
Circuit and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

2008

MSc THESIS

ASIC FFT Processor for MB-OFDM UWB
System

Nuo Li

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CAS-MS-2008-05

The physical layer (PHY) standard of Multi-band Orthogonal Fre-
quency Division Multiplexing (MB-OFDM) Ultra Wideband (UWB)
system was defined by ECMA International. In this standard, the
data sampling rate from the analog-to-digital converter to the phys-
ical layer is up to 528 Msample/s. Therefore, it is a challenge to
realize the physical layer of the UWB system-especially the com-
ponents with high computational complexity in Very Large Scale
Integration (VLSI) implementation. Fast Fourier Transform (FFT)
block is one of these components. FFT plays an important role in
Multi-band OFDM UWB system, which is the demodulation block
of OFDM signals.
The purpose of this project is to design an Application Specific In-
tegrated Circuit (ASIC) FFT solution for this system. The specifi-
cation is defined from the system analysis and literature research.
All the design choices and considerations are concluded and ex-
plained. Based on the algorithm and architecture analysis, a novel
Radix22Parallel processor is proposed, which is a small-area and
low-power-consumption solution for MB-OFDM UWB system. Both
Field Programmable Gate Array (FPGA) and ASIC targeted syn-
thesis results of this architecture are presented.

ASIC FFT Processor for MB-OFDM UWB
System

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

MICROELECTRONICS

by

Nuo Li
born in Ningxia, China

Circuit and Systems
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

ASIC FFT Processor for MB-OFDM UWB
System

by Nuo Li

Abstract

T
he physical layer (PHY) standard of Multiband Orthogonal Frequency Division Multiplex-
ing (MB-OFDM) Ultra Wideband (UWB) system was defined by ECMA International.
In this standard, the data sampling rate from the analog-to-digital converter to the

physical layer is up to 528 Msample/s. Therefore, it is a challenge to realize the physical
layer of the UWB system-especially the components with high computational complexity in
Very-Large-Scale Integration (VLSI) implementation. Fast Fourier Transform (FFT) block is
one of these components. FFT plays an important role in Multiband OFDM UWB system,
which is the demodulation block of OFDM signals.

The purpose of this project is to design an Application Specific Integrated Circuit (ASIC) FFT
solution for this system. The specification is defined from the system analysis and literature
research. All the design choices and considerations are concluded and explained. Based on
the algorithm and architecture analysis, a novel Radix22Parallel processor is proposed, which
is a small-area and low-power-consumption solution for MB-OFDM UWB system. Both Field
Programmable Gate Array (FPGA) and ASIC targeted synthesis results of this processor are
presented.

Laboratory : Circuit and Systems
Codenumber : CAS-MS-2008-05

Committee Members :

Advisor: Nick van der Meijs, CAS, TU Delft

Chairperson: Edoardo Charbon, CAS, TU Delft

Member: René van Leuken, CAS, TU Delft

Member: Arjan van Genderen, CE, TU Delft

i

ii

To my grandmother in heaven
To my grandparents, parents and brother for their endless love and

support...

iii

iv

Anything is possible. You can be told that you have a 90-percent chance or
a 50-percent chance or a 1-percent chance, but you have to believe, and you
have to fight.

Pain is temporary. It may last a minute, or an hour, or a day, or a year, but
eventually it will subside and something else will take its place. If I quit,
however, it lasts forever.

Lance Armstrong quote

v

vi

Contents

List of Figures x

List of Tables xi

Acknowledgments xiii

1 Introduction 1
1.1 Motivation . 1
1.2 The related work . 1
1.3 Project goal . 2
1.4 Synopsis . 2

2 The Principle of MB-OFDM UWB System and Its Requirements for
FFT Processor 5
2.1 UWB system . 5
2.2 OFDM principle . 6

2.2.1 OFDM signal . 6
2.2.2 OFDM System . 9

2.3 Multiband-OFDM for UWB system . 9
2.4 The requirement of FFT for Multiband OFDM system 12

3 Fast Fourier Transform and Its Different Algorithms 19
3.1 The Discrete Fourier Transform . 19
3.2 The Fast Fourier Transform and its algorithms 19

3.2.1 Decimation-in-time FFT Algorithms 20
3.2.2 Decimation-in-Frequency FFT Algorithm 22
3.2.3 Radix 4 and higher radix Algorithms 24
3.2.4 Radix 22 Algorithm and Radix 2x Algorithms 26
3.2.5 Other FFT Algorithms . 28

3.3 Algorithms Comparison for ASIC Implementation 28

4 FFT architectures Analysis and Design Choices 31
4.1 Overview of FFT Architectures . 31

4.1.1 Memory based structure . 31
4.1.2 Pipeline-buffer Structure . 32

4.2 High Level Speed, Area and Power Analysis 34
4.3 Design Choice . 37

4.3.1 Algorithm and Architecture Choice 37
4.3.2 Fixed point data format . 39
4.3.3 Data scaling between each stages 39

vii

4.3.4 Twiddle factors design . 40
4.3.5 The input order and bit reversed order for the output 40
4.3.6 IFFT realization . 41

4.4 Summary . 41

5 Improvement and Implementation 43
5.1 Improvement . 43

5.1.1 Algorithm Level . 43
5.1.2 Architecture Level . 48
5.1.3 Implementation Level . 50

5.2 Implementation . 51
5.2.1 Radix 22 SDF Pipeline Data Flow 51
5.2.2 Radix22Parallel Data Flow . 58
5.2.3 ROM and Arithmetic Block Design 60

5.3 Summary . 68

6 Verification and ASIC Implementation 69
6.1 Verification . 69

6.1.1 Test Bench . 69
6.1.2 Simulation Results . 69

6.2 Synthesis . 71
6.2.1 Conclusion of the Radix22Parallel Architecture Requirements . . . 71
6.2.2 FPGA targeted results . 72
6.2.3 ASIC targeted results . 73

6.3 Summary . 78

7 Conclusions 79
7.1 Summary of Results . 79
7.2 Further Work . 79

A Comparison Between the Proposed FFT Processor with [10] 81
A.1 Similarity . 81
A.2 Difference . 81
A.3 Performance Comparison . 82

B I/O between Matlab and VHDL 83
B.1 Matlab I/O Design . 83

B.1.1 Output the data generated from Matlab 83
B.1.2 Reading the data produced by Modelsim Simulation 84

B.2 VHDL I/O Design . 84

C The Synthesis Schematics 87

D Matlab Code of the Radix22Parallel Based Algorithm 91

Bibliography 99

viii

List of Figures

2.1 FCC spectrum mask for UWB devices indoor transmission, from [1] . . . 5
2.2 The constellation diagram for BPSK . 7
2.3 The subcarrier wave form of OFDM, from [2] 7
2.4 The cyclic-prefix of OFDM symbol . 8
2.5 The general OFDM system, from [3] . 10
2.6 MB-OFDM band group allocation, from [4] 11
2.7 The QPSK bit coding . 12
2.8 Realization of a transmitted signal using three bands, from [5] 13
2.9 The FFT time constraint analysis . 14
2.10 The comparison of the floating point FFT with the fixed point FFT . . . 16
2.11 The Error and SQNR analysis of 15 bits fixed point FFT 16
2.12 The Error and SQNR analysis of 14 bits fixed point FFT 17

3.1 the DIT decomposition of an N-point DFT computation into two (N/2)-
point DFT computations, from [6] . 21

3.2 Butterfly with full twiddle factors in DIT algorithm 21
3.3 Butterfly with simplified twiddle factors in DIT algorithm 22
3.4 8 Point DIT FFT data flow, from [6] . 22
3.5 8 Point Radix-2 divided once DIF data flow 24
3.6 8 Point Radix-2 DIF algorithm data flow 24
3.7 Radix 4 DIF Data flow . 25
3.8 One Radix 4 DIF Butterfly . 25
3.9 The application of Radix 22 algorithm for 8 point FFT 27
3.10 32 Points Radix 24 DIF Algorithm data flow 28

4.1 Single Memory Architecture Block, from [7] 31
4.2 Dual Memory Architecture Block, from [7] 32
4.3 Array architecture block, from [7] . 32
4.4 Overview of Pipeline Structure, from [7] 33
4.5 The various schemes for pipeline FFT processor, from [8] 34
4.6 The radix 22 SDF Structure . 37
4.7 The R22 SDF structure simulation and comparison with Matlab builtin

FFT algorithm . 38

5.1 Radix 22 based parallel FFT algorithm data flow 44
5.2 The comparison of parallel algorithm with Matlab builtin FFT 45
5.3 The error of 15 bits parallel radix 22 algorithm 45
5.4 The 128 point parallel radix 22 based algorithm data flow first part 46
5.5 The 128 point parallel radix 22 based algorithm data flow second part . . 47
5.6 The parallel radix 22 based pipeline architecture 49
5.7 The change of last stage . 50
5.8 Radix 22 Butterfly Type I . 51

ix

5.9 Radix 22 Butterfly Type II . 52
5.10 The application of Radix 22 algorithm for 8 point FFT 53
5.11 Shift Registers for Butterfly . 54
5.12 The structure of shift register . 54
5.13 Circular Buffer . 55
5.14 The first stage of radix 22 FFT processor 55
5.15 The counter control wave . 56
5.16 The big block structure . 57
5.17 The data flow of the block . 57
5.18 counter signals of the fourth block . 58
5.19 The input multiplexer . 58
5.20 The parallel block . 59
5.21 The ROM structure . 61
5.22 Full adder block . 61
5.23 The area comparison of different adder structures 62
5.24 The latency comparison of different adder structure 62
5.25 The subtraction block . 63
5.26 The add/sub block . 64
5.27 The principle of Multiplier [7] . 64
5.28 The area comparsion of different multipliers 66
5.29 The speed comparsion of different multipliers 67
5.30 Complex Multiplier Block . 67

6.1 Test Bench Structure . 69
6.2 The result comparison between the processor and Matlab simulation . . . 70
6.3 The result comparison between the processor and Matlab builtin FFT . . 70

C.1 The Big Block Structure of Radix22Parallel (Design Compiler) 87
C.2 Synthesis Schematic of Radix22Parallel (Synplify Pro) 88
C.3 Synthesis Schematic of R22SDF (Design Compiler) 89
C.4 Synthesis Schematic of Radix22Parallel (Design Compiler) 90

x

List of Tables

2.1 Data rates for communication with required constellation mapping, from
[5] . 11

2.2 The FFT related requirements of ECMA 13

4.1 The Memory Requirement of Different Pipeline Structure 33
4.2 The Analysis of Different Pipeline Structure 37
4.3 The twiddle factor data format . 39

5.1 Butterfly Control Signal Truth Value . 53
5.2 The details of these multiplier structures 65

6.1 The components of R22SDF and Radix 22Parallel 71
6.2 The resource usage of Virtex4 . 72
6.3 The comparison with [4] . 73
6.4 The timing requirement of critical path 74
6.5 The detailed area information . 75
6.6 The area analysis of Block I . 75
6.7 Power Consumption analysis of Radix 22 Parallel 76
6.8 Power Comparison . 76
6.9 Comparison with [9] . 77
6.10 Comparison with [10] . 77
6.11 The performance of Radix22Parallel processor 78

A.1 Comparison with [10] . 82

xi

xii

Acknowledgments

During the past one year, many people gave me help and support. Without their help,
the work described in this thesis could not have been accomplished.

I gratefully thank all members in Circuit and System Group. I learned a lot from them.
I feel very honored to have done my master thesis in this group.

First and foremost, I would like to show my appreciation to Nick van der Meijs, the
kindest supervisor I have ever known. From the beginning, he tried hard to help me
find a project that was consistent with my interest. Without him, this project would
not exist. He has been fully supporting this project work and using all the resources
he could use to help me solve problems. He has been constantly guiding and teaching
me to use the scientific methods and follow the right direction. Specially thank his
encouragement, comforting, and serious attitude to the science. Meanwhile he also
helped me to improve the writing and presentation skills. In total, I am deeply indebted
to him. Thank you, Nick.

I would like to thank René van Leuken for teaching me the ASIC circuit design flow
and helping me solve a lot of difficulties during the design process. What’s more, he
introduced a lot of resources to me which helped me a lot.

I am deeply indebted to Huib Lincklaen Arriëns. His kind and patient help really
touches me. Every time when I asked for help, he always tried his best to solve the
problems. Without him, I would take much more time in the darkness. It is his valuable
suggestions that helped me conquer many barriers.

I especially thank Alexander de Graaf for helping me solve the synthesis problems and
teaching me the Design Compiler tool usage.

I would like to thank Patrick Dewilde and Geert Leus for teaching me FFT and OFDM
principles. And especially thank Geert Leus for helping me understanding the UWB
principle.

I would like to thank Alle-Jan van der Veen for helping me the OFDM problems. And
what’ more, thank his diligent working attitude and words “every project has something
to be improved” for inspiring me doing my project.

I would like to thank Antoon Frehe for helping me fixing the computer and software
problems and providing the very nice lab environment.

xiii

I would like to thank Secretary Laura Bruns for constantly support and help.

I would like to thank Helena Sarmento and Nuno Rodrigues from Instituto Superior
Ténico for answering me project related questions and telling me which parts should be
focused on.

I especially thank Ramesh Chidambaram for discussing with me about the project
problems by email and his very valuable suggestions.

I would like to thank all my colleagues in CAS lab. I especially thank Alejandro for the
valuable help of debugging VHDL codes and the discussion of project problems. Thank
Robert’s help on the FGPA tool usage. I would like to thank Shiva and Benjamin Frey
for the help of Latex. Special thanks to Snehal, Claudio , Fransesco, and Jose for their
warm company.

I especially thank Feifei and Xiong for revising my thesis report. I would like to thank
all my friends for the happy times. I have been very enjoying the past two years in
Delft. Thank you all!

The last but not the least, I would like to thank something called interest for accompa-
nying me to conquer the difficulties and letting me not give up!

Nuo Li
Delft, The Netherlands
October 12, 2008

xiv

Introduction 1
1.1 Motivation

Ultra-Wideband (UWB) Technology brings the convenience and mobility of wireless
communications to high-speed interconnects in devices through out the digital home
and office [11]. Instead of wired connection, this technology enables wireless connection
for transmitting video, audio, and other data with high data speed and low power
consumption. In February 2002, the Federal Communications Commission (FCC) in
USA issued the ruling that Ultra-Wideband (UWB) could be used for data commu-
nication. Since then, UWB has became a hot research topic and plenty of research
results have been published. Multiband-OFDM standard is one solution for UWB
technology. A proposal for Multi-band OFDM UWB standard is published by IEEE
802.15 3a study group [12]. After IEEE 802.15 3a was withdrawn in the Spring of 2006,
Multiband-OFDM has been controlled by ECMA International. In December 2007,
the second revised version Standard ECMA-368: High Rate Ultra Wideband PHY and
MAC Standard’ was released, which specified physical layer (PHY) and medium access
control layer (MAC) of the UWB technology based on Multiband-OFDM [5].

However, some key issues need to be solved for designing CMOS based Multiband-
OFDM UWB solution in support of the low power requirement. One of the issues
focuses on its FFT (Fast Fourier Transform) block, which takes 25% design complexity
of the total digital baseband transceiver [1]. Although many results have already
been published in this research area in the past few years [13][14][15][9][4], some key
problems still exist and need to be improved for the speed, area and power consumption
consideration. Based on ECMA-368, for the requirement of Multiband-OFDM system,
this FFT processor should work on a few hundred MHz, which makes it difficult to
implement. And since this system targets for the wireless portable devices, small area
and low power consumption are also imperative. Therefore, this thesis focuses on the
area and power consumption improvement under the ECMA-368 standard requirements.

1.2 The related work

The FFT processor design can be traced back long time ago. The basic FFT algorithms
and architectures can be found from book [16] [6]. The “Split-Radix” algorithm was
implemented by Duhamel [17]. The Radix 22 algorithm was provided in [8], which
was a low computation solutions for FFT processor. Parallel-Pipeline FFT processors
for VLSI implementations were analyzed by Wold, et al [18]. Lin, et al proposed four-
parallel 1-GS/s FFT processor for UWB applications [15]. Chidambaram, et al presented

1

2 CHAPTER 1. INTRODUCTION

an application specific instruction-set processor (ASIP) for OFDM-UWB [9]. A Field-
Programmable Gate Array (FPGA) FFT module was provided for Multiband-OFDM
receiver in 2007 [4]. In April, 2008, a two-parallel Radix 24 FFT processor was proposed
[10].

1.3 Project goal

This project aims at designing ASIC (Application Specific Integrated Circuit) FFT
processor for Multiband-OFDM UWB system. In order to achieve this goal, several
steps need to be followed.

The first step is to find the specifications for this FFT processor, which are determined
by the Multiband OFDM UWB standard. The step requires the analysis on OFDM
and UWB technology and the constraints of its FFT processor.

After defining the specifications, optimized FFT algorithm and architecture should
be used for these specifications. There are a large number of FFT algorithms and
architectures in the signal processing literature [7]. Therefore, the state of art algorithms
and architectures should be analyzed and compared. Based on different algorithms
and architectures, different power consumptions, area and speed of the processor will
be achieved. So their ASIC suitability should be analyzed and the effort should be fo-
cused on the choosing algorithms and architectures and optimization. Furthermore, the
improvement space should be analyzed and the architecture should be further optimized.

The proposed algorithm and architecture should be validated by Matlab simulation be-
fore implementation. After that, this circuit needs to be implemented with VHDL. The
synthesis step is followed by using both Synplify Pro targeted for FPGA and Design
Compiler for ASIC. The synthesis results will be compared with other published FFT
processor results.

1.4 Synopsis

Chapter 2 begins with an introduction to the UWB technology and OFDM signal, with
a focus on FFT. Multiband-OFDM UWB is introduced and its OFDM and FFT related
standard defined by [5] is strengthened. The remainder of this chapter focuses on the
FFT requirements of Multiband-OFDM UWB.

Chapter 3 introduces the FFT concept and algorithms. Several conventional FFT
algorithms are analyzed and new Radix 22 and 2x algorithms are also discussed, which
are suitable for ASIC FFT implementation. At the end, these algorithms are compared
for utilization of ASIC implementation.

Chapter 4 analyzes and compares different FFT processor architectures. High level
speed and area of these structures are presented. The imperative design choices and

1.4. SYNOPSIS 3

considerations are also discussed and analyzed here. Data format and scaling , twiddle
factors, and the interface handling are analyzed and chosen with regard to the system
requirements.

Chapter 5 presents the improvement based on the R22SDF structure. A novel parallel-
pipeline structure called Radix22Parallel is introduced, which is a small-area and
low-power-consumption solution for Multiband OFDM UWB systems. The remainder
of this chapter describes design details and the VHDL implementation of this structure.

Chapter 6 describes the verification of this structure and test bench method. Both
FPGA and ASIC targeted synthesis results are presented. At the end, the comparison
of this structure with other published results is provided.

Chapter 7 summarizes the work achieved and suggests the future work areas.

4 CHAPTER 1. INTRODUCTION

The Principle of MB-OFDM
UWB System and Its
Requirements for FFT
Processor 2
2.1 UWB system

Ultra-wideband (UWB) is a radio technology that can be used at very low energy levels
for short-range high-bandwidth communication by using a large portion of the radio
spectrum [19]. The Federal Communications Commission (FCC) in the USA has defined
UWB signal in terms of the band width of emitted signal from an antenna which should
exceeds 500 MHz or 20% of the center frequency. The FCC has also allocated 7.5 GHz
frequency spectrum for unlicensed use of UWB devices in the 3.1 to 10.6 GHz frequency
band, as shown in Figure 2.1.

Figure 2.1: FCC spectrum mask for UWB devices indoor transmission, from [1]

As shown in the figure, for UWB operating in the 3.1-10.6 GHz band, the power spectral
density emission limit is - 41.3dBm/MHz, which is significantly lower than other bands

5

6 CHAPTER 2. THE PRINCIPLE OF MB-OFDM UWB SYSTEM AND ITS
REQUIREMENTS FOR FFT PROCESSOR

of the spectrum.

2.2 OFDM principle

There are many books and articles which describe how the orthogonal frequency-
division multiplexing (OFDM) system works, such as [20] [3]. Here the FFT and IFFT
modulation of OFDM is focused on, which is closely related to our FFT processor design.

The concept of orthogonal frequency-division multiplexing (OFDM) dates back to the
mid 60’s, when Chang provided the principle of transmitting messages simultaneously
through a linear band-limited channel without interchannel interference (ICI) and
intersymbol interference (ISI) [20]. Saltzberg performed an analysis of the performance
and concluded, “The efficient parallel system needs to concentrate more on reducing
cross talk between the adjacent channels rather than perfecting the individual channel
itself because imperfection due to cross talk tends to dominate [20].” Later on, a major
contribution to OFDM was given in 1971, which is Weinstein and Ebert [21] presented
the use of discrete Fourier transform (DFT) to perform the baseband modulation and
demodulation.

2.2.1 OFDM signal

The fundamental principle of the OFDM concept is to split one high rate data symbol
into a set of independent smaller symbols [2]. Each subsymbol is modulated on a
separate subcarrier. Meanwhile, these subsymbols are transmitted simultaneously in
time domain.

Signal Form
Here the OFDM signal formula is directly introduced by Equation (2.1).

s(t) =
{ ∑N−1

n=0 xnej2πfnt 0≤ t ≤ T
0 otherwise

(2.1)

where, the xn stands for the information which needs to be transmitted. Normally,
they are modulated by using the Phase-Shift Keying (PSK) and Quadrature Amplitude
Modulation (QAM), which determines how many bits can be assigned per time frame.
Here Binary Phase-Shift Keying (BPSK) is shown as an example, which is the simplest
PSK digital modulation technique used for digital data transmission. The constellation
diagram of BPSK is shown in Figure 2.2, in which only 1 bit can be modulated. It
means, if there are N subcarriers, then N bits can be transmitted per frame.

Subcarrier
ej2πfnt in equation (2.1) stands for the subcarriers mentioned above. Figure 2.3 presents
their ‘pure harmonic’waveform.

2.2. OFDM PRINCIPLE 7

Figure 2.2: The constellation diagram for BPSK

Figure 2.3: The subcarrier wave form of OFDM, from [2]

As shown in the figure, the carrier 0 is the DC constant at frequency zero, and the
frequency f1 of carrier 1 is ‘the basic frequency’, by which the basic frame interval T is
determined (T = 1

f1
). The other carriers are positioned at regular frequency intervals:

fk = kf1.

The orthogonal property
The orthogonal property is the key property of OFDM. This property reduces the
crosstalk between subcarriers, which allows to overlapping multicarriers in order to
maximize the spectrum utilization. This is the biggest difference between OFDM and
the conventional frequency-division multiplex system where the guard frequency bands

8 CHAPTER 2. THE PRINCIPLE OF MB-OFDM UWB SYSTEM AND ITS
REQUIREMENTS FOR FFT PROCESSOR

are required between carriers.

The symbols xnej2πfnt of the modulated signal have the property that they are ‘orthogo-
nal’ on each other in the interval [0,T). For the usual inner product of complex functions
on an interval, it can be defined by Equation (2.2).

< xm, xn >=
∫ T

0
(xmej2πfmt)(xnej2πfnt) (2.2)

If the product is equal to zero, the two signals are orthogonal. Here, for any two
subcarriers mentioned above, as long as m 6= n, the product is zero. So all these
subcarriers are mutually orthogonal. In Figure 2.3, the orthogonal subcarriers is shown.

Cyclic-prefixing
If there are no ISI and ICI caused by transmission, the orthogonality of subcarriers
can be maintained, and the subcarriers can be separated by FFT at the receiver side.
However, due to channel distortions, such as multipath delay, ISI and ICI can be
introduced. To eliminate ISI completely, a guard time is introduced for each symbol.
As long as the guard time is longer than the channel impulse response, the ISI can be
eliminated. To eliminate ICI, the OFDM symbol is cyclically extended in the guard
time. The cyclic-prefixing is shown in Figure 2.4.

Figure 2.4: The cyclic-prefix of OFDM symbol

2.3. MULTIBAND-OFDM FOR UWB SYSTEM 9

FFT presentation in OFDM
By observing the OFDM signal presented in Equation (2.1), it can be found that the
equation looks very similar to the Fourier transform. If this waveform is sampled based
on time slot T

N , during the period [0,T), N sample values can be obtained and their
summation is shown in Equation (2.3).

X[k] =
N−1∑
n=0

xnej2πfkn T
N =

N−1∑
n=0

xnej2πk 1
T

n T
N =

N−1∑
n=0

xnejkn 2π
N (2.3)

which is exactly the expression of the Inverse Discrete Fourier Transform (IDFT) on the
series x(n). This means IDFT can be used to construct the OFDM signals.

2.2.2 OFDM System

The general OFDM system structure is shown in Figure 2.5. First, the incoming serial
data go through the serial to parallel converter and are grouped into x bits each to form
a complex number [3]. The number x is decided by the constellation mapping, such
as BPSK. Next, the IFFT is used to modulate the complex numbers. After this, the
numbers are converted to a series in time using a so called time-division multiplexer (TD-
MUX) and the cyclic prefixes are added to avoid intersymbol interference (ISI) caused by
multipath distortion [2]. By using the digital to analog converter, the discrete symbols
are converted to the actual modulating analog signal. After going through the low-pass
filter and Radio Frequency (RF) transmitter, the OFDM signal will be transmitted. At
the receiver side the opposite operations take place. After the RF receiver and low pass
filter, the analog to digital converter converts the analog signal to digital symbols. The
cyclic prefix is removed and the symbols are parallelized in demultiplexer. At this time,
the FFT processor is used to process the symbols and represents the original samples.
The outputs of the FFT processor go to the deinterleaver and viterbi decoder to get
further processed and decoded.

2.3 Multiband-OFDM for UWB system

Multiband-OFDM is an OFDM specification for UWB [4]. Multiband-OFDM was first
proposed by Texas Instruments and was sponsored by Texas Instruments as a member
of the Multiband OFDM Alliance, which is now part of WiMedia [22]. In December
2002, IEEE 802.15 3a was set up to develop a high data rate UWB PHY amendment
for the IEEE 802.15 3WPAN standard. However, there are two different proposals to
operate the wireless UWB, Multiband-OFDM UWB proposed by WiMedia, and Direct
Sequence-UWB (DS-UWB), supported by UWB Forum. Because of the disagreements
between the two groups, IEEE 802.15 3a was withdrawn. Nevertheless, a proposal
for Multi-band OFDM UWB standard is published [12]. In December 2005, ECMA
International, an international, private (membership-based) and non-profit standards
organization for information and communication systems, published ‘ Standard ECMA-
368: High Rate Ultra Wideband PHY and MAC Standard’, which specified physical

10 CHAPTER 2. THE PRINCIPLE OF MB-OFDM UWB SYSTEM AND ITS
REQUIREMENTS FOR FFT PROCESSOR

Figure 2.5: The general OFDM system, from [3]

layer (PHY) and medium access control layer (MAC) of the UWB technology based on
Multiband-OFDM. In December 2007, the second revised version was released [5].

The ECMA-368 [5] uses the spectrum between 3.1-10.6 GHz supporting transmission
data rate up to 480 Mb/s. The MB-OFDM is used to transmit data. The spectrum is
divided into 14 bands, each with a bandwidth of 528 MHz, as shown in Figure 2.6. For
the first 12 bands, every 3 bands form one band group and there are 4 such band groups.
The last two bands are grouped into a fifth band group. A communication channel can
either employ only one band or hop between the three bands of a band group [4].

Constellation Mapping and Data Rate for Communication
Based on the requirement of the standard, for data rates of 200 Mb/s and lower, the
binary data should be mapped onto a QPSK constellation. For data rate of 320 Mb/s

2.3. MULTIBAND-OFDM FOR UWB SYSTEM 11

Figure 2.6: MB-OFDM band group allocation, from [4]

and higher, the binary data should be mapped onto a multi-dimensional constellation
using a dual-carrier modulation (DCM) technique. Table 2.1 shows the data rates with
required constellation mapping.

Table 2.1: Data rates for communication with required constellation mapping, from [5]
Data
Rate(Mb/s)

Modulation Coding
Rate(R)

53,3 QPSK 1
3

80 QPSK 1
2

106.7 QPSK 1
3

160 QPSK 1
2

200 QPSK 5
8

320 DCM 1
2

400 DCM 5
8

480 DCM 3
4

QPSK Mapping
The QPSK is to divide the binary serial input data into groups of two bits and converted
the group into a complex number representing one of the four QPSK constellation points,
as shown in Figure 2.7.

Dual-carrier Modulation (DCM) [5]
The binary serial input data should be divided into groups of 200 bits and converted
into 100 complex numbers using a technique called dual-carrier modulation. The
conversion is performed as follows. First, the 200 bits are grouped into 50 groups of 4
bits. After this, each group of 4 bits is mapped onto a four dimensional constellation
and converted into two complex numbers. The complex numbers are normalized in
order for modulation.

12 CHAPTER 2. THE PRINCIPLE OF MB-OFDM UWB SYSTEM AND ITS
REQUIREMENTS FOR FFT PROCESSOR

Figure 2.7: The QPSK bit coding

Transmitted Signal
The presentation of the transmitted RF signal is shown in Equation (2.4).

S(t) = Re{
Npacket−1∑

n=0

sn(t− nTSY M)e(j2πfc(q(n))t)} (2.4)

Where Re() represents the real part of the signal, TSY M is the symbol length, Npacket is
the number of symbols in the packet, fc(m) is the centre frequency for the mth frequency
band, q(n) is a function that maps the nth symbol to the appropriate frequency band,
and sn(t) is the complex baseband signal representation for the nth symbol, which must
satisfy the following property: sn(t) = 0 for t /∈ [0, TSY M).

Figure 2.8 is an example of the transmitted RF signal using three frequency bands. It
can be seen the first three symbols transmitted in three different bands and the next
three symbols repeated. It can be seen that a zero-padded suffix is added at the output
of IFFT.

2.4 The requirement of FFT for Multiband OFDM system

The FFT related requirement defined by the ECMA International is shown in Table 2.2.

As shown in the table, the required sampling frequency is 528MHz and the total number
of subcarriers, which determines the FFT size, is 128. Based on [1], the FFT size
selection is dependent on many factors. To consider the chip area, the FFT size should
be as small as possible. On the contrary, the use of a smaller FFT size increases the
overhead due to cyclic prefixing and degrades the range [1]. The size of 128 point is
considered as a trade-off choice. In these subcarriers, the number of data subcarriers is
100 and the number of pilot subcarriers and guard subcarriers are 12 and 10 separately.
The time period available for the IFFT and FFT is 242.42ns, which is the inverse of

2.4. THE REQUIREMENT OF FFT FOR MULTIBAND OFDM SYSTEM 13

Figure 2.8: Realization of a transmitted signal using three bands, from [5]

Table 2.2: The FFT related requirements of ECMA
Parameter Description Value
fs Sampling frequency 528MHz
NFFT Total number of subcarri-

ers(FFT size)
128

ND Number of data subcarriers 100
NP Number of pilot subcarriers 12
NG Number of guard subcarriers 10
NT Total number of subcarriers

used
122

Nf Subcarrier frequency spacing 4.125MHz
TFFT IFFT and FFT period 242.42ns
NZPS Number of samples in zero-

padded suffix
37

TZPS Zero-padded suffix duration in
time

70.08ns

TSY M Symbol interval 312.5ns
FSY M Symbol rate 3.2MHz
NSY M Total number of samples per

symbol
165

sampling frequency TFFT = 1
fs

. There are 37 zero padded suffix samples, which take
70.08ns. So the total symbol interval is 312.5ns (TSY M = TFFT + TZPS) and the total
number of samples per symbol is 165.

Time constraint analysis
There are some conflicts in the time constraint of FFT processing time. One opinion
is that the symbol interval 312.5ns should be used as the FFT period [9] [15]. The

14 CHAPTER 2. THE PRINCIPLE OF MB-OFDM UWB SYSTEM AND ITS
REQUIREMENTS FOR FFT PROCESSOR

other one is that the FFT period 242.42ns as specified by the standard should be used
as the time constraint [4]. The key point of this problem is whether the zero padded
suffix samples period can be used for processing in the time constraint. To analyze this
problem, the OFDM system needs to be checked. The structure of Figure 2.5 is zoomed
in and the FFT area is focused, as shown in Figure 2.9.

Figure 2.9: The FFT time constraint analysis

In the figure, it can be seen, at transmitter, the IFFT uses 242.42ns to process the data
and after the processing, the zero padded suffix samples are added. However, at the
receiver, the FFT processor can use 312.5ns to process the received data. The reason
is that, after discarding the zero padded suffix sample, the time slot of two successive
received data symbols is still 312.5ns. In order for both FFT and IFFT utilization,
tighter time slot 242.42ns is employed in the following design.

Numerical Precision Choice
The data bits choice is a critical issue for FFT processor design. The trade-off
between chip area consideration and signal to quantization noise ratio (SQNR) directly
determines the choice. Here, only the quantization and the saturation effects related
SQNR is considered. This key issue should be simulated and briefly decided before the
processor design. After the processor design finished, the SQNR should be simulated
again, which is further dealt with in Chapter 6. The reason is that the architecture of
the processor, which affects the saturation and rounding effects, also changes the SQNR.

The first decision need to be made is the data type choice, the floating points or the
fixed points. Actually, most of the ASIC DSP chips use fixed point, because the floating

2.4. THE REQUIREMENT OF FFT FOR MULTIBAND OFDM SYSTEM 15

points are too costly and complex to implement. By considering the speed, area and
economy, the practical UWB receiver is likely to employ a fixed point FFT [23]. By
using fixed points to implement the digital system, it inevitably involves quantization
of signals and coefficients in the system [24]. The first quantization error is due to the
coefficients and input data quantization. In FFT processors, this means the input data
and the twiddle factors W r

N should be quantized in order to fit for the fixed data type.
Another quantization error is caused by the signal rounding and overflows during the
arithmetic calculation of the internal stages. These quantization errors are analyzed
in [25]. This paper evaluates the variance of the quantization errors of fixed-point
computation of the FFT. The complex multiplication in each stage, which requires four
real multiplications, is considered as the main factor to cause the quantization errors.
There can also be saturation effects caused by addition in each stage to produce the
quantization errors. To eliminate this, proper scaling in each stage is used during the
realization.

For the Multiband OFDM UWB system, Sherratt, et al [23] discussed the requirements
on the numerical precision for practical consumer electronic solution. Based on the
performance by using channel model and compared with floating points analysis, he
concludes 8 bits are a good practical implementation for the data into and out of the
FFT core, and 11 points gives good approximation for the internal data representation.

Nevertheless, brief Matlab simulation of the SQNR caused by the fixed point saturation
and rounding of inner stages is necessary before the implementation of the FFT processor.
Here, common radix 2 Decimation in Time (DIT) FFT algorithm is used to simulate
fixed point 128 data FFT. For the seven stages, each stage performs a right shift, which
means the FFT computation has a scaling factor of 1

2 each stage. The floating point and
15 bits fixed point FFT outputs are shown in Figure 2.10. The input signals shown in the
upper figure are the QPSK modulated OFDM signals and its fixed point repesentation.
Because of the modulation property and IFFT processing, the values of original OFDM
signals are all below 1. The maximum value can be obtained when all the carrier signals
are coherently added. In fact, from many time simulations, it is found that the absolute
values of most QPSK modulated OFDM signals are in the range of 0∼0.2. The lower
figure shows both of the floating and fixed point FFT outputs. It is shown that the fixed
point FFT causes quantization errors.

Above 25dB SQNR is considered acceptable in Multiband-OFDM system [26]. Different
bits are used to simulate in FFT in order to decide the proper number of bits that need
to be used. It is found that the SQNR of 15 bits is mostly above 40dB, which is shown in
Figure 2.11. Nevertheless, when the 14 bits are used as fixed point to simulate, at some
points, only 20dB SQNR can be achieved, which is shown in Figure 2.12. Therefore, 15
bits are used as fixed point format to design the FFT processor.

16 CHAPTER 2. THE PRINCIPLE OF MB-OFDM UWB SYSTEM AND ITS
REQUIREMENTS FOR FFT PROCESSOR

Figure 2.10: The comparison of the floating point FFT with the fixed point FFT

Figure 2.11: The Error and SQNR analysis of 15 bits fixed point FFT

2.4. THE REQUIREMENT OF FFT FOR MULTIBAND OFDM SYSTEM 17

Figure 2.12: The Error and SQNR analysis of 14 bits fixed point FFT

18 CHAPTER 2. THE PRINCIPLE OF MB-OFDM UWB SYSTEM AND ITS
REQUIREMENTS FOR FFT PROCESSOR

Fast Fourier Transform and Its
Different Algorithms 3
As shown in the previous chapter, in MB-OFDM UWB system, the FFT takes an
important role in the total base-band circuit. Based on the system requirement, 128
point FFT need to be processed by using proper algorithm, which should be optimal for
ASIC implementation. This chapter focuses on the different algorithms used to realize
the Fast Fourier Transform. The advantages and disadvantages of these algorithms are
also analyzed.

3.1 The Discrete Fourier Transform

The DFT of x(n), written as X(n), is defined in Equation (3.1), which is an N-point
sequence.

X(k) =
N−1∑
n=0

x(n)e−i2πnk/N , k = 0, 1, ..., N − 1 (3.1)

The x(n) and X(n) are, in general, complex. The indices n and k are integers.

Here, WN , which is called twiddle factor, is introduced by Equation (3.2)

WN = e−i2π/N = cos(
2π

N
)− isin(

2π

N
) (3.2)

Wnk
N can be used instead of e−i2πnk/N , so the equation above could be written as

X(k) =
N−1∑
n=0

x(n)Wnk
N , k = 0, 1, ..., N − 1 (3.3)

3.2 The Fast Fourier Transform and its algorithms

The Fast Fourier Transform (FFT) [27] [6] is an efficient algorithm for computing
the DFT. It is based on the fundamental principle of decomposing the computation
of the discrete Fourier transform of a sequence of length N into successively smaller
discrete Fourier transforms. The FFT generates the same result as DFT, however the
computation complexity for N numbers is reduced from O(N2) to O(Nlog(N)).

After Cooley and Tukey [27] publishing the FFT algorithm for faster computation of
discrete Fourier transform, several fast computation algorithms were proposed. Based

19

20 CHAPTER 3. FAST FOURIER TRANSFORM AND ITS DIFFERENT
ALGORITHMS

on different decomposition, different algorithms could be obtained for computing the
discrete Fourier transform. Here some of the algorithms are introduced.

3.2.1 Decimation-in-time FFT Algorithms

From the definition in [6], algorithms which decompose the sequence x[n] into succes-
sively smaller subsequences, are called decimation-in-time algorithms.

In order to explain this algorithm clearly, the Radix-2 DIT algorithm is derived here to
demonstrate the decomposition.

From the DFT formula, X(k) is given by

X(k) =
N−1∑
n=0

x(n)Wnk
N , k = 0, 1, ..., N − 1 (3.4)

In Equation (3.4), x(n) could be separated into even-numbered points part and odd-
numbered points part. So the formula above can be rewritten as

X(k) =
N/2−1∑

r=0

x(2r)W 2rk
N +

N/2−1∑
r=0

x(2r + 1)W (2r+1)k
N , k = 0, 1, ..., N/2− 1 (3.5)

=
N/2−1∑

r=0

x(2r)W 2rk
N + W k

N

N/2−1∑
r=0

x(2r + 1)W 2rk
N (3.6)

x(n) in the equation above is divided into even sequence x(2r) and odd sequence x(2r+1).
It is also known as W 2

N = WN/2 since

W 2
N = e−2i2π/N = e−i2π/(N/2) = WN/2 (3.7)

Consequently, Equation (3.6) can be written as

X(k) =
N/2−1∑

r=0

x(2r)W rk
N/2 + W k

N

N/2−1∑
r=0

x(2r + 1)W rk
N/2, k = 0, 1, ..., N/2− 1 (3.8)

The data flow of Equation (3.8) is shown in Figure 3.1.

By analyzing this figure, for each divided N
2 -point DFT, the calculation operation

requires O((N
2)2) complex multiplications and complex additions. Then, to combine the

parts together, O(N) complex multiplications and complex additions are also needed to
get the N-point DFT. So in total, for once divided N-point DFT, N + 2× (N

2)2 complex
multiplications and complex additions are needed. Compared with original N-point
DFT, which needs O(N2) complex multiplications and complex additions, for large N ,

3.2. THE FAST FOURIER TRANSFORM AND ITS ALGORITHMS 21

Figure 3.1: the DIT decomposition of an N-point DFT computation into two (N/2)-point
DFT computations, from [6]

nearly 50% reduction in the number of operations is obtained.

Here by using the symmetry and periodicity of the twiddle factor WN , the computation
can be reduced further. Figure 3.2 shows one butterfly structure, which has two input
values in first stage, and the two output values obtained by multiplying each input value

with twiddle factors W r
N and W

r+N
2

N separately and adding these values with another
input value.

Figure 3.2: Butterfly with full twiddle factors in DIT algorithm

The twiddle factor W
r+N

2
N can be rewritten as

W
r+N

2
N = W

N
2

N W r
N = −W r

N (3.9)

since
W

N
2

N = e−j(2π
N

)N
2 = e−jπ = −1 (3.10)

So Figure 3.2 can be changed in the figure below:

22 CHAPTER 3. FAST FOURIER TRANSFORM AND ITS DIFFERENT
ALGORITHMS

Figure 3.3: Butterfly with simplified twiddle factors in DIT algorithm

The structure consists of one complex multiplier and two complex adders which will
take smaller area for implementation than two complex multipliers and adders.

For each N
2 -point DFT, if it still can be successively divided by 2, then above steps can

be used again for these N
2 -point DFT. Figure 3.4 shows the data flow of 8 point DIT

FFT.

Figure 3.4: 8 Point DIT FFT data flow, from [6]

From the derivation above, it is shown, for the radix-2 DIT algorithms, the computation
operations are O(NlogN) which is much smaller than O(N2) in the original N-point
DFT.

3.2.2 Decimation-in-Frequency FFT Algorithm

Compared with Decimation-in-Time FFT algorithm, dividing the outputs of DFT in
smaller sequence can also be considered.

As the same method being used in 3.2.1, the Radix-2 DIF algorithm function is also
illustrated by using the algorithm derivation.

3.2. THE FAST FOURIER TRANSFORM AND ITS ALGORITHMS 23

First, the DFT formula is recalled here

X(k) =
N−1∑
n=0

x(n)Wnk
N , k = 0, 1, ..., N − 1 (3.11)

The even-numbered frequency samples are taken from Equation (3.11), which is

X(2r) =
N−1∑
n=0

x(n)W 2nr
N (3.12)

=

N
2
−1∑

n=0

x(n)W 2nr
N +

N−1∑
N
2

x(n)W 2nr
N , r = 0, 1, ...,

N

2
− 1 (3.13)

The second summation from N
2 to N can be changed into the summation from 0 to N

2 .
So the equation above can be expressed as

X(2r) =

N
2
−1∑

n=0

x(n)W 2nr
N +

N
2
−1∑

n=0

x(n +
N

2
)W

2r(n+N
2

)

N , r = 0, 1, ...,
N

2
− 1 (3.14)

By using the property of W 2nr
N ,

W
2r(n+N

2
)

N = W 2rn
N W rN

N = W 2rn
N (3.15)

Equation (3.14) can be expressed as

X(2r) =

N
2
−1∑

n=0

(x(n) + x(n +
N

2
))W 2nr

N
2

, r = 0, 1, ...,
N

2
− 1 (3.16)

Following in the same way, the odd-numbered frequency sequences can be expressed as

X(2r + 1) =

N
2
−1∑

n=0

(x(n)− x(n +
N

2
))Wn

NW 2nr
N
2

, r = 0, 1, ...,
N

2
− 1 (3.17)

Now, Equation (3.16) and Equation (3.17) can be combined together to get the first
order DIF derivation. This derivation is shown in Figure 3.5. First, The x(n)+x(n+ N

2)
and x(n)−x(n+ N

2) is computed. Then, the x(n)−x(n+ N
2) part is multiplied with the

twiddle factor Wn
N . After this, the even and odd frequency sequences can be obtained

by computing the following N
2 point DFT of the two sequences separately.

For each N/2 point DFT above, if it still can be successively divided by two, the above
steps will repeat. A 8 point radix-2 decimation in frequency algorithm data flow is shown
as Figure 3.6.

It is shown from the derivation above, for the radix-2 DIF algorithms, the computation
operations are also O(NlogN) which is the same as radix-2 DIT algorithm and is much
smaller than O(N2) in the original N-point DFT.

24 CHAPTER 3. FAST FOURIER TRANSFORM AND ITS DIFFERENT
ALGORITHMS

Figure 3.5: 8 Point Radix-2 divided once DIF data flow

Figure 3.6: 8 Point Radix-2 DIF algorithm data flow

3.2.3 Radix 4 and higher radix Algorithms

3.2.3.1 Radix 4

If the data sequence N is a power of 4, the same method in Radix-2 algorithms can be
used to divide the sequence by 4 in order to let all the elementary computations be 4
point DFT’s. Both the DIT and DIF algorithms can be used for radix 4. A 16 point
DIF radix 4 algorithm data flow is shown in Figure 3.7 to illustrate the function of radix
4 algorithm.

In the figure, the numbers on the left side mean input data and the numbers on the right
side are output data which are in bit reversed order. In the first column butterflies, every
four input data are processed in the same butterfly and four output data are produced.
We can zoom in to one radix 4 butterfly in order to check its function and compute
operations.
As shown in the Figure 3.8, One radix 4 butterfly needs 3 multipliers and 12 adders,
whereas radix 2 butterfly needs 4 multipliers and 8 adders. Therefore, radix 4 butterfly

3.2. THE FAST FOURIER TRANSFORM AND ITS ALGORITHMS 25

Figure 3.7: Radix 4 DIF Data flow

Figure 3.8: One Radix 4 DIF Butterfly

reduces 1 multiplier but requires 4 more adders. For ASIC implementation, 1 multiplier
takes much bigger areas than 4 adders. Therefore radix 4 algorithm has the advantage in
this perspective. However, in the meantime, the control and data flow design complexity
is also increased.

3.2.3.2 Higher Radix Algorithms

As long as the input sequence is an order of r (r > 4), DFT can be divided into several
radix r DFT blocks. It is called higher radix algorithm. Its main benefits are higher
processing speed, less stages, and less arithmetic blocks. However, the design complexity
increases correspondingly with the radix order. For example, in one butterfly processing
time, r twiddle factors are required to be read in the processor simultaneously, which
requires much more efforts on memory and time control than radix 2 algorithm. In
fact, higher than radix 8 algorithms are not very often employed for ASIC implementa-
tion. Due to the complexity of the structure, the efficiency of the processor can not be
improved.

26 CHAPTER 3. FAST FOURIER TRANSFORM AND ITS DIFFERENT
ALGORITHMS

3.2.4 Radix 22 Algorithm and Radix 2x Algorithms

3.2.4.1 Radix 22 Algorithm [8] [28]

In 1996, He and Torkelson integrated the twiddle factor decomposition and proposed a
so-called radix 22 algorithm. This algorithm has the same multiplicative complexity as
radix 4 algorithm, but retains the butterfly structure of radix-2 algorithm [8].

To explain this algorithm, the first two steps of the decomposition of radix 2 DIF FFT
is analyzed, and the Common Factor Algorithm (CFA) is used to illustrate. In equation
(3.1), for the first two steps of the DIF decomposition, the n and k should be decomposed
as

n =<
N

2
n1 +

N

4
n2 + n3 > N (3.18)

k =< k1 + 2k2 + 4k3 > N (3.19)

<> N means the total value of n and k is N . Substitute the decomposition above in
Equation (3.1), it can be obtained that

X(k1 + 2k2 + 4k3) =

N
4
−1∑

n3=0

1∑
n2=0

1∑
n1=0

x(
N

2
n1 +

N

4
n2 + n3)W

(N
2

n1+N
4

n2+n3)(k1+2k2+4k3)

N

(3.20)

=

N
4
−1∑

n3=0

1∑
n2=0

[Bk1
N
2

(
N

4
n2 + n3)W

(N
4

n2+n3)k1

N]W
(N

4
n2+n3)(2k2+4k3)

N (3.21)

Here,

Bk1
N
2

= x(
N

4
n2 + n3) + (−1)k1x(

N

4
n2 + n3 +

N

2
) (3.22)

For normal radix 2 DIF algorithm, the expression in braces is computed first as a first
stage in Equation (3.21). However, in radix 22 algorithm, the key idea is to reconstruct
the first stage and second stage twiddle factors, which is shown in Equation (3.24)

W
(N

4
n2+n3)k1

N W
(N

4
n2+n3)(2k2+4k3)

N = WNn2k3
N W

Nn2(k1+2k2)
N W

n3(k1+2k2)
N W 4n3k3

N (3.23)

= (−j)n2(k1+2k2)W
n3(k1+2k2)
N W 4n3k3

N (3.24)

By using the Equation (3.24), the Equation (3.21) can be changed into

X(k1 + 2k2 + 4k3) =

N
4
−1∑

n3=0

[H(k1, k2, n3)W
n3(k1+2k2)
N]W 4n3k3

N (3.25)

The H(k1, k2, n3) is expressed as

H(k1, k2, n3) = [x(n3)+ (−1)k1x(n3 +
N

2
)]+ (−j)(k1+2k2)[x(n3

N

4
))+ (−1)k1x(n3 +

3N

4
)]

(3.26)

3.2. THE FAST FOURIER TRANSFORM AND ITS ALGORITHMS 27

Figure 3.9: The application of Radix 22 algorithm for 8 point FFT

The application of this algorithm to 8 point FFT is shown in Figure 3.9. It is shown
in the figure that the radix 22 algorithm was only used once, because 8 point DFT
can only be decomposed once by radix 4. Therefore, radix 22 algorithm can only be
used for the first two stages. For the last stage, normal radix 2 DIF algorithm is used.
By using radix 22 algorithm, complex multiplication of the twiddle factor in the first
stage is changed into multiplying (-j) which means just real-imaginary swapping and
sign inversion. Therefore, one complex multiplier can be reduced for 8 point FFT during
implementation.

3.2.4.2 Higher Radix 2x Algorithms

Some researchers tried to combine more stages twiddle factors in order to reduce
more complex multipliers. In 1999, He, et al [28] provided Radix 23 algorithm which
combined 3 stage twiddle factors and reconstructed them. In 2005, Jung-Yeol OH
and Myoung-Seob LIM [29] [30] provided the Radix 24 Algorithm, which reconstructs
4 stages twiddle factors. The main idea of this algorithm is shown as follows. The
derivation details can be found in [29].

Figure 3.10 shows the 32 points Radix 24 Algorithm data flow. In the first 4 stages, the
twiddle factor multiplication of the first and third stages becomes only real-imaginary
swapping and sign inversion by using the algorithm. For the second stage, the twiddle
factors can be reduced to W 0

16, W 1
16, W 2

16, W 3
16, which means constant multipliers

with some control units can be employed instead of a complex multiplier for the
twiddle factor multiplication . The complex multiplication is only required at the
fourth stage. The implementation area can be reduced by employing this algorithm
because the constant multiplier takes smaller area than complex multiplier in ASIC chips.

28 CHAPTER 3. FAST FOURIER TRANSFORM AND ITS DIFFERENT
ALGORITHMS

Figure 3.10: 32 Points Radix 24 DIF Algorithm data flow

3.2.5 Other FFT Algorithms

Split Radix
The key idea of this algorithm is to use different radices for different decimation-products
of the sequence. For example, the odd indexed numbers part can use radix 2 algorithm
and the even indexed numbers part can use the radix 4 algorithm. The purpose of doing
this is to reduce the number of multipliers and adders. However, because of the irregular
structure, The implementation is much more complicated than normal radix r algorithms.

Mixed Radix
If the radix r algorithm is used, normally logN

r stages are required for implementation.
Mixed radix algorithm means that different radix r butterflies for different stages are
employed. If the radix is properly chosen for different stages based on the specifications
of the FFT, the optimized design for speed and area can be obtained. However, for
generic FFT, in which the process points need to be scaled, this algorithm is not suited
because the scaling porperty is hard to handle by this algorithm.

Algorithms such as prime factor algorithm [31], Winograd Fourier Transform [32],
etc have the advantage of requiring less multiplications. However, more additons are
required than previously-discussed FFT. Because of the irregular structure determined
by the algorithm, they are normally implemented for special usage.

3.3 Algorithms Comparison for ASIC Implementation

This chapter briefly reviewed the algorithms of Fast Fourier Transform. The radix 2
DIT and DIF algorithms have simple structure and clear data flow, which is easy to im-

3.3. ALGORITHMS COMPARISON FOR ASIC IMPLEMENTATION 29

plement and is suitable for generic FFT implementation. Nevertheless, these algorithms
need large memory to store data at inner stages, which is not efficient for the ASIC imple-
mentation. The radix 4 or higher radix algorithms need less multiplications than radix 2
algorithm. However, the data flow control is complex and more data need to be fetched
at the same time, which will increase the area for implementation. This chapter also dis-
cusses the radix 22 and 2x algorithms, which integrate the twiddle factor decomposition
every two or X stages. The radix 22 algorithm has the same multiplicative complexity
as radix 4 algorithm, but retains the butterfly structure of radix 2 algorithm, which is
very suitable for ASIC implementation. Nowadays, based on literature research, there
are two trends for FFT implementation of OFDM system, the mixed radix algorithms,
like [4] and the pipeline structure based algorithms, like [13]. More detailed analysis is
discussed in Chapter 4 combined with architecture choice.

30 CHAPTER 3. FAST FOURIER TRANSFORM AND ITS DIFFERENT
ALGORITHMS

FFT architectures Analysis
and Design Choices 4
4.1 Overview of FFT Architectures

According to [16] [7], based on different structures, the FFT processors can be divided
into memory based structure and pipeline-buffer structure.

4.1.1 Memory based structure

Single Memory
The single-memory architecture is the simplest memory system architecture. The sim-
plest version of this structure is just one arithmetic block connected with one memory
by bi-directional data bus as shown in Figure 4.1. In this situation, each butterfly input
reads from the memory and writes back to the memory after processing. Therefore, for
each of the logN

r stages, the N
r times butterfly calculation is required, where r is the

radix number of selected algorithm. It is also possible to read all the data from the
memory, which need parallel N

r butterfly arithmetic blocks for processing. In this situ-
ation, N data width bus is to connect the memory and the arithmetic blocks and only
one butterfly processing period is needed for each stage.

Figure 4.1: Single Memory Architecture Block, from [7]

Dual Memory
Connecting the arithmetic blocks with the two memory blocks is called dual memory
structure as shown in Figure 4.2. Each memory block is connected to the arithmetic
blocks separately. First, the data are read from one memory and processed in the
arithmetics block. After processing, the data are written to the other memory. At the
same time, the next data are read again from the first memory block and processed in a
pipeline way. After finishing this processing stage, the same process repeats for the next
stage. However, the data are now read from the second memory block and are written
into the first memory block. This process looks like ‘ping pong’ between the two memory

31

32 CHAPTER 4. FFT ARCHITECTURES ANALYSIS AND DESIGN CHOICES

blocks. The ASIP FFT processor designed by Ramesh Chidambaram [9] employs dual
memory structure.

Figure 4.2: Dual Memory Architecture Block, from [7]

Array
The array architecture is to divide the whole processing into a number of independent
processing elements with local buffers as shown in Figure 4.3 [7]. These independent
processing elements are connected by different types of networks. This architecture is
mainly used for large number data processor.

Figure 4.3: Array architecture block, from [7]

4.1.2 Pipeline-buffer Structure

Figure 4.4 shows an overview of the pipeline-buffer structure for FFT processor. It
is considered as real time data processing architecture, in which the input data are
read in series. Different pipeline architecture had been developed since 1970s [16]. He
and Torkelson [8] summerized four main pipeline structures. Here, these structures are
analyzed and compared based on [16] [8].

Multi-path Delay Commutator (MDC) [16] and Single-path Delay Feedback (SDF) [18]
are the two main connection ways of each pipeline stages for FFT algorithm. Based on

4.1. OVERVIEW OF FFT ARCHITECTURES 33

Figure 4.4: Overview of Pipeline Structure, from [7]

different radix decomposition, five main pipeline structures are R2MDC [16], R2SDF
[18], R4SDF [33], R4MDC [16] and R4SDC [34].

The most straightforward approaches of the pipeline implementation are R2MDC and
R4MDC shown in Figure 4.5(i) and (iv). The input data have been separated into
several data streams flowing forward to each pipeline stage. The outputs of these stages
are also parallel and delayed to the next stages. The time delay between each parallel
data need to be correctly matched, which is determined by the algorithms. It can
be obtained that the memory utilization for R2MDC and R4MDC is 50% and 25%
separately. The details are explained in [16].

Single-path Delay Feedback (SDF) combines the input memory and out memory of each
stage. The input and output data of each stage share the same shift registers. In this
way, the shift registers are more efficiently in R2SDF and R4SDF. Only one data path
is employed to connect the stages as shown in Figure 4.5 (ii) and (iii). Moreover, the
memory utilization of R2SDF and R4SDF is improved to 100% and 75% respectively.
However the synchronization control of these structures is very complex because the
butterfly computational unit is modified.

Radix 4 Single-path Delay Commutator [34] uses a programmable method to change the
structure of normal radix 4 butterfly in order to reduce the complex multipliers required.
And the memory is also reduced by a combined Delay-Commutator. Table 4.1 shows
the comparison of the memory requirements of these structures.

Table 4.1: The Memory Requirement of Different Pipeline Structure
Structure Memory Requirements
R2SDF N − 1 FFT number data
R2MDC 3N

2 − 2 FFT number data
R4SDF N − 1 FFT number data
R4MDC 5N

2 − 4 FFT number data
R4SDC 2N − 2 FFT number data

34 CHAPTER 4. FFT ARCHITECTURES ANALYSIS AND DESIGN CHOICES

Figure 4.5: The various schemes for pipeline FFT processor, from [8]

4.2 High Level Speed, Area and Power Analysis

Since the architecture is the main factor to determine the speed, area and power of FFT
processor, deeper investigation and comparison of different architectures is necessary at
high lever before the implementation. The analysis is based on architecture level which
means the design details are not considered. Therefore the pipeline and shimming
registers which are used for timing and delay control signals are not considered here
and the multiplication is assumed to be finished at one clock cycle.

The 128 point FFT is used for analysis and the input data sampling rate is 528MHz,
which are defined by [5]. In fact, this frequency is not suitable for implementation

4.2. HIGH LEVEL SPEED, AREA AND POWER ANALYSIS 35

because the time slot is too short and more registers need to be added between combi-
national logic. Normally, the design area and power consumption increase exponentially
as the frequency goes up and most consumer electronics products for UWB can not
afford more than 300 MHz frequency. Thus 300MHz is used as the reference clock
frequency to analyze the following architectures. One cycle period is approximate 3.3ns
according to Equation (4.1).

Tclock period =
1

fclock speed frequency
(4.1)

At this stage, Only the number of memories, multipliers, adders is taken into account
without referring to the real areas of each block. Because these information can only be
available after synthesis.

The following parts are the analysis and comparison of different architectures.

Single Memory
For this architecture, one butterfly needs at least 3 clock cycles for reading from
memory, processing, and writing back to memory. Thus approximately 10ns is required
by one butterfly calculation. If radix 2 algorithm is used for this architecture, 448 radix
2 butterflies are needed for 128 point FFT because

Butterflies required = Stages numbers× butterflies per stage (4.2)
= 7× 64 for 128 points radix 2 algorithms

= 448

The time slot for the FFT calculation is 242.42ns which is analyzed in Section 2.4.
Thus, at most 24 clock cycles are available in this time slot (24 = floor(242.42

10)). The
required number of parallel butterflies is 19 which is calculated by Equation (4.3). This
is unimplementable because 19 complex multipliers and 76 adders in total are required,
which will take too much area in ASIC implementation.

parallel number =
total needed butterflies

clock cycles available/clock cycles for one butterfly
(4.3)

Based on the analysis above, single memory structure need 128 data memories and 19
complex multipliers and 76 adders.

Dual Memory Structure
Dual memory structure can pipeline reading, processing, writing of one butterflies
process. Therefore, only one clock cycle is needed for butterfly calculation theoretically.
By using the radix 2 algorithm, the 448 butterflies are also needed for the FFT
calculation. The parallel butterflies number is calculated in Equation (4.4).

parallel number =
448
72

= 7 (4.4)

36 CHAPTER 4. FFT ARCHITECTURES ANALYSIS AND DESIGN CHOICES

Two 128 data memories are required, which is determined by the structure. The number
of multipliers and adders required are 7 and 28 respectively.

The radix 4 version single memory and dual memory structures need the same memories
as radix 2. Slightly less multipliers are required, but more adders are required than
radix 2.

R2MDC
For 128 point FFT, 7 stages are required for radix 2 algorithm based pipeline structure.
In this structure, each stage needs one multiplier and four adders. So in total, 7 complex
multipliers and 28 adders are needed for R2MDC. And based on the analysis in Section
4.1.2, the memory required is 190 data storage.

R2SDF
R2SDF needs the same stages as R2MDC, which means the same required multipliers
and adders. However, the memory is reduced to 127 data storage.

R4MDC
It is not possible to implement 128 point FFT by only using R4MDC structure because
128 is not the power of 4. The only possible way to use R4MDC for 128 point is to
employ mixed radix method which combines the radix 4 with radix 2 algorithms. The
combination of 3 stages R4MDC with 1 stage R2MDC is used for 128 point. In this
structure, the connection between R4MDC and R2MDC requires extra shift registers
to delay the output of R4MDC. This method will increase the whole structure cost and
the total latency. 10 multipliers and 157 data storage plus extra shift registers for delay
are needed. Compared with other algorithms, it is not area and power efficient.

R4SDF
Like R4MDC, the combination of 3 stages R4SDF with 1 stage R2SDF is used for 128
point FFT. Because of the single path between each stage, the connection between
R4SDF and R2SDF does not need extra shift registers. The required multipliers are
3 and the memory is 127 data storage. However, about 50 adders are needed for this
structure.

R22SDF
The R22SDF structure uses the radix 22 algorithm to SDF architecture which is shown
in Figure 4.6. The SDF architecture is the most memory efficient architecture and the
radix 22 algorithm can save half of multipliers required compared with normal radix 2
algorithms. Both benefits can be perfectly integrated in R22SDF for 128 point FFT.
The total multipliers are 3 and 127 data storages are needed.

The structures mentioned above are the main FFT structures available nowadays. De-
pending on different requirements, plenty of papers provide the modified versions of the
structures analyzed here. Table 4.2 is the analysis summary. The required input buffers
for different structure are not included.

4.3. DESIGN CHOICE 37

Figure 4.6: The radix 22 SDF Structure

Table 4.2: The Analysis of Different Pipeline Structure
Structure Frequency Memory Require-

ments
Complex
Multipliers

Adders design com-
plexity

R2 single
memory

300MHz 128 data storage 19 76 simple

R2 dual
memory

300MHz 256 data storage 7 28 simple

R2SDF 528MHz 127 data storage 7 28 medium
R2MDC 528MHz 190 data storage 7 28 complex
R4SDF 528MHz 127 data storage 3 40 medium
R4MDC 528MHz 157 data storage plus

extra the delay regis-
ters

10 40 complex

R22SDF 528MHz 127 data storage 3 28 complex

4.3 Design Choice

4.3.1 Algorithm and Architecture Choice

From previous section, it is shown that R22SDF structure is the best option in
regard of the memories and arithmetic blocks utilization. Based on the requirement
of MB-OFDM UWB system, neither single memory nor dual memory is suitable for
ASIC implementation. The reason is that single memory structure needs parallel 19
butterflies which means the arithmetic blocks are too large for implementation. Dual
memory structure needs 256 data memory block which is also not area efficient for
ASIC implementation. Whereas, the pipeline structure is the most suitable choice
for high throughput rate with affordable hardware cost. However, the frequency

38 CHAPTER 4. FFT ARCHITECTURES ANALYSIS AND DESIGN CHOICES

requirement for all pipeline structures is 528MHz which is the same as input data
sampling rate. In fact, the 528MHz is unacceptable for current ASIC implementation
based on the previous analysis. Therefore, it is crucial to reduce the working frequency if
the pipeline structure is used. This difficult problem is discussed and solved in Chapter 5.

Regardless of the clock frequency, R22SDF structure is a reasonable choice for the FFT
processor targeted for the MB-OFDM system. The first step for verifying this structure
is to validate its function from Matlab simulation. The 128 point radix 22 algorithm
based SDF structure FFT is simulated in Matlab and compared with the builtin FFT
function of Matlab. The simulation result is shown in Figure 4.7. From this figure, it
can be seen that there is only 10−16 order difference between the R22SDF structure and
Matlab builtin algorithm. The difference is caused by twiddle factor reconstruction of
Radix 22 algorithm.

Figure 4.7: The R22 SDF structure simulation and comparison with Matlab builtin FFT
algorithm

R22SDF based design choices is discussed in the following sections.

4.3. DESIGN CHOICE 39

4.3.2 Fixed point data format

Two’s Complement
The data presentation of this FFT uses two’s complement. In two’s complement, the
first bit of a positive number is always 0, and the following bits is the standard binary
value. The first bit of negative number is always 1, and the following bits can be
obtained by the following steps. First, flip its standard binary positive value. Then,
add 1 to the binary values.

Complex data
Due to the OFDM signal and twiddle factor property, the input data and twiddle factor
are all separated into real and imaginary parts. Based on the requirements analyzed in
Section 2.4, both real and imaginary parts should be 15 bits format.

For input data, because of the QPSK modulated OFDM signal property, all the values
are in the range of -1 to 1. Therefore, keeping only one bit integer part is enough for
processing in FFT processor. For other signal types, the value of input data can all be
normalized into the range of -1 to 1 before processing.

For twiddle factor, because both the real and imaginary parts are also in the range of
−1 to 1, the first bit of 15 bits is the sign bit and the rest 14 bits are used for fraction
representation. Table 4.3 shows the range.

Table 4.3: The twiddle factor data format
Format Binary Decimal
General format SXXXXXXXXXXXXXX
Minimum value 100000000000000 -1.0
Maximum value 011111111111111 +0.9999999999999995
Minimum step size 000000000000001 +0.0000000000000005

4.3.3 Data scaling between each stages

There are two effects that require data scaling between each stage. The first one is the
overflow and saturation effect. For R22SDF structure, this effect can only happen in
the addition and subtraction of butterfly arithmetic blocks. Because there are additions
and subtractions at each stage, 1

2 division is used for each stage in this FFT design.
This implementation uses arithmetic right shift. There is a possible optimization for
this scaling. Armstrong, et al [35] provides a method to improve the scaling effect.
However, for ASIC implementation, the data bus connecting between each stages can be
customly defined. Thus, the width of the data buses can be different for different stage
connections. In case that the overflow accours at specific stage, an extra MSB (Most
Significant Bit) bus line needs to be added. Therefore, an optimal solution exists for
data bus design in order to optimize the ASIC implementation and avoid overflow. Extra

40 CHAPTER 4. FFT ARCHITECTURES ANALYSIS AND DESIGN CHOICES

efforts need to be focused on the data value analysis to find the optimal solution in future.

The other effect is the rounding effect caused by multiplication. The multiplication of
two 15 bits data will produce 30 bits product, which can not be passed to the next stage.
So the trancating must be used to fit for the transmit bus and system requirement.
This design truncates the 15 left most bits directly after the multiplication, which is
another factor to cause quantization errors.

4.3.4 Twiddle factors design

There are two ways for twiddle factors design. One way is using ROM to store the
fixed twiddle factors which were calculated in advance. The other way is generating
twiddle factors by CORDIC (coordinate rotation digital computer). The CORDIC
algorithm provides an efficient method of computing trigonometric functions by rotating
a vector through some angle, specified by its coordinates [36]. Sarmiento, et al [36] and
Despain, et al [33] employ CORDIC to calculate the twiddle factor multiplication for
FFT processor. Zhang, et al [14] uses CORDIC to generate twiddle factor, which is a
good way to combine the multiplication with calculating the twiddle factor for FFT.
However, it is difficult to implementation for R22SDF structure. The reason is that
Radix 22 algorithm changes the order of the twiddle factors, which will change the
CORDIC structure and require more circuit blocks. It is not reasonable to implement
from the area and power consumption point of view.

The proposed design employs the first method to handle the twiddle factors. However,
a low power ROM design is used specially for R22 SDF, which is discussed in Section
5.2.3.1.

4.3.5 The input order and bit reversed order for the output

Many designs for FFT processor ignore the consideration of the interface with other
baseband UWB system blocks. However, the analysis of this part is imperative for
processor design. The reason is that the Input/Output (I/O) interface handling may
take much area and power consumption for which ASIC chip is not affordable in some
circumstances. And the choice of architecture is strongly affected by the interface issues.

For high performance real time processing, the input data are streaming into the
processor. This means, for normal FFT processor, a serial to parallel data buffer needs
to be installed at the input of the FFT processor. However, the pipeline structure
FFT is very suitable for this data input type. Particularly, R22SDF structure artfully
integrates input data buffer with first stage output data buffer. Nevertheless, this means
the processor needs to work at the data sampling frequency, which is an obstacle for
implementation. This problem is solved in Section 5.1.

4.4. SUMMARY 41

Similar as normal DIF algorithm, the output of R22SDF structure is in bit reversed
order. Therefore, extra registers are required for reordering the outputs into normal
order. However, the problem can be solved if the channel estimation and equalization
blocks, which is connected with the output of FFT processor, can be designed to process
the input data in bit reversed order [9]. In this way, the output of FFT will serve as the
input to the channel decoding stage. Actually, the following blocks after FFT are the
deinterleaver and viterbi decoder. The complete solution to this problem should include
these blocks and interconnections design consideration. Some effects have already been
done for the bit reversed order output problem [13] [37]. However, deeper analysis of
the baseband processor is necessary for this issue, which is beyond the thesis scope and
needs further research support.

4.3.6 IFFT realization

IFFT (Inverse Fast Fourier Transform) calculation can be computed in FFT processor
by just adding some small circuits [15].

IDFT (Inverse Discrete Fourier Transform) is presented in Equation (4.5).

X(n) =
1
N

N−1∑
k=0

X(k)W−nk
N , n = 0, 1, ..., N − 1 (4.5)

By taking complex conjugate and multiplying N, Equation (4.5) can be written as

NX∗(n) =
N−1∑
k=0

X∗(k)Wnk
N (4.6)

Changing X∗(n) back to X(n), the equation can be written

X(n) = (
1
N

N−1∑
k=0

X∗(k)Wnk
N)∗ (4.7)

From Equation (4.7), it is shown that two extra circuit blocks are required for IFFT
calculation. The first one is to change the input data into its complex conjugate. The
second one is to change the output of FFT processor into its complex conjugate. In this
way, there is no requirement for changing twiddle factors from Wnk

N to W−nk
N in FFT

processor.

4.4 Summary

This chapter analyzes and compares different FFT processor structures from the
architecture level. It is found that R22SDF structure is the optimum option for ASIC
FFT implementation of MB-OFDM UWB system with regard of the memories and

42 CHAPTER 4. FFT ARCHITECTURES ANALYSIS AND DESIGN CHOICES

arithmetic blocks utilization.

Important design choices and considerations are also discussed and analyzed here. The
data format and scaling, twiddle factors design, and the interface handling methods are
all analyzed and chosen in regard of the system requirement. However, the frequency
requirement problem is not yet fulfilled, which is solved in the next chapter.

Improvement and
Implementation 5
From the analysis of previous chapter, it is shown that R22SDF requires 528 MHz clock
frequency to process data. However, as explained in Section 4.2, this is unrealizable
for baseband UWB processor. Here, a novel parallel-pipeline FFT processor structure
is proposed based on the R22SDF architecture. The clock frequency of the proposed
structure can be reduced to 157MHz, without much demand for chip area. In this way,
the power consumption is dramatically reduced.

5.1 Improvement

To reduce the clock frequency while keeping the throughput, the most possible way
is to parallelize the butterflies. However, parallelism will increase the area and power
consumption. Therefore, a balance is required between the level of parallelism and the
area and power consumption concern. After analysis, for pipeline structure, the first
stage is the most clock-cycle-consuming stage, which takes half of the total latency.
Thus, the first attempt is to parallel the butterflies only for the first stage. Nevertheless,
by doing this, the data will overstock at the beginning of the second stage.

It is found from analysis, employing two-path parallelism in first six stages is proper
for this structure. Because these six stages can process the even and odd input
data separately and the last stage need to mix the even and odd data. The design
details are described in Section 5.1.2. The shift registers and multipliers are used to
compare between structures because they take most of the area of the processor. In
the proposed design, the shift registers are the same as required by R22SDF. The
number of the multipliers is changed from 3 to 5. Therefore, only 2 extra multipliers
are required for this design, while the clock frequency reduced to half of the original
one. If traditional input buffers are used, the clock frequency can be reduced to 157MHz.

In the following part, the improvement is described from the algorithm, architecture
and implementation perspective respectively.

5.1.1 Algorithm Level

From the analysis of the radix 22 algorithm, it is found that the input data can also be
separated to the odd and even parts. These odd and even parts are not mixed until the
last stage. Here, 8 point FFT data flow is used to illustrate the idea, as shown in Figure

43

44 CHAPTER 5. IMPROVEMENT AND IMPLEMENTATION

5.1.

Figure 5.1: Radix 22 based parallel FFT algorithm data flow

The red line stands for the even input data flow while the green line stands for the odd
input data flow. For the first and second stage, there is no cross between the right lines
and green lines, which means the even and odd input data can be separately processed
in the first and second stages. Only in the last stage, the red lines and green lines
are crossed which means that the even and odd data should be mixed to process. It
can also be seen that the twiddle factors are not changed by this parallel algorithm
compared with Radix 22 algorithm. Thus the number of multiplication required is the
same. However, due to parallelism, the position and order of the twiddle factor need to
be changed. The 128 point parallel Radix 22 based algorithm data flow with twiddle
factor position is shown in Figure 5.4 and Figure 5.5.

By analyzing the Figure 5.4 and Figure 5.5, the input data are separated into the
even and odd data and processed. The twiddle factors of radix 22 algorithm are also
separated into the even and odd parts in each stage and assigned to the even and
odd data flow. The outputs of this algorithm are also changed and seem not in bit
reversed order. However, in real time processing, the first output of the blue arrow
lines will be produced at the same time as the first output of the red arrow lines
as shown in the figures. If all the outputs are saved in this order, They will be in
bit reversed order. The detailed structure information is described in the following parts.

Figure 5.2 is the Matlab simulation results of this parallel algorithm. The upper
figure is the outputs comparison between this algorithm with the Matlab builtin
one. It can be seen that the two output waves are matched. There are only on
the order of 10−16 differences as shown in the lower figure, which is caused by the
twiddle factors combination in radix 22 algorithm. Figure 5.3 is the 15 bits fixed point
simulation results. The SQNR is above 40dB, which is satisfied the system requirement.
The increase of the error compared with floating points, is caused by the quantization
in the arithmetic block of FFT processor. The fixed point Matlab code is in Appendix D.

5.1. IMPROVEMENT 45

Figure 5.2: The comparison of parallel algorithm with Matlab builtin FFT

Figure 5.3: The error of 15 bits parallel radix 22 algorithm

46 CHAPTER 5. IMPROVEMENT AND IMPLEMENTATION

Figure 5.4: The 128 point parallel radix 22 based algorithm data flow first part

5.1. IMPROVEMENT 47

Figure 5.5: The 128 point parallel radix 22 based algorithm data flow second part

48 CHAPTER 5. IMPROVEMENT AND IMPLEMENTATION

5.1.2 Architecture Level

From the previous analysis, there are some requirements for the architecture design.
First, the input data need to be separated into the even and odd parts. Then two
parallel data paths are controlled by the same counters in order to be processed
synchronously. The input data of the last stage need to be switched and well controlled
to send to butterfly and the last stage needs to be well organized to receive the input
data and generate the output.

Figure 5.6 shows the architecture of the proposed radix22parallel based algorithm. It
consists of multiplexers, circular buffers, ROM, complex multipliers, and butterfly units.
First, the input data are streamed in and handled by multiplexer. The multiplexer is
controlled by the control signal, which can separate the input data into even and odd
parts. These data are processed in the even and odd parts of the architecture, where the
red arrow lines stand for the data flow of even data and the blue lines stand for the odd
data. There are three counters which produce the control signals and the addresses for
reading the twiddle factor from the ROM. The even and odd parts of the architecture
are all controlled by the same control signals. Therefore, the synchronization property
is fulfilled for the whole structure, which is also important for the last stage processing.
There are five complex multiplications in the architecture. In the sixth stage, the even
part outputs do not need multiplication and twiddle factor storage, which can be found
in Figure 5.6. The reason is that, after twiddle factor separation in this stage, all the
twiddle factors in the even part become constant 1. Therefore, no multiplication is
required.

As the same as Radix22SDF structure, there are seven stages, which are shown in Figure
5.6. For the parallel architecture, the whole structure can also be divided into the three
big blocks, the last block, and the arithmetic blocks. The counters, which look like the
brain of this structure, are the core of the big blocks. The first big block includes the first
and second stages of the even and odd parts, and the first counter. The second big block
includes the third and fourth stage of the even and odd parts, and the second counter.
The third big block includes the fifth and sixth stage of the even and odd parts, and
the second counter. The details are described in Section 5.2.1.3. The arithmetic blocks
are composed of five ROMs and complex multipliers, which are described in Section 5.2.3.

The last block only includes the seventh stage. Because the odd and even data need to
be commutated, two multiplexers are required to switch the data, which is shown in the
Figure 5.6. However, by analyzing the scheduling of the last stage, it can be found that
the first output data of the even part will be processed with the first output of the odd
part. As long as the timing is matched, the even outputs will be processed with the odd
ones correspondingly. Therefore, the two multiplexers are not necessary and only one
butterfly in the last stage is required to process the data. The modified structure of the
last stage and interface with previous stage is shown in Figure 5.7.

5.1. IMPROVEMENT 49

Figure 5.6: The parallel radix 22 based pipeline architecture

50 CHAPTER 5. IMPROVEMENT AND IMPLEMENTATION

Figure 5.7: The change of last stage

5.1.3 Implementation Level

For implementation level, several aspects need to be considered. Firstly, the control
signals need to be assigned in order to work synchronously. These control signals are
produced from the counter. In the first draft of the design, seven counters are required
for seven stages. However, this method is not area and power efficient. The control
signals of the first and second stage and the addresses for the ROM storage can be
provided by one counter. This method can be expanded to the following stages, so the
number of the counters is reduced to 3. The synchronization between counters is also
needed to be well designed to let the whole circuit work synchronously.

Secondly, the timing reconstruction is required to let the processor work at proper
frequency. Due to the structure, extra registers are needed at the outputs of each stage
and complex multiplier. At the same time, the timing and control signals should be
adjusted because of the latency caused by the extra registers.

Thirdly, the problems caused by parallelism need to be handled. The steaming input
data are separated by the multiplexer. The even parallel data need to be processed
with the odd ones synchronously. And at the last stage, data should be well mixed to
be sent to the last stage.

The detailed implementation information is described in the next section.

5.2. IMPLEMENTATION 51

5.2 Implementation

5.2.1 Radix 22 SDF Pipeline Data Flow

The SDF pipeline data flow is described from the basic elements to the whole structure,
which is composed of the three big blocks and the final block. There are two stages and
a control counter in the big block. The butterflies and memory block are included in the
stages. First the butterfly structure is introduced.

5.2.1.1 Butterfly

Two type of butterflies are used in this structure, which are butterfly I and butterfly II.

The design of butterfly I
For the Butterfly I, it consists of four 2-to-1 multiplexers and four adders. The schematic
is shown in Figure 5.8.

Figure 5.8: Radix 22 Butterfly Type I

As shown in the figure, the input data are complex data x(n) and x(N
2 + n) which is

N
2 data later than the x(n). The data path is controlled by the multiplexer. When the
control signal is one, the data will go though the path which does the calculation of
addition or subtraction. Otherwise, when the control signal is zero, x(n) and x(N

2 + n)
will directly pass butterfly I and get out.

The design of butterfly II
Besides the four 2 × 1 multiplexers and four adders, Butterfly II also consists real and
image parts switching and inversing because of the −j multiplication which is required

52 CHAPTER 5. IMPROVEMENT AND IMPLEMENTATION

by the Radix 22 algorithm. The schematic is shown in Figure 5.9.

Figure 5.9: Radix 22 Butterfly Type II

Compared with Butterfly I, another control signal is introduced to the Butterfly II.
this signal control the real and imaginary parts switching of the input data x(N

2 + n),
and the add or subtract switching function is also controlled by this signal which is
not shown in the figure. When control signal II is zero, this butterfly acts the same
as Butterfly I, which means the data flow only depends on control signal I. When
control signal II is one, −j should multiply x(N

2 + n). −j × (x + jy) equals y + j(−x).
Because of the 2’ complement data presentation, to handle the addition of (−x), the x
need to be inversed and the carry-in of the adder is changed to one. Considering the
whole function, first, the real part of x(N

2 + n) should be inversed. Second, the real
and imaginary part should be commuted, which means the real part goes through the
imaginary data path and vise verse. Third, the second adder and subtractor in the
figure should be changed to the subtractor and adder, which means that the carry-in of
the adder needs to be changed.

Control signal Design
The two control signals mentioned above come from the synchronizing counter. Control
signal I controls the outputs. In the first N

2 cycles, this control signal is zero, which
means the two data pass to the shift register and get out. In the second N

2 cycles, the
control signal is one, which means the two input data do the addition and subtraction
to get the output value. The control signal II controls the input data. It controls
the −j multiplication with the input data at some periods. To easily show how this
multiplication works, Figure 3.9 is called back here as Figure 5.10.

As shown in the figure, the −j multiplication only happens when the last N
4 output data

come out of the former stage. So this control signal can be the same as the control signal

5.2. IMPLEMENTATION 53

Figure 5.10: The application of Radix 22 algorithm for 8 point FFT

I of the first stage, which can separate the two second stages as shown in the middle of
the figure 5.10. Table 5.1 shown the different action based on the two different control
signals for Butterfly II.

Table 5.1: Butterfly Control Signal Truth Value
Control Signal I

0 1
Control signal II 0 input signals direct go

through to the output
−j multiplication with
butterfly calculation

1 input signals direct go
through to the output

normal butterfly calcu-
lation

5.2.1.2 Stage

In the big block, two stages and a counter are included. Here the two stages are
introduced. Each stage is composed of a memory block and a butterfly. First, the
memory block is introduced.

Shift Register
Based on the circuit requirement, the first input data need to wait N

2 cycles in order to
be processed together with the N

2 + 1 data. Also, for the outputs of the butterfly, one of
them needs to wait N

2 cycles in order to be processed by the next stage. Normally, to
fulfill these functions, two shift registers are needed, one at the beginning and the other
at the output as shown in the Figure 5.11.

These shift registers are controlled by the clock and synchronizing counter and follow
the rule of first in first out (FIFO). When clock signal became 1, they read one data in

54 CHAPTER 5. IMPROVEMENT AND IMPLEMENTATION

Figure 5.11: Shift Registers for Butterfly

and send one data out.

Inside the shift register, it is separated into two parts because of the complex data type.
the upper part shifts the real part of the data, and the lower part shifts the image part
of the data. Figure 5.12 shows the structure.

Figure 5.12: The structure of shift register

However, due to the SDF, the input shift register and output shift register are combined
together as one shift register. This combination based on that the input and output
data flows are perfect matched in time sequence.

Circular Buffer
Circular buffer is similar with shift register. However, from the power consumption
point of view, circular buffer performs better because of the smaller number of flip flop
switches during one clock cycles.

Same as shift register, circular buffers are also controlled by the clock and synchronizing
counter and follow the rule of first in first out (FIFO). However, instead of all the data
shifting at the up edge of the clock, only one data are read in and one data are read
out. There are two pointers shifting around the buffers. One points the address where
the data are read in. The other points the address where the data are read out. At each
up edge of the clock, the pointers will shift one data right. When these pointers arrived
at the most right point, they will start again from the beginning of the most left point.
The reading pointer points one data right compared with the writing pointer. Both of
them are controlled by the counter signals. Figure 5.13 shows the structure.

In the following part, shift registers are still used just for easy explanation. For real
implementation, the circular buffers are used instead of shift registers.

5.2. IMPLEMENTATION 55

Figure 5.13: Circular Buffer

Stage 1 and Stage 2
Stage 1 is composed of the shift register and butterfly I. One of the outputs of butterfly
I connects the input of shift register. The output of the shift register is connected to one
input of the butterfly. Figure 5.14 shows the connection.

Figure 5.14: The first stage of radix 22 FFT processor

56 CHAPTER 5. IMPROVEMENT AND IMPLEMENTATION

Stage 2 is similar to stage 1. The difference is that the butterfly I should be replaced
with the butterfly II. The data flow of two stages is introduced here. First, the data
come in the stage and go through the butterfly and are directly read in the shift register.
After N

2 cycles, the first data come out from shift register and are processed with the
new input data. One of the processed data go out of the stage, and the other go back
to the shift register. Again after N

2 cycles, the processed data will come out of the shift
register and go out of the stage. At the same time, new data are read in to the shift
register and a new cycle process begins.

5.2.1.3 Block

As said above, for 128 point radix 22 structure, the total circuit can be separated into
7 stages. The first six stages can compose three big blocks and one stage at the end as
the fourth block.

The big block
This block is composed of the counter, the two stages, and some registers in order to
delay the signals and data. The main components are focused.

The counter
Only one counter is used to produce the control signals for both stage 1 and stage 2.
The control signal waves are shown in the Figure 5.15.

Figure 5.15: The counter control wave

As shown in the figure, there are two control signals which come from the output of the
counter. The upper one is control signal I for stage 1 which controls butterfly I. The
lower one is control signal I of the butterfly II in stage 2. At the same time, the upper
signal as control signal II controls butterfly II. Besides producing the control signal, the
counter will also generate the reset signal of next block, which is determined by the
number of registers added between two blocks. The ROM address of the twiddle factors
is also produced here.

The structure of the big blocks is shown in Figure 5.16.

The basic idea of the data flow of this block is that the first stage repeats after N
r data,

and the second stage repeats after N
2r data, where r depends on which block it belongs

to. First, control signal I is set to zero to let the N
2r data be read into the first stage, and

in the following N
2r cycles, control signal I is set to one to enable the butterfly function.

5.2. IMPLEMENTATION 57

Figure 5.16: The big block structure

At the same time, the stage 2 read in the N
4r data outputs of the stage 1 controlled by

control signal II. The next N
4r cycles, butterfly II of stage2 works and control signal II

equals one. The data flow analysis is shown in the Figure 5.17.

Figure 5.17: The data flow of the block

The fourth block
This fourth block is only composed of the counter, the registers and butterfly I. The
counter of this block is the same as clock divider. Because the control signal, which is
shown in Figure 5.18, changes after one clock cycle. This signal controls the butterfly I
data flow. One output of butterfly I goes to the FFT output, and the other output waits
in the registers after one clock cycle and then gets out of the processor.

The synchronization between counters
The whole structure is controlled by different counters. To make these counters working
synchronously, reset signals are used between counters. Because there is latency caused
by registers and arithmetic blocks among blocks, the same reset signal can not be used.

58 CHAPTER 5. IMPROVEMENT AND IMPLEMENTATION

Figure 5.18: counter signals of the fourth block

The counter of former block is required to generate the reset signal for the following
block. The difference of reset signals is determined by the latency between the two blocks.

5.2.2 Radix22Parallel Data Flow

Compared with Radix 22 SDF pipeline structure, some blocks are required to change or
add for the structure. The additional blocks and changes are introduced in the order of
the actual data flow.

5.2.2.1 The input multiplexer

Because the input data are streamed in, they need to be separated into the even and
odd parts to be processed separately. The clock signal is used as the control signal of
this multiplexer. In this way, the clock period of following parts is as long as twice of
pervious clock period. All the even and odd outputs are stored in registers in order to
synchronously processing in the following stages. The structure is shown in Figure 5.19.
If there is an input memory block served, this multiplexer block is not needed and can
be removed because the even and odd data can be directly read from the memory.

Figure 5.19: The input multiplexer

5.2. IMPLEMENTATION 59

5.2.2.2 The parallel block

The three big blocks discussed in Section 5.2.1.3 are required to change to parallel ones.
In this way, the counter in each block needs to control the four stages, as shown in Figure
5.20. The upper control signals are the same as the lower ones, which can guarantee
the synchronization between the even and odd parts. And the arithmetic blocks are also
needed to copy to the upper and lower parts. The addresses required by these arithmetic
blocks are provided by the same counter.

Figure 5.20: The parallel block

5.2.2.3 The last block

Different from the last block in R22SDF pipeline structure, the even part and the odd
part are combined at this last block as shown in Figure 5.7. The data from the even
part and the odd part are synchronously sent to the inputs of this last block. Inside
the last block, butterfly I is used to process the data. The control signal of butterfly I
is always one, which means all the inputs are combined to add or subtract. all the out-
puts of the butterfly are sent to the store registers, which is connected to the output pins.

60 CHAPTER 5. IMPROVEMENT AND IMPLEMENTATION

5.2.2.4 Input buffer

For many FFT processors, input buffers are used to reorder the input data and also to
reduce the clock frequency [15] [13]. In fact, most of the pipeline FFT processors employ
this method for the tight time constraint of UWB systems. If this traditional way is
employed in this processor, there are 128 data extra memory blocks required. Thus the
clock frequency can be reduced to 157 MHz. However the area and power consumption
will be increased.

5.2.3 ROM and Arithmetic Block Design

The arithmetic related blocks are composed of the ROM, the adder and subtractor, and
the multiplier.

5.2.3.1 ROM Design

Traditionally, all the twiddle factors for multiplication are stored in a single ROM block.
In the proposed design, this ROM block is separated into three small parts because of
the structure requirement. If only single ROM block is employed, an address generator
is required to provide the address for this ROM. The synchronization problem with the
former blocks needs to be handled. However, from the Figure 5.4 and Figure 5.5, it can
be found that the twiddle factors can be separated into three parts. For example, in
the first complex multiplication block, twiddle factors from W 4

N to W 60
N are considered

as the first part. Twiddle factors from W 2
N to W 32

N are cataloged as the second part.
Twiddle factors from W 6

N to W 90
N are cataloged as the third part. In this way, the ROM

can be separated into three parts. The advantage of this method is that the address of
these ROM blocks can be generated from the counter of the previous block. Two control
signals are generated from this counter to control these ROM blocks. In this way, the
ROM can be switched off when they are not used.

Figure 5.21 shows the structure of the ROM. There are two control signals generated
by the counter, which is the same as the control signals for stage1 and stage2 of the big
block. These control signals decide which ROM produces the twiddle factors. The three
ROM blocks share the same address from the counter. In this way, the whole ROM
block work synchronously with the outputs of the previous block.

5.2.3.2 Addition and Subtraction

The simplest way to implement addition and subtraction is to use the addition sign ‘+’
and subtraction sign ‘-’ in VHDL. The synthesis tools automatically map ‘+’ and ‘-’
operators onto an appropriate adder to meet timing constraints while minimizing area
[38]. However, it is better to choose the addition and subtraction structure individually
based on the chip area and latency analysis.

5.2. IMPLEMENTATION 61

Figure 5.21: The ROM structure

The principle of adder [39]
Since subtractor has nearly the same hardware as adder, this part focuses on the principle
of adder. The full adder block is shown in Figure 5.22. There are three inputs: Input I,
Input II and Carry in, and two outputs: Sum and Carry out.

Figure 5.22: Full adder block

The simplest but slowest implementation of n bits adder is ripple carry adder, which
requires n full adders. The carry out of each full adder is connected with the carry in of
the next full adder.

62 CHAPTER 5. IMPROVEMENT AND IMPLEMENTATION

The Comparison of different adders

Figure 5.23: The area comparison of different adder structures

Figure 5.24: The latency comparison of different adder structure

5.2. IMPLEMENTATION 63

Due to the trade-off between area and speed, it is necessary to compare different
addition structures. The analysis of the area and speed performances of different adders
based on book [38] and [39] are shown in Figure 5.23 and Figure 5.24. The speed
analysis is based on the number of logic levels of the critical path and the area analysis
is based on how many cells are required.

Because of the tight time constraints of this FFT processor, the optimal choice is
to choose one of the fastest adders. As shown in Figure 5.23 and Figure 5.24, the
Han-Carlson adder is chosen for this design. The reasons are that it is one of the fastest
adders and its area is near the average level. The VHDL implementation is generated
from [40].

Subtraction
The relationship of 2’s complement subtraction and addition is

A−B = A + B̄ + 1 (5.1)

So the subtraction can be implemented by slightly changes of adder. Figure 5.25 shows
the changes. One operand is inverted and the carry input is set to one.

Figure 5.25: The subtraction block

However, in butterfly II of this processor, the switch between addition and subtraction
is required. So the add/sub block is required. Figure 5.26 shows the structure of this
block. Extra XOR gates are required and are controlled by the control signal of butterfly
II.

64 CHAPTER 5. IMPROVEMENT AND IMPLEMENTATION

Figure 5.26: The add/sub block

5.2.3.3 Multiplication

The principle of multiplier [39][7]
The block of multiplier principle is shown in Figure 5.27. There are two inputs: multi-
plicand and multiplier and one output: product.

Figure 5.27: The principle of Multiplier [7]

5.2. IMPLEMENTATION 65

The first stage is Partial Product Generation (PPG). In PPG, the partial products
are generated from the multiplicand and multiplier. It is a N ∗ M matrix, where N
is the number of digits in the multiplier and M is the number of digits in the multiplicand.

The second stage is partial Product Accumulator (PPA). PPA stage is actually a
multi-operand adder to add groups of partial product bits. There are various hardware
algorithms for multi-operand adder. The area and latency of multiplier are different
based on different structures. The following part compares different partial product
adding algorithms in order to choose the optimal one for this processor. The outputs of
this stage are two rows of partial products.

The last stage is a two-operand adder to add the two rows of partial product. The
output of this stage is the final product of the multiplier.

The comparison of different multipliers
Similar to addition, multiplication can employ ‘*’ during VHDL implementation. The
synthesis tools automatically map the operator onto an appropriate multiplier to meet
timing constraints while minimizing area. However, because multiplier is one of the
largest area-consuming blocks and its latency is probably the critical path of the whole
processor, the selection is critical for the whole circuit design. Therefore, the comparison
is necessary for the processor design.

The comparison steps are as follows. First, different multiplier implementations are
generated from [40]. Five different type multipliers are generated, which are simple PPG
array tree multiplier, simple PPG Wallace multiplier, simple PPG Dadda muliplier,
Booth-Wallace multiplier, simple PPG (4 : 2) compressor multiplier, and simple PRG
redundant binary addition multiplier. The details of these multiplier structures are
shown in Table 5.2.

Table 5.2: The details of these multiplier structures
stage array Wallace Dadda Booth-

Wallace
(4 : 2) com-
pressor

redundant
binary
addition

PPG simplePPG simplePPG simplePPG booth
recoding

simplePPG simplePPG

PPA array tree wallace
tree

Dadda
tree

wallace tree (4 : 2) com-
pressor tree

redundant
binary
addition

Final stage
adder

Brent-
kung

Brent-
kung

Brent-
kung

Brent-kung Brent-kung Brent-
kung

Each type of multipliers have four different bits types, which are 8 bits, 12 bits, 15 bits,
and 18 bits. Each multiplier has been synthesized by Synopsys Design Compiler using

66 CHAPTER 5. IMPROVEMENT AND IMPLEMENTATION

Faraday 90nm standard cell library, which is tailored for UMC’ 90 nm logic LL-RVT
(lowK) process. This library is also the library used for the FFT processor synthesis.
Therefore, the simulation data is useful for this design. The results of area and latency
are shown in Figure 5.28 and Figure 5.29.

Figure 5.28: The area comparsion of different multipliers

From the figure, it is shown that Booth-Wallace multiplier is the optimal one among
these multipliers at 15 bits point. Thus, it is chosen as the multiplier of this FFT
processor. The latency of this 15 bits multiplier is 3.05 ns which is less than one clock
cycle period of the processor. Therefore, there is no pipelining required for multiplier.
The multiplier used by this processor is directly generated from [40].

However, if higher clock frequency is required for the processor, pipeline stages should
be added into the multiplier, which is required for custom design. Another advantage
of the custom-design multiplier is smaller area. Because truncating half output bits of
multiplier is employed in the processor design based on the data bits requirement, some
parts of PPA addition tree are not required, which will further reduce the area.

The complex multiplier
Because of the complex input data, the complex multiplier is required for processing.
The formula of complex multiplication is

(A + jB) ∗ (C + jD) = A ∗ C + jA ∗D + jB ∗ C −A ∗D (5.2)

The complex multiplier is composed of four real multipliers and two adders. The

5.2. IMPLEMENTATION 67

Figure 5.29: The speed comparsion of different multipliers

schematic is shown in Figure 5.30.

Figure 5.30: Complex Multiplier Block

68 CHAPTER 5. IMPROVEMENT AND IMPLEMENTATION

5.3 Summary

A novel parallel-pipeline structure is invented, which is called Radix22Parallel. It is
a small-area and low-power-consumption solution for Multiband OFDM UWB systems.
The detailed implementation information is presented. The last part described the arith-
metic block choices based on the performance analysis of Design Compiler.

Verification and ASIC
Implementation 6
In this chapter, the results obtained from current design are enumerated. First the test
bench is introduced and the results are compared with Matlab simulation results. Then,
the detailed synthesis results which targets for FPGA and ASIC design are presented.
The comparison with other published FFT processors is presented at the end.

6.1 Verification

6.1.1 Test Bench

In this test bench, first the input data are generated by Matlab. These data are sent to
both Matlab simulation environment and Modelsim environment. The I/O connection
between Matlab and Modelsim is described in Appendix B. After simulation, Matlab
reads the data from Modelsim outputs and both simulation results from Matlab and
Modelsim are compared. Figure 6.1 shows the structure of the test bench.

Figure 6.1: Test Bench Structure

6.1.2 Simulation Results

Figure 6.2 shows the errors between the modelsim outputs and the Matlab simulation
results. It is shown that there is no error for the proposed FFT processor with the
Matlab fixed point Radix22Parallel simulation, which means the proposed FFT processor
achieves the expected accuracy.

Figure 6.3 shows the errors between the proposed processor and the Matlab builtin FFT.
It is shown that the SQNR of the proposed FFT is above 40 dB, which is nearly the
same as the fixed point simulation in Section 2.4. This result achieves the numerical
precision requirement.

69

70 CHAPTER 6. VERIFICATION AND ASIC IMPLEMENTATION

Figure 6.2: The result comparison between the processor and Matlab simulation

Figure 6.3: The result comparison between the processor and Matlab builtin FFT

6.2. SYNTHESIS 71

6.2 Synthesis

Synthesis is the process of taking a design written in a hardware description language,
such as VHDL, and compiling it into a netlist of interconnected gates which are selected
from a user-provided library of various gates [41]. In the following part, Both FPGA
and ASIC targeted synthesis results are presented.

6.2.1 Conclusion of the Radix22Parallel Architecture Requirements

The Radix22Parallel Architecture Requirements are concluded here in order to specify
the synthesis environments.

6.2.1.1 Components Requirements

Most of the required components are analyzed in the previous chapter. The analysis in
this section is focused on the components which affect the clock frequency.

In theory, for this parallel structure, the latency is 64 clock cycles, which is defined by
the time slot from the first data coming into the processor until the first data coming
out of the processor. However, if the input memory block is employed, the first stage
can directly get the input data from the memory block. Therefore, the latency is
reduced to 32 clock cycles because the latency of the first stage does not need to be
counted. In reality, besides all the shift registers used to store the inner-stage data,
there are registers to store the output data of the big blocks and multipliers. So there
are 6× (2× 15× 2) bits registers required. In this way, the latency of the whole circuits
will be increased by 6 clock cycles.

The main components used by R22SDF and Radix22Parallel architectures are shown in
Table 6.1.

Table 6.1: The components of R22SDF and Radix 22Parallel
Number R22SDF Radix22Parallel
Complex Multiplier 3 5
Adder 28 56
Shift Register (bits) 127× (15× 2) 128× (15× 2)
Shimming Register (bits) 6× (15× 2) 6× (2× 15× 2)

6.2.1.2 Clock Frequency Requirement

The time constraint is 242.42 ns as described in Section 2.4 and the latency is 38 clock
cycles, which is analyzed in the previous paragraph. Therefore, the estimated time period
is

time constraint

clock cycles required
=

242.42ns

38cycles
= 6.38ns (6.1)

72 CHAPTER 6. VERIFICATION AND ASIC IMPLEMENTATION

which means the required clock frequency is 157 MHz.

6.2.2 FPGA targeted results

The whole design is synthesized by Synplify Pro which is used for FPGA implementation.
The purpose to use Synplify Pro is to check the function of the proposed processor. The
target implementation FPGA is Xilinx Virtex4. The reason to use this FPGA is that
the synthesis results can be compared with [4] to show the advantages of the proposed
architecture. Because Virtex4 FPGA includes DSP48 components, the “+”, “-”, and
“*” signs are used in VHDL coding, which are directly mapped to DSP48 components.

6.2.2.1 Timing analysis

The estimated period is 9.654ns and the corresponding frequency is 103.6MHz. The
critical path delay is the multiplication components which are implemented by DSP48
components of Virtex 4. The total path delay (propagation + setup) of 9.654ns is 9.645
(99.9%) logic and 0.009 (0.1%) route.

By adding another registers at each multiplier output, and using retiming and pipelining
functions of Synplify Pro, the estimated period is reduced to 5.978 ns and the corre-
sponding frequency is 167.3MHz.

6.2.2.2 Resource usage analysis

The resource usage of Virtex4 is shown in Table 6.2.

Table 6.2: The resource usage of Virtex4
Logic Utilization Used
Total Number of Slice Registers 1052
*Number used as Flip Flops 662
*Number used as Latches 390
Total Number of 4 input LUTS 3600
Number of DSP48s 20
Total equivalent gate count for design 59,479
Additional JTAG gate count of IOBs 4512

6.2.2.3 Comparison with [4]

Nuno Rodrigues, et al proposed a FFT FPGA implementation to demodulate OFDM
in a UWB receiver [4], which was published in September, 2007. A mixed radix (radix
4 and radix 2) algorithms are used and 8 radix 4 butterflies are paralleled in their
implementation. Table 6.3 is the comparison between their design with the proposed
implementation.

6.2. SYNTHESIS 73

Table 6.3: The comparison with [4]
[4] proposed implemen-

tation
Data bits 11 15
Total Number Slice Registers 7390 1052
*Number used as Flip Flops 3860 662
Total Number of 4 input LUTS 12749 3600
Number of DSP48s 48 20

From the comparison table, it is shown that the used resources of the proposed design
are far less than the implementation in [4]. The reason is that [4] paralleled 8 radix
4 butterflies, which means 24 (3 × 8) complex multipliers are required. So 96 DSP48
components (24×4 real multipliers) are required for Virtex4. In their Virtex4 type, only
48 DSP48s are provided, which means extra logic blocks are needed to implement the left
48 multipliers. Also, a large amount of memories are required to store the inner stages
data of their design. In contrast, our implementation just requires 5 complex multipliers.

6.2.3 ASIC targeted results

The design is synthesized by Synopsys Design Compiler which is targeted for ASIC
implementation. The synthesis library is Faraday 90nm standard cell library [42], which
is tailored for UMC’ 90 nm logic LL-RVT (lowK) process.

For this library, the supply voltage of the core cells is 0.9V ∼ 1.1V. 1V supply voltage
is used in the power analysis. The power consumption is 5.0nW/MHz/gate. One gate
delay is 18.2 ps, which is measured from 101-stage NAND ring in the typical process
and operating under 1.0V, 25 ◦C. One gate size is 4.7 µm2 and gate density is 400k
gates/mm2.

6.2.3.1 Timing analysis

The 6.38 ns is used as time period for the timing analysis. It is shown from the analysis
results that the critical path timing requirement is less than the required clock cycle
time slot. Therefore, there is no pipelining requirement.

From Design Compiler analysis, the critical path of this processor is the whole multipli-
cation process. Table 6.4 shows the detailed critical path and the timing requirement.

The required timing period is 6.38ns. However, the clock uncertainty is 0.2 ns and the
library setup time is 0.45 ns. Therefore, the data required time is 6.38 − 0.2 − 0.45 =
5.73ns. The slack is 5.74 − 4.99 = 0.74ns. It is positive, which means the processor
qualified the time constraint.

74 CHAPTER 6. VERIFICATION AND ASIC IMPLEMENTATION

Table 6.4: The timing requirement of critical path
Critical Path Timing re-

quirement
(ns)

Explanation

c1/counter clk 0 Address generated from
counter

c1/counter output 0.98 Address generated from
counter

m1/ROM address 0 twiddle factor generation
m1/ROM DATA OUT 1.32 twiddle factor generation
m1/Multiplier IN 0 Multiplication
m1/Multiplier OUT 2.54 Multiplication
m1/MUltiplier OUT 0 saving data
m1/Output register 0.24 saving data
data arrival time 4.99 Total time requirement

6.2.3.2 Area Analysis

The total area of Radix22Parallel is 270925 µm2. The combinational circuit takes
164468 µm2 and the non combinational circuit takes 106457 µm2.

Table 6.5 shows the detailed area analysis of each block for both R22SDF and Radix
22Parallel.

As shown from the table, the total area increases by 0.052 mm2 (51923 µm2) after
parallelism (23.7% of R22SDF). The combinational circuit increases by 0.046 mm2. The
noncombinational circuit increases by 0.006 mm2. These are caused by spliting the shift
registers, adding extra shimming registers and extra multipliers and adders.

For further analysis of parallelism effects, Table 6.6 shows the detailed area analysis of
the biggest block - Block 1.

As shown from the table, the memory part is the most area consuming part. The area of
the total memory part is 126450 µm2, which is 98 % of the total area of Block I. For the
same 64 data storage, the area increases by 0.018 mm2 (28 %) by the parallelism effects.
The area of 32 data storage increases by 26 % after parallelism. The combinational
components (Butterfly) are doubled. However, for the following stages, this effect
becomes smaller because of less data storage in the following stages.

6.2. SYNTHESIS 75

Table 6.5: The detailed area information
Block R22SDF Radix22Parallel

Area (µm2) Gate Count Area (µm2) Gate Count
Input Mux 0 0 3271 696
Multiplication 1
up

0 0 15955 3395

Multiplication 1
down

17114 4641 16051 3415

Multiplication 2
up

0 0 15037 3199

Multiplication 2
down

15324 3260 14894 3170

Multiplication 3
down

10837 2305 10635 2263

Block 1 122133 25985 128805 27405
Block 2 35559 7566 42023 8941
Block 3 13709 2916 21046 4477
Block 4 3443 733 1738 370
Combinational 118458 25203 164468 34993
Non combina-
tional

100544 21392 106457 22650

Whole circuit 219002 46594 270925 57643

Table 6.6: The area analysis of Block I
Block 1 R22SDF Radix22Parallel

Area (µm2) Parallel
Place

Area (µm2)

stage 1 63607 (64 data storage)
up 41006(32 data storage)
down 40807(32 data storage)

stage 2 35360 (32 data storage)
up 22276(16 data storage)
down 22361(16 data storage)

Butterfly I
2249 up 2737

down 2738

Butterfly II
2956 up 3025

down 3105

6.2.3.3 Power Analysis

The power consumption of Radix22Parallel is 346 mW, which is calculated by Design
Compiler at 157 MHz. The same as the area analysis, the power analysis is also
described hierarchically, which is shown in Table 6.7.

The same clock frequency is used in both of architectures. It is shown the Radix22Parallel

76 CHAPTER 6. VERIFICATION AND ASIC IMPLEMENTATION

Table 6.7: Power Consumption analysis of Radix 22 Parallel
Block R22SDF Radix22Parallel
Power Consump-
tion

(mW) (@157 MHz) (mW)(@157MHz)

Input Mux 0 7.239
Multiplication 1
up

0 3.172

Multiplication 1
down

3.201 3.183

Multiplication 2
up

0 3.055

Multiplication 2
down

3 2.75

Multiplication 3
down

2.694 2.959

Block 1 237.114 258.355
Block 2 67.036 68.309
Block 3 23.650 21.146
Block 4 2.808 3.54e-02
Whole circuit 341.199 374.225

Table 6.8: Power Comparison
Block R22SDF Radix22Parallel
Power Consump-
tion

(mW) (@157 MHz) (mW)(@78MHz)

Input Mux 0 6.705
Multiplication 1
up

0 1.587

Multiplication 1
down

3.201 1.604

Multiplication 2
up

0 1.527

Multiplication 2
down

3 1.485

Multiplication 3
down

2.694 1.4

Block 1 237.114 128.607
Block 2 67.036 34.037
Block 3 23.650 10.534
Block 4 2.808 1.86e-02
Whole circuit 341.199 185.518

6.2. SYNTHESIS 77

consumes slightly extra power compared with R22SDF. About 33 mW extra power
is caused by parallelism. However, for the same throughput performance, the clock
frequency of R22SDF should be as twice as the one of Radix22Parallel. Therefore, a new
comparison is shown in Table 6.8. It is shown the proposed Radix22Parallel processor
consumes much less power than R22SDF, which is only 54.37% of the R22SDF for the
same performance.

6.2.3.4 Comparison

The comparison with [9]
An application specific instruction-set processor (ASIP) was developed for UWB-OFDM
FFT calculation [9]. Table 6.9 is the comparison details.

Table 6.9: Comparison with [9]
[9] proposed implemen-

tation
Technology (nm) 120 90
clock frequency (MHz) 336 157
Cycles count 105 38
Word length (bits) 16 15
Area (mm2) 2.44 0.27
Power 1.78 Watts 0.374 Watts

The comparison with [10]

Table 6.10: Comparison with [10]
[10] proposed implemen-

tation
Technology 0.18 µm ,1.8V 90 nm , 1V
clock frequency (MHz) 450 157
Parallel data format 2 data-path 2 data-path
Algorithm Radix 24 Radix 22

Word length (bits) 10 10
Complex multipliers 2+0.41 5
Registers 190 128
Gates 70000 38540 (181140 µm2)
Power unknown 171.969 mW

During the implementation stage of our processor, a revised version paper was published
which employed the similar parallel structure [10]. However, there are some key

78 CHAPTER 6. VERIFICATION AND ASIC IMPLEMENTATION

differences between these two architectures, which is described in Appendix A.

Because [10] employed 10 bits data format for the processor, the proposed processor
is also changed to 10 bits for comparing the difference of both architectures. The
performance analysis is shown in Table 6.10.

6.3 Summary

This chapter shows the validation of proposed processor. Both FPGA and ASIC targeted
results are analyzed. Table 6.11 shows the results of Radix22Parallel processor for both
10 bits and 15 bits data type.

Table 6.11: The performance of Radix22Parallel processor
Radix22Parallel 10 bits 15 bits
Area (µm2) 181140 270925
Power (mW) 171.969 374.225

Conclusions 7
7.1 Summary of Results

Present work involves the ASIC design flow from defining the processor specifications
till getting the synthesis results. It can be obtained from the results that the proposed
architecture is suitable for ASIC implementation and dramatically reduces the area and
power consumption. The key contributions of this thesis work are summarized as follows:

• Firstly, the OFDM and UWB systems are analyzed. Combined with literature
research and system simulation, the specifications of the FFT processor are defined.

• The FFT algorithms are fully reviewed and analyzed based on the multiplicative
complexity. The purpose is to find the most suitable one for UWB system require-
ments and ASIC implementation. It is shown that Radix 2x algorithms are the
best ones for ASIC implementation.

• Different FFT processor structures are compared on the architecture level. It is
found that R22SDF structure is the optimum option for ASIC FFT implementation
of Multiband UWB system with regard to the memories and arithmetic blocks
utilization. Important design choices and considerations are also analyzed and
concluded.

• A novel parallel-pipeline structure is proposed, which is called Radix22Parallel. It
is a small-area and low-power-consumption solution for MB-OFDM UWB systems.

• The proposed FFT solution is verified. Both FPGA and ASIC targeted synthesis
results are presented.

7.2 Further Work

Although the objectives of the thesis have been attained, there are a few fundamental
recommendations for further research.

• From the Design Compiler analysis, the power of the processor is mainly consumed
by Memory blocks. Although the circular buffers are employed instead of shift
registers, there are few effects for power reduction. Therefore, further research
should be focused to reduce the power consumption of memory blocks.

79

80 CHAPTER 7. CONCLUSIONS

• As discussed in Section 4.3.3, an optimal solution exists for data bus design in
order to optimize the ASIC implementation and avoid overflow. Therefore, extra
efforts need to be focused on the data value analysis to find the optimal solution.
Combined with MB-OFDM system analysis, the overflow possibility in each stage
needs to be determined. In this way, the optimal data bits in each stage can be
defined for ASIC implementation.

• The connections of FFT block with the whole baseband processor should be an-
alyzed in order to optimize the input and output memory block of FFT proces-
sor. Because the outputs of Radix22Parallel are in bit reversed order, the analysis
should be focused on how to handle the connections with the following components
- deinterleaver and viterbi decoder.

• The next attempt should be integrating the whole baseband processor with a single
ASIC Chip. Deeper analysis of the baseband processor is necessary for this issue.
More efforts are required for integrating all the blocks.

Comparison Between the
Proposed FFT Processor with
[10] A
During the implementation stage of our processor, a revised version paper was published
which employed the similar parallel structure [10] (the first version [43]). However,
there are some key differences between these two architectures, which result in different
performances. The similarity and difference between the two processors are discussed
as follows.

A.1 Similarity

The architecture of the proposed processor was developed independently during the
whole design process. The architecture proposed by [10] was only noticed in September,
2008.

Both of the architectures employs the two path parallel-pipeline structure and separates
the input data into even and odd data. However, the idea and reason of this separation
is more detailed and clearer illustrated in this thesis. What’s more, this data separation
in the proposed processor is handled more artfully, which reduces the required registers.

A.2 Difference

The main differences between these two architectures are discussed as follows.

Different Clock Frequency

The proposed architecture reduces the clock frequency to 157 MHz, whereas the clock
frequency of [10] is 450MHz. In fact, our purpose of employing the two path parallel way
is to reduce the clock frequency, which can reduce the power consumption dramatically
(this conclusion can be obtained from power analysis in Section 6.2.3.3). However, if the
circuit is required to work at 450MHz, the areas and power will increase because the
signals are captured in smaller time-slots, which means more flip-flops need to be added
in the combinational circuit.

Different Registers

Only 128 complex words registers are required in the proposed architecture. However,
190 complex words registers are required in [10]. From the results in Section 6.2.3, it is
the registers that consume the most area and power. 10 bits 62 complex words registers

81

82APPENDIX A. COMPARISON BETWEEN THE PROPOSED FFT PROCESSOR
WITH [10]

consume 42207 µm2 area (23.3% of the proposed area) and 76.121 mW power (44%
of the proposed power) (Design Compiler simulation using Faraday 90nm standard cell
library [42]). Therefore, it is a huge difference between the two architectures from the
area and power consumption points of view.

The last stage

The architecture of [10] employs the two path parallel structure for the whole pipeline
structure. About 64 complex words registers are required for their last stage. However,
in the proposed architecture, the last stages are artfully combined into a single stage as
shown in Figure 5.7. Only 2 complex words registers are required in this stage, which
reduces the area and power consumption.

A.3 Performance Comparison

From the analysis, it is shown that there are some key differences between the two
architectures. Table 6.10 is rewritten here to show the performance differences.

Table A.1: Comparison with [10]
[10] proposed implemen-

tation
Technology 0.18 µm ,1.8V 90 nm , 1V
clock frequency (MHz) 450 157
Parallel data format 2 data-path 2 data-path
Algorithm Radix 24 Radix 22

Word length (bits) 10 10
Complex multipliers 2+0.41 5
Registers 190 128
Gates 70000 38540 (181140 µm2)
Power unknown 171.969 mW

I/O between Matlab and
VHDL B
Based on the test bench requirement, the data transmission is required between Matlab
and VHDL. Therefore, the Input/Output (I/O) connections of these two language
should be analyzed. In this appendix, One connection possibility is realized and the
design details are shown below.

The data type of both environments are set to binary for transmission. The first part is
the Matlab environment I/O design.

B.1 Matlab I/O Design

B.1.1 Output the data generated from Matlab

%Matlab Output generated
%Output the matlab data
%save as txt file format
output = outputsave (X)

% define fixed point format
wordlength = 15;
frac input = 14;

% change to fixed data format
%real part of original data
xre = real(x0);
fi xre = fi (xre,1,wordlength, frac input);
%imaginary part of original data
xim = imag(x0);
fi xim = fi (xim,1,wordlength, frac input);

% change to binary format
fi bin xre= bin (fi xre);
fi bin xim = bin (fi xim);

% output data and save in txt format
fid = fopen(’input data.txt’, ’wt’);
for i = 1:n, fprintf(fid, ’ A ¡= ”%s”;\n B ¡=”%s”;\n wait for 10 ns ;
\n’, fi bin xre(i,:),fi bin xim(i,:)); end

83

84 APPENDIX B. I/O BETWEEN MATLAB AND VHDL

fclose(fid);

B.1.2 Reading the data produced by Modelsim Simulation

%Matlab input reading
%The data to be read are in binary format and saved in txt file
% reading from the txt file
fid = fopen(’outfilere.txt’, ’r’);
re = fscanf(fid, ’%s’, [15 inf]);
fclose(fid);

%rechange the data format
re = re’;
re length = length(re);

% fixed point convertion
% define fixed point format
wordlength = 15;
frac input = 14;
outputre = zeros(re length,1);
outputre fi = fi(outputre,1, wordlength,frac input);
outputre fi.bin = re;

% the last 128-1 data are the fft output data
ree = zeros(n,1);
ree(1:n) = outputre fi(re length-128:re length-1);

B.2 VHDL I/O Design

– output the data generated by VHDL
– there are real and imaginary part
– the process cotrolled by the clock
– the data are ouput as txt file

process (T clk,c) is
– creat output txt file
file outfilere : TEXT open write mode is ”outfilere.txt”;
– variable buffer
variable bufre:line;
– data read to the buffer and saved to the output txt file

begin
if (T clk’event and T clk =’1’) then

B.2. VHDL I/O DESIGN 85

write (bufre, to bitvector(c));
writeline(outfilere,bufre);
end if;
end process;

process (T clk,d) is
file outfileim : TEXT open write mode is ”outfileim.txt”;
variable bufim:line;

begin if (T clk’event and T clk =’1’) then
write (bufim, to bitvector(d));
writeline(outfileim,bufim);
end if;
end process;

86 APPENDIX B. I/O BETWEEN MATLAB AND VHDL

The Synthesis Schematics C
In this appendix, the synthesis schematics from synthesis tools Synplify Pro and Synopsis
Design Compiler are shown respectively.

Figure C.1: The Big Block Structure of Radix22Parallel (Design Compiler)

87

88 APPENDIX C. THE SYNTHESIS SCHEMATICS

Figure C.2: Synthesis Schematic of Radix22Parallel (Synplify Pro)

89

Figure C.3: Synthesis Schematic of R22SDF (Design Compiler)

90 APPENDIX C. THE SYNTHESIS SCHEMATICS

Figure C.4: Synthesis Schematic of Radix22Parallel (Design Compiler)

Matlab Code of the
Radix22Parallel Based
Algorithm D
For better understanding of the Parallel Radix 22 Based Algorithm, the Matlab code is
attached here.

function (output) = parallel(X0)
%parallel radix 22 based FFT algorithm;
%input data 128 point complex fomat;
%writen by nuoli;
%revised in 08.09.2008;

% change the input data to fixed point format;
%real part;
wordlength = 15;
xre = real(x0);
fi xre = fi (xre,1,wordlength, wordlength-1);
%imaginary part;
xim = imag(x0);
fi xim = fi (xim,1,wordlength, wordlength-1);

%generate the twiddlefactor;
w1 = radix22twiddles part1(n);
w1 re = real(w1);
w1 im = imag(w1);
w1 re fi= fi(w1 re, true, wordlength, wordlength-1);
w1 im fi= fi(w1 im, true, wordlength, wordlength-1);
w2 = radix22twiddles part2(n);
w2 re = real(w2);
w2 im = imag(w2);
w2 re fi= fi(w2 re, true, wordlength, wordlength-1);
w2 im fi= fi(w2 im, true, wordlength, wordlength-1);
w3 = radix22twiddles part3(n);
w3 re = real(w3);
w3 im = imag(w3);
w3 re fi= fi(w3 re, true, wordlength, wordlength-1);
w3 im fi= fi(w3 im, true, wordlength, wordlength-1);

% fi datatype define;
% keep the most signficant data for product;
% product word length keep 30;

91

92 APPENDIX D. MATLAB CODE OF THE RADIX22PARALLEL BASED
ALGORITHM

% keep the most signficant data for full precision;
% product word length keep 16;
F = fimath;
F.ProductMode = ’KeepMSB’;
F.ProductWordLength = 30;
F.SumMode = ’KeepMSB’;
F.SumWordLength = 16;
F.OverflowMode = ’saturate’;
F.RoundMode = ’floor’;
F.CastBeforeSum = false;

% Change to fixed input and twiddle factor;
fi xre.fimath = F;
fi xim.fimath = F;
w1 re fi.fimath = F;
w1 im fi.fimath = F;
w2 re fi.fimath = F;
w2 im fi.fimath = F;
w3 re fi.fimath = F;
w3 im fi.fimath = F;

%inverse the data;
w1 re fi = w1 re fi’;
w1 im fi = w1 im fi’;
w2 re fi = w2 re fi’;
w2 im fi = w2 im fi’;
w3 re fi = w3 re fi’;
w3 im fi = w3 im fi’;

% change to even and odd part;
% the even part in this Matlab code means the Odd part shown in Figure 5.6;
% the odd part in this Matlab code means the Even part shown in Figure 5.6
for m =1:64
% odd part of real input data;
xred(m) = fi xre(2*m-1);
% even part of real input data;
xree(m) = fi xre(2*m);
% odd part of imagnary input data;
ximd(m) = fi xim(2*m-1);
% even part of imagnary input data;
xime(m) = fi xim(2*m);
end

%twiddle factor even and odd part change

93

w1length = length(w1);
w2length = length(w2);
w3length = length(w3);

%First block
for m =1:w1length/2
% realodd part of twiddle factor w1
w1 re fid(m) = w1 re fi(2*m-1);
% image odd part of twiddle factor w1
w1 im fid(m) = w1 im fi(2*m-1);
% real even part of twiddle factor w1
w1 re fie(m) = w1 re fi(2*m);
% image even part of twiddle factor w1
w1 im fie(m) = w1 im fi(2*m);
end
%second block
for m =1:w2length/2
% realodd part of twiddle factor w2
w2 re fid(m) = w2 re fi(2*m-1);
% image odd part of twiddle factor w2
w2 im fid(m) = w2 im fi(2*m-1);
% real even part of twiddle factor w2
w2 re fie(m) = w2 re fi(2*m);
% image even part of twiddle factor w1
w2 im fie(m) = w2 im fi(2*m);
end
%third block
for m =1:w3length/2
% realodd part of twiddle factor w3
w3 re fid(m) = w3 re fi(2*m-1);
% image odd part of twiddle factor w3
w3 im fid(m) = w3 im fi(2*m-1);
% real even part of twiddle factor w3
w3 re fie(m) = w3 re fi(2*m);
% image even part of twiddle factor w3
w3 im fie(m) = w3 im fi(2*m);
end

%odd part input data computation;
% the odd part in this Matlab code means the Even part shown in Figure 5.6
%part 1;
(p1s1 red,p1s1 imd) = ripart1stage1(xred,ximd);
(p1s2 red,p1s2 imd) = ripart1stage2(p1s1 red,p1s1 imd);
(p1 red,p1 imd) = complexmultiplier(p1s2 red,p1s2 imd, w1 re fid, w1 im fid);

94 APPENDIX D. MATLAB CODE OF THE RADIX22PARALLEL BASED
ALGORITHM

%part 2;
N=n/2;
for o=0:3
(p2s1 red(1+o*N/4:o*N/4+N/4),p2s1 imd(1+o*N/4:o*N/4+N/4))
=ripart1stage1(p1 red(1+o*N/4:o*N/4+N/4),p1 imd(1+o*N/4:o*N/4+N/4));
(p2s2 red(1+o*N/4:o*N/4+N/4),p2s2 imd(1+o*N/4:o*N/4+N/4))
=ripart1stage2(p2s1 red(1+o*N/4:o*N/4+N/4),
p2s1 imd(1+o*N/4:o*N/4+N/4));
(p2 red(1+o*N/4:o*N/4+N/4),p2 imd(1+o*N/4:o*N/4+N/4)) =
complexmultiplier(p2s2 red(1+o*N/4:o*N/4+N/4),p2s2 imd(1+o*N/4:o*N/4+N/4),
w2 re fid, w2 im fid);
end

%part 3;
N=n/2;
for o=0:15
(p3s1 red(1+o*N/16:o*N/16+N/16),p3s1 imd(1+o*N/16:o*N/16+N/16))
=ripart1stage1(p2 red(1+o*N/16:o*N/16+N/16),p2 imd(1+o*N/16:o*N/16+N/16));
(p3 red(1+o*N/16:o*N/16+N/16),p3 imd(1+o*N/16:o*N/16+N/16))
=ripart1stage2(p3s1 red(1+o*N/16:o*N/16+N/16),
p3s1 imd(1+o*N/16:o*N/16+N/16));
% the third part multiplication is not required here, because the twiddle fators become
constant 1;

% even part input data calculation;
% the even part in this Matlab code means the Odd part shown in Figure 5.6;
%part 1;
(p1s1 ree,p1s1 ime) = ripart1stage1(xree,xime);
(p1s2 ree,p1s2 ime) = ripart1stage2(p1s1 ree,p1s1 ime);
(p1 ree,p1 ime) = complexmultiplier(p1s2 ree,p1s2 ime, w1 re fie, w1 im fie);

%part 2;
for o=0:3
(p2s1 ree(1+o*N/4:o*N/4+N/4),p2s1 ime(1+o*N/4:o*N/4+N/4))
=ripart1stage1(p1 ree(1+o*N/4:o*N/4+N/4),p1 ime(1+o*N/4:o*N/4+N/4));
(p2s2 ree(1+o*N/4:o*N/4+N/4),p2s2 ime(1+o*N/4:o*N/4+N/4))
=ripart1stage2(p2s1 ree(1+o*N/4:o*N/4+N/4),
p2s1 ime(1+o*N/4:o*N/4+N/4));
(p2 ree(1+o*N/4:o*N/4+N/4),p2 ime(1+o*N/4:o*N/4+N/4)) =
complexmultiplier(p2s2 ree(1+o*N/4:o*N/4+N/4),p2s2 ime(1+o*N/4:o*N/4+N/4),
w2 re fie, w2 im fie);
end

%part 3;
for o=0:15

95

(p3s1 ree(1+o*N/16:o*N/16+N/16),p3s1 ime(1+o*N/16:o*N/16+N/16))
=ripart1stage1(p2 ree(1+o*N/16:o*N/16+N/16),p2 ime(1+o*N/16:o*N/16+N/16));
(p3s2 ree(1+o*N/16:o*N/16+N/16),p3s2 ime(1+o*N/16:o*N/16+N/16))
=ripart1stage2(p3s1 ree(1+o*N/16:o*N/16+N/16)
,p3s1 ime(1+o*N/16:o*N/16+N/16));
(p3 ree(1+o*N/16:o*N/16+N/16),p3 ime(1+o*N/16:o*N/16+N/16)) =
complexmultiplier(p3s2 ree(1+o*N/16:o*N/16+N/16),p3s2 ime(1+o*N/16:o*N/16+N/16),
w3 re fie, w3 im fie);
end

%combine the odd and even part
for i=1:64
p3 re(2*i) = p3 ree(i);
p3 re(2*i-1) = p3 red(i);
end

for i=1:64
p3 im(2*i) = p3 ime(i);
p3 im(2*i-1) = p3 imd(i);
end

%part4 calculration
N=n;
for o=0:63
(p4 re(1+o*N/64:o*N/64+N/64),p4 im(1+o*N/64:o*N/64+N/64)) =
ripart1stage1(p3 re(1+o*N/64:o*N/64+N/64),p3 im(1+o*N/64:o*N/64+N/64));
end
p4 re = fi bitreverse(p4 re,n);
p4 im = fi bitreverse(p4 im,n);
p4 = complex(p4 re,p4 im);

% matlab bultiin algorithm;
y0 = fft(x0);
y0= y0./n;

%output comparsion;
figure(1)
plot(f,abs(double(p4)),’m.-’,f,abs(double(y0)),’g.-’)

figure(2)
% plot the abs error of the outputs of the two FFT.
subplot(211)
realerr = real(double(p4(:))-double(y0(:)));
imagerr = imag(double(p4(:))- double(y0(:)));
abserr = abs(double(p4(:))-double(y0(:)));

96 APPENDIX D. MATLAB CODE OF THE RADIX22PARALLEL BASED
ALGORITHM

plot(f,abserr,’r.-’);
legend(’abs(error)’)
xlabel(’Frequency (MHz)’)

% plot the snr of the signal to noise
subplot(212)
compare y0 err =abs(double(y0(:)))./abserr(:);
snr fi = 20*log10(compare y0 err(:));
plot(f,snr fi,’r.-’);
legend(’SQNR of the fixed point FFT ’)
xlabel(’Frequency (MHz)’)
ylabel(’SQNR(dB)= (floating point FFT)/(quantisation error)’)
==
========= LOCAL FUNCTIONS ====== LOCAL FUNCTIONS ====
==

function (y re,y im) = ripart1stage1(x re,x im)
% function for part1 stage1, x re and x im are the real and image part of;
% input signal;

n = length(x re);
% real part output;
y re = zeros(1,n);
% image part output;
y im = zeros(1,n);

% fixed point format;
wordlength = 15;
y re = fi (y re,1,wordlength, wordlength-1);
y im = fi (y im,1,wordlength, wordlength-1);

for q=1:n/2
y re(q) = x re(q)+x re(q+n/2);
y im(q) = x im(q)+x im(q+n/2);

y re(q+n/2)=x re(q)-x re(q+n/2);
y im(q+n/2)=x im(q)-x im(q+n/2);
end

==
function (y re,y im) = ripart1stage2(x re,x im)
% function for part1 stage2;

n = length(x re);
% real part output;

97

y re = zeros(1,n);
% image part output;
y im = zeros(1,n);

% fixed point format;
wordlength = 15;
y re = fi (y re,1,wordlength, wordlength-1);
y im = fi (y im,1,wordlength, wordlength-1);

for m=1:n/4
temp re=x im(m+(n*3)/4);
temp im=0 - x re(m+(n*3)/4);
x re(m+(n*3)/4)=temp re;
x im(m+(n*3)/4)=temp im;
end

for q=1:n/4
y re(q) = x re(q)+x re(q+n/4);
y im(q) = x im(q)+x im(q+n/4);
y re(q+n/4)=x re(q)-x re(q+n/4);
y im(q+n/4)=x im(q)-x im(q+n/4);
end
for q=1:n/4
y re(q+n/2) = x re(q+n/2)+x re(q+(3*n)/4);
y im(q+n/2) = x im(q+n/2)+x im(q+(3*n)/4);
y re(q+(3*n)/4)=x re(q+n/2)-x re(q+(3*n)/4);
y im(q+(3*n)/4)=x im(q+n/2)-x im(q+(3*n)/4);
end

==
function (y re,y im) = complexmultiplier(x re,x im, w re fi, w im fi)
% complex multiplication;

n = length(x re);
temp1 = zeros(n,1);
temp2 = zeros(n,1);
temp3 = zeros(n,1);
temp4 = zeros(n,1);

%fixed point format;
wordlength = 15;
temp1 = fi(temp1,1,wordlength, wordlength-1);
temp2 = fi(temp2,1,wordlength, wordlength-1);
temp3 = fi(temp3,1,wordlength, wordlength-1);
temp4 = fi(temp4,1,wordlength, wordlength-1);

98 APPENDIX D. MATLAB CODE OF THE RADIX22PARALLEL BASED
ALGORITHM

% fi datatype define;
% keep the most signficant data for product;
% product word length keep 15 ;
% keep the most signficant data for full precision;
% product word length keep 16;

F = fimath;
F.ProductMode = ’KeepMSB’;
F.ProductWordLength = 30;
F.SumMode = ’KeepMSB’;
%’FullPrecision’;
F.SumWordLength = 16;
F.OverflowMode = ’saturate’;
F.RoundMode = ’floor’;
F.CastBeforeSum = false;

x re.fimath = F;
x im.fimath = F;

%real multiplication temp1 = x re.*w re fi;
temp2 = x re.*w im fi;
temp3 = x im.*w re fi;
temp4 = x im.*w im fi;

y re = temp1 - temp4;
y im = temp2 + temp3;

Bibliography

[1] A. Batra, J. Balakrishnan, G.R. Aiello, J.R. Foerster, and A. Dabak, “Design of a
multiband ofdm system for realistic uwb channel environments,” Microwave Theory
and Techniques, IEEE Transactions on, vol. 52, no. 9, pp. 2123–2138, Sept. 2004.

[2] Geert Leus, “Lecture notes of digital signal processing course in delft universtiy of
technology,” 2007.

[3] W.Y. Zou and Yiyan Wu, “Cofdm: an overview,” Broadcasting, IEEE Transactions
on, vol. 41, no. 1, pp. 1–8, Mar 1995.

[4] N. Rodrigues, H. Neto, and H. Sarmento, “A ofdm module for a mb-ofdm re-
ceiver,” Design & Technology of Integrated Systems in Nanoscale Era, 2007. DTIS.
International Conference on, pp. 25–29, Sept. 2007.

[5] Standard ECMA-368: High Rate Ultra Wideband PHY and MAC Standard 2nd
Edition.

[6] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck, Discrete-time signal
processing, Prentice-Hall, 1999.

[7] Bevan M.Baas, “An approach to low-power, high-performance fast fourier transform
processor design,” Ph.D. dissertation, Stanford University, 1999.

[8] Shousheng He and M. Torkelson, “A new approach to pipeline fft processor,” Paral-
lel Processing Symposium, 1996., Proceedings of IPPS ’96, The 10th International,
pp. 766–770, Apr 1996.

[9] Ramesh Chidambaram, “A scalable and high-performance fft processor, optimized
for uwb-ofdm,” M.S. thesis, Delft University of Technology, 2005.

[10] Jeesung LEE and Hanho LEE, “A High-Speed Two-Parallel Radix-24 FFT/IFFT
Processor for MB-OFDM UWB Systems,” IEICE Trans Fundamentals, vol. E91-A,
no. 4, pp. 1206–1211, 2008.

[11] INTEL, “Ultra-wideband (uwb) technology,”
http://www.intel.com/technology/comms/uwb/.

[12] et al. A. Batra, “Multi-band ofdm physical layer proposal for ieee 802.15 task group
3a,” Tech. Rep., IEEE P.802.15-04/0493r0, 2004.

[13] E. Saberinia, K. C. Chang, G. Sobelman, and A. H. Tewfik, “Implementation of a
multi-band pulsed-ofdm transceiver,” J. VLSI Signal Process. Syst., vol. 43, no. 1,
pp. 73–88, 2006.

[14] Guoping Zhang and F. Chen, “Parallel fft with cordic for ultra wide band,” Per-
sonal, Indoor and Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE
International Symposium on, vol. 2, pp. 1173–1177 Vol.2, Sept. 2004.

99

100 BIBLIOGRAPHY

[15] Yu-Wei Lin, Hsuan-Yu Liu, and Chen-Yi Lee, “A 1-gs/s fft/ifft processor for uwb
applications,” Solid-State Circuits, IEEE Journal of, vol. 40, no. 8, pp. 1726–1735,
Aug. 2005.

[16] Bernard Gold Lawrence R.Rabiner, Theory And Application of Digital Signal Pro-
cessing, Prentice-Hall, 1975.

[17] Pierre Duhamel, “Implementation of ”split-radix” fft algorithms for complex, real,
and real-symmetric data,” IEEE Transactions on acoustics,speech, and signal pro-
cessing, 1986.

[18] E.H. Wold and A.M. Despain, “Pipeline and parallel-pipeline fft processors for vlsi
implementations,” Computers, IEEE Transactions on, vol. C-33, no. 5, pp. 414–426,
May 1984.

[19] wikipedia, “Ultra-wideband,” http://en.wikipedia.org/wiki/Ultra-wideband.

[20] Uma Shanker Jha and Ramjee Prasad, OFDM towards fixed and mobile broadband
wireless access, ARTECH HOUSE, 2007.

[21] S. Weinstein and P. Ebert, “Data transmission by frequency-division multiplexing
using the discrete fourier transform,” Communication Technology, IEEE Transac-
tions on, vol. 19, no. 5, pp. 628–634, October 1971.

[22] wikipedia, “Wimedia alliance,” http://en.wikipedia.org/wiki/Ultra-wideband.

[23] R.Simon Sherratt and Sou Makino, “Numerical precision requirements on the multi-
band ultra-wideband system for practical consumer electronic devices,” IEEE Trans-
actions on Consumer Electronics, May 2005.

[24] KESHAB K.PARHI, VLSI Digital Signal Processing Systems-design and implemen-
tation, JOHN WILEY & SONS,INC., 1999.

[25] Dimitris G.Manolakis John G.Proakis, Digital Signal Processing principles, algo-
rithms, and applications, Prentice-Hall,INC., 1996.

[26] A. Cortes, I. Velez, A. Irizar, and J.F. Sevillano, “Area efficient ifft/fft core for
mb-ofdm uwb,” Electronics Letters, vol. 43, no. 11, pp. 649–650, 24 2007.

[27] J.W.Cooley and J.W.Tukey, “An algorithm for machine computation of complex
fourier series,” Math Comput, 1965.

[28] Shousheng He and M. Torkelson, “Designing pipeline fft processor for ofdm
(de)modulation,” Signals, Systems, and Electronics, 1998. ISSSE 98. 1998 URSI
International Symposium on, pp. 257–262, Sep-2 Oct 1998.

[29] OH JUNG-YEOL (Chonbuk National Univ.Kor) LIM MYOUNG-
SEOB(Chonbuk National Univ.Kor), “New radix-2 to the 4th power pipeline fft
processor,” IEICE Trans Electron (Inst Electron Inf Commun Eng), 2005.

BIBLIOGRAPHY 101

[30] Jung yeol Oh and Myoung seob Lim, “Fast fourier transform algorithm for low-
power and area-efficient implementation,” IEICE TRANS.COMMUN, APRIL 2006.

[31] S.C. Chan and K.L. Ho, “Prime-factor algorithm and winograd fourier transform
algorithm for real symmetric and antisymmetric sequences,” Circuits, Devices and
Systems, IEE Proceedings G, vol. 136, no. 2, pp. 87–94, Apr 1989.

[32] P. Lavoie, “A high-speed cmos implementation of the winograd fourier transform
algorithm,” Signal Processing, IEEE Transactions on, vol. 44, no. 8, pp. 2121–2126,
Aug 1996.

[33] A. M. Despain, “Fourier transform computers using cordic iterations,” IEEE Trans.
Comput., vol. 23, no. 10, pp. 993–1001, 1974.

[34] G. Bi and E.V. Jones, “A pipelined fft processor for word-sequential data,” Acous-
tics, Speech and Signal Processing, IEEE Transactions on, vol. 37, no. 12, pp.
1982–1985, Dec 1989.

[35] Jean Armstrong; Himal A. Suraweera; Simon Brewer; and Robert Slaviero, “Effect
of rounding and saturation in fixed-point dsp implementation of ifft and fft for ofdm
applications,” The Embedded Signal Processing Conference, 2004.

[36] R. Sarmiento, V. de Armas, J.F. Lopez, J.A. Montiel-Nelson, and A. Nunez, “A
cordic processor for fft computation and its implementation using gallium arsenide
technology,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 6, no. 1, pp. 18–30, Mar 1998.

[37] John D. Arivoli, Thangadurai; O’sullivan, “Interleaver, deinterleaver, interleaving
method, and deinterleaving method for ofdm data,” January 2007.

[38] Neil H.E. Weste and David Harris, CMOS VLSI Design. A Circuits and Systems
Perspective, Addison Wesley, third edition, 2004.

[39] Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Designs, Ox-
ford University Press, pub-OXFORD:adr, 2000.

[40] Aoki Laboratory, “Arithmetic module generator based on arith, arith research
group,” Tohoku University http://www.aoki.ecei.tohoku.ac.jp/arith/.

[41] Digital ASIC Group, Digital ASIC Design, A Tutorial on the Design Flow, Lund
University Website, 2005.

[42] FARADAY Technology Corporation, FSD0A A 90 nm Logic SP-RVT(Low-K) Pro-
cess, FARADAY Technology Corporation, 2006.

[43] Jeesung Lee, Hanho Lee, Sang in Cho, and Sang-Sung Choi, “A high-speed, low-
complexity radix-24 fft processor for mb-ofdm uwb systems,” Circuits and Systems,
2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, pp. 4 pp.–,
May 2006.

102 BIBLIOGRAPHY

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Motivation
	The related work
	Project goal
	Synopsis

	The Principle of MB-OFDM UWB System and Its Requirements for FFT Processor
	UWB system
	OFDM principle
	OFDM signal
	OFDM System

	Multiband-OFDM for UWB system
	The requirement of FFT for Multiband OFDM system

	Fast Fourier Transform and Its Different Algorithms
	The Discrete Fourier Transform
	The Fast Fourier Transform and its algorithms
	Decimation-in-time FFT Algorithms
	Decimation-in-Frequency FFT Algorithm
	Radix 4 and higher radix Algorithms
	Radix 22 Algorithm and Radix 2x Algorithms
	Other FFT Algorithms

	Algorithms Comparison for ASIC Implementation

	FFT architectures Analysis and Design Choices
	Overview of FFT Architectures
	Memory based structure
	Pipeline-buffer Structure

	High Level Speed, Area and Power Analysis
	Design Choice
	Algorithm and Architecture Choice
	Fixed point data format
	Data scaling between each stages
	Twiddle factors design
	The input order and bit reversed order for the output
	IFFT realization

	Summary

	Improvement and Implementation
	Improvement
	Algorithm Level
	Architecture Level
	Implementation Level

	Implementation
	Radix 22 SDF Pipeline Data Flow
	Radix22Parallel Data Flow
	ROM and Arithmetic Block Design

	Summary

	Verification and ASIC Implementation
	Verification
	Test Bench
	Simulation Results

	Synthesis
	Conclusion of the Radix22Parallel Architecture Requirements
	FPGA targeted results
	ASIC targeted results

	Summary

	Conclusions
	Summary of Results
	Further Work

	Comparison Between the Proposed FFT Processor with [10]
	Similarity
	Difference
	Performance Comparison

	I/O between Matlab and VHDL
	 Matlab I/O Design
	Output the data generated from Matlab
	Reading the data produced by Modelsim Simulation

	 VHDL I/O Design

	The Synthesis Schematics
	Matlab Code of the Radix22Parallel Based Algorithm
	Bibliography

