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Directional Total Variation Regularized
High-Resolution Prestack AVA Inversion

Guangtan Huang , Xiaohong Chen , Shan Qu, Min Bai , and Yangkang Chen , Member, IEEE

Abstract— Prestack seismic inversion has emerged as a
powerful technique for reconstructing parameters attribute to
the subsurface properties and building the geophysical parameter
models. However, the inversion algorithms always suffer from
spatial blur and low resolution. Total variation (TV) regular-
ization preserves the spatial variation boundary of data by
highlighting the sparsity of the first-order difference, which is
regarded as an important technical means for image restoration.
However, when the data do not change along the spatial grid
direction, TV regularization is prone to a staircase effect. In this
article, a directional TV (DTV) method is proposed to conduct
the prestack amplitude variation with offset/angle (AVO/AVA)
inversion. The method consists of three essential steps: estimating
the seismic slope attribute from the seismic data, introducing
seismic slope attribute to the TV regularization to establish the
objective function, and optimizing the objective function by the
split-Bregman algorithm. Finally, the conventional and proposed
methods are applied to the synthetic and the real seismic data.
The comparison of different methods demonstrates that the
proposed method is applicable to reveal the detailed subsurface
models, alleviate the staircase effect or artifact substantially, and
further upgrade the quality of prestack inversion results.

Index Terms— Directional total variation (DTV), high
resolution, prestack amplitude variation with angle (AVA)
inversion, seismic slope.

I. INTRODUCTION

PRESTACK amplitude variation with offset/angle
(AVO/AVA) inversion quantitively extracts rock elastic

parameters regarding the subsurface properties, which has
been proven to be of significance for exploration geophysics
[1]–[5]. Although sustained efforts have been made in both
theoretical and engineering applications to improve the
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accuracy, resolution, and robustness of the inversion results
[6]–[11], there are still many problems. The realization
process can be regarded as minimizing the error between
the observed seismic data and the synthetic data under the
premise of certain geological and geophysical data constraints.

Due to the convolutional effect of the seismic wavelet,
which leads to the degradation of the ability to characterize
the structure and lithology of subsurface media, it is difficult
to perform a detailed interpretation of the seismic inver-
sion. Besides, another reason that causes the low resolution
is the smoothness constrained regularization. By imposing
additional constraints of the prior information or knowledge
on the estimated models, the Tikhonovo-type-based regu-
larizations are often adopted to mitigate the ill-posedness
induced by various reasons, such as noise and inappropriate
forward operator. Especially, if the Zoeppritz equation [12],
[13] is exploited as a forward operator to directly invert
Vp, Vs, and ρ, the Gaussian distribution (corresponding to the
�2-norm) is usually selected as the constraint. Such constraints
will greatly limit the resolution of the inversion results because
the �2-norm is a smooth constraint, resulting in the defects of
blurred reflection interfaces and insufficient ability to describe
special geological structures [14]–[16]. In addition, the tradi-
tional prestack AVA inversion is based on the angle gather
data to invert the single trace data [17]–[22]. Throughout
the inversion process, it always relatively uses a single trace,
which does not fully make use of the horizontal constraints.
Due to the lack of constraints in the lateral direction of the
inversion results, it sometimes causes poor lateral resolution
and continuity. Therefore, to incorporate a priori knowledge
into seismic inversion, both the stability and resolution (in both
horizontal and vertical direction) should be taken into account
[23]–[28]. At present, most prestack inversion algorithms are
based on single prestack angle gathers. Such algorithms do
not take into account adjacent data, and the inversion process
of each trace is relatively independent.

To improve the vertical resolution of the inversion, some
sparse distributions are introduced as a priori information
for the seismic inversion. Alimie and Sacchi [29] intro-
duced the trivariation Cauchy regularization to the seismic
inversion. Zhang and Castagna [30] introduced basis-pursuit
inversion (BPI), which is a �1-norm regularized optimiza-
tion algorithm, into seismic reflection inversion. Then,
Zhang et.al. [31] applied BPI to the prestack AVA inver-
sion and simultaneously obtain multiple reflectivity series
rvp, rvs, and rρ .
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Fig. 1. (a) TV regularization for a spatial point S with first-, second-,
and third-order differences using the correspondingly labeled points and
(b) schematic illustration of geological structure with the models (spatial
points) for the first-order difference TV regularization (within the red lines).
Note that Model 1 corresponds to the points located at the isotropic media;
Models 2 indicates the points located at the horizontal interface; Model 3
denotes the points located at the tilted boundary; and Model 4 represents the
points located at the vanishing point of special geological body.

In image processing, the total variation (TV) regularization
[or the Markov random field (MRF)] is usually adopted as a
constraint to solve the inverse problems, which is an effective
spatial texture modeling tool [7], [32]–[37]. Anagaw and
Sacchi [38] introduced the TV regularization to the impedance
inversion. Gholami [39] proposed a multitrace impedance
inversion method with 2-D TV regularization to make sure
that the inversion results follow the spatial and temporal
correlations of the seismic data. TV regularization describes
the spatial variation boundary of data by highlighting the
sparsity of the first-order difference, which is regarded as an
important technical means for image restoration. However,
different from the digital images, the subsurface properties
always change according to some specific geologic structures,
such as the tilted layers, faults, and edges of some special
geological bodies. Regardless of the geologic direction of the
subsurface medium, the TV regularization only tends to reduce
the horizontal and vertical gradients of each grid point in the
model. Once the data do not change along the spatial grid
direction, TV regularization is prone to a staircase effect.
It is mainly reflected in the insufficient ability to describe
faults, titled strata with a large slope, and some special rock
bodies. Therefore, TV is not suitable for the stratum where
the local structure has a dominant direction [40], [41]. The
MRF scheme [7] takes into account diagonal directions within
the neighborhood system. As shown in Fig. 1(a), TV or
high-order TV regularization can only take the points along
the horizontal and vertical axes, while MRF can take the points
in the diagonal directions into account.

Indeed, the conventional inversion is comprehensive for
the utilization of seismic data, especially for the usage
of long-wavelength components of seismic data. The travel
time information in seismic data usually corresponds to the
long-wavelength component [42]–[48], which is often related
to tectonic information, while the amplitude and waveform
information usually corresponds to the mid-short wavelength
component, which is often related to lithological informa-
tion [49]. At present, the prestack AVA inversion mainly
focuses on amplitude information, but the long-wavelength
components related to structural information have not enough
attention. Here, we introduce the seismic slope attribute, a kind

of structure information, to the TV regularization algorithm,
so as to improve the application effect of the TV regularization
method.

The seismic slope attribute can be extracted using the plane
wave destruction (PWD) technique [50]–[53], which indicates
the seismic event slope and is one of the seismic attributes
related to the seismic long-wavelength component. Indeed, it is
also a good lateral constraint condition, which has been widely
used in the data regularization [54], [55] and full-waveform
inversion [56], [57] based on the shaping regularization.

This article is organized as follows. First, the prestack
AVA inversion based on the exact Zoeppritz equation and the
seismic slope attribute extraction based on the PWD are first
briefly reviewed. Then, the proposed directional TV (DTV)
regularization based on the seismic slope attribute is intro-
duced into the seismic inversion. Finally, the proposed method
is demonstrated by the synthetic data and further validated by
the real seismic data.

II. THEORY

A. Exact Zoeppritz Equation Inversion

According to the Zoeppritz’s equation, the reflection and
transmission coefficients can be expressed as

Ar = b (1)

where A and b are the coefficient matrices composed of the
elastic parameters Vp1, Vp2, Vs1, Vs2, ρ1, and ρ2 of the upper
and lower media and the angle-dependent parameters, and r is
the reflection and transmission coefficient vector. Their explicit
formulas are expressed as (5).

Then, the P-P seismic data can be simulated by convolving
the P-P reflectivity coefficient with the stationary wavelet as

d = Wr(m) (2)

or

d = G(m) (3)

and the partial derivative with respect to the parameter m can
be expressed as

∂r
∂m

= A−1

(
∂b
∂m

− ∂A
∂m

r
)

(4)

where the expressions of the (∂A/∂m) and (∂b/∂m) are
detailed in (5)–(11), as shown at the bottom of the next
page.

B. Seismic Local Slope Attribtue Extraction

The seismic local slope attribute is a widely used tool in
exploration geophysics [51]. Its applications include wavefield
separation, denoising, seislet transform, predictive painting,
and so on. According to Claerbout [50], the plane wave
can be expressed by the first-order differential equation as
follows:

∂ P(x, t)

∂x
+ σ(x, t)

∂ P(x, t)

∂ t
= 0 (12)
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where P(x, t) represents the plane wavefield, and σ(x, t)
indicates the local slope. In the discrete space, the slope
between the adjacent points (spatial interval �x) can be
expressed by the time interval �t and σ(x, t)

p = σ(x, t)�x/�t . (13)

In the local scope, the wavefield value is consistent; then

P(x, t) = P(x + �x, t + p�t). (14)

Transforming (14) from the X − T domain to the Zx − Zt

domain using the Z transform, the above equation becomes(
1 − Zx Z p

t

)
P(Zx , Zt) = 0 (15)

where Zx and Zx represent the spatial- and time-shift opera-
tors. Here, C(p) = (

1 − Zx Z p
t

)
is the so-called plane-wave

destruction operator. By using Thiran’s fractional delay fil-
ter

(
1/B(Zt)/B(Zt)

)
to approximate the time-shift operator

eiωσ [58], the plane-wave destructor can be rewritten as

C(p, Zt , Zx) = B(Zt) − Zx B

(
1

Zt

)
, B(Zt)=

N∑
n=−N

bk Z−k
t .

(16)

The coefficient of filter B(Zt) can be obtained by fit-
ting the filter frequency response at low frequencies to
the response of the phase shift operator. We can deter-
mine the slope by minimizing the following least-squares
goal based on using an iterative method, such as Newton’s
method:

C(σ, Zx , Zt)P(Zx, Zt ) ≈ 0. (17)

∂A
∂Vp1

= 1

Vp1
·

⎡
⎢⎢⎢⎢⎢⎢⎣

0 tan φ sin φ1 sin θ2 tan φ2 sin φ2

0 sin φ1 sin θ2 tan θ2 − sin φ2

2(1 − cos 2φ1)
(
2 − tan2 φ1

) Vs1

Vp1
sin 2φ1

ρ2

ρ1

Vp2

Vp1
(3 cos 2φ2 − 2)

(
2 − tan2 φ2

)ρ2

ρ1

Vs2

Vp1 sin 2φ2

0
Vp1

Vs1
(2 − cos 2φ1)

ρ2

ρ1

V 2
s2

V 2
s1

Vp1

Vp2
sin 2θ2 tan2 θ2

ρ2Vp1Vs2

ρ1V 2
s1

(cos 2φ2 − 2)

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

∂A
∂Vs1

= 1

Vs1

⎡
⎢⎢⎢⎢⎢⎢⎣

0 − tan φ1 sin φ1 0 0
0 − sin φ1 0 0

4 sin2 φ1
(
tan2 φ1 − 2

) Vs1

Vp1
sin 2φ1 0 0

0
Vp1

Vs1
(cos 2φ1 − 2) −2

ρ2V 2
s2Vp1

ρ1V 2
s1Vp2

sin 2θ2 2
ρ2

ρ1

Vs2Vp1

V 2
s1

cos 2φ2

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

∂A
∂ρ1

= 1

ρ1

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0

0 0
ρ2

ρ1

Vp2

Vp1
cos 2φ2

ρ2

ρ1

Vs2

Vp1
sin 2φ2

0 0 −ρ2

ρ1

V 2
s2

V 2
s1

Vp2

Vp1
sin 2θ2

ρ2

ρ1

Vs2Vp1

V 2
s1

cos 2φ2

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

∂A
∂Vp2

= 1

Vp2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 − sin θ2 0
0 0 − sin θ2 tan θ2 0

0 0 −ρ2

ρ1

Vp2

Vp1
cos 2φ2 0

0 0 −ρ2

ρ1

V 2
s2

V 2
s1

Vp1

Vp2
sin 2θ2 tan2 θ2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

∂A
∂Vs2

= 1

Vs2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 − tan φ2 sin φ2

0 0 0 sin φ2

0 0 2
ρ2

ρ1

Vp2

Vp1
(1 − cos2φ2)

ρ2

ρ1

Vs2

Vp1
sin 2φ2

(
2 tan2 φ2 − 2

)

0 0
ρ2

ρ1

V 2
s2

V 2
s1

Vp1

Vp2
sin 2θ2 −ρ2

ρ1

Vp1Vs2

V 2
s1

(2 + 3 cos φ2)

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

∂A
∂ρ1

= 1

ρ2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0

0 0 −ρ2

ρ1

Vp2

Vp1
cos 2φ2 −ρ2

ρ1

Vs2

Vp1
sin 2φ2

0 0
ρ2

ρ1

V 2
s2

V 2
s1

Vp2

Vp1
sin 2θ2 −ρ2

ρ1

Vs2Vp1

V 2
s1

cos 2φ2

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

∂B
∂Vp1

= 1

Vp1

[
0 0 −4sin2φ1 0

]T
,

∂B
∂Vp2

= ∂B
∂Vs1

= ∂B
∂Vs2

= ∂B
∂ρ1

= ∂B
∂ρ2

= [
0 0 0 0

]T
(11)
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C. Automatic Directional Total Variation Constraint

In addition to structural information, the exploration and
development process pays more attention to the fluid informa-
tion in the reservoir. The information related to the physical
characteristics of the reservoir (such as Poisson’s ratio, Vp/Vs ,
and density ρ) often exists in the middle and far angle data.
Therefore, the seismic prestack mid- and far-angle data should
be more effective in the seismic prestack inversion, and the
accuracy of the forward operator simulation is improved,
especially in the mid- and far-angle accuracies. Furthermore,
improving the accuracy of physical property information esti-
mation is crucial for oil/gas exploration and development.
Thus, the forward problem can be expressed as

0 = F(d, m) = d − G(m) (18)

where m indicates the elastic parameters [Vp, Vs , ρ], d repre-
sents observed seismic data, and G is the nonlinear forward
operator, which is a function of model parameters. In practical
applications, solving the inverse problem of (18) is usually
ill-posed, and the inverse problem needs to be solved using
the regularization method. According to the Bayesian theory,
the objective function can be expressed as

J (m) = ||d − G(m)||22 + λRc(m) (19)

where λ denotes the tradeoff factor, which balances the noise
and model regularization. ||d − G(m)|| corresponds to the
likelihood function, and Rc(m) represents the prior distrib-
ution, which is also called a penalty norm, e.g., a function of
model m. The prior distribution explains the distribution of
the target parameters.

Generally, the elastic parameters [Vp, Vs , ρ]T are assumed
to obey the Gaussian distribution. However, such an assump-
tion would lead to oversmooth results. Such inversion results
have poor ability to describe the internal details of the reservoir
and the boundary of the reservoir.

We consider anisotropic TV as the basic regularization
method because the TV can smooth the model and, at the same
time, preserve edges by enhancing the sparsity of the spatial
gradient of the velocity difference. In addition, the anisotropic
version is easier to minimize compared with the isotropic one.
Furthermore, we restrict ourselves to the 2-D case although an
extension to the full 3-D situation is relatively straightforward.

The extended misfit function with a TV constraint can be
expressed as

Jtv(m) = J (m) + α(||∇xm||1 + ||∇zm||1) (20)

where ∇x and ∇z denote the horizontal- and vertical-gradient
operators in a Cartesian coordinate, which can be expressed
as

∇x m(i, j) = mi+1, j − mi, j ,∇zm(i, j) = mi, j+1 − mi, j . (21)

The horizontal and vertical gradients are the spatial finite
differences of the model, which is also called an MRF. In the
optimization, more points can be introduced to participate in
the difference operations to relieve the influence of abnormal-
ity of individual points. Due to (2k + 1) points involved in
the difference calculation, it is also called a k-order MRF,
as shown in Fig. 1(a). Thus, (19) corresponds to the first-order
MRF.

However, traditional TV regularization can only regularize
the model in the horizontal and vertical directions regardless
of the geological structure. Thus, the target parameters with
severe lateral tectonic fluctuations, such as tilted layers, faults,
and salt body, are not appropriate to apply the conventional
TV regularization. However, the x- and z-directions can be
rotated following the directions perpendicular or normal to
the dip direction.

Fig. 1(b) shows the stratum at a fault, and we use the four
position points as the model corresponding to models 1–4.
The red boxes indicate the points involved in the operation
of the first-order difference. Model 1 denotes the points within
the stratum, which can get good results using traditional
inversion algorithms. Model 2 represents the point located
at the horizontal stratum interface. In order to clearly depict
the information at this point, using the traditional TV reg-
ularization can yield the results with ideal effect. Model 3
corresponds to the point at the tilted fault, which cannot
describe the fault interface well when using TV regularization.
Because TV is not suitable in which the local structure has a
dominant direction, the same situation will appear in Model 4,
corresponding to the point of the stratum extinction zone.

The DTV regularization introduces the seismic dip attribute
to project the data from the Cartesian coordinate system to
the directions along and perpendicular to the seismic dip and
then implements the differential operation. An illustration of
the DTV regularization is shown in Fig. 1(b) with the dashed
blue arrows.

Thus, (21) can be rewritten as

Jdtv(m) = J (m) + α(||∇1m||1 + ||∇2m||1) (22)

where ∇1 and ∇2 represent the gradient operators along and
perpendicular to the dominant direction of the seismic dip.
Once the seismic slope is obtained, ∇1 and ∇2 can be mapped
to x- and y-coordinates as(∇1m(i, j)

∇2m(i, j)

)
= �R

(∇x m(i, j)
∇ym(i, j)

)
(23)

where the scaling matrix � and the rotation matrix R can be
expressed as

� =
(

α1 0
0 α2

)
, R =

(
cos θ − sin θ
sin θ cos θ

)
(24)

where α1 and α2 represent the scale on the gradient along and
perpendicular to the seismic local dip θ .

The objective function, such as (20), can be solved by
the split-Bregman algorithm. The algorithm can be seen in
Algorithm 1. It means that there are two steps in each iteration
time. First, the AVA inversion is done one by one in common
reflection points (CRP) seismic data to obtain 2-D inversion
results. Then, apply the DTV regularization to improve the
inversion results.

III. NUMERICAL EXAMPLES

Here, we take the Society of Exploration Geophysicists
(SEG)/European Association of Geoscientists and Engineers
(EAGE) Marmousi model as an example to verify the effec-
tiveness and superiority of the proposed strategy. Vp, Vs , and ρ
models in the time domain can be seen in Fig. 2. The geologi-
cal structure of this model is relatively sophisticated, including
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Algorithm 1 DTV Regularized High-Resolution Prestack
Inversion

Input: initial model, seismic data

Output: high-resolution inversion results

1. Executing seismic migration process to obtain the

post-stack or seismic images.

2. Extracting seismic slope from seismic data or images

of Step 1 with PWD algorithm

3. Initializing: m0 = m̂, and a0
1 = a0

2 = b0
1 = b0

2 = 0.

4. do while(iter≤Maxiter or misfit≤ 
)

mk+1= argmin
{

[d−G(mk)]T [d−G(mk)]+(mk)T Cm(mk)
}

mk+1 = mk+1 − λ(∇T
1 (ak

1 − ∇1mk − bk
1)

+∇T
2 (ak

2 − ∇2mk − bk
2)

ak+1
1 = shrink(∇1mk+1 + bk

1, (1/λ))

bk+1
1 = bk

1+(∇1mk+1 − ak+1
1 )

ak+1
2 = shrink(∇2mk+1 + bk

2, (1/λ))

bk+1
2 = bk

2+(∇2mk+1 − ak+1
2 )

where shrink(m, ρ) = (m/|m|) ∗ max(|m| − ρ, 0).

end

5.Output the inversion result mk+1 and starting model m̂

Fig. 2. (a) v p , (b) vs , and (c) ρ parameters of the partial Marmousi model.

many tilted formations, faults, and other complex-textured
geological structures.

With the elastic parameters, the reflection coefficient can
be obtained using (1). Then, convolving the reflectivities with
a zero-phase 30-Hz Ricker wavelet, we obtain a zero-offset
synthetic seismic profile, as shown in Fig. 3(a). As a key
factor of this method, the seismic slope angle can be extracted
from the poststack seismic data. Fig. 3(b) shows the extracted
seismic slope attribute by using PWD. The estimated slope
provides us with the key to rotate the coordinate system when
using the proposed DTV regularization.

Then, we applied the conventional �2-norm regularized
method, the TV regularized method, and the DTV regularized
method to the exact Zoeppritz AVA inversion, respectively.

Fig. 3. (a) Zero-offset synthetic data profile and (b) estimated seismic slope
by using the PWD algorithm.

Figs. 7(a), 8(a), and 9(a) show the initial model, built by
smoothing the model Vp, Vs , and ρ, for the AVA inversion.
Here, we use a moving average filter to generate the starting
model, and the span of the filter is ten samples. In order to
obtain the low-frequency model, we smoothed the model five
times in the horizontal and vertical directions, respectively.
Because we use the gradient method to solve the inverse
problem, a relative accurate model is very important for the
inversion. Thus, we use a relatively accurate model as the
initial model. The multiparameter inversion results are shown
in Figs. 4–6, and we can observe the following phenomena.

Fig. 4 shows the starting model and inverted results (a) of
the Vp parameters by using the �2-norm regularized
method (b), the conventional TV regularized method (c), and
the proposed DTV regularized method (d). It can be found
that the smooth constraint (�2-norm regularization) leads to
poor results describe the boundary. Although such a method
can already restore the structure of the underground medium
to a certain extent, it is not ideal for the detailed description.
The geological structures and interfaces are blurred, and the
ability to describe the fault is even worse.

Compared with the �2-norm regularization, the TV reg-
ularization improves the ability of the inversion method to
describe the boundary, as shown in Fig. 4(c). Besides, the TV
regularization better resolves some defects of the conventional
trace-alone method. Especially at locations where the seismic
slope is small, both the vertical and horizontal resolutions of
the inversion results have been improved. However, when the
stratum is tilted severely, even when a fault occurs, the method
has a discontinuity in the horizontal direction. In this case,
the difference in the traditional Cartesian coordinate system is
likely to cause anomalies due to the drastic lateral change of
parameters. The main problem is that there are many vertical
artifacts in the results on the profiles of the inversion results.

Further comparing the inverted results using the proposed
method and the former two, the latter one improves the
inverted results by avoiding the artifacts in the inverted results,
as shown in Fig. 4(d). Besides, the interface, tilted strata, and
faults have been very well characterized, and the details have
been greatly improved. The essence of TV regularization is
to highlight the sparsity of the first-order difference, that is,
to make use of the characteristics of discontinuous interface
information to highlight anomalies. When the interface is
tilted, DTV can rotate the coordinate system according to the
slope information to highlight this abnormality to the greatest
extent. It is obvious that it is a very creative design, which
makes the tilted interface better portrayed.
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Fig. 4. (a) Starting model and inverted results of the Vp parameters by using (b) �2-norm regularized method, (c) conventional TV regularized method, and
(d) proposed DTV regularized method.

Fig. 5. (a) Starting model and inverted results of the Vs parameters by using (b) �2-norm regularized method, (c) conventional TV regularized method, and
(d) proposed DTV regularized method.

To further verify the superiority of the proposed
method, we magnified the most violent part of the
strata, which corresponds to the black dotted rectangle in
Figs. 4(d), 5(d), and 6(d). The extracted results are shown
in Figs. 7–9. The results are consistent with the previous

conclusions but are much clearer. Compared with Vp and ρ,
the results of Vs are slightly worse. This is because the
P-P wave seismic data are not sensitive to Vs . Further
improving the Vs inversion result is the future research
direction.
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Fig. 6. (a) Starting model and inverted results of the ρ parameters by using (b) �2-norm regularized method, (c) conventional TV regularized method, and
(d) proposed DTV regularized method.

Fig. 7. Partially zoomed inverted Vp by using (a) �2-norm regularized
method, (b) conventional TV regularized method, and (c) proposed DTV
regularized method.

Then, to further verify the anti-noise property of the
proposed method, a full-band Gaussian random noise is
added to the observed data, and then, it yields the noise
corrupted seismic data with SNR of 3 and 1, respectively.
We inverted the elastic parameters by using the proposed
method, the zoomed-inverted P-wave velocity profiles can be

Fig. 8. Partially zoomed inverted Vs by using (a) �2-norm regularized
method, (b) conventional TV regularized method, and (c) proposed DTV
regularized method.

seen in Fig. 10. We can find that TV regularization itself is
an image processing method; we can still get a very good
inversion result by using the noise corrupted seismic data.
However, compared with Fig. 9(c), it can be found that
the image result is, indeed, affected by a certain amount of
noise.
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Fig. 9. Partially zoomed inverted ρ by using (a) �2-norm regularized method,
(b) conventional TV regularized method, and (c) proposed DTV regularized
method.

Fig. 10. Inverted result by using the DTV regularization with noise corrupted
seismic data; the SNRs are (a) 3 and (b) 1.

Fig. 11. Poststack seismic profile of the real seismic data and the artificial
interpretation.

IV. REAL DATA APPLICATION

To further verify the superiority and universality of the
proposed method, we applied a set of real seismic data
for inversion, which comes from the Galio oilfield, Angola.
The hydrocarbon mainly accumulates in the Lower Congo
Basin and the Kwanza Basin. The total sedimental system
includes both subsalt and postsalt source rocks and Oligocene
to Miocene turbidite reservoirs.

Fig. 12. Estimated slope of the seismic data by using the PWD algorithm.

Fig. 13. Starting model of (a) v p , (b) vs , and (c) ρ for seismic inversion.

Fig. 14. Near-, mid-, and far-angle seismic wavelets extracted from the
prestack angle gather.

Fig. 11 shows the poststack seismic profile. It can be found
that the subsurface medium structure in this area is complex,
and the seismic signal-to-noise ratio is low. Therefore, it is
very difficult to carry out horizon interpretation and fault
interpretation of such data, and it is easy to cause manual
interpretation errors. However, in order to provide a more
accurate starting model for the seismic inversion, we spent
a lot of energy interpreting the geological horizons. The
figure shows the interpretation results of 13 horizons (solid
color line) and four dominant faults (black dashed lines).
Then, we extract the seismic slope attribute from the poststack
seismic data by using the PWD algorithm for the proposed
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Fig. 15. Real seismic data inversion results (a) Vp , (b) Vs , and (c) ρ by using the �2-norm regularization.

Fig. 16. Real seismic data inversion results (a) Vp , (b) Vs , and (c) ρ by using the conventional TV regularization.

Fig. 17. Real seismic data inversion results (a) Vp , (b) Vs , and (c) ρ by using the proposed DTV regularization.

method, as shown in Fig. 12. Then, we use the results of
geological horizon interpretation and well-logs to build the
initial model, as shown in Fig. 13 [59].

For prestack AVA inversion, seismic wavelets are another
significant factor for seismic inversion. We extract the seismic
wavelet from the prestack seismic data, as shown in Fig. 13.
Then, we exploit the exact Zoeppritz equation as a forward
operator for the inversion. The �2-norm, the conventional TV
norm, and the proposed DTV norm are the penalty norms for
the prestack inversion. Figs. 15–17 show the inversion results
corresponding to their inversion results.

Fig. 15 indicates the obtained Vp, Vs, and ρ results by
using the �2-norm as a penalty. It can be seen that the result
is too smooth, the formation interface is blurred, and it is
almost impossible to distinguish the position of the formation
interface. Besides, due to the low signal-to-noise ratio of the
seismic data, the inversion results have a problem of poor
horizontal continuity, indicating that the traditional method has
the disadvantage of poor stability.

Fig. 16 denotes the inversion results by using conventional
TV regularization. Compared with the former, the quality of

these results has been improved, and the vertical resolution
has been enhanced. However, due to the tilted layers and steep
faults, the conventional TV regularization method still does not
solve the problem of poor vertical and horizontal resolution
very well. In particular, when there is a serious inclination of
the stratum, a staircase effect will appear in the final inversion
profile.

Fig. 17 corresponds to the inverted Vp, Vs, and ρ parameters
by using the proposed method. Compared with the other two
methods, we can find that the quality of the inversion results
has been significantly improved. As shown in Figs. 14 and 15,
we can clearly see the information of the formation interface,
the position of the reflection interface of the formation, and
the occurrence of the tilted structures, even for the steep fault.
Besides, the lateral continuity is delineated well, showing the
strong robustness of the proposed method. However, we can
find that, when the faults are developed seriously, especially
when the faults are staggered, the slope estimation could
be inaccurately estimated. In this case, there will still be a
staircase effect on the proposed DTV. In addition, noise inter-
ruption is also a disturbing factor for slope estimation. Thus,
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it is very important to investigate more advanced algorithms
for improving the quality of the seismic data.

V. CONCLUSION

TV regularization describes the spatial variation boundary
of data by highlighting the sparsity of the first-order dif-
ference, which is regarded as an effective technical means
for improving the resolution of blurred inversion results.
However, due to the nongrid directional variations of the
subsurface properties, conventional TV regularization always
suffer from the staircase effect. In this article, we innovatively
incorporate seismic dip attributes into TV regularization for
the prestack inversion algorithm. By rotating the coordinate
system according to the seismic slope, the proposed method
can alleviate the staircase effect, while preserving the details,
and further improve the resolution and lateral continuity of the
inversion results. The inversion results of the synthetic data
and real seismic data demonstrate that the superiority of the
proposed method. Taking advantage of the DTV regularization
algorithm, the proposed method inverted the subsurface prop-
erties with better resolution (in both horizontal and vertical
directions) and robustness. Especially, in the presence of
complex geological structures, the DTV regularization method
shows more obvious advantages.
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