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Abstract
Automated generation of system tests for REST-
ful APIs has been extensively investigated. Previ-
ous investigations use either a white box or a black
box approach, wherein the quality of the test cases
can be assessed on the HTTP response in the prior
and also on the results of byte-code analysis in the
latter. Both approaches are limited however, as
the black box is often under performing, while the
white box can only be applied to a limited set of
RESTful APIs.
In this paper, we introduce a novel approach where
the system under test (SUT) is defined as a con-
tainer. In this approach, the log output can be used
to assess the quality of the test cases. We present a
prototype that retrieves all semantically relevant in-
formation from the logs using regex patterns, which
was subsequently used to maximize the resulting
test suite by an evolutionary algorithm.
The container, white box and black box mode were
performed on three SUTs to evaluate the effective-
ness and performance of these modes. An increase
in code coverage was observed in the container
versus black box mode in all SUTs (p < 0.001,
p < 0.001 and p = 0.054). In all SUTs, signifi-
cantly less actions could be evaluated by the con-
tainer as compared to the black box and white box
mode.
Our results show promising results for the novel ap-
proach outlined in this paper. Importantly, this ap-
proach can be applied to any RESTful API that is
deployed as a container.

I Introduction
Representational state transfer (REST) is a well-known, tried-
and-tested architectural style for any application program-
ming interface (API) [6]. While REST merely consists of a
set of constraints, the OpenAPI specification provides a stan-
dard for RESTful APIs [44]. Many companies offer their ser-
vices with RESTful APIs and therefore require system tests to
test their implementation. Creating system tests is time con-
suming however, given that the RESTful APIs often have de-
pendencies on other (internal) services (e.g. databases), and

often require the overhead of an internet protocol to access
(e.g. HTTP) [17].

Numerous strategies are available to test RESTful APIs, as
well as verifying that it adheres to the OpenAPI model. Im-
portantly, a differentiation is made between black box testing
and white box testing [15]. In general, black box testing is
defined as testing a system without having insights into the
internals of that system under test (SUT). In other words, the
tester has access to the input and output of the SUT, without
knowing how it came to that output. In contrast, the tester has
complete insights into the internals of the SUT in white box
testing. In general, white box testing in the field of Computer
Science indicates that the tester has access to the source code
and/or the byte-code at run-time of the SUT.

Several attempts have previously been published to au-
tomatically create system tests for RESTful APIs [9]–[11],
[18], [19], [21], [26], [30]. EvoMaster is the only known
tool that automatically generates system-level test cases using
a white box approach [30], [35]. The tool exploits domain
knowledge from the OpenAPI specification of the RESTful
API to create test cases, similar to most black box testing ap-
proaches. Moreover, the tool evolves the test cases with an
evolutionary algorithm to maximize the effectiveness of the
final test suite. The effectiveness of test cases is based on the
results of byte-code analysis (e.g. branch and/or code cover-
age) and (erroneous) return values of the SUT.

While the previous attempts have shown their effective-
ness, they remain limited for various reasons. black box test-
ing can be performed on any RESTful API, but the resulting
test suites do not come close to the effectiveness of a manu-
ally written test suite. In contrast, EvoMaster has shown to
reach up to 80% code coverage [30]. However, EvoMaster
in white box mode only accepts java based systems and is
therefore limited in its applicability.

In this paper, we introduce a novel container approach that
regards the SUT as a Docker container. This approach gives
access to the log output of the SUT that can be used to de-
fine the effectiveness of test cases, alongside the HTTP re-
sponse that is also available in a white box approach. Results
of our empirical evaluation shows that our approach signifi-
cantly improved the effectiveness of the resulting test suite,
as compared to the black box approach. To the best of our
knowledge, this is the first work in test automation that uti-
lizes the log output of the SUT to improve the resulting test
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suite. This pioneering study shows the potential of this ap-
proach and several optimization options are described that
may be further investigated in future research.

The remainder of this paper is organized as follows. Sec-
tion II describes in more detail the global objective of testing
and verification, as well as the previously described black box
and white box modes available in EvoMaster. Section III de-
scribes our container approach. In section IV, we report the
findings of our empirical evaluation that investigates the ef-
fectiveness and performance of a prototype of our approach
as compared to the white box and black box mode of EvoMas-
ter. Next, the results and limitations are discussed in section
V. Finally, our conclusions and recommendations for future
work are described in section VI.

II Problem formulation
While this paper is specifically focused on system testing of a
RESTful API, we will briefly describes the global objective of
software testing and verification. Thereafter, the previously
described black and white box approaches are explained in
more detail in the light of EvoMaster.

a Testing and verification of the system under test
Software testing is arguably as old as computer science itself,
starting with the hand proofs of correctness by Turing [1].
Throughout history, software testing has been implemented
with various levels of thoroughness, ranging from none to
stringent requirements in both aviation [5] and the biomed-
ical field [23]. While software testing and software verifica-
tion are not the same, their differences are less pronounced
on a system level. Indeed, system tests are generally regarded
as the primary means for verification [12]. The definition of
verification is given at definition 1 according to the Food and
Drug Administration (FDA) [4].

Definition 1 (Verification - FDA)
Verification means confirmation by examination and provi-
sion of objective evidence that specified requirements have
been fulfilled.

The given definition is abstract on purpose, as formal veri-
fication of a complex system such as a RESTful API is noth-
ing short of solving the halting problem. A more concrete
goal of verification is to ensure that no software failure will
occur while in use. Software failures of medical devices in
particular can lead to life-threatening scenarios. However,
they are also highly relevant in any other product. Indeed,
poor quality software has been reported to cost US $2.84 tril-
lion, of which a large majority of those costs are directly re-
lated to software failure [29]. While proving that no software
failure will occur is as difficult as formal verification, thor-
ough testing can catch software failures before the software
is used in production. In practical terms, (branch) code cov-
erage is often used as an (imperfect) measure that is inversely
related to the chance of software failure.

To achieve this goal, several testing approaches are avail-
able. EvoMaster makes use of an evolutionary algorithm that

evolves generations in an iterative manner and selects the in-
dividuals that are perceived to be the fittest. In this paper, we
will specifically concentrate on the fitness function and the
information about the SUT that it has access to. Importantly,
the fitness function results in a fitness value that indicates the
quality of the test case. The fitness value can be regarded as a
vector of targets with corresponding heuristics. The heuristic
value ranges between 1 (high quality) and 0 (low quality). In
all approaches, the heuristic values are used to maximize the
quality of the resulting test suite. The approaches described
below differ in the targets that are available to assess, as well
as the data that are available to base the heuristics assignment
on. In general, the closer the heuristic assignment is related
to the effectiveness of the test case, the better the result of the
optimization process.

Algorithm 1: Black box fitness function
Input:
sut = system under test (black box)
T = test case with {a1, ..., am} HTTP request actions
Output: Fitness value (fv) of T

1 begin
2 fv← HANDLE-SIZE(T)
3 for a ∈ T do
4 httpResult← execute a against sut
5 fv← HANDLE-HTTP(fv, httpResult)
6 end
7 return fv
8 end

b Black box approach
A description of a black box that can be subjected to Evo-
Master using the black box approach is given in definition 2.

Definition 2 (EvoMaster black box)
A RESTful API with an HTTP endpoint that can takes an
HTTP request as input and will return an HTTP response as
output according to a predefined OpenAPI specification.

Similar to most commercial applications that offer black box
testing of the OpenAPI specification, EvoMaster creates tar-
gets that should be covered by the test suite based on the
expected input and output from the OpenAPI specification.
Subsequently, EvoMaster initializes a starting population of
test cases through dynamic programming and estimates the
fitness of each test case (see algorithm 1). In the case of the
black box mode, the HANDLE-HTTP function adds heuris-
tics to the action based on the HTTP request.

As an example, consider an action that attempts to cover
a GET request on endpoint news/id. If the status code of
the HTTP response is 200, the target is considered covered
and the heuristic is set to 1. In contrast, a status code in the
form of 4xx indicates a bad request and is assigned a low
heuristic of 0.1. Unfortunately, the response of the RESTful
API often offers little information on the effectiveness of the
HTTP request for security purposes. As such, the heuristic
assignment remains crude in the black box approach.



Algorithm 2: White box fitness function
Input:
sut = system under test (white box)
sc = sut controller with instrumentation
T = test case with {a1, ..., am} HTTP request actions
Output: Fitness value (fv) of T

1 begin
2 reset sut with sc
3 fv← HANDLE-SIZE(T)
4 for a ∈ T do
5 httpResult← execute a against sut
6 fv← HANDLE-HTTP(fv, httpResult)
7 codeResult← retrieve byte-code from sc
8 fv← HANDLE-CODE(fv, codeResult)
9 end

10 return fv
11 end

c White box approach
The definition of a white box that can be subjected to Evo-
Master using the white box approach is given in definition
3.

Definition 3 (EvoMaster white box)
A RESTful API compiled to a JVM environment (java 8 or 11)
with an HTTP endpoint that can takes an HTTP request as
input and will return an HTTP response as output according
to a predefined OpenAPI specification, as well as the corre-
sponding byte-code analysis.

With roots originating from EvoSuite [13], EvoMaster has
been created specifically for the purpose of white box testing
in JVM environments [24], [25], [27], [28], [30]. The fitness
function of the white box mode uses a similar algorithm (see
algorithm 2 as the fitness function of the black box mode,
but has more data to base the fitness value of test cases on.
Importantly, an EvoMaster driver is required to control the
SUT. The driver injects instrumentation into the SUT during
run-time for byte-code analysis. As a result, the fitness func-
tion is not only able to base the fitness value on the HTTP
response, but also on the byte-code analysis.

Similar to the HTTP response, the fitness function trans-
forms the byte-code analysis to targets with a heuristic be-
tween 1 and 0. A heuristic of 1 indicates that the byte-code
line is covered and 0 indicates it is not covered. Most im-
portantly, the byte-code analysis makes use of the branch dis-
tance to allow for a more accurate heuristic if the line is not
yet covered. As an example, consider an example where the
target is the TRUE assignment of the conditional statement
x == y. If x = 2, y = 2, the heuristic is 1. Now consider the
two instances x = 2, y = 2000, and x = 2, y = 3. The line is
not covered in both instances, With a branch distance of 1998
and 1, respectively. However, the latter instance is closer to
cover the target and is therefore given a heuristic closer to 1,
while the prior instance is given a heuristic closer to 0.

All targets (lines of code) are known before the start of
the evolutionary algorithm. The algorithm can therefore op-
timize the available search budget to maximize the amount

of covered targets. The search space is complex however,
and several algorithms have been implemented to search that
space with varying strategies. Relevant algorithms include
the whole test suite (WTS), many independent object (MIO)
[28] and many-objective sorting algorithm (MOSA) [22].

Algorithm 3: Container fitness function
Input:
sut = system under test (container)
dc = docker sut controller
T = test case with {a1, ..., am} HTTP request actions
Output: Fitness value (fv) of T

1 begin
2 reset sut with dc
3 fv← HANDLE-SIZE(T)
4 for a ∈ T do
5 httpResult← execute a against sut
6 fv← HANDLE-HTTP(fv, httpResult)
7 logResult← retrieve logs from dc
8 fv← HANDLE-LOGS(fv, logResult)
9 end

10 return fv
11 end

III Our contribution
In this section, we describe our novel container approach. We
will first describe the overall strategy. Thereafter, we describe
in more detail how the log output is parsed and transformed
into heuristics such that they can be used by the fitness func-
tion of EvoMaster.

a Container approach
The definition for a container that can be subjected to Evo-
Master in container mode is given in definition 4.

Definition 4 (EvoMaster container)
A Docker container that allows control of a RESTful API with
an HTTP endpoint that can takes an HTTP request as input
and will return an HTTP response as output according to a
predefined OpenAPI specification, as well as the correspond-
ing log output.

A Docker container can be regarded as a black box that
packages up code and all its dependencies [49]. With this
definition, the system under test (SUT) could be controlled
by an EvoMaster driver, similar to the white box approach. In
addition, the log output can be gathered from such a Docker
deployment, which can subsequently be used by the fitness
function. The SUT remains to be a black box though, as Evo-
Master has no insights in the logic inside the container.

In contrast to the white box approach, the SUT is not re-
quired to be compiled to JVM 8 or 11 byte-code. Instead, it
can be implemented in any language as long as it is packaged
in a Docker container. As such, this is a generic approach that
could be applied to more SUTs as compared to the white box
approach. For java applications, the tool Jib is available to
easily transform the application to a Docker container [36].



The algorithm for the Docker fitness function is described
in algorithm 3. It is similar to the black box mode, but
stands apart by the introduction of a new function call named
HANDLE-LOGS. This function will be described in greater
detail in the next subsection(s). However, we will first ex-
plore log statements in more detail to understand how they
can be transformed to an appropriate heuristic.

b Parsing logs
One of the driving forces behind the data mining movement
is the large stream of log statements that are available, Sev-
eral companies such as Elastic [43], Splunk [46] and Loggly
[39] offer log analytic tools to gain valuable information from
this data stream. In a similar vein, these logs may be valuable
to determine the fitness value of a test case in EvoMaster.
Transforming the data stream to useful knowledge is not a
trivial task however, as the log statements often contain un-
structured messages. An example is given in log statement
1.

Log statement 1 (unstructured java log)
2020-06-03 07:42:25.57 INFO 1 --- [main]
o.t.s.e.news.app: Started app in 6.33 seconds

This log statement cannot be used as an individual target
in the current form, given that the same log message a mo-
ment later would be considered as different target due to the
timestamp, despite being semantically equal. As such, the
logs need to be parsed first. Ideally, the log statement would
be delivered as a structured log. An example of the same log
statement, but in structured form, is given in log statement 2.

Log statement 2 (structured java log)
{
"timestamp": 2020-06-03 07:42:25.57,
"loglevel": "INFO",
"pid": 1,
"thread": "main",
"class": "o.t.s.e.news.app",
"message": {
"template": "Started app in {time}",
"time": "6.33 seconds"

}
}

Structured logging has become increasingly popular with
the advent of log analytics, yet many services in production
still log unstructured statements. As such, Logstash uses a
plugin name Grok [37] that attempts to destructure log state-
ments through regex expressions. A Grok consists of a set of
regex patterns in combination with their semantical names.
For instance, the Grok %{.*:data} would match the pattern
.* and tag the result with the name data. While this example
is simple, these groks can be combined and reused to create
more complex regex patterns [40].

c Transform log statements to heuristics
As shown in algorithm 3, the fitness function for the container
mode requests the function HANDLE-LOGS after every ac-
tion. The HANDLE-LOGS function is described in algorithm
4.

Algorithm 4: HANDLE-LOGS function
Input:
fv = fitness value
L = list of log statements
G = {g1, ...gn} of named groks, where
gi = regex pattern with set Ci named captures
Output: Updated fitness value (fv)

1 begin
2 for log l ∈ L do
3 for grok gi ∈ G do
4 ng← name of gi
5 M← match g on l
6 for name nc, pattern pc ∈M do
7 if nc ∈ Ci then

/* a match was found in the
log statement l using
the named grok ng, with
the the regex pattern pc
with semantic name nc
*/

8 id← hash from ng, nc, pc
9 fv← ADD-HEURISTIC(fv, id)

10 end
11 end
12 end
13 end
14 return fv
15 end

Algorithm 5: ADD-HEURISTIC function
Input:
fv = fitness value with < target, heuristic > map
id = the target id that was found from the log
A = archive with < target, counter > map
Output: Updated fitness value

1 begin
2 A[id]++
3 if id /∈ fv then

/* a target was covered by the test
case, so a heuristic is created
that is inversely related with
the amount of times the log
statement has been seen before
*/

4 c← A[id]
5 heuristic← 1/c
6 fv[id]← heuristic
7 end
8 return fv
9 end



The Grok and related semantics that are relevant for the
given SUT are expected to be defined by the user. While these
patterns could potentially be derived from sufficient test data,
this is out of scope for the given article. From line 7 of algo-
rithm 4, all log statements have been transformed to meaning-
ful targets. The next challenge is to transform those targets to
heuristics that are related to the effectiveness of the test case.
While code coverage cannot be retrieved from these targets,
log statement coverage may be related to code coverage. As
such, covering all log statements may result in a higher code
coverage. To maximize the log diversity, the heuristics as-
signed to the log statements should encourage EvoMaster to
explore newly discovered logs, while ignoring log statements
that occur frequently.

The assignment of a heuristic to a log target is described in
algorithm 5. Importantly, an archive is maintained where the
previously discovered logs are stored, together with a count
of the amount of times log has been seen before. If the log
target is only seen for the first time, the counter and heuristic
are both 1. In contrast, the heuristic assignment of a log target
that has been seen 100 times before is only 0.01. As such,
log statements that have seldom been seen will be selected
by EvoMaster with a higher chance as compared to the log
statements that have frequently been seen.

IV Empirical evaluation
In the following section, the methodology and results of an
empirical evaluation of our proposed container mode is de-
scribed.

The goal of the empirical evaluation is to assess the perfor-
mance and effectiveness of the container approach in compar-
ison to the conventional black box and white box approach of
EvoMaster. Our hypothesis is that the log output of the con-
tainer can be used to improve the effectiveness of EvoMaster
as compared to the black box mode. To make this possible, an
EvoMaster driver is required to gain access to the log output.
We hypothesize that this will negatively impact the perfor-
mance of the tool. We expect that the performance will be
similar in container mode as compared to white box mode,
given that they will both use an EvoMaster driver to control
the SUT. Finally, we hypothesize that white box mode will
still be superior to black box testing.

a Research questions
• RQ1 - Is the effectiveness of EvoMaster significantly

improved by including the log statements in the fitness
function as compared to the black box mode? The ef-
fectiveness of the resulting test suite is defined as code
coverage in white box mode.

• RQ2 - Is the performance of EvoMaster non-inferior us-
ing the container mode as compared to the white box
mode? The performance is defined as the amount of ac-
tions that could be evaluated given a fixed search budget.

b Prototype
The container mode was implemented in EvoMaster, using
the black box mode as starting point. In particular, a SUT
controller to start, stop and reset the SUT was added that

utilizes the open-source library Testcontainers (with a man-
ual lifecycle) [47]. Importantly, Testcontainers allows the re-
trieval of the logs of the Docker container of interest. The
logs, that are given as unstructured strings, are subsequently
parsed using Grok [48], an open-source library that is used
by Logstash [37]. The parsed logs are subsequently trans-
formed to a target that can be understood by the EvoMaster
evolutionary algorithm, as previously described.

c Subjects
For the purpose of this evaluation, SUTs are required that can
be used by EvoMaster in white box, black box, and container
mode. For this purpose, artificial RESTful APIs in the Evo-
Master benchmark were used for which an EvoMaster driver
is readily available (the news, scs and ncs SUT). These ap-
plications were Dockerized using Jib [36] and can be found
on Docker hub [41]. For stateful applications, an endpoint
was implemented to reset the state through a GET request.
The benchmark repository was forked to implement the mi-
nor changes that were necessary to make the SUTs applicable
for the container mode. The fork can be found on Github [42].

To investigate the impact of logging, a second version
of the news SUT with more log statements will be sub-
jected to the EvoMaster in container mode. In this version
(news:logged), 16 log statements were added to log valida-
tion errors of the user [33].

d Metrics
The following metrics will be measured to investigate the ef-
fectiveness and performance of the different modes:

• effectiveness: code coverage of the resulting test suite
on the system under test.

• performance: amount of evaluated test cases in a given
search budget.

e Experimental protocol
The behavior and expected results of the container mode are
unknown and other experiments using a similar approach to
base our expectations on. As such, the news SUT was used to
explore the behavior of the prototype first. During this explo-
ration phase, the main experiment will be performed on this
SUT with several different EvoMaster configurations. In par-
ticular, the SUT was subjected to EvoMaster using the WTS,
MOSA and MIO search algorithms. After exploration, the
main experiment was performed on all included SUTs.

In the main experiment, the SUT is subjected to EvoMaster
in white box, black box and container mode. The effective-
ness of the resulting test suite of each mode was assessed by
the fitness function of the white box mode. The fitness func-
tion of the white box mode assesses the line code coverage
of the compiled byte-code during run-time. The performance
and effectiveness metrics are stored after each test run for fur-
ther statistical evaluation.

To explore the impact of the amount of log statements of
the SUT on the effectiveness of the container mode, the news
and news:logged were both subjected to the container mode.
Since lines of code were added to the news:logged to facil-
itate the log statements, this may impact the code coverage



in both versions. To avoid this confounding factor, the test
suite resulting from both versions were subjected to the fit-
ness function of the white box mode of the news:logged ver-
sion.

The normality of the resulting variables was verified graph-
ically using histograms and verified with the Kolmogorov-
Smirnov test if the histogram was inconclusive [14]. De-
scriptive statistics are described as median with interquartile
range (IQR, presented as 50th [25th - 75th] percentile) for
non-gaussian data.

Statistical significance in the metrics of interest between
the black box mode vs container mode, as well as container
mode vs white box mode were investigated using the non-
parametric Wilcoxon Rank Sum test with an α-value of 0.05
[3], [20]. A significant p-value for the effectiveness metric
between the container mode and black box mode indicates
that the null hypothesis can be rejected and the container
mode is superior to the black box mode in terms of effective-
ness. A non-significant p-value for the performance metric
between the container mode and the white box mode indicates
that the null hypothesis cannot be rejected and the container
mode is non-inferior to the white box mode in terms of per-
formance. A one-way ANOVA or Kruskal-Wallis ANOVA
was specifically not used given that we are only interested in
possible differences with the container mode and not between
the black box and white box mode. Moreover, the effect size
of the difference was measured using the the Vargha-Delaney
statistic. The Vargha-Delaney statistic classifies the magni-
tude of the observed difference in either negligible, small,
medium or large [7].

EvoMaster has several configuration options that could im-
pact the effectiveness and performance of the test results. As
described above, the effect of the hyper-parameters that were
deemed most relevant will be explored first. It has previously
been shown that extensively fine-tuning these configuration
can lead to significantly improved results, but the process is
time consuming [16]. The objective of this empirical eval-
uation is to investigate whether our proposed approach is of
interest, not to quantify the best performance.

f Results
The container mode of EvoMaster was first explored on the
news SUT in white box, black box, and container mode us-
ing the MOSA search algorithm. Each mode was run twenty
times with a search budget of five minutes. The code cov-
erage was significantly higher in container mode (35% IQR
[34%-35%]) as compared to the results from the black box
mode (34% IQR [34%-34%], p<0.001). The effect size was
considered large by the Vargha-Delaney statistic. As hypoth-
esized, the white box mode remains superior overcontainer
mode (39% IQR [39%-39%], p<0.001), see also figure 1.
The coverage of the targets that EvoMaster uses internally
to represent the code coverage follows a similar pattern (see
appendix A).

With regards to the performance, the amount of actions
evaluated by the container mode (31744 IQR [31365-32807])
is inferior to both black box (113635 IQR [112094-115074],
p<0.001, Vargha-Delany large) as well as white box (69603
IQR [66470-71121], p<0.001, Vargha-Delany large). Sur-
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Figure 1: Boxplot of the code coverage (%) on the news SUT using
the MOSA algorithm.

mode lines % p-value magnitude
news 187 100
container 65 35 reference
black box 64 34 <0.001 large
white box 72 39 <0.001 large

ncs 286 100
container 142 50 reference
black box 137 48 <0.001 large
white box 250 87 <0.001 large

scs 301 100
container 157 52 reference
black box 155 51 0.054 small
white box 217 72 <0.001 large

Table 1: Median line coverage of the different EvoMaster modes on
the included SUTs using the MOSA algorithm.

prisingly, EvoMaster favored test cases with less actions in
the white box mode as compared to the black box and con-
tainer mode (see appendix A).

The statistical dispersion observed in the measured out-
come metrics was considered adequate to reliably observe
results with the given amount of runs and search budget.
The experiment was repeated with the WTS and MOSA al-
gorithm, for which similar results were observed (data not
shown). As such, the main experiment was performed on all
SUTs with the MOSA algorithm and a search budget of five
minutes, each mode was run twenty times per SUT. The ex-
perimental protocol was automated by a shell script, which
can be found on Gitlab in the scripts directory [34]. More-
over, this directory contains the raw data and test suites re-
sulting from running the shell scripts, as well as an R script
that was used for statistical evaluation.
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Figure 2: Boxplot of the amount of actions evaluated on the news
SUT using the MOSA algorithm.

The results of the effectiveness metric of the different
modes that were tested on all included SUTs are described in
table 1. In the scs SUT, a trend towards statistical significance
was observed in the increase of effectiveness in container ver-
sus black box mode, but this did not reach the α-value thresh-
old. The difference between container and white box mode
was more pronounced in the ncs and scs, as compared to the
news SUT. With regards to the performance metric, similar
results were observed in the remaining SUTs as previously
described (see table 2).

No log statements were added by the developer in all SUTs
that were evaluated in the main experiment. The effectiveness
of the container mode on the news SUT was compared with
the news:logged version, in which 16 log statements were
added. The code coverage was significantly higher in the
news:logged (39 IQR [39-39]) versus the news version (35
IQR [34-35], p<0.001, Vargha-Delany large).

V Responsible Research
The validity of the problem is discussed in section I. No hu-
man subjects were included in the empirical evaluation. Ap-
proval of an ethical committee was deemed not to be nec-
essary for the research presented in this paper. The authors
do not believe that the scientific contribution of this paper
will harm society, nor do we believe that it can be abused in
such a manner. Threats to validity, including reproducibility
are discussed in section VI. Importantly, the prototype was
implemented in an open-source project. All scripts used to
generate the data, as well as the actual data are available on-
line [34], [42]. Readers are encouraged to reproduce, evaluate
and improve the container mode mode and report their find-
ings in public. Value utilization of the presented approach
is discussed in section VII. The authors have no (financial)
conflicts of interests to declare.

mode actions p-value magnitude
news
container 31744 reference
black box 113635 <0.001 large
white box 69603 <0.001 large

ncs
container 45053 reference
black box 177045 <0.001 large
white box 50353 <0.001 large

scs
container 38726 reference
black box 183680 <0.001 large
white box 97207 <0.001 large

Table 2: Median amount of actions performed by the different Evo-
Master modes on the included SUTs using the MOSA algorithm.

VI Discussion
In this paper, we have introduced a novel approach to assess
the fitness of test cases for a RESTful API using the log state-
ments of the system under test. Our results show that an evo-
lutionary algorithm that has access to the log output alongside
the HTTP response of the SUT can produce a test suite that is
significantly better in terms of code coverage than an evolu-
tionary algorithm that only has access to the HTTP response.
While our container mode is less effective than a white box
approach that has access to the byte-code, our approach can
be applied to any container.

In the following sections, any potential threats to validity
of our empirical evaluation will be discussed. Thereafter, we
will compare the results to previously published experiments.

a Threats to validity
Potential threats to construct, internal, external and statistical
conclusion validity are described [45]. Threats to construct
validity are threats related to the quality of choices for the
(in)dependent variables that are studied in the current exper-
iment. The dependent variable that was chosen for the effec-
tiveness metric is widely adopted in the literature. It should be
noted that complete code coverage does not guarantee that no
software failure will occur while in use. Code coverage was
measured using the white box fitness function, which is not
completely deterministic but observed differences in the code
coverage of the same test suite using the white box fitness
function multiple times were negligible (data not shown).
A potential threat to construct validity is that the indepen-
dent variable may not be adequately represented. Indeed, the
container mode prototype may be inadequately implemented,
thereby the results of the experiment may not be an accurate
representation of the approach outlined in this paper. As such,
we believe that the effectiveness of the container mode can be
further improved.

Threats to internal validity for the presented experiment
include possible misconfiguration of the hyper-parameters
present for EvoMaster. EvoMaster was run with default val-
ues, which have shown to be valid options [16]. Most impor-
tantly, the search algorithm has previously shown to have a
dramatic effect on the effectiveness of EvoMaster [22], [28].



These hyper-parameters were therefore first explored prior to
the main experiment.

A glaring threat to the external validity is the fact that the
approach was only tested against artificial SUTs. Most im-
portantly, no log statements were added to these SUTs. As
such, the only log statements that were captured originated
from external packages. The scs and ncs include several al-
gorithms (string and numerical, respectively) with many lines
of code that are not reflected in the log output nor HTTP re-
sponse. As such, the white box mode performs significantly
better in these SUTs than any other mode. Adding log state-
ments to the news SUT significantly improved the effective-
ness of the container mode. The objective of the empirical
evaluation described in this paper was merely to investigate
whether our proposed approach is of interest for future re-
search, not to quantify the best performance. The results of
our empirical evaluation should warrant further investigation
to optimize the approach, after which the performance should
be evaluated on more representative applications.

Threats to statistical conclusion validity seem limited
given the small statistical dispersion of the dependent vari-
ables. In addition, the statistical analysis applied in our em-
pirical evaluation are according to current best practices [20].

b Related work
EvoMaster has been extensively studied, in particular with
regards to the search algorithm [22], [30]. Importantly, the
same SUTs were subjected to EvoMaster in a previous publi-
cation [30]. In the reported experiment, the code coverage for
the news SUT was 65%, which is significantly higher than the
coverage we have reported. Several factors explain this dif-
ference. First and foremost, Arcuri et al. measure the state-
ment coverage through executing the resulting test suite with
IntelliJ IDEA [38]. In contrast, we have measured code cov-
erage of the compiled byte-code through the fitness function
of the white-box mode. We have manually run samples of
the resulting test suite in IntelliJ IDEA, resulting in a similar
statement coverage (data not shown). In addition, EvoMaster
was run with similar hyper-parameters in both experiments.
In the paper of Arcuri et al., EvoMaster was run with a search
budget of 10K and 100K HTTP requests, while our exper-
iment was run for a search budget of 5 minutes. The search
budget of 5 minutes translated to roughly 20k HTTP requests.
The other paper executes 100 runs, while our empirical eval-
uation executes 20 runs. Given that the interquartile range is
small in our evaluation, we do not believe that the difference
in the amount of runs will be relevant.

Zhang et al. reported a resource-based test case generation
approach for RESTful APIs [32]. Domain specific knowl-
edge about the semantics of HTTP methods is exploited by
this approach to generate test actions according to a set of
effective templates. The results of their empirical evaluation
suggests that the resource-based approach may result in an
increase in coverage of up to 42%. This approach does not re-
quire byte-code analysis and could therefore be implemented
in our container mode as well.

Galeotti et al. reported an approach to analyse possible
SQL transactions performed by the SUT [31]. This approach
can be useful to promote test cases that result in successful

SQL transactions, or mutate the database to a correct state.
Theoretically, the concept of this approach does not require
access to byte-code analysis of the SUT, as it could be im-
plemented as a wrapper around the database. In practice, the
prototype as outlined by this publication requires byte-code
analysis and is therefore not easily integrated with the con-
tainer mode.

The presented container mode is more effective than black
box mode (RQ1), but has lower performance than white
box mode (RQ2).

VII Conclusions and Future Work
In conclusion, we have shown that the log output of the SUT
can be utilized to increase the effectiveness of an evolutionary
algorithm to generate system tests for RESTful APIs. The
effectiveness of the container mode is increased when more
log statements are available in the SUT. The overhead added
by Testcontainers to deploy Docker containers does reduce
the performance of the container mode as compared to white
box mode, but also enables EvoMaster to be performed on
SUTs that are not compiled to a JVM environment.

Do the test suites resulting from EvoMaster in container
mode satisfy the global objective described in section II? The
test suites most certainly do not ensure that no software fail-
ure will occur in the SUT. Yet, when is a test suite truly suffi-
cient? To be certified as a medical device by the Conformité
Européenne (CE), it needs to be tested in accordance with the
State of the Art [8]. While the term is abstract, one could
consider an evolutionary algorithm as such. Moreover, even
a system that is covered by a test suite with 100% code cov-
erage may fail during use. Any test suite should be part of an
extensive testing strategy that aims to reach the global objec-
tive. In such a strategy, a test suite provided by EvoMaster
can offer value as an integration test in a continuous develop-
ment pipeline. In addition, the test suite may uncover server
errors and other unintended behavior of the SUT.

While the difference in effectiveness between the container
and black box mode is significant, there is room for improve-
ments. Ideally, all semantics that are available in the log state-
ments from the SUT should be captured. We hypothesize that
structured logging will capture more semantics of the logs,
including parameterized log messages. In particular, the pa-
rameter values might give some insights into the logic of the
SUT. For instance, the inputs given to the SUT may be related
in some way with these parameters. Understanding this rela-
tion could guide the mutation of the input parameters in the
next generation. In addition, the current implementation only
investigates the semantics in each individual log statements.
We hypothesize that there may be relevant information be-
tween log statements that could offer additional information
about the effectiveness of a test case.

The container mode may also be further improved to make
EvoMaster more accessible. Currently, only Docker contain-
ers can be subject to EvoMaster. However, the approach out-
lined in this paper could be applied to other type of contain-
ers, as well as complete deployments (e.g. docker-compose
or Kubernetes cluster). EvoMaster could be hooked onto al-
ready existing logging infrastructure to retrieve all logs that



are stored centrally, such as an elastic stack [43].
While these suggestions for future work might improve the

effectiveness of the mode, will it become non-inferior to the
white box mode? The latter has two distinct advantages over
the container mode. First, it has access to all lines of code,
including those that are not yet covered. Second, it can cal-
culate the branch distance to attribute a higher heuristic that
is closer to an undiscovered branch. These mechanisms can-
not be exploited by the container mode, as Edger Dijkstra
suggested: ”a convincing demonstration of correctness being
impossible as long as the mechanism is regarded as a black
box, our only hope lies in not regarding the mechanism as
a black box” [2]. The container mode may therefore not be
able to cover all code lines, yet may be able to cover the code
lines leading up to log statements. One could argue that these
lines of code may be most important, given that the developer
specifically added these log statements. This is particularly
true when these log statements are used for audit logging.
While white box mode may remain superior in terms of ef-
fectiveness, the container mode will remain superior in terms
of accessibility.
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A Appendix
In the following section, additional data is presented that sup-
port the overall conclusions drawn in the paper. The fig-
ures and tables shown here are not included in the paper to
keep the results and conclusions clear and concise. For trans-
parency purposes, they are presented here.
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Figure 3: Boxplot of the amount of targets covered on the news SUT
using the MOSA algorithm.

The targets are the heuristic targets that the evolutionary
algorithm of EvoMaster is configured to maximize. They
represent either HTTP responses, line code coverage and/or
log statements, depending on the mode that EvoMaster is run
with. In essence, the targets are a proxy of the final outcome
that is attempted to be maximized. The higher the amount
of targets that are covered by EvoMaster, the better the ef-
fectiveness is expected to be. The results of the exploratory
experiment is shown in figure 3, the results of the main ex-
periment on all the SUTs is shown in table 3.

b Tests
In EvoMaster, the final result consists of one test suite con-
taining several test cases. A test case subsequently consists of
a set of actions that are performed consecutively. The results
of the exploratory experiment is shown in figure 4, the results
of the main experiment on all the SUTs is shown in table 4.

https://www.splunk.com/
https://www.testcontainers.org/
https://www.testcontainers.org/
https://github.com/thekrakken/java-grok
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container


mode targets p-value magnitude
news
container 218 reference
black box 210 <0.001 large
white box 252 <0.001 large

ncs
container 353 reference
black box 337 <0.001 large
white box 539 <0.001 large

scs
container 511 reference
black box 496 <0.001 large
white box 681 <0.001 large

Table 3: Median amount of targets covered by the different EvoMas-
ter modes on the included SUTs using the MOSA algorithm.
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Figure 4: Boxplot of the amount of tests evaluated on the news SUT
using the MOSA algorithm.

mode tests p-value magnitude
news
container 16506 reference
black box 20758 <0.001 large
white box 47024 <0.001 large

ncs
container 10892 reference
black box 32137 <0.001 large
white box 40033 <0.001 large

scs
container 14090 reference
black box 33383 <0.001 large
white box 63292 <0.001 large

Table 4: Median amount of tests performed by the different Evo-
Master modes on the included SUTs using the MOSA algorithm.
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