilaplacian ∆−2 was defined through the Fourier coefficients, as ∆ ∼ ‖ξ‖2, we have
∆−2 ∼ ‖ξ‖−4. To rigorously prove the convergence Ξn

d→ Ξ, we had to check two things:

1. 〈Ξn, u〉
d→ 〈Ξ, u〉 for all u ∈ C∞(Td), as a sequence of real-valued random variables.

2. The sequence (Ξn)n∈N is tight in the space H−ε(Td).

The first statement was proven by first observing that each 〈Ξn, u〉 is Gaussian, since it is a finite
linear combination of Gaussian random variables. Moreover, we have seen that E[〈Ξn, u〉] = 0.
We have seen that for a sequence of Gaussians (Xn)n∈N with mean E[Xn] = mn such that
mn → m <∞, and Var(Xn) = σ2

n → σ2 <∞, the following convergence holds

Xn
d→ X,

with X ∼ N (m,σ2). Thus to show the first assertion we have proven that

E
[
〈Ξn, u〉2

]
→ (u,∆−2u)L2(Td).
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Because the first moments are always 0, this was sufficient. Now, to prove the tightness, we had
to find, for any δ > 0, a compact K ⊂ H−ε(Td) such that for all n ∈ N,

P(Ξn /∈ K) ≤ δ.

We have found this K with a bit of a detour, we have used Rellich’s Theorem to first find a
bounded set V ∈ H− ε2 (Td), such that P(Ξn /∈ V ) ≤ δ holds. Since H− ε2 (Td) ↪→ H−ε(Td) is a
compact embedding, we have that V ⊂ H−ε(Td). So now we have a compactK := V ⊂ H−ε(Td),
with P(Ξn /∈ K) ≤ δ. This proves the second statement, so we are done.

After this, we used the same techniques as described above in proving that for any two
f, f ′ ∈ C∞(Td), we have

E [〈Ξ, f〉〈Ξ, f ′〉] = (∆−1f,∆−1f ′)L2(Td).

In this result we can see on the left hand side the L2(Ω) inner product between the Gaussians
〈Ξ, f〉, 〈Ξ, f ′〉, and on the right hand side the H−1(Td) inner product between the test functions
f, f ′ ∈ C∞(Td).

47



6 Scaling Limit for Correlated Gaussians

6.1 Introduction
In the previous section, we started with a divisible sandpile with Gaussian i.i.d. weights (σ(x))x∈Zdn .
We saw that a rescaling of the odometer en, called Ξn, converges in law to the bilaplacian field
Ξ. We characterized this field in the following way: for any u ∈ C∞(Td), we have that 〈Ξ, u〉 is a
Gaussian with 〈Ξ, u〉 ∼ N (0, ‖u‖2−1). In this section, we consider the odometer en for a divisible
sandpile given by weights (σ(x))x∈Zdn , where the weights are correlated by a certain covariance
function K(x, y),

E[σ(x)σ(y)] = K(x, y).

The most natural assumption to make on such a covariance function K is that it depends on the
distance between x and y. We thus set K(x, y) = K(x− y) for some even function K : Zdn → R.
This is called a stationary covariance function. We will then determine the convergence of
the rescaled odometer by using the same techniques as [5].

6.2 Covariance functions on Zd
n

There are, as ever, some challenges in defining a proper covariance function in our case. The
first problem is that our graph is changing for each n, so we will be dealing with a sequence
of covariance functions (Kn)n∈N, where for all n, we have Kn : Zdn → R. In some way, these
covariance functions need to be related to each other. One way to define our sequence (Kn)n∈N
is by first considering K : Td → R with K(0). We will subsequently define for every n ∈ N and
x, y ∈ Zdn,

E[σ(x)σ(y)] = Kn(x− y) := K
(x
n
− y

n

)
.

In this way, we are discretizing the torus again, and considering our Kn on discretizations of
Td that get more refined as n grows. However, the problem with this definition is that we can
not generate an i.i.d. collection of Gaussians. To do this, we would like K(x − y) = 1 if x = y
and K(x − y) = 0 if x 6= y. The only function that satisfies this is K : Td → R defined by
K(z) = 1{z=0} for all z ∈ Td. Seeing as we do most of our analysis in L1(Td) and L2(Td) the
function 1{z=0} is identified exactly with 0, and will thus disappear under Fourier transforms or
convolutions.

Another way to construct a covariance function that is defined on Zdn for all n ∈ N is to define
K : Zd → R such that (x, y) 7→ K(x − y) is positive definite on Zdn × Zdn for every n ∈ N. We
also require ‖K‖`1(Zd) < ∞. We subsequently define Kn : Zdn → R by Kn = K|Zdn . An example
of such a K is given by

K(x− y) =

{
‖x− y‖−α, for x 6= y

C, for x = y.
,

where C >
∑
z∈Zdn

‖z‖−α. First of all note that (z, z′) 7→ Kn(x − y) is positive definite for all
n ∈ Zdn. Choose any n ∈ N. We have Kn(z − z′) = ‖z − z′‖−α = ‖z′ − z‖−α = Kn(z′ − z), so
Kn is symmetric. Second, the matrix defined by Kn is strictly diagonally dominant, as we have
Kn(z − z) ≥

∑
z′∈Zdn

Kn(z − z′) by the way C = Kn(0) was defined. Putting all this together
proves that K is positive definite for any restriction on Zdn. This time, we can define an i.i.d.
collection, by simply setting K(z) = 1{z=0}, as this is indeed a well-defined function on Zd.
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6.3 Main results
In this section we will prove the following theorem:

Theorem 6.1. Let en : Zdn → R be the odometer associated with the weights (σ(x))x∈Zdn , which
have covariance given K : Zd → R as described in Section 6.2. Set CK =

∑
w∈Zd K(w) and define

for CK 6= 0,
ΞKn (x) = C−1/2

K 4π2
∑
z∈Tdn

n
d−4
2 en(nz)1B(z, 1

2n )(x), x ∈ Td.

Then ΞKn
d→ Ξ in H−ε(Td) for ε > max{1 + d

4 ,
d
2}, where Ξ is the bilaplacian field: we have for

all mean zero u ∈ C∞(Td) that 〈Ξ, u〉 ∼ N (0, ‖u‖2−1).

Note that we are using the same definition of Ξn as in [5], but that we now added a scaling
factor C−1/2

K . This constant is necessary as we will see in the next few examples. We consider
the field Ξn without the appropriate scaling factor (so without the extra C−1/2

K ), under different
kinds of covariances. We will indeed see that the larger CK, the larger the peaks of our limiting
field.
Example 1: We consider a divisible sandpile on Z2

n with correlation given by

K(x− y) =

{
7, for x = y

−‖x− y‖−3, for x 6= y.
.

In this case, the factor 7 is chosen such that CK is very small. In our case we have

CK ≈ 0.48,

when the summation is considered on Z2
100. We can now run a simulation of the scaling limit,

which will look as in Figure 13.

Figure 13: Scaling limit of the odometer under negative covariances, K is as specified above.

We remark that in the i.i.d. case, the surface frequently fluctuates at a height of around 20,
with the minimum still being 0. In our case now, our peaks have a height of about 15. Our idea
of a “rescaled” bilaplacian field seems to make sense then.

49



Example 2: We now consider a sandpile with covariance function

K(x− y) =

{
7, for x = y

‖x− y‖−3, for x 6= y.
.

Now we have
CK ≈ 13.5,

so we expect our surface to have higher peaks than in the i.i.d. case. Simulating the sandpile
with this covariance, indeed confirms our expectations. See Figure 14. Note that the peaks of
our surface almost hit a height of 50.

Figure 14: Scaling limit of the odometer under positive covariance K as above.

6.4 Proof of Theorem 6.1
We will prove Theorem 6.1 in a few steps. We will first derive a useful formula for the covariance
of the odometer en(·) on Zdn, similar to Equation (3.3) in [5]. After this we will use this to
determine the scaling limit, and at last we will show the tightness of our sequence (Ξn)n∈N in
the space H−ε(Td). Recall from Theorem 3.3 that the odometer had distribution

en(·) =

(
η − min

z∈Zdn
η(z)

)
,

with (for Kn our covariance on Zdn),

E[η(x)η(y)] =
1

(2d)2

∑
z,z′∈Zdn

Kn(z − z′)g(z, x)g(z′, y). (17)

We recall that the eigenvalues of the Laplacian ∆ are given by (ξ 6= 0):

λξ = −4

d∑
i=1

sin2

(
π
ξi
n

)
.

Then:
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Theorem 6.2. Let en : Zdn → R be the odometer associated with the stationary covariance
functions (Kn)n∈N as above. Then

en
d
=

(
χ− min

z∈Zdn
χz

)
.

Here (χz)z∈Zdn is a collection of centered Gaussians with covariance

E[χxχy] =
∑

ξ∈Zdn\{0}

K̂n(ξ)
exp

(
2πι(x− y) · ξn

)
λ2
ξ

=: Hn(x, y).

Proof. As we have remarked above, the covariance of the field (η(z))z∈Zdn associated with the
odometer is given by

E[η(x)η(x)] =
1

(2d)2

∑
z,z′∈Zdn

Kn(z − z′)g(z, x)g(z′, y).

We denote gx(·) = g(·, x). Subsequently we utilize the Plancherel theorem to find

1

(2d)2

∑
z,z′∈Zdn

Kn(z − z′)g(z, y)g(z′, x) =
1

(2d)2

∑
z∈Zdn

g(z, y)
∑
z′∈Zdn

Kn(z − z′)g(z′, x)

=
nd

(2d)2

∑
z∈Zdn

g(z, y)
∑
ξ∈Zdn

exp

(
2πιz · ξ

n

)
K̂n(ξ)ĝx(ξ).

Here we have used the fact that Kn(z− z′) = Kn(z′− z), and then used the shift theorem. Next,
swapping the order of summation,

(. . .) =
nd

(2d)2

∑
ξ∈Zdn

∑
z∈Zdn

g(z, y) exp

(
2πιz · ξ

n

) K̂n(ξ)ĝx(ξ)

=
n2d

(2d)2

∑
ξ∈Zdn

K̂n(ξ)ĝy(ξ)ĝx(ξ)

=
n2d

(2d)2
K̂n(0)ĝy(0)ĝx(0) +

n2d

(2d)2

∑
ξ∈Zdn\{0}

K̂n(ξ)ĝy(ξ)ĝx(ξ).

We find ĝx(0) =
∑
z∈Zdn

g(z, x), which does not depend on x. In this way, we see that the first
term is constant, and thus vanishes in a similar way as in the proof of Proposition 1.3 of [1] and
the proof of Proposition 4 in [5]. Considering now the second term above, we recall Equation
(20) in [1], for ξ 6= 0,

ĝx(ξ) = −2dn−dλ−1
ξ exp

(
−2πιξ · x

n

)
.

Plugging this into the above, we obtain

E[χxχy] =
∑

ξ∈Zdn\{0}

K̂n(ξ)
exp

(
2πι(x− y) · ξn

)
λ2
ξ

.
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Now we still need to show the positive-definiteness of Hn(x, y). For any function c : Zdn → C,
such that c is not the zero function, we show that

∑
x,y∈Zdn

Hn(x, y)c(x)c(y) > 0. First of all,
since Kn(z − z′) is positive definite, we have

0 <
∑

z,z′∈Zdn

Kn(z − z′)c(z)c(z′) =
∑
z∈Zdn

c(z)
∑
z′∈Zdn

Kn(z − z′)c(z′). (18)

In the same way as above, we obtain

0 < [18] = n2d
∑
ξ∈Zdn

K̂n(ξ)ĉ(ξ)ĉ(ξ) = n2d
∑
ξ∈Zdn

K̂n(ξ)|ĉ(ξ)|2.

Since this needs to hold for all such functions c(x), we conclude that K̂n(ξ) > 0 for all ξ ∈ Zdn.
Next we find ∑

x,y∈Zdn

Hn(x, y)c(x)c(y) =
∑

x,y∈Zdn

c(x)c(y)
∑

ξ∈Zdn\{0}

K̂n(ξ)
e2πι(x−y)· ξn

λ2
ξ

= n2d
∑

ξ∈Zdn\{0}

K̂n(ξ)

λ2
ξ

ĉ(ξ)ĉ(ξ)

= n2d
∑

ξ∈Zdn\{0}

K̂n(ξ)

λ2
ξ

|ĉ(ξ)|2 > 0.

Since λ2
ξ > 0 the positive definiteness of Hn(x, y) follows, as we are just summing positive, real

terms.

We are now ready to prove Theorem 6.1. We will use the same techniques as the proof of
Theorem 1 in [5], and as described in Section 5. We remark first that

K̂n(ξ) = n−d
∑
w∈Zdn

Kn(w) exp

(
2πιw · ξ

n

)

= n−d
∑
w∈Zdn

Kn(w)1w∈Zdn exp

(
2πιw · ξ

n

)
.

The proof is again split up in two parts, we first prove the convergence of moments, i.e.

E
[
〈ΞKn , u〉2

]
→ ‖u‖2−1.

In the next section, we prove tightness of (ΞKn )n∈N in H−ε(Td). This then concludes the proof
of Theorem 6.1.

Proof. As we have ΞKn = C−1/2
K Ξn, we can recycle the first calculations in the proof of Theorem

1 in [5] to obtain

〈ΞKn , u〉 = C−1/2
K 4π2n−

d+4
2

∑
z∈Tdn

χnzu(z) + C−1/2
K Rn(u).
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In the same way, we can split the variance

E[〈ΞKn , u〉2] = 16π4C−1
K n−(d+4)

∑
z,z′∈Tdn

u(z)u(z′)E[χnzχnz′ ] + C−1
K E[R2

n(u)]

+4π2C−1
K E

n− d+4
2

∑
z∈Tdn

u(z)χnzRn(u)

 .
For the first term, we find

C−1
K 16π4n−(d+4)

∑
z,z′∈Tdn

u(z)u(z′)E[χnzχnz′ ]

= C−1
K 16π4n−(d+4)

∑
z,z′∈Tdn

u(z)u(z′)n−d
∑

ξ∈Zdn\{0}

∑
w∈Zd

K(w)1w∈Zdn exp

(
2πιw · ξ

n

) exp
(

2πι(z − z′) · ξn
)

λ2
ξ

= C−1
K 16π4n−4

∑
ξ∈Zdn\{0}

λ−2
ξ

∑
w∈Zd

K(w)1w∈Zdn exp

(
2πιw · ξ

n

) ûn(ξ)ûn(ξ).

Where we have used the same notation as before, with un : Zdn → R defined by un(z) := u
(
z
n

)
.

We will now show convergence of the above in three steps; first we will show that the summation
in w is uniformly bounded and converges to CK, then we will show that the other terms are also
uniformly bounded, at last we will split the proof for dimensions d ≤ 3 and d ≥ 4. First of all,
we have by assumption that K ∈ `1(Zd), so∣∣∣∣∣∣

∑
w∈Zd

K(w)1w∈Zdn exp

(
2πιw · ξ

n

)∣∣∣∣∣∣ ≤
∑
w∈Zd

|K(w)|1w∈Zdn ≤
∑
w∈Zd

|K(w)| <∞.

Furthermore for each w ∈ Zd we have
∣∣∣K(w)1w∈Zdn exp

(
2πιw · ξn

)∣∣∣ ≤ |K(w)|. We introduce

the notation Σn(K) :=
∑
w∈Zd K(w)1w∈Zdn exp

(
2πιw · ξn

)
, and use the dominated convergence

theorem to find

lim
n→∞

Σn(K) = lim
n→∞

∑
w∈Zd

K(w)1w∈Zdn exp

(
2πιw · ξ

n

)
=

∑
w∈Zd

lim
n→∞

K(w)1w∈Zdn exp

(
2πιw · ξ

n

)
=

∑
w∈Zd

K(w) = CK.

We remark here that since Kn : Zdn → R is even and positive-definite, all Fourier coefficients are
real-valued and ≥ 0. It then follows that, since Σn(K) = ndK̂n(ξ) for some ξ, it is real valued
and ≥ 0 as well. Now, as we have already seen, there exists some C > 0 such that∣∣∣∣∣16π4n−4

λ2
ξ

− 1

‖ξ‖4

∣∣∣∣∣ ≤ Cn−2.
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Again, we find∣∣∣∣∣∣C−1
K 16π4n−4

∑
ξ∈Zdn\{0}

λ−2
ξ Σn(K)ûn(ξ)ûn(ξ)− C−1

K

∑
ξ∈Zdn\{0}

‖ξ‖−4Σn(K)ûn(ξ)ûn(ξ)

∣∣∣∣∣∣
≤ C−1
K Cn−2

∑
ξ∈Zdn\{0}

|Σn(K)||ûn(ξ)|2

≤ C−1
K Cn−2‖K‖`1(Zd)

∑
ξ∈Zdn\{0}

|ûn(ξ)|2 → 0.

Here we have used the fact from [5] that
∑
ξ∈Zdn\{0}

|ûn(ξ)|2 is uniformly bounded in n. The
above computation shows that it is now enough to compute the limit of

C−1
K

∑
ξ∈Zdn\{0}

‖ξ‖−4Σn(K)ûn(ξ)ûn(ξ).

In dimension d ≤ 3, we have that ‖ξ‖−4 is integrable on Zd, and both |ûn(ξ)|2 and Σn(K) are
uniformly bounded above, we can interchange limit and integral to find

lim
n→∞

C−1
K

∑
ξ∈Zdn\{0}

‖ξ‖−4Σn(K)ûn(ξ)ûn(ξ) = lim
n→∞

C−1
K

∑
ξ∈Zd\{0}

1ξ∈Zdn‖ξ‖
−4Σn(K)ûn(ξ)ûn(ξ)

= C−1
K

∑
ξ∈Zd
‖ξ‖−4CK|û(ξ)|2 =

∑
ξ∈Zd
‖ξ‖−4|û(ξ)|2.

In the case d ≥ 4 we can again use a mollifying procedure. For φ ∈ S(Rd) supported on [− 1
2 ,

1
2 ]d

with integral 1, we set φκ(x) := κ−dφ
(
x
κ

)
for κ > 0. Recall our previous technique, we show

first that
lim
κ→0

lim sup
n→∞

C−1
K

∑
ξ∈Zdn\{0}

‖ξ‖−4
(

1− φ̂κ(ξ)
)

Σn(K)|ûn(ξ)|2 = 0. (19)

As in Equation (4.11) from [5], we have∣∣∣φ̂κ(ξ)− 1
∣∣∣ ≤ Cκ‖ξ‖.

We then plug this into Equation [19], to find∣∣∣∣∣∣C−1
K

∑
ξ∈Zdn\{0}

‖ξ‖−4
(

1− φ̂κ(ξ)
)

Σn(K)|ûn(ξ)|2
∣∣∣∣∣∣ ≤ C−1

K Cκ
∑

ξ∈Zdn\{0}

‖ξ‖−3|Σn(K)||ûn(ξ)|2

≤ C−1
K Cκ‖K‖`1(Zd)‖u‖2Td .

Letting κ→ 0 in the above expression gives the convergence to 0. For the other term, note that
φ̂κ has fast decay, ûn(ξ)→ û(ξ) for all ξ ∈ Zd and |Σn(K)| ≤ ‖K‖`1(Zd) <∞. Applying now the
dominated convergence theorem in n,

lim
n→∞

C−1
K

∑
ξ∈Zd\{0}

1ξ∈Zdn φ̂κ(ξ)‖ξ‖−4Σn(K)|ûn(ξ)|2 = C−1
K CK

∑
ξ∈Zd\{0}

φ̂κ(ξ)‖ξ‖−4|û(ξ)|2

=
∑

ξ∈Zd\{0}

φ̂κ(ξ)‖ξ‖−4|û(ξ)|2.
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From [5] we know that taking the limit κ→ 0 in the above gives that

lim
κ→0

∑
ξ∈Zd\{0}

φ̂κ(ξ)‖ξ‖−4|û(ξ)|2 = ‖u‖2−1.

At last we compute E[R2
n(u)], so

E[R2
n(u)] = 16π4n−2d

∑
z,z′∈Tdn

nd−4Hn(nz, nz′)Kn(z)Kn(z′)

≤ Cn−2d
∑

z,z′∈Tdn

∑
ξ∈Zdn\{0}

Σn(K)
exp(2πι(z − z′) · ξ)

‖ξ‖4
Kn(z)Kn(z′)

≤ Cn−2d
∑

z,z′∈Tdn

∑
ξ∈Zdn\{0}

Σn(K) exp(2πι(z − z′) · ξ)Kn(z)Kn(z′),

since ‖ξ‖ ≥ 1. Next, set K ′n(x) := Kn

(
x
n

)
. Now we have, thanks to calculations on page 14 of

[5], ∑
ξ∈Zdn\{0}

Σn(K)K̂ ′n(ξ)K̂ ′n(ξ) ≤ CKCn−2 → 0.

Then Rn(u)→ 0 in L2.

6.5 Tightness in H−ε

To complete the proof, we show that the convergence in law ΞKn
d→ Ξ holds in the Sobolev space

H−ε(Td) for any ε > max{1 + d
4 ,

d
2}. We state the following theorem:

Theorem 6.3. Define ΞKn as above. Then the sequence (ΞKn )n∈N is tight in H−ε(Td), in other
words, for all δ > 0 there exists Rδ > 0 such that

sup
n∈N

P
(∥∥ΞKn

∥∥
H− ε

2

≥ Rδ
)
≤ δ.

Proof. The proof of this theorem is analogous to the proof of tightness in [5]. We first apply
Markov’s inequality and see

P
(∥∥ΞKn

∥∥
H− ε

2

≥ Rδ
)
≤

E
[∥∥ΞKn

∥∥2

H− ε
2

]
R2
δ

.

Now whenever we have
sup
n∈N

E
[∥∥ΞKn

∥∥2

H− ε
2

]
≤ C,

the assertion follows as we can choose Rδ such that

P
(∥∥ΞKn

∥∥
H− ε

2

≥ Rδ
)
≤ C

R2
δ

< δ.

Next, observe that for n ∈ N fixed∥∥ΞKn
∥∥2

L2(Td)
= C−1
K 16π4nd−4

∑
x,y∈Td

(
χnx − min

w∈Zdn
χw

)(
χny − min

w∈Zdn
χw

)
<∞ a.s.
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Now since ΞKn ∈ L2(Td) it has Fourier expansion, and we write ΞKn (ϑ) =
∑
ν∈Zd Ξ̂Kn (ν)eν(ϑ),

with
Ξ̂Kn (ν) =

∫
Td

ΞKn (ϑ)eν(ϑ) dϑ = C−1/2
K 4π2

∑
x∈Tdn

n
d−4
2 χnx

∫
B(x, 1

2n )

eν(ϑ) dϑ.

We can then write ∥∥ΞKn
∥∥2

H− ε
2

=
∑

ν∈Zd\{0}

‖ν‖−2ε|Ξ̂Kn (ν)|2.

Furthermore we explicitly calculate the expectation, we obtain

E
[∥∥ΞKn

∥∥2

H− ε
2

]
= C−1

K 16π4
∑

ν∈Zdn\{0}

∑
x,y∈Tdn

‖ν‖−2εnd−4E[χnxχny]

∫
B(x, 1

2n )

eν(ϑ) dϑ

∫
B(y, 1

2n )

eν(ϑ) dϑ

= C−1
K 16π4

∑
ν∈Zdn\{0}

∑
x,y∈Tdn

‖ν‖−2εnd−4H(nx, ny)

∫
B(x, 1

2n )

eν(ϑ) dϑ

∫
B(y, 1

2n )

eν(ϑ) dϑ.

Now define Fn,ν : Tdn → R as Fn,ν(x) :=
∫
B(x, 1

2n )
eν(ϑ) dϑ. We have that both 1B(x, 1

2n ), eν ∈
L2(Td) so by Cauchy-Schwarz Fn,ν ∈ L1(Td). Next we claim that for some C ′ > 0,

sup
ν∈Zd

sup
n∈N

∣∣∣∣∣∣
∑

x,y∈Tdn

nd−4H(nx, ny)Fn,ν(x)Fn,ν(y)

∣∣∣∣∣∣ ≤ C ′. (20)

Remark that in the same way as bound (4.5) in [5], we have |n−4λ−2
ξ | ≤ C‖ξ‖−4 for some C > 0.

We write Gn,ν : Zdn → R for Gn,ν(z) := Fn,ν
( ·
n

)
. Using this, we find∣∣∣∣∣∣

∑
x,y∈Tdn

nd−4H(nx, ny)Fn,ν(x)Fn,ν(y)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

x,y∈Tdn

n−4
∑

ξ∈Zdn\{0}

Σn(K)
exp(2πι(x− y) · ξ)

λ2
ξ

Fn,ν(x)Fn,ν(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

ξ∈Zdn\{0}

n−4λ−2
ξ Σn(K)n2d|Ĝn,ν(ξ)|2

∣∣∣∣∣∣
≤ Cn2d‖K‖`1(Zd)

∑
ξ∈Zdn\{0}

‖ξ‖−4|Ĝn,ν(ξ)|2.

Here we have again exploited the fact that |Σn(K)| ≤ ‖K‖`1(Zd). Now by the triangle inequality,

|Fn,ν(w)| =

∣∣∣∣∣
∫
B(w, 1

2n )

eν(ϑ) dϑ

∣∣∣∣∣ ≤
∫
B(w, 1

2n )

dϑ = n−d.

Now, ∑
ξ∈Zdn\{0}

‖ξ‖−4|Ĝn,ν(ξ)|2 ≤
∑
ξ∈Zdn

|Ĝn,ν(ξ)|2 = n−d
∑
z∈Zdn

Gn,ν(z)Gn,ν(z)

= n−d
∑
z∈Tdn

Fn,ν(z)Fn,ν(z) ≤ n−2d
∑
z∈Tdn

∫
B(z, 1

2n )

|eν(ϑ)| dϑ

≤ n−2d‖eν‖L1(Td) = Cn−2d.
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We then use this bound to obtain

Cn2d‖K‖`1(Zd)

∑
ξ∈Zdn\{0}

‖ξ‖−4|Ĝn,ν(ξ)|2 ≤ Cn2d‖K‖`1(Zd)n
−2d = C‖K‖`1(Zd).

This is a constant that does not depend on n or ν, so the claim (20) is proven. Using the claim
now, we have by the Euler-Maclaurin formulas

E
[∥∥ΞKn

∥∥2

H− ε
2

]
= C−1
K 16π4

∑
ν∈Zd\{0}

‖ν‖−2ε
∑

x,y∈Tdn

nd−4H(nx, ny)Fn,ν(x)Fn,ν(y)

≤ C−1
K C ′

∑
k≥1

kd−1−2ε ≤ C.

The last estimate here is due to the fact that −ε < −d2 .

6.6 Comparing the maxima of correlated odometers
As we have seen in the simulations earlier, and as we would expect from Theorem 6.1, the
maximum of the Gaussian field with large CK, is larger than the maximum of the Gaussian
field with small CK. In this subsection we will investigate whether we can say something about
the maximum of the odometer under different kinds of covariance functions. To this end, let
(σ(x))x∈Zdn be a collection of correlated Gaussians. We consider a divisible sandpile s : Zdn → R
given by

s(x) = 1 + σ(x)− 1

nd

∑
z∈Zdn

σ(z).

We are concerned with the maximum of the odometer e : Zdn → R under different covariance
functions. To this end, we state and prove the following theorem:

Theorem 6.4. Let K+ and K− be two stationary covariance functions on Zdn such that K+−K−
is still positive definite. Define e+ to be the odometer associated with K+ and e− the odometer
associated with K−. Then

E
[
(e−)

∗] ≤ E
[
(e+)

∗]
.

The proof of this theorem is based on the Sudakov-Fernique inequality:

Theorem 6.5. Let X,Y be n × 1 Gaussian vectors with E[Xi] = E[Yi] for all 1 ≤ i ≤ n, and
assume that E

[
(Xi −Xj)

2
]
≤ E

[
(Yi − Yj)2

]
for all i 6= j. Then

E[X∗] ≤ E[Y ∗].

Using this theorem, we will now prove 6.4:

Proof. As we have already seen,

e±
d
=

(
η± − min

z∈Zdn
η±(z)

)
,

with
E[η±(x)η±(y)] =

1

(2d)2

∑
z,z′∈Zdn

K±(z − z′)g(z, x)g(z′, y). (21)
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Now, since η is a centered random variable, we have

E [(e±)∗] = E
[
η∗± − min

z∈Zdn
η±(z)

]
= 2E

[
η∗±
]
.

In this way we see that in order to prove Theorem 6.4, it is enough to only consider the maxima
of the Gaussian fields (η+(x))x∈Zdn and (η−(x))x∈Zdn , where we have again used the convenient
notation of associating η+ with K+ and η− with K−. In other words, proving Theorem 6.4 is
equivalent with proving

E [(η−)∗] ≤ E [(η+)∗] .

By Theorem 6.5 it is sufficient to show now that for all x, y ∈ Zdn, x 6= y, the following holds:

E
[
(η−(x)− η−(y))2

]
≤ E

[
(η+(x)− η+(y))2

]
. (22)

We can explicitly calculate these expectations using 21. We obtain

E
[
(η−(x)− η−(y))2

]
= E[η−(x)2]− 2E[η−(x)η−(y)] + E[η−(y)2]

= 2
(
E[η−(x)2]− E[η−(x)η−(y)]

)
=

2

(2d)2

∑
z,z′∈Zdn

K−(z − z′)g(z, x) (g(z′, x)− g(z′, y)) .

We find a similar result for η+. Next, we show 22 by showing∑
z,z′∈Zdn

K−(z − z′)g(z, x)(g(z′, x)− g(z′, y)) ≤
∑

z,z′∈Zdn

K+(z − z′)g(z, x)(g(z′, x)− g(z′, y)).

To this end, note that this is equivalent with

0 ≤
∑

z,z′∈Zdn

(
K+ −K−

)
(z − z′)g(z, x)(g(z′, x)− g(z′, y)),

which is in turn equivalent to showing∑
z,z′∈Zdn

(
K+ −K−

)
(z − z′)g(z, x)g(z′, y) ≤

∑
z,z′∈Zdn

(
K+ −K−

)
(z − z′)g(z, x)g(z′, x). (23)

Now define K = K+−K−. By assumption, this is positive definite and thus a well-defined covari-
ance function. Now let (χ(x))x∈Zdn be the field associated with the odometer under covariance
K. As we have already seen before, then

E[χ(x)χ(y)] =
1

(2d)2

∑
z,z′∈Zdn

K(z − z′)g(z, x)g(z′, y).

In this case, we see that 23 simplifies to

E[χ(x)χ(y)] ≤ E[χ(x)2],

which holds by the Cauchy-Schwarz inequality and because E[χ(x)2] = E[χ(y)2], and so the proof
is finished.
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Example: We consider K− = I, in other words, an i.i.d. initial distribution, and define

K+(x− y) =

{
C, for x− y = 0

‖x− y‖−(d+1) for x− y 6= 0
,

where we have chosen C large enough such that K+ − I is positive definite. Now we have that

K+ −K− =

{
C − 1, for x− y = 0

‖x− y‖−(d+1) for x− y 6= 0
,

and this is positive definite. So here we have

E [(e−)∗] ≤ E [(e+)∗] .

Remark 6.6(i): This theorem is really not as powerful as we would like it to be. The difficulty
here is that we would like to have K+ ≥ K− in some sense, however this is not as easy it seems
on first sight. A common ordering on the collection of positive definite matrices is the Löwner
ordering, which is defined as

A � B if and only if A−B is positive-definite.

We have used this ordering here as well. One might think on first sight that if A ≥ B pointwise,
and A,B are both positive definite, that this would imply that A−B is positive definite as well,
but in general this is not the case, and in fact rules out a lot of covariance structures that we
would like to compare.
Remark 6.6(ii): Another problem is that in the Sudakov-Fernique inequality, we are not dealing
with variables that have equal second moment. If we look at the above example again, we have
found that the odometer in the positively correlated case has a larger expected maximum than
in the i.i.d. case, but is this really a consequence of the random variables (σ(x))x∈Zdn being
correlated? To make K+ a positive definite matrix, the diagional elements (i.e., E[(σ(x)2]) need
to be sufficiently large compared to the covariances. If we compare now (for C > 1)

K+(x− y) = C1x=y

with the i.i.d. case, we see that the expected maximum is still larger than the expected maximum
for the i.i.d. case. We see now that the expected maximum might have more to do with the
variances themselves, than with the pairwise correlation. An interesting problem to study in the
future then would be whether Theorem 6.4 also holds under weaker assumptions.

6.7 Brief summary
Recall that in previous section, we started out with a sandpile configuration given by the i.i.d.
weights (σ(x))x∈Zdn . We viewed Zdn as a discretization of the torus Td, and saw that after sufficient
scaling, the odometer en : Zdn → R converges to the bilaplacian field Ξ. For all u ∈ C∞(Td) we
have that 〈Ξ, u〉 is a centered Gaussian with

E
[
〈Ξ, u〉2

]
= (u,∆−2u)L2(Td) =: ‖u‖2−1.

In this section, we were concerned with the scaling limit of the odometer given an initial distri-
bution of correlated Gaussians, for each n ∈ N,

E[σ(x)σ(y)] = Kn(x− y).
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Figure 15: Comparison of the odometers of correlations K± = ±‖x−y‖−3 for x 6= y and K± = C
for x = y. We observe that the K+ surface indeed lies a lot higher than the K− surface.

We defined K : Zd → R as an even function, and for each n ∈ N we set Kn := K|Zdn . We first
derived a useful identity for distribution of the odometer for fixed n. We had

en(·) d
=

(
χ− min

z∈Zdn

)
,

with (χz)z∈Zdn centered, correlated Gaussian with covariance

E[χxχy] =
∑

ξ∈Zdn\{0}

K̂n(ξ)
exp

(
2πι(x− y) · ξn

)
λ2
ξ

.

Subsequently, we took the scaling limit with an extra factor C−1/2
K and found that in some sense,

K̂n(ξ) “behaves” like
n−d

∑
w∈Zd

K(w) ∼ n−dCK.

Now the n−d factor is the same factor as in 5.2, and the CK comes in front of the scaling limit, as
it does not depend on ξ anymore as n→∞. This then cancels out the C−1

K . After this, we have
used the same techniques as [5] to prove that our rescaled field ΞKn converges in distribution to
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Ξ in H−ε(Td), here Ξ is again the bilaplacian field, we have for all u ∈ C∞(Td) that 〈Ξ, u〉 is a
centered Gaussian with

E
[
〈Ξ, u〉2

]
= ‖u‖2−1.

Finally, we have compared the maxima of odometers under different kinds of covariance struc-
tures.
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7 Further research
For further research, two main questions arise. First of all, we have seen that for correlated
Gaussians, after an extra scaling factor, the odometer converges again to the bilaplacian field
〈Ξ, u〉 ∼ N (0, ‖u‖2−1). The question now is to what other types of random variables we can
extend this result. In this section we will look at the techniques used in [5], and see if we can
use these in proving a scaling limit result for a more general setting. Not surprisingly, there are
a few issues, otherwise this would not be in the “Further research” section. Second, we are very
interested in the stabilization speed of the sandpile with Gaussian weights.

7.1 Scaling limit for bounded, correlated random variables
We recall Theorem 11 in [5]:

Theorem 7.1. Assume (σ(x))x∈Zdn is a collection of i.i.d. variables with E[σ] = 0 and E[σ2] = 1.
Moreover, assume there exists K <∞ such that |σ| < K almost surely. Let d ≥ 1 and en(·) the
corresponding odometer. Then the formal field Ξn, defined as in the Gaussian case, converges
in law to Ξ on Td. The convergence holds on the same fashion as the convergence for the i.i.d.
Gaussian case.

The strategy used to prove this theorem is the method of moments. We will attempt to do
the same, and outline where the problems are in correlated case. In fact we will be able to show
the convergence of the first and second moment, however in proving the convergence of moments
≥ 3, the proof of [5] fails in the correlated case and we need to think of another approach.

We consider a sandpile given by weights (σ(x))x∈Zdn , such that E[σ(x)σ(y)] = Kn(x − y), as
before. We also assume that for some K, we have |σ| < K almost surely. The odometer en in
this case still satisfies ∆en + s = 1, with minz∈Zdn en(z) = 0. To this end, we define

vn(y) =
1

2d

∑
x∈Zdn

g(x, y)(s(x)− 1).

As we have already seen, ∆(en − vn)(z) = 0 for all z, implying that en = vn + C, for some
constant C. As we need minz∈Zdn en(z), we find

en(x) = vn(x)− min
z∈Zdn

vn(z).

Like before, we are not interested in the minimum term, as it is constant and will vanish when tak-
ing the inner product with a mean zero u ∈ C∞(Td). Now, as s(x)−1 = σ(x)−n−d

∑
y∈Zdn

σ(y),
we have

vn(y) =
1

2d

∑
x∈Zdn

g(x, y)σ(x)− 1

2dnd

∑
x∈Zdn

g(x, y)
∑
z∈Zdn

σ(z).

Note that in the above, the last term is again constant, as both
∑
x∈Zdn

g(x, y) and
∑
z∈Zdn

σ(z)
do not depend on y anymore, and thus vanishes in a similar fashion as the minimum term. Define
then

wn(y) =
1

2d

∑
x∈Zdn

g(x, y)σ(x),

and set for hn : Zdn → R

Ξhn(x) := 4π2n
d−4
2

∑
z∈Tdn

hn(nz)1B(z, 1
2n )(x), x ∈ Td.
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We see then that
〈Ξen , u〉 = 〈Ξwn , u〉.

Next, by assumption, we had E[σ(x)] = 0 for all x ∈ Zdn. Subsequently, we find

E [〈Ξwn , u〉] = 4π2n
d−4
2

∑
z∈Tdn

E[wn(nz)]

∫
B(z, 1

2n )

u(y) dy

= 4π2n
d−4
2

∑
z∈Tdn

 1

2d

∑
x∈Zdn

g(x, nz)E[σ(x)]

∫
B(z, 1

2n )

u(y) dy = 0.

For the second moment then, we find

〈Ξwn , u〉2 = 16π4nd−4
∑

z,z′∈Tdn

 ∑
x,x′∈Zdn

E[σ(x)σ(x′)]g(x, nz)g(x′, nz′)

∫
B(z, 1

2n )

u(y) dy

∫
B(z′, 1

2n )

u(y′) dy′

= 16π4nd−4
∑

z,z′∈Tdn

 1

(2d)2

∑
x,x′∈Zdn

Kn(x− x′)g(x, nz)g(x′, nz′)

∫
B(z, 1

2n )

u(y) dy

∫
B(z′, 1

2n )

u(y′) dy′

= 16π4nd−4
∑

z,z′∈Tdn

Hn(nz, nz′)

∫
B(z, 1

2n )

u(y) dy

∫
B(z′, 1

2n )

u(y′) dy′.

However, this is the exact same term we were working with in Theorem 6.1, but then without
the factor C−1

K . In this way, we obtain that

E
[
〈Ξen , u〉2

]
= E

[
〈Ξwn , u〉2

]
= CK‖u‖2−1,

which is equivalent to what we have shown in Theorem 6.1. The proof in [5] now proceeds by
calculating the higher moments, however, here the problem immediately becomes clear. Fix
u ∈ C∞(Td) and define Tn : Td → R by

Tn(z) =

∫
B(z, 1

2n )

u(y) dy, z ∈ Td.

Using this notation, we obtain for the third moment,

E
[
〈Ξwn , u〉3

]
=

(
4π2n

d−4
2

2d

)3 ∑
z1,z2,z3∈Tdn

E[wn(nz1)wn(nz2)wn(nz3)]Tn(z1)Tn(z2)Tn(z3)

=

(
4π2n

d−4
2

2d

)3 ∑
z1,z2,z3∈Tdn

∑
x1,x2,x3∈Zdn

E

 3∏
j=1

σ(xj)

 3∏
j=1

g(xj , nzj)Tn(zj).

In the i.i.d. case, we have

E

 3∏
j=1

σ(xj)

 = 1x1=x2=x3E[σ3].

This simplifies the proof significantly, as in the correlated case, we have no way of expressing
E[σ(x1)σ(x2)σ(x3)] in their pairwise covariances. We could restrict ourselves to the case where
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(σ(x))x∈Zdn is collection of symmetric random variables. In this case we have that the odd

moments vanish. Indeed, as σ(x)
d
= −σ(x) for all x ∈ Zdn, we find

E[σ(x1)σ(x2)σ(x3)] = (−1)3E[σ(x1)σ(x2)σ(x3)] = −E[σ(x1)σ(x2)σ(x3)],

implying that E[σ(x1)σ(x2)σ(x3)] = 0 for all combinations x1, x2, x3 ∈ Zdn. This fact also
generalizes to higher odd moments. However, this still leaves us with the problem of calculating
the even moments.

7.2 Speed of convergence for the divisible sandpile
We have considered a sandpile given by

s(x) = 1 + σ(x)− 1

nd

∑
z∈Zdn

σ(z),

for (σ(z))z∈Zdn i.i.d. standard normals. We have seen that in this case, our sandpile st stabilizes
to the all one configuration, in other words st(x)→ 1 as t→∞. We were particularly interested
in the speed of stabilization. One of the things we have shown is that the sandpile almost surely
does not stabilize in finite time, furthermore we obtained the following lower bound:

c

(2d)t
≤ 1

nd

∑
x∈Zdn

|st − 1|,

for some c ∈ R. However, we have not managed to show an upper bound to the above quantity.
One of the approaches we could try to find this upper bound is looking at mixing times of Markov
chains, however this idea is just crawling out of the primordial ooze at the time of writing.
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8 Conclusion
In this thesis, we have used the techniques from Levine et al. [1] and Cipriani et al. [5] to
generalize Theorem 1 from [5] to a sandpile configuration with correlated Gaussians. More
specifically, we obtained the following theorem as our main result:

Theorem 6.1: Let en : Zdn → R be the odometer associated with the weights (σ(x))x∈Zdn , which
have covariance given K : Zd → R as described in Section 6.2. Set CK =

∑
w∈Zd K(w) and define

for CK 6= 0,
ΞKn (x) = C−1/2

K 4π2
∑
z∈Tdn

n
d−4
2 en(nz)1B(z, 1

2n )(x), x ∈ Td.

Then ΞKn
d→ Ξ in H−ε(Td) for ε > max{1 + d

4 ,
d
2}, where Ξ is the bilaplacian field: we have for

all mean zero u ∈ C∞(Td) that 〈Ξ, u〉 ∼ N (0, ‖u‖2−1).

To prove this theorem, we walked through a few steps, the first was proving the correlated
analogue to Proposition 1.3 in [1]. We did this in Section 3: we defined a covariance function
K : Zd → R and a collection of Gaussians (σ(z))z∈Zdn such that for any x, y ∈ Zdn,

E[σ(x)σ(y)] = K(x− y).

After this we defined a sandpile s : Zdn → R by

s(x) = σ(x) + 1− n−d
∑
z∈Zdn

σ(z),

and we considered the distribution of the odometer en : Zdn → R. We saw that

en(·) d
= η − min

z∈Zdn
η(z),

where (η(z))z∈Zdn is a collection of correlated, centered Gaussians with

E[η(x)η(y)] =
1

(2d)2

∑
z,z′∈Zdn

K(z − z′)g(z, x)g(z′, y).

After this, we have used the same approach as in [5] to show that the odometer en, after an extra
scaling, again converges to the bilaplacian field. We first showed the convergence of moments,
and for a Gaussian it is enough to compute only the first and second moment. We observed
that E

〈
ΞKn , u〉

]
= 0, and then explicitly computed E

[
〈ΞKn , u〉2

]
to show that it indeed converges

to (u,∆−2u)L2(Td). In proving the tightness of the sequence (ΞKn )n∈N we have used a quicker
proof than the one given in [5]. We have seen that the mollifier approach they are using is not
necessary, and we have shortened their proof of tightness as well in Section 5.5.

At the end of Section 6 we have compared the maxima of odometers under different covari-
ances, if K+ and K− are both covariances, and we have that K+ − K− is still positive-definite,
then we can say (for e+ the odometer associated with K+ and e− the odometer associated with
K−)

E
[
max
z∈Zdn

e−(z)

]
≤ E

[
max
z∈Zdn

e+(z)

]
.

This theorem however was not as powerful as we would like it to be, and we could investigate
whether this theorem also holds under weaker assumptions.
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On the other hand, in Section 4 we were concerned with the stabilization speed of the sandpile
to the all-one configuration. In this section we have proven that the divisible sandpile almost
surely does not stabilize in finite time:

Theorem 4.1: The divisible sandpile (s(x))x∈Zdn for n ≥ 3, where s is as defined before, does
not stabilize in finite time almost surely.

At first this result seemed counter-intuitive, but running a few simulations gives a better
insight into the statement. We have therefore used a very hands-on approach in proving this
theorem. We have seen that if, at any timestep, we find two sites of which one has mass > 1,
and the other mass ≥ 1, then we can’t have stabilization in finite time. Now we showed that
this in fact already happens after the first timestep, and to show this we have used a proof by
contradiction: there is too much mass in the graph for this not to happen.

In Section 5, we have also calculated an identity for the pairwise covariances of the collection
of real-valued random variables 〈Ξ, u〉, for u ∈ C∞(Td). For f, f ′ ∈ C∞(Td), we saw that

E[〈Ξ, f〉〈Ξ, f ′〉] = (∆−1f,∆−1f ′)L2(Td).

Note that the inner product (covariance) on the left between the variables 〈Ξ, f〉 and 〈Ξ, f ′〉
corresponds to the H−1(Td) inner product on the right.

However, after all these results, a lot of work still needs to be done if we want to extend
Theorem 6.1 to general correlated random variables. We would also like to find an upper bound
to the speed of stabilization of the divisible sandpile. So in the end, this is just the beginning.
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A Green’s function on a finite graph
Define on Zd the Green’s function g(x, y) as the expected number of visits from x to y. Since g
is translation-invariant, we find g(x, y) = g(o, y − x), and therefore it is enough to consider just
g(o, z) for z ∈ Zd and o = (0, 0, . . . , 0) ∈ Zd. Let (Sn)n≥0 be a simple random walk on Zd, then

g(o, z) = g(z, o) = Ez
[ ∞∑
n=0

1Sn=o

]
= 1S0=o + Pz(S1 = y)Ey

[ ∞∑
n=1

1Sn=o

]
= 1S0=o +

∑
y∼z

Pz(S1 = y)g(y, o).

We have essentially just taken out the first step here, if z = o, then we get an extra visit,
otherwise we just consider the random walk from any of the adjacent tiles. Re-arranging the
order of the above gives ∑

y∼z
Pz(S1 = y)g(o, y)− g(o, z) = −1S0=o.

Recall the definition of the graph Laplacian. Since Pz(S1 = y) = (2d)−11y∼z, we find

∆g(o, ·) = −1·=o = −δo.

Now we have created a Green’s function on the infinite graph Zd. On finite graphs, things become
a bit different as

E[number of visits from x to y] =∞,

for all pairs x, y ∈ V . Intuitively, we have only finite amount of space to walk around for an
infinite time. It is necessary to think of another strategy in this case, and as it turns out the
function

gz(x, y) := E[number of visits to y starting from x before hitting z],

has useful properties that are very much like our Green’s function above. We will try to use the
same proof techniques as [3] to show this.

Lemma A.1. Define the function gz(x, y) on Zdn by

gz(x, y) := E[number of visits to y starting from x before hitting z].

Then gz satisfies the equation

∆
gz(x, y)

2d
= δz − δx,

where ∆ is the graph Laplacian.

Proof. We first consider the case where y 6= z. Note that we can use the same approach as in
Section 4 in [3] here. We use the symmetry of the function gz(x, y) to find:

gz(x, y) = gz(y, x) = δx(y) +
∑
w∈Zdn

p(y, w)gz(w, x)

= δx(y) +
∑
w∼y

gz(x,w)

2d
.
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What we’ve essentially done here is “take out the first step”. If x = y, then we already have one
visit, if not, we just consider the random walk starting at any node connected to y with equal
probability. Rewriting the above, gives us∑

w∼y

(
gz(x, y)

2d
− gz(x,w)

2d

)
= δx(y).

But this is exactly −∆ gz(x,y)
2d , so the formula holds in the case y 6= z. Now consider the case

where y = z. From Proposition 7.1 in [4] we derive the following formula for finite sets A,C in
our state space with stationary probability measure π:

π(A) =

∫
C

Ey
[
τC−1∑
k=0

1{Sk∈A}

]
π(dy).

Consider now C = {y} and A = {w ∈ Zdn : w ∼ y}. Then the integral reduces to:

Ey
[
τy−1∑
k=0

1{Sk∈A}

]
π({y}) = π(A).

Note that since Sn is just a simple random walk, π is the uniform measure on Zdn after a rescaling,
so π(A) = 2d. Next, we have:

2d = Ey
[
τy−1∑
k=0

1{Sk∈A}

]
=
∑
w∈A

1

2d
gy(w,A).

Here we are starting from y, but not actually counting τy = 0 as a stopping time. Essentially
we now have 2d choices to move from, each with the same probability. By symmetry, it now
holds that gy(w,A) = gy(w′, A) for all w,w′ ∈ A. So in fact gy(w,A) = 2d for all w ∈ A. Now,
starting the random walk from x 6= y, set W as the first point where the walk enters A. We find

gy(x,A) =
∑
w∼y

gy(x,w) =
∑
w∼y

Px(W = w)gy(w,A) = 2d
∑
w∼y

Px(W = w) = 2d.

So whenever z = y, ∑
w∼y

gy(x,w)

2d
= 1.

Note that since gy(y, x) = 0 for all x ∈ Zdn \ {y} in this case, the following formula holds

gz(x, y) = δx(y)− δz(y) +
∑
w∼y

gy(x,w)

2d
. (24)

Whenever x = y = z, everything in the above formula reduces to 0, so we can say that 24 holds
in general, so

∆
gz(x, y)

2d
= δx(y)− δz(y).
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B Matlab code: i.i.d. scaling limit

1
2 %% create initial distribution of the sandpile
3
4 n = 100;
5
6 S = zeros(n,n);
7
8 for i = 1:n
9 for j = 1:n

10
11 S(i,j) = randn;
12
13 end
14 end
15
16 total = sum(sum(S));
17
18 S = S − (1/(n*n))*total + ones(n,n);
19
20 %surf(S)
21 %hold on;
22
23 %% iterate the timesteps
24
25 timesteps = 20000;
26
27 odometer = zeros(n,n);
28
29 figure
30 hold on
31
32 for t = 1:timesteps
33
34 A = zeros(n,n);
35
36 for i = 1:n
37 for j = 1:n
38
39 if S(i,j) > 1
40
41 extra = S(i,j) − 1;
42 distr = 0.25 * extra;
43
44 id_N = i−1;
45
46 if id_N == 0
47 id_N = n;
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48 end
49
50 id_S = i+1;
51
52 if id_S == n+1
53 id_S = 1;
54 end
55
56 id_W = j−1;
57
58 if id_W == 0
59 id_W = n;
60 end
61
62 id_E = j+1;
63
64 if id_E == n+1
65 id_E = 1;
66 end
67
68 odometer(i,j) = odometer(i,j)+ distr;
69
70 A(i,id_W) = A(i,id_W)+distr;
71 A(i,id_E) = A(i,id_E)+distr;
72 A(id_N,j) = A(id_N,j)+distr;
73 A(id_S,j) = A(id_S,j)+distr;
74
75 A(i,j) = A(i,j) −extra;
76
77 end
78 end
79 end
80
81 S = S + A;
82
83 end
84
85 odometer = (4*pi^2)*(1/n)*odometer;
86
87 h = surf(linspace(0,1,n),linspace(0,1,n),odometer);
88 title('Scaling limit of the odometer')
89 set(h,'LineStyle','none');
90 disp(h)
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C Matlab code: correlated case

1
2 %% create initial distribution of the sandpile
3
4 n = 100;
5
6 S = zeros(n,n);
7
8 Sigma = zeros(n^2,n^2);
9 MU = zeros(n^2,1);

10
11 % We evaluate the norm from each point in our grid to any other point in
12 % the grid, we start with 1 in the upper left corner, and work down to the
13 % lower right corner
14
15 K = zeros(n^2,n^2);
16 index_x = zeros(n^2,n^2);
17 index_y = zeros(n^2,n^2);
18
19 for i = 1:n^2
20
21
22 i_x = mod(i,n);
23 if i_x == 0
24 i_x = n;
25 end
26 i_y = ((i−i_x)/n)+1;
27
28
29
30 for j = 1:n^2
31
32
33 j_x = mod(j,n);
34 if j_x == 0
35 j_x = n;
36 end
37 j_y = ((j−j_x)/n)+1;
38 dist = zeros(9,1);
39 dist(1) = abs(j_x−i_x) + abs(j_y−i_y);
40 dist(2) = (abs(i_x−n)+j_x)+abs(j_y−i_y);
41 dist(3) = (abs(j_x−n)+i_x)+abs(j_y−i_y);
42
43 dist(4) = (abs(j_x−n)+i_x) + (abs(i_y−n)+ j_y);
44 dist(5) = (abs(i_x−n)+j_x) + (abs(i_y−n) + j_y);
45 dist(6) = abs(j_x−i_x) + (abs(i_y−n)+j_y);
46
47 dist(7) = abs(j_x−i_x) + (abs(j_y−n)+i_y);
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48 dist(8) = (abs(j_x−n)+i_x) + (abs(j_y−n)+i_y);
49 dist(9) = (abs(i_x−n)+j_x) + (abs(j_y−n)+i_y);
50
51 K(i,j) = min(dist);
52 index_x(i,j) = i_x;
53 index_y(i,j) = i_y;
54 end
55
56 end
57
58 for i = 1:n^2
59 for j = 1:n^2
60 if i == j
61 Sigma(i,j) = 6;
62 else
63 Sigma(i,j) = −(K(i,j))^(−4);
64 end
65 end
66 end
67
68 R = mvnrnd(zeros(n^2,1),Sigma);
69
70 sum(Sigma(1))
71
72 S = zeros(n,n);
73
74 for i = 1:n^2
75 i_x = mod(i,n);
76 if i_x == 0
77 i_x = n;
78 end
79 i_y = ((i−i_x)/n)+1;
80
81 S(i_x,i_y) = R(i);
82
83 end
84
85 total = sum(sum(S));
86
87 S = S − (1/(n*n))*total + ones(n,n);
88
89 %surf(S)
90
91
92 %% iterate the timesteps
93
94 timesteps = 10000;
95
96 odometer = zeros(n,n);

72



97
98 figure
99 hold on
100
101 for t = 1:timesteps
102
103 A = zeros(n,n);
104
105 for i = 1:n
106 for j = 1:n
107
108 if S(i,j) > 1
109
110 extra = S(i,j) − 1;
111 distr = 0.25 * extra;
112
113 id_N = i−1;
114
115 if id_N == 0
116 id_N = n;
117 end
118
119 id_S = i+1;
120
121 if id_S == n+1
122 id_S = 1;
123 end
124
125 id_W = j−1;
126
127 if id_W == 0
128 id_W = n;
129 end
130
131 id_E = j+1;
132
133 if id_E == n+1
134 id_E = 1;
135 end
136
137 odometer(i,j) = odometer(i,j)+ distr;
138
139 A(i,id_W) = A(i,id_W)+distr;
140 A(i,id_E) = A(i,id_E)+distr;
141 A(id_N,j) = A(id_N,j)+distr;
142 A(id_S,j) = A(id_S,j)+distr;
143
144 A(i,j) = A(i,j) −extra;
145
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146 end
147 end
148 end
149
150 S = S + A;
151
152 % g = surf(S);
153 % set(g,'LineStyle','none');
154 % disp(g);
155 % hold on
156
157 end
158
159 odometer = (4*pi^2)*(1/n)*odometer;
160
161 h = surf(linspace(0,1,n),linspace(0,1,n),odometer);
162 title('Scaling limit of the odometer')
163 set(h,'LineStyle','none');
164 disp(h)
165 hold on
166 C_K = 0;
167
168 for i = 1:n^2
169 C_K = C_K + Sigma(1,i);
170 end
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