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Summary

Sound navigation and ranging (SONAR) is a technology primarily used in water to map underwater surface

features, or detect submarine vehicles. It can be installed on both ships or helicopters. A dipping SONAR

is a SONAR device that is suspended below a helicopter, and lowered into the water periodically to

take measurements in order to detect submarines. The most notable advantage of dipping sonar is that

helicopters can move faster than a ship, meaning that it can take measurements over a much larger area

in a shorter amount of time. Also the quick deployment of multiple helicopters can increase the detection

chance of a submarine. Moreover, since the SONAR is not attached to a moving ship, there is no Doppler

effect due to ship motion nor noise pollution generated by the ship’s engines that would typically be there

with ship based SONAR. However, if the helicopter or the cable moves, the SONAR will move as well,

adding a Doppler effect due to helicopter or cable motion. The main challenge for dipping SONAR therefore

lies in controlling the helicopter such that the SONAR is kept still in the water to reduce Doppler effects on

the SONAR for the duration of a dip, in potentially rough conditions.

During a dipping SONAR mission, the transducer is lowered to depths ranging up to 2500 ft from a hovering

helicopter at an altitude of 50-300 ft above the water. Dipping can take a long time, but is assumed to take

no longer than 5 minutes.

Based on the mission requirements combined with a lack of available information about SONAR motion

requirements, the following controller requirements have been defined:

1. The translational rates of the SONAR shall not exceed 1m/s in all directions with the SONAR

submerged at a depth of 60m and sea state of 5 for 5 minutes.

2. The rotational rates of the SONAR shall not exceed 1◦/s in all directions with the SONAR submerged

at a depth of 60m and sea state of 5 for 5 minutes.

3. The SONAR shall reach steady state within 60 seconds in all axes after a step input gust of 0 to 7 Bft

with the SONAR submerged at a depth of 60m.

The suspension cable is the largest uncertainty in the helicopter-cable system. This is due to its ability to

deform due to both environmental conditions such as wind as well as helicopter motion. This deformation

results in changing dynamics of the cable, and the SONAR. This makes control of the SONAR difficult,

since its dynamics are uncertain.

Throughout literature, many different control methods are proposed for stabilizing helicopters either with or

without load. Each of them having benefits and drawbacks. Despite this large variety of different methods, it

is still common to find gain scheduled classical controllers. Such controllers are developed using linearised

models of the vehicle to determine the gains, and are scheduled for specific flight conditions. The main

reason for using such controllers is its structured loop design which makes them easy to verify and hence

certify.

In this thesis, incremental nonlinear dynamic inversion (INDI) is used to control the cable. This is done

to remove the complex cable dynamics from the cable controller. INDI is the incremental approach to

Nonlinear Dynamic Inversion (NDI), which is a control method where the feedback of the controller is

such that the dynamics of the system are linear globally. The main advantage of NDI is that it inverts

the dynamics of the system, linearising it. However, for it to function properly, perfect model knowledge

is required. This means that, in order to make this method practical, either the model must be updated

continuously, or the modelling error must be found. The latter is done in [48] and [60]. Because of this,

NDI is called a model-based approach.

INDI moves from a model based NDI approach to a sensor based approach, by using sensor measurements

instead of the system model. Generally, only the control effectiveness is required. It has also already been

applied to helicopter control systems in [42], [43] and [51] as proof of concept.

Using INDI for controlling the cable removes the required knowledge of the dynamics of the suspension

cable, simplifying the control task greatly. Therefore, this research aims to use INDI as control method for

1
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a system with a hovering helicopter and a dipping SONAR. It will be compared to a classical PID controller

to judge its performance and to determine whether it is a feasible control method for dipping SONAR

missions.

From this, the following main research question of this thesis arises:

How does an INDI controller compare to PID control in keeping a dipping SONAR stationary

while hanging under a hovering helicopter during a dipping SONAR mission?

This question is answered throughout this report.

In this research, an 8 degrees-of-freedom (DOF) helicopter model was used. This includes 6-DOF body

motion and 2-DOF quasi-dynamic rotor inflow for the main and tail rotor. This model was applied to a

dipping SONAR configuration. A suspension cable + SONAR model was modelled from scratch. This was

done by modelling the cable as a number of rigid links attached by friction-less hinges. The environment

model used is a von Karman turbulence model. With these models, simulations were performed in order

to simulate the behaviour of a helicopter with a dipping SONAR in turbulent conditions.

The controllers designed were cable angle controllers. These controllers control the cable angle at the

helicopter attachment point relative to the local vertical. The idea behind this is that the helicopter knows

nothing about what is happening below it. This means that it is assumed that there are no sensors on

the cable, nor on the SONAR about its position, velocity or rotation relative to the helicopter. Both an

INDI cable controller and a PID cable controller were designed. They were tuned to show similar output

when subjected to a single step input in wind of 4 kts. This way, the comparison between them is fair, and

differences are less likely due to gain tuning.

Simulation was done in step via the means of simulation cases, each case increasing in complexity. The

cases are presented in Table 1. The column helicopter model indicates where the main rotor hub is located

relative to the center of mass. The cable model column indicates how many cable sections are used. For

cases 1 and 2, no load is assumed so no cable sections apply. Column Load location indicates where

the attachment point of the cable is located. Medium indicates the medium in which the cable model is

modelled. The idea behind this approach is to build up the problem in a systematic way.

Table 1: Simulation Cases for the 6-DOF hovering helicopter controller

Case Helicopter Model Cable Model Load Location Medium Disturbances

1 Rotor hub aligned with c.g. - - - -

2 Rotor hub at offset - - - -

3 Rotor hub at offset Single cable section + SONAR c.g. of helicopter Air -

4 Rotor hub at offset Single cable section + SONAR At offset Air -

5 Rotor hub at offset 5 cable sections + SONAR At offset Air -

6 Rotor hub at offset 5 cable sections + SONAR At offset Air + water -

7 Rotor hub at offset 5 cable sections + SONAR At offset Air + water Aerodynamic

The main conclusion of this thesis is that cable control using INDI performs better at stabilising the SONAR

than PID does under turbulent conditions with wind up to 20 kts in terms of control use and SONAR velocity.

However, due to the way the cable controller is designed in this work, either controller could fail if the

helicopter gets blown away too far from the cable sections that are submerged, which was the case for

30 kts. In this research, the cable controller has as goal to keep the angle of the cable at the attachment

point to the helicopter constant. Thus, changing wind will inevitably result into translation commands to

the helicopter in order to keep this angle constant. A position controller proved to work better under the

high wind and high turbulent conditions of 30 kts wind. It seems that improvements could be made by

either finding a way to vary the desired cable angle based on the turbulence or to find a controller that

incorporates cable control and helicopter position hold together in order to keep the helicopter position

somewhat constant, yet move slightly to stabilise the cable to changing wind conditions.
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Moreover, simulation showed that the requirements could be met by both the PID and the INDI controllers

up to 20 kts wind. It was also found that shorter cables are more limiting than longer cables. This is due to

the higher drag of longer cables and the lower natural frequency of longer cables.

It is recommended that future steps could usemeasurements of the SONAR states if possible and controlling

the SONAR, rather than the cable angle at the helicopter. The major advantage here would be that for INDI,

the complex cable dynamics could be largely ignored. The difficulty here, however, lies in determining

what the control effectiveness is in such a case, as the cable shape influences the control effectiveness.

Also, in [12] and [53] discuss the use of an active cargo hook, which essentially is a moving platform

underneath the helicopter to which the cable is attached. According to [12], this is more stable than when

using the helicopter to move around. The use of an active cargo hook could be the solution to staying in

the same position while stabilising the suspension cable using the active cargo hook.

Finally, it is recommended to improve the fidelity of the models used in this research. There were some

things, however, that were not modelled, which could change the behavior of the controller. These are

sensor measurements and actuator dynamics. The cable model could be improved by adding a more

realistic damping model. Currently, the damping is assumed to be linear and depends on the angle between

cable sections and the relative angular velocity between these two. The coefficients used for damping

were based on guesswork in order to ensure a stable simulation. Having a realistic damping of the cable

would make the motion of the cable more realistic. Also, the sensitivity analysis showed that there are

large peaks in the vertical SONAR velocity. It is thought that a lack of drag on the cable in this direction is

the cause of this. Adding a more refined drag model would show whether this is the case. The fidelity of

the wind model could be improved by adding varying wind with altitude, since wind and gusts are different

close to the water’s surface than at altitude. It would also be interesting to add a wave model, a sea

current model and to have wind interact with the waves in order to see the effects this has on the cable’s

behaviour.



1
Introduction

Sound navigation and ranging (SONAR) is a technology primarily used in water to map underwater

surface features, or detect submarine vehicles. It can be installed on both ships or helicopters. A

dipping SONAR is a SONAR device that is suspended below a helicopter, and lowered into the water

periodically to take measurements in order to detect submarines. The most notable advantage of dipping

sonar is that helicopters can move faster than a ship, meaning that it can take measurements over a

much larger area in a shorter amount of time. Also the quick deployment of multiple helicopters can

increase the detection chance of a submarine. Moreover, since the SONAR is not attached to a moving

ship, there is no Doppler effect due to ship motion nor noise pollution generated by the ship’s engines

that would typically be there with ship based SONAR. However, if the helicopter or the cable moves,

the SONAR will move as well, adding a Doppler effect due to helicopter or cable motion. The main

challenge for dipping SONAR therefore lies in controlling the helicopter such that the SONAR is kept still

in the water to reduce Doppler effects on the SONAR for the duration of a dip, in potentially rough conditions.

The suspension cable is the largest uncertainty in the helicopter-cable system due to its ability to

deform due to both environmental conditions such as wind as well as helicopter motion. This deformation

results in changing dynamics of the cable, and the SONAR and makes control of the SONAR problematic,

since its dynamics are uncertain.

In this thesis, incremental nonlinear dynamic inversion (INDI) is used to control the cable. This is

done to remove the complex cable dynamics from the cable controller. INDI is the incremental approach

to Nonlinear Dynamic Inversion (NDI), which is a control method where the feedback of the controller is

such that the dynamics of the system are linear globally. The main advantage of NDI is that it inverts

the dynamics of the system, linearising it. However, for it to function properly, perfect model knowledge

is required. This means that, in order to make this method practical, either the model must be updated

continuously, or the modelling error must be found. The latter is done in [48] and [60]. Because of this,

NDI is called a model-based approach.

INDI moves from a model based NDI approach to a sensor based approach, by using sensor mea-

surements instead of the system model. Generally, only the control effectiveness is required. It has also

already been applied to helicopter control systems in [42], [43] and [51] as proof of concept.

Using INDI for controlling the cable removes part of the required knowledge of the dynamics of the

suspension cable, simplifying the control task greatly. Therefore, this research aims to use INDI as control

method for a system with a hovering helicopter and a dipping SONAR. It will be compared to a classical

PID controller to judge its performance and to determine whether it is a feasible control method for dipping

SONAR missions.

Research Formulation
Research Questions
The main research goal is to find an INDI controller, capable of keeping a dipping SONAR still during

a dipping SONAR mission. This goal was provided by the project supervisor. In order to compare the

performance of such a controller, this controller will be compared to a conventional PID controller. From
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this, the following main research question arises:

How does an INDI controller compare to PID control in keeping a dipping SONAR stationary

while hanging under a hovering helicopter during a dipping SONAR mission?

In order to answer this main question, the following sub-questions have been defined:

Sub-question 1: What does a dipping SONAR mission look like?

Sub-question 1.1: What is dipping SONAR?

Sub-question 1.2: What manoeuvres are expected?

Sub-question 1.3: What environmental conditions are expected?

Sub-question 1.4: What are the requirements of the controller?

Sub-question 1.5: What are the controller performance metrics?

Sub-question 2: What are the dynamic characteristics of a helicopter during a dipping SONAR mission?

Sub-question 2.1: What are the rotor dynamics?

Sub-question 2.2: What are the actuator dynamics?

Sub-question 2.5: What is the state of the art in helicopter modelling with a slung load?

Sub-question 2.3: How does a pure helicopter behave (without any suspended load)?

Sub-question 2.4: How does a submerged load change helicopter behaviour?

Sub-question 3: What is the state of the art in helicopter automatic flight control systems?

Sub-question 3.1: What different control methodologies exist?

Sub-question 3.2: What different control modes exist?

Sub-question 3.3: What are their advantages/disadvantages?

Sub-question 3.4: Why choose INDI as control strategy?

Sub-question 4: How to design an INDI controller for a helicopter with a dipping SONAR?

Sub-question 4.1: How does INDI work?

Sub-question 4.2: What is the controlled variable?

Sub-question 4.3: How is INDI currently used in control systems?

Sub-question 4.4: How to design the outer loop controller?

Sub-question 5: What models will be used?

Sub-question 5.1: What model is used for the helicopter?

Sub-question 5.2: What model is used for the suspension cable?

Sub-question 5.3: What model is used for the SONAR?

Sub-question 5.4: What model is used for the environment?

Sub-question 6: How does an INDI controller perform for a helicopter with a dipping SONAR compared to

PID?

Sub-question 6.1: What sensors are required to make it work?

Sub-question 6.2: What are the requirements of the sensors?

Sub-question 6.3: How robust is INDI to flapping dynamics?

Sub-question 6.4: How robust is INDI to actuator dynamics?



Research Objective
The main research objective is to find an INDI controller, capable of keeping a dipping SONAR still during

a dipping SONAR mission.

In order to achieve this main objective, five sub-goals have to be reached:

1. Obtain the models of the system. These are the helicopter model, the suspension cable model, the

SONAR model and the environment model.

2. Design a PID controller for this system.

3. Design an INDI controller for this system.

4. Implementation into simulation. Simulation is done using Matlab, in which all models and the

controllers will be combined into the final system.

5. Compare performance between the two designed controllers and determining whether the INDI

controller is suitable.

Structure of the Report
The goal of this report is to provide an overview of the work done in this Thesis in order to find the solution

to the main research question of how an INDI controller performs to a PID controller in a dipping SONAR

mission. This report is laid out as follows: First, the scientific article is provided in Part I. Then, the

preliminary analysis is provided in Part II, which contains a brief description of the control mechanisms of a

general helicopter in Section 3.1, a literature overview of helicopter rotor dynamics as well as actuator

dynamics in Section 3.2, a description of dipping SONAR missions as well as the controller requirements

in Section 3.3, the different modelling methods found in literature in Section 3.4, the state of the art in

helicopter automatic control systems in Section 3.5 and the working principle of INDI in Section 3.6. In

Chapter 4, a 3-degree-of-freedommodel is presented with INDI and PID controllers stabilizing the helicopter

and the load as a preliminary analysis.

In Part III, the additional results are presented. Here, the suspension cable + SONAR model are presented

in Chapter 5. The 6-degrees-of-freedom cable control cases are given in Chapter 6. A sensitivity analysis

is performed in Chapter 7. Finally, a verification and validation is provided in Chapter 8. The conclusions

and recommendations are given in Part IV.
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Cable Control for Dipping SONAR Operations using
Incremental Nonlinear Dynamic Inversion

M. Maurer∗, E. van Kampen, M. D. Pavel
Delft University of Technology, Faculty of Aerospace Engineering, Kluyverweg 1, 2629 HS Delft, The Netherlands

Control of a helicopter with a deployed dipping sound navigation and ranging (SONAR) is no
trivial task due to the complex dynamics of the suspension cable. The cable can change shape,
which influences the effect of water, wind and the motion of the helicopter itself. To control
such a system, a control method is needed that can cope with these complex dynamics. In this
paper, an investigation is performed on how to model and control a helicopter and a dipping
SONAR through the suspension cable using incremental nonlinear dynamic inversion (INDI)
as well as a comparison between the use of INDI and linear proportional integral derivative
(PID) control. The controller uses only the cable states at the attachment point of the cable to
the helicopter in order to determine the control inputs to the helicopter. This means that only
these measurements are needed and no complex model of the cable is required for control. This
reduces model dependency of the controller. The control system is simulated in different wind
conditions in order to analyse its performance in turbulent conditions, where the cable changes
shape constantly. It was found that, although INDI performs better than PID control at low
wind speeds, an INDI position hold controller appeared to perform better than an INDI cable
controller at high wind speeds.

Keywords: Helicopter, Dipping SONAR, Helicopter slung load, Nonlinear Control, Incremental
nonlinear dynamic inversion, Cable control

I. Introduction
Sound navigation and ranging (SONAR) is a technology primarily used in water to map underwater surface features, or
detect submarine vehicles. It can be installed on both ships or helicopters. Dipping SONAR is a SONAR installed
on a helicopter, and is lowered into the water periodically to take measurements in order to detect submarines. The
most notable advantage of dipping sonar is that helicopters move faster than ships, making them capable of taking
measurements over a larger area in a shorter amount of time. Also the quick deployment of multiple helicopters can
increase the detection chance of a submarine. For optimum SONAR performance, the SONAR must be kept still
[1][2][3]. Dipping SONAR experiences no Doppler effect due to ship motion nor noise pollution generated by the
ship’s engines that would typically be there with ship based SONAR. However, if the helicopter or the cable moves, the
SONAR will move as well, adding a Doppler effect due to helicopter or cable motion. When hovering, the SONAR
transducer is lowered into the water to take measurements. This is done at an altitude of 50-300 ft [4] and transducer is
lowered to depths of 0 to 2500 ft [4] [5]. After measurements are done, the transducer is lifted back up out of the water
before flying to a next location. The duration of a dip is unknown to the author, but is assumed to take no more than
5 minutes. Also, although the exact conditions in which dipping SONAR is used was not found in literature, it was
observed that in many cases, a sea state of 4-5 was taken for maritime helicopter operations as a worst-case scenario.
Mainly due to on-deck operations such as maintenance, take-off and landing. Hence, a sea state of 4-5 was chosen
as a worst-case scenario. This corresponds to waves between 2.5 and 4.0m high. Such waves are also found in wind
conditions of 5-7 Bft, or 17-33 kts wind [6]. The main challenge for dipping SONAR therefore lies in controlling the
helicopter such that the SONAR is kept still in the water to reduce Doppler effects on the SONAR for the duration of a
dip, in potentially rough conditions.

The suspension cable is the largest uncertainty in the helicopter-cable system. This is due to its ability to deform due to
both environmental conditions such as wind, waves or helicopter motion. This deformation results in changing dynamics
of the cable, and the SONAR. This makes both control as well as modelling of the cable and SONAR problematic,
since its dynamics are uncertain. Often, the suspension cable and load are simplified to a pendulum hanging from

∗Correspondin author. E-mail adress: maarten.maurer@gmail.com
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a helicopter ([7], [8], [9], [10], [11]). This is due to the pendulum-like behaviour of such load configurations. It
makes positioning tasks for such configurations difficult [9] and may cause instabilities due to pilot induced oscillations
([7],[12]). Moreover, the pendulum mode couples easily with the helicopter dutch roll [8]. Because of this, reducing the
pendulum motion receives much attention in literature.

The main assumption that drives this simplification is that the wire is always taught. This is a reasonable assumption to
make if the helicopter is flying through air. Unfortunately, if the hovering, disturbances will cause the cable to deform.
Additionally, in order to study the effect of cable motion on the SONAR, flexibility of the cable must be modelled. In
[13], the cable model is considered as a distributed parameters system expressed as partial differential equations with
boundary conditions. Based on the Hamilton’s principle, the suspension cable dynamic equations are derived. In [3]
and [2], the suspension cable is modelled as a discrete cable system. In [2], two modelling methods are proposed: A
discrete cable model and a lumped model. The discrete model uses many rigid sections, where the lumped cable model
is a simplified double pendulum model. The discrete model in [3] is similar to the discrete cable model in [3]: Each link
is regarded as a rigid link. The force conditions are analysed for every section such that the differential equation of each
section can be established.

Controlling a helicopter with a hanging load is not new and is applied in a number of fields, such as construction,
firefighting, cargo transport, etc. Many different control methods have been identified for stabilisation of the helicopter
and load. Linear control methods are popular ([14],[15],[16]) due to the fact that it is easy to verify such controllers
(and hence certify) and the fact that it is structured in loops [17]. Interestingly, [16] uses controls the position of the
hook underneath the helicopter, rather than the helicopter itself. This has an advantageous effect on the stability with
cable angle feedback as explained in [18]. However, it is more conventional to use helicopter motion to control the
cable angle instead. The main problem, however, with linear control is the fact that it in principle only works for linear
systems. Aircraft in general, and especially helicopters are highly non-linear, which means that this control strategy
will not work for a non-linear helicopter model. To work around this, gain scheduling is used, but is generally a very
time-consuming and tedious approach for control engineering.

To overcome this, other control methods have been identified for stabilisation of the helicopter and load. Dynamic
Inversion (DI), or nonlinear dynamic inversion (NDI) is a method where the feedback of the controller is such that the
dynamics of the vehicle are linear globally. An example of application of DI to a helicopter system is presented in [19].
Unfortunately, any modelling errors will directly impact the performance of the controller or even cause instability.
In order to make this method practical, either the model must be updated continuously, or the modelling error must
be found ([20], [21]). Other control methods such as robust control [22], backstepping control ([23],[24]), Model
reference adaptive control [25], sliding mode control ([26],[27]), delayed load feedback [7], fuzzy control ([28], [29] [3])
and input shaping ([12],[9],[30]) are control methods that have also been applied to helicopter systems with or without load.

Recently, A new type of control appeared: Incremental control, and especially incremental nonlinear dynamic inversion
(INDI). This type of control uses sensor knowledge instead of model knowledge. INDI is hence robust to model uncer-
tainties, which is a problem with NDI. However, INDI requires having sensors measuring the states fast enough. This
makes it a perfect candidate for nonlinear highly coupled vehicles such as helicopters. Incremental nonlinear dynamic in-
version is a control method that has already been applied to helicopter control systems in [31] and [32] as proof of concept.

The contribution of this paper is an application of incremental nonlinear dynamic inversion (INDI) to a helicopter
dipping SONAR system as well as a way to model a suspension cable combined with a pre-existing 8 degrees-of-freedom
helicopter model. The INDI controller is compared to a classical PID controller to judge its performance and to
determine whether it is a feasible control method for dipping SONAR missions. The paper is structured as follows:
First, the helicoper+cable model and wind model used are given in section II and section III. This is followed by the
basic principles of INDI in section IV. The design of the cable controllers is discussed in section V. The simulation
cases are explained in section VI with the simulation results in section VII. The main conclusions are in section VIII.
Additionally, an appendix is available, showing a derivation of the cable model.
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Nomenclature
Abbreviations

𝐴𝐶𝐴𝐻 = Attitude command attitude hold
𝐷𝑂𝐹 = Degrees of freedom
𝐷𝐼 = Dynamic Inversion
𝐼𝑁𝐷𝐼 = Incremental nonlinear dynamic inversion
𝐿𝑃𝐹 = Low pass filter
𝐿𝑉𝐿𝐻 = Local horizontal local vertical
𝑃𝐼𝐷 = Proportional derivative integral
𝑁𝐷𝐼 = Nonlinear dynamic inversion
𝑆𝑂𝑁𝐴𝑅 = Sound navigation and ranging
𝑇𝑅𝐶 = Translational rate command

Variables

�̄� = Linear acceleration vector [𝑚/𝑠2]
𝐶𝐷 = Drag coefficient of cable section [−]
𝐷𝑎𝑛𝑔𝑙𝑒𝑐 = Damping constant cable angle [𝑁𝑚/𝑑𝑒𝑔]
𝐷𝑑𝑎𝑚𝑝 = Damping vector cable hinges [𝑁𝑚]
𝐷𝑟𝑎𝑡𝑒𝑐 = Damping constant cable rate [𝑁𝑚𝑠/𝑑𝑒𝑔]
�̄�𝐴𝐸 = Drag vector [𝑁]
𝑓 (𝑥) = state matrix [varies]
𝐺 = Control effectiveness matrix [varies]
ℎ(𝑥) = Output function [varies]
𝐼 = Identity matrix [−]
𝐽 = Inertia matrix [𝑘𝑔𝑚2]
𝑙𝑖 = Length cable section 𝑖 [𝑚]
𝑚 = Mass [𝑘𝑔]
𝑛 = Number of cable sections [−]
𝑝 = Cable hinge position vector [𝑚]
𝑅 = Main rotor radius [𝑚]
𝑟 = Cable hinge direction vector [𝑚]
𝑆 = Surface area vector in LVLH frame [𝑚2]
𝑇 = Cable attachment force vector [𝑁]
𝑡 = Time [𝑠]
�̄� = Control input vector [varies]
𝑢,𝑣,𝑤 = Body velocity in x-, y-, z-direction [𝑚/𝑠]
𝑉 = Velocity [𝑚/𝑠]
�̄� = Weight vector [𝑁]
𝑥ℎ, 𝑦ℎ, ℎ = Main rotor hub location from c.g. [𝑚]
𝑥𝑙 , 𝑦𝑙 , ℎ𝑙 = Load attachment location from c.g. [𝑚]
𝑥 = State vector [varies]
¤̄𝑥 = Derivative state vector [varies]
�̄� = Output vector [varies]
𝑥,𝑦,𝑧 = Helicopter position in x-, y-, z-direction [𝑚]

Greek Symbols

Δ = Small change [−]
𝜁 = Damping ratio [−]
Θ̄ = Orientation vector in LVLH frame [𝑟𝑎𝑑]
𝜃0 = Collective input [𝑟𝑎𝑑]
𝜃0𝑡𝑟 = Tail rotor collective input [𝑟𝑎𝑑]
𝜃1𝑐 = Lateral cyclic input [𝑟𝑎𝑑]
𝜃1𝑠 = Longitudinal cyclic input [𝑟𝑎𝑑]
�̄� = Linear velocity vector [𝑚/𝑠]
�̄� = Virtual control input [varies]
𝜌 = Density [𝑘𝑔/𝑚3]
𝜎 = Standard deviation [varies]
𝜏 = Torque vector [𝑁𝑚]
¤𝜓, ¤𝜃, ¤𝜙 = yaw,pitch,roll rate in LVLH frame [𝑟𝑎𝑑]
¥𝜓, ¥𝜃, ¥𝜙 = yaw,pitch,roll acceleration in LVLH frame [𝑟𝑎𝑑]
𝜓,𝜃,𝜙 = yaw,pitch,roll angle in LVLH frame [𝑟𝑎𝑑]
�̄� = Angular rate in LVLH frame [𝑟𝑎𝑑/𝑠]
¤̄𝜔 = Angular acceleration in LVLH frame [𝑟𝑎𝑑/𝑠2]

Subscripts

0 = Initial condition
1 = First cable section
𝑎𝑖𝑟 = Air
𝑎𝑛𝑔𝑙𝑒 = Due to cable bending
𝑎𝑡𝑡 = Attitude
𝑐 = Commanded
𝑐 = Cable
𝑓 = Fuselage
𝑓 = filtered
𝑖 = Index
𝑝 = Cable hinge
𝑝𝑜𝑠 = Position
𝑟𝑎𝑡𝑒 = Due to cable bending rate
𝑠𝑖 = Cable section 𝑖

𝑠 = SONAR
𝑣𝑒𝑙 = Velocity
𝑤 = Water
𝑥 = x-direction
𝑦 = y-direction
𝑧 = z-direction

II. Helicopter + Cable + SONAR Model

A. Basic Principles
The suspension cable + SONAR is modelled as a set of rigid links that can rotate with respect to each other. The cable
is divided into 𝑛 sections and the SONAR is added at the end of the cable. This means that effectively the system is an
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𝑛 + 1 (𝑛 cable sections + SONAR) pendulum system. The idea behind this approach is that the behaviour of the cable
becomes more real, the more cable sections there are. Thus, the desired accuracy could be achieved by choosing enough
cable sections. A pre-existing 8 degrees-of-freedom (DOF) helicopter model was used. This includes 6-DOF body
motion and 2-DOF quasi-dynamic rotor inflow for the main and tail rotor. The configuration of the load at the helicopter
is presented in Figure 2. An illustration of the suspension cable model is given in Figure 1. For reference, the linear
velocity and the linear accelerations are indicated for the first cable section.

B. Assumptions
The cable model makes use of several assumptions:
• Each cable section is assumed to be rigid. This means that rigid

body dynamics apply.
• Each cable section is assumed to have the same parameters for mass,

size, shape, etc.
• Cable stretch is assumed to be small, and is thus neglected.
• Cable sections are assumed to rotate in two directions only. They

are allowed to rotate around the lateral axes (𝑥 and 𝑦) of the cable
sections and not the longitudinal axis. This essentially means that
bending is modelled, but twist is not.

• The SONAR is assumed to behave as any other cable section, albeit
with different parameters. It is therefore modelled as a cable section
in the dynamic system.

• The center of mass is assumed to be in the geometric center of a
cable section.

• The cable section is assumed to be a smooth circular cylinder when
computing the drag.

• The cable attachment point is assumed to be a free hinge, meaning
that no friction or damping is present here.

• Cable hinges carry no torque, but produce a damping torque de-
pending on relative angle and angular rate.

• Cable damping is assumed to be linear with respect to bending
angular rate and bending angle.

• Submerged cable sections are assumed to not experience wind
velocities.

• Aerodynamic drag is assumed to act on the center of mass of the
cable section. Fig. 1 Illustration 6-DOF of suspension 2

sections cable + SONAR.

C. Dynamic System
The direction vector from one cable hinge to another is represented by (1).

𝑟𝑖 = 𝑝𝑖 − 𝑝𝑖−1 (1) �̄�𝑝𝑖 = �̄�𝑝𝑖−1 + �̄�𝑠𝑖 × 𝑟𝑖 (2)
Taking the derivative of this vector yields the linear velocity from one hinge to another. This is represented by (2). Note
that the vector �̄�𝑠𝑖 is the rotational rate vector of the cable section. The angular acceleration of a cable hinge is found in
(3) by taking the derivative of the linear velocity. The linear acceleration of a cable section at the center of mass is then
given by (4). Note that ¤̄𝜔𝑠𝑖 is the angular acceleration vector of a cable section.

�̄�𝑝𝑖 = �̄�𝑝𝑖−1 + ¤̄𝜔𝑠𝑖 × 𝑟𝑖 + �̄�𝑠1 × �̄�𝑖 (3) �̄�𝑠𝑖 = �̄�𝑝𝑖−1 + ¤̄𝜔𝑠𝑖 ×
1
2
𝑟𝑖 + �̄�𝑠𝑖 ×

1
2
�̄�𝑖 (4)

Rearranging terms in (4) yields an expression for the angular acceleration of a cable section ¤̄𝜔𝑠𝑖 . Doing this for all cable
sections yields a dynamic system is set up. Solving the system (see Appendix A), yields the linear dynamic system
in (5). Note that the variables 𝐴 ¤̄𝜔 , 𝐵 ¤̄𝜔 , 𝐴�̄�𝑠 , 𝐵 ¤̄𝜔 , 𝐵�̄�𝑠 , 𝐵 ¤̄𝜔 , 𝐶�̄�𝑠 , 𝐶 ¤̄𝜔 and 𝐷 ¤̄𝜔 are intermediate matrix solutions from
Appendix A. 𝐷𝑑𝑎𝑚𝑝 is the cable section damping, which is explained further below. Note that all angles are taken in
the A-frame, the local vertical local horizontal (LVLH) frame.

¤̄𝜔𝑠 =
(
𝐴 ¤̄𝜔 − 𝐵 ¤̄𝜔𝐴�̄�𝑠

)−1 [
𝐵 ¤̄𝜔𝐵�̄�𝑠 �̄�𝑝 + 𝐵 ¤̄𝜔𝐶�̄�𝑠 �̄�𝑝0 + 𝐶 ¤̄𝜔 + 𝐷 ¤̄𝜔 + 𝐷𝑑𝑎𝑚𝑝

]
= [ ¥𝜙𝑠𝑖 ,

¥𝜃𝑠𝑖 , ¥𝜓𝑠𝑖 ]𝑇 (5)
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Fig. 2 Configuration 6-DOF of helicopter with suspension and cable attached.

D. Cable Damping
Cable damping is added to both model the resistance of the cable to bending as well as removing energy from the system.
The latter is necessary since simulation is done in discrete steps and it was found that if no damping is added, occasional
overshoots added energy to the cable system.
Damping is modelled as a torque produced by two components: A component due to the angular deflection between
two sections and a torque produced due to the relative angular rate between two sections. The two components of the
damping are given in (6) and (7). Note that the subscript 𝑠𝑖 indicates a property of cable section 𝑖. Torque is denoted
with 𝜏.

𝜏𝑑𝑖𝑎𝑛𝑔𝑙𝑒 = 𝐷𝑎𝑛𝑔𝑙𝑒𝑐

(
Θ̄𝑠𝑖 − Θ̄𝑠𝑖−1

)
(6) 𝜏𝑑𝑖𝑟𝑎𝑡𝑒 = 𝐷𝑟𝑎𝑡𝑒𝑐

(
�̄�𝑠𝑖 − �̄�𝑠𝑖−1

)
(7)

The two damping constants 𝐷𝑎𝑛𝑔𝑙𝑒𝑐 and 𝐷𝑟𝑎𝑡𝑒𝑐 are scalars that indicate how much torque is produced for a deflection
in the cable or a relative angular rate between two sections. Note that if the sections get smaller, the damping constants
have to be reduced since the effect of the damping torque on the angular acceleration increases when the moment of
inertia decreases. Therefore, the damping constants are reduced by a factor of 𝑛3 when modelling more than 1 section.
This is done since the moment of inertia of a cable section scales with 𝑛−3. Since the SONAR size remains equal
though, the damping constants of the SONAR are kept constant, with changing 𝑛.

The damping matrix is computed as in (8). Note that the damping in the first column is zero. This is since it
is assumed that the cable is free to rotate at the attachment hinge of the helicopter. However, there is a case to be made
to include a damping due to angular rate, since this technically produces friction and hence damping.

𝐷𝑑𝑎𝑚𝑝 = 𝐷𝑎𝑛𝑔𝑙𝑒𝑐

[
0 Θ2 − Θ1 Θ3 − Θ2 . . . Θ𝑛+1 − Θ𝑛

]𝑇
+ 𝐷𝑟𝑎𝑡𝑒𝑐

[
0 �̄�2 − �̄�1 �̄�3 − �̄�2 . . . �̄�𝑛+1 − �̄�𝑛

]𝑇
(8)

E. Cable Drag
The effects of cable drag are also modelled. This is especially important since the drag on the cable changes when
submerged. The equation used for drag is (9). Note that here ⊙ indicates element-wise multiplication. �̄�𝐴𝐸𝑠𝑖

is the
drag force vector experienced by cable section 𝑖. The density 𝜌𝑠𝑖 is the effective fluid density experienced by the cable
section. �̄�𝑠𝑖 is the linear velocity of the center of mass of cable section 𝑖, 𝐶𝐷𝑠𝑖

is the drag coefficient of section 𝑖. 𝑆𝑠𝑖 is
the surface area vector of the cable section (or SONAR) rotated to the LVLH frame.

�̄�𝐴𝐸𝑠𝑖
=

1
2
𝜌𝑠𝑖 �̄�𝑠𝑖 ⊙ �̄�𝑠𝑖𝐶𝐷𝑠𝑖

𝑆𝑠𝑖 (9)
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Conditions for submerging
The cable sections experience drag, which is different depending on whether a cable section is submerged or not. If a
cable section is submerged, the density of the fluid is higher than when emerged, which changes the drag by a large
amount.
If the top hinge 𝑝𝑖−1 of the cable section 𝑖 is not submerged, but the bottom hinge 𝑝𝑖 is submerged, the amount of each
section that is submerged will determine the "effective density" of the fluid the section is going through, which is the
average of the amount the section is submerged. In (10), the equation for the effective density is given. Note that this
only applies to the section that is partially submerged. Sections that are emerged use the air density 𝜌𝑎𝑖𝑟 = 1.225 kgm3

and the sections that are submerged use the water density 𝜌𝑊 = 997 kgm3. This is the case when the z-position of the
bottom hinge of a section is positive or the top hinge negative. Note that in this equation, only the z-position of the
hinge positions matters as this is negative if the section is emerged and positive if submerged (Hence only the third entry
for 𝑝 is relevant).

𝜌𝑠𝑖 =
𝜌𝑤 · 𝑝𝑖 (3) − 𝜌𝑎𝑖𝑟 · 𝑝𝑖−1 (3)

𝑝𝑖 (3) − 𝑝𝑖−1 (3)
(10)

It is also important to note that wind is only applied to sections that are emerged. If a section is submerged, it is assumed
that it does not experience wind. If a section is partially submerged, the wind is applied via the same principle in (10),
where the densities are replaced by the wind velocities.

III. Wind and Turbulence Model
In this paper, wind plays a big role by acting as a disturbance on the helicopter and the cable. Therefore, a wind and
turbulence model is used throughout the simulations done in this research.

A. Constant Wind
Constant wind is, as the name implies, an air velocity that is added to the helicopter and the cable sections emerged
from the water. The direction of this wind is taken always in the 𝑥-direction (so head on) of the helicopter at 𝑡 = 0 (so
before any yaw changes occur). The wind velocities used range from 4 kts to 30 kts, depending on the simulation.

B. Turbulence Model
For the turbulence, a von Karman
turbulence model is used. For sim-
plicity, the von Karman Wind Tur-
bulence Model block from Matlab
Simulink is used. The settings used
for this block are found in Table 1.
Specification is the military refer-
ence, which affects the application
of turbulence scale lengths in the
lateral and vertical directions, speci-
fied as MIL-F-8785C, MIL-HDBK-
1797, or MIL-HDBK-1797B[33].
MIL-HDBK-1797 contains the fly-
ing quality requirements of piloted
aircraft.

Table 1 Turbulence Model Settings in Matlab Simulink

Units Metric (MKS)
Specification MIL-HDBK-1797
Model Type Contiuous Von Karman (+q +r)
Wind speed at 6m defines the low-altitude intensity 𝜈𝑡𝑟𝑖𝑚

Wind direction at 6m (degrees clockwise from north) 0
Probability of exceedance of of high altitude intensity 10−2-Light
Scale length at medium/high altitudes (m) 762
Wingspan (m) 2𝑅
Band limited noise sample time (sec) 0.1
Noise seeds [ug vg wg pg] [23341 23342 23343 23344]

Interesting to note here is that for the wind speed at low altitude, the trimmed wind velocity is used. This is "𝜈𝑡𝑟𝑖𝑚".
Also, as wingspan, the diameter of the main rotor was used (diameter is 2𝑅). As for the justification of the settings, it
should be noted that no attempts were made to get a perfectly accurate turbulence model. For the problem at hand,
designing a controller, it was found to be of more importance to have a turbulence model that is somewhat accurate.
Therefore, the settings of this block could be argued with. The inputs for this block are the altitude, velocity and the
direction cosine matrix. For these, the values from the helicopter are used. The gust velocities obtained from this block
are then applied everywhere on the helicopter and cable system, except for the sections submerged in water. This could
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also be argued with, since the gusts experienced at the altitude of the helicopter (approximately 60m throughout this
thesis) can be very different than those just over the surface of the water. Additionally, the rotational rates produced
from this block are not used.

IV. Principle of NDI and INDI
In this section, the basic principle of non-linear dynamic inversion (NDI) and incremental non-linear dynamic inversion
(INDI) is explained. Consider a nonlinear system that is affine in the input in (11).

¤̄𝑥 = 𝑓 (𝑥) + 𝐺 (𝑥)�̄�
�̄� = ℎ̄(𝑥)

(11)

Where the function 𝑓 (𝑥) contains the change in states due to the current state, 𝐺 (𝑥) is the control effectiveness matrix
and ℎ(𝑥) is the output function. Each of these components can be nonlinear.

INDI is the incremental version of NDI, of which the principle is to create a control input based on the desired
change of the states. By rearranging the terms in (11), the control input can be computed using (12).

�̄� = 𝐺−1 (𝑥) (�̄� − 𝑓 (𝑥)) (12)

Where �̄� is the desired change of state, or the virtual control input. From this equation, it is clear where the model
dependency comes from. An NDI controller will need accurate descriptions of the functions 𝐺 (𝑥) and 𝑓 (𝑥). If any
model errors exist, the system is given by (13), where Δ 𝑓 (𝑥) and Δ𝐺 (𝑥) are the modelling errors in the model and
control effectiveness respectively.

¤̄𝑥 = 𝑓 (𝑥) + Δ 𝑓 (𝑥) + [𝐺 (𝑥) + Δ𝐺 (𝑥)] �̄� (13)

Inserting the NDI control law in (12) into (13) then yields (14).

¤̄𝑥 = Δ 𝑓 (𝑥) − Δ𝐺 (𝑥)𝐺−1 (𝑥) 𝑓 (𝑥) +
[
𝐼 + Δ𝐺 (𝑥)𝐺−1 (𝑥)

]
�̄� (14)

As shown, there are more terms present in the state change than just the desired change �̄�. Depending on the model
uncertainties, these components could cause degraded performance, or even instability.
This is also the major shortcoming of NDI. Fortunately, this problem can be solved by using adaptive controllers, or by
performing online system identification.

Another method of avoiding this shortcoming is by using incremental NDI, or INDI. INDI assumes that the control
input can be updated fast enough, such that the change of states is only dependent on the change in input (see (3)).

Consider the taylor series expansion of the nonlinear function of the state derivative (11) in (15), which can be
reduced to (16) when neglecting higher order terms.

¤̄𝑥 = ¤̄𝑥0 +
𝜕

𝜕𝑥
[ 𝑓 (𝑥) + 𝐺 (𝑥)�̄�]

����
𝑥0 ,𝑢0

(𝑥 − 𝑥0) +
𝜕

𝜕�̄�
𝐺 (𝑥)�̄�

����
𝑥0 ,𝑢0

(�̄� − �̄�0) + 𝐻.𝑂.𝑇 . (15)

¤̄𝑥 ≈ ¤̄𝑥0 +
𝜕

𝜕𝑥
𝑓 (𝑥0) (𝑥 − 𝑥0) + 𝐺 (𝑥0) (�̄� − �̄�0) (16)

As can be seen from (16), the second component on the right-hand side approaches zero if the sampling frequency
increases, since (𝑥 − 𝑥0) −→ 0 when the sampling frequency increases. Furthermore, it is important to note that the
dynamics of the vehicle and the control inputs must be separated in time, also known as the timescale separation. Under
normal circumstances, the rotor dynamics are indeed much faster than the vehicle dynamics and it can therefore be
assumed that the difference in states is zero, with a nonzero difference in actuator inputs. In mathematical terms, this
means that the change in state can be approximated as (17), where the change in state is only dependent on the input to
the system. Rearranging terms, and using an incremental input Δ�̄� yields (18).

¤̄𝑥 ≈ ¤̄𝑥0 + 𝐺 (𝑥0) (�̄� − �̄�0) (17) Δ�̄� = 𝐺−1 (𝑥0) (�̄� − ¤̄𝑥0) (18)
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An illustration of an INDI-controlled system is presented in a block diagram in Figure 3.

Fig. 3 Block diagram of general INDI-controlled system.

As is apparent from (18), the input of the system is no longer dependent on the non-linear feedback model of the vehicle
which is the major downside of NDI. On the other hand, there is an increased dependency on the measurements taken
or state estimations of the system ¤̄𝑥0. This also means that the states must be either measurable directly or indirectly.
Another uncertainty can still exist in the control effectiveness matrix 𝐺 (𝑥0).

Assuming an uncertainty of Δ𝐺 in the system and applying INDI as is done in (13) and (14), yields (19).

¤̄𝑥 = �̄� + Δ𝐺 (𝑥0)𝐺−1 (𝑥0)𝜈 − Δ𝐺 (𝑥0)𝐺−1 (𝑥0) ¤̄𝑥0 (19)

When still assuming a high sampling rate, the difference between two state changes is negligible and ¤̄𝑥 ≈ ¤̄𝑥0, meaning
that (20) holds and ¤̄𝑥 = �̄� when the sampling frequency is high enough.[

𝐼 + Δ𝐺 (𝑥0)𝐺−1 (𝑥0)
] ¤̄𝑥 =

[
𝐼 + Δ𝐺 (𝑥0)𝐺−1 (𝑥0)

]
�̄� (20)

This means that INDI is robust to model uncertainties, even in the control effectiveness matrix. However, INDI requires
having sensors measuring the states fast enough.

V. Cable Controller Design
Cable control is done using the motion of the helicopter itself. The reasoning behind controlling the cable rather than
the SONAR directly is because it is assumed that the helicopter does not know where the SONAR is relative to the
helicopter position. Hence, the cable angle is the only known for the helicopter about the SONAR motion.

A. Helicopter Control Design
Without cable controller, the helicopter uses 3 control loops: The
attitude command attitude hold (ACAH) as inner loop to control
helicopter attitude, the translational rate command (TRC) around it to
control body velocities and the position hold as the final outer loop to
control helicopter position. There are 2 different controllers tuned:
An INDI controller and a PID controller. The control method for each
loop is provided in Table 2. The reason for using NDI in the TRC
loop is that the relationship in the TRC is almost only kinematic. The
choice for using INDI for 𝑤 comes from the idea to use INDI in the
most inner loop of the controller. The TRC for 𝑤 controls the main
rotor collective 𝜃0, meaning that it is in the most inner loop. Tuning
is done by sending a step command signal to the controller and have
the PID and the INDI controller show the same out response to that
step input. This way, both controllers perform the same under that
condition.

Table 2 Control method control loops

Controller INDI PID
ACAH 𝜓 𝑓 INDI PID
ACAH 𝜃 𝑓 INDI PID
ACAH 𝜙 𝑓 INDI PID
TRC 𝑢 NDI NDI
TRC 𝑣 NDI NDI
TRC 𝑤 INDI NDI
Position hold 𝑥 PID PID
Position hold 𝑦 PID PID
Position hold 𝑧 PID PID

B. Cable Control Strategies
In this paper, 3 different control strategies for cable control were investigated:
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1) Cable control through helicopter attitude. This strategy was chosen as a candidate since the attitude controls the
direction in which the helicopter accelerates. Since the acceleration of the attachment point from the cable is
present in the dynamic equations (5), using acceleration of the vehicle to control the angular acceleration of the
cable seemed trivial. The block diagram of this control strategy is provided in Figure 4.

Fig. 4 Control architecture for cable control through helicopter attitude.

2) Cable control through helicopter velocity. Using the velocity of the helicopter was chosen since the velocity of
the helicopter is essentially one integral further away from the acceleration. It was thought that this may be more
stable than the previous strategy. The block diagram of this control strategy is provided in Figure 5.

Fig. 5 Control architecture for cable control through helicopter velocity.

3) Cable control through helicopter position. Using the helicopter position was chosen as a candidate to go another
integral further away from the cable dynamics to see whether this improved or degraded the performance of the
controllers. The block diagram of this control strategy is provided in Figure 6.

Fig. 6 Control architecture for cable control through helicopter position.

9



C. Cable Controller
The cable controller can be either a PID or an INDI controller with the architecture described in Figure 7 for the INDI
controller and Figure 8 for the PID controller. Both the INDI and PID controller follow a two-loop structure, where the
outer loop controls the cable angle, and the inner loop the cable angular rate. However, the INDI controller has has an
extra loop controlling the angular acceleration of the cable. 𝐺−1 is the control effectiveness. This is essentially the
inverse of the partial derivative of the cable angular acceleration with respect to either the helicopter attitude, velocity or
position, depending on the control strategy. 𝑢 is the control input to the cable system, which is the commanded attitude,
velocity or position. Note the addition of low pass filters (LPF). These were used to smooth the in and output signals of
the cable controllers. They are also used on the feedback of the control input in the INDI controllers for synchronisation.
For the simulation cases explained in the following section, it is important to note that there are two different low-pass
filters used: 𝐿𝑃𝐹1 and 𝐿𝑃𝐹2. These are both first order lag filters, but with different time constants. The subscript

𝑓

indicates that the signal is filtered. The subscript 𝑐 indicates that the signal is a command signal.

Fig. 7 Control architecture for INDI cable control.

Fig. 8 Control architecture for PID cable control.

PID and INDI controllers are tuned in such a way that their response to a step input in commanded cable angle of −1◦
showed approximately the same response (approximately, since an exact match was not possible). In order to assess this,
both controllers were tuned to show a second order response with a natural frequency of 𝜔𝑛 and a damping ratio of 𝜁 .

VI. Simulation Cases
This research was performed in different cases, increasing the complexity of the system at each case. The final goal of
this exercise is to have a controller capable of reducing the velocity of a hanging SONAR to zero, given a disturbance
found during dipping SONAR mission conditions. At the same time, the helicopter is required to hover, but it is allowed
to translate. The cases are presented in Table 3. The column helicopter model indicates where the main rotor hub is
located. The cable model column indicates how many cable sections are used. For cases 1 and 2, no load is assumed so
no cable sections apply. Column Load location indicates where the attachment point of the cable is located. Medium
indicates the medium in which the cable model is modelled. For cases 3-5, this is air, meaning that the cable is not
submerged. For cases 6 and 7, this is air+water, meaning that the cable is partially submerged. The disturbance column
indicates the disturbances modelled in the environment. This is either constant wind or constant wind with gusts.
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Table 3 Simulation Cases for the 6-DOF helicopter controller

Case Helicopter Model Cable Model Load Location Medium Disturbances
1 Rotor hub aligned with c.g. - - - Constant wind
2 Rotor hub at offset - - - Constant wind
3 Rotor hub at offset Single cable section + SONAR c.g. of helicopter Air Constant wind
4 Rotor hub at offset Single cable section + SONAR At offset Air Constant wind
5 Rotor hub at offset 5 cable sections + SONAR At offset Air Constant wind
6 Rotor hub at offset 5 cable sections + SONAR At offset Air + water Constant wind
7 Rotor hub at offset 5 cable sections + SONAR At offset Air + water Constant wind + Gusts

VII. Simulation Results

A. Cases 1 and 2: Pure Helicopter
Cases 1 and 2 have no load attached to the helicopter. The disturbance response was assessed by subjecting both tuned
controllers to a step input in wind of 4𝑘𝑡𝑠 in the longitudinal direction. The response of the helicopter position and its
attitude are presented in Figure 9 and Figure 10 for both the PID and the INDI controller. The position appears to have a
steady state error for both controllers, although it is smaller for the PID controller. This steady state error is caused by
the fact that the position hold controller is a PID without an integral. Interestingly, the PID controller reaches steady
state quicker than the INDI controller. Likely due to the attitude controller with the initial pitch-up of the helicopter in
the first second after the disturbance starts. The INDI controller pitches back more than the PID. At 𝑡 = 0, the reference
body velocity is 0 m/s from the position hold controller. Therefore, as soon as the wind is added, the initial response of
the TRC controller is to compensate for the velocity of the wind and bring it back to zero, hence the pitch-up. The INDI
controller appears to compensate for wind more quickly than the PID controller.
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B. Cases 3 and 4: Single Cable Section
In cases 3 and 4 a load was attached, consisting only of 1 cable section and the SONAR. First at the c.g. of the helicopter
in case 3, then at an offset of 𝑥𝑙 = 0.5m in front of the c.g. and ℎ𝑙 = 1m below the c.g. in case 4. These were then
compared by subjecting both tuned controllers to a step input in wind similar to cases 1 and 2. The cable angle response
is shown in Figure 11. The cable angles are larger for the PID, than the INDI controller. The SONAR ground velocity is
presented in Figure 12. Here, is becomes clear that the INDI controller is better than the PID controller at keeping the
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lateral velocity low, given a longitudinal wind disturbance. This means that the INDI controller is better at decoupling
longitudinal and lateral modes. Interestingly, the change in load location did not influence the performance of the
controller from case 3 to 4, since the cable angle response was observed to be the same as in case 3.

Fig. 11 Cable angle response for disturbance case 3,
given a filtered 4 kts step input in wind.

Fig. 12 Sonar ground velocity response for distur-
bance case 3, given a filtered 4 kts step input in wind.

C. Case 5: Flexible Cable
Case 5 is the same as case 4, yet with a longer cable and 5 cable sections. The function of this case is to observe the
change from a rigid to a flexible cable. Comparing was done in the same way as in cases 1-4. Changing from a rigid to
a flexible cable had a large influence on the response of the controlled system. It was not possible to use cable control
through attitude in this case due to oscillations, hence cable control through velocity was used. The response of the
cable angle and control inputs are presented in Figure 13 and Figure 14. The PID controller is unstable under the given
disturbance. It is not able to compensate for the added wind. The INDI controller on the other hand is capable of
maintaining control. However, a vibration is present in the controls. These vibrations are caused by the oscillations of
the first cable section. Such oscillations could be removed by making the controller slower. Either by increasing the time
constant of the filters used or by reducing the gains of the controller. Furthermore, it was found that these vibrations are
present when the air velocity in that direction is small. This means that drag has a damping effect on the cable sections.
Nevertheless, it shows that the INDI controller is more capable of adapting to the new situation of added wind.

Fig. 13 Response of cable angle with INDI and PID
controller to a step input on wind of 4𝑘𝑡𝑠

Fig. 14 Control inputs from INDI and PID controller
from a step input on wind of 4𝑘𝑡𝑠
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D. Case 6: Submerged Cable
Case 6 adds the concept of submergence. With a trimmed altitude of 60m and a total cable length of 120m, half the
cable is submerged and the other half emerged in zero wind conditions. The addition of water drag, instead of air drag
in case 5, causes more damping to the cable. Case 6 also introduces 3 control strategies that are tested in order to find
out what control strategy works best for dipping SONAR missions. There 3 control strategies are: cable control through
helicopter attitude, cable control through helicopter velocity and cable control through helicopter position. As the name
suggests, the first strategy uses the cable controller to obtain a reference attitude for the helicopter to follow in order
to control the cable as in cases 3 and 4. The second uses the velocity, as done in case 5. The final strategy uses the
controller to obtain a reference position.

The response of the cable angle, SONAR ground velocity, body velocities and helicopter attitude to a constant wind
disturbance are presented in Figure 15 - Figure 18. Observing the cable angles, it is clear that the cable controller
through helicopter attitude shows the smallest angle deviation to a 4𝑘𝑡𝑠 wind and it reaches a 0◦ angle faster. However,
the cross-coupling between the longitudinal and lateral angles appears to be larger for the control strategy using attitude
control than the other two strategies. In order to determine what strategy is best for dipping SONAR missions, it can be
reasoned that the amount of velocity deviation is most important. Observing the SONAR velocity, the control strategy
using helicopter attitude performs the best, by having the lowest velocity deviation. The reason why cable control
through attitude control performs better, is likely due to the wind velocity not being present in the controller loop. In the
other two control strategies, the body velocity is within the control loop via the TRC controller. Since there is initially
no body velocity (there is no wind after all) and the cable is straight, the reference body velocity is zero. This means
that once the wind hits, the reference velocity is still close to zero, meaning that the controller will move the helicopter
such that the body velocity is reduced to zero, before the cable controller or position hold controller can match the
wind velocity. This can be seen in Figure 17, where the control strategies using velocity and position decrease the body
velocity initially, before matching the roughly 1.8 m/s in 𝑢 direction.

Fig. 15 Cable angle response to a 4𝑘𝑡𝑠 wind using
different control strategies

Fig. 16 SONAR ground velocity squared response to
a 4𝑘𝑡𝑠 wind using different control strategies

Choosing cable control through helicopter attitude as the better control strategy, the response of both the PID and the
INDI controllers are shown in Figure 19 and Figure 20. As shown, the INDI controller is more capable of keeping the
SONAR velocity low than the PID. However, the PID controller’s response is more smooth. Looking at the cable angle
response, the same can be said. This suggests that INDI is better at stabilising the SONAR under these conditions.

E. Case 7: Submerged Cable with Turbulence
In case 7, turbulence is added to observe the controller performance under high wind turbulent conditions. The
simulation is run for 300 seconds, to see the behaviour of the controller in a turbulent environment over a long time.
Also, unlike the previous cases, the cable controllers are assessed based on the following performance metrics: the
standard deviation of the control inputs, mean sonar velocity and standard deviation of the SONAR velocity. These will
say something about the efficiency of the controller, the changes in SONAR velocity and the drift of the SONAR. The
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Fig. 17 Body velocity response to a 4𝑘𝑡𝑠 wind using
different control strategies

Fig. 18 Helicopter attitude response relative to trim
to a 4𝑘𝑡𝑠 wind using different control strategies

Fig. 19 Cable angle response to a 4kts wind using
PID and INDI control for case 6

Fig. 20 SONAR ground velocity response to a 4kts
wind using PID and INDI control for case 6

simulation performance metrics are presented in Table 4 with the SONAR velocity responses in Figure 21-Figure 23.

From simulation for 10𝑘𝑡𝑠 wind, it follows that, although the PID controller from case 6 is capable of controlling the
disturbed system, it does so using more control than the INDI controller, constantly oscillating. This is also clear from
the performance metrics. When looking at the standard deviation of the SONAR velocity, the PID and INDI perform
roughly equal. The mean of the SONAR velocity is similar.

During simulation of 20𝑘𝑡𝑠 wind, it was found that the controller could not handle the disturbances. The controller was
trying to correct for the disturbances too aggressively. To counter this, the gains for the ACAH controllers have been
lowered by a factor of 3. The gains for the TRC controllers for the vertical body velocity 𝑤 were lowered by a factor 5.
This hurts the performance of the ACAH and TRC controller, but it is necessary to reject the disturbance. The gains of
the other controllers were left unchanged. This change was done for both the PID and the INDI controller.
When running the simulation with the re-tuned controllers, the performance metrics in Table 4 were found. From
these metrics, it becomes clear that the performance of both the PID and the INDI controller worsened in all aspects,
accompanied with a higher control use. This is also observed in Figure 22, where the SONAR velocity reaches higher
values. Judging by the controller performance metrics, the INDI controller performs better than the PID, except at the
mean of the SONAR velocity in x-direction.
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30 kts wind is about the highest wind that would be encountered at a sea state of 4-5. During simulation, it was
found that both the PID and INDI controller had trouble controlling the cable. Generally, there were no issues, until
the helicopter got blown away far from its initial position in a short time. This meant that sometimes the helicopter
would change position quickly, but the cable system is much slower. As a result, the helicopter would pull the cable
completely straight, with the cable angle changing quickly. The cable pulls back the helicopter and changes angle
quickly. The helicopter makes corrections at the same time in an attempt to keep the cable angle constant. This results
in an aggressive correction of the helicopter and cable.
The source of this behaviour was not found, but it is likely that drifting of the helicopter is the source of this behaviour,
since the other two wind velocities (10 and 20 kts) did not show this issue. To figure out whether this is the case, the posi-
tion hold controller from case 2 is used for the INDI controller. The gains for the TRC and ACAH remain reduced (see 20
kts). Using this controller, the helicopter position barely drifted and the previous phenomena disappeared. This suggests
that it was indeed caused by fast drifting of the helicopter relative to the cable. Also, the cable angle remained somewhat
constant during this simulation. This suggests that a position hold might perform equal or better in high wind conditions.
Therefore, the position hold case for INDI is included into Table 4, for comparison with the PID and INDI cable controller.

With respect to control use, the position hold controller
performs worst here, likely because it is fighting the
wind much more than the other two controllers. Keeping
the cable angle constant requires flying with the gusts,
whereas keeping constant position requires fighting the
wind. With respect to SONAR velocity, the position
hold controller performs best, with the smallest standard
deviation of the SONAR velocity and the smallest mean
in almost all directions. This is because the helicopter is
set to hold the same position, keeping the mean of the
SONAR velocity close to zero. This is also the case for
the standard deviation.

Fig. 21 SONAR ground velocity response at 10 kts
wind.

Fig. 22 SONAR ground velocity response at 20 kts
wind.

Fig. 23 SONAR ground velocity response at 30 kts
wind.
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Table 4 Performance metrics Cable controllers for a wind of 30 kts.

standard deviation controls (deg) 𝜎𝜃1𝑐 𝜎𝜃1𝑠 𝜎𝜃0 𝜎𝜃0𝑡𝑟

INDI 10 kts 0.05 0.013 0.07 0.23
INDI 20 kts 0.11 0.06 0.25 0.69
INDI 30 kts 0.19 0.19 0.44 0.56
INDI position hold 30 kts 0.30 0.24 0.53 1.36
PID 10 kts 0.06 0.02 0.08 0.25
PID 20 kts 0.12 0.12 0.26 0.67
PID 30 kts 0.22 0.15 0.38 0.37

standard deviation 𝑉𝑆𝑂𝑁𝐴𝑅 (m/s) 𝜎𝑉𝑆𝑂𝑁𝐴𝑅𝑥
𝜎𝑉𝑆𝑂𝑁𝐴𝑅𝑦

𝜎𝑉𝑆𝑂𝑁𝐴𝑅𝑧

INDI 10 kts 0.09 0.03 0.04
INDI 20 kts 0.23 0.04 0.12
INDI 30 kts 0.35 0.09 0.37
INDI position hold 30 kts 0.18 0.11 0.28
PID 10 kts 0.10 0.08 0.04
PID 20 kts 0.27 0.14 0.12
PID 30 kts 0.38 0.10 0.32

mean 𝑉𝑆𝑂𝑁𝐴𝑅 (m/s) �̄�𝑆𝑂𝑁𝐴𝑅𝑥 �̄�𝑆𝑂𝑁𝐴𝑅𝑦 �̄�𝑆𝑂𝑁𝐴𝑅𝑧

INDI 10 kts -0.01 0.01 -0.00
INDI 20 kts -0.09 0.02 -0.00
INDI 30 kts 0.04 0.01 -0.02
INDI position hold 30 kts -0.02 -0.00 -0.00
PID 10 kts -0.01 0.05 -0.00
PID 20 kts -0.07 0.05 -0.01
PID 30 kts 0.07 0.01 -0.03

VIII. Conclusions
The goal of this paper is to apply INDI to a helicopter with a dipping SONAR. The main strength of INDI is that it uses
minimal model knowledge in order to control a system. In order to assess the performance of the controller, it was
compared to classical PID control. The main conclusion of this paper is cable control using INDI performs better at
stabilising the SONAR than PID does at low constant wind speeds and under turbulent conditions with wind up to 20
kts. However, due to the way the cable controller works, either controller could fail if the helicopter gets blown away too
far from the cable sections that are submerged, which was the case for 30 kts. In this research, the cable controller has
as goal to keep the angle of the cable constant. Thus, changing wind will inevitably result into move commands to the
helicopter in order to keep this angle constant. A position controller proved to work better under the high wind and high
turbulent conditions of kts wind. Thus future work could aim to find a controller that incorporates cable control and
position hold together in order to keep the helicopter position somewhat constant, yet move slightly to stabilise the cable
to changing wind conditions.

A. Cable Model Derivation
This appendix contains the derivation of the suspension cable model with three cable sections. The goal of this exercise
is to find a general expression for the cable model given any amount of cable sections. For reference, a free-body-diagram
is provided for a cable with 2 sections.
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Fig. 24 Free body diagram of 2 suspension cable sections in the 𝑥𝐴-𝑧𝐴 plane.

A. Derivation
The force equations for three cable sections are presented in (21).

𝑚1�̄�𝑠1 = 𝑇1 − 𝑇0 + �̄�1 + �̄�𝐴𝐸1 , 𝑚2�̄�𝑠2 = 𝑇2 − 𝑇1 + �̄�2 + �̄�𝐴𝐸2 , 𝑚3�̄�𝑠3 = 𝑇𝑙𝑜𝑎𝑑 − 𝑇2 + �̄�3 + �̄�𝐴𝐸3 (21)

The torque equations are presented in (22)

𝐽𝑠1
¤̄𝜔𝑠1 = 𝜏𝑠1 − �̄�𝑠1 × 𝐽𝑠1�̄�𝑠1 =

1
2
𝑟1 ×

(
𝑇0 + 𝑇1

)
− �̄�𝑠1 × 𝐽𝑠1�̄�𝑠1

𝐽𝑠2
¤̄𝜔𝑠2 = 𝜏𝑠2 − �̄�𝑠2 × 𝐽𝑠2�̄�𝑠2 =

1
2
𝑟2 ×

(
𝑇1 + 𝑇2

)
− �̄�𝑠2 × 𝐽𝑠2�̄�𝑠2

𝐽𝑠3
¤̄𝜔𝑠3 = 𝜏𝑠3 − �̄�𝑠3 × 𝐽𝑠3�̄�𝑠3 =

1
2
𝑟3 ×

(
𝑇2 + 𝑇𝑙𝑜𝑎𝑑

)
− �̄�𝑠3 × 𝐽𝑠3�̄�𝑠3

(22)

The force equations can be rewritten as such to obtain equations for the connection forces 𝑇 . This is shown in (23).

𝑇0 = −𝑚1�̄�𝑠1 + 𝑇1 + �̄�1 + �̄�𝐴𝐸1 , 𝑇1 = −𝑚2�̄�𝑠2 + 𝑇2 + �̄�2 + �̄�𝐴𝐸2 , 𝑇2 = −𝑚3�̄�𝑠3 + 𝑇𝑙𝑜𝑎𝑑 + �̄�3 + �̄�𝐴𝐸3 (23)

Before inserting into the torque equations, the sum of forces is computed first in (24).

𝑇0 + 𝑇1 = −𝑚1�̄�𝑠1 + 2𝑇1 + �̄�1 + �̄�𝐴𝐸1

= −𝑚1�̄�𝑠1 − 2𝑚2�̄�𝑠2 − 2𝑚3�̄�𝑠3 + 2𝑇𝑙𝑜𝑎𝑑 + �̄�1 + 2�̄�2 + 2�̄�3 + �̄�𝐴𝐸1 + 2�̄�𝐴𝐸2 + 2�̄�𝐴𝐸3

𝑇1 + 𝑇2 = −𝑚2�̄�𝑠2 + 2𝑇2 + �̄�2 + �̄�𝐴𝐸2

= −𝑚2�̄�𝑠2 − 2𝑚3�̄�𝑠3 + 2𝑇𝑙𝑜𝑎𝑑 + �̄�2 + 2�̄�3 + �̄�𝐴𝐸2 + 2�̄�𝐴𝐸3

𝑇2 + 𝑇𝑙𝑜𝑎𝑑 = −𝑚3�̄�𝑠3 + 2𝑇𝑙𝑜𝑎𝑑 + �̄�3 + �̄�𝐴𝐸3

(24)

The cross product in the moment equations (22) can be replaced by introducing two new variables 𝑃𝑖→𝑖+1 and Ω̄𝑠𝑖 ,
which are the cross product matrices as shown in (25) and (26).
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𝑃𝑖→𝑖+1 =


0 −𝑟𝑖+1𝑧 𝑟𝑖+1𝑦

𝑟𝑖+1𝑧 0 −𝑟𝑖+1𝑥

−𝑟𝑖+1𝑦
𝑟𝑖+1𝑥

0

 (25) Ω̄𝑠𝑖 =


0 −�̄�𝑠𝑖𝑧

�̄�𝑠𝑖𝑦

�̄�𝑠𝑖𝑧
0 −�̄�𝑠𝑖𝑥

−�̄�𝑠𝑖𝑦
�̄�𝑠𝑖𝑥

0

 (26)

With these variables, the moment equations (22) can be rewritten to

𝐽𝑠1
¤̄𝜔𝑠1 =

1
2
𝑃0→1

(
𝑇0 + 𝑇1

)
− Ω̄𝑠1𝐽𝑠1�̄�𝑠1 ; 𝐽𝑠2

¤̄𝜔𝑠2 =
1
2
𝑃1→2

(
𝑇1 + 𝑇2

)
− Ω̄𝑠2𝐽𝑠2�̄�𝑠2 ; 𝐽𝑠3

¤̄𝜔𝑠3 =
1
2
𝑃2→3

(
𝑇2 + 𝑇𝑙𝑜𝑎𝑑

)
− Ω̄𝑠3𝐽𝑠3�̄�𝑠3 (27)

By inserting (24) into (27), the intermediate solution is found in (28).


𝐽𝑠1 0 0
0 𝐽𝑠2 0
0 0 𝐽𝑠3



¤̄𝜔𝑠1

¤̄𝜔𝑠2

¤̄𝜔𝑠3

 =

− 1

2𝑚1𝑃0→1 −𝑚2𝑃0→1 −𝑚3𝑃0→1

03×3 − 1
2𝑚2𝑃1→2 −𝑚3𝑃1→2

03×3 03×3 − 1
2𝑚3𝑃2→3



�̄�𝑠1

�̄�𝑠2

�̄�𝑠3

 +

−Ω̄𝑠1𝐽𝑠1�̄�𝑠1

−Ω̄𝑠2𝐽𝑠2�̄�𝑠2

−Ω̄𝑠3𝐽𝑠3�̄�𝑠3

 +

𝑃0→1

[
𝑇𝑙𝑜𝑎𝑑 + 1

2�̄�1 + �̄�2 + �̄�3 + 1
2 �̄�𝐴𝐸1 + �̄�𝐴𝐸2 + �̄�𝐴𝐸3

]
𝑃1→2

[
𝑇𝑙𝑜𝑎𝑑 + 1

2�̄�2 + �̄�3 + 1
2 �̄�𝐴𝐸2 + �̄�𝐴𝐸3

]
𝑃2→3

[
𝑇𝑙𝑜𝑎𝑑 + 1

2�̄�3 + 1
2 �̄�𝐴𝐸3

]


𝐴 ¤̄𝜔 ¤̄𝜔𝑠 = 𝐵 ¤̄𝜔 �̄�𝑠 + 𝐶 ¤̄𝜔 + 𝐷 ¤̄𝜔
(28)

From the kinematic relationships, the equation for the linear accelerations �̄�𝑠1 - �̄�𝑠3 . First, the kinematic relations for the
hinge positions in (29). Note that the cross-products are substituted, and that: 𝐴 × 𝐵 = −𝐵 × 𝐴.

�̄�𝑝1 = �̄�𝑝0 + ¤̄𝜔𝑠1 × 𝑟1 + �̄�𝑠1 ×
(
𝜈𝑝1 − 𝜈𝑝0

)
= �̄�𝑝0 − 𝑃0→1 ¤̄𝜔𝑠1 + Ω̄𝑠1

(
𝜈𝑝1 − 𝜈𝑝0

)
�̄�𝑝2 = �̄�𝑝1 + ¤̄𝜔𝑠2 × 𝑟2 + �̄�𝑠2 ×

(
𝜈𝑝2 − 𝜈𝑝1

)
= �̄�𝑝0 − 𝑃0→1 ¤̄𝜔𝑠1 − 𝑃1→2 ¤̄𝜔𝑠2 + Ω̄𝑠1

(
𝜈𝑝1 − 𝜈𝑝0

)
+ Ω̄𝑠2

(
𝜈𝑝2 − 𝜈𝑝1

)
�̄�𝑝3 = �̄�𝑝2 + ¤̄𝜔𝑠3 × 𝑟3 + �̄�𝑠3 ×

(
𝜈𝑝3 − 𝜈𝑝2

)
= �̄�𝑝0 − 𝑃0→1 ¤̄𝜔𝑠1 − 𝑃1→2 ¤̄𝜔𝑠2 − 𝑃2→3 ¤̄𝜔𝑠3 + Ω̄𝑠1

(
𝜈𝑝1 − 𝜈𝑝0

)
+ Ω̄𝑠2

(
𝜈𝑝2 − 𝜈𝑝1

)
+ Ω̄𝑠3

(
𝜈𝑝3 − 𝜈𝑝2

)
(29)

Secondly, the kinematic relations for the center of mass positions of each section in (30).

�̄�𝑠1 = �̄�𝑝0 + ¤̄𝜔𝑠1 ×
1
2
𝑟1 + �̄�𝑠1 ×

1
2
(
𝜈𝑝1 − 𝜈𝑝0

)
= �̄�𝑝0 −

1
2
𝑃0→1 ¤̄𝜔𝑠1 +

1
2
Ω̄𝑠1

(
𝜈𝑝1 − 𝜈𝑝0

)
�̄�𝑠2 = �̄�𝑝1 + ¤̄𝜔𝑠2 ×

1
2
𝑟2 + �̄�𝑠2 ×

1
2
(
𝜈𝑝2 − 𝜈𝑝1

)
= �̄�𝑝1 −

1
2
𝑃1→2 ¤̄𝜔𝑠2 +

1
2
Ω̄𝑠2

(
𝜈𝑝2 − 𝜈𝑝1

)
�̄�𝑠3 = �̄�𝑝2 + ¤̄𝜔𝑠3 ×

1
2
𝑟3 + �̄�𝑠3 ×

1
2
(
𝜈𝑝3 − 𝜈𝑝2

)
= �̄�𝑝2 −

1
2
𝑃2→3 ¤̄𝜔𝑠3 +

1
2
Ω̄𝑠3

(
𝜈𝑝3 − 𝜈𝑝2

) (30)

Combining these two relations yields the following system
�̄�𝑠1

�̄�𝑠2

�̄�𝑠3

 =

− 1

2𝑃0→1 0 0
−𝑃0→1 − 1

2𝑃1→2 0
−𝑃0→1 −𝑃1→2 − 1

2𝑃2→3



¤̄𝜔𝑠1

¤̄𝜔𝑠2

¤̄𝜔𝑠3

 +


1
2 Ω̄𝑠1 0 0
Ω̄𝑠1

1
2 Ω̄𝑠2 0

Ω̄𝑠1 Ω̄𝑠2
1
2 Ω̄𝑠3



(
𝜈𝑝1 − 𝜈𝑝0

)(
𝜈𝑝2 − 𝜈𝑝1

)(
𝜈𝑝3 − 𝜈𝑝2

)
 +


𝐼3×3

𝐼3×3

𝐼3×3

 �̄�𝑝0

�̄�𝑠 = 𝐴�̄�𝑠
¤̄𝜔𝑠 + 𝐵�̄�𝑠 �̄�𝑝 + 𝐶�̄�𝑠 �̄�𝑝0

(31)

Substituting (31) into (28) then yields the final expression for the angular acceleration in (32). Note the addition of a
matrix 𝐷𝑑𝑎𝑚𝑝 in the last row. This matrix is added at the end to take into account damping due to cable motion.

𝐴 ¤̄𝜔 ¤̄𝜔𝑠 = 𝐵 ¤̄𝜔 �̄�𝑠 + 𝐶 ¤̄𝜔 + 𝐷 ¤̄𝜔
= 𝐵 ¤̄𝜔

(
𝐴�̄�𝑠

¤̄𝜔𝑠 + 𝐵�̄�𝑠 �̄�𝑝 + 𝐶�̄�𝑠 �̄�𝑝0

)
+ 𝐶 ¤̄𝜔 + 𝐷 ¤̄𝜔(

𝐴 ¤̄𝜔 − 𝐵 ¤̄𝜔𝐴�̄�𝑠

) ¤̄𝜔𝑠 = 𝐵 ¤̄𝜔𝐵�̄�𝑠 �̄�𝑝 + 𝐵 ¤̄𝜔𝐶�̄�𝑠 �̄�𝑝0 + 𝐶 ¤̄𝜔 + 𝐷 ¤̄𝜔

¤̄𝜔𝑠 =
(
𝐴 ¤̄𝜔 − 𝐵 ¤̄𝜔𝐴�̄�𝑠

)−1 [
𝐵 ¤̄𝜔𝐵�̄�𝑠 �̄�𝑝 + 𝐵 ¤̄𝜔𝐶�̄�𝑠 �̄�𝑝0 + 𝐶 ¤̄𝜔 + 𝐷 ¤̄𝜔 + 𝐷𝑑𝑎𝑚𝑝

] (32)

This linear system can now be used to compute the angular acceleration of each cable section, given the state of the
system and the acceleration of the attachment point �̄�𝑝0 . Also note that the matrices in (28) and (31) follow a very clear
pattern, which is exploited to find a generalised solution for any amount of links system.
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3
Literature Review

3.1. General Helicopter
This chapter contains a general overview of different helicopter missions, configurations and their control

mechanism. Although no research questions are answered in this chapter, it acts as a chapter to familiarize

with the concept of helicopter control.

3.1.1. Different Helicopter Applications
Nowadays, helicopters can be found in many places and perform both civilian and military missions. Civilian

applications can include:

• Search and rescue by the coast guard

• Fighting wildfires

• Cargo transport to remote areas

• Passenger transportation

• Medical emergencies

• Police surveillance

• Disaster evacuations

• etc.

Figure 3.1: A rescue helicopter used by the dutch

coast guard [11]

Military applications can include:

• Troop transport

• Military cargo transport

• Military evacuations

• Fire support

• Naval surveillance

• Anti Submarine Warfare (ASW)

• etc.

Figure 3.2: An NH90 military helicopter in a dipping

SONAR mission used by the dutch navy [36]

Helicopters are vehicles that can perform manoeuvring tasks no other aircraft can currently do. These

include manoeuvres such as hover, flying sideways or backwards and VTOL. This enables helicopters to
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fly missions that would otherwise not be possible.

3.1.2. Helicopter Configurations
There are many different helicopter configurations. A general overview of the most common configurations

is given below. Most helicopters have a single rotor, but some helicopters have two, as is listed below.

Single Main Rotor

This is the most common type of helicopter. It has, as the name implies, a single main rotor. This means

that it needs an anti-torque device in the tail in the form of a tail rotor. This means that some of the power

provided by the powerplant has to be allocated to the tail rotor.

Tandem Rotor

The tandem rotor helicopter is a helicopter that uses two rotors, typically spinning opposite to each other.

This removes the need of an extra anti-torque device in the form of a tail rotor. This means that all of the

power provided by the powerplant can be allocated to generating lift. The downside of such configurations

is that it the power transmission is more complex with such helicopters, and the rotors must be placed

such that they don’t collide. Such configurations are only used for large helicopters.

Coaxial

A coaxial helicopter is a helicopter with two counter-rotating rotors on a single mast. Just as with tandem

rotor helicopters, there is no need for an extra anti-torque device. The stacking also enables this configura-

tion to be used on smaller helicopters. The downside of this configuration is the fact that due to the wake

interaction between both rotors, the drag produced is rather large.

Intermeshing Rotors

Intermeshing rotor helicopters have two counter rotating intermeshing main rotors located side by side.

These rotors are synchronised to avoid collision. These configurations also require no extra anti-torque

devices due to the counter rotating rotors.

Tilt-rotor

A tilt-rotor helicopter is a helicopter that can tilt its rotors forwards or backwards in such a way that it can

use its rotors as propellers in forward flight, and as rotors during hover. This enables an airplane/helicopter

hybrid configuration. It belongs to the family of compound rotor aircraft. Compound helicopters are

helicopters with (usually wings) to increase the speed at which the helicopter can fly.

3.1.3. Helicopter Controls
There are three major components that determine the control of the helicopter. These are the main rotor

and the tail rotor.

Main Rotor

The main rotor is a collection of rotor blades attached to a hub located at the top of the helicopter. Due

to the nature of the blade motion, the blades need some freedom to move relative to the hub to remove

excessive forces and moments. For this, three additional degrees of freedom are provided to the rotor.

These are lead/lag, flapping and rotation around the longitudinal axis. There are multiple ways to provide

these degrees of freedom:

• Rigid rotor: Rigid rotor systems are systems where there are neither flapping nor lead/lag hinges

present (see Figure 3.3). Instead, the blades themselves bend to accommodate for these motions. A

rigid rotor system is mechanically less complex due to the lack of hinges, but require a more complex

blade structure. Moreover, this system results in higher vibrations in the vehicle due to the lack of

damping provided by the hinges[15].

• Semi-rigid rotor: A semi-rigid rotor system typically contains 2 rotor blades that are rigidly attached

to the rotor hub (see Figure 3.4). This hub is free to tilt relative to the shaft of the main rotor via

the use of a teetering or flapping hinge. There is no lead/lag hinge present, meaning that those
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forces are absorbed in the bending of the rotor blades. Rotation about the pitch axis is possible via a

feathering hinge.

• Fully articulated rotor: A fully articulated rotor has has hinges for all three axes for each blade (see

Figure 3.5). This allows each blade to flap, lead/lag or feather independent of the other rotor blades.

This removes the forces and moments on the shaft associated with these motions.

Figure 3.3: Rigid rotor connection [15]. Figure 3.4: Teetering rotor

connection [15].

Figure 3.5: Fully articulated rotor connection [15].

Figure 3.6: Swash plate mechanism [41]

Controlling the direction of the thrust of the main rotor is done via the swash plate. The purpose of this

component is to transfer control inputs from the non-rotating helicopter to the rotating rotor blades. A

schematic of this component is illustrated in Figure 3.6. As shown, the pitch links are connected via two

plates to the actuator inputs. One rotating, and one non-rotating plate, connected together via bearings

such that they can slide over each other freely.

The swash plate can be moved up or down via the collective pitch lever. This causes the pitch links also

move up or down, changing the pitch angle of all rotor blades (hence the name collective pitch). This

influences the amount of lift generated by the blade, and hence the thrust of the rotor.

The swash plate can also be tilted using the cyclic pitch lever, causing changes the pitch angle of a blade

depending on where it is on its rotation (hence the name cyclic pitch). This causes changes in lift force at

different positions around the shaft, effectively controlling the direction of the thrust.
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Tail Rotor

Helicopters with a single main rotor require a tail rotor as an anti-torque device. Since the powerplant

exerts a torque on the main rotor, there is an equal and opposite torque acting on the helicopter. This is

why an anti-torque device is needed. The tail rotor collective pitch can be adjusted via the pedals. By

adjusting the pitch angle of the tail rotor blades, the thrust is changed and hence the torque provided by

the tail.

3.1.4. Concluding Remarks
As mentioned at the start of this chapter, this chapter acts as a familiarisation to the concept of helicopter

operations and control. First, the application fields of helicopters have been listed. After that, different

helicopter configurations have been looked at. Finally, the control mechanism behind the main and tail

rotor has been explained.
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3.2. Rotor and Actuator Dynamics
This chapter contains an overview of the rotor dynamics of the main rotor of a helicopter. As will be made

clear in later chapters, INDI is a control method that is (like any incremental control system) sensitive

to time delays. Therefore, it is important to have an understanding of where delays might arise. Rotor

dynamics can be a source of delay. Therefore, it is important to have an understanding of how the rotor

behaves. Additionally, in order to simulate the effect of a hanging load from a helicopter, some basic rotor

dynamics are included in the helicopter model. A simple flapping model is therefore presented in this

chapter.

3.2.1. Rotor Dynamics
This section contains the basic principles about rotor dynamics as well as a simple flapping model for the

3-DOF model developed later in this report.

Basic Rotor Behaviour

Helicopter rotors rotate at large rates, creating a big centrifugal force on the blade. This is the driving force

that keeps the blade straight when in flight. When disturbing the blade during rotation, an oscillation will

occur. This oscillation is called flapping.

Flapping is a complex phenomena that is dependent on not only the properties of the blades, but also the

motion of the shaft, the control inputs given, and aerodynamic disturbances. One of the most important

properties of the rotor blade is the Lock number γ given by Equation 3.1. This is a non-dimensional scaling
coefficient, giving the ratio of aerodynamic to inertia forces acting on a rotor blade[41]. The smaller this

number, the stiffer the blade is to aerodynamic forces.

γ =
ρcclαR

4

IB
(3.1)

With

• ρ - air density

• c - chord of blade

• clα - slope of lift coefficient with angle of attack

• R - radius of blade

• IB - inertia of blade

Computing the Lock number is not trivial, as typical blades have complex mass distributions and multiple

airfoils blended into a single blade.

Rotation of the rotor shaft must be taken into account as well. If the helicopter rotates, due to the gyroscopic

nature, coriolis-effects act on the motion of the rotor blades. Furthermore, when considering aerodynamic

effects, the complex nature of the flapping motion becomes clear. Flapping is harmonic, meaning that there

is recurring motion in the blades per rotation. Taking only forward velocity into account, and neglecting

drag forces, a second order dynamic appears. This is a constant coning effect, a first-order dynamic

motion that repeats once per rotation and a second order dynamic called differential coning [41]. Typically,

higher order dynamics are present in flapping motion.

It seems that in deriving the time delays caused by flapping dynamics, the main difficulty lies in modelling

or estimating what these harmonic motions are and what their magnitude is. Time delays are the time

needed for the disk plane to adjust to its new position forced by the cyclic and collective control setting.

On the blades, this will result in a disturbed motion with a damped oscillation of a certain order. This

means that it may be necessary to include higher order dynamics to have an accurate enough model of

the flapping motion to derive time delays in the system.
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Simple Flapping Model

In this section, the Fourier transformation of the flapping dynamics are presented. These equations

(Equation 3.2-Equation 3.5) are derived via the method found in [22].

The Fourrier approximation for the blade flapping angle is given by Equation 3.2, with as coefficients

Equation 3.3-Equation 3.5 representing the coning angle, the longitudinal disc-tilt and lateral disc-tilt. Note

that only the first order dynamics are taken into account, higher order dynamics are neglected from these

equations. This means that no differential coning is present, nor higher order harmonics. Furthermore, the

flap angle β is taken in the control plane of reference[22].

β = a0 − a1 cos (ψ)− b1 sin (ψ) (3.2)

a0 =
γ

8
θ0
(
1 + µ2

)
− γ

6
(λc + λi) (3.3)

a1 =

8
3µθ0 − 2µ (λc + λi)− 16q

γΩ

1− 1
2µ

2
(3.4)

b1 =
4
3µa0 −

q
Ω

1 + 1
2µ

2
(3.5)

This flapping model is simple, but useful in the development of a 3-DOF model of a helicopter with a partially

submerged load. Furthermore, this flapping angle model is also be used to find the thrust coefficient of the

rotor. This is presented in Equation 3.6[22].

CTBEM =
1

4
clασ

[
2

3
θ0

(
1 +

3

2
µ2

)
− (λc + λi)

]
(3.6)

As illustration of the angles β, a0 and a1, figures Figure 3.7 (see bottom) and Figure 3.8 (see top right) are
provided to show their physical meaning.

Figure 3.7: Diagram illustrating the flapping angle

β and the coning angle a0 [22].

Figure 3.8: Diagram illustrating the longitudinal

disc-tilt a1 [22].

3.2.2. Actuator Dynamics
Since the actuators of the helicopters are a mechanical system, there are some dynamics regarding

commanded input and commanded output. Since this research is mainly focused on control, the actuators

will be modelled as a first order lag filter with a certain value of τlag, that can be changed to adjust the
speed of the dynamics of the actuators. With this, the robustness of both controllers can be tested with

changing system conditions, especially for the case with non-perfect actuator systems.
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The transfer function of a first order lag filter is as follows:

Hlag(s) =
1

τlags+ 1
(3.7)

Aditionally, the actuators have a certain operational range in which they function. These are the saturation

limits of the main rotor collective, cyclic and tail rotor collective. These saturations are non-linear and will

have to be taken into account when developing the controllers.

Saturation of controls is a well known problem for control systems. Especially when integrators are present,

the control system may compensate for the saturation of the controllers when it is not necessary. This

leads to degraded performance. In [51], pseudo control hedging is used to account for the effect of control

saturation (more on this in [27]). This method sends a reverse control signal back to the control input equal

to the exceeded control signal. This balances the control input. Other methods could be anti-windup for

example.

3.2.3. Concluding Remarks
This section briefly covered the blade flapping dynamics of the main helicopter rotor. First, a general

explanation about basic rotor behaviour was given. This was followed by presenting a simple flapping

model from [22], which is also used in the 3-DOF helicopter model used in Chapter 4. Finally, the actuator

dynamics have been discussed. The helicopter controls will be modelled as a first order lag filter, to

simulate the slowness of the actuator dynamics.
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3.3. Dipping SONAR Missions
In this chapter, a general description of a dipping SONAR mission can be found. This includes a description

of the mission, environmental conditions and the SONAR dimensions. After that, controller requirements

are defined. In order to find those requirements, performance metrics are defined first, after which the

controller requirements are stated. Unfortunately, specific numbers for these requirements cannot be

found. Likely due to the confidentiality related to military assets. Therefore, numbers have been assumed

which can be changed in later stages.

3.3.1. Dipping SONAR
A dipping SONAR is a SONAR device that is suspended below a helicopter, and lowered into the water

periodically to take measurements in order to detect submarines. There are two types of SONAR: Active

SONAR and passive SONAR. Active SONAR sends sound pulses through the water. This pulse will

bounce off of objects and returns back to the SONAR device, which is then received. The properties of

this signal (time until return and Doppler shift) will then yield a distance, a bearing and a relative velocity to

the detected objects. Passive SONAR does not send pulses and only listens for signals. It is not possible

to find the distance to an object using passive SONAR, unless using multiple sensors [61].

Mission Description A Dipping SONAR mission has three distinct phases for each dip: A transi-

tion from cruise to hover, hovering and a transition from hover back to cruise. This is illustrated in

Figure 3.9. During the hover, the SONAR transducer is lowered into the water to take measurements.

Hovering is done at an altitude of 50-300 ft [4]. The transducer is lowered to depths of 0 to 2500 ft [4]

[54]. When that is done, the transducer is lifted back up out of the water, before transitioning back to a

cruise again to fly to a next location. The duration of a dip is unknown to the author, and will therefore be

assumed to be no more than 5 minutes.

Figure 3.9: Helicopter dipping SONAR manoeuvre [19]

For optimum SONAR performance, the motion of the helicopter is used to keep the SONAR still [19][17][57].

The main difficulty associated with this task is the motion of the suspension cable. This cable can bend

and swing due to aerodynamic forces and sea currents. It is therefore difficult to determine the velocity

and exact orientation of the SONAR from within the helicopter. In literature, the cable angle and cable

angle rate are typically used as an estimate.

Environmental Conditions

In the maritime industry, limitations on helicopter operations at sea are measured in sea states. This is a

scale from 1-8, that classifies wave height, and by extension is a measure of the weather. Although, no

direct link was found in literature between dipping SONAR missions and sea states, it was observed that

in many cases, a sea state of 4-5 was taken for maritime helicopter operations. Mainly due to on-deck
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operations such as maintenance, take-off and landing. A sea state of 4-5 corresponds to waves between

2.5 and 4.0m high. Such waves are also found in wind conditions of 5-7 Bft, or 17-33 kts wind [62]. It was

also observed that operations are limited by sea state due to emergency landing procedures. The mean

sea current speeds are found to be very slow (0.05-0.5 m/s) and decreasing with depth [40].

Dipping SONAR Dimensions

Additionally, from the product datasheet from dipping SONAR manufacturers L3HARRIS and armelsan,

dipping SONAR can have dimensions of 1.2-5.2m high and a diameter of 2.6m [21] and can have a mass

of up to 270 kg [20].

3.3.2. Controller Requirements
The performance requirements of the to-be-designed automatic controllers are presented in this section.

For this, first the performance metrics of the controller are discussed in Section 3.3.2. These metrics

will determine which controller performs best. After that, the controller requirements are presented in

Section 3.3.2. These requirements are based on the mission specifications from Section 3.3.1.

Performance metrics

In order to compare the different controllers, performance metrics have to be specified. In this particular

case, it is important to emphasize on what is important for the controller in order to fulfill the mission. The

SONAR must be kept as still as possible. This means that the velocity of the SONAR must be kept as

small as possible. This to keep the position of the SONAR at roughly the same position, while keeping

Doppler shift effects low.

One way to measure the velocity changes is via statistics. The mean of the velocities will yield the average

drift of the SONAR, whereas the standard deviation says something about the oscillatory nature of the

motion. A large mean will show that the SONAR drifts from the original position at a high rate, which is

also used as a performance metric. A high standard deviation means a larger variation in velocity, and

thus classifies in worse performance.

Additionally, it is important to consider the control usage of the controller. If the controller uses the full

control authority range, it could be considered a less efficient controller as it requires more energy to

perform the same task. Here too, the standard deviation can be used as a metric for the amount of control

usage. A high standard deviation signifies large control input variations and can therefore be used as a

metric for control input efficiency.

To summarize, the controllers will be judged on three metrics:

• Standard deviation of the velocity of the SONAR;

• Mean of the velocity of the SONAR;

• Standard deviation of the control inputs.

Controller Requirements

This section presents the requirements for the controller. Unfortunately, there is not much information

present in literature about the motion requirements for dipping SONAR missions. Therefore, assumptions

are made about the allowable motion of the SONAR. For the determination of the requirements, it is

assumed that the SONAR is not allowed to have translational rates of over 1m/s in all axes and rotational
rates of over 1◦/s in all axes. Since there are no available numbers, these numbers are found by guessing.
As depth, a depth of 60m is chosen. The main reason for this is that shorter cables are more limiting

than longer cables due to slower motion and higher drag. Moreover, a requirement is made about the

settling time of the controller after a step input. This requirement is set since a dip should be executed in a

relatively short period of time. This means that the motion of the SONAR shall be suppressed in a timely

manner. For this, a settling time of 60 seconds is taken. The step input simulates a strong gust acting on

the helicopter and suspension cable. Additionally, it is assumed that a dip takes no longer than 5 minutes.

The requirements regarding environmental conditions follow from Section 3.3.1. This leads to the following

three main requirements:
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1. The translational rates of the SONAR shall not exceed 1m/s in all directions with the SONAR

submerged at a depth of 60m, a constant sea current of 0.5m/s and sea state 5 for 5 minutes.

2. The rotational rates of the SONAR shall not exceed 1deg/s in all directions with the SONAR submerged

at a depth of 60m, a constant sea current of 0.5m/s and sea state 5 for 5 minutes.

3. The SONAR shall reach steady state within 60 seconds in all axes after a step input gust of 0 to 7 Bft

with the SONAR submerged at a depth of 60m, a constant sea current of 0.5m/s.

3.3.3. Concluding Remarks
This chapter contains a description of dipping SONAR missions as well as the metrics and requirements

for the controller performance. From the mission description, it was found that dipping takes place in

hover, at low altitudes. Furthermore, it seems that dipping takes no longer than 5 minutes per dip. The

environmental conditions are not known exactly, but are deduced from literature. It seems that helicopter

operations take place up to sea state 4-5, which is quite rough. The dimensions of the SONAR are also

deduced from manufacturer datasheets.

The performance metrics of the controller will be the standard deviation of the velocity of the SONAR, its

mean and the standard deviation of the control inputs. The metrics on the velocity will provide a measure

of how much the sonar swings. The metric on the control inputs will provide a measure of the efficiency of

the controller.

Combining the knowledge from the mission and the environmental conditions, 3 requirements have been

specified for the helicopter controller. These are found in Section 3.3.2. Note that the limits on the linear

and rotational velocities are very uncertain. No sources have been found discussing such limits, hence

these numbers are taken as an initial guess.
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3.4. State-of-the-Art Helicopter-SONAR Modelling
In this chapter, an overview will be given of different modelling methods to model a helicopter in combination

with a SONAR. To the authors knowledge, there is not a lot of recent literature that addresses this specific

configuration. On the other hand, a lot of recent literature can be found about a similar problem, namely

a slung load configuration. This is a configuration where a heavy load is suspended from a helicopter

for cargo transport. In this situation, a lot of focus lies in the interaction between the helicopter and the

suspended load, and to keep the suspended load stable. In dipping SONAR missions, the suspended load

is not that heavy, meaning that the effect of the SONAR on the helicopter won’t be that large. Nevertheless,

this configuration is interesting due to its close resemblance with the problem at hand. This chapter is

divided into 3 sections: Section 3.4.1 addresses different methods to model a helicopter system with a

hanging load. Section 3.4.2 covers different suspension cable models and Section 3.4.3 will discuss the

modelling of the SONAR briefly.

3.4.1. Helicopter Slung Load Models
In this section, an overview will be given about the state of the art with regards to the modelling of a

helicopter carrying a suspended load. It was found that especially in older literature, there is a lot of

emphasis on simple models. There were two main reasons for this:

First, especially in the 60s and 70s, there was a need for stabilisation of helicopters with a hanging load.

Therefore, much effort was put into understanding the basic stability principles of suspended loads from

helicopters ([12], [35], [38]). This need for understanding called for very simple models, since simple

models are easier to understand the basic principles of that phenomena.

The second reason was that computers at that time were not very powerful. Therefore, simple models that

require little computing power were desirable since they were cheaper to use.

Pendulum models

Because of this need for simple models, the first hanging load models were pendulum models. For

helicopters carrying a heavy load, this is a logical choice, due to the nature of the motion. For heavy loads,

this is the most important motion and it is also a very large disturbance acting on the helicopter. Therefore

it would make sense to stabilize this motion in order to stabilize the load.

In various literature, these models are used to simulate the movement of a hanging load below a

helicopter. In [35], the suspended load is modelled as a compound pendulum. In [18], the load is modelled

as a point mass on a constant length, mass-less rigid link below the helicopter’s center of mass, which is

effectively also a compound pendulum. A somewhat different approach is taken in [12]. Here, the load

is still modelled as a pendulum, but the load is not attached to the center of mass. This is because this

paper addresses the stability analysis of different configurations and feedback options. [38] presents three

different models for a helicopter with a slinging load: a simple helicopter model that is simply a disk, a rigid

body with a disk rotor and a rigid body with an articulated rotor. This was also done to study the dynamic

stability, but this time with at varying levels of complexity.

Even today, with better understood concepts and more powerful computers, the pendulum model

is still used quite often in literature ([32], [56], [29], [44], [37]). As mentioned before, the pendulous motion

is the main motion of the hanging load and also the most disturbing to the helicopter. Therefore, it makes

sense to address this motion in particular.

It is important to note that pendulum models are probably not very useful for the problem at hand.

This has multiple reasons: First of all, one should consider that the objective of the control system is not

to stabilize the helicopter itself, but keep the load still in the water. This means that the motion of the

helicopter is more a disturbance on the load than the other way around. Secondly, the load is not that

heavy. Dipping SONAR weight in the order of 300 kg [2], which is small compared to modern-day military

helicopters which can have a mass of 10500 kg (NH90 helicopter)[39]. Therefore, more complex models

are needed. Nevertheless, a pendulum model is a good approximation of the motion of the problem at

hand.
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Rigid Body Models

More complex models than the pendulum models are rigid body models. Rigid body models differ from the

pendulum models in the sense that a rigid body has more degrees of freedom (6) than a point mass (3).

In [7], a suspended load system is modelled using only rigid bodies. Constraints are added using

constraint equations which follow from the assumption that the wire remains constant under nominal

conditions. With those constraint functions, the Udwadia-Kalaba Equation is used to obtain equations of

motion. The Udwadia-Kalaba equation describes the motion of a constrained mechanical system and is

based on Gauss’s principle of least constraint.

In [42], a mathematical model of tandem helicopters with a sling load is presented. Here, both the helicopter

and the load are treated as rigid bodies. The equations of motion are found using force and moment

equilibrium. This model also includes first order rotor dynamics, which is useful for the development of the

dipping SONAR helicopter model.

Existing Models

In [29] and [53] an already existing helicopter model of the UH-60 Apache helicopter is used. This is a

non-linear blade element model of the H-60 class helicopter. Such models are high-fidelity models that

can track many degrees of freedom. Usually, these models are made by manufacturers in order to model

the behaviour of their vehicle.

Trim Conditions

Trimming a helicopter model is not straight forward. For a 3-DOF model, it is possible to trim the helicopter

and a hanging load analytically. For a 6-DOF model, this is unfortunately not possible. Therefore, according

to [42], the helicopter-load system can be trimmed in 4 steps:

1. Trim the load with the helicopter in a neutral state;

2. Trim the helicopter with the trimmed load from step 1;

3. Trim the load again with the trimmed helicopter from step 2;

4. Trim the helicopter and the load together.

Trimming is done numerically. This means that the trim of the load and the helicopter are computed

iteratively until the results converge to a single solution.

Helicopter Model Selection

For the helicopter model, an existing 6-DOF rigid body model will be used. This model will be obtained via

the project supervisor. This alleviates the need to develop a new model, and it is already verified.

3.4.2. Cable Model
The cable model is a very important part of the total systemmodel as the cable is responsible for transmitting

the movement of the helicopter to the hanging load. The problem with the cable, however, is that it is

flexible and can move freely due to disturbances such as wind, sea current and of course the helicopter

motion. The three main methods found in literature are either rigid cables, discrete cables or continuous

cable models. Each increasing complexity from the latter. These are discussed briefly further below.

Rigid Cable Models

Rigid cable models are models that assume that the cable always remains straight like a solid rigid beam.

This is, however, almost never the case, but is a very good approximation if the wire is taught all the time.

Nonetheless, it is a model that simplifies the equations of motion a lot, since the motion of the payload can

simply be described as a simple pendulum.

Discrete Cable Models

The suspension cable can be modelled as a discrete system as is done in [17] and [58]. In such a model,

the cable is divided into small rigid sections. Each section has its own equations of motion.

In [17], two different models are proposed: A discrete cable model and a lumped model. The discrete

model is a model with many sections, whereas the lumped model is a simplified double-pendulum model.

The discrete model is very similar to the model described in [58], which is described further below. The
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lumped double pendulum model has two masses: one emerged and one submerged. The mass of the

emerged part being the mass of the emerged part of the cable and the submerged mass being the mass

of the submerged cable and the SONAR. This was done due to the limitations of computation power

in the late 80s. Althoughmuch simpler than the discrete model, the accuracy of the model was still quite well.

In [58], a discrete model is proposed as shown in Figure 3.10, here illustrated with just 3 sections.

The linear equations of motion of this cable model are given by Equation 3.8.

˙̄x1 = A1x̄1 +B11ū1 +B12d̄

˙̄x2 = A2x̄2 +B2ū2
(3.8)

Here, x is the state vector, u is the projected helicopter ground velocity and d is the steady state wind
velocity, or water current velocity. The state vector contains the longitudinal angles θk and lateral angles φk,
where k indicates the index of each section. These angles are relative to the local horizontal and the local
vertical axis. Matrices A and B are the state matrix and the input matrix respectively, and the subscripts

ij indicate the column within the matrices (i=1 for longitudinal motion and i=2 for lateral motion,j=1 for
helicopter velocity and j=2 for wind/current velocity).

Figure 3.10: Discrete cable model for longitudinal motion (left) and lateral motion (right) [58]

Each link is regarded as a steel resistance bar with well distributed physical parameters. There is no

bending moment between the cable sections and there is no transport of torque between the sections.

The force conditions are analysed for every section such that the differential equation of each section

can be established. There is a large similarity between this model and the double pendulum model. The

difference being the amount of sections in the model. Discrete models like this have the major advantage

that they can be solved iteratively and as detailed as desired, making them very attractive.

To make the model more realistic, a spring-damper could be added to simulate the effects of cable

stretching and bending. Furthermore, the rotation along the cable axis (cable twist) can not be modelled

using a hinged discrete cable model. To model cable twist, some spring-damper must be added to a cable

link.

Continuous Cable Models

Next to the rigid cable and the discrete model, continuous cable are also used to model the behaviour

of the cable in response to helicopter motion. In [10], the equations of motion of a suspension cable is

derived using Hamilton’s principle. This paper addresses the problem of using boundary control to remove

disturbances acting on a hanging load. The major advantage of such a model is that the position of the

cable is known at every point along the wire. It also enables the cable to have continuous properties, such

as mass distributions that vary smoothly along the cable.

Cable Model Assumptions

In literature, many assumptions are made with regards to the cable properties. Some papers simplify the

problem by disregarding the mass of the wire, the aerodynamic/hydrodynamic forces or the buoyancy of

the cable ([29], [56], [53]). In the interest of solving the problem at hand, it is important to also model these

effects, meaning that they cannot be assumed to not exist. However, for simplicity, buoyancy is neglected.
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The elasticity of the cable is sometimes also neglected ([7]). Due to the relatively low mass of the SONAR,

this assumption could be valid. Therefore, it is important to note that the following points of interest will

likely be included in the final model of the suspension cable:

• The suspension cable will have a mass;

• The suspension cable will not experience buoyancy;

• The suspension cable will not experience elasticity;

• The suspension cable will experience aerodynamic and hydrodynamic drag forces;

• Turbulence effects (from the rotor, wind and current) on the cable will be neglected.

Cable Model Selection

The cable model used in designing the controller will be a discrete cable model. The main reason for this

is the iterative nature, and the simplicity that follows from it. The main disadvantage of using such a model

is that some properties of the cable are neglected. Especially the nature of how a cable bends is different

when using a discrete model compared to a continuous model. To account for this discrepancy, addition of

a spring-damper will be considered if necessary.

3.4.3. Modelling The SONAR
In order to model the effects of the helicopter motion on the SONAR, a model of the SONAR is also

required. The SONAR can be modelled as a rigid body hanging from a helicopter. In [56], the problem of a

submerged load is taken into account into the model. The first thing that needs to be addressed is the

fact that the load is subject to buoyancy. This means that the load will appear to be lighter than it actually

is. Also, depending on the mass distribution of the SONAR, this could introduce moments around the

hinge-points of the cable, forcing the SONAR in an alternate rotation than perfectly straight. It is however

assumed that the SONAR is symmetric, and that it would naturally stay in its upright position. The second

point of interest is the difference in velocity between the air above the water and the current velocity of the

water. This will cause different drag forces and therefore different cable displacements. The final thing

addressed is the difference in density of the water. This is important since this means that dragging the

load underwater will produce different drag forces. Drag forces will also cause a moment around the hinge

point.

3.4.4. Concluding Remarks
This chapter gives an overview of a literature study about the modelling methods of helicopter configurations

with a hanging load. This includes models of the helicopter itself, the suspension cable and the load. For

each of these, an overview is presented of what is done in literature, as well as a choice on what method

will be used in later stages of the research. For the helicopter, a 6-DOF rigid body model is used that will

be provided by the thesis supervisor. The suspension cable model will be a discrete cable model with rigid

links. The SONAR will be modelled as a rigid body.
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3.5. Helicopter Automatic Flight Control Systems
In this chapter, an overview will be provided about the state of the art in helicopter automatic flight control

systems (AFCS). This will be done by first discussing classical PID control, followed by an overview of the

different control modes of a helicopter. After that, an overview of other control methods. Finally, the choice

of control method will be discussed.

3.5.1. PID control
PID control is a control method found in many different systems. It is a linear control system that is relatively

simple to apply to a system. PID stands for proportional integral derivative and relates to the feedback

signal of the system. The basic principle of PID control is to multiply each of these signals (be it either the

value of the output, its derivative or the integral or a combination of these) with a certain gain K, to form

the feedback signal.

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(3.9)

Here, Kp, Ki and Kd are the proportional, integral and derivative gain respectively. u is the control input
to the system and e is the error signal. This error signal is the difference between the desired input and
the current output of the system. Each of the different gains have different effects on the response of the

system. These effects are summarised in Table 3.1.

Table 3.1: Effect of PID-gains on response of system [25]

Rise Time Overshoot Settling Time Steady State Error

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase Decrease

Kd Small Change Decrease Decrease No Change

Tuning

Finding the required gain for the controller is a process called tuning. This is not trivial, and there may be

many PID’s that satisfy the desired response characteristics. One method of computing the desired gains

can be Ziegler-Nichols method, given in Table 3.2. Here, Kmax is the proportional gain where the system

becomes unstable for Ki,Kd = 0 and f0 is the oscillation frequency.

Table 3.2: PID tuning with Ziegler-Nichols method [13]

Kp Ki Kd

P Controller 0.5 Kmax 0 0

PI Controller 0.45 Kmax 1.2 f0 0

PID Controller 0.6 Kmax 2.0 f0 0.125 f0

Another method that can be used to tune a controller is a method called pole placement. With this method,

the gains of the controller are chosen such that the response follows a certain behaviour. For a second

order system for example, the gains could be chosen such that it has a certain natural frequency and a

damping. This can typically be done analytically for systems of lower degree. For higher order systems, the

gains can be found either empirically, or by using an approximation of the system by finding the dominant

response of the system, and tuning it to that response.

Full state feedback is also a linear control method that has strong similarities with PID control. With this

method, the feedback from the controller is some value K with the state of the vehicle. This method is very

useful if the entire state of the system is known, or could be estimated. The main benefit of this method is

that pole placement can be used to tune the gains K.
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The main benefit of using PID control is the possibility of using it in control loops. Given the dynamic

model, it is relatively easy to design a PID for it and prove that it is stable. The main problem with it is

the fact that in principle it only works for linear systems. Aircraft in general, and especially helicopters are

highly non-linear, which means that this control strategy will not work for a non-linear helicopter model. To

work around this, a model is typically linearised around a certain flight condition, for which a PID controller

can be derived. This brings another problem, namely the fact that a linear model is only valid near the

linearisation point. This means that for a different flight condition, a different set of gains is necessary

to control the helicopter. In other words, in order to use PID control for a helicopter or any non-linear

system, the gains must be derived at all flight conditions in order to make the controller valid over the entire

flight envelope and have the controller switch between gains depending on its flight state. This is called

gain scheduling and was an early method of adaptive control [17]. Gain scheduling is generally a very

time-consuming and tedious approach for control engineering.

Another problem with PID-control is that it is very model dependent and generally only works for single

input single output (SISO) systems. Having an accurate model of a system can be very difficult, forcing

major simplifications in models. This has a direct impact on the performance of the designed controller.

Furthermore, a helicopter is not a SISO system, but has coupled responses between controls. This further

degrades the performance of a PID controller.

Nevertheless, it is a very powerful control method that is still popular and is also used in helicopter control

systems to this day. The main reason for this is the fact that it is easy to verify such controllers (and hence

certify) and the fact that it is structured in loops [26].

3.5.2. Control Modes
Autopilots for helicopters contain three main operational modes: these are attitude hold, coupled and

stability augmentation system [55].

Attitude Hold (ATT)

Attitude Hold is a control mode that, as the name implies, keeps the pitch and roll attitude of the helicopter

fixed against disturbances.

Coupled (CPL)

Coupled is a flight control mode that is a combination of the ATT mode and a lateral and/or vertical flight

director mode. Lateral commands are usually needed for navigation and vertical modes are primarily air

data commands.

In [43], it was found that the stability control augmentation system (SCAS) of the Apache AH-64D helicopter

contains the following control modes: Attitude Command Attitude Hold (ACAH), which keeps the

helicopter at a specified attitude. Translational Rate Command (TRC), which makes the helicopter

translate at a specified speed. Position Hold (PH), Heading Hold and Altitude Hold.

In literature, other control modes are proposed. The most interesting listed below:

Hover Mode:

A hover mode in literature seems very similar to the SAS mode in autopilots. This mode would improve

handling qualities during hover. This is especially important when manoeuvring with a hanging load below

the helicopter. In [17], an automatic cable hover mode is presented specifically designed to keep a dipping

SONAR still in the water. This control system uses classical control and gain scheduling.

Automatic Transition Mode:

In [16], An automatic transition and hover mode for a helicopter is proposed. The idea behind this controller

is a controlled descend and deceleration to a hover at a given altitude. The controller proposed is based on

sliding mode control. Such a control mode could be very useful for dipping SONAR missions for approach

and departure of a certain dipping location. Keeping a certain altitude above water can be difficult at

low altitudes. This is due to the varying height of the water surface when there are waves present. This

particular problem is addressed in [58]. To solve it, a Kalman filter is used together with measurement

data from accelerometers and the radio altimeter.

Automatic Load Positioning:

In [28], An automatic positioning system for a helicopter with a hanging load is presented. This too is based

on a classical control structure, but with three different control loops: The most inner loop is an Attitude

Command Attitude Hold controller that sets the attitude of the helicopter to a certain reference value. The

loop around it is a transitional rate command loop, which computes a reference attitude based on a desired

horizontal ground speed. The final loop is the automatic load positioning loop, which computes the desired
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horizontal ground speed, based on the cable angle, its rate and the load position. The gains were compute

for different cable lengths, and using a linear reference model.

3.5.3. Other Control Methods
In this section, an overview is given of different control methods found in literature to control a helicopter

with or without a hanging load. Since these do not belong to a particular flight mode, they are listed here.

Linear Quadratic Regulator (LQR)

Linear Quadratic Regulator is, just like classical control, a linear control method. It is a control method

that computes the gains of the linear controller using a cost function and optimising the gains to minimise

the cost function. The main advantages of using LQR over classical control are the fact that this control

method can be applied to MIMO systems and that the gains are optimised. It still has the same drawbacks

from being a linear controller in its limited region of validity.

In [30], LQR is used in combination with reinforced learning to an unmanned helicopter. By using reinforced

learning, model dependency is reduced, since the Q-function necessary for gain computation is estimated.

An LQR control law in order to trim a helicopter is proposed in [47]. Gain scheduling is used to allow using

the controller for more flight conditions. LQR control is used in [53] to stabilise a hanging load in high-speed

flight. Interestingly, the LQR controller controls the position of the hook underneath the helicopter, rather

than the helicopter itself. This has an advantageous effect on the stability with cable angle feedback as

explained in [12]. Here, it was found that feedback to the suspension point is more effective than to the rotor.

The LQR controller also uses gain scheduling to broaden the flight envelope. The response in heavy tur-

bulence of this controller is presented in Figure 3.11. Note that the angles are relative to the helicopter body.

Figure 3.11: Control response in heavy turbulence with controller [53]

Dynamic Inversion (DI)

Dynamic Inversion, or nonlinear dynamic inversion (NDI) is a method where the feedback of the controller

is such that the dynamics of the vehicle are linear globally. This has the major advantage that linear control

can then be applied to control the linear system. The main advantage of this method is that control of

a non-linear system is very straight forward and simple. An example of application of DI to a helicopter

system is presented in [45]. The main drawback of this method is the requirement of an accurate vehicle

model. Any modelling errors will directly impact the performance of the controller or even cause instability.

This means that, in order to make this method practical, either the model must be updated continuously, or

the modelling error must be found. The latter is done in [48] and [60]. In [48], a neural network is used to

estimate the modelling error and in [60] a Kalman filter is used to estimate the disturbance acting on the

helicopter. The linear system is then tuned using pole placement.
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Incremental Nonlinear Dynamic Inversion (INDI)

INDI is the incremental version of NDI. The great advantage of using the incremental approach is that

accurate model knowledge is no longer required, but this is replaced with measurements. This makes

this method very powerful. INDI is proposed as a control method for helicopters in literature. A thesis

that investigates the use of an INDI controller for a helicopter performing basic manoeuvres was found

in [52]. It has a cascaded control structure. It uses PCH to work around control input saturation. It

also addresses the problem with obtaining the angular accelerations. It proposes different methods. A

predictive filter yields the best results, but needs to be trained for multiple flight conditions. Finite difference

is adopted as a consequence. Regular NDI is used for attitude controller. The final loop is a navigational

controller that uses approximate dynamic inversion. In [43], different INDI controllers for an AH-64

helicopter are proposed. Damping, filtering and synchronisation was attempted to improve the robust-

ness of the controller. In the end, synchronisation using a delay in the control inputs yielded the best results.

Robust Control

In [32] a disturbance observed L2−L∞ controller for a helicopter with a slung load is presented. Stability of

L2 − L∞ control is guaranteed using Lyaponov stability. The addition of a disturbance observer improves

the performance of the controller significantly, as it is capable of estimating the disturbance on the helicopter.

The controller depends on a linear model of the helicopter and the disturbance is a set of sinusoidal functions.

Backstepping (BS)

Backstepping is a very powerful control method that stabilizes a system in a very systematic way. Starting

from the dynamic system, the control law can be defined recursively, until the dynamic input is designed.

By using Lyaponov’s theory, stability is guaranteed at each step. Backstepping is also applied to rotorcraft

systems in literature. In [64] an adaptive integral backstepping controller for controlling a UAH is proposed.

Adaption is used to remove modelling errors. The control law is developed by recursively applying

Lyaponov stability criteria. This also yields criteria for the model error estimation. An adaptive backstepping

controller that uses a simplified vehicle model and uses a disturbance observer to eliminate effects of

unknown disturbances is proposed in [63]. A boundary controller that uses backstepping to reduce

vibrations in a suspension wire hanging from a helicopter is introduced in [46]. Disturbance is rejected by

using a disturbance observer.

Incremental Backstepping (IBS)

The incremental version of backstepping, where a discrete control input is derived at each step is presented

in [23]. A first order rotor model is used to estimate the induced velocity of the rotor. The control input is

derived using Lyaponov. Then, the virtual control is defined such that an incremental nonlinear dynamic

inversion (INDI) control response is achieved. A disturbance observer is designed in order to find the

disturbance acting on the system. Comparison with INDI is made. IBS with a disturbance observer appears

to have no steady state error with constant wind, whereas INDI does.

Model Reference Adaptive Control (MRAC)

MRAC is a method that changes the control inputs of the vehicle such that the vehicle follows the behaviour

of a known model. In this case, that is a gain scheduled PID controller. This is done in [14]. Stability of

MRAC is guaranteed using Lyaponov, given some constraints. The controller is an LQR controller and its

parameters are found using the ricatti equation. Uses the model of the BO-105 as reference and uses the

MRAC controller to control the LYNX as if it were a BO105. The adaptive rule changes the gains of the

LQR such that it matches the known model.

Sliding Mode Control

Sliding mode control is a control method that drives the system states from an initial state onto a pre-

designed sliding surface. One of the major down-sides of SMC is chattering which can seriously harm

control actuators. A sliding mode controller for a small-scale helicopter is proposed in [3]. The sliding

surface is designed using a linear control method. Three different reaching laws are proposed, which

essentially is the control law. Each law has a different speed to reach the steady state. A sliding mode

controller to transition from forward flight and a certain altitude to hover at a certain altitude was proposed
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in [16]. This is especially useful in transition from forward flight to hover for dipping.

Delayed Feedback

Delayed load feedback is used in a controller in the work from [8] in combination with input shaping on a

model helicopter. The idea of delaying the feedback is to align the control input signals with the motion of

the load. It is done as a replacement of a standard PD controller. Selecting the properties of the controller

depend on the gain and time delay chosen. Depending on the system, having some offset could have

significant changes in performance.

Fuzzy Control

Fuzzy control is a control method that uses very simple IF-THEN logic. Examples of applications of such

controllers to helicopters can be found in [49], [33] and [57]. In [49], a neural network is used to learn the

weights of the membership functions. The combination of these membership functions will then determine

the control response of the controller. [33] presents a fuzzy logic controller for hover of a small-scale

helicopter. Here, the weights of the membership functions were measured empirically. A fuzzy-logic

controller to stabilize a hanging load below a helicopter is used in [57], specifically with a submerged load.

Here, a fuzzy logic controller is used in combination with a PID is used. The fuzzy logic controller brings

the cable angle error to within a certain threshold, the PID is then used to remove the steady state error.

This is due to fuzzy logic not having an integrator-like rule. The weights of the membership functions are

found using the weighted average method. Another interesting feature of this controller is the so-called

universe contraction-expansion of the controller. This essentially means that the weights are scaled to

a function depending on the size of the error. The control response of this controller is shown in Figure 3.12.

Figure 3.12: Control response gust turbulence with controller [57]

Input Shaping

Input shaping is a control method that uses control pulses in order to stabilize a system. This method can

be found in cranes. The main principle behind it is to send input pulses at the exact right time to cancel out

motion. The main difficulty lies in finding the exact frequency of the motion. For hanging load systems, this

could be the pendulum motion, as this is the main motion of heavy loads.

An input shaping controller for a small-scale helicopter with a suspended load is proposed in [6]. Here, the

frequency of the oscillation is also one of the main difficulties in using input shaping. The performance of

an input shaping controller degrades quickly when the frequency is not exactly right. Even when using the

derivative of the oscillation, the controller is only marginally more robust. A frequency estimator is used to

estimate the frequency of the oscillation, and the small-scale helicopter is able to perform a tracking task

while keeping oscillations low. The use of an input shaper is also investigated in [44] to reduce the swing

of a hanging load from a small-scale helicopter. It largely validates the use of a UM-ZV shaper to reduce

swing on an approximate model of the model helicopter. Reference [1] is an extension of [44]. It again

shows the response of the helicopter to a regular ZV shaper. The helicopter model was found empirically

using motion cameras.
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3.5.4. Choice of Control Method
The main goal of this thesis is to find an INDI controller capable of performing dipping SONAR missions.

Before beginning the design of such a controller, it is important to have knowledge of other control methods

as well as knowing the advantages/disadvantages of the chosen control method. The advantages of

INDI are clear: it is a model-free approach, meaning that exact model knowledge is not required. A more

in-depth explanation of the working of INDI can be found in Section 3.6.
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3.6. INDI Control on Helicopters
This chapter acts as an introduction to the concept of INDI. The working principle behind this control

method is presented in Section 3.6.1. This is done via a derivation of the control input via this method.

After that, a literature overview of INDI as a control system and its stability is given in Section 3.6.2 and

Section 3.6.3. Finally, an application of INDI is done in Section 3.6.4 with case 3-DOF-PH-HUB-CG from

Chapter 4 to show the difference between INDI and PID control.

3.6.1. Working Principle INDI
For a nonlinear system that is affine in the input, the equations of motion can be expressed as in Equa-

tion 3.10([5], [50]).
˙̄x = f(x̄) +G(x̄)ū

ȳ = h̄(x̄)
(3.10)

Where the function f(x̄) contains the change in states due to the current state, G(x̄) is the control

effectiveness matrix and h(x̄) is the output function. Each of these components can be nonlinear.

INDI is the incremental version of NDI, of which the principle is to create a control input based on

the desired change of the states. By rearranging the terms in Equation 3.10, the control input can be

computed using Equation 3.11.

ū = G−1(x̄) (ν̄ − f(x̄)) (3.11)

Where ν̄ is the desired change of state, or the virtual control input. From this equation, it is clear where the

model dependency comes from. An NDI controller will need accurate descriptions of the functions G(x̄)
and f(x̄). If any model errors exist, the system is given by Equation 3.12, where ∆f(x̄) and ∆G(x̄) are
the modelling errors in the model and control effectiveness respectively.

˙̄x = f(x̄) + ∆f(x̄) + [G(x̄) + ∆G(x̄)] ū (3.12)

Inserting the NDI control law of Equation 3.11 into Equation 3.12 then yields Equation 3.13.

˙̄x = ∆f(x̄)−∆G(x̄)G−1(x̄)f(x̄) +
[
I +∆G(x̄)G−1(x̄)

]
ν̄ (3.13)

As shown, there are more terms present in the state change than just the desired change ν̄. Depending on
the model uncertainties, these components could cause degraded performance, or even instability.

This is also the major shortcoming of NDI. Fortunately, this problem can be solved by using adaptive

controllers, or by performing online system identification.

Another method of avoiding this shortcoming is by using incremental NDI, or INDI. INDI assumes that the

control input can be updated fast enough, such that the change of states is only dependent on the change

in input (see Figure 3.13). This comes, however, at the cost of required state derivative measurements.

Consider the taylor series expansion of the nonlinear function of the state derivative Equation 3.10

in Equation 3.14, which can be reduced to Equation 3.15 when neglecting higher order terms.

˙̄x = ˙̄x0 +
∂

∂x̄
[f(x̄) +G(x̄)ū]

∣∣∣∣
x0,u0

(x̄− x̄0) +
∂

∂ū
G(x̄)ū

∣∣∣∣
x0,u0

(ū− ū0) +H.O.T. (3.14)

˙̄x ≈ ˙̄x0 +
∂

∂x̄
f(x̄0)(x̄− x̄0) +G(x̄0)(ū− ū0) (3.15)

As can be seen from Equation 3.15, the second component on the right-hand side approaches zero if the

sampling frequency increases, since (x̄− x̄0) −→ 0 when the sampling frequency increases. Furthermore, it
is important to note that the dynamics of the vehicle and the control inputs must be separated in time, also

known as the timescale separation. Under normal circumstances, the rotor dynamics are indeed much

faster than the vehicle dynamics and it can therefore be assumed that the difference in states is zero, with

a nonzero difference in actuator inputs. In mathematical terms, this means that the change in state can be

approximated as Equation 3.16, where the change in state is only dependent on the input to the system.
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˙̄x ≈ ˙̄x0 +G(x̄0)(ū− ū0) (3.16)

Rearranging terms, and using an incremental input ∆ū yields Equation 3.17.

∆ū = G−1(x̄0)(ν̄ − ˙̄x0) (3.17)

An illustration of an INDI-controlled system is presented in a block diagram in Figure 3.13.

Figure 3.13: Block diagram of general INDI-controlled system.

As is apparent from Equation 3.17, the input of the system is no longer dependent on the non-linear

feedback model of the vehicle which is the major downside of NDI. On the other hand, there is an increased

dependency on the measurements taken or state estimations of the system ˙̄x0. This also means that the
states must be either measurable directly or indirectly. Another uncertainty can still exist in the control

effectiveness matrix G(x̄0).

Assuming an uncertainty of ∆G in the system and applying INDI as is done in Equation 3.12 and

Equation 3.13, yields Equation 3.18.

˙̄x = ν̄ +∆G(x̄0)G
−1(x̄0)ν −∆G(x̄0)G

−1(x̄0) ˙̄x0 (3.18)

When still assuming a high sampling rate, the difference between two state changes is negligible and
˙̄x ≈ ˙̄x0, meaning that Equation 3.19 holds and ˙̄x = ν̄ when the sampling frequency is high enough.

[
I +∆G(x̄0)G

−1(x̄0)
]
˙̄x =

[
I +∆G(x̄0)G

−1(x̄0)
]
ν̄ (3.19)

This means that INDI is robust to model uncertainties, even in the control effectiveness matrix. However,

INDI requires having sensors measuring the states fast enough.

3.6.2. State of the Art in INDI as a Flight Control System
INDI as a flight control system is already discussed in literature, especially in recent years.

In [50], a roust flight control system is designed that uses angular acceleration predictions. The controller

is designed for a general UAV that has a tail and an elevator. There are three distinct assumptions made

within this control strategy. These are the time-scale separation. It is considered that this effect can be

included as an additional uncertainty in the system. The second assumption is that the actuators are ideal,

which is typically not the case, but is necessary in order for the first assumption to be correct. The final

assumption is that the sensors used contain no biases, have no errors and no delays. In order to work

around the issue of time delays, a predictive filter is proposed to anticipate for time delays in the measured

angular accelerations. The advantage of such a filter is that the effect of time delay is reduced, but more

model knowledge is required, since the predictive filter needs model knowledge.
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In [31], an INDI control law is proposed that does not control the position of the actuators, but their

rate. From their results, the vehicle was able to use the actuators more effectively using this scheme, than

using pure INDI.

INDI has also a practical use in fault-tolerant control. Fault-tolerant control is a control scheme where the

controller is capable of appropriately handling with either broken or missing control surfaces. References

[65], [66] and [34] investigate the use of INDI under such circumstances, and INDI seems very robust in

such circumstances.

Another possible problem with INDI could be the saturation of control inputs. For this, multiple so-

lutions are proposed in literature. In [66], anti-windup is used in order to handle flight control with faulty

actuators. Anti-windup is a method that reduces control overshoots if actuator saturation limits are reached.

INDI as a control mechanism for helicopters has also already been investigated in literature. An in-

vestigation is performed on the implementation of an INDI controller for the Apache AH-64 helicopter in

[43]. It was found that normal INDI is not stable for this helicopter. The control inputs became saturated,

and the helicopter oscillated and was unstable. This problem was solved by reducing the inverse of the

control effectiveness matrix.

When investigating further, it was found that there was a time delay between the control input and the

control response of the main rotor. To compensate for this time delay, a lead filter was proposed to the

control input to synchronise the response of the helicopter with the input. Another proposal was done to

add a lag filter to the feedback to synchronise both the input signal and the angular acceleration signal.

The time delay is thought to be caused by the flapping dynamics of the main rotor. This has not been

included into this work, but should be of interest when implementing INDI for helicopters in the future.

3.6.3. Stability of INDI
As illustrated in Section 3.6.1, INDI is very robust to model uncertainties as long as the sampling frequency

is large enough. However, it is uncertain how large is large enough. Furthermore, INDI relies on infinitely

fast actuators which do not exist.

Reference [24] investigates this issue in particular by first finding the time delay margin τ∗ for INDI.

This time delay τ is the sampling time of the sensors. For SISO systems, this margin was found to be

Equation 3.20. MIMO systems can be decomposed to multiple SISO systems, which then follows the

same criteria. Note that for MIMO systems, the eigenvalue λ can be complex, whereas a SISO system

only has scalar values. β indicates the influence of the dynamics due to the states x̄.

τ > τ∗ = (1/λβ) (3.20)

Another finding is that when introducing the actuator dynamics to the system, the stability of the closed

loop system also changes as shown in Figure 3.14[24]. The two limits are found to be λ = ∞ and

λ = τ/2(r + τa), where r = τ/τa.
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Figure 3.14: Poles of closed-loop system based on eigenvalue λ[24].

It was noted that when λ = 1, the model exactly matches the estimated control effectiveness of the system.
However, if λ decreases, the dominant pole moves further away from the imaginary axis, resulting a more

stable system. Therefore, it seems as if underestimating the control effectiveness matrix, yields a better

transient response. This was also verified with simulations.

Another assumption made in INDI is the time-scale separation. In [59] an INDI control scheme is

proposed that does not use this assumption and is valid for any degree system. Unlike what is done in

typical literature, the time-scale separation part is not omitted from the equations. Lyaponov stability is

then used to prove stability of the system.

3.6.4. Example Problem
In this section, an example of is presented where an INDI controller controls the pure helicopter in case

3-DOF-PH-HUB-CG from the preliminary work. The controller follows a cascaded control structure as

shown in Figure 3.13. This means that the velocity is controlled using the attitude, the attitude using the

pitch rate, and the pitch rate via the pitch acceleration. Note that there is both an NDI and an INDI controller

present. The NDI controller uses the estimated ∂u̇
∂θf

to compute the required attitude for the desired velocity

change. The INDI controller inverts the attitude dynamics.

The control effectiveness matrix is updated each step with the current states by deriving the partial

derivatives presented in Equation 4.14. In this case, only the cyclic control is used to adjust the horizontal

velocity of the helicopter. The vertical speed w is still controlled using the PID from Section 4.2. The linear

PID controllers for the INDI controller were tuned empirically, and found to be:

• Airspeed controller: KPu = 0.2, KIu = 0 and KDu = 0.8

• Attitude controller: KPθf
= 1, KIθf

= 0 and KDθf
= 0.2

• Pitch rate controller: KPq = 1, KIq = 0 and KDq = 0.8

The gains for the PID controller were:

• Airspeed controller: KPu = −0.05, KIu = 0 and KDu = 0

• Attitude controller: KPθf
= −0.35, KIθf

= 0 and KDθf
= 0.26

The disturbance acting on this system is, just as in the pure helicopter PID case, a constant 1◦ cyclic
control input at the 10 second mark for 5 seconds. The controller is not activated before t = 15 seconds,
and is activated after this time.
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The response of the helicopter to the INDI and the PID controller is presented in Figure 3.17, with

the control inputs in Figure 3.15 and Figure 3.16.
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Figure 3.15: Cyclic control of the INDI controlled

pure helicopter from case 1.
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Figure 3.16: Collective control of the INDI

controlled pure helicopter from case 1.
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Figure 3.17: Comparison between INDI controller and PID controller for disturbed pure helicopter trimmed

at V = 1m/s.

Observing the responses of both the PID controller and the INDI controller, two things become apparent.

First of all, it seems that the INDI controller is more damped than the PID controller. This could, however,

also be attributed bad controller tuning. The second observation that can be made is that the INDI

controller seems to control very aggressively. The reason for this is that actuator dynamics are not

taken into account, and perfect actuators are assumed with saturations at ±10◦. It seems that for this
particular case, both controllers appear to have a stable result with the PID controller converging a bit faster.



3.6. INDI Control on Helicopters 54

3.6.5. Concluding Remarks
This section covered the working principle behind INDI as a control system, a literature of its uses as a

flight control system, an overview of its stability and an example use-case using the 3-DOF model from

Chapter 4.

The working principle behind INDI is moving from model dependency to sensor dependency. As was

shown in the derivation, the model of the vehicle based on the current states can be ignored for finding

the required control inputs. Instead, the control effectiveness and the derivative of the states are needed.

This requires accurate sensors or estimation methods. Fortunately, it was shown that as the sampling

frequency increases, the state derivative approaches the virtual control input.

The idea of using INDI as a flight control system is not new. It is proposed in multiple research papers

where its applications are divers. Research is done on general flight control as well as fault-tolerant control.

The stability of INDI was debatable, since it is based on the idea of having a large enough sampling

frequency, yet the required size is unknown. In literature, the stability of INDI was investigated as to find

the limits for the sampling time. Furthermore, INDI is based on the assumption of the time-scale separation.

This assumption is also tested in literature.

From the results of the example problem, it became clear that the INDI controller appears more damped

than the PID controller. The INDI controller also seems to control more aggressively, This is due to the

lack of actuator dynamics in the controlled system. The PID controller also appears to provide a quicker

response.



4
Preliminary study : 3-DOF Helicopter

Model

This chapter contains the derivation of a 3 degrees of freedom model of a helicopter with a hanging

load partially submerged in water. This is done to primarily get an understanding of the dynamics of the

helicopter with a partially submerged load. Furthermore, it is interesting to see he effects of different

configuration choices of the helicopter and the effects of different load models: A single pendulum and a

double pendulum. Finally, it is attempted to design a PID controller to stabilise the load. This is done to see

how well such a controller can stabilise a helicopter an can be used to compare PID control to INDI control.

The model is derived in 6 steps each at a higher level of complexity than the latter. This is done to make

distinctions between different configuration choices and see heir effects. The 6 cases are provided in

Table 4.1. The rotor hub location indicates the x-location of the hub in body frame. The load Model

indicates what load is suspended from the helicopter, the load location indicates where the hinge of the

load is located and the medium indicates in what medium the load is travelling. Air + Water indicating a

partially submerged load. This chapter is structured as follows: First, problem is defined in Section 4.1.

This includes the reference frames, the major model assumptions made and the simulation data used.

Then, the 6 different cases are covered. For each configuration, the equations of motion are derived.

After that, the model is trimmed and linearised using the Jacobian. This is followed by a stability anal-

ysis and the design of a PID and INDI controller. Finally, some concluding remarks are made in Section 4.8.

Table 4.1: Modelling cases for the 3-DOF model, each increasing the level of complexity.

3-DOF Model Cases

Case Rotor Hub Location Load Model Load Location Medium

3-DOF-PH-HUB-CG c.g. - - -

3-DOF-PH-HUB-OFF offset - - -

3-DOF-SP-CG-HUB-OFF offset Single Pendulum c.g. Air

3-DOF-SP-OFF-HUB-OFF offset Single Pendulum offset Air

3-DOF-DP-OFF-HUB-OFF offset Double Pendulum offset Air

3-DOF-DP-OFF-HUB-OFF-SUB offset Double Pendulum offset Air + Water

4.1. Problem Definition
4.1.1. Reference frames
For the 3-DOF model, 2 reference frames are used. These are illustrated in Figure 4.1.

• LVLH Frame: The local vertical local horizontal frame is centered in the c.g. of the helicopter and is

denoted with the subscript A. The xA axis points towards the front of the helicopter (the nose when

the fuselage angle is 0), the zA axis towards the ground and yA such that a right-handed system is

achieved.

55
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Figure 4.1: Body and LVLH reference frames

• Body Frame: The body frame is centered in the c.g. of the helicopter and is also attached to the

helicopter. It is denoted y subscript B. The xB axis points towards the nose and the zB axis towards

the bottom of the helicopter and the yB axis such that it is a right-handed system. The B frame is

therefore the A frame rotated the fuselage angle θf around the yA axis.

4.1.2. Assumptions
For each specific case, the following assumptions are used:

1. Initial horizontal flight. This means that the helicopter is assumed to not move in the zA direction

initially. It can move in both xA and zA direction due to disturbances;

2. All angles are assumed small when trimming the aircraft;

3. The load angle is assumed small when computing the virtual work of the drag of the load.

4.1.3. Simulation Data
In Table 4.2, the simulation data used throughout this chapter is presented. There are a few notes to

be made. In the cases where offsets are ignored, these offsets are set to zero. Furthermore, the chord

c and blade inertia IB are only used to compute the lock number. Additionally, the drag coefficient and

the frontal surface area of the helicopter are combined together in the variable CDS. Constant τ is the
time constant for dynamic inflow, since quasi-steady flow is assumed. The helicopter data belongs to the

Bo-105 helicopter.
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Table 4.2: Simulation data throughout the six simulation cases

Bo-105 Helicopter Data Environment Data Load Data

Variable Value Unit Variable Value Unit Variable Value Unit

m 2200 kg g 9.81 m/s2 m1 100 kg

Iy 4973 kgm2 ρ 1.225 kg/m3 m2 300 kg

IB 231.7 kgm2 ρw 997 kg/m3 xl 0.5 m

R 4.91 m hl 1.0 m

xh -0.08 m l1 30 m

h 1.48 m l2 30 m

c 0.27 m S1 1 m2

CDS 1.5 m2 S2 1 m2

Ω 44.4 rad/s CD1
0.5 -

clα 6.113 rad−1 CD2
0.5 -

σ 0.07 -

γ 5.0717 -

τ 0.1 -

4.2. Case 3-DOF-PH-HUB-CG
4.2.1. Configuration
The configuration of the pure helicopter with the rotor hub aligned with the c.g. of the helicopter in vertical

direction is shown in Figure 4.2. It is shown in the body frame. Also, the forces acting on the helicopter

and the variables used are given.

Figure 4.2: Diagram of case 3-DOF-PH-HUB-CG in body frame.
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4.2.2. Equations of Motion
The set of equations of motion can be found using force equilibrium of the forces in Figure 4.2 and are

given by Equation 4.1-Equation 4.4 [22] respectively.

u̇ =
T

m
sin (θc − a1)−

D

m

u

V
− g sin (θf )− qw (4.1)

ẇ = − T

m
cos (θc − a1)−

D

m

w

V
+ g cos (θf ) + qu (4.2)

q̇ = −Th
m

sin (θc − a1) (4.3)

θ̇f = q (4.4)

With:

sin (ε) =
w

V
; cos (ε) =

u

V
(4.5)

4.2.3. Trimming
The trimmed aircraft condition is found by setting all equations of motion equal to zero[22]. Furthermore, the

assumption is made that all angles are small and forward flight is assumed. This means that ε = θf . Also,
quasi-steady inflow is assumed. These assumptions lead to the following conclusions: From Equation 4.3,

it follows that θc = a1. Inserting this into Equation 4.1 leads to: tan (θf ) = − D
W . This result then yields:

T =
√
W 2 +D2, when plugged into Equation 4.2.

The induced velocity of the rotor can be found numerically using the expression for the thrust coef-

ficient according to the method of Glauert in Equation 4.6[22].

CT,Glau = 2λi

√√√√(( V

ΩR
cos (αd)

)2

+

(
V

ΩR
sin (αd) + λi

)2
)

(4.6)

With the small angles assumption, the following expressions hold:

αc = θc − tan−1
(w
u

)
≈ θc −

w

u
= θc − θf (4.7)

µ =
V cos (αc)

ΩR
≈ V

ΩR
(4.8)

λc =
V sin (αc)

ΩR
≈ µa1 − µθf (4.9)

With:

αd = αc − a1 = −θf =
D

W
(4.10)

With the expression of the thrust coefficient from blade element theory in Equation 4.11[22], and the

expression of the longitudinal flapping angle a1 in Equation 4.12, it is possible to derive a linear set of
equations as in Equation 4.13. The values of a1 and θ0 can then be computed very straightforward. Note
that in this situation, the cyclic is equal to the flapping angle a1, hence both control inputs are known.

CT,BEM = clα
σ

4

[
2

3
θ0

(
1 +

3

2
µ2

)
− (λc + λi)

]
(4.11)

a1 = θc =
8
3µθ0 − 2µ (λc + λi)

1− 1
2µ

2
(4.12)

[
1 + 3

2µ
2 − 8

3µ

−µ 2
3 + µ2

][
θc

θ0

]
=

[
−2µ2αd − 2µλi
4
σ

CT
clα

+ µαd + λi

]
(4.13)
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Following the above procedure, a trim curve can be produced for various flight speeds as is shown in

Figure 4.3. Note that for hover only the trim condition close to V = 0 is important. It makes sense that in
order to go faster, the cyclic must be tilted further forwards. It is also interesting to see that at first, the

collective decreases due to the increased massflow through the rotor, but at some point the collective also

needs to increase due to the cyclic pointing further and further forward.
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Figure 4.3: Trim curve for case 3-DOF-PH-HUB-CG

4.2.4. Model Linearisation
The non-linear model is linearised in order to assess its stability. It will also help when designing the

controllers later on. Linearisation is done by computing the Jacobian of the linear system with respect to

the states and the inputs around a trimmed condition. The linear system is then given by Equation 4.14.
u̇

ẇ

q̇

θ̇f

 =


∂u̇
∂u

∂u̇
∂w

∂u̇
∂q

∂u̇
∂θf

∂ẇ
∂u

∂ẇ
∂w

∂ẇ
∂q

∂ẇ
∂θf

∂q̇
∂u

∂q̇
∂w

∂q̇
∂q

∂q̇
∂θf

∂θ̇f
∂u

∂θ̇f
∂w

∂θ̇f
∂q

∂θ̇f
∂θf



u

w

q

θf

+


∂u̇
∂θc

∂u̇
∂θ0

∂ẇ
∂θc

∂ẇ
∂θ0

∂q̇
∂θc

∂q̇
∂θ0

∂θ̇f
∂θc

∂θ̇f
∂θ0


[
θc

θ0

]
(4.14)

The Individual partial derivatives from Equation 4.14 are given by Equation 4.15-Equation 4.18. These are

derived by computing the partial derivatives of Equation 4.1-Equation 4.4. Note that the subscript PH
indicates that this partial derivative holds for a pure helicopter. This is for cases 3-DOF-PH-HUB-CG and

3-DOF-PH-HUB-OFF. The partial derivatives of T , D, V and a1 are found in Appendix A.

Partial Derivatives of u̇
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(
∂u̇

∂u

)
PH

=
∂T

∂u

sin (θc − a1)

m
− T

m
cos (θc − a1)

∂a1
∂u

− ∂D

∂V

∂V

∂u

u

mV
− D

mV
+

Du

mV 2

∂V

∂u(
∂u̇

∂w

)
PH

=
∂T

∂w

sin (θc − a1)

m
− T

m
cos (θc − a1)

∂a1
∂w

− ∂D

∂V

∂V

∂w

u

mV
+

Du

mV 2

∂V

∂w
− q(

∂u̇

∂q

)
PH

= − T

m
cos (θc − a1)

∂a1
∂q

− w(
∂u̇

∂θf

)
PH

= −g cos (θf )(
∂u̇

∂θc

)
PH

=
∂T

∂θc

sin (θc − a1)

m
+
T

m
cos (θc − a1)

(
1− ∂a1

∂θc

)
(
∂u̇

∂θ0

)
PH

=
∂T

∂θ0

sin (θc − a1)

m
− T

m
cos (θc − a1)

∂a1
∂θ0

(4.15)

Partial Derivatives of ẇ(
∂ẇ

∂u

)
PH

= −∂T
∂u

cos (θc − a1)

m
− T

m
sin (θc − a1)

∂a1
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∂u

w

mV
+

Dw

mV 2

∂V

∂u
+ q(

∂ẇ
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w
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+

Dw
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∂ẇ
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∂a1
∂q

+ u(
∂ẇ

∂θf

)
PH

= −g sin (θf )(
∂ẇ

∂θc

)
PH

= − ∂T

∂θc

cos (θc − a1)

m
+
T

m
sin (θc − a1)
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∂θc
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(
∂ẇ

∂θ0

)
PH

= − ∂T

∂θ0

cos (θc − a1)

m
− T

m
sin (θc − a1)
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∂θ0

(4.16)

Partial Derivatives of q̇(
∂q̇

∂u

)
PHCG

= −∂T
∂u

h sin (θc − a1)

Iy
+
Th

Iy
cos (θc − a1)

∂a1
∂u(

∂q̇

∂w

)
PHCG

= −∂T
∂w

h sin (θc − a1)

Iy
+
Th
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cos (θc − a1)

∂a1
∂w(

∂q̇

∂q

)
PHCG
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Th

Iy
cos (θc − a1)

∂a1
∂q(

∂q̇

∂θf

)
PHCG

= 0(
∂q̇

∂θc
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PHCG

= − ∂T

∂θc

h sin (θc − a1)

Iy
− Th
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(4.17)

Partial Derivatives of θ̇f(
∂θ̇f
∂u

)
PH

=

(
∂θ̇f
∂w

)
PH

=

(
∂θ̇f
∂θf

)
PH

=

(
∂θ̇f
∂θc

)
PH

=

(
∂θ̇f
∂θ0

)
PH

= 0(
∂θ̇f
∂q

)
PH

= 1

(4.18)
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The resultant linear system is given in Equation 4.19.


u̇

ẇ

q̇

θ̇f

 =


−0.014 0.000 0.697 −9.810

0.000 −0.984 1.000 0.000

0.008 0.000 −0.456 0.000

0.000 0.000 1.000 0.000



u

w

q

θf

+


9.810 −0.120

0.984 −142.976

−6.423 0.079

0.000 0.000


[
θc

θ0

]
(4.19)

To verify the correctness of the linear model, the response of both the linear and the nonlinear model

are plotted when subjected to a disturbance. For this verification, both models are trimmed at a forward

velocity of 1 m/s. The disturbance is a 1 degrees increase in cyclic control relative to trim at the 5 second

mark. After 5 more seconds, the cyclic control is brought back to the trimmed value. The simulation results

are presented in Figure 4.4. As shown, both the linear system approximates the nonlinear system very

well until about 15 seconds, but diverges quickly after that. That is to be expected. The response of the

system is unstable, which will be discussed in Section 4.2.5. Also note the two vertical dotted lines. these

indicate the start and end of the disturbance.

Furthermore, the vertical velocity w diverges quickly. This is due to linearisation. As shown in Equation 4.19,

ẇ is very dependent on q. This is due to the+qu component in the equations of motion. Since the helicopter
is trimmed around a V = 1 m/s, this value is almost equal to 1. In the nonlinear system, this component
scales with the actual u, hence ẇ is in the nonlinear system differently dependent on u, depending on the
value of u. u̇ has this same problem with w, but since horizontal flight is assumed, w is small anyway,

hence this effect does not propagate that much.

Figure 4.4: Response of linear and non-linear hovering helicopter model case 3-DOF-PH-HUB-CG to

input disturbance on cyclic of 1 degree for 5 seconds.

4.2.5. Stability Analysis
Stability of the helicopter is assessed by obtaining the poles of the linearised system. The poles of this

system are given in Table 4.3, with their location plotted in Figure 4.5. Note that the phugoid mode of the
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helicopter model is unstable. This was also observed when verifying the linear model. This is also expected.

Table 4.3: Poles of linearised system for case 3-DOF-PH-HUB-CG, trimmed at V = 1 m/s

Pole Real part Complex part Mode

1 -0.985 0.000 -

2 -0.657 0.000 Short Period

3 0.094 0.339 Phugoid

4 0.094 -0.339 Phugoid

Figure 4.5: Pole-Zero map of linearised system for case 3-DOF-PH-HUB-CG, trimmed at V = 1 m/s.

4.2.6. Controller Design
In this section, a controller will be designed in order to control the unstable helicopter model. This is done

in 3 steps. First, a pitch angle θf controller is designed, after that, a horizontal body velocity u controller is
designed. Finally, a controller for the vertical body velocity w is designed.

Pitch angle θf controller
The pitch angle controller will have two variants: a PID and an INDI controller. These will have different

control laws and gains, and has to be designed separately,

From Equation 4.19, the following assumptions can be made: Since u will remain small, its effect on the
pitch rate will be negligible. This is also the case for the influence of the collective pitch. Therefore, the

second derivative of the fuselage angle (or q̇) can be approximated as in Equation 4.20.

θ̈f = q̇ =
∂q̇

∂u
u+

∂q̇

∂q
q +

∂q̇

∂θc
θc +

∂q̇

∂θ0
θ0 ≈ ∂q̇

∂q
q +

∂q̇

∂θc
θc =

∂q̇

∂q
θ̇f +

∂q̇

∂θc
θc (4.20)

PID controller

For the linear PID controller, the decision is made to make it a PD controller. The reason for this is that the

body velocity u is used as an outer loop for this controller, meaning that the integral term is redundant for

this controller.

This means that the control law becomes: θc = Kpθf (θfc − θf ) +Kdθf
d
dt (θfc − θf ). Note that the second
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subscript
c
after θf indicates ”commanded”, since θfc is the reference pitch angle for the pitch angle

controller. This control law leads to Equation 4.21.

θ̈f =
∂q̇

∂q
θ̇f +

∂q̇

∂θc
Kpθf θfc +

∂q̇

∂θc
Kdθf θ̇fc −

∂q̇

∂θc
Kpθf θf − ∂q̇

∂θc
Kdθf θ̇f (4.21)

Going to the laplace domain, yields the transfer function of the fuselage angle w.r.t. to its reference value

in Equation 4.22.

θf (s)

θfc(s)
=

∂q̇
∂θc

Kpθf

s2 −
(

∂q̇
∂q + ∂q̇

∂θc
Kdθf

)
s+ ∂q̇

∂θc
Kpθf

=
ω2
n

s2 + 2ζω2
ns+ ω2

n

(4.22)

Since this is a simple second order system, the poles are found using Equation 4.23, where ωn is the

natural frequency of the response and ζ the damping ratio.

p1,2 = −ζωn ± ωn

√
ζ2 − 1 (4.23)

The values for the gains can then be derived to be:

Kpθf =
ω2
n

∂q̇
∂θc

;Kdθf = −
2ζωn + ∂q̇

∂q

∂q̇
∂θc

(4.24)

Choosing ωn = 1.5 rad.s ζ = .5
√
2, yields a set of gains equal to Kpθf = −0.35,Kdθf = −0.26.

INDI controller

The INDI controller has a slightly different structure than the PID controller. It is a 2-loop controller where

the inner loop controls the pitch rate, and the outer loop the pitch angle. This means that its transfer

function is different as well, and thus its required gains too.

The principle behind INDI is that the state derivative changes fast enough, such that the only change in

its derivative is caused by the control input. This means that the derivative of the pitch rate becomes

Equation 4.25, and the inverse of the system will thus be inverse of the partial derivative, which is simply
∂θc
∂q̇ .

θ̈f = q̇ =
∂q̇

∂θc
θc (4.25)

Now, by multiplying the control input with the model inverse, the control loop becomes a double integral,

meaning that the controller design is now linear, and a linear controller can be used. As control law,

Equation 4.26 is used with the reference pitch rate is Kpθf (θfc − θf ).

θc = Kpq
θc
q̇

(
Kpθf (θfc − θf )− q̇

)
(4.26)

Going to the Laplace domain for the inner pitch rate loop, and rearranging terms, Equation 4.27 is obtained.

q(s)

qc(s)
=

Kpq

s+Kpq

(4.27)

The outer loop of the controller is the controller for the attitude angle θf . Since the pitch rate is the derivative
of the pitch angle, this loop is also an integral, and the transfer function becomes Equation 4.28.

θf (s)

θfc(s)
=

Kpq
q(s)
qc(s)

s+Kpq
q(s)
qc(s)

(4.28)

Filling Equation 4.27 into Equation 4.28 yields a second order transfer function with Equation 4.29 as

denominator. Choosing derivative gains of 0, yields a solution equal to Kpθf
= ωn

2ζ and Kpq = 2ζωn. With

ωn = 1.5 and ζ = 0.5
√
2, this is equal to 1.06 and 2.12 respectively.
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s2 +Kpqs+Kpθf
Kpq = s2 + 2ζωns+ ω2

n (4.29)

Horizontal body velocity u controller
Now the controller for the horizontal body velocity is designed. This is a controller in a loop around the

pitch angle controller. Note that this controller is a PID, regardless whether the pitch angle controller is a

PID or an INDI. However, there is some difference in determining the gains, since the control law for the

pitch angle controller is different. Therefore, the u controller for the PID has a different derivation of the

gains than for the INDI pitch angle controller.

Here too, when observing the linear system in Equation 4.19, certain parts of the model can be removed.

The contribution of u on u̇ is negligible since u will remain small. This is also the case for the collective
pitch. This leaves Equation 4.30 as a simplified model.

u̇ =
∂u̇

∂u
u+

∂u̇

∂q
q +

∂u̇

∂θf
θf +

∂u̇

∂θc
θc +

∂u̇

∂θ0
θ0 ≈ ∂u̇

∂q
q +

∂u̇

∂θf
θf +

∂u̇

∂θc
θc (4.30)

PID controller

Inserting the control law for the pitch angle controller and going to the laplace domian yields the transfer

function of u with respect to θfc Equation 4.31.

u(s)

θfc(s)
=

1

s

[([
∂u̇

∂q
+
∂u̇

∂θc
Kdθf

]
s+

[
∂u̇

∂θf
+
∂u̇

∂θc
Kpθf

])
θf (s)

θfc(s)
+Kpθf

∂u̇

∂θc
+Kdθf

∂u̇

∂θc
s

]
(4.31)

The control law for u will be a PD controller, with control law: θfc = Kpu (uc − u) +Kdu
d
dt (uc − u).

Inserting this into Equation 4.31 and rearranging terms will yield the transfer function of u(s) w.r.t. uc(s),
and results in a 4th order transfer function with the following denominator:

k1Kdus
4 + [1 + k1Kpu + k2Kdu] s

3 + [2ζωn + k2Kpu + k3Kdu] s
2 +

[
ω2
n + k3Kpu + k4Kdu

]
s+ k4Kpu

(4.32)

with

k1 =
∂u̇

∂θc
Kdθf

k2 =
∂u̇

∂θc
Kpθf + 2

∂u̇

∂θc
Kdθf ζωn

k3 =
∂u̇

∂θf
ω2
n + 2

∂u̇

∂θc
Kpθf ζωn

k4 =
∂u̇

∂q
ω2
n

(4.33)

Since this is a 4th order polynomial, the solution to finding the zeros of this function is not trivial. However,
there are a set of 5 constraints that will yield positive constants at all multiples of s. This would ensure
stability. These constraints are presented below. Unfortunately, there is no combination of controller gains

that satisfies all constraints. This means that it is not possible to find the gains analytically. A proportional

gain of Kpu = −0.02 and a derivative gain of Kpu = 0.0 is chosen.

INDI controller

Just as with the PID, Equation 4.31 holds. However, the transfer function
θf

θθfc
is different.Using the same

control law for u as the PID, the transfer function for ∂u
∂uc

can be obtained. This is, unlike with the PID, a

third order transfer function, with the denominator:

[1 + k1Kdu] s
3 + [2ζωn + k1Kpu + k2Kdu] s

2 +
[
ω2
n + k2Kpu + k3Kdu

]
s+ k3Kpu (4.34)
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With:

k1 =
∂u̇

∂θc

∂θc
∂q̇

KpqKpθf

k2 = 2
∂u̇

∂θc

∂θc
∂q̇

KpqKpθf ζωn +
∂u̇

∂θc

∂θc
∂q̇

Kpqω
2
n +

∂u̇

∂q
ω2
n

k3 =
∂u̇

∂θf
ω2
n

(4.35)

This leads to the following set of constraints for ensuring stability:

Kdu > − 1

k1

Kpu >
−2ζωn − k2Kdu

k1

Kpu >
−ω2

n − k3Kdu
k2

k3Kpu > 0

(4.36)

This set does provide a region where all constraints are met. Choosing Kpu = −0.02 and Kdu = 0 meets
these criteria and produces a stable result.

w controller

PID control

When observing the equation of ẇ in Equation 4.19, it is clear that by far the largest contribution is generate

by the collective pitch. Therefore, the equation of ẇ can be rewritten to

ẇ ≈ ∂ẇ

∂θ0
θ0 (4.37)

Applying the following PD control law: θ0 = Kpw (wref − w) +Kdw
d
dt (wref − w) s yields Equation 4.38 as

transfer function of w
w(s)

wref (s)
=

Kpw +Kdws

s
(
1 + ∂ẇ

∂θ0
Kdw

)
+ ∂ẇ

∂θ0
Kpw

(4.38)

This is a first order system. Choosing a time constant of τ = 0.1, and a derivative gain of Kdw = 0, yields
a proportional gain of Kpw = −0.07.

INDI control

Here, just as with the θf controller, the derivative is assumed to change by control input only (this was also
assumed for the PID controller due to the large contribution of the control input). Using the partial derivative

in Equation 4.37 as the model inverse, the system becomes an integral and is now linear. This means that

the controller has the same structure as Equation 4.28 and the same gains apply to the proportional and

derivative gains for the inner ẇ and outer w loop respectively, meaning that they have as gains: Kpw = ωn
2ζ

and Kpẇ = 2ζωn. With ωn = 1.5 and ζ = 0.5
√
2, this is equal to 1.06 and 2.12 respectively.

4.2.7. Assessing Controllers
The performance of the controllers can be assessed by subjecting them to a disturbance input. For this,

both controllers are simulated using the non-linear model, trimmed at a forward velocity of 1 m/s. The

disturbance is a 1 degrees increase in cyclic control relative to trim at the 5 second mark. After 5 more

seconds, the cyclic control is brought back to the trimmed value. The controllers are turned on after 10

seconds. Also note the two vertical dotted lines. these indicate the start and end of the disturbance. The

end of the disturbance also marks the start of the controllers. Additionally, note that these are 2 separate
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simulations. One using the PID pitch angle controller, PID horizontal velocity controller and PID vertical

velocity controller denoted by PID and one using the INDI pitch angle controller, PID horizontal velocity

controller and INDI vertical velocity controller denoted by INDI .

Also, the control inputs are limited to ±10◦ and the control input rate is limited to 25◦/s.
The helicopter response using both controllers is shown in Figure 4.6, with the cyclic and collective inputs

in Figure 4.7 and Figure 4.8. As shown, both controllers are capable of controlling the given disturbance

and have similar response. Both controllers appear to reach the limit on the cyclic control input, but on the

cyclic this is not the case. The INDI controller appears to have smoother control inputs than the PID, but

this could be attributed to controller tuning. Nevertheless, both controllers perform equally well.

Figure 4.6: Response of controlled hovering helicopter case 3-DOF-PH-HUB-CG to input disturbance on

cyclic of 1 degree for 5 seconds.

Figure 4.7: Cylcic control of the controlled

hovering helicopter case 3-DOF-PH-HUB-CG to

input disturbance on cyclic of 1 degree for 5

seconds.

Figure 4.8: Collective control of the controlled

hovering helicopter case 3-DOF-PH-HUB-CG to

input disturbance on cyclic of 1 degree for 5

seconds.
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4.3. Case 3-DOF-PH-HUB-OFF
4.3.1. Configuration
Typically, the rotor hub is not aligned with the c.g. of the helicopter. This means that there is an additional

moment created by the position of the rotor hub in xB direction. This is illustrated in Figure 4.9.

Figure 4.9: Diagram of case 3-DOF-PH-HUB-OFF in xB frame.

4.3.2. Equations of Motion
Since the forces remain unchanged, only the q̇ equation changes.

q̇ = T cos (θc − a1)
xh
Iy

− T sin (θc − a1)
h

Iy
(4.39)

4.3.3. Trimming
Trimming is done via the same procedure as in case Case 3-DOF-PH-HUB-CG. The equations for this

procedure are as follows:

θc = a1 + tan−1

(
xh

h

)
(4.40)

αd = tan−1
(xh
h

)
− θf (4.41)

tan (θf ) = −Dh−Wxh
Wh+Dxh

(4.42)

T =

√
(D cos (θf ) +W sin (θf ))

2
+ (−D cos (θf ) +W sin (θf ))

2
(4.43)
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[
θc

θ0

]
=

[
1 + 3

2µ
2 − 8

3µ

−µ 2
3 + µ2

]−1 [
−2µ2αd − 2µλi
4
σ

CT
clα

− µθf + λi

]
+

[
tan−1

(
xh
h

)
0

]
(4.44)

The trim curves for different airspeeds are presented in Figure 4.10. Here, the helicopter was trimmed for

multiple rotor hub locations relative to the c.g. What is clear from this diagram is that the further the hub

is located backwards, the smaller the trimmed cyclic position. This makes sense, since in the trimmed

condition, the fuselage is aligned such that the rotor hub is directly above the c.g. This is also visible in

the collective remaining constant for each configuration. Note that for the rest of the simulation cases,

xh = −0.08 will be used.
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Figure 4.10: Trim curve for case 3-DOF-PH-HUB-OFF where the rotor hub is located at different offsets

of xhm in xB direction.

4.3.4. Model Linearisation
Only the partial derivatives w.r.t. q change. Note the subscript PHOFF . This indicates Pure Helicopter,

with hub at OFFset, which applies to case 3-DOF-PH-HUB-OFF.

Partial Derivatives of q̇(
∂q̇

∂u

)
PHOFF

=
∂T

∂u

(
xh cos (θc − a1)

Iy
− h sin (θc − a1)

Iy

)
+
∂a1
∂u

(
Txh
Iy

sin (θc − a1) +
Th

Iy
cos (θc − a1)

)
(4.45)(

∂q̇

∂w

)
PHOFF

=
∂T

∂w

(
xh cos (θc − a1)

Iy
− h sin (θc − a1)

Iy

)
+
∂a1
∂w

(
Txh
Iy

sin (θc − a1) +
Th

Iy
cos (θc − a1)

)
(4.46)(

∂q̇

∂q

)
PHOFF

=
∂a1
∂q

(
Txh
Iy

sin (θc − a1) +
Th

Iy
cos (θc − a1)

)
(4.47)(

∂q̇

∂θf

)
PHOFF

= 0 (4.48)(
∂q̇

∂θc

)
PHOFF

=
∂T

∂θc

(
xh cos (θc − a1)

Iy
− h sin (θc − a1)

Iy

)
−
(
Txh
Iy

sin (θc − a1) +
Th

Iy
cos (θc − a1)

)(
1− ∂a1

∂θc

)
(4.49)
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(
∂q̇

∂θ0

)
PHOFF

=
∂T

∂θ0

(
xh cos (θc − a1)

Iy
− h sin (θc − a1)

Iy

)
+
∂a1
∂θ0

(
Txh
Iy

sin (θc − a1) +
Th

Iy
cos (θc − a1)

)
(4.50)

The resultant linear system is given in Equation 4.51.
u̇

ẇ

q̇

θ̇f

 =


−0.016 −0.052 0.750 −9.796

−0.052 −0.981 0.961 0.530

0.008 0.000 −0.457 0.000

0.000 0.000 1.000 0.000



u

w

q

θf

+


9.849 7.837

0.453 −142.762

−6.433 0.079

0.000 0.000


[
θc

θ0

]
(4.51)

To verify the correctness of the linear model, the response of both the linear and the nonlinear model are

plotted when subjected to a disturbance. This is done exactly the same way as in case 3-DOF-PH-HUB-CG.

The simulation results are presented in Figure 4.11. Just as in case 3-DOF-PH-HUB-CG, the approximation

is very good until around 15 seconds, after which the linear model diverges. Also the same phenomena

with the body velocity w appeared. Nevertheless, the linearised model appears to approximate the system

well.

Figure 4.11: Response of linear and non-linear hovering helicopter model case 3-DOF-PH-HUB-OFF to

input disturbance on cyclic of 1 degree for 5 seconds.

4.3.5. Stability Analysis
Stability of the helicopter is assessed by obtaining the poles of the linearised system. The poles of this

system are given in Table 4.4, with their location plotted in Figure 4.12. Note that the phugoid mode of the

helicopter model for this case is also unstable.
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Table 4.4: Poles of the linearised pure helicopter model with the rotor hub offset the c.g. of the helicopter

trimmed at V = 1m/s.

Pole Real part Complex part Mode

1 -0.985 0.000 -

2 -0.657 0.000 Short Period

3 0.094 0.339 Phugoid

4 0.094 -0.339 Phugoid

Figure 4.12: Pole-Zero map of linearised system for case 3-DOF-PH-HUB-OFF, trimmed at V = 1 m/s.

4.3.6. Assessing Controllers
The controllers used for this system are exactly the same controllers as for the system in case 3-DOF-PH-

HUB-CG. This is due to the fact that both systems are very similar and the controller yields a stable result.

Both controllers are simulated using the same procedure as in case 3-DOF-PH-HUB-CG.

The result is presented in Figure 4.13 for the helicopter response, Figure 4.14 and Figure 4.15 for the

control inputs. The response of the helicopter is very similar to that of case 3-DOF-PH-HUB-CG. However,

now there is a steady state error in the horizontal body velocity u. This is caused by the offset in the hub
location. The u-controller is a PID without integral component. This means that each u error corresponds
to a certain attitude angle. As a result, there is a velocity error where the controller sends an attitude angle

reference where the helicopter is in steady state.
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Figure 4.13: Response controlled hovering helicopter case 3-DOF-PH-HUB-OFF to input disturbance on

cyclic of 1 degree for 5 seconds.

Figure 4.14: Cyclic control of the controlled

hovering helicopter case 3-DOF-PH-HUB-OFF to

input disturbance on cyclic of 1 degree for 5

seconds.

Figure 4.15: Collective control of the controlled

hovering helicopter case 3-DOF-PH-HUB-OFF to

input disturbance on cyclic of 1 degree for 5

seconds.

4.4. Case 3-DOF-SP-CG-HUB-OFF
4.4.1. Configuration
The configuration for case 3 where the single pendulum load is attached to the c.g. of the helicopter is

shown in Figure 4.16 for the A frame and body frame respectively.
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Figure 4.16: Diagram of case 3-DOF-SP-CG-HUB-OFF in xB frame.

4.4.2. Equations of Motion
The Single pendulum model is graphically shown in Figure 4.17. The Lagrange’s equation can be used to

obtain the equations of motion for the system, although it can also be done with torque equilibrium. The

equation of motion is presented in Equation 4.52, with the generalised drag force in Equation 4.53. Also

note the subscripts 0 and 1. 0 indicates a property of the helicopter itself, whereas 1 indicates a property of
the pendulum mass.

m1l
2
1θ̈1 = Q1 +m1l1 [ẍ0 cos (θ1) + z̈0 sin (θ1)]−W1l1 sin (θ1) (4.52)

Q1 = sgn(ẋ1) ·D1x l1 cos (θ1) + sgn(ż1) ·D1z l1 sin (θ1) (4.53)

With:

ẋ0 = u cos (θf ) + w sin (θf ) −→ ẍ0 = u̇ cos (θf )− u sin (θf )q + ẇ sin (θf ) + w cos (θf )q

ż0 = −u sin (θf ) + w cos (θf ) −→ z̈0 = −u̇ sin (θf )− u cos (θf )q + ẇ cos (θf )− w sin (θf )q
(4.54)

ẋ1 = ẋ0 − l1 cos (θ1)θ̇1 −→ ẍ1 = ẍ0 − l1 cos (θ1)θ̈1 + l1 sin (θ1)θ̇
2
1

ż1 = ż0 − l1 sin (θ1)θ̇1 −→ z̈1 = z̈0 − l1 sin (θ1)θ̈1 − l1 cos (θ1)θ̇
2
1

(4.55)

D1x =
1

2
ρẋ21CD1S1;D1z =

1

2
ρż21CD1S1 (4.56)

Fct1 = m1l1θ̇
2
1 (4.57)

Fc = D1x sin (θ1)−D1z cos (θ1) +W1 cos (θ1) + Fct1 (4.58)

Helicopter Model

u̇ =
T

m
sin (θc − a1)−

D

m
cos (ε)− g sin (θf )− qw − Fc

m
sin (θ1 + θf ) (4.59)
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ẇ = − T

m
cos (θc − a1)−

D

m
sin (ε) + g cos (θf ) + qu+

Fc

m
cos (θ1 + θf ) (4.60)

q̇ = T cos (θc − a1)
xh
Iy

− T sin (θc − a1)
h

Iy
(4.61)

θ̇f = q (4.62)

With:

sin (ε) =
w

V
; cos (ε) =

u

V
(4.63)

Figure 4.17: Diagram of single pendulum model.

4.4.3. Trimming
Trimming is done via the procedure in 3-DOF-PH-HUB-CG. This leads to the following expressions

θc = a1 + tan−1
(xh
h

)
(4.64)

tan (θf ) =
xh [W + Fc cos (θ1)]− h [D + Fc sin (θ1)]

xh [D + Fc sin (θ1)] + h [W + Fc cos (θ1)]
(4.65)

T =
√
([D + Fc sin (θ1)] cos (θf ) + [W + Fc cos (θ1)] sin (θf ))

2
+ ([W + Fc cos (θ1)] cos (θf )− [D + Fc sin (θ1)] sin (θf ))

2 (4.66)

tan (θ1) =
D1

W1
;Fc =

√
W 2

1 +D2
1 (4.67)

The trimmed condition is then found using Equation 4.44. The trim curve is presented in Figure 4.18.
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Figure 4.18: Trim curve for case 3-DOF-SP-CG-HUB-OFF.

4.4.4. Model Linearisation

For creating a linear system, two extra states are added: θ̇1 and θ1. This leads to the linear system in

Equation 4.68. This means that also the partial derivatives of these states are required as well. The

derivatives of q̇ and θf are the same as for the case with the pure helicopter with offset rotor hub. Their
partial derivatives with the load angle θ1 and its rate are equal to zero. Also note the subscript SP , PH and

PHOFF . These indicate the partial derivative for the single pendulum, pure helicopter and pure helicopter

with offset rotor hub respectively. Partial derivatives of components of the pendulum equations of motion

can be found in Appendix B.

Derivatives of θ̈1



u̇

ẇ

q̇

θ̇f

θ̈1

θ̇1


=



∂u̇
∂u

∂u̇
∂w

∂u̇
∂q

∂u̇
∂θf

∂u̇
∂θ̇1

∂u̇
∂θ1

∂ẇ
∂u

∂ẇ
∂w

∂ẇ
∂q

∂ẇ
∂θf

∂ẇ
∂θ̇1

∂ẇ
∂θ1

∂q̇
∂u

∂q̇
∂w

∂q̇
∂q

∂q̇
∂θf

∂q̇

∂θ̇1

∂q̇
∂θ1

∂θ̇f
∂u

∂θ̇f
∂w

∂θ̇f
∂q

∂θ̇f
∂θf

∂θ̇f
∂θ̇1

∂θ̇f
∂θ1

∂θ̈1
∂u

∂θ̈1
∂w

∂θ̈1
∂q

∂θ̈1
∂θf

∂θ̈1
∂θ̇1

∂θ̈1
∂θ1

∂θ̇1
∂u

∂θ̇1
∂w

∂θ̇1
∂q

∂θ̇1
∂θf

∂θ̇1
∂θ̇1

∂θ̇1
∂θ1





u

w

q

θf

θ̇1

θ1


+



∂u̇
∂θc

∂u̇
∂θ0

∂ẇ
∂θc

∂ẇ
∂θ0

∂q̇
∂θc

∂q̇
∂θ0

∂θ̇f
∂θc

∂θ̇f
∂θ0

∂θ̈1
∂θc

∂θ̈1
∂θ0

∂θ̇1
∂θc

∂θ̇1
∂θ0


[
θc

θ0

]
(4.68)

Partial Derivatives of u̇

∂u̇

∂uSP
=
∂u̇

∂uPH
− ∂Fc

∂u

sin(θ1 + θf )

m
(4.69)

∂u̇

∂w SP
=
∂u̇

∂wPH
− ∂Fc

∂w

sin(θ1 + θf )

m
(4.70)

∂u̇

∂q SP

=
∂u̇

∂q PHOFF

(4.71)

∂u̇

∂θf SP

=
∂u̇

∂θf PH

− Fc

m
cos (θ1 + θf )−

∂Fc

∂θf

sin(θ1 + θf )

m
(4.72)
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∂u̇

∂θ̇1 SP

= −∂Fc

∂θ̇1

sin(θ1 + θf )

m
(4.73)

∂u̇

∂θ1 SP

= −Fc

m
cos (θ1 + θf )−

∂Fc

∂θ1

sin(θ1 + θf )

m
(4.74)

∂u̇

∂θc SP

=
∂u̇

∂θc PH

(4.75)

∂u̇

∂θ0 SP

=
∂u̇

∂θ0 PH

(4.76)

Partial Derivatives of ẇ

∂ẇ

∂u SP
=
∂u̇

∂uPH
+
∂Fc

∂u

cos(θ1 + θf )

m
(4.77)

∂ẇ

∂w SP
=
∂u̇

∂wPH
+
∂Fc

∂w

cos(θ1 + θf )

m
(4.78)

∂ẇ

∂q SP

=
∂u̇

∂q PH

(4.79)

∂ẇ

∂θf SP

=
∂u̇

∂θf PH

− Fc

m
sin (θ1 + θf ) +

∂Fc

∂θf

cos(θ1 + θf )

m
(4.80)

∂ẇ

∂θ̇1 SP

=
∂Fc

∂θ̇1

cos(θ1 + θf )

m
(4.81)

∂ẇ

∂θ1 SP

= −Fc

m
sin (θ1 + θf ) +

∂Fc

∂θ1

cos(θ1 + θf )

m
(4.82)

∂ẇ

∂θc SP

=
∂ẇ

∂θc PH

(4.83)

∂ẇ

∂θ0 SP

=
∂ẇ

∂θ0 PH

(4.84)

Partial Derivatives of θ̈1

∂θ̈1
∂u

=
∂θ̈1
∂Q1

∂Q1

∂u
+

θ̈1
∂ẍ0

∂ẍ0
∂u

+
θ̈1
∂z̈0

∂z̈0
∂u

(4.85)

∂θ̈1
∂w

=
∂θ̈1
∂Q1

∂Q1

∂w
+

θ̈1
∂ẍ0

∂ẍ0
∂w

+
θ̈1
∂z̈0

∂z̈0
∂w

(4.86)

∂θ̈1
∂q

=
θ̈1
∂ẍ0

∂ẍ0
∂q

+
θ̈1
∂z̈0

∂z̈0
∂q

(4.87)

∂θ̈1
∂θf

=
∂θ̈1
∂Q1

∂Q1

∂θf
+

θ̈1
∂ẍ0

∂ẍ0
∂θf

+
θ̈1
∂z̈0

∂z̈0
∂θf

(4.88)

∂θ̈1

∂θ̇1
=

∂θ̈1
∂Q1

∂Q1

∂θ̇1
+

θ̈1
∂ẍ0

∂ẍ0

∂θ̇1
+

θ̈1
∂z̈0

∂z̈0

∂θ̇1
(4.89)

∂θ̈1
∂θ1

=
∂θ̈1
∂Q1

∂Q1

∂θ1
+

θ̈1
∂ẍ0

∂ẍ0
∂θ1

+
θ̈1
∂z̈0

∂z̈0
∂θ1

− g

l1
cos (θ1) (4.90)

θ̈1
∂θc

=
θ̈1
∂ẍ0

∂ẍ0
∂θc

+
θ̈1
∂z̈0

∂z̈0
∂θc

(4.91)

θ̈1
∂θ0

=
θ̈1
∂ẍ0

∂ẍ0
∂θ0

+
θ̈1
∂z̈0

∂z̈0
∂θ0

(4.92)
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Partial Derivatives of θ̇1

∂θ̇1
∂u

=
∂θ̇1
∂w

=
∂θ̇1
∂q

=
∂θ̇1
∂θf

=
∂θ̇1
∂θc

=
∂θ̇1
∂θ0

=
∂θ̇1
∂θ1

= 0 (4.93)

∂θ̇1

∂θ̇1
= 1 (4.94)

The resulting system when trimming for a velocity of 1 m/s is presented in Equation 4.95.

u̇

ẇ

q̇

θ̇f

θ̈1

θ̇1


=



−0.021 −0.053 0.877 −11.577 0.000 −1.781

−0.052 −0.981 0.954 0.626 0.000 −0.096

0.011 0.000 −0.540 0.000 0.000 0.000

0.000 0.000 1.000 0.000 0.000 0.000

−0.001 0.000 0.027 −0.386 −0.002 −0.386

0.000 0.000 0.000 0.000 1.000 0.000





u

w

q

θf

θ̇1

θ1


+



11.630 −7.859

0.357 −142.760

−7.602 0.093

0.000 0.000

0.386 −0.005

0.000 0.000


[
θc

θ0

]

(4.95)

Again, the linearised model is verified by simulating it to the disturbance in 3-DOF-PH-HUB-CG. the

response of the models is shown in Figure 4.19. Similarly to the previous cases, the model matches

well until 15 seconds after which it diverges. Nevertheless, the linear model appears to approximate the

non-linear model very well around the trimmed condition.

Figure 4.19: Response of linear and non-linear hovering helicopter model case 3-DOF-SP-CG-HUB-OFF

to input disturbance on cyclic of 1 degree for 5 seconds.

4.4.5. Stability Analysis
Stability of the helicopter is assessed by obtaining the poles of the linearised system. The poles of this

linear system are presented in Figure 4.20 with their exact location in Table 4.5. Note that the phugoid



4.4. Case 3-DOF-SP-CG-HUB-OFF 77

mode of the helicopter model is still unstable. Also, there are two additional poles. These belong to the

single pendulum. This pole is also unstable at the trimmed condition.

Table 4.5: Poles of case 3-DOF-SP-CG-HUB-OFF, where the linearised single pendulum model with the

pendulum attached at the c.g. of the helicopter trimmed at V = 1m/s.

Pole Real part Complex part Mode

1 -0.985 0.000 -

2 -0.764 0.000 Short Period

3 0.019 0.632 Pendulum

4 0.019 -0.632 Pendulum

5 0.084 0.364 Phugoid

6 0.084 -0.364 Phugoid

Figure 4.20: Pole-Zero map of linearised system for case 3-DOF-SP-CG-HUB-OFF, trimmed at V = 1
m/s.

4.4.6. Controller Design
Now that there is a load attached to the helicopter, the controller around the pitch angle θf controller is no
longer a velocity controller for the horizontal body velocity u, but for a controller for the cable angle θ1. The
controllers for the pitch angle θf and the vertical body velocity w will remain the same. However, the gains

of the pitch angle controller PID have changed to −0.296 and 0.208 for Kpθf
and Kdθf

respectively. These

gains have changed due to the changed partial derivatives. The gains for the INDI controllers remain the

same, since this change is incorporated into the model inversion.

There will be 2 cable controllers: a PID cable controller and an INDI cable controller. The PID ca-

ble controller will be added around the PID pitch angle controller and the INDI cable controller will be

added around the INDI pitch angle controller.

PID controller

The PID cable controller will be a PID controller, where the reference pitch angle is equal to θfc =
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Kpθ1eθ1 +Kiθ1
∫
eθ1dt+Kdθ1 ėθ1 . The gains could not be obtained analytically, since this involves solving

a 4th order equation. Therefore, the gains were obtained empirically, using trail and error. The gains that
provided a satisfactory result are: Kpθ1 = −0.1, Kiθ1 = −0.01 and Kdθ1 = −1.5. During tuning, it was
found that an integral component is necessary to bring the cable angle back to its reference, since steady

state errors otherwise occur.

INDI controller

The INDI cable controller is a 2-loop controller, similar in structure as the INDI pitch angle controller.

The inner cable angle rate loop is a PD controller and the outer cable angle loop is also a PD controller.

Similarly to the PID controller, the controller gains are found empirically. The cable controller gains were

tuned to: Kpθ1 = 0.1, Kdθ1 = −0.6, Kpθ̇1 = 0.1 and Kdθ̇1 = −1.5. Furthermore, the model inversion used

was the partial derivative θ̈1
θf

−1
. Also, it was found that, to make the controller work, the control input had

to be integrated rather than summed.

4.4.7. Assessing Controllers
Subjecting both controllers to the disturbance from case 3-DOF-PH-HUB-CG, will enable the assessment

of both cable controlled system. The response of the helicopter is given in Figure 4.21, with the control

inputs in Figure 4.22 and Figure 4.23. Judging from the responses, both controllers appear capable of

controlling the cable and bringing the cable angle back. The INDI controller appears to stabilise the cable

fast, but converges to the steady state slowly. This conclusion is based on the fact that the velocity is

non-zero at t = 30. The PID controller appears to perform better, but behaves more aggressively. This is

likely caused by the integral component of the controller. This aggressive behaviour is also visible in the

control inputs.

Figure 4.21: Response controlled hovering helicopter case 3-DOF-SP-CG-HUB-OFF to input disturbance

on cyclic of 1 degree for 5 seconds.
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Figure 4.22: Cyclic control of the controlled

hovering helicopter case 3-DOF-SP-CG-HUB-OFF

to input disturbance on cyclic of 1 degree for 5

seconds.

Figure 4.23: Collective control of the controlled

hovering helicopter case 3-DOF-SP-CG-HUB-OFF

to input disturbance on cyclic of 1 degree for 5

seconds.

4.5. Case 3-DOF-SP-OFF-HUB-OFF
4.5.1. Configuration
In this case, the configuration is changed by moving the load forward by a distance xl as shown in

Figure 4.24.

Figure 4.24: Diagram of hcase 3-DOF-SP-OFF-HUB-OFF.

4.5.2. Equations of Motion
The equations of motion for this configuration are very similar to those of case 3. The only changed

equation of motion is the equation for the pitch rate. The adjusted equation for the pitch rate is given in
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Equation 4.96.

q̇ = T cos (θc − a1)
xh
Iy

− T sin (θc − a1)
h

Iy
− Fc sin (θ1 + θf )

hl
Iy

− Fc cos (θ1 + θf )
xl
Iy

(4.96)

4.5.3. Trimming
The equations for the trimmed condition are:

tan (θc − a1) =
[D + Fc sin (θ1)] cos (θf ) + [W + Fc cos (θ1)] sin (θf )

[W + Fc cos (θ1)] cos (θf )− [D + Fc sin (θ1)] sin (θf )
(4.97)

tan (θf ) =
Wxh −Dh+ Fc ([xh − xl] cos (θ1)− [h+ hl] sin (θ1))

Wh+Dxh + Fc ([h+ hl] cos (θ1) + [xh − xl] sin (θ1))
(4.98)

The equation for the thrust magnitude is the same as in case 3, since the magnitude and direction of the

forces has not changed. The linear system to be solved is then:[
θc

θ0

]
=

[
1 + 3

2µ
2 − 8

3µ

−µ 2
3 + µ2

]−1 [
−2µ2αd − 2µλi
4
σ

CT
clα

− µθf + λi

]
+

[
tan−1 (tan(θc − a1))

0

]
(4.99)

with:

αd = (θc − a1)− θf (4.100)

Choosing an xl value of 0.5m and a hl value of 1.0m, the trim curve is given by Figure 4.25.
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Figure 4.25: Trim curve for case 4, where the single pendulum is offset with the c.g.

4.5.4. Model Linearisation
Only the partial derivatives of q need to be found of the 2 latter terms of Equation 4.96. The other partial
derivatives are found in previous cases. This leads to the following partial derivatives:

∂q̇

∂uSPOFF
=
∂q̇

∂uPHOFF
− ∂Fc

∂u

hl sin (θ1 + θf )

Iy
− ∂Fc

∂u

xl cos (θ1 + θf )

Iy
(4.101)

∂q̇

∂w SPOFF
=

∂q̇

∂wPHOFF
− ∂Fc

∂w

hl sin (θ1 + θf )

Iy
− ∂Fc

∂w

xl cos (θ1 + θf )

Iy
(4.102)

∂q̇

∂q SPOFF

=
∂q̇

∂q PHOFF

(4.103)
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∂q̇

∂θf SPOFF

=
∂q̇

∂θf PHOFF

−∂Fc

∂θf

hl sin (θ1 + θf )

Iy
−Fchl

Iy
cos (θ1 + θf )−

∂Fc

∂θf

xl cos (θ1 + θf )

Iy
+
Fcxl
Iy

sin (θ1 + θf )

(4.104)
∂q̇

∂θ̇1 SPOFF

= −∂Fc

∂θ̇1

hl sin (θ1 + θf )

Iy
− ∂Fc

∂θ̇1

xl cos (θ1 + θf )

Iy
(4.105)

∂q̇

∂θ1 SPOFF

= −∂Fc

∂θ1

hl sin (θ1 + θf )

Iy
−Fchl

Iy
cos (θ1 + θf )−

∂Fc

∂θ1

xl cos (θ1 + θf )

Iy
+
Fcxl
Iy

sin (θ1 + θf ) (4.106)

∂q̇

∂θc SPOFF

=
∂q̇

∂θc PHOFF

(4.107)

∂q̇

∂θ0 SPOFF

=
∂q̇

∂θ0 PHOFF

(4.108)

Trimming the helicopter at a velocity of 1 m/s, and linearising the equations of motion, the following linear
system in Equation 4.109 is obtained.

u̇

ẇ

q̇

θ̇f

θ̈1

θ̇1


=



−0.027 −0.092 0.916 −11.540 0.000 −1.775

0.0920 −0.975 0.917 1.109 0.000 −0.170

0.014 0.026 −0.540 −0.823 0.000 −0.823

0.000 0.000 1.000 0.000 0.000 0.000

−0.001 0.000 0.027 −0.386 −0.002 −0.386

0.000 0.000 0.000 0.000 1.000 0.000





u

w

q

θf

θ̇1

θ1


+



11.635 −13.811

−0.129 −142.308

−7.622 4.006

0.000 0.000

0.386 −0.005

0.000 0.000


[
θc

θ0

]

(4.109)

Again, the linearised model is verified by simulating it to the disturbance in 3-DOF-PH-HUB-CG. the

response of the models is shown in Figure 4.26. Similarly to the previous cases, the model matches well

until 15 seconds after which it diverges, which is also similar to previous cases. Nevertheless, the linear

model appears to approximate the non-linear model very well around the trimmed condition.
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Figure 4.26: Response of linear and non-linear hovering helicopter model case

3-DOF-SP-OFF-HUB-OFF to input disturbance on cyclic of 1 degree for 5 seconds.

4.5.5. Stability Analysis
The poles of the linear system are presented in Table 4.6. Note the two stable pendulum poles (3 and 4)

and the two unstable phugoid poles (5 and 6). It appears that the pendulum poles have become stable

after moving the load location forward on the helicopter.
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Figure 4.27: Pole-Zero map of linearised system for case 4, trimmed at V = 1 m/s.

Table 4.6: Poles of the linearised single pendulum model with the pendulum attached at an offset w.r.t the

c.g. of the helicopter trimmed at V = 1m/s.

Pole Real part Complex part

1 -1.014 0.000 -

2 -0.475 0.000 Short Period

3 -0.123 1.058 Pendulum

4 -0.123 -1.058 Pendulum

5 0.096 0.274 Phugoid

6 0.096 -0.274 Phugoid

4.5.6. Assessing Controllers
For this case, the same controllers are used as in case 3-DOF-SP-CG-HUB-OFF. Assessment is done

by subjecting both controllers to the disturbance from case 3-DOF-PH-HUB-CG. The response of the

helicopter is given in Figure 4.28, with the control inputs in Figure 4.29 and Figure 4.30. The shape

response of the helicopter is almost exactly the same as in case 3-DOF-SP-CG-HUB-OFF. However, the

cable controller is less aggressive. Especially the response of the PID has improved by moving the cable

load. This suggests that the helicopter-cable system became more stable by moving the load forward

and down. This is backed up by the stable pendulum poles found when linearising the non-linear system.

Generally, both cable controllers are capable of handling the disturbance, given that the load moved

forward and down. The performance of both controllers has improved.
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Figure 4.28: Response controlled hovering helicopter case 3-DOF-SP-OFF-HUB-OFF to input

disturbance on cyclic of 1 degree for 5 seconds.

Figure 4.29: Cyclic control of the controlled

hovering helicopter case

3-DOF-SP-OFF-HUB-OFF to input disturbance on

cyclic of 1 degree for 5 seconds.

Figure 4.30: Collective control of the controlled

hovering helicopter case

3-DOF-SP-OFF-HUB-OFF to input disturbance on

cyclic of 1 degree for 5 seconds.

4.6. Case 3-DOF-DP-OFF-HUB-OFF
4.6.1. Configuration
With this configuration, a step is made in the direction where part of the cable is submerged, and a part

emerged. For this, a double pendulum model is used where the first load is the lumped mass of the

emerged cable, and the second load is the lumped mass of the submerged cable and the mass of the

SONAR. For this case, the configuration is flown in the air, meaning that both loads are emerged. The

configuration is shown in Figure 4.31. The double pendulum model is shown in Figure 4.32.
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Figure 4.31: Diagram of case 3-DOF-DP-OFF-HUB-OFF.

Figure 4.32: Diagram of the double pendulum model.

4.6.2. Equations of Motion
Since this is only a change in load model, the equations of motion of the helicopter do not change, hence

they are the same as in Section 4.5.

Double Pendulum Model

The equations of motion for the double pendulum are given in case 3-DOF-SP-OFF-HUB-OFF. These

equations of motion are derived using Lagrange’s method. Here, Q1 and Q2 are the angular accelerations

experienced due to drag. The cable force is computed using Equation 4.111 and Equation 4.112. Fct1 and

Fct2 are the centrifugal forces experienced by the pendulum. These equations are derived using force

equilibrium.
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[
(m1 +m2) l

2
1 0.5m2l1l2 cos (θ1 − θ2)

0.5m2l1l2 cos (θ1 − θ2) m2l
2
2

][
θ̈1

θ̈2

]
=([

(m1 +m2) (l1 [cos (θ1)ẍ0 + sin (θ1)z̈0]− l1g sin (θ1))−m2l1l2θ̇
2
2 sin (θ1 − θ2)

m2

(
l1l2θ̇

2
1 sin (θ1 − θ2) + l2 [cos (θ2)ẍ0 + sin (θ2)z̈0]− l2g sin (θ2)

) ])
+

[
Q1

Q2

] (4.110)

Fc = D1x sin (θ1)−D1z cos (θ1) +W1 cos (θ1) +m1l1θ̇
2
1 + Fc12 cos (θ1 − θ2) (4.111)

Fc12 = Fct2 +D2x sin (θ2)−D2z cos (θ2) +W2 cos (θ2) (4.112)

4.6.3. Trimming
Trimming is again done via the same procedure as in previous cases. The function of the thrust force is

still the same as in Section 4.4. The equation for the fuselage angle and the angle θc − a1 are the same
as in case 3-DOF-SP-OFF-HUB-OFF. The trimmed Cable force is equal to Equation 4.113 for horizontal

flight. The corresponding angles θ1 and θ2 are given in Equation 4.114. The trim curve is presented in

Figure 4.33

Fc =
√
(W1 +W2)2 + (D1x +D1z )

2 (4.113)

tan (θ1) =
D1 +D2

W1 +W2
; tan (θ2) =

D2

W2
(4.114)
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Figure 4.33: Trim curve for case 3-DOF-SP-OFF-HUB-OFF.

4.6.4. Model Linearisation

There are two new states in this system. These are the angle of the second pendulum θ2 and its derivative θ̇2.
Hence, the linearised system will look like Equation 4.115. The partial derivatives of the states u, w, q and θf
are presented below. These are only the partial derivatives that are new. The partial derivatives of the load

angles θ1, θ2 and their derivatives are derived and given in Appendix C this is also the case for the partial

derivatives of the cable force Fc. Note subscript DP . This stands for ”Double Pendulum” and indicates
a partial derivative belonging to cases 3-DOF-SP-OFF-HUB-OFF and 3-DOF-SP-OFF-HUB-OFF-SUB,

where the double pendulum is the load model.
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∂ẇ
∂u

∂ẇ
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Partial Derivatives u̇- q̇ w.r.t. θ̇2 and θ2
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Trimming the linearised model at a velocity of 1m/s yields the linear model Equation 4.122. Subjecting it
to the disturbance from 3-DOF-PH-HUB-CG will enable verification of the linear model around the trim

condition. The helicopter-cable system response is shown in Figure 4.34. As in previous cases, the model

fits well for the first 15 seconds of the simulation before it diverges. It appears to match the nolinear model

rather well near the trim condition.
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Figure 4.34: Response of linear and non-linear hovering helicopter + double pendulum model case

3-DOF-DP-OFF-HUB-OFF to input disturbance on cyclic of 1 degree for 5 seconds.

4.6.5. Stability Analysis
Stability analysis is done by analysing the poles of the linearised system. The poles of the system are

presented in Figure 4.35 with their exact locations in Table 4.7. Note the addition of two stable poles (5 &

6) corresponding to the addition of the second pendulum. The helicopter phugoid is still unstable, meaning

that a controller is required for stability.
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Figure 4.35: Pole-Zero map of linearised system for case 3-DOF-DP-OFF-HUB-OFF.

Table 4.7: Poles of the linearised double pendulum model case 3-DOF-DP-OFF-HUB-OFF.

Pole Real part Complex part Mode

1 -1.013 0.000 -

2 -0.445 0.000 Short Period

3 -0.126 1.014 Pendulum 1

4 -0.126 -1.014 Pendulum 1

5 -0.007 0.734 Pendulum 2

6 -0.007 -0.734 Pendulum 2

7 0.090 0.254 Phugoid

8 0.090 -0.254 Phugoid

4.6.6. Controller Design
In order to control this configuration, it is assumed that the controller knows nothing about θ2. This means
that the controller uses θ1 and its derivative to control to stabilise the helicopter and its load. This simulates
the controller using measurements from the helicopter. With this assumption, the same controller can be

used as in cases 3-DOF-SP-CG-HUB-OFF and 3-DOF-SP-OFF-HUB-OFF with the same gains.

4.6.7. Assessing Controllers
Subjecting both the PID and the INDI controllers to the same disturbance as in case 3-DOF-PH-HUB-CG,

yields the helicopter and cable response in Figure 4.36 and the control inputs in Figure 4.37 and Figure 4.38.

Looking at the response of the helicopter and cable, the response of the helicopter and double pendulum

appears stable. Also, the cable angle of the second pendulum appears to be oscillatory. This makes

sense, since the helicopter only controls the cable angle of the first pendulum. Also, the control inputs are

oscillatory, and more aggressive than in 3-DOF-SP-OFF-HUB-OFF, where there was only one pendulum.

It appears that the addition of the second pendulum made the system more difficult to control, judging from

the aggressive control inputs. Nevertheless, both controllers can control the given disturbance.
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Figure 4.36: Response controlled hovering helicopter case 3-DOF-DP-OFF-HUB-OFF to input

disturbance on cyclic of 1 degree for 5 seconds.

Figure 4.37: Cyclic control of controlled hovering

helicopter case 3-DOF-DP-OFF-HUB-OFF to input

disturbance on cyclic of 1 degree for 5 seconds.

Figure 4.38: Collective control of controlled

hovering helicopter case

3-DOF-DP-OFF-HUB-OFF to input disturbance on

cyclic of 1 degree for 5 seconds.

4.7. Case 3-DOF-DP-OFF-HUB-OFF-SUB
4.7.1. Configuration
The configuration of this case is exactly the same as in case 5, with the only difference being that load 2 is

now submerged in the water. This has effect on the drag of this load, and therefore changes the controller

gains required. The equations of motions remain unchanged, with the exception of changing the density in
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the drag equations for load 2 from ρ = 1.225 to ρw = 997 kg/m3. It is assumed that the drag coefficient

remains the same.

4.7.2. Stability Analysis
Trimming the same linear model as in 3-DOF-DP-OFF-HUB-OFF, but now with the water density added,

to a velocity of 1m/s, yields the linear system in Equation 4.123. Subjecting it to the disturbance from case

3-DOF-PH-HUB-CG, yields the linear model response and the nonlinear model response in Figure 4.39.

The poles of this linear system are given in Figure 4.40 with their exact locations in Table 4.8. Interestingly,

the linearised model is stable, whereas the nonlinear model is unstable. This is caused by the fact that the

linear model is only valid in the region around the trimmed condition.
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Figure 4.39: Response of linear and non-linear hovering helicopter + double pendulum model case

3-DOF-DP-OFF-HUB-OFF-SUB to input disturbance on cyclic of 1 degree for 5 seconds.
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Figure 4.40: Pole-Zero map of linearised system for case 3-DOF-DP-OFF-HUB-OFF-SUB.

Table 4.8: Poles of the linearised double pendulum model with the pendulum attached at an offset w.r.t

the c.g. of the helicopter trimmed at V = 1m/s with load 2 submerged.

Pole Real part Complex part Mode

1 -1.052 0.000 -

2 -0.937 0.000 Short Period

5 -0.326 0.218 Pendulum 1

6 -0.326 -0.218 Pendulum 1

3 -0.011 0.3052 Pendulum 2

4 -0.011 -0.3052 Pendulum 2

7 -0.076 1.072 Phugoid

8 -0.076 -1.072 Phugoid

4.7.3. Controller Design
Similar to case 3-DOF-DP-OFF-HUB-OFF, the same controllers are used as in case 3-DOF-SP-CG-HUB-

OFF. However, the gains had to be re-tuned to the situation where the second pendulum is submerged.

Stable gains are found for Kpθ1 = −1, Kiθ1 = −0.01 and Kdθ1 = −2.5 for the PID controller and

Kpθ1 = 0.1, Kdθ1 = −0.6, Kpθ̇1 = 0.05 and Kdθ̇1 = −0.3 for the INDI controller. The gains had to be

changed since the increased drag of the second pendulum would otherwise drag down the helicopter.

4.7.4. Assessing Controllers
Subjecting the controlled system to the disturbance from case 3-DOF-PH-HUB-CG yields the response

in Figure 4.41. The control inputs are shown in Figure 4.42 and Figure 4.43. Looking at the response

of both the PID and the INDI controllers, it appears that the INDI controller is more oscillatory than the

PID controller. This is also visible in the control inputs. This was also the most difficult controller to tune.

What is interesting to see is that both controllers have no residual oscillations once the first cable angle is

reduced to zero. This suggests that the submerged cable could be stabilised by stabilising the emerged
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cable angle. Also, the controller takes longer to stabilise the cable than in the previous case.

Generally, from these two controllers, the PID performs the best. This could, however, be attributed to

controller tuning, since the INDI controller was difficult to tune.

Figure 4.41: Response controlled hovering helicopter case 3-DOF-DP-OFF-HUB-OFF-SUB with double

pendulum at an offset w.r.t the c.g. of the helicopter with load 2 submerged to input disturbance on cyclic

of 1 degree for 5 seconds.

Figure 4.42: Cyclic control of controlled hovering

helicopter case 3-DOF-DP-OFF-HUB-OFF-SUB

with double pendulum at an offset w.r.t the c.g. of

the helicopter with load 2 submerged to input

disturbance on cyclic of 1 degree for 5 seconds.

Figure 4.43: Collective control of controlled

hovering helicopter case

3-DOF-DP-OFF-HUB-OFF-SUB with double

pendulum an offset w.r.t the c.g. of the helicopter

with load 2 submerged to input disturbance on

cyclic of 1 degree for 5 seconds.



4.8. Concluding Remarks of Preliminary Study for Helicopter Be-

haviour with Submerged Load
Based on simulation of the previous 6 cases, some conclusions can be drawn about the behaviour of a

helicopter with a submerged hanging load. The cases analysed were:

Modelling cases for the 3-DOF model, each increasing the level of complexity.

3-DOF Model Cases

Case Rotor Hub Location Load Model Load Location Medium

3-DOF-PH-HUB-CG c.g. - - -

3-DOF-PH-HUB-OFF offset - - -

3-DOF-SP-CG-HUB-OFF offset Single Pendulum c.g. Air

3-DOF-SP-OFF-HUB-OFF offset Single Pendulum offset Air

3-DOF-DP-OFF-HUB-OFF offset Double Pendulum offset Air

3-DOF-DP-OFF-HUB-OFF-SUB offset Double Pendulum offset Air + Water

Each case was progressively more complex than the latter, which made it easier to implement and detect

interesting features about the behaviour of the helicopter. One of these features is that the helicopter is

unstable to begin with, with 2 unstable phugoid poles. This is typical for helicopters, and it is a good sign

that this result was found. Two controllers were designed: A PID controller and an INDI controller. This is

done to practice with the two concepts in combination with helicopter control and to find out whether these

control methods can control the chosen configurations when subjected to a disturbance.

For the cases where no load was attached, it was observed that the control inputs were less aggressive to

stabilise the helicopter than for the cases with a load. This also makes sense, since the combined inertia

of the system is higher. Also, it was found that the system is more stable when the load is moved forward

relative to the c.g. of the helicopter. When submerging the second load of the double pendulum load

model, it was found that the drag of the second load in combination with its attachment point (forward of the

c.g. instead of aft) contributes heavily to the unstable nature of this configuration. The controller gains had

to be re-tuned, and the INDI controller was very difficult to tune. In the end, both controllers are capable of

controlling the configurations studied when subjected to a disturbance. Also, the INDI has smoother control

inputs than the PID, except for 3-DOF-DP-OFF-HUB-OFF-SUB, when the second pendulum is submerged.

Finally, it was found that no residual oscillations are present when stabilising the first pendulum in the

submerged case. This suggests that the submerged cable could be stabilised by stabilising the emerged

cable.
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5
6-DOF Suspension Cable + SONAR

Model

This chapter covers the development of a cable + SONAR model. This model is a discrete cable model,

meaning that the cable is divided into sections, modelled as rigid links. The idea behind this is that, the

more sections one has, the more the cable starts behaving like a real cable. The goal of this is to have a

cable + SONAR model that can be used in combination with the helicopter model to model the effects of

helicopter motion and environmental conditions on the cable and SONAR, in order to design the required

controllers for the helicopter. This is done in steps: First, the Reference frames and assumptions are

defined in Section 5.1 and Section 5.2. The kinematics are presented in Section 5.3. The force and

moment equations are given in Section 5.4. Then, the dynamic system is solved in Section 5.5. Finally,

modelling for damping and drag is done in Section 5.6 and Section 5.7.

5.1. Reference Frames
The suspension cable model makes use of two defined reference frames: The local horizontal, local vertical

frame (LHLV), denoted with A and the section frame, denoted with k.
The relationship between these frames is that each cable section is rotated by an angle φ around the xA
axis and an angle θ around the y′A axis. The y′A axis is the yA axis after the rotation φ around the xA axis.

A visualisation of the rotation process is shown in Figure 5.1. The section frame is presented in Figure 5.2.

It is also important to mention that both reference frames are right-handed.

The reference frames are presented together with the reference frame of the helicopter in Figure 5.3. Here,

the general configuration of the helicopter + SONAR is presented including the different reference frames.

Note that this configuration uses 2 cable sections, hence there is a i = 1 and a i = 2. The SONAR is

modelled like a cable section, with different properties than the cable sections, but the same dynamic

equations.

Figure 5.1: Sequence of rotations from A-frame to k-frame of a

cable section i.

Figure 5.2: section frame of

reference (k-frame) for a cable

section i.
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Figure 5.3: Reference frames for suspension cable with 2 sections and SONAR attached to helicopter.

5.2. Assumptions
This cable model makes use of various assumptions throughout. These are listed

1. Each cable section is assumed to be rigid. This means that rigid body dynamics apply.

2. Each cable section is assumed to have the same parameters for mass, size, shape, etc.

3. Cable stretch is assumed to be small, and is thus neglected.

4. Cable sections are assumed to rotate in two directions only. They are allowed to rotate around the

lateral axes (x and y) of the cable sections and not the longitudinal axis. This essentially means that
bending is modelled, but twist is not.

5. The SONAR is assumed to behave as any other cable section, albeit with different parameters. It is

therefore modelled as a cable section in the dynamic system.

6. The center of mass is assumed to be in the geometric center of a cable section.

7. The cable section is assumed to be a smooth circular cylinder when computing the drag.

8. The cable attachment point is assumed to be a free hinge, meaning that no friction or damping is

present here.

9. Cable hinges carry no torque, but produce a damping torque depending on relative angle and angular

rate.

10. Cable damping is assumed to be linear with respect to bending angular rate and bending angle.
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11. Submerged cable sections are assumed to not experience wind velocities.

12. Aerodynamic drag is assumed to act on the center of mass of the cable section.

The helicopter model provided by the thesis supervisor makes use of the following assumptions:

1. The helicopter body is modeled by subdividing it into its main components -rotor, fuselage, tailrotor,

horizontal stabilizer, vertical fin- and adding the contribution of each part to the general system of

forces and moments;

2. Aerodynamic forces and moments are calculated using the blade element theory;

3. The tailrotor is modeled as an actuator disc;

4. The fuselage, horizontal tail and vertical tails are modeled with linear aerodynamics;

5. Rotor disc-tilt dynamics is neglected, and only steady-state rotor disc-tilt motion is considered;

6. The dynamic inflow of both rotor and tailrotor are included in the model as state variables and can be

described as a ”quasi-steady dynamic inflow” by means of the time constants τλi and τλitr of a value
between 0.1 to 0.5 sec.;

7. The rotor is modeled with a flapping hinge situated at a distance e from the rotor hub;

8. The lead-lag motion of the blades is neglected;

9. The blades are rectangular;

10. There is no pitch-flap or pitch-lag couplings;

11. There are no tip losses;

12. The rotor is placed at the coordinates f, f 1, h from the helicopter centre of mass;

13. Gravitational forces are small compared to aerodynamic, inertial and centrifugal forces;

14. A linear twist θtw is applied;

15. The helicopter body system of reference x,y,z is assumed parallel to the rotor shaft plane;

16. The flapping and flow angles are small;

17. The rotor angular velocity is constant Ω = const. and is anticlockwise in the case of Bolkow Bo-105.

18. The longitudinal rotor disc-tilt a1 is assumed positive when the rotor disc planetilts backwards;
19. The lateral rotor disc-tilt b1 is assumed positive when the rotor disc plane tilts to the azimuth ψ=90°,

this is to the right for an anticlockwise rotor;

20. The longitudinal cyclic θ1s is assumed positive when the pilot moves the stick forward;
21. the lateral cyclic θ1c is assumed positive when the pilot moves the stick to the right for an anticlockwise

rotor;

22. No reverse flow regions are considered;

23. The flow is incompressible;

24. The blades have a uniform mass distribution with the mass centre and

25. Aerodynamic centre located on the quarter chord line

5.3. Kinematics
In this section, the kinematic relations are presented. These are the direction cosine matrix to transform

from the A-frame to the section frame and the relation between the linear acceleration and the rotational
rate and acceleration of the cable section.

Direction Cosine Matrix

The section frame k is (as explained in Section 5.1) a right-handed frame that is rotated by an angle φ
around the x axis and an angle θ around the rotated y-axis. Such an order of rotations produces a direction
cosine matrix (DCM) as presented in Equation 5.1. Note that each section has their own DCM based on

its rotation in the A-frame.

Ri (φi, θi) =

 cos (θi) 0 sin (θi)

0 1 0

− sin (θi) 0 cos (θi)


1 0 0

0 cos (φi) − sin (φi)

0 sin (φi) cos (φi)

 =

 cos (θi) sin (θi) sin (φi) sin (θi) cos (φi)

0 cos (φi) − sin (φi)

− sin (θi) cos (θi) sin (φi) cos (θi) cos (φi)

 (5.1)

Derivation Linear Accelerations

In order to obtain an expression for the linear accelerations of the hinges, two variables are introduced: p̄i
and r̄i. p̄i is the position vector of hinge i containing the x-,y- and z-position. The first hinge starts at the
attachment point with the helicopter with p̄0. r̄i indicates the vector connecting two hinges. The indexing
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follows the logic that vector īi stretches over cable section i. This means that vector r̄1 is the vector from
p̄0 to p̄1. A graphic representation of these two variables is shown in Figure 5.4. Here, the vectors r̄1 -
r̄3 are indicated by blue arrows, and p̄0 - p̄3 are indicated by black dots at the connection points of the
different sections.

The mathematical representation of vector r̄i is given by Equation 5.2.

r̄i = p̄i − p̄i−1 (5.2)

Based on Newtonian mechanics, the velocity of hinge pi can be defined as Equation 5.3. Variable ν̄
indicates a linear velocity in the A-frame. The subscript indicates whether it belongs to a section i (subscript
si) or a hinge i (subscript pi). ω̄si indicates the rotational rate of section i inA-frame. Note the cross-product
operator being used.

ν̄pi = ν̄pi−1 + ω̄si × r̄i (5.3)

By taking the time derivative of Equation 5.3, the linear acceleration of a hinge pi can be found. This is
shown in Equation 5.4. Variable āpi indicates the linear acceleration of hinge pi in A-frame. ˙̄ωsi indicates

the angular acceleration of a section i in A-frame.

āpi = āpi−1 + ˙̄ωsi × r̄i + ω̄si × ν̄i (5.4)

The linear acceleration of the center of mass of a section can also be found, followed from the assumption

that the center of mass of a section is located in the geometric center of that section (see Figure 5.4). This

means that the linear acceleration of a section i is given by Equation 5.5.

āsi = āpi−1 + ˙̄ωsi ×
1

2
r̄i + ω̄s1 ×

1

2
ν̄i (5.5)
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Figure 5.4: Diagram of vectors r̄ and hinge locations p̄i in the A-frame for three cable sections.

5.4. Force and Moment Equations
This section presents the dynamic equations of the cable model based on the force and moment equations

derived from a free body diagram of the system. The free body diagram (FBD) of a suspension cable with

two sections is presented in Figure 5.5. Note the location of hinges p0-p2 as a reference. As shown, there
are 4 different forces acting on each cable section, each having an x− and z− components respectively.

Forces are indicated by red arrows.

For section 1, this is T̄0, T̄1, W̄1 and F̄AE1
. Forces T̄0 and T̄1 indicate the attachment force at hinges 0 and

1 respectively. W̄1 is the weight force, which follows from the massm1. This force only has a z-component

in A-frame. F̄AE1 indicates the aerodynamic force acting on the cable section. This includes aerodynamic

(or hydrodynamic) drag. Note that it is assumed that the weight and aerodynamic force act at the center of

mass of the section, whereas the connection forces act at the ends of the section. The letter a indicates
the linear acceleration of the section and the direction is indicated by green arrows.

The subscript indicates what section or hinge the force belongs to. Subscript 1 indicates that a force

belongs to section 1 or hinge 1 (if it is an attachment force T̄ ), etc. The final force shown in the FBD is the

force T̄load. This is the force of the attached load acting on the last cable section (and only the last cable
section).
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Figure 5.5: Free body diagram of 2 suspension cable sections in the xA-zA plane.

From the FBD, the following force equations can be obtained. These are found in Equation 5.6.

m1ās1 = T̄1 − T̄0 + W̄1 + F̄AE1

m2ās2 = T̄load − T̄1 + W̄2 + F̄AE2

(5.6)

The torque equations can also be found in Equation 5.7. Note that the only forces not acting on the

center of mass of the section are the connection forces T̄ . The variable τ̄ will be used to indicate torque.
The subscript si indicates that this is the torque around the center of mass of section i. Again, note the
cross-product. Jsi indicates the inertia matrix of section i. Both equations are in the A-frame.

Js1 ˙̄ωs1 = τ̄s1 − ω̄s1 × Js1 ω̄s1

=
1

2
r̄1 ×

(
T̄0 + T̄1

)
− ω̄s1 × Js1 ω̄s1

Js2 ˙̄ωs2 = τ̄s2 − ω̄s2 × Js2 ω̄s2

=
1

2
r̄2 ×

(
T̄1 + T̄load

)
− ω̄s2 × Js2 ω̄s2

(5.7)

Equation 5.6 and Equation 5.7 contain 12 dynamic equations. There are 18 unknowns: [ās1 , ās2 , T̄0, T̄1, τ̄s1 , τ̄s2 ]
T .

This means that 6 kinematic equations are needed. These are found using Equation 5.5 for ās1 and ās2 to
make the system solvable.

Inertia

The inertia matrix of a rigid rod can be found to be equal to Equation 5.8. Note that here, the inertia is in

the k-frame. Also, note that mi is the section mass, li the section length and ri the section radius.

J (k) =


mil

2
i

12 0 0

0
mil

2
i

12 0

0 0
mir

2
i

2

 (5.8)
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5.5. Solving for Dynamic System
Solving the dynamic system is done in Appendix A from the scientific paper. From this appendix, it was

found that the angular accelerations are a function of the states and the acceleration of the attachment

point āp0 . This is presented in Equation 5.9.

˙̄ωs = (A ˙̄ω −B ˙̄ωAās)
−1

[B ˙̄ωBās ν̄p +B ˙̄ωCās āp0
+ C ˙̄ω +D ˙̄ω +Ddamp] (5.9)

Note that all variables are taken in the A-frame of reference, meaning that conversions between frames is
not necessary. However, since the sections themselves rotate within the A-frame, the inertia (as seen in
the A-frame) changes as the section rotates. This means that the inertia matrix must be computed for each
section individually according to Equation 5.10. This equation follows from the conservation of angular

momentum.

J (A)
si = Ri (φi, θi) J

(k)
si R

−1
i (φi, θi) (5.10)

5.6. Modelling Damping
The suspension cable is modelled as rigid links connected by hinges. Hinges do not carry over any

torque, hence additional torques are added at the hinges to model the resistance of the cable to bending.

Furthermore, damping is necessary since the model will be simulated in a discrete manner. This means

that occasional overshoots occur, adding energy to the system.

Damping is modelled as a torque produced by two components: A component due to the angular

deflection between two sections and a torque produced due to the angular rate between two sections. The

two components of the damping are given in Equation 5.11 and Equation 5.12.

τ̄diangle = Danglec

(
Θ̄si − Θ̄si−1

)
(5.11)

τ̄dirate = Dratec

(
ω̄si − ω̄si−1

)
(5.12)

The two damping constants Danglec and Dratec are scalars that indicate how much torque is produced

for a deflection in the cable or a relative angular rate between two sections. Note that if the sections get

smaller, the damping constants have to be reduced since the effect of the damping torque on the angular

acceleration increases when the moment of inertia decreases. Therefore, the damping constants are

reduced by a factor of n3 when modelling more than 1 section. This is done since the moment of inertia of
a cable section scales with n−3. Since the SONAR size remains equal though, the damping constants of

the SONAR are kept constant, with changing n.

The damping matrix is computed as in Equation 5.13. Note that the damping in the first row is zero. This is

since it is assumed that the cable is free to rotate at the attachment hinge of the helicopter. However, there

is a case to be made to include a damping due to angular rate, since this technically produces friction and

hence damping.

Ddamp = Danglec



0

Θ2 −Θ1

Θ3 −Θ2

...

Θn+1 −Θn

+Dratec



0

ω̄2 − ω̄1

ω̄3 − ω̄2

...

ω̄n+1 − ω̄n

 (5.13)

5.7. Modelling of Aerodynamic Forces and Hydrodynamic
The aerodynamic and hydrodynamic forces are modelled using the general equation for drag in Equa-

tion 5.15. The difference between the mediums air and water is modelled by changing the density of the

fluid around the cable section. Friction is not modelled, neither is buoyancy.
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1. First, the linear velocity of the center of mass of a section is computed using Equation 5.14. This

follows from Equation 5.3.

ν̄si = ν̄si−1
+ ω̄si ×

1

2
r̄i + ν̄wind (5.14)

Note that wind only applies to emerged cable sections.

2. Second, the velocity from step 1 is squared element wise to find the square of the velocity in their 3

directions.

3. Third, the surface area of the cable section is rotated to the A-frame. This is done because the cable

sections are modelled as cylinders. Changing the orientation of the cylinder changes its surface area

with respect to the incoming flow.

4. Fourth, the drag vector FAEi is computed using Equation 5.15. Note the � symbol, which is used

to indicate element-wise multiplication. ρsi is the effective density of the flow of the section (see

conditions for submerging).

F̄AEsi
=

1

2
ρsi ν̄si � ν̄siCDsi

S̄siA
(5.15)

5. Fifth, the direction of the drag force is obtained by setting the sign of the drag force equal to the

opposite direction of the velocity, since the direction of the drag is lost when squaring.

Conditions for submerging

The cable sections experience drag, which is different depending on whether a cable section is submerged

or not. If a cable section is submerged, the density of the fluid is higher than when emerged, which changes

the drag by a large amount.

If the top hinge of the cable section is not submerged, but the bottom hinge is submerged, the amount

of each section that is submerged will determine the ”effective density” of the fluid the section is going

through, which is the average of the amount the section is submerged. In Equation 5.16, the equation for

the effective density is given. Note that this only applies to the section that is partially submerged. Sections

that are emerged use the air density ρ and the sections that are submerged use the water density ρW .

This is the case when the z-position of the bottom hinge of a section is positive or the top hinge negative.

Note that in this equation, only the z-position of the hinge positions matters as this is negative if the section

is emerged and positive if submerged (Hence only the third entry for p is relevant).

ρsi =
ρw · pi(3)− ρair · pi−1(3)

pi(3)− pi−1(3)
(5.16)

In previous attempts, the cable section submerging/emerging was modelled by watching whether the

middle of the section left the water or not. It was decided to use a more gradual condition as it was found

that sudden changes in drag send shocks through the cable. However, as the amount of cable sections

increases, the difference between the two methods will go to zero.

It is also important to note that wind is only applied to sections that are emerged. If a section is

submerged, it is assumed that it does not experience wind. If a section is partially submerged, the wind is

applied via the same principle in Equation 5.16, where the densities are replaced by the wind velocities.

Choosing drag coefficient

The drag coefficient is estimated using data from [9]. Furthermore, a few assumptions are made:

• The temperature of both the water and the air is constant and equal to 20◦C;

• The density of air and water is 1.225kgm−3 and 997.0kgm−3 respectively;

• A cable section is assumed to be a smooth circular cylinder.

The assumption of a cable section being a smooth cylinder could be argued about. Mostly, because

it is more likely to be rough due to individual cable strands inside the cable winding. Nevertheless, for

simplicity, smoothness is assumed.
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In [9], the Reynolds number is defined as Equation 5.17. Here, ρ is the dimension of the fluid, V
the free-stream velocity of the fluid, L the characteristic length scale (diameter of cylinder), µ the dynamic
viscosity of the fluid and ν the kinematic viscosity of the fluid.

Re =
ρV L

µ
=
V L

ν
; ν =

µ

ρ
(5.17)

The viscosity of the fluid is a function of its temperature. Assuming conditions at sea level (pressure of 1

atmosphere) and a temperature of 20◦C, the kinematic viscosity ν of air and water is found to be 1.51 · 10−5

and 1.01 · 10−6 m2s−1 respectively (see table 1.4 [9]). The diameter of the cable will be in the order of

centimeters (10−2m) and the velocity will likely remain within 100 m/s (0 to 102 m/s). This means that the
order of magnitude for the Re for water and air will be in the order of 103-105 for air, and 104-106 for water.
In Figure 5.6, the drag coefficient is shown vs. the Re for different shapes. For a smooth cylinder, the drag

coefficient is approximately 1 for 103 < Re < 105.5. Halfway between 105.5 and 106, the drag coefficient
drops to approximately 10−0.5. For simplicity sake, the drag coefficient in air is thus taken as 1 in both air
and water. The reason for this is that the velocity will likely remain well below 102, meaning that an Re of
106 is likely not going to occur.

Figure 5.6: Drag coefficient for different shapes vs. Reynolds number.[9]

5.8. Cable Model Trim
Trimming the cable model is done numerically and iteratively. First, The helicopter is trimmed for the case

where the cable hangs straight down. This yields a certain attitude of the helicopter, changing the position

of the cable attachment point slightly, as the cable is not attached at the helicopter’s center of mass.

Then, the cable is trimmed again by computing the angular acceleration of the cable sections, and moving

each cable section in the direction of their acceleration according to: Θ̄si = ∆ · ˙̄ωsi , where Θ̄si is the new

angular position of section si, ∆ the step size, and ˙̄ωsi the angular acceleration of a section si. The size
of ∆ was not optimized, but was taken as the log10(maximum trim error), with a maximum of 10−3 and a

minimum of 10−4. The maximum trim error is the largest angular rate squared from that iteration.

Once the maximum trim error reaches below a threshold, the cable is assumed to be trimmed and the

helicopter is trimmed with the new trimmed cable. This operation is repeated until both the state derivative

of the helicopter and the cable model reach a certain threshold.



6
6-Degrees of Freedom SONAR Control

6.1. Simulation Cases
In this chapter, 7 cases are simulated for an INDI-based control strategy and a PID-based control strategy,

increasing the complexity of the system at each case. The final goal of this exercise is to have a controller

capable of reducing the velocity of a hanging SONAR to zero, given a disturbance found during dipping

SONAR mission conditions. At the same time, the helicopter is required to hover, but it is allowed to

translate. The cases are presented in Table 6.1. The column helicopter model indicates where the main

rotor hub is located along the xb axis. The cable model column indicates how many cable sections are

used. For cases 1 and 2, no load is assumed so no cable sections apply. Column Load location indicates

where the attachment point of the cable is located. Medium indicates the medium in which the cable model

is modelled. For cases 3-5, this is air, meaning that the cable is not submerged. For cases 6 and 7, this is

water, meaning that the cable is partially submerged. The disturbance column indicates the disturbances

modelled in the environment. Aerodynamic indicates inclusion of wind and gusts. Note that all cases are

simulated with the helicopter starting from hover.

Table 6.1: Simulation Cases for the 6-DOF hovering helicopter controller

Case Helicopter Model Cable Model Load Location Medium Disturbances

1 Rotor hub aligned with c.g. - - - -

2 Rotor hub at offset - - - -

3 Rotor hub at offset Single cable section + SONAR c.g. of helicopter Air -

4 Rotor hub at offset Single cable section + SONAR At offset Air -

5 Rotor hub at offset 5 cable sections + SONAR At offset Air -

6 Rotor hub at offset 5 cable sections + SONAR At offset Air + water -

7 Rotor hub at offset 5 cable sections + SONAR At offset Air + water Aerodynamic

6.2. Simulation Data
As helicopter data, the data from the Bo105 helicopter was used and was provided by the project super-

visors and is given in Appendix D. The location of the attachment point for the cable was not provided,

and could not be obtained via literature. Hence, a hypothetical location of 0.5m in front of the c.g. of the

helicopter, and 1m below the c.g. of the helicopter.

Data for the suspension cable is provided in Appendix D. Most important to note is that the cable

length is set to a length of 30m for cases 3 and 4. The reason for this is that shorter cable lengths are more

difficult to control. A shorter cable means a higher natural frequency, meaning that the controller must

react more quickly. For cases 5-8, a longer cable of 120m is chosen in order to also include the effects of

submerging from case 6 on.

105
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6.3. Control Effectiveness
The control effectiveness is found numerically using the same principle as in [43]. Each state is disturbed

by a certain amount δdisturbance, causing a change in the state derivative of the system. This process is
done twice, once for a positive disturbance and once for a negative disturbance. The difference between

these two is then divided by two and used as the control effectiveness of the system. By doing this for

not only the control inputs of the helicopter, but also the other states, it is also possible to obtain the

effectiveness of the attitude on the velocity, for example. This knowledge is used in the NDI controller for

the TRC controller and the cable controller. The control effectiveness of the suspension cable is found by

a similar process, but only with the acceleration of the hinge location, instead of all states.

6.4. Tuning Process
This section will explain the tuning method used for the different controllers used throughout this chapter.

There are 4 controllers: ACAH, TRC, Position Hold and the cable controller. For each controller, a desired

response is chosen. Both controllers are then tuned such that when given a step input in reference,

both controllers have a response that looks like the desired response. This is done to ensure that both

controllers have approximately the same properties and that differences in controller performance could

not necessarily be attributed to bad gain tuning.

6.5. Case 1: Pure Helicopter with Hub aligned with C.G.
Case 1 is the case where there is no cable attached (pure helicopter) and the main rotor hub is aligned with

the c.g. (see Figure 6.1). The goal of this case is to obtain a controller for the helicopter to hold position.

This is done using 3 control loops: The ACAH as inner loop, the TRC around it and the position hold as

the final loop. There will be 2 different controllers tuned: An INDI controller and a PID controller. The

control method for each loop is provided in Table 6.2. The reason for using NDI in the TRC loop is that

the relationship in the TRC is almost only kinematic. The choice for using INDI for w comes from the idea

to use INDI in the most inner loop of the controller. The TRC for w controls the main rotor collective θ0,
meaning that it is in the most inner loop.

Figure 6.1: Configuration 6-DOF pure helicopter for case 1 in body frame of reference.
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Table 6.2: Control method control loops

Controller INDI PID

ACAH ψf INDI PID

ACAH θf INDI PID

ACAH φf INDI PID

TRC u NDI NDI

TRC v NDI NDI

TRC w INDI NDI

Position hold x PID PID

Position hold y PID PID

Position hold z PID PID

6.5.1. Case 1 Trim
The helicopter is trimmed at a velocity of 0 m/s and an altitude of 60m. The trimmed states are presented
in Table 6.3

Table 6.3: Trim data Case 1

Helicopter State Symbol Name Value case 1 unit

1 u Body velocity in x 0.000 m/s

2 v Body velocity in y 0.000 m/s

3 w Body velocity in z 0.000 m/s

4 p Body roll rate 0.000 deg/s

5 q Body pitch rate 0.000 deg/s

6 r Body yaw rate 0.000 deg/s

7 ψf Fuselage heading angle 0.000 deg

8 θf Fuselage pitch angle 8.6232 deg

9 φf Fuselage roll angle −1.6326 deg

10 x Helicopter x position 0.000 m

11 y Helicopter y position 0.000 m

12 z Helicopter z position −60.000 m

13 λ0 Normalised uniform inflow velocity 0.0491 −
14 λ0tr Normalised uniform inflow velocity tail 0.0557 −
15 ω Main rotor angular rate 44.400 rad/s

Control Symbol Name Value case 1 unit

1 θ1c Lateral Cyclic −0.3618 deg

2 θ1s Longitudinal Cyclic 1.5110 deg

3 θ0 Main rotor collective 14.3681 deg

4 θ0tr Tail rotor collective 13.6380 deg

6.5.2. Tuning ACAH Controller
For the ACAH controller, either INDI or PID is used. The block diagram for these controllers are shown in

Figure 6.2 and Figure 6.3 for the INDI and PID controllers respectively. Note that these are shown only for

the helicopter attitude in pitch. This is done for the sake of example. The architecture of the controllers for

the other attitude angles are the same.
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Figure 6.2: Block diagram for INDI ACAH controller

Figure 6.3: Block diagram

for PID ACAH controller

The INDI attitude controller is tuned in two steps. First, the inner angular rate loop is tuned. This is tuned to

a reference signal with a time constant of τ = 0.09 seconds. The attitude angle loop is tuned to a reference
signal with a natural frequency of ωn = 5 rad/s and a damping ratio of ζ = 0.9. The latter is also the case
for the PID controller.

The INDI controller response to the step input is presented in Figure 6.4 and Figure 6.5. As shown, the

controller is capable of almost perfectly following the reference signal for both the inner and outer loop.

The PID controller response to the step input is shown in Figure 6.6. It seems to follow the reference

signal slightly worse than the INDI controller. It also appears to have steady state errors, which the INDI

controller did not have. The gains for both ACAH controllers are shown in Table 6.4.
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Figure 6.4: Response of inner loop INDI ACAH

controller.

Figure 6.5: Response of outer loop INDI ACAH

controller.

Figure 6.6: Response of PID ACAH controller.



6.5. Case 1: Pure Helicopter with Hub aligned with C.G. 109

Table 6.4: Gains for ACAH Controller Case 1.

Gain Value INDI ACAH Value PID ACAH unit

KPp 12.5 - −
KPq 11.0 - −
KPr 11.0 - −
KPφf

2.70 0.60 s−1

KDφf
0.00 0.10 −

KPθf
2.70 -0.53 s−1

KDθf
0.00 -0.11 −

KPψf
2.70 -1.25 s−1

KDψf
0.00 -0.40 −

6.5.3. Tuning TRC Controller
The TRC controller is tuned separately for the PID ACAH and for the INDI ACAH. This way, both controllers

have a TRC that works best with their ACAH, making the comparison fair. The TRC controller for the INDI

ACAH is an NDI controller for body velocities u and v. For w, and INDI controller is used for the INDI
ACAH inner loop, and an NDI controller is used for the PID ACAH inner loop. The decision was made

to have an INDI controller in the most inner loop for the helicopter main rotor collective θ0 as well. The
block diagram for an NDI TRC controller is given in Figure 6.7 and the block diagram for an INDI TRC

controller in Figure 6.8. Note that the TRC controller using NDI is applied to the other body velocities as

well. However, for the sake of example, it is only shown for body velocity u.

Figure 6.7: Block diagram for NDI TRC controller

Figure 6.8: Block diagram for INDI TRC controller

During tuning, it was observed that even with model inversion, the body velocities still behave somewhat

like a second order system. This is strange, since model inversion should result in first order systems.

For the NDI controller, it was assumed that the velocity is only dependent on the attitude. It seems that

modelling errors are quite large for this assumption. Nevertheless, the controllers for u and v are tuned to
show a desired response of a second order signal with a natural frequency of 1.5rad/s and a damping
ratio of 0.9.

The w controller has ∂ẇ
∂θ0

as control effectiveness for both the NDI and INDI variant. It is assumed

that ẇ is only dependent on the main rotor collective. This controller does show behaviour of a first order

system, and is tuned such that it shows a desired response of a first order signal with a time constant of

0.2 seconds. The fact that it indeed behaves as a first order signal indicates that the assumption made
above is valid.
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The TRC controller for the PID ACAH inner loop uses NDI for u, v and w respectively. The desired

response signal is the same as for the INDI ACAH inner loop TRC controller.

The response of the tuned TRC controller for the INDI controller to step inputs for the commanded

velocities is shown in Figure 6.9 for the u and v controllers and Figure 6.11 for the w controller. As shown,

the u and v controllers manage to fit the desired response rather poorly. The u-controller has a steady
state error. It is interesting to note that given a step command to the v-controller, the body velocity v goes
down first, before increasing to the desired value. An equal but opposite effect is seen in the response of

the u-controller. These behaviours are likely caused by the fact that the c.g. is above the rotation point
of the helicopter in longitudinal direction, but below the rotation point of the helicopter in lateral direction.

This means that as the helicopter rolls, the c.g. moves backwards in v direction (or forwards for u when
pitching) before accelerating in the direction of rotation.

The response of the TRC controller tuned for the PID ACAH is shown in Figure 6.10 for the u and

v controllers and Figure 6.12. This controller seems to follow the desired velocity better than the TRC

controller for the INDI ACAH controller. It shows the same dip in the v-velocity and hump in u. The

w-controller appears to have a steady state error. No integral terms are added to the controller to make
these disappear. This will be taken care of in the position hold controller. The gains for the TRC controllers

are presented in Table 6.5.
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Figure 6.9: Response of u- and v-component
TRC controller for INDI ACAH.
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Figure 6.10: Response of u- and v-component
TRC controller for PID ACAH.
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Figure 6.11: Response of w-component TRC
controller for INDI ACAH.
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Figure 6.12: Response of w-component TRC
controller for PID ACAH.
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Table 6.5: Gains for TRC Controller Case 1.

Gain Value INDI ACAH Value PID ACAH unit

KPu 0.75 0.85 rad.s.m−1

KDu 0.20 0.20 rad.s2.m−1

KPv 0.85 0.85 rad.s.m−1

KDv 0.10 0.10 rad.s2.m−1

KPw 5.00 5.00 rad.s.m−1

KDw 0.00 0.00 rad.s2.m−1

6.5.4. Tuning Position hold controller
The position hold controller is tuned similar to the ACAH controller and the TRC controller and also tuned

separately depending on whether the ACAH controller is a PID or INDI controller. However, the position

hold controller is a PID to begin with. This is due to the fact that the relationship between velocity and

position is linear to begin with. Note that the velocity from the position hold controller is rotated to the body

frame before it is passed to the TRC.

For completeness, the block diagram for the position hold controller is given in Figure 6.13.

Figure 6.13: Block diagram position hold controller

The x- and y-position controllers are tuned to show a desired response equal to a second order signal

with a natural frequency of 1.2 rad/s and a damping ratio of 0.9. The z-position controller is tuned to show
a desired response equal to a first order signal with a time constant of 0.8 seconds. The response of the

x-, y- and z-controllers are shown in Figure 6.14 and Figure 6.16 for the INDI ACAH and Figure 6.15 and

Figure 6.17 for the PID ACAH. As shown, both z-controllers follow the desired response almost perfectly.

The position hold controller has a delay with the desired response of about 0.5 seconds for both the x- and
y-controllers. It is interesting to note that here too, the non-minimum phase behaviour is visible: y first
decreases before it increases. Both the position hold controller with the INDI ACAH inner loop and the PID

inner loop follow the desired response. The INDI ACAH has an x-controller that is slightly faster than the
y-controller. For the PID ACAH, this is the other way around.
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Figure 6.14: Response of position hold controller

for INDI ACAH.
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Figure 6.15: Response of position hold controller

for PID ACAH.
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Figure 6.16: Response of position hold controller

for INDI ACAH.
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Figure 6.17: Response of position hold controller

for PID ACAH.

Table 6.6: Gains for Position hold Controller Case 1.

Gain Value INDI ACAH Value PID ACAH unit

KPx 0.50 0.80 s−1

KDx 0.55 0.80 −
KPy 0.50 0.70 s−1

KDy 0.27 0.42 −
KPz 1.00 2.00 s−1

KDz 0.00 0.80 −

6.5.5. Disturbance Response
In order to compare the PID and the INDI controllers, both controllers are simulated with a filtered step

input in velocity of 4kts at time t = 1 seconds. This step input in velocity represents a constant wind in
xA-direction. The filter used is given in Equation 6.1. This filter is added to smooth out the step input.
For comparison between the PID and the INDI ACAH controllers, only the helicopter position, attitude and

the relative control inputs are presented in Figure 6.18, Figure 6.19 and Figure 6.20 respectively. The

INDI controller uses subscript INDI , whereas the PID controller uses PID. The first observation is that
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the position appears to have a steady state error for both controllers, although it is smaller for the PID

controller. This steady state error is caused by the fact that the position hold controller is a PID without

an integral. This error can hence be removed using an integral component to the position hold controller.

It is also interesting to see that the INDI controller generally reaches steady state quicker than the PID

controller in the lateral direction. The PID reaches steady state quicker in the longitudinal direction. This

is most visible in the attitude plot Figure 6.19. The reason for this is not entirely clear, but it may have

something to do with the initial pitch-up of the helicopter in the first second after the disturbance hits. The

INDI controller pitches back more than the PID (1.4◦ vs 0.2◦). This could be due to the fact that at t = 0,
the reference body velocity is 0 m/s from the position hold controller. Therefore, as soon as the wind is

added, the initial response of the TRC controller is to compensate for the velocity of the wind and bring it

back to zero, hence the pitch-up. The INDI controller appears to compensate for wind more quickly than

the PID controller.

The final observation made is that the PID controller uses more control range than the INDI controller. The

PID controller especially uses more cyclic control than the INDI controller. This also explains why the PID

controller reaches steady state faster longitudinal direction. To conclude, it seems that both the PID ACAH

and INDI ACAH controller are capable of handling the disturbance of 4kts in the xA-direction. However,
the PID does it with less steady state error in x-direction.

H(s) =
2

s+ 2
(6.1)
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Figure 6.18: Position response of both the ACAH

INDI and ACAH PID controllers to step input on

disturbance velocity of 4kts.
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Figure 6.19: Attitude response of both the ACAH

INDI and ACAH PID controllers to step input on

disturbance velocity of 4kts.
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Figure 6.20: Control inputs relative to trim of both the ACAH INDI and ACAH PID controllers to step input

on disturbance velocity of 4kts.

6.6. Case 2: Pure Helicopter with Hub unaligned with C.G.
The second case places the location of the rotor hub at an offset relative to the cg of the helicopter (see

Figure 6.21). This offset is in the xB-direction of xh = 8 cm and in the y-direction yh = 3 cm. (as is the
xb-location and yb-location of the c.g. from the bo105 data). This means that the thrust also produces a

pitch moment, roll moment and a yaw moment. This changes the dynamics of the helicopter.

Figure 6.21: Configuration 6-DOF pure helicopter for case 2 in body frame of reference.

6.6.1. Case 2 Trim
The helicopter is, just as in case 1, trimmed at a velocity of 0 m/s and an altitude of 60m. The trim states

and control inputs are presented in Table 6.7. For clarity, the trim states and control inputs for case 1 are

also given. Note that the helicopter is slightly less rolled to the left compared to case 1. This due to the

shift of the hub to the left. Since the hub moved left, the helicopter has to roll right in order to bring the hub

above the c.g. again. This result hence makes sense. The helicopter is pitched up more due to moving of

the hub forwards. This also makes sense as the c.g. is behind the hub and the c.g. moves forward relative

to the hub when pitching up. The collective of the main and tail rotor are practically the same, whereas the

cyclic is slightly different. This is to compensate for the changed attitude angles.
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Table 6.7: Trim data Case 1 vs. 2

Helicopter State Symbol Name Value case 1 Value case 2 unit

1 u Body velocity in x 0.000 0.000 m/s

2 v Body velocity in y 0.000 0.000 m/s

3 w Body velocity in z 0.000 0.000 m/s

4 p Body roll rate 0.000 0.000 deg/s

5 q Body pitch rate 0.000 0.000 deg/s

6 r Body yaw rate 0.000 0.000 deg/s

7 ψf Fuselage heading angle 0.000 0.000 deg

8 θf Fuselage pitch angle 8.6232 9.3449 deg

9 φf Fuselage roll angle −1.6326 −1.3224 deg

10 x Helicopter x position 0.000 0.000 m

11 y Helicopter y position 0.000 0.000 m

12 z Helicopter z position −60.000 −60.000 m

13 λ0 Normalised uniform inflow velocity 0.0491 0.0491 −
14 λ0tr Normalised uniform inflow velocity tail 0.0557 0.0565 −
15 ω Main rotor angular rate 44.400 44.400 rad/s

Control Symbol Name Value case 1 Value case 5 unit

1 θ1c Lateral Cyclic −0.3618 −0.5086 deg

2 θ1s Longitudinal Cyclic 1.5110 1.9170 deg

3 θ0 Main rotor collective 14.3681 14.3633 deg

4 θ0tr Tail rotor collective 13.6380 13.8658 deg

6.6.2. Disturbance Response
The same controllers from case 1 are used in case 2. The reason for this is that there was not noticeable

difference in the response of the controller, given the same disturbance as in case 1. This means that the

conclusions from case 1 also apply to case 2.

6.7. Case 3: Helicopter with Single Cable Section at C.G.
With Case 3, a simple cable model is added to the helicopter. The goal of this case is to control the cable

using helicopter motion. The cable consists of a single cable section (n = 1) with a length of 30m and the

SONAR. It is attached at the c.g. of the helicopter. This is illustrated in Figure 6.22. Note that the cable

angle θ1 and φ1 are the angle of the cable section at the attachment point to the helicopter relative to the
local vertical. The SONAR is attached to the cable section and can rotate relative to it.
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Figure 6.22: Configuration 6-DOF pure helicopter for case 3 in body frame of reference.

6.7.1. Trim Case 3
The helicopter and Cable + SONAR system is trimmed at the same conditions as in case 1 and 2. This is

a trim altitude of 60m and a velocity of 0m/s. The cable is set to 1 section, and has a length of 30m. The
decision was made for 30m to keep the cable short. Short cables are more difficult to control, due to their

higher natural frequency for the pendulum motion. This demands a faster controller than if the cable were

longer. The trim states are given in Table 6.8, as well as the trim controls. As shown, the pitch angle and

the roll angle have increased and decreased respectively. This is caused by the added weight from the

cable and SONAR. As a result, especially the collective has increased to provide more lift.
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Table 6.8: Trim data Case 2 and 3

Helicopter State Symbol Name Value case 2 Value case 3 unit

1 u Body velocity in x 0.000 0.000 m/s

2 v Body velocity in y 0.000 0.000 m/s

3 w Body velocity in z 0.000 0.000 m/s

4 p Body roll rate 0.000 0.000 deg/s

5 q Body pitch rate 0.000 0.000 deg/s

6 r Body yaw rate 0.000 0.000 deg/s

7 ψf Fuselage heading angle 0.000 0.000 deg

8 θf Fuselage pitch angle 9.345 11.239 deg

9 φf Fuselage roll angle −1.324 −1.862 deg

10 x Helicopter x position 0.000 0.000 m

11 y Helicopter y position 0.000 0.000 m

12 z Helicopter z position −60.000 −60.000 m

13 λ0 Normalised uniform inflow velocity 0.0491 0.0520 −
14 λ0tr Normalised uniform inflow velocity tail 0.0565 0.0607 −
15 ω Main rotor angular rate 44.400 44.400 rad/s

Cable State Symbol Name Value case 2 Value case 3 unit

1 φ1 Cable angle around x axis − 0.0 deg

2 θ1 Cable angle around y axis − 0.0 deg

Control Symbol Name Value case 2 Value case 3 unit

1 θ1c Lateral Cyclic −0.5086 −0.5941 deg

2 θ1s Longitudinal Cyclic 1.9170 1.9045 deg

3 θ0 Main rotor collective 14.3633 15.1087 deg

4 θ0tr Tail rotor collective 13.8658 15.1944 deg

6.7.2. Cable Controller Design
Cable Control through Helicopter Attitude

The cable controller for this case will be either an INDI controller, or a PID controller that outputs a

reference attitude for the helicopter to follow. The block diagram for this control strategy is given in

Figure 6.23. As shown, the cable controller is used to obtain a reference attitude in longitudinal and

lateral direction. The commanded heading angle ψfc is pre-set to zero, and will stay at this value. The

position hold, and the TRC controllers will produce the required main rotor collective to stay at the trim

altitude. The position of the helicopter in longitudinal and lateral direction will not be controlled, and

are free to move. The commanded z-position is set to the trim altitude. Note that the system using the

INDI ACAH uses the INDI cable controller and the system using the PID ACAH uses the PID cable controller.
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Figure 6.23: Block diagram for cable control through helicopter attitude

The block diagram for the INDI cable controller is presented in Figure 6.24. This is a controller with an

inner cable rate loop and an outer cable angle loop. The model inversion used follows from the derivation

in Equation 6.2. The first partial derivative is found numerically with the trimmed helicopter model. The

second partial derivative is taken to be −lc for longitudinal direction and lc for lateral direction. This follows
from the Lagrange equations. Note that sines and cosines are ignored, since small cable angles are

assumed.

∂θf

∂θ̈1
=
∂θf
∂ẍ

∂ẍ

∂θ̈1
(6.2)

Also note the low-pass filters LPF1. These are first order low pass filters with time constant τ1 = 5 seconds.
These are added to smooth the cable angular rate and angular acceleration signal. The same filter is

added to the output to synchronise the feedback of the control input with the angular rate and acceleration

signals. Note that filtered signals have subscript f attached to them. The diagram of the cable controller is

only given for the longitudinal cable angle θ1. The controller for the lateral cable angle φ1 is the same in
architecture.

Figure 6.24: Block diagram for INDI cable controller using cable control through helicopter attitude

The block diagram for the PID cable controller is shown in Figure 6.25. This is also a controller with an

outer cable angle loop and an inner cable rate loop, similar to the INDI version. The same low-pass filters

are added to smooth and synchronise the cable angular rate signal and control input signal.
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Figure 6.25: Block diagram for PID cable controller using cable control through helicopter attitude

6.7.3. Cable controller tuning
Tuning the cable controller is done using a similar procedure as the tuning for the ACAH, TRC and the

position hold controller. A command cable angle is given to the controller which it has to follow. Both

the INDI and PID cable controller are tuned such that the cable angle response matches a given desired

response. This response is set to a natural frequency of ωn of 0.2 rad and a damping ratio of ζ = 1.

INDI Controller The cable angle response of the INDI controller is shown in Figure 6.26. Note that the

subscript indicates whether the step command was in the φ1c or the θ1c direction. The transient of the
response matches the desired response relatively well. After 15 seconds, the cable response no longer

matches the desired response. However, no combination of gains was found that matches the cable

response better to the desired response. During tuning, it was found that adding an integral component

to the PID of the outer loop of the cable controller reduced the time to reach steady state. However, the

overshoot increased, and the response would no longer match the desired response. The controller gains

are given in Table 6.9.

PID Controller The cable angle response of the INDI controller is shown in Figure 6.27, with the

controller gains in Table 6.9. Contrary to the INDI controller, an integral component was required to

match the cable angle response to the desired response. The reason for this can be explained. The INDI

controller has some integral-like behaviour already, since the control increments stack on top of each

other. This means that if an error persists and there is a control increment, the control input increases

over time as the control increments are added together. A PID controller doesn’t have this naturally, and

requires an integral component to do this.

What is interesting when comparing to the INDI controller is that the cross-coupling between φ1 and θ1 is
much bigger for the PID controller than the INDI controller. This suggests that the INDI controller is better

at decoupling the two modes. It is also interesting that the cross-coupling is more when the commanded

cable angle is stepped in longitudinal direction than in lateral direction. The reason for this can be found in

the fact that when the helicopter pitches, the main rotor collective has to change to produce the same

amount of lift. This in turn requires a new lateral cyclic compensate for the lateral force imbalance. This

causes a lateral motion of the helicopter and thus a change of the cable angle φ1. When the commanded

cable angle is in lateral direction, the cable controller sends a reference roll angle. This requires a lateral

cyclic, which means that the helicopter motion remains lateral. This reasoning can be backed up by

observing the control inputs in Figure 6.28. Note that when there is a step in θ1c (longitudinal cable angle,
in blue), the longitudinal cyclic decreases to pitch the helicopter. Then, the main rotor collective changes,

to compensate for lift. At the same time, the lateral cyclic changes to compensate for force imbalance.

The longitudinal cyclic barely changes when the commanded cable angle is in lateral direction (in red).
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Figure 6.26: Cable angle response for INDI

controller case 3, given a step input in commanded

cable angle.

Figure 6.27: Cable angle response for PID

controller case 3, given a step input in commanded

cable angle.

Figure 6.28: Control inputs relative to trim for PID

controller case 3, given a step input in commanded

cable angle.

Table 6.9: Gains for Cable Controller Case 3.

Gain Value INDI Value PID unit

KPφ1
0.80 2.0 s−1

KIφ1 0.00 0.15 s−2

KDφ1
1.60 12.00 −

KPφ̇1
0.65 0.80 s−1

KIφ̇1
0.00 0.00 s−2

KDφ̇1
2.60 4.00 −

KPθ1 0.80 2.00 s−1

KIθ1 0.00 0.15 s−2

KDθ1 2.10 12.00 −
KP θ̇1

0.65 0.80 s−1

KIθ̇1
0.00 0.00 s−2

KDθ̇1
2.80 4.00 −

6.7.4. Disturbance Response
In order to compare the two control methods, INDI vs. PID, the helicopter-cable system is simulated given

a disturbance in wind, just as in cases 1 and 2. This is done in two separate simulations with the same wind

disturbance as in case 1 and 2. This is a filtered 4 kts wind at t = 1 seconds. The cable angle response is
shown in Figure 6.29. As is visible, the cable angles diverge more when using the PID, than when using

the INDI controller. The INDI controlled cable is more oscillatory. When looking at the control inputs to the

helicopter in Figure 6.30, both the PID and the INDI controlled system shown oscillatory control inputs.

Experimenting with controller gains found that these oscillations follow from the controller gains KDφ̇1
and

KDθ̇1
. Reducing these gains removes the oscillations. In order to determine whether either controller is

better at performing the dipping SONAR mission, the SONAR ground velocity is presented in Figure 6.31.

Here, is becomes clear that the INDI controller is better at keeping the lateral velocity low than the PID

controller, given a longitudinal wind disturbance. This is consistent with the previous observation that the

INDI controller is better at decoupling the longitudinal and lateral modes.
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Figure 6.29: Cable angle response for disturbance

case 3, given a filtered 4 kts step input in wind.

Figure 6.30: Control inputs relative to trim for

disturbance case 3, given a filtered 4 kts step input

in wind.

Figure 6.31: Sonar ground velocity response for disturbance case 3, given a filtered 4 kts step input in

wind.

6.7.5. Conclusions case 3
In this section, a cable model consisting of a single cable section is added to the helicopter model. The

goal of this section was to obtain a PID and an INDI controller that controls the cable. The two controllers

were tuned via the same procedure as the ACAH, TRC and position hold and the two controllers matched

the desired response with limited success. When comparing both control methods, it was found that

both the PID and the INDI are capable of controlling the cable when subjected to a disturbance wind of 4

kts. However, the INDI controller is more capable of decoupling the longitudinal and lateral modes of the

helicopter-cable system than the PID controller.

6.8. Case 4: Helicopter with Single Cable Section at Offset
With Case 4, the simple cable model from case 3 is put at an off-set relative to the c.g. of the helicopter.

The reason for this is that the cable would realistically never be located exactly at the c.g., although it

would remain close to it. For this case, the cable attachment point is put at xl = 0.50m in front of the c.g.

and hl = 1.0m below the c.g. These values are somewhat arbitrary, since the Bo105 does not have a

cable attachment point in reality. yl is kept at 0 m. See Figure 6.32.
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Figure 6.32: Configuration 6-DOF pure helicopter for case 4 in body frame of reference.

6.8.1. Trim Case 4
The helicopter and Cable + SONAR system is trimmed at the same conditions as in cases 1-3. This is a

trim altitude of 60m and a velocity of 0m/s. The trim states are given in Table 6.10, as well as the trim

controls. For comparison, the trim states and controls of case 3 are shown as well. Interestingly, the

fuselage pitch angle has decreased slightly. This is due to the combined c.g. of the cable tension and the

helicopter has shifted forwards. The same is true for the fuselage roll angle. The control inputs are largely

the same for cases 3 and 4.
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Table 6.10: Trim data Case 2 and 3

Helicopter State Symbol Name Value case 3 Value case 4 unit

1 u Body velocity in x 0.000 0.000 m/s

2 v Body velocity in y 0.000 0.000 m/s

3 w Body velocity in z 0.000 0.000 m/s

4 p Body roll rate 0.000 0.000 deg/s

5 q Body pitch rate 0.000 0.000 deg/s

6 r Body yaw rate 0.000 0.000 deg/s

7 ψf Fuselage heading angle 0.000 0.000 deg

8 θf Fuselage pitch angle 11.239 10.857 deg

9 φf Fuselage roll angle −1.862 −2.068 deg

10 x Helicopter x position 0.000 0.000 m

11 y Helicopter y position 0.000 0.000 m

12 z Helicopter z position −60.000 −60.000 m

13 λ0 Normalised uniform inflow velocity 0.0520 0.0520 −
14 λ0tr Normalised uniform inflow velocity tail 0.0607 0.0609 −
15 ω Main rotor angular rate 44.400 44.400 rad/s

Cable State Symbol Name Value case 3 Value case 4 unit

1 φ1 Cable angle around x axis 0.0 0.0 deg

2 θ1 Cable angle around y axis 0.0 0.0 deg

Control Symbol Name Value case 3 Value case 4 unit

1 θ1c Lateral Cyclic −0.5941 −0.5950 deg

2 θ1s Longitudinal Cyclic 1.9045 1.7031 deg

3 θ0 Main rotor collective 15.1087 15.1132 deg

4 θ0tr Tail rotor collective 15.1944 15.2621 deg

6.8.2. Disturbance Response
Using the same controllers from case 3 yields practically the same response as in case 3. However, for

the PID controller to work, the derivative gains KDφ1
and KDθ1 in Table 6.9 have been reduced from 12.00

to 8.00. The reason for this reduction is that the cable controller was sending very oscillatory signals to

the ACAH. Reducing the derivative gain removed most of these oscillations. The cable response to the

disturbance from case 1-3 is shown in Figure 6.33. As shown, the response is almost exactly the same.

Therefore, this case will not be discussed in more detail.
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Figure 6.33: Cable angle response for disturbance case 4, given a filtered 4 kts step input in wind.

6.9. Case 5: Helicopter with Multiple Cable Sections at Offset
Case 5 is the same as case 4, yet with a longer cable and 5 cable sections (n = 5). The function of this
case is to observe the change from a rigid to a flexible cable. The configuration is illustrated in Figure 6.34.

Note that from this point, the configuration of the helicopter does not change with cases 6 and 7. In case 6,

the cable model is lowered into the water and in case 7, the environmental conditions are changed.

Figure 6.34: Configuration 6-DOF pure helicopter for case 5 - case 7 in body frame of reference.

6.9.1. Trim
For case 5, the helicopter is trimmed at a velocity of 0 m/s in forward direction, similar to cases 1-4. The
trimming procedure is also the same. The trimmed states are presented in Table 6.11. Note that the cable

angle of only the first cable section is presented. It is not necessary to add the states of the other cable

sections, as the cable is still and straight down for cases 4 and 5. The only difference for trimming cases 4

and 5 is the difference in length of the cable (30m for case 4 and 120m for case 5). This means that the

cable is heavier. Therefore, the trimmed states are very similar for cases 4 and 5.
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Table 6.11: Trim data Case 4 vs. 5

Helicopter State Symbol Name Value case 4 Value case 5 unit

1 u Body velocity in x 0.000 0.000 m/s

2 v Body velocity in y 0.000 0.000 m/s

3 w Body velocity in z 0.000 0.000 m/s

4 p Body roll rate 0.000 0.000 deg/s

5 q Body pitch rate 0.000 0.000 deg/s

6 r Body yaw rate 0.000 0.000 deg/s

7 ψf Fuselage heading angle 0.000 0.000 deg

8 θf Fuselage pitch angle 10.857 11.053 deg

9 φf Fuselage roll angle −2.068 −2.166 deg

10 x Helicopter x position 0.000 0.000 m

11 y Helicopter y position 0.000 0.000 m

12 z Helicopter z position −60.000 −60.000 m

13 λ0 Normalised uniform inflow velocity 0.0520 0.0523 −
14 λ0tr Normalised uniform inflow velocity tail 0.0609 0.0614 −
15 ω Main rotor angular rate 44.400 44.400 rad/s

Cable State Symbol Name Value case 4 Value case 5 unit

1 φ1 Cable angle around x axis 0.0 0.0 deg

2 θ1 Cable angle around y axis 0.0 0.0 deg

Control Symbol Name Value case 4 Value case 5 unit

1 θ1c Lateral Cyclic −0.5950 −0.6030 deg

2 θ1s Longitudinal Cyclic 1.7031 1.6826 deg

3 θ0 Main rotor collective 15.1132 15.1944 deg

4 θ0tr Tail rotor collective 15.2621 15.4208 deg

6.9.2. Cable Controller Design
The design of the cable controller is done in a different way than in cases 3 and 4. In this case, rather than

using the attitude of the helicopter, the velocity of the helicopter is used. The reason for this is that the

smaller cable sections have a higher frequency than the larger single cable section in case 4. As a result,

the attitude of the helicopter became too oscillatory. Using the velocity instead made the controller less

aggressive, since it is one integration above acceleration (which follows from attitude).

The general architecture of the controller is shown in Figure 6.35. As shown, the cable controller

and the position hold controller commands are added together, to get a velocity command. This command

is converted to body frame, after which the body reference velocities are sent to the TRC. This then results

in an attitude command for the ACAH, which yields a certain control command to the helicopter. Note

that the position hold only contains the altitude hold for this case. When setting a reference angle for the

cable controller, the helicopter has to effectively accelerate to a certain velocity where the drag is such that

the cable remains at its reference. Therefore, the position hold is off for horizontal motion, as it would

otherwise conflict with the cable controller.
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Figure 6.35: Controller architecture case 5

INDI Controller

The architecture of the cable controller of cable angle θ1 is shown in Figure 6.36. As shown, this is an INDI
controller with an inner cable rate loop and an outer cable angle loop. Notice the similarity with Figure 6.24.

The model inversion used for this controller is presented in Equation 6.3. For the lateral cable angle, this is

equal to lc.

∂ẍ

∂θ̈1
= −lc (6.3)

Note that there are two low pass filters (LPF) present in the controller instead of one. The low pass filter

LPF1 is a filter added to the cable angular rate and the cable angular acceleration. This is done since

the cable angular rate and acceleration are very oscillatory, and are smoothed out using this filter. A time

constant of τ1 = 10 seconds is used for this filter. Note that filtered signals have subscript f attached

to them. To synchronise the controller with the delayed filtered signals, the same LPF is applied to the

feedback of the commanded horizontal velocity. A second filter is added at the end: LPF2. This filter

smooths the commanded velocity to remove high frequencies from the velocity commands and has a time

constant of τ2 = 5 seconds. The cable controller for cable angle φ1 has the same structure and filters as
the cable controller for angle θ1.

Figure 6.36: Block diagram INDI cable controller case 5

PID Controller

The architecture of the PID cable controller is shown in Figure 6.37. It is very similar to the INDI. Note that

the same filters are used for the PID as for the INDI.
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Figure 6.37: Block diagram PID cable controller case 5

6.9.3. Cable Controller Tuning
Controller tuning was done via the same approach as done in previous cases. However, during the

process, it was found to be very difficult to find a set of gains that yields satisfactory results. Therefore,

it was not possible to match the output of the controllers to a desired response. Nevertheless, some

interesting conclusions can be drawn from this case: First, there are two distinct phases in the cable

response. The first is an oscillatory transient phase and the second is a very smooth phase where the

cable angle moves to its desired value. The first phase is caused by the acceleration of the helicopter.

This causes a sudden excitation of the cable, which takes time to settle. At the same time, the helicopter is

accelerating to the velocity that produces enough drag to have the cable displaced at the desired cable

angle. Second, the controller behaviour is very different than that from case 3 and 4. Most notably, it’s a

slower due to it being an integral away from the acceleration of the cable.

INDI and PID Controller

The cable response of the tuned INDI and PID controllers is shown in Figure 6.38 and Figure 6.39. Both

the INDI and the PID controller approach the desired cable angle very slowly. The first phase of the cable

angle response is not visible in the response of the PID controller. This suggests that the PID is not able

to damp the oscillation caused by the initial acceleration quickly. However, the controller gains are not

optimised, so this could be due to bad gain tuning. Interestingly, the lateral-longitudinal coupling is clearly

visible in the PID, whereas less so for the INDI, which is consistent with the previous cases.

Figure 6.38: Response cable angle with INDI

cable controller

Figure 6.39: Response cable angle with PID cable

controller
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Table 6.12: Gains for Cable Controllers Case 5.

Gain Value INDI Value PID unit

KPφ1 1.00 1.50 s−1

KIφ1
0.00 0.30 −

KDφ1
1.00 0.00 s−2

KPφ̇1
0.20 12.00 −

KIφ̇1
0.00 0.00 s

KDφ̇1
0.10 72.00 s−1

KPθ1 1.00 1.50 s−1

KIθ1 0.00 0.30 −
KDθ1 1.00 0.00 s−2

KP θ̇1
0.20 -12.00 −

KIθ̇1
0.00 0.00 s

KDθ̇1
0.10 -72.00 s−1

6.9.4. Cable Controller Disturbance Response
In order to compare the PID and the INDI controllers, both controllers are simulated with a filtered step

input in the disturbance velocity of 4kts in x-direction at time t = 1 seconds as is done in previous cases.
The response of the cable angle is presented in Figure 6.40. As shown, the PID controller is unstable

under the given disturbance. It is not able to compensate for the added wind. The INDI controller on the

other hand is capable of maintaining control. However, when observing the control inputs to the helicopter,

a vibration is present. This vibration is caused by the oscillations of the first cable section. Such oscillations

could be removed by making the controller slower. Either by increasing the time constant of the filters

used or by reducing the gains of the controller. Furthermore, it was found that these vibrations are present

when the air velocity in that direction is small. This means that drag has a damping effect on the cable

sections. Nevertheless, it shows that the INDI controller is more capable of adapting to the new situation

of added wind.

Figure 6.40: Response of cable angle with INDI

and PID controller to a step input on wind of 4kts
Figure 6.41: Control inputs from INDI and PID

controller from a step input on wind of 4kts

6.9.5. Conclusions case 5
From case 4 to case 5, the length of the cable was increased from 30 to 120 meters and the amount of

cable sections was increased from 1 to 5. The effect of lengthening the cable on the controller is largely

the lower frequency of the pendulum mode of the cable. The effect of the addition of cable sections is

more pronounced: Since each cable link moves with respect to the other links, oscillations are present in
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the angular rate and acceleration which find their way through the controller. This requires the addition of

low-pass filters in order to smooth these out. It was also found that the drag on the cable has a stabilising

effect on the cable. The expectation for case 6 is therefore that the oscillations are more damped than in

case 5, due to the added drag from the water. On the topic of performance, the INDI controller was capable

of stabilising the cable given a 4kts wind after tuning, which the PID was not capable of doing. This shows

the adaptive nature of the INDI controller. There were, however, vibrations present in the response of the

cable and in the control inputs to the helicopter. These could be removed by either lowering gains of the

cable controller, or by increasing the time constants of the low-pass filters.

6.10. Case 6: Helicopter with Multiple Cable Sections at Offset, Par-

tially Submerged
Case 6 adds the concept of submergence. With a trimmed altitude of 60m and a cable length of 120m, half

the cable is submerged and the other half emerged in zero wind conditions. The addition of water drag,

instead of air drag in case 5, will likely cause more damping to the cable, as well as a slower system to

control. This will make it easier for the INDI controller, since INDI is based on the principle of the controls

being faster than the states.

6.10.1. Trim
The trim is done exactly as done in case 5, and also provides the same trim states and controls as shown

in Table 6.13. This makes sense, since the trimmed velocity is still 0m/s, meaning that the cable is still
straight down. The effect of the water drag is therefore not visible. Note: When trimming the cable at

nonzero velocities, the cable will not have a straight shape, and will bulge out of the water. This means

that the drag of the cable has an effect on the trimmed solution. From this point, trimming has become an

iterative process. First, the cable must be trimmed to obtain the cable tension acting on the helicopter.

Then, the helicopter is trimmed with this cable tension. This requires a certain attitude of the helicopter,

slightly changing the altitude of the cable attachment point (its not at the c.g. of the helicopter. The

helicopter c.g. is trimmed at the trim altitude). This changes the amount the cable is submerged, changing

the drag of the cable and hence the trim tension.
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Table 6.13: Trim data Case 5 vs. 6

Helicopter State Symbol Name Value case 5 Value case 6 unit

1 u Body velocity in x 0.000 0.000 m/s

2 v Body velocity in y 0.000 0.000 m/s

3 w Body velocity in z 0.000 0.000 m/s

4 p Body roll rate 0.000 0.000 deg/s

5 q Body pitch rate 0.000 0.000 deg/s

6 r Body yaw rate 0.000 0.000 deg/s

7 ψf Fuselage heading angle 0.000 0.000 deg

8 θf Fuselage pitch angle 11.053 11.053 deg

9 φf Fuselage roll angle −2.166 −2.166 deg

10 x Helicopter x position 0.000 0.000 m

11 y Helicopter y position 0.000 0.000 m

12 z Helicopter z position −60.000 −60.000 m

13 λ0 Normalised uniform inflow velocity 0.0523 0.0523 −
14 λ0tr Normalised uniform inflow velocity tail 0.0614 0.0614 −
15 ω Main rotor angular rate 44.400 44.400 rad/s

Cable State Symbol Name Value case 5 Value case 6 unit

1 φ1 Cable angle around x axis 0.0 0.0 deg

2 θ1 Cable angle around y axis 0.0 0.0 deg

Control Symbol Name Value case 5 Value case 6 unit

1 θ1c Lateral Cyclic −0.6030 −0.6030 deg

2 θ1s Longitudinal Cyclic 1.6826 1.6826 deg

3 θ0 Main rotor collective 15.1944 15.1944 deg

4 θ0tr Tail rotor collective 15.4208 15.4208 deg

6.10.2. Cable Controller Design
The cable controller design is discussed in this section. For this case, however, 3 control strategies

are tested in order to find out what control strategy works best for dipping SONAR missions. There 3

control strategies are: cable control through helicopter attitude, cable control through helicopter velocity

and cable control through helicopter position. As the name suggests, the first strategy uses the cable

controller to obtain a reference attitude for the helicopter to follow in order to control the cable. The second

uses the velocity, as illustrated in case 5. The final strategy uses the controller to obtain a reference position.

Control strategy 1: Cable control through helicopter attitude

Cable control through helicopter is done the same way as in case 3 and 4. However, since part of the

cable is submerged, the model inversion used is no longer the entire length of the cable, but the altitude of

the helicopter is used instead. The reason for this is that it is assumed that the helicopter moves much

faster than the submerged parts of the cable and the cable angle is small. For simplicity, the trimmed

altitude is used, since the altitude remains roughly constant. The block diagram for this control strategy

can be found in Figure 6.23, with the cable controller block diagram in Figure 6.24 and Figure 6.25. Tuning

was done by setting a reference for the cable angle of −1◦ for φ1c and θ1c at the t = 0 seconds in two
separate simulations, similar to previous cases. The goal was to have both cable angles follow a desired

response with a natural frequency of ωn = 0.2 rad/s, a damping ratio of ζ = 1 and a time delay of 2.08
seconds. The time delay is added to match the desired signal with the response of the helicopter-cable

system. This is done to synchronise the responses when comparing control strategies. The gains for the

controller are found in Table 6.14.
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The system was simulated for 60 seconds and the response of the cable is shown in Figure 6.42. The

helicopter attitude deviation from trim is shown in Figure 6.43. The body velocities and the helicopter

control input deviation from trim is shown in Figure 6.44 and Figure 6.45 respectively. Again, note that

the subscripts φ and θ indicate whether the simulation was done with the φ1c reference of −1◦ or the θ1c
reference of −1◦.
The controller appears to follow the desired response with little deviation, as it was tuned to do. The

attitude deviation of the helicopter relative to trim is quite oscillatory, yet the angles are well below 1◦. The
body velocities and helicopter control input deviation from trim are presented for reference.

Figure 6.42: Response cable angle with INDI cable

controller through attitude control

Figure 6.43: Response of helicopter attitude from

trim with INDI cable controller through attitude

control

Figure 6.44: Response of body velocities with with

INDI cable controller through attitude control

Figure 6.45: Control inputs from trim to helicopter

with with INDI cable controller through attitude

control

Control strategy 2: Cable control through helicopter velocity

Cable control through helicopter velocity is done exactly as in case 5. However, since part of the cable is

submerged, the model inversion used is no longer the entire length of the cable, but the altitude of the

helicopter is used instead. The reason for this is that it is assumed that the helicopter moves much faster

than the submerged parts of the cable and the cable angle is small. The block architecture for this control

strategy is found in Figure 6.36. Tuning was done using the same procedure as the control through attitude

with the same desired response with a natural frequency of ωn = 0.2 rad/s, a damping ratio of ζ = 1 and a
time delay of 2.08 seconds. This is done in order to allow comparing the strategies in the end. The final
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gains are presented in Table 6.14.

The system was simulated for 60 seconds and the response of the cable is shown in Figure 6.46. The

helicopter attitude deviation from trim is shown in Figure 6.47. The body velocities and the helicopter

control input deviation from trim is shown in Figure 6.48 and Figure 6.49 respectively.

The first observation that can be made is that this control strategy follows the reference better than when

using the cable controller using attitude control. The reason for this is that the desired response was

matched to this control strategy. Nevertheless, the response using this control strategy is different from

the previous in multiple ways. The first being that the cross-coupling between the longitudinal angle θ1 and
the lateral angle φ1 is smaller. This suggests that this strategy is better at decoupling these two modes. A
second large difference is that the attitude response of the helicopter is smoother, and less oscillatory than

when using control strategy 1. Finally, the control input deviation of the control inputs to the helicopter inf

Figure 6.49 are more aggressive in the first 5 seconds than in Figure 6.45 from strategy 1.

Figure 6.46: Response cable angle with INDI

cable controller through velocity control

Figure 6.47: Response of helicopter attitude from

trim with INDI cable controller through velocity

control

Figure 6.48: Response of body velocities with with

INDI cable controller through velocity control

Figure 6.49: Control inputs from trim to helicopter

with with INDI cable controller through velocity

control

Control strategy 3: Cable control through helicopter position

Cable control through helicopter position was not presented in this work yet. The controller architecture is

shown in Figure 6.50. The cable controller block diagram is given in Figure 6.51.
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Figure 6.50: Controller architecture cable control through helicopter position

Figure 6.51: Cable controller block diagram for control through helicopter position

Tuning was done using the same procedure as the control through attitude and through velocity with the

same desired response. The final gains are presented in Table 6.14.

The system was simulated for 60 seconds and the response of the cable is shown in Figure 6.52. The

helicopter attitude deviation from trim is shown in Figure 6.53. The body velocities and the helicopter

control input deviation from trim is shown in Figure 6.54 and Figure 6.55 respectively.

The first observation that can be made is that this control strategy follows the reference worse than when

using either strategy 1 or 2. However, just like strategy 2, there is less cross-coupling present and the

response is smoother than using strategy 1. It is, however, more aggressive than both strategies, when

observing the control inputs in Figure 6.55.
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Figure 6.52: Response cable angle with INDI

cable controller through position control

Figure 6.53: Response of helicopter attitude from

trim with INDI cable controller through position

control

Figure 6.54: Response of body velocities with with

INDI cable controller through position control

Figure 6.55: Control inputs from trim to helicopter

with with INDI cable controller through position

control

Control strategy comparison by disturbance response

In order to decide what control strategy is best, all 3 strategies are simulated with a wind of 4kts at the
t = 1 seconds mark and a reference angle of 0◦ for φ1c and θ1c . The response of the cable angle, SONAR
ground velocity, body velocities and helicopter attitude are presented in Figure 6.56 - Figure 6.59. To

avoid cluttering, not all body velocities and attitudes are plotted. Note that the subscripts att, vel and pos

indicate attitude, velocity and position. These represent the different control strategies: using attitude,

velocity and position.

Observing the cable angles, it is clear that the cable controller through helicopter attitude shows the

smallest angle deviation to a 4kts wind, yet the controller through helicopter velocity reaches a 0◦ angle
faster. Also, the cross-coupling between the longitudinal and lateral angles appears to be larger for the

control strategy using attitude control than the other strategies. This was already observed previously.
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Figure 6.56: Cable angle response to a 4kts wind
using different control strategies

Figure 6.57: SONAR ground velocity squared

response to a 4kts wind using different control
strategies

Figure 6.58: Body velocity response to a 4kts
wind using different control strategies

Figure 6.59: Helicopter attitude response relative

to trim to a 4kts wind using different control
strategies

Cable control strategy choice

In order to determine what strategy is best for dipping SONAR missions, it can be reasoned that the amount

of velocity deviation is most important. Observing the SONAR velocity, the control strategy using helicopter

attitude performs the best, by having the lowest velocity deviation. The reason why cable control through

attitude control performs better, is likely due to the wind velocity not being present in the controller loop. In

the other two control strategies, the body velocity is within the control loop via the TRC controller. Since

there is initially no body velocity (there is no wind after all) and the cable is straight, the reference body

velocity is zero. This means that once the wind hits, the reference velocity is still close to zero, meaning

that the controller will move the helicopter such that the body velocity is reduced to zero, before the cable

controller or position hold controller can match the wind velocity. This can be seen in Figure 6.58, where

the control strategies using velocity and position decrease the body velocity initially, before matching the

roughly 1.8 m/s in u direction.

6.10.3. Cable Controller Tuning
This section covers the tuning of the PID controller, since the INDI controller was tuned in the previous

section. Since the decision was made to use a cable controller through attitude control for INDI, the same

strategy is used for PID as well. The desired response still remains the same with a natural frequency of

ωn = 0.2 rad/s, a damping ratio of ζ = 1 and a time delay of 2.08 seconds. The gains are presented in
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Table 6.14.

The cable angle response and the helicopter attitude deviation from trim are presented in Figure 6.60

and Figure 6.61. Note that the cable angle for φ1θ is not zero. This is due to a steady state error that
is reduced to zero using an integral. It will eventually reach zero. Furthermore, the pitch angle of the

helicopter vibrates for a step in φ1c . The reason for this could be the fact that the cable angle, angular rate
and angular acceleration are all close to zero, meaning that the oscillation of the cable section is most

dominant.

Figure 6.60: Cable angle response using PID

controller for case 6

Figure 6.61: Helicopter attitude response using

PID controller for case 6

6.10.4. Cable Controller Disturbance Response
The performance of the PID and the INDI controller is again assessed by adding a disturbance wind of 4kts
at the t = 1 seconds mark. The response of both the PID and the INDI controllers are shown in Figure 6.62

- Figure 6.64. As shown, the INDI controller is more capable of keeping the SONAR velocity low than the

PID. However, the PID controller’s response is more smooth. Looking at the cable angle response, the

same can be said. When looking at the control inputs relative to trim, both the PID and the INDI controller

have some vibration in the first 5 seconds of the simulation. This can be attributed to the sudden change

in wind. Both controllers use about the same amount of control during the disturbance response.

Figure 6.62: Cable angle response to a 4kts wind

using PID and INDI control for case 6

Figure 6.63: SONAR ground velocity response to

a 4kts wind using PID and INDI control for case 6
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Figure 6.64: Control inputs from trim to helicopter with a 4kts wind using PID and INDI control for case 6

Table 6.14: Gains for Cable Controllers Case 6.

Gain Value INDIatt Value INDIvel Value INDIpos Value PID unit

KPφ1 0.40 0.20 0.30 1.00 s−1

KIφ1
0.00 0.00 0.08 0.02 −

KDφ1
1.20 0.30 2.50 1.40 s−2

KPφ̇1
0.20 1.20 1.00 0.65 −

KIφ̇1
0.00 0.00 0.00 0.00 s

KDφ̇1
1.10 0.55 0.00 8.00 s−1

KPθ1 0.40 0.20 0.30 1.00 s−1

KIθ1 0.00 0.00 0.08 0.02 −
KDθ1 1.20 0.40 2.50 1.40 s−2

KP θ̇1
0.20 1.1 1.00 0.65 −

KIθ̇1
0.00 0.00 0.00 0.00 s

KDθ̇1
1.10 0.55 0.00 8.00 s−1

Time constant

τ1 5 5 5 5 s

τ2 - 5 - - s

6.10.5. Conclusions case 6
Case 6 is different from case 5 in the way that drag is computed. In case 5, the cable was suspended in

air, whereas in case 6 the cable was partially submerged. As expected, the water added damping to the

cable, making it possible to use INDI for cable control through attitude control. This was not possible for

case 5, due to the oscillations from the cable sections.

This case studied 3 different control strategies in order to figure out what way to best control the cable.

These 3 strategies were: cable control through attitude control, cable control through velocity control and

cable control through position control. After subjecting each of these controllers to a wind disturbance,

it turned out that the control strategy using helicopter attitude performed best by keeping the change in

SONAR ground velocity the smallest. The reason for this is that the air velocity is not present in the control

loop via the TRC controller. It was therefore not attempting to bring the air velocity down to zero initially.

After comparing the PID and the INDI controllers, it was found that the INDI controller was better at keeping
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the SONAR ground velocity low. However, the response was more oscillatory than the PID. Both controllers

use practically the same amount of control.

6.11. Case 7: Helicopter with Multiple Cable Sections at Offset, Par-

tially Submerged with Wind
Case 7 builds on case 6 by adding atmospheric disturbance to the helicopter-cable system. A constant

wind and the turbulence model are added.

6.11.1. Case 7 Trim
Case 7 is, unlike cases 1-6, trimmed at an air velocity of 10, 20 and 30 kts and a ground velocity of 0kts.
This is the maximum wind expected at a sea state of 4-5. This distinction is important, since in windy

conditions, the submerged cable sections should not be displaced by wind. This means that the cable will

have an initial cable displacement. This is also visible in the trim states in Table 6.15. Note that the top

cable sections, 1-3, have a cable displacement of around 52 degrees. The cable section that is partially
submerged has a displacement that is less, since part of it is submerged. The final cable section and the

SONAR are not displaced. This is to be expected. Note that the

6.11.2. Disturbance Rejection
In this section, the disturbance rejection of the two cable controllers is assessed. This is done by simulating

both controllers with the wind and turbulence model from the scientific paper. The assessment is done

by simulating the controlled helicopter-cable system under different wind conditions: 10kts, 20kts and 30kts.

10 kts wind

For a wind of 10 kts, the gusts are as in Figure 6.65. Simulation is done for 5 minutes, and the goal of the

controller is to keep altitude, and keep the cable angle at its trimmed value. The performance metrics

defined for the controllers are: standard deviation of the control inputs, mean sonar velocity and standard

deviation of the SONAR velocity.

Figure 6.65: Gust velocities for a wind of 10 kts.
Figure 6.66: SONAR ground velocity response at

10 kts wind.
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Figure 6.67: Cable angle response at 10 kts wind.
Figure 6.68: SONAR angular rate response at 10

kts wind.

The performance metrics for a velocity of 10 kts are given in Table 6.16. For reference, the SONAR ground

velocity is provided in Figure 6.66. Note that this image is rather cluttered, due to the long simulation

time, but the important part is to see that the SONAR velocity never exceeds 1m/s throughout the entire
simulation, passing the first requirement for the controller at 10 kts.

During simulation, it was found that, although the PID controller from case 6 is capable of controlling the

disturbed system, it does so using more control relative to the INDI controller, constantly oscillating. This

is also clear from the performance metrics.

When looking at the standard deviation of the SONAR velocity, the PID and INDI perform roughly equal in

x and z direction. However, in y direction, the INDI controller is clearly better, but the standard deviation is
still very small for both controllers, with the standard deviation being in the order of centimeters per second.

The mean of the SONAR velocity indicates how much the SONAR drifts. Here, both the PID and the INDI

controller perform similarly.

The cable angle response and the SONAR angular rate response are provided in Figure 6.67 and

Figure 6.68. As shown, the INDI controller is better capable of keeping the cable angles close to 0,

especially the lateral cable angle φ1. The SONAR angular rate indicates that both controllers pass the

second controller requirement to keep SONAR angular rates below 1◦/s.

Generally, the INDI controller is better than the PID at keeping the SONAR stable at a wind of 10 kts.

However, the cyclic control inputs are more oscillatory than the PID.

Table 6.16: Performance metrics Cable controllers for a wind of 10 kts.

standard deviation controls (deg) σθ1c σθ1s σθ0 σθ0tr
INDI 0.0494 0.0125 0.0713 0.2273

PID 0.0622 0.0239 0.0801 0.2519

standard deviation VSONAR (m/s) σVSONARx σVSONARy σVSONARz
INDI 0.0935 0.0296 0.0404

PID 0.1049 0.0818 0.0358

mean VSONAR (m/s) V̄SONARx V̄SONARy V̄SONARz

INDI -0.0062 0.0104 -0.0029

PID -0.0056 0.0495 -0.0026
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20 kts wind

For a wind of 20 kts, the gusts are as in Figure 6.69. Simulation is done for 5 minutes, and the goal of the

controller is to keep altitude, and keep the cable angle at its trimmed value. Just as for 10 kts.

During simulation, it was found that the controller could not handle the disturbances. The controller was

trying to correct for the disturbances too aggressively. To counter this, the gains for the ACAH controllers

have been lowered by a factor of 3. The gains for the TRC controllers for the vertical body velocity w were

lowered by a factor 5. This will hurt the performance of the ACAH and TRC controller, but it is necessary

to reject the disturbance. The gains of the other controllers were left unchanged. This change was done

for both the PID and the INDI controller.

Figure 6.69: Gust velocities for a wind of 20 kts.
Figure 6.70: SONAR ground velocity response at

20 kts wind.

Figure 6.71: Cable angle response at 20 kts wind.
Figure 6.72: SONAR angular rate response at 20

kts wind.

When running the simulation with the re-tuned controllers, the performance metrics in Table 6.17 were

found. From these metrics, it becomes clear that the performance of both the PID and the INDI controller

worsened in all aspects, accompanied with a higher control use. This is also observed in Figure 6.70 and

Figure 6.71, where the SONAR velocity reaches higher values, and the cable angle tracking performance

has degraded. This makes sense in the way that increased disturbance is accompanied with worse

controller performance. Judging by the controller performance metrics, the INDI controller performs better

than the PID, except at the mean of the SONAR velocity in x-direction. However, both values are near 10
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cm/s.

From Figure 6.70, it is found that the SONAR velocity does not exceed 1 m/s and from Figure 6.72, is

appears that the SONAR angular rate does not exceed 1◦/s, making this controller pass the first and

second controller requirement.

Table 6.17: Performance metrics Cable controllers for a wind of 20 kts.

standard deviation controls (deg) σθ1c σθ1s σθ0 σθ0tr
INDI 10 kts 0.0494 0.0125 0.0713 0.2273

INDI 20 kts 0.1081 0.0608 0.2492 0.6918

PID 10 kts 0.0622 0.0239 0.0801 0.2519

PID 20 kts 0.1188 0.1228 0.2555 0.6694

standard deviation VSONAR (m/s) σVSONARx σVSONARy σVSONARz
INDI 10 kts 0.0935 0.0296 0.0404

INDI 20 kts 0.2348 0.0399 0.1241

PID 10 kts 0.1049 0.0818 0.0358

PID 20 kts 0.2722 0.1357 0.1242

mean VSONAR (m/s) V̄SONARx V̄SONARy V̄SONARz

INDI 10 kts -0.0062 0.0104 -0.0029

INDI 20 kts -0.0918 0.0196 -0.0047

PID 10 kts -0.0056 0.0495 -0.0026

PID 20 kts -0.0728 0.0525 -0.0056

30 kts wind

30 kts wind is about the highest wind that would be encountered at a sea state of 4-5. Therefore, this

wind condition is the ultimate test for the two controllers. The gusts modelled with this wind are found in

Figure 6.73.

Figure 6.73: Gust velocities for a wind of 30 kts.
Figure 6.74: SONAR ground velocity response at

30 kts wind.
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Figure 6.75: Cable angle response at 30 kts wind.
Figure 6.76: SONAR angular rate response at 30

kts wind.

During simulation, it was found that both the PID and INDI controller had trouble controlling the cable,

with the INDI having more trouble than the PID and crashing earlier. Generally, there were no issues,

until at some point the helicopter got blown away far from its initial position in a relatively short time. This

meant that sometimes the helicopter would change position quickly, but the cable system is much slower

to respond. As a result, the helicopter would pull the cable completely straight, with the cable angle

changing quickly. After that, the helicopter will be pulled back by the cable, and will make corrections at

the same time in an attempt to keep the cable angle constant. This results in an aggressive correction of

the helicopter and cable.

The source of this behaviour was not found, but it is likely that drifting of the helicopter is the source of

this behaviour, since the other two wind velocities (10 and 20 kts) did not show these issues. To figure

out whether this is the case, the cable controller is disconnected and instead the position hold controller

from case 2 is used for the INDI controller. The gains for the TRC and ACAH remain reduced (see 20

kts). Using this controller, the helicopter position barely drifted and the previous phenomena disappeared.

This suggests that it was indeed caused by fast drifting of the helicopter relative to the cable. Also, the

cable angle remained somewhat constant during this simulation. This suggests that a position hold might

perform equal or better in high wind conditions. Therefore, the position hold case for INDI is included into

Table 6.18, for comparison with the PID and INDI cable controller.

The performance metrics of the cable controllers given a wind disturbance of 30 kts are given in Table 6.18.

From this table, some interesting results can be gathered.

With respect to control use, the position hold controller performs worst here, likely because it is fighting the

wind much more than the other two controllers. This is because keeping the cable angle constant requires

flying with the gusts, whereas keeping position means constant acceleration and deceleration. With respect

to SONAR velocity, the position hold controller performs best, with the smallest standard deviation of the

SONAR velocity and the smallest mean in almost all directions. This is because the helicopter is set to hold

the same position, meaning that the mean of the SONAR motion will generally also be close to zero. The

standard deviation is likely the smallest also because the helicopter stays in the same place. This means

that the helicopter will not excite the submerged sections of cable and the only motion is caused by the gusts.

Generally, a position hold controller is better than a cable angle controller under the wind conditions of

30 kts. The reason being is that, when the helicopter remains static, there is no excitation of the cable

due to the helicopter moving and the only excitation is by the gust and attitude changes of the helicopter

(the cable is attached offset to the c.g. after all). This means that the SONAR is kept more still than when

using a cable controller.

In Figure 6.74, Figure 6.75 and Figure 6.76, the SONAR velocity, cable angle and SONAR angular rate

are presented for the INDI and PID cable controller. As shown, the SONAR velocity does not exceed 1

m/s during this simulation, but the SONAR angular rate does exceed 1◦/s. This means that the cable
controllers pass the first controller requirement, but fail the second. Also, with regards to drifting, when

observing the cable angle response, one can see the cable angle increase relatively fast around the 260
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seconds mark for both the PID and the INDI cable controller. This quick change in angle comes from

the gusts at this time. This is also the gust that causes the helicopter to drift, resulting in the unstable

behaviour mentioned before.

Table 6.18: Performance metrics Cable controllers for a wind of 30 kts.

standard deviation controls (deg) σθ1c σθ1s σθ0 σθ0tr
INDI 10 kts 0.0494 0.0125 0.0713 0.2273

INDI 20 kts 0.1081 0.0608 0.2492 0.6918

INDI 30 kts 0.1877 0.1872 0.4408 0.5618

INDI position hold 30 kts 0.2994 0.2382 0.5348 1.3591

PID 10 kts 0.0622 0.0239 0.0801 0.2519

PID 20 kts 0.1188 0.1228 0.2555 0.6694

PID 30 kts 0.2217 0.1480 0.3824 0.3706

standard deviation VSONAR (m/s) σVSONARx σVSONARy σVSONARz
INDI 10 kts 0.0935 0.0296 0.0404

INDI 20 kts 0.2348 0.0399 0.1241

INDI 30 kts 0.3544 0.0903 0.3715

INDI position hold 30 kts 0.1751 0.1062 0.2839

PID 10 kts 0.1049 0.0818 0.0358

PID 20 kts 0.2722 0.1357 0.1242

PID 30 kts 0.3751 0.1031 0.3208

mean VSONAR (m/s) V̄SONARx V̄SONARy V̄SONARz

INDI 10 kts -0.0062 0.0104 -0.0029

INDI 20 kts -0.0918 0.0196 -0.0047

INDI 30 kts 0.0397 0.0116 -0.0218

INDI position hold 30 kts -0.0151 -0.0006 -0.0057

PID 10 kts -0.0056 0.0495 -0.0026

PID 20 kts -0.0728 0.0525 -0.0056

PID 30 kts 0.0744 0.0124 -0.0333

6.11.3. Fulfillment of controller requirement 3: step response
The third controller requirement puts a limit on the allowed time to steady state of the cable of 60 seconds

given a step input of 7 Bft, with the SONAR at a depth of 60m. This was simulated with a step input of 17

m/s at the 1 second mark of the simulation. Note that for this simulation, the reduced controller gains were

used as for the 20 kts simulation in the previous section.

The SONAR velocity response and the cable angle response are presented in Figure 6.77 and Fig-

ure 6.78. As shown, there is a large disturbance at the 1 second mark due to the increased wind. The

cable angle immediately changes to -10.5 degrees in longitudinal direction (backwards). This is followed

by a response of the lateral angle, due to the helicopter motion. After approximately 40 seconds, the

velocity in x-direction settles on around 2 m/s. The velocity in z-direction settles in about the same time.

The velocity in y-direction settles in around a minute for the INDI controller and around 20 seconds for the

PID controller in y-direction, but the INDI controller reaches 0 much faster than the PID controller.

The aforementioned results mean that the PID and the INDI controller both pass the third controller

requirement of reaching steady state within 60 seconds given a step input of 7 Bft in wind. The PID settles

slightly faster than the INDI. The INDI on the other hand is better capable of decoupling the longitudinal

and lateral motion, resulting in a zero lateral velocity faster.
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Figure 6.77: SONAR ground velocity response at

17m/s step in wind.

Figure 6.78: Cable angle response at 17 m/s step

in wind

6.12. Conclusions
To conclude, there were 7 cases studied in this chapter:

Simulation Cases for the 6-DOF helicopter controller

Case Helicopter Model Cable Model Load Location Medium Disturbances

1 Rotor hub aligned with c.g. - - - -

2 Rotor hub at offset - - - -

3 Rotor hub at offset Single cable section + SONAR c.g. of helicopter Air -

4 Rotor hub at offset Single cable section + SONAR At offset Air -

5 Rotor hub at offset 5 cable sections + SONAR At offset Air -

6 Rotor hub at offset 5 cable sections + SONAR At offset Air + water -

7 Rotor hub at offset 5 cable sections + SONAR At offset Air + water Aerodynamic

For each of these cases, a PID and an INDI controller were designed with the aim of comparing their

response to disturbance to each other. In cases 1 and 2, this was done without a load. in cases 3 and 4, a

load was attached, consisting only of 1 cable section. Case 5 changed this to 5 sections and case 6 added

water to simulate submergence. Case 7 compared both controllers when in a gusty environment.

From the first two cases, it was concluded that the PID and INDI controller for the pure helicopter (no load)

responded similarly to a disturbance. In cases 3 and 4, the cable was attached, and it was found that

the INDI was better at controlling the cable angle than the PID. It was especially better at decoupling the

longitudinal and lateral modes. This was something that was also observed in Chapter 4. Case 5 found

that when using more cable sections, oscillations appear due to them moving relative to each other. When

controlling in air, this meant that INDI could not be used in combination with attitude control, but that cable

control through velocity control was necessary. Here too, INDI showed more promising results by adapting

itself more to changing circumstances, but the controllers could not be tuned properly, so it may not be

better than a PID in this case.

In case 6, the added damping of the water meant that cable control through attitude control was possible.

As a result, 3 control strategies were investigated, with the cable control through attitude control performing

the best when subjected to a constant wind. The reason for its better performance was that helicopter

control through attitude control did not have velocity in its control loop for the attitude of the helicopter.

This made that it largely ignored it and kept the cable angle stable more quickly. When comparing the

INDI controller to the PID controller, it was found that the INDI controller was better at controlling the cable

angle, and also keeping the SONAR velocity low.

In case 7, 3 different wind speeds were used to compare the performance of the INDI cable controller to

the PID cable controller. It was found that for wind speeds of 10 and 20 kts, the INDI controller performed
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better than the PID at keeping the SONAR velocity low. However, at 30 kts this was no longer the case. It

was found that there were large aggressive corrections by the helicopter when it got blown away from its

position if the cable could not keep up. This meant that the helicopter would pull the cable taught, and

got pulled back by it. Changing the cable controller for a position controller removed this issue entirely,

which suggests that a position hold controller could perform better in high wind conditions. Nevertheless, it

should be emphasized that the cable controller has a different goal than the position hold controller. The

cable controller has as goal to keep the cable angle at the helicopter at the trimmed value. This means

that in windy conditions, the helicopter will be told to move with the wind in order to keep the angle at the

trimmed value (it ignores the wind velocity, as was shown in case 6). The position hold controller would

not do this. However, with dipping SONAR missions in mind, keeping the helicopter in the same position

may prove more useful than keeping the cable angle constant, as this keeps the SONAR position constant

and its velocity low.

With respect to the controller requirements, it was found that the controllers were able to pass the first

and second requirement of keeping the SONAR rates below 1m/s and 1◦/s in all directions up to a wind
speed of 20 kts. At 30 kts, the requirement of keeping the SONAR angular rate below 1◦/s failed. The
third requirement with respect to reaching steady state was passed by both the PID and the INDI controller,

reaching steady state within 60 seconds after a 17 m/s step in wind. The PID controller settled slightly

faster, but the INDI controller kept the longitudinal and lateral modes more decoupled.
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Table 6.15: Trim data Case 6 vs. 7 trimmed at a wind of 33 kts

Helicopter State Symbol Name Value case 6 Value case 7 unit

1 u Body velocity in x 0.000 16.959 m/s

2 v Body velocity in y 0.000 0.072 m/s

3 w Body velocity in z 0.000 −0.760 m/s

4 p Body roll rate 0.000 0.000 deg/s

5 q Body pitch rate 0.000 0.000 deg/s

6 r Body yaw rate 0.000 0.000 deg/s

7 ψf Fuselage heading angle 0.000 0.000 deg

8 θf Fuselage pitch angle 11.053 −2.576 deg

9 φf Fuselage roll angle −2.166 −5.411 deg

10 x Helicopter x position 0.000 0.000 m

11 y Helicopter y position 0.000 0.000 m

12 z Helicopter z position −60.000 −60.000 m

13 λ0 Normalised uniform inflow velocity 0.0523 0.0316 −
14 λ0tr Normalised uniform inflow velocity tail 0.0614 0.0487 −
15 ω Main rotor angular rate 44.400 44.400 rad/s

Cable State Symbol Name Value case 6 Value case 7 unit

1 φ1 Cable angle around x axis section 1 0.0 0.0 deg

2 φ2 Cable angle around x axis section 2 0.0 0.0 deg

3 φ3 Cable angle around x axis section 3 0.0 0.0 deg

4 φ4 Cable angle around x axis section 4 0.0 0.0 deg

5 φ5 Cable angle around x axis section 5 0.0 0.0 deg

6 φSONAR Cable angle around x axis SONAR 0.0 0.0 deg

7 θ1 Cable angle around y axis section 1 0.0 −51.5657.0 deg

8 θ2 Cable angle around y axis section 2 0.0 −52.1476.0 deg

9 θ3 Cable angle around y axis section 3 0.0 −52.7492.0 deg

10 θ4 Cable angle around y axis section 4 0.0 −34.0085.0 deg

11 θ5 Cable angle around y axis section 5 0.0 0.0 deg

12 θSONAR Cable angle around y axis SONAR 0.0 0.0 deg

Control Symbol Name Value case 6 Value case 7 unit

1 θ1c Lateral Cyclic −0.6030 −3.2628 deg

2 θ1s Longitudinal Cyclic 1.6826 2.9582 deg

3 θ0 Main rotor collective 15.1944 13.6436 deg

4 θ0tr Tail rotor collective 15.4208 12.8987 deg



7
Sensitivity Analysis 6-DOF Cable

Controller

In this chapter, a sensitivity analysis is performed in order to find out how sensitive the controller performance

is to changing parameters. Therefore, changes were made to the amount of cable sections as well as the

length of the cable to figure out how the performance of the cable controller changes.

7.1. Sensitivity to Changing Cable Length
In this section, the simulations from case 7 were done with varying cable lengths of 120m, 250m, 500m

and 750 meters. This was done to figure out how the performance of the cable controller varies with cable

length. The systemwas trimmed under 30 kts headwind and is simulated for 5 minutes in gusty environment.

The performance parameters for these two additional simulations are shown in conjunction with the

results from case 7 for comparison. First of all, it appears that for 250m, the amount of control used

decreases, whereas for 500m and 750m it increases. This means that the control efficiency has decreased

over this increase in length. The exact reason for this is not known, but it could be related to the fact that

the cable sections are longer than the trimmed altitude of the helicopter. This means that the first cable

section moves slower than when suspended in air, which would explain the degraded control effectiveness.

With regards to SONAR velocity it seems that the standard deviation of the SONAR velocity remains

roughly constant with increasing length, except at 250m where a sudden increase is observed. This is an

interesting result as this suggests that the performance of the cable controller is independent of cable

length. The average velocity of the SONAR also remains roughly constant with changing length.

The SONAR velocity is also plotted for the aforementioned cable lengths in Figure 7.1-Figure 7.3.

From these, it appears that the SONAR velocity oscillates more, the longer the cable gets. It is thought

that this is due to the first cable section being longer than the altitude of the helicopter.

147
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Table 7.1: Performance metrics Cable controllers for a wind of 30 kts, compared to cable length.

standard deviation controls (deg) σθ1c σθ1s σθ0 σθ0tr
INDI, 120m 0.1877 0.1872 0.4408 0.5618

INDI, 250m 0.0698 0.1071 0.2914 0.7509

INDI, 500m 0.1900 0.1394 0.3054 0.5575

INDI, 750m 0.1879 0.1810 0.4276 0.5545

INDI position hold, 120m 0.2994 0.2382 0.5348 1.3591

PID, 120m 0.2217 0.1480 0.3824 0.3706

standard deviation VSONAR (m/s) σVSONARx σVSONARy σVSONARz
INDI, 120m 0.3544 0.0903 0.3715

INDI, 250m 0.5058 0.1045 0.2848

INDI, 500m 0.3406 0.0853 0.2901

INDI, 750m 0.3545 0.0903 0.3658

INDI position hold, 120m 0.1751 0.1062 0.2839

PID, 120m 0.3751 0.1031 0.3208

mean VSONAR (m/s) V̄SONARx V̄SONARy V̄SONARz

INDI 120m 0.0397 0.0116 -0.0218

INDI, 250m -0.2884 0.0016 -0.0962

INDI, 500m 0.0395 -0.0060 -0.0866

INDI, 750m 0.0401 0.0110 -0.0251

INDI position hold, 120m -0.0151 -0.0006 -0.0057

PID, 120m 0.0744 0.0124 -0.0333

Figure 7.1: SONAR ground velocity response at

30 kts wind for 250m long cable.

Figure 7.2: SONAR ground velocity response at

30 kts wind for 500m long cable.
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Figure 7.3: SONAR ground velocity response at 30 kts wind for 750m long cable.

7.2. Sensitivity to Amount of Cable Sections
To figure out whether the performance of the INDI cable controller changes, the amount of cable sections

was increased from 5 to 25 to 75, while keeping a cable length of 750m. This means that each cable

section has a length of 150 to 30 to 10m, and that the cable is more free to deform. The system is trimmed

under 30 kts headwind and is simulated for 5 minutes in gusty environment.

The SONAR velocity for the 25 and 75 cable sections are presented in Figure 7.4 and Figure 7.5.

From these, it becomes clear that the SONAR velocity is similar for both 25 sections and 75 sections.

The main difference is that the peaks in velocity are higher for 25 sections than for 75 sections. It is also

interesting to note the dominant peaks in the z-direction. This is due to the small drag modelling in the

cable. Since the cable sections move straight up, the drag modelled is very low, since friction drag is not

modelled. Having a more refined drag model would be necessary to find out whether these peaks remain.

The performance metrics are given in Table 7.2. From this, it can be concluded that the control use

first increases with cable flexibility, and then decreases. The standard deviation of the SONAR velocity

decreases with cable flexibility and the mean stays roughly the same, staying well below 5 cm/s. This

suggests that the response of the controller is improved if the cable is more flexible.

Figure 7.4: SONAR ground velocity response at

30 kts wind for 750m long cable with 25 cable

sections.

Figure 7.5: SONAR ground velocity response at

30 kts wind for 750m long cable with 75 cable

sections.
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Table 7.2: Performance metrics Cable controllers for a wind of 30 kts with 750m long cable, compared to

better resolution cable model.

standard deviation controls (deg) σθ1c σθ1s σθ0 σθ0tr
INDI, 5 sections 0.1879 0.1810 0.4276 0.5545

INDI, 25 sections 0.1888 0.2764 0.8440 2.3755

INDI, 75 sections 0.1726 0.3429 0.7510 2.0701

standard deviation VSONAR (m/s) σVSONARx σVSONARy σVSONARz
INDI, 5 sections 0.3545 0.0903 0.3658

INDI, 25 sections 0.2192 0.0645 0.4550

INDI, 75 sections 0.2048 0.0624 0.3852

mean VSONAR (m/s) V̄SONARx V̄SONARy V̄SONARz

INDI, 5 sections 0.0401 0.0110 -0.0251

INDI, 25 sections -0.0009 -0.0148 -0.0029

INDI, 75 sections -0.0033 -0.0149 -0.0299

7.3. Conclusions Sensitivity Analysis
In this chapter, it was looked into how sensitive the cable controller performance is to changing the cable

parameters length lc and the number of cable sections n. It was found that when lengthening the cable, the
cable controller generally uses more control. However, it is thought that if the first cable section is partially

submerged, the control effectiveness of the motion of the helicopter goes down due to the added drag. This

could be countered by modelling more cable sections. Also, it was found that when using a longer cable,

the standard deviation of the velocity of the SONAR decreases. This is a result that is expected, since the

added drag of the water resists the motion of the cable. With regard to the amount of cable sections, it

was found that when using more cable sections, the performance of the cable controller increases. This

suggests that the cable controller performs better with a more flexible cable. It was also found that the

SONAR velocity in z-direction has large peaks. It is thought that a lack of friction drag modelling causes

less resistance in this direction than the others. A better drag model would be required to figure out if this

is the case.



8
Verification and Validation

8.1. Cable Model Verification
The cable model was verified by checking the correctness of the angular acceleration calculation. This

was done in Appendix E

8.2. Cable Model Validation
Validation is done by simulating the cable model in a set of environments. Three different environments

have been chosen to see whether the cable behaves in a real way. All three are simulated using a cable

with 4 cable sections and the SONAR. Both the cable angle and the cable shape are of interest.

Dropping the Cable

The first method is by dropping the cable from a certain angle, and have it swing through air alone. For the

simulation, a cable with 4 sections and the SONAR were modelled at an altitude of 140 m, with a 120m

long cable and a 5m long SONAR. This means that the SONAR will be emerged throughout the simulation.

The cable is initialised at an angle of 45◦ for cable sections in longitudinal direction. The angular rate is set
to zero.

Running the simulation yields the cable shape in Figure 8.1. Here, the cable shape is plotted for

each second in the simulation up to 12 seconds. This is done since the period of a 120m long pendulum

is roughly 22 seconds. Hence, half a period is shown to avoid cluttering. Note that the arrows indicate

the direction of the cable. As shown, the cable remains almost perfectly straight all the way down, but

doesn’t reach the initial angular deflection of 45◦. This is caused by the damping as well as the air drag. In
Figure 8.2, the cable angle at the attachment point is plotted over a time of 60 seconds. Here, the effect of

the drag is more visible.

Overall, the cable behaves as it should given this disturbance.
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Figure 8.1: Validation cable shape when dropping

cable

Figure 8.2: Validation cable angle when dropping

cable

Blowing wind

The second method involves putting the cable into a wind disturbance of 40 m/s, while keeping the

attachment point fixed. A large wind was chosen to see the cable behaviour better. The parameters of the

simulation are the same as the previous simulation without the initial cable deflection.

The simulation results are shown in Figure 8.3 and Figure 8.4. In Figure 8.3, the cable shape is

plotted for each second over the 60 second simulation. Note that the arrows indicate the direction the

cable is travelling in. What is interesting to note is the 3 left most cable shapes. These show the cable

shape in the first 3 seconds of the simulation. Note how the cable bulges back first due to the drag, before

it starts to move back. This is exactly how a real cable would behave, which is a good result. The cable

angle is shown in Figure 8.4. Note how there is a transient in the first couple of seconds. This is when the

cable sections start moving. This sends a shock through the cable initially. The cable also appears to

settle at a non-zero cable angle due to the drag. Generally, the cable behaves as intended.

Figure 8.3: Validation cable shape when in 40 m/s

wind

Figure 8.4: Validation cable angle when in 40 m/s

wind

Blowing wind when submerged

The final method is to check how the cable behaves under the same conditions as the previous simulation

of 40 m/s wind, but with submerged cable sections. The trim altitude is dropped from 140m to 60m,

meaning that half the cable is submerged.



The simulation results are shown in Figure 8.5 for the cable shape and Figure 8.6 for the cable an-

gle. The plot of the cable shape is more zoomed in on the x-axis, which gives it its warped appearance. As

shown, the cable bulges back first, similar to when in air. However, the cable sections that are submerged

appear to respond slower than the emerged sections. This is in line with expectations, as the water drag

is much higher than the air drag. Also, the wind is not felt at sections that are submerged, which is why

they are not really deflected at the steady state. The plot for the cable angle shows the cable angle

at the attachment point over time. Here too, the transient is present, but more pronounced than in the

previous simulation. After the transient, the cable angle moves gradually to the steady state due to the

slow adjustment of the submerged cable sections.

Figure 8.5: Validation cable shape when in 40 m/s

wind submerged

Figure 8.6: Validation cable angle when in 40 m/s

wind submerged

After these 3 simulations, the cable appears to move in a realistic manner. Therefore, the cable model

seems valid enough for the problem at hand.

153



Part IV
Closure

154



9
Conclusion

9.1. Closing Remarks
The goal of this thesis is to apply INDI to a hovering helicopter with a dipping SONAR. The main reason

for this is that the suspension cable moves in a complex way when subjected to disturbances, due to

its flexibility. Hence, a control method is desired that ignores the cable dynamics in order to control the

SONAR. The method chosen for this exercise was incremental nonlinear dynamic inversion (INDI).

The main strength of INDI is that it uses minimal model knowledge in order to control a system. Only the

control effectiveness of the system is required, and it is generally robust against modelling errors, given

the sampling frequency of the controller is large enough. In order to assess the performance of the INDI

controller, it was compared to classical PID control, which is still common in many flight control systems.

Comparisons were made with respect to the control usage and the SONAR velocity when given a certain

disturbance.

The main conclusion of this thesis is that cable control using INDI performs better at stabilising the SONAR

than PID does under turbulent conditions with wind up to 20 kts in terms of control use and SONAR velocity.

However, due to the way the cable controller is designed in this work, either controller could fail if the

helicopter gets blown away too far from the cable sections that are submerged, which was the case for 30 kts.

The cable controller works by keeping the angle of the cable at the attachment point to the helicopter

constant. Thus, changing wind will inevitably result into translation commands to the helicopter in order to

keep this angle constant. This means that when there is a sufficiently large change in wind, the helicopter

changes its velocity to keep the angle constant and starts drifting. The submerged cable sections lag

behind and can drag down the helicopter.

A position controller proved to work better under the high wind and high turbulent conditions of 30 kts

wind. It seems that improvements could be made by either finding a way to vary the desired cable angle

based on the turbulence or to find a controller that incorporates cable control and helicopter position hold

together in order to keep the helicopter position somewhat constant, yet move slightly to stabilise the cable

to changing wind conditions.

Moreover, requirements were defined for both the PID and the INDI controller to fulfill. This was done in

order to have something to compare the controllers to, other than each other. The controller requirements

are listed below:

1. The translational rates of the SONAR shall not exceed 1m/s in all directions with the SONAR

submerged at a depth of 60m and sea state 5 for 5 minutes.

2. The rotational rates of the SONAR shall not exceed 1◦/s in all directions with the SONAR submerged

at a depth of 60m and sea state 5 for 5 minutes.

3. The SONAR shall reach steady state within 60 seconds in all axes after a step input gust of 0 to 7 Bft

with the SONAR submerged at a depth of 60m.

Simulation showed that these requirements could be met by both the PID and the INDI controllers up to 20

kts wind. The second requirement failed at 30 kts wind. Both controllers passed the third requirement. It

was also found that shorter cables are more limiting than longer cables. This is due to the higher drag of

longer cables and the lower natural frequency of longer cables.
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9.2. Research Questions
The main research question of this thesis is:

How does an INDI controller compare to PID control in keeping a dipping SONAR stationary

while hanging under a hovering helicopter during a dipping SONAR mission?

The answer to this question is that INDI has a better cable angle tracking performance than the PID in

turbulent conditions. It also appeared to be more robust to the disturbances than the PID controller up to

winds of 20 kts. However, the INDI controller performs worse than the PID at 30 kts. Likely due to the fact

that the INDI has better tracking performance, which generally reduces disturbance rejection.

From this main research question, the following sub-questions arose and have been answered:

Sub-question 1: What does a dipping SONAR mission look like?

Sub-question 1.1: What is dipping SONAR?

Answer: A dipping SONAR is a SONAR device that is suspended below a helicopter, and low-

ered into the water periodically to take measurements in order to detect submarines.

Sub-question 1.2: What manoeuvres are expected?

Answer: From the mission analysis, it appears that the helicopter will remain hovering at

50-300ft altitude during the process of dipping.

Sub-question 1.3: What environmental conditions are expected?

Answer: The exact environmental conditions at which dipping SONAR is used are not readily

available. However, helicopter operations were found to occur at sea states of up to

4-5. Hence, sea state 5 was chosen as a worst case scenario.

Sub-question 1.4: What are the requirements of the controller?

Answer: i. The translational rates of the SONAR shall not exceed 1m/s in all directions
with the SONAR submerged at a depth of 60m and sea state 5 for 5 minutes.

ii. The rotational rates of the SONAR shall not exceed 1◦/s in all directions with
the SONAR submerged at a depth of 60m and sea state 5 for 5 minutes.

iii. The SONAR shall reach steady state within 60 seconds in all axes after a step

input gust of 0 to 7 Bft with the SONAR submerged at a depth of 60m.

Sub-question 1.5: What are the controller performance metrics?

Answer: The performance of the controllers is assessed via the following performance metrics:

i. Standard deviation of the velocity of the SONAR;

ii. Mean of the velocity of the SONAR;

iii. Standard deviation of the control inputs.

The mean will tell how much the SONAR drifts. The standard deviation tells some-

thing about the oscillatory nature of the motion.

Sub-question 2: What are the dynamic characteristics of a helicopter during a dipping SONAR mission?

Sub-question 2.1: What are the rotor dynamics?

Answer: The rotor flapping dynamics not included in the helicopter model. However, quasi-

steady inflow dynamics were assumed.

Sub-question 2.2: What are the actuator dynamics?

Answer: Actuator dynamics were not modelled in this thesis, but could be approximated using

a first order lag filter.

Sub-question 2.5: What is the state of the art in helicopter modelling with a slung load?
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Answer: In literature, typically a helicopter is modelled in combination with a simple pendulum,

though other models are used as well. The reason for this is that the pendulum

mode is the main mode for a hanging load. Especially when moving from A to B,

the pendulum mode is the most dominant. However, when remaining stationary,

the pendulum mode may not be as dominant, meaning that the cable can change

shape. This requires a more detailed cable model.

Sub-question 2.3: How does a pure helicopter behave (without any suspended load)?

Answer: The helicopter is unstable in its phugoid mode to begin with. Hence, a controller is

necessary to keep it stable. With this controller, the helicopter responds relatively

quick. It has good tracking performance with both the PID and INDI controllers

Sub-question 2.4: How does a submerged load change helicopter behaviour?

Answer: Adding a submerged load to the helicopter yields more aggressive control inputs

than when no loads are attached. Also, it was found that the location of the load

has a large influence on the response of the helicopter. Moving the load forwards

improved performance generally. Also, the drag of the water added a lot of drag to

the cable, keeping it from oscillating.

Sub-question 3: What is the state of the art in helicopter automatic flight control systems?

Sub-question 3.1: What different control methodologies exist?

Answer: Many different control methodologies exist to control a helicopter with a hanging

load. This includes both linear and non-linear control methods.

Sub-question 3.2: What different control modes exist?

Answer: Attitude hold, Coupled, stability control augmentation system, attitude command

attitude hold, translational rate command, position hold and altitude hold.

Sub-question 3.3: What are their advantages/disadvantages?

Answer: Each control methodology has their advantages and disadvantages regarding to

model knowledge, complexity and robustness.

Sub-question 3.4: Why choose INDI as control method?

Answer: INDI is a control method that requires minimal model knowledge and is generally

very robust to errors.

Sub-question 4: How to design an INDI controller for a helicopter with a dipping SONAR?

Sub-question 4.1: How does INDI work?

Answer: INDI is a sensor-based approach, meaning that it trades model knowledge for

measurements in order to control the dynamic system.

Sub-question 4.2: What is the controlled variable?

Answer: The controlled variable used for SONAR control is the angle of the cable at the

attachment point of the helicopter.

Sub-question 4.3: How is INDI currently used in control systems?

Answer: INDI is not practically applied in flight control systems yet (as to the authors knowl-

edge). However, case studies were done to apply INDI to various vehicles, including

helicopters.

Sub-question 4.4: How to design the outer loop controller?

Answer: The outer loop controller of the SONAR controller is a PID controller, controlling the

cable angle, followed by a loop controlling the cable angular rate.

Sub-question 5: What models will be used?

Sub-question 5.1: What model is used for the helicopter?
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Answer: An 8 degrees of freedom helicopter model is used of the Bo-105 helicopter, obtained

from the thesis supervisor.

Sub-question 5.2: What model is used for the suspension cable?

Answer: A discrete cable model was developed in this thesis.

Sub-question 5.3: What model is used for the SONAR?

Answer: The SONAR is modelled as a rigid cylinder.

Sub-question 5.4: What model is used for the environment?

Answer: For the environment, a constant wind was used in combination with a von Karman

turbulence model.

Sub-question 6: How does an INDI controller perform for a helicopter with a dipping SONAR compared to

PID?

Sub-question 6.1: What sensors are required to make it work?

Answer: For INDI, not only the helicopter states are needed, but also their rates. This means

that angular accelerations must either be measured directly, or deduced from other

sensors. Rate gyros are capable of determining the attitude of the angular position of

the helicopter (by integrating), the angular rate from measurements and the angular

acceleration by differentiating, although errors are likely to occur here. The same is

true for the cable angle measurements.

Sub-question 6.2: What are the requirements of the sensors?

Answer: From the basic principles of INDI, fast sensors are needed in order for the assump-

tions of INDI to hold. Faster sensors also make INDI more robust.

Sub-question 6.3: How robust is INDI to flapping dynamics?

Answer: Flapping dynamics are not assessed separately in this thesis. However, flapping

dynamics are very complex and introduce time delays into the system. It is known

that time delays degrade controller performance.

Sub-question 6.4: How robust is INDI to actuator dynamics?

Answer: In general, actuator dynamics slow down the control inputs response. This means

that there is a time delay between the desired control input and the actual control

input., reducing controller performance This can be mitigated by synchronising the

control input signals and the control variables by using filters.



10
Recommendations

This chapter contains recommendations containing improvements on this research, possible future steps

and ideas that came up during this project.

Rec 1 : Improvement on models

In this research, a model for a helicopter, a cable + SONAR and the wind were used. There were some

things, however, that were not modelled, which could change the behavior of the controller. These are

sensor measurements and actuator dynamics.

The cable model could be improved by adding a more realistic damping model. Currently, the damping is

assumed to be linear and depends on the angle between cable sections and the relative angular velocity

between these two. The coefficients used for damping were based on guesswork in order to ensure a

stable simulation. Having a realistic damping of the cable would make the analysis of the cable model

more valid. Also, the sensitivity analysis showed that there are large peaks in the vertical SONAR velocity.

It is thought that a lack of drag on the cable in this direction is the cause of this. Adding a more refined

drag model would show whether this is the case.

The wind model could be improved by adding varying wind with altitude, since wind and gusts are different

close to the water’s surface than at altitude. It would also be interesting to add a wave model, a sea current

model and to have wind interact with the waves in order to see the effects this has on the cable’s behaviour.

Rec 2 : Future steps

The conclusions of this report were that, although INDI cable control performed better than PID cable

control in turbulent conditions, a position hold controller performed better than the cable controller in

general. This follows from the fact that the cable controller follows a certain reference cable angle, which

remained constant regardless of wind conditions. This meant that move commands were introduced to

keep this angle constant. The next step could be finding a way to change the reference cable angle based

on the incoming disturbance. Alternatively, a wash-out could be added to remove the effect of the dis-

turbance. The general idea is to find a way to stabilise the cable, while generally staying at the same position.

Another future step could be using measurements of the SONAR states if possible and controlling

the SONAR, rather than the cable angle at the helicopter. The major advantage here would be that for INDI,

the complex cable dynamics could be largely ignored. The difficulty here, however, lies in determining

what the control effectiveness is in such a case, as the cable shape influences the control effectiveness.

In literature, several works discussed the use of an active cargo hook, which essentially is a mov-

ing platform underneath the helicopter to which the cable is attached ([12],[53]). According to [12], this is

more stable than when using the helicopter to move around. The use of an active cargo hook could be the

solution to staying in the same position while stabilising the suspension cable.

It is recommended to perform a linear analysis of the controlled helicopter-cable system with the

goal of finding the bandwidth of the controller. This will tell how stable the system is and would be required

if any certification is done in the future.
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Rec 3 : Ideas that came up

In determining the control strategy for the cable controller, 3 different options were investigated: cable

control through helicopter attitude, velocity and position. It was found that cable control through attitude

performed best, as this controller ignores the velocity of the helicopter. This means that when there is an

aerodynamic disturbance, this is only present in the response of the cable. The other control strategies

use the translational rate command, which controls the airspeed of the helicopter. This means that these

control strategies have the aerodynamic disturbance twice: once in the cable response and once in the

translational rate command. It would be interesting to see whether the other control strategies perform

more similar, or better, when using a translational rate command that doesn’t use airspeed, but ground

speed instead. This should be possible by means of GPS measurements.
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Partial Derivatives Single Pendulum
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ż1 = ż0 − l1 sin (θ1)θ̇1 (B.7)

∂ż1
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= ρẋ1CD1S1 (B.9)

D1z =
1

2
ρż21CD1

S1 −→ ∂D1z

∂ż1
= ρż1CD1
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∂ẍ0
∂q

=
∂u̇

∂q
cos (θf )− u sin (θf ) +

∂ẇ
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∂ẇ

∂u
cos (θf )

∂z̈0
∂w

= − ∂u̇

∂w
sin (θf ) +

∂ẇ
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∂ẇ

∂θf
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∂ẋ1

∂ẋ1
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∂ẋ0

∂ẋ0
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∂ż1

∂ż1
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∂ẋ1
∂ẋ0
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ẋ2 = ẋ1 − l2θ̇2 cos (θ2) (C.1)

∂ẋ2
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∂ż2

∂θ̇2
= −l2 sin (θ2);

∂ż2
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= sin (θ2)

∂Fc12

∂D2z

= − cos (θ2)

∂Fc12

∂u
=
∂Fc12

∂D2x

∂D2x

∂ẋ2

∂ẋ2
∂ẋ1

∂ẋ1
∂ẋ0

∂ẋ0
∂u

+
∂Fc12

∂D2z

∂D2z

∂ż2

∂ż2
∂ż1

∂ż1
∂ż0

∂ż0
∂u

∂Fc12

∂w
=
∂Fc12

∂D2x

∂D2x

∂ẋ2

∂ẋ2
∂ẋ1

∂ẋ1
∂ẋ0

∂ẋ0
∂w

+
∂Fc12

∂D2z

∂D2z

∂ż2

∂ż2
∂ż1

∂ż1
∂ż0

∂ż0
∂w

∂Fc12

∂q
= 0

∂Fc12

∂θf
=
∂Fc12

∂D2x

∂D2x

∂ẋ2

∂ẋ2
∂ẋ1

∂ẋ1
∂ẋ0

∂ẋ0
∂θf

+
∂Fc12

∂D2z

∂D2z

∂ż2

∂ż2
∂ż1

∂ż1
∂ż0

∂ż0
∂θf

∂Fc12

∂θ̇1
=
∂Fc12

∂D2x

∂D2x

∂ẋ2

∂ẋ2
∂ẋ1

∂ẋ1

∂θ̇1
+
∂Fc12

∂D2z

∂D2z

∂ż2

∂ż2
∂ż1

∂ż1

∂θ̇1
∂Fc12

∂θ1
=
∂Fc12

∂D2x

∂D2x

∂ẋ2

∂ẋ2
∂ẋ1

∂ẋ1
∂θ1

+
∂Fc12

∂D2z

∂D2z

∂ż2

∂ż2
∂ż1

∂ż1
∂θ1

∂Fc12

∂θ̇2
=
∂Fc12

∂D2x

∂D2x

∂ẋ2

∂ẋ2

∂θ̇2
+
∂Fc12

∂D2z

∂D2z

∂ż2

∂ż2

∂θ̇2
+
∂Fct2

∂θ̇2
∂Fc12

∂θ2
=
∂Fc12

∂D2x

∂D2x

∂ẋ2

∂ẋ2
∂θ2

+
∂Fc12

∂D2z

∂D2z

∂ż2

∂ż2
∂θ2

+D2x cos (θ2) +D2z sin (θ2)−W2 sin (θ2)

(C.9)

Fc = D1x sin (θ1)−D1z cos (θ1) +W1 cos (θ1) +m1l1θ̇
2
1 + Fc12 cos (θ1 − θ2) (C.10)
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Note that the subscript SP stands for ”Single Pendulum”. This means that this partial derivative can be

found in Appendix B.

∂Fc

∂u
=

(
∂Fc

∂u

)
SP

+
∂Fc12

∂u
cos (θ1 − θ2)

∂Fc

∂w
=

(
∂Fc

∂w

)
SP

+
∂Fc12

∂w
cos (θ1 − θ2)

∂Fc

∂q
= 0

∂Fc

∂θf
=

(
∂Fc

∂θf

)
SP

+
∂Fc12

∂θf
cos (θ1 − θ2)

∂Fc

∂θ̇1
=

(
∂Fc

∂θ̇1

)
SP

+
∂Fc12

∂θ̇1
cos (θ1 − θ2)

∂Fc

∂θ1
=

(
∂Fc

∂θ1

)
SP

+
∂Fc12

∂θ1
cos (θ1 − θ2)− Fc12 sin (θ1 − θ2)

∂Fc

∂θ̇2
=
∂Fc12

∂θ̇2
cos (θ1 − θ2)

∂Fc

∂θ2
=
∂Fc12

∂θ2
cos (θ1 − θ2) + Fc12 sin (θ1 − θ2)

(C.11)

Partial Derivatives Load angles[
(m1 +m2) l

2
1 m2l1l2 cos (θ1 − θ2)

m2l1l2 cos (θ1 − θ2) m2l
2
2

][
θ̈1

θ̈2

]
=([

(m1 +m2) (l1 [cos (θ1)ẍ0 + sin (θ1)z̈0]− l1g sin (θ1))−m2l1l2θ̇
2
2 sin (θ1 − θ2)

m2

(
l1l2θ̇

2
1 sin (θ1 − θ2) + l2 [cos (θ2)ẍ0 + sin (θ2)z̈0]− l2g sin (θ2)

) ]) (C.12)

Rewritten to: [
A11 A12

A21 A22

][
θ̈1

θ̈2

]
=

[
B1

B2

]
−→

[
θ̈1

θ̈2

]
=

1

A11A22 −A12A21

[
A22B1 −A12B2

A11B2 −A21B1

]
(C.13)

Adding the drag components to the accelerations:[
A11 A12

A21 A22

][
θ̈1

θ̈2

]
=

[
B1

B2

]
−→

[
θ̈1

θ̈2

]
=

1

A11A22 −A12A21

[
A22B1 −A12B2

A11B2 −A21B1

]
+

[
Q1m1l

2
1

Q2m2l
2
2

]
(C.14)

With:
Q1 = sgn(ẋ1)D1x l1 cos (θ1) + sgn(ż1)D1z l1 sin (θ1)

Q2 = sgn(ẋ2)D2x l2 cos (θ2) + sgn(ż2)D2z l2 sin (θ2)
(C.15)

Note that the partial derivatives of Q1 can be found in Appendix B.

Partial Derivatives of Q2
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Assuming both ẋ2 and ż2 are positive:

∂Q2

∂D2x

= l2 cos (θ2)

∂Q2

∂D2z

= l2 sin (θ2)

∂Q2

∂u
=

∂Q2

∂D2x

∂D2x

∂ẋ2

∂ẋ2
∂ẋ1

∂ẋ1
∂ẋ0

∂ẋ0
∂u

+
∂Q2

∂D2z

∂D2z

∂ż2

∂ż2
∂ż1

∂ż1
∂ż0

∂ż0
∂u

∂Q2

∂w
=

∂Q2

∂D2x

∂D2x

∂ẋ2

∂ẋ2
∂ẋ1

∂ẋ1
∂ẋ0

∂ẋ0
∂w

+
∂Q2

∂D2z

∂D2z

∂ż2

∂ż2
∂ż1

∂ż1
∂ż0

∂ż0
∂w

∂Q2

∂θf
=

∂Q2

∂D2x

∂D2x

∂ẋ2

∂ẋ2
∂ẋ1

∂ẋ1
∂ẋ0

∂ẋ0
∂θf

+
∂Q2

∂D2z

∂D2z

∂ż2

∂ż2
∂ż1

∂ż1
∂ż0

∂ż0
∂θf

∂Q2

∂θ̇1
=

∂Q2

∂D2x

∂D2x

∂ẋ2

∂ẋ2
∂ẋ1

∂ẋ1

∂θ̇1
+

∂Q2

∂D2z

∂D2z

∂ż2

∂ż2
∂ż1

∂ż1

∂θ̇1
∂Q2

∂θ1
=

∂Q2

∂D2x

∂D2x

∂ẋ2

∂ẋ2
∂ẋ1

∂ẋ1
∂θ1

+
∂Q2

∂D2z

∂D2z

∂ż2

∂ż2
∂ż1

∂ż1
∂θ1

∂Q2

∂θ̇2
=

∂Q2

∂D2x

∂D2x

∂ẋ2

∂ẋ2

∂θ̇2
+

∂Q2

∂D2z

∂D2z

∂ż2

∂ż2

∂θ̇2
∂Q2

∂θ2
=

∂Q2

∂D2x

∂D2x

∂ẋ2

∂ẋ2
∂θ2

−D2x l2 sin (θ2) +
∂Q2

∂D2z

∂D2z

∂ż2

∂ż2
∂θ2

+D2z l2 cos (θ2)

(C.16)

Partial Derivatives of ẍ0 and z̈0 w.r.t. θ̇2 and θ2
The partial derivatives of ẍ0 and z̈0 w.r.t. all other states have already been derived in Appendix B.

Therefore, only the partial derivatives w.r.t. states θ̇2 and θ2 are presented here.

∂ẍ0

∂θ̇2
=

∂u̇

∂θ̇2
sin (θf ) +

∂ẇ

∂θ̇2
cos (θf )

∂ẍ0
∂θ2

=
∂u̇

∂θ2
sin (θf ) +

∂ẇ

∂θ2
cos (θf )

∂z̈0

∂θ̇2
= − ∂u̇

∂θ̇2
sin (θf ) +

∂ẇ

∂θ̇2
cos (θf )

∂z̈0
∂θ2

= − ∂u̇

∂θ2
sin (θf ) +

∂ẇ

∂θ2
cos (θf )

(C.17)

Partial Derivatives of Aij

∂A12

∂θ1
=
∂A21

∂θ1
= −m2l1l2 sin (θ1 − θ2);

∂A12

∂θ2
=
∂A21

∂θ2
= m2l1l2 sin (θ1 − θ2) (C.18)

Partial Derivatives of Bi

B1 = (m1 +m2) (l1 [cos (θ1)ẍ0 + sin (θ1)z̈0]− l1g sin (θ1))−m2l1l2θ̇
2
2 sin (θ1 − θ2) (C.19)
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∂B1

∂u
= (m1 +m2) l1

[
cos (θ1)

(
∂ẍ0
∂u

)
SP

+ sin (θ1)

(
∂z̈0
∂u

)
SP

]
∂B1

∂w
= (m1 +m2) l1

[
cos (θ1)

(
∂ẍ0
∂w

)
SP

+ sin (θ1)

(
∂z̈0
∂w

)
SP

]
∂B1

∂q
= (m1 +m2) l1

[
cos (θ1)

(
∂ẍ0
∂q

)
SP

+ sin (θ1)

(
∂z̈0
∂q

)
SP

]
∂B1

∂θf
= (m1 +m2) l1

[
cos (θ1)

(
∂ẍ0
∂θf

)
SP

+ sin (θ1)

(
∂z̈0
∂θf

)
SP

]
∂B1

∂θ̇1
= (m1 +m2) l1

[
cos (θ1)

(
∂ẍ0

∂θ̇1

)
SP

+ sin (θ1)

(
∂z̈0

∂θ̇1

)
SP

]
∂B1

∂θ1
= (m1 +m2) l1

[
cos (θ1)

(
∂ẍ0
∂θ1

)
SP

+ sin (θ1)

(
∂z̈0
∂θ1

)
SP

− sin (θ1)ẍ0 + cos (θ1)z̈0 − g cos (θ1)

]
−m2l1l2θ̇

2
2 cos (θ1 − θ2)

∂B1

∂θ̇2
= (m1 +m2) l1

[
cos (θ1)

∂ẍ0

∂θ̇2
+ sin (θ1)

∂z̈0

∂θ̇2

]
− 2m2l1l2θ̇2 sin (θ1 − θ2)

∂B1

∂θ2
= (m1 +m2) l1

[
cos (θ1)

∂ẍ0
∂θ2

+ sin (θ1)
∂z̈0
∂θ2

]
+m2l1l2θ̇

2
2 cos (θ1 − θ2)

∂B1

∂θc
= (m1 +m2) l1

[
cos (θ1)

(
∂ẍ0
∂θc

)
SP

+ sin (θ1)

(
∂z̈0
∂θc

)
SP

]
∂B1

∂θ0
= (m1 +m2) l1

[
cos (θ1)

(
∂ẍ0
∂θ0

)
SP

+ sin (θ1)

(
∂z̈0
∂θ0

)
SP

]
(C.20)

B2 = m2

(
l1l2θ̇

2
1 sin (θ1 − θ2) + l2 [cos (θ2)ẍ0 + sin (θ2)z̈0]− l2g sin (θ2)

)
(C.21)

∂B2

∂u
= m2l2

[
cos (θ2)

(
∂ẍ0
∂u

)
SP

+ sin (θ2)

(
∂z̈0
∂u

)
SP

]
∂B2

∂w
= m2l2

[
cos (θ2)

(
∂ẍ0
∂w

)
SP

+ sin (θ2)

(
∂z̈0
∂w

)
SP

]
∂B2

∂q
= m2l2

[
cos (θ2)

(
∂ẍ0
∂q

)
SP

+ sin (θ2)

(
∂z̈0
∂q

)
SP

]
∂B2

∂θf
= m2l2

[
cos (θ2)

(
∂ẍ0
∂θf

)
SP

+ sin (θ2)

(
∂z̈0
∂θf

)
SP

]
∂B2

∂θ̇1
= m2l2

[
cos (θ2)

(
∂ẍ0

∂θ̇1

)
SP

+ sin (θ2)

(
∂z̈0

∂θ̇1

)
SP

]
+ 2m2l1l2θ̇1 sin (θ1 − θ2)

∂B2

∂θ1
= m2l2

[
cos (θ2)

(
∂ẍ0
∂θ1

)
SP

+ sin (θ2)

(
∂z̈0
∂θ1

)
SP

]
+m2l1l2θ̇

2
1 cos (θ1 − θ2)

∂B2

∂θ̇2
= m2l2

[
cos (θ2)

∂ẍ0

∂θ̇2
+ sin (θ2)

∂z̈0

∂θ̇2

]
∂B2

∂θ2
= m2l2

[
cos (θ2)

∂ẍ0
∂θ2

+ sin (θ2)
∂z̈0
∂θ2

− sin (θ2)ẍ0 + cos (θ2)z̈0 − g cos (θ2)

]
−m2l1l2θ̇

2
1 cos (θ1 − θ2)

∂B2

∂θc
= m2l2

[
cos (θ2)

(
∂ẍ0
∂θc

)
SP

+ sin (θ2)

(
∂z̈0
∂θc

)
SP

]
∂B2

∂θ0
= m2l2

[
cos (θ2)

(
∂ẍ0
∂θ0

)
SP

+ sin (θ2)

(
∂z̈0
∂θ0

)
SP

]

(C.22)

Partial Derivatives θ̈1
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θ̈1 = A22B1 −A12B2 +Q1 (C.23)

∂θ̈1
∂u

= A22
∂B1

∂u
−A12

∂B2

∂u
+

(
∂Q1

∂u

)
SP

∂θ̈1
∂w

= A22
∂B1

∂w
−A12

∂B2

∂w
+

(
∂Q1

∂w

)
SP

∂θ̈1
∂q

= A22
∂B1

∂q
−A12

∂B2

∂q
+

(
∂Q1

∂q

)
SP

∂θ̈1
∂θf

= A22
∂B1

∂θf
−A12

∂B2

∂θf
+

(
∂Q1

∂θf

)
SP

∂θ̈1

∂θ̇1
= A22

∂B1

∂θ̇1
−A12

∂B2

∂θ̇1
+

(
∂Q1

∂θ̇1

)
SP

∂θ̈1
∂θ1

= A22
∂B1

∂θ1
− ∂A12

∂θ1
B2 −A12

∂B2

∂θ1
+

(
∂Q1

∂θ1

)
SP

∂θ̈1

∂θ̇2
= A22

∂B1

∂θ̇2
−A12

∂B2

∂θ̇2

∂θ̈1
∂θ2

= A22
∂B1

∂θ2
− ∂A12

∂θ2
B2 −A12

∂B2

∂θ2

∂θ̈1
∂θc

= A22
∂B1

∂θc
−A12

∂B2

∂θc

∂θ̈1
∂θf

= A22
∂B1

∂θ0
−A12

∂B2

∂θ0

(C.24)

Partial Derivatives θ̈2

θ̈1 = A11B2 −A21B1 +Q2 (C.25)

∂θ̈1
∂u

= A11
∂B2

∂u
−A21

∂B1

∂u
+
∂Q2

∂u

∂θ̈1
∂w

= A11
∂B2

∂w
−A21

∂B1

∂w
+
∂Q2

∂w

∂θ̈1
∂q

= A11
∂B2

∂q
−A21

∂B1

∂q
+
∂Q2

∂q

∂θ̈1
∂θf

= A11
∂B2

∂θf
−A21

∂B1

∂θf
+
∂Q2

∂θf

∂θ̈1

∂θ̇1
= A11

∂B2

∂θ̇1
−A21

∂B1

∂θ̇1

∂θ̈1
∂θ1

= A11
∂B2

∂θ1
− ∂A21

∂θ1
B1 −A21

∂B1

∂θ1

∂θ̈1

∂θ̇2
= A11

∂B2

∂θ̇2
−A21

∂B1

∂θ̇2
+
∂Q2

∂θ̇2

∂θ̈1
∂θ2

= A11
∂B2

∂θ2
− ∂A21

∂θ2
B1 −A21

∂B1

∂θ2
+
∂Q2

∂θ2

∂θ̈1
∂θc

= A11
∂B2

∂θc
−A21

∂B1

∂θc

∂θ̈1
∂θ0

= A11
∂B2

∂θ0
−A21

∂B1

∂θ0

(C.26)
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D
Simulation Data

Table D.1: Simulation data Bö-105 Helicopter obtained from supervisor

Variable name Symbol Value Unit

Mass helicopter Mhel 2096 kg

Mass rotorblade mbl 27.3 kg

f̄ -0.00155 -

h̄ 0.1924 -

f̄1 0.0061 -

Number of main rotorblades N 4 -

Main rotor radius R 4.91 m

Main rotor blade chord cmr 0.27 m

Main rotor liftgradient Clα 5.73 rad−1

Main rotor speed Ωmr 424 rot/min

Helicopter moment of inertia around x-axis Ix 1803 kgm2

Helicopter moment of inertia around y-axis Iy 4892 kgm2

Helicopter moment of inertia around z-axis Iz 4428 kgm2

Helicopter product of inertia Ixz 660 kgm2

Rotor blade moment of inertia Ibl 231.7 kgm2

Number of tail rotorblades Ntr 2 -

Tail rotor radius Rtr 0.95 m

Tail rotor blade chord ctr 0.18 m

ltr − f 6.01726 m

htr − h 0.1095 m

Tail rotor liftgradient Clα 5.7 rad−1

Tail rotor speed Ωtr 1350 rot/min

Surface area horizontal stabilizer Sht 0.809 m2

Horizontal stabilizer surface area Clhtα 4 rad−1

Initial incline horizontal stabilizer α0ht 0 deg

lht − f 4.556 m

hht − h 0.989144 m

Fuselage equivalent drag area F0 1.3 m2

Horizontal stabilizer downwash factor Kht 1.5 -

Fuselage correction coefficient Kfus 0.83 -

Frontal fuselage drag area Sfus F0/0.2 -

Fuselage length lfus 8.509 m

equivalent volume of circular body in lateral view (V olfus)n (π/4)× 25(AR) -

Svt 0 -

Time constant main rotor τλi 0.1 -

Time constant tail rotor τλitr 0.3 -

t̄ = Mhel

ρAΩR 0.103625 -
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Table D.2: Cable and SONAR Data used throughout 6-DOF simulations. Note that when a variable has

multiple values, different values are used for this variable throughout the cases.

Variable Name Symbol Value Unit

Cable Specific:

Number of cable sections n 1,5,30 −
Length cable lc 30,120 m

Diameter cable dc 0.00955 m

Specific mass cable mcspec 0.3477 kgm−1

Damping cable rate Dratec -500,-50/n^3 Nms/rad

Damping cable angle Danglec -5,-1/n^3 Nm/deg

Drag coefficient in x direction cable section CDcx 1 −
Drag coefficient in y direction cable section CDcy 1 −
Drag coefficient in z direction cable section CDcz 1 −

SONAR Specific:

Length SONAR ls 5 m

Diameter SONAR ds 1 m

Mass SONAR ms 270 kg

Damping sonar rate Drates -500 Nms/rad

Damping sonar angle Dangles -5 Nm/deg

Drag coefficient in x direction SONAR CDsx 0.32 −
Drag coefficient in y direction SONAR CDsy 0.32 −
Drag coefficient in z direction SONAR CDsz 0.32 −

Environment Specific:

Density air ρ 1.225 kgm−3

Density water ρw 997 kgm−3



E
Cable Model Verification

In this appendix, the computation of the angular acceleration of the cable model is verified by case study.

For this, the cable is assumed to be 20 meters long, consisting of 2 10m long cable sections with the

SONAR attached at the bottom. The top cable section is rotated an angle 20◦ around the x-axis and and an
angle of 10◦ around the y-axis. The second cable section is rotated an angle of 40◦ and 30◦ around the x-
and y-axis. Both cable sections also have an initial angular rate. The rate around the x- and y-axis is 5◦/s
for the first cable section and 1◦/s for the second cable section. The SONAR has no initial angular displace-

ment, nor angular velocity. The damping constants used are 500Nms/rad for the angular rate and 5Nm/◦.

The Rotation matrices from the LVLH frame to the section frame for the cable sections and the SONAR

given the initial states are:

R1(20
◦, 10◦) =

 0.9848 0.0594 0.1632

0 0.9397 −0.3420

−0.1736 0.3368 0.9254


(E.1)

R2(40
◦, 30◦) =

 0.8660 0.3214 0.3830

0 0.7660 −0.6428

−0.5000 0.5567 0.6634


(E.2)

RSONAR(0
◦, 0◦) =

1 0 0

0 1 0

0 0 1

 (E.3)

The inertia of the cable sections and the SONAR in their section frame are:

J (k)c =

28.9750 0 0

0 28.9750 0

0 0 0.0000

 (E.4)
J (k)SONAR =

562.5000 0 0

0 562.5000 0

0 0 33.7500


(E.5)

Rotating them to the LVLH frame yields:

J (A)s1 =

28.2035 1.6171 −4.3754

1.6171 25.5856 9.1709

−4.3754 9.1709 4.1610


(E.6)

J (A)s2 =

24.7242 7.1337 −7.3626

7.1337 17.0032 12.3559

−7.3626 12.3559 16.2226


(E.7)

J (A)SONAR =

562.5000 0 0

0 562.5000 0

0 0 33.7500

 (E.8)
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With an initial altitude of the helicopter of 60m and the rotation matrices, the hinge positions of the

cable and SONAR can be computed starting from the top to the bottom:

p0 =

00
0

 , p1 =

 1.6318

−3.4202

−50.7458

 , p2 =

 5.4620

−9.8481

−44.1117

 , p3 =

 5.4620

−9.8481

−39.1117

 , (E.9)

Note that the z-direction is defined positive downwards, meaning that the z-direction increases from -trim

altitude with decreasing altitude.

The P -matrices (see App A from scientific paper) can then be computed as:

P0→1 =

 0 −9.2542 −3.4202

9.2542 0 −1.6318

3.4202 1.6318 0


(E.10)

P1→2 =

 0 −6.6341 −6.4279

6.6341 0 −3.8302

6.4279 3.8302 0


(E.11)

P2→3 =

0 −5 0

5 0 0

0 0 0


(E.12)

The Ω̄-matrices (see App A from scientific paper) can then be computed as:

Ω̄s1 =

 0 0 0.0873

0 0 −0.0873

−0.0873 0.0873 0


(E.13)

Ω̄s2 =

 0 0 0.0175

0 0 −0.0175

−0.0175 0.0175 0


(E.14)

Ω̄SONAR =

0 0 0

0 0 0

0 0 0


(E.15)

The linear velocity of the cable hinges are:

ν0 =

00
0

 , ν1 =

 0.8076

−0.8076

−0.4409

 , ν2 =

 0.9234

−0.9234

−0.6199

 , ν3 =

 0.9234

−0.9234

−0.6199

 , (E.16)

With the linear velocity at the c.g.’s of the sections being:

νs1 =

 0.4038

−0.4038

−0.2204

 , νs2 =

 0.8655

−0.8655

−0.5304

 , νSONAR =

 0.9234

−0.9234

−0.6199

 , (E.17)

The surface area of the cable and SONAR in their section frame equals:

S(k)
c =

0.09550.0955

0.0001

 (E.18) S
(k)
SONAR =

5.00005.0000

0.7854

 (E.19)

Rotating it to the LVLH frame yields:

S
(A)
s1 =

 0.0940

0.0954

−0.0170

 , S(A)
s2 =

 0.0827

0.1039

−0.0248

 , S(A)
SONAR =

5.00005.0000

0.7854

 , (E.20)

The drag on the cable sections can then be computed as:

F̄AEs1 =

−0.0094

0.0095

0.0005

 , F̄AEs2 =

−0.0379

0.0477

0.0043

 , F̄AESONAR =

−0.8356

0.8356

0.0592

 , (E.21)
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Now, the Matrices can be assembled to compute the angular acceleration of the cable sections. These

matrices are provided below:

A ˙̄ω =



28.2035 1.6171 −4.3754 0 0 0 0 0 0

1.6171 25.5856 9.1709 0 0 0 0 0 0

−4.3754 9.1709 4.1610 0 0 0 0 0 0

0 0 0 24.7242 7.1337 −7.3626 0 0 0

0 0 0 7.1337 17.0032 12.3559 0 0 0

0 0 0 −7.3626 12.3559 16.2226 0 0 0

0 0 0 0 0 0 562.5000 0 0

0 0 0 0 0 0 0 562.5 0

0 0 0 0 0 0 0 0 33.75


(E.22)

B ˙̄ω =



0 16.088 5.946 0 32.177 11.892 0 2498.6 923.45

−16.088 0 2.8368 −32.177 0 5.6736 −2498.6 0 440.57

−5.946 −2.8368 0 −11.892 −5.6736 0 −923.45 −440.57 0

0 0 0 0 11.534 11.175 0 1791.2 1735.5

0 0 0 −11.534 0 6.6588 −1791.2 0 1034.2

0 0 0 −11.175 −6.6588 0 −1735.5 −1034.2 0

0 0 0 0 0 0 0 675 0

0 0 0 0 0 0 −675 0 0

0 0 0 0 0 0 0 0 0


(E.23)

C ˙̄ω =



−0.03652

0.03652

0.019937

−0.001521

0.001521

0.0023519

0

0

0


(E.24) D ˙̄ω =



−9239.4

−4412.3

−1.5546

−17135

−10213

−2.2011

−2.0889

−2.0889

0


(E.25)

Aās =



0 4.6271 1.7101 0 0 0 0 0 0

−4.6271 0 0.81588 0 0 0 0 0 0

−1.7101 −0.81588 0 0 0 0 0 0 0

0 9.2542 3.4202 0 3.3171 3.2139 0 0 0

−9.2542 0 1.6318 −3.3171 0 1.9151 0 0 0

−3.4202 −1.6318 0 −3.2139 −1.9151 0 0 0 0

0 9.2542 3.4202 0 6.6341 6.4279 0 2.5 0

−9.2542 0 1.6318 −6.6341 0 3.8302 −2.5 0 0

−3.4202 −1.6318 0 −6.4279 −3.8302 0 0 0 0


(E.26)
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Bās =



0 0 0.043633 0 0 0 0 0 0

0 0 −0.043633 0 0 0 0 0 0

−0.043633 0.043633 0 0 0 0 0 0 0

0 0 0.087266 0 0 0.0087266 0 0 0

0 0 −0.087266 0 0 −0.0087266 0 0 0

−0.087266 0.087266 0 −0.0087266 0.0087266 0 0 0 0

0 0 0.087266 0 0 0.017453 0 0 0

0 0 −0.087266 0 0 −0.017453 0 0 0

−0.087266 0.087266 0 −0.017453 0.017453 0 0 0 0


(E.27)

Ddamp =



0

0

0

34.876

34.876

0

8.7876

8.7723

0


(E.28)

The angular acceleration vector ˙̄ωs is then found to be:

˙̄ωs =



1.0202

−87543

0.30588

0.74442

1.4691e+ 05

0.1886

0.09347

−1.5163e+ 05

0


(E.29)
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