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In honor to the great scientist and engineer Sidney Darlington

Abstract—The existence of a “Darlington embedding” has
been the topic of vigorous debate since the time of Darlington’s
original attempts at synthesizing a lossy input impedance through L S S A
a lossless cascade of sections terminated in a unit resistor. This

paper gives a survey of present insights in that existential ques- b B b S Ty
tion. In the first part it considers the multiport, time invariant (b1 az] = [ay be] Yor Zoo
case, and it gives the necessary and sufficient conditions for
g y b! b

the existence of the Darlington embedding, namely that the
matrix transfer scattering function considered must satisfy a
special property of analyticity known as “pseudomeromorphic
continuability” (of course aside from the contractivity condition  Fig. 1. The Darlington problem consists in the first place in embedding a
which ensures lossiness). As a result, it is reasonably easy tocpntracyive andcausal transfer functiéhin a unitary and cgusa‘ﬂ. For a
construct passive impedances or scattering functions which do discussion of the meaning of the symbols used, see Section II.

not possess a Darlington embedding, but they will not be rational,

i.e. they will have infinite dimensional state spaces. The situation lizati f I ially f h . f Vi
changes dramatically when time-varying systems are concerned. "€@lization of.5 as well, especially from the point of view

In this case also Darlington synthesis is possible and attractive, Of selective behavior, i.e., bandpass and bandstop properties.
but the anomalous case where no synthesis is possible alreadyFig. 1 shows the Darlington set up. Signals on input and output
occurs for systems with finite dimensional state spaces. We giveyires carry the interpretation of incident and reflected waves

recise conditions for the existence of the Darlington synthesis . . . .
?or the time-varying case as well. It turns out tr?at they main which the energy is measured as the norm squared quantity

workhorse in modern Darlington theory is the geometry of the integrated over time.
so called Hankel map of the scattering transfer function to be  In this paper we consider two important generalizations
embedded. This fact makes Darlington theory of considerably of the Darlington theory, one in the transform domain for
larger importance for the understanding of systems and their gystems with nonrational transfer functions and the other in
properties than the original synthesis question would seem to the discrete time domain, for time-varying systems. We shall
infer. Although the paper is entirely devoted to the theoretical " . ' :
question of existence of the Darlington embedding and its system discover a striking parallel between these two cases, but some
theoretic implications, it does introduce the main algorithm major and interesting differences as well. Generalizations of
used for practical Darlington synthesis, namely the ‘square root the Darlington theory to nonrational functions was a popular
algorithm’ for external or inner-outer factorization, and discusses  oic in the early seventies, and gave rise to contradictory
some of its implications in the final section. . .
results. For example, it has been stated that any contractive
and causal transfer functiofi(s) has a Darlington synthesis
|. INTRODUCTION Y(s). If X(s) is required to be unitary on the imaginary axis
RADITIONAL Darlington synthesis [1] is concerneds = jw, the statement is certainly not true. Necessary and suf-
with the realization of a rational and ‘bounded realficient embedding conditions were discovered independently
transfer functionS(s) with bound 1 as a partial transferby the author [2] and D. S. Arov [3]. On the other hand,
operator of a ‘lossless’ transfer matrix(s), which then has if the requirement is simply thas(s) be embedded in an

the form isometricX(s) with a finite number of ports, then necessary
and sufficient conditions are also known, and closely related

Y(s) = [ 5(s) 212(3)} (1) to the classical Szégcondition for the existence of a ‘spectral

Za(s) Eaa(s) factorization’, a particularly nice exposition of which is given

and in which the Smith—McMillan degree af is equal to in [4]. . )

that of S (it is equal to the dimension of the state space of In recent times, the author and his collaborators have spent
a minimal system theoretical realization f6). In addition to 9uite some effort in extending the Darlington theory to the
the embedding, a cascade realizatiortofwhich can always discrete time, time-varying case, say a case that covers and

be performed in the rational case, results in an attractig&tends classical linear algebra. It turns out that embedding
anomalies which in the time-invariant case only occur for
Manuscript received May 1, 1998; revised August 1, 1998. systems with infinite dimensional state space, already take
The author is with DIMES, Delft University of Technology, Delft, the L . . . .
Netherlands. place in time-varying systems with very low state dimensions.
Publisher Item Identifier S 1057-7122(99)00540-1. We shall report on these results further on in this paper.
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It turns out that the state-space formalism is the most effexpaces of time series whose energy is bounded. Such spaces
tive vehicle to discuss Darlington synthesis. Darlington himsedfe called ‘of/, type’. As input space we take time series of
was working strictly with rational functions in the transfornthe typel...,a_s,a_1, @, a1, a2, . . .] where eachy, belongs
domain. Anderson and Vongpanitlerd [5] have demonstratesia (possibly complex) vector space of the ty@&, in which
convincingly the power of the state space approach in theirindicates the complex numbers. (As a rule, we take vectors
landmark book. More recent work on time-varying systema the ‘row convention’, i.e. we write the multiplication of
shows that Darlington theory does not need an analyticalvectorz with a matrix A aszA. When we handle infinite
framework, it suffices with a purely algebraic theory. Darlingseries or infinite matrices, we single out the zero-th element by
ton was working strictly with a scalar functic s), which he  syrrounding it with a box, for orientation purposes.) We write

was embedding in a % 2 matrix function of the variable. the Euclidean norm of a vectas, as|ax||> and it equals
Darlington’s work was duly generalized by Belevitch [6], [7]
and put in a practical context by Neirynck e.a. [8] leading to
the effective and popular ‘parametric methods’ to synthesize
lossless selective cascade filters. Subsequent to this work there
were attempts to generalize it to multiple input multiple output
tsgst;izm;c(l[:g)fagd [9]) but these were not rgally successfu_l, d|1f1ewhich [ax]; is thei-th (scalar) component of;. A time
good degree reduction criterion for multiport_ . o S .
factorization. Such a criterion was first presented in [10] asgneSa = [ax]iZ o Which is bounded in energy then has
lead to a new and effective method for multiport Darlingto?w € horm
synthesis [11]. It turns out that the latter method actually
generalizes to the nonrational case. We shall give a survey
of these results later on.

For the sake of uniform treatment, and ease of relating
;oorﬁgflr:?/tl\;h srrgﬁﬁgliim\ggl 522 "b g uiatgsgr;theedogs I; égﬁ sa :e space of such bounded time_ series is traditionally called
shift operator (for mathematical ease we usiastead of the “2 - A simple o matrlx‘A Wh'Ch, maps a vectou to a
“2~1” that is more common in the engineering Iiterature)\,’eCtorb = aA will have an ‘operator’ norm given by
or just asz = ]l‘jrj, where s is the variable in the Laplace
transform of continuous time functions. The theory remains |All = sup ([[ad]l2).
in this way applicable to thes’-domain through the bilinear lall2=1
transformation, whose inverse is= }jrj and which maps
the unit circle of the complex-plane on the imaginary axis
of the s-plane and the open unit disc of theplane onto
the open right half plane of the-plane (it is also the so-
called Smith transform). The reason why it does not matter
too much in which variable we work is precisely the algebraic
nature of the Darlington theory, and the the fact that the

bilinear transformation conserves the degree of polynomials )
after transformation. A bounded input—bounded output (BIBO) transfer operator

between an input spa¢§* and an output spad® will have the

property that its Fourier transfer functicf{c’?) is uniformly

[l. THE BASIC DARLINGTON SYNTHESIS PROBLEM bounded on the open unit didd = {z : [[z|| < 1} of the
We now work toward a general formulation of the basi(gomplex plane in the sense that the collection of Euclidean

Darlington synthesis problem in theplane context. There m_atrix norm_s||S(z)|| has a fir_1ite upper bound wheja{| < 1.

is some ambiguity in the literature concerning what is really 'S known in complex function theory (for a good text’tzook,
‘Darlington synthesis’, which we will explain further on. WeS€€ [12]) that,’sg)uch functions have radial linita,, ., 5(pe’")
start out considering am x n transfer functionS(z) which can 0 valuesS(¢’®) on the unit circleT = {z : |z| = 1} of

be thought of as representing a causal, discrete time syst&§, complex plane, whose norms are also uniformly bounded
although that interpretation could be a little strenuous wha¥ith the same bound. The space of such uniformly bounded
it concerns a continuous-time signal—but it does exist. If tHeatrix-functions on the unit disc is traditionally called the
system represented I} z) is stable in some sense (we alreadylardy space}*". It is actually the subspace of measurable
assumed it to be causal), the#(z) will be analytic inside and uniformly bounded functions on the unit cirde,(T),

the unit disc and have some boundedness associated withvitich have a uniformly bounded analytic continuation to the
There are several contexts appropriate for studying stabiligpen unit disd. It turns out that the bound, which is denoted
we choose one which is natural to Darlington theory as [it5]/.. or equivalently||S|| ., is actually a least upper bound
is concerned with propagation of energy, the Hilbert spaos the energy magnification between the input and the output
context. The impulse responsgt) corresponding toS(z) of & [12], [13]. Hence,S will be BIBO stable for the energy
defines bounded map of the convolution type between tworm on the input and output spaces |fiff||n.. < oo. If,

llaxll2 =

oo

> sl

k=—o0

lall2 =

This norm isnot a Euclidean norm on the: * n space of
entries of4, such a norm would be called a ‘Frobenius norm’:

[AllF =
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in addition, the bound is actually equal or less than 1, thenlf S(z) corresponds to a passive system, then it is contrac-
the system with transfer functiof(z) will not amplify the tive, i.e. ||S||z.. < 1. This will be the case iffYz € D :
input energy, it will have a passive input/output behaviod, — S(z)[S(2)]* > 0. (Notice that in generdlS(2)]* # S.(2)

and should be realizable by a physically passive system. \dfecept on the unit circlgz : » = ¢/¢}—we must carefully
say that in that cases is contractive (in the engineeringdistinguish the upper star, which indicates pointwise Hermitian
literature, the term “bounded real’ is also used, but we prefesnjugation, from the lower star, which denotes the analytical
the mathematical term because of the ambiguous connotati@ntinuation of the hermitian conjugate on the unit circle.) We
of the former). Such a& is characterized by the propertiesshall say thatS(z) is “isometric” if V6 : S(e?®)[S(e’)]" =1
*S(z) is analytic in{|[z|| < 1} and sup). <1 IS(2)|| £ 1. or, equivalently,S(z)S.(z) = I. In that case, the energy
In particular we have thaﬂ(z) is a causal transfer functionin the outputy = S is in all circumstances equal to the
and on the unit circld|S(c’?)|| < 1 (in which j indicates the energy in the inputs, and the system producing it must then
positive square root of-1). Note that the conditionsS'(z) be physically lossless. A transfer function characterization
analytic in the open unit disand [|S(¢’*)|| < 1" are not of this condition is obtained by analytic extension from the
sufficient to guarantee tha$i(z) is in H., (i.e. £2-BIBO  ynit circle asS(2)S,(z) = I for whatever region in the
stable)—a counterexample is given I%(z) = exp(1%2), complex plane wherein the extension is well-defined. We say
which is analyt_ic put unbounded B, and of unit modulus 4t S(z) is ‘unitary’ if, in addition to S(z)S.(z) = I, also
a.e. on the unit circle. S,(2)S(z) = I. This will be the case whef(z) is isometric

We need a few additional notions from matrix or operatQfg square. IfS(z) is at the same time causal and unitary
theory. The hermitian transform of a matrik is the matrix (i.e. itis in H.. and it is unitary), then it is callethner in the

A* whose elements are defined py*);; = Aji in which the
bar indicates complex conjugation. We say tHas hermitian,
if it is square and equals its hermitian transfoti= A*. We

say thatA is positive definite if it is hermitian and for all is not at all obvious that there exists anx m S12(z) such

E;OW')Vte.Ctt?rS“ o.ft.thedrlgfht_td|r2e25|gn_w§ haVEA_“ OZAOI that the combinefiS(z) 312(%)] is isometric. Nor is it obvious

IS S rlct Y zo&tlve” 3'?' € '“l.“ - :]f =" nl ihatS(z) has an embedding into a unita¥(z). In the next
mex n matrix A actually defines a finear map from a (cqmp ©Xection we shall summarize the results known on these matters.
m-dimensional vector space to a (complexjdimensional As the reader will have noticed, we avoid a physical

vector space through the assignment— y = uA. We i - . :
: ? .~ _terminology to indicate mathematical properties. The reason
shall assume that on an-dimensional vector space an inner

product is defined agu,u) — wu*. The hermitian conjugate should be clear: there are many ways to describe a given

o Gfnes it 15 caled o ot ou e oy el ety o reama v vee o
Vu,y 1 (ud,y) = (u, yA*) (= vAy* = u(yA*)*). '

Since a transfer function also maps an input space, now @YY ENergy in the form of a quadratic norm. That is, for

type£y, to an output space, now of tyg, we may extend the example, the case when the input and output quantities of

definitions to the natural in-product i-type spaces. In the a cir_cuit are inc.ident or reflected waves. If, at a given port,
‘time domain’ we have here an abstract m&pu — y = uS the input quantity would be a voltage(t) and the output

given by convolution, while in the transfer domain the map guantity a current(t), then the corresponding power transport
given by z-transform multiplicationY () = U(z)S(z). The would be measured py the rgal part of th_e_mlxed. voltage-
relevant in-product in the input space (and likewise in tHeHrrent producti(v(t)i(t)"). Given a normalizing resistance
output space) is expressed in the time domain by value r ‘we can transformv apd ¢ to the wave quantities
- a(t) = %, bt) = % and the power transport
(u1,uz) = Z Uyt becomed|a(t)||* — ||b(t)||?, the difference between the power
b —oo carried by an “incident waved taken as input signal and the
power carried by the “reflected wavétaken as output signal
. [14]. These power quantities are now strictly represented by
(u1,uz) :/ Ul(ej")[UQ(ej")]*ﬁ. guadratic norms (the energy then becomes the integral over
— 2m time). It is known in filter theory that this is indeed a pertinent
The adjoint of a transfer operata$ will then be defined Wway of representing selective filters connected between lossy
by the rule:Vuvy : (uS,y) = (u,yS*). If S(z) is the sources and loads [15].
transfer function that corresponds & and the S(¢’?) are ~ Before proceeding to our main results, we need a few
the matrix values thatS takes on the unit circle, then themore notions from analytical function theory. Any (scalar)
transfer function corresponding to its adjoint takes the valuéigction f(z) in H., can be factorized af(z) = ¢(z)f,(2) in
S.(e7?) = [S(e/®)]* on the unit circle. The correspondingwhich ¢(z) is inner (i.e. a causal transfer function of constant
transfer function (i.e. function of) is then the so-calledara- modulus 1 or pure phase function) affg ) which has the
Hermitian conjugateS.(z) = [S(1)]*, which is anticausal property of beingouter. Although outerness has some nice
when S(z) is causal. It turns out that this transfer functiomnalytical characterizations, which require some more theory
defines an output-input map that produces an energy in-prodthen needed for this paper, we shall suffice here by stating that
related to the original by adjunction. it is characterized by the property that it has an approximate

mathematical literature, a term that we shall adopt. The term
‘Darlington synthesis’ ofS can then just as well be termed
‘inner embedding’ ofS. Given a contractivem x m S(z) it

and, via Parseval’s theorem, in the transform domain by
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causal inverse, i.e. that there exists a sequence of causa that we would normally construct if we use the algorithms
bounded functiong; (=) so thatlim;_,.. f,(z)g;(z) = 1inthe presented later (actually it does not matter which minimal one
guadratic sense on the unit circle. For all engineering purposissgchosen for the embedding construction to follow next). Let
fo(z) has a causal inverse, it is a “minimal phase functionlis assume that this is th& » selected, but at this point we do
The property extends to matrix functions: f(z) € H**", not yet assume rationality. Consider next the transfer function
then F'(z) = U(2)F,(z) in which U(z) is inner, andl,(z)

outer—see the discussion further on. [5(z) Z1a2(2)] 3)

which is isometric oriI". As the following endeavor, we wish

lll. 1 SOMETRIC AND UNITARY EMBEDDING—THE LTI CAse  to find causal transfer functions,; (») andX,»(z) so that the

In the next three sections we give a number of resul?é’era" 2m x 2m transfer function

on isometric and unitary embedding for the LTI case. We S(x) = S(z)  Xia(2) ()
start with some general considerations and then focus on o 301(2)  2aa(2)
systems with a finite dimensional state space, those are systems

represented by a rational transfer function. IS lurr\]itar)t; onT.l imed in the li hat thi | b
Suppose that anmn x m causal and contractive transfe thas been claimed in the literature that this can always be

r 0 . .

function S(z) is given (we may assumé to be square done [18]. This is not true. One obvious propertyfz) is

if that would not be the case the addition of extra zér%]at its elements have a special kind of analytic extension to

rows or columns would be adequate). Then the matrgytside the closed unit disc. Expressed in terms of the complex

function W(e#®) = I — S(c7)S(c®)* is positive definite Vaniaplez, the unitarity of (3) says that

on the unit circle of the complex plane. We search for (2)5,(2) = Iom. (5)

an m x m causal transfer functionX;»(>) such that

W(c?) = 12(e?)¥12(c’%)*—a spectral factorizationof As an analytic function in the open unit 'diéb, 3(z) is

I — 5(2)S.(2) = T12(2)Z12.(2). A first, fundamental, but uniquely defined by its boundary valueXe’?), and it will

not constructive, result was given by Masani and Wien&ave only discrete zeros i, as pointsz € D where its

[16]—for a very nice treatment of the Masani Wiener theoryank drops from2m (this uniticity is a result of complex

see Helson [4]. It states: function analysis applied té&/.,, see [12].) Since for € T,
Theorem 1 (Masani-Wiener)Let the positive definiten x ~ 2+(z) = [£(2)]*, and from (3) one sees that there will exist

m matrix functionW(¢’?) be invertible almost anywhere ona continuation forS(~) to the whole region outside the closed

the unit circleT of the complex plane. TheW is factorable unit disc (the regiontE = {z : |2| > 1}) as [S(3)] !5,

as L12(e?®)S12(e?®)* if and only if which certainly exists as a matrix of meromorphic entrieEin
- We see that if there exists a unitary embeddingd¢t), then
/ log det W (/) a6 > —oo. (2) also the entries of(z)_must have a meromorphic continuation
—n m to the complete regiorE. Such H., functions are called

. . . . seudo-meromorphically continuabknd they form a class of
There is a (fairly straightforward) extension of the theorem Pansfer functions with special analyticity properties, namely

the case wher#& |s.not mverublg a.e., buthere we S.t'Ck to the{he pseudo-meromorphic extension is unique and it has radial
generic case. The important pointtiet the factorization does limits a.e. to the unit circle from points iE. Surely, rational

not necessarily exisThe existence condition (2) for the matrix . L .
) . . - transfer functions are such, but it is easy to cook up functions
function case is an extension of the famous $zegndition

for the scalar case [17], and it states, loosely speaking tf‘é%%i(:h do not satisfy the condition and necessarily will not
: ' ' ' rational. An interesting example 8(z) = (1/v/z2+3
the spectrumW(c’%) cannot be zero on more than a ver 9 b () = (1/Vz+3)

: Yvhich is obviously contractive i) (its maximum modulus in
. 6 . .
thin set. For example, if(¢’") has the behavior of an 'deal.that region isl /+/2), it is analytically continuable everywhere

low pass filter, then there would be an interval in which it i L .

. . o . : cross the unit circle, but not to the whole Bf since the

identically zero, and the condition would certainly be violated, il h ial sinqulari h :

The integral in (2) is known as thentropyof the process for Square root Wit have an essenn_a singularity at the point
z = —3 from which a branch cut will extend teo. It follows

which W(e”*) is the spectral density, and the property that that thisS(z) hasnounitary embedding, there i® Darlington

is larger than—oo corresponds to a stochastic property knowg}%nthesis for thiss!

as m_deter_mmatedness of th? process. Be_ that as It may, The previous reasoning, convincing as it is, does not yet

S(z) is rational, then the Szégcondition will certainly be . ircuit th ical cl hv th

satisfied and the desiréd »(z) will also exist. The point to be give a system or circuit theoretical clue as fo why the em-
2\~ ' bedding should not exist when the transfer function has no

fﬁ; Sslgr?]rs dslziiﬂi&iﬁ:{:ﬁtgg ?;lé(;);;) tlr:]a:r:;hsaescf;;? git pseudomeromorphic continuation. We explore this point in the
g £ n%f(t section.

time-varying systems we shall given such a construction base
on a state space representation $ora construction, which is
equally valid for the LTI case as a special case.

Of all the ¥;2(2) of minimal degree, which satisfy — In [2], [19] the author showed that the existence of a
S(2)S.(z) = 212(2)¥124(2), there is one of special interest,Darlington synthesis for a contractive x m scattering matrix
namely the one which isuter or minimal phaseThis is the S(z) is closely related to a basic system theoretical property

IV. REMEMBRANCE OF THINGS PAST
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of 8. The property is of a geometric nature and carries over ‘
to situations where there is no transform available anymore,
such as time-varying systems. In general terms (we shall make
things more precise soon), the system’s geometry viewed from
an input—output point of view is characterized by four related

N \ran(Hg)

-f

STRICT PAST

spaces and a system induced map between them which is :' FLTURE

called the"Hankel map”. Let1 be the space of input signals ]

and y the space of output signals (in our framework, both I AR '
spaces will consist of vector time series which are bounded in  \__—" ' | ~=~=~o.__ ’
energy, they are Hilbert spaces). Classical dynamic System ker(Hy) ker(H)

Theory (for an original description see [20]) decomposes
each space in a strict past and a futue= u, © uy (¢
indicates decomposition in orthogonal subspacasand y ‘
are Hilbert spaces of thé}*-type). For example, with, =

t=—-1¢-0

Fig. 2. The Hankel operator maps inputs in the strict past to outputs in the

[--,—2,-1,[8,5,2,.. ]we havew, = [...,=2,-1,[0,0,-- ] tiure.
andu; =1...,0,[3,5,2,...]. Let P indicate the projection of
a signal on his future part (i.&(«) = u;), then theHankel S
mapmaps by definitionu,, to y; through the recipe: U,(z)z~1. Such shift invariant spaces have remarkable math-
ematical properties described by the famous Beurling—Lax
Hs:u, €y ys €5y = PupS). (6) theorem [12], [4], [13] which we now introduce. It states that

there exists & x m transfer functionV;(z) so thatV;.(z) is

It connects the (strict) past of the system to its future. Th‘,gom'etrlc |.e.V.9 : [W(efe)]*W(eJG] =1 a”ﬂ all inputs ink™
connection happens concretely through the state of the systéTnr, right rrlulu_ples O in t_h_e Sense thd{. = Fp(2)Ve. for

in the situation whereby nonzero input is only provided iﬁ‘k Fp € £ with £, gn auxmaryk-dllmensmnal space of -the
the past (i.e. the input signal is zero from= 0 on): from ¢2((=o,—1]) type, (in the next section we shall meet rational
its past, the system gleans information which it subsum@%@mples which should make the present, general discussion
in its state, and then it uses this state to generate its futdfSS abs_traqtg. If we look at inputs ki”, then we see that for
under the assumption that future inputs are zero (in case §feh pointe’” of the unit circle, they form &-dimensional
system is not linear a more sophisticated definition must SHPSPace of the (pointwisejp-dimensional input space (in
given, see [20], but we stick to the linear case here). Figlfs@aly'ucal function theory it is proven that the dimensibn

illustrates the situation. We can expect that the Hankel mispconstant a.e.). Becausg is co-isometric, we necessarily

yields important information on the structure of the systerfi@V€ # < m. If k < m then the nullspace is defective

Its kernelk, consisting of the signalk = {u,, : u,Hs = 0} N dimension, and the corresponding input state space (the

consists of all the (strict) past input signals whose informatidifthogonal complement dk) will have to be very large, it
the system does not retain: its future response to such a sigrInot be a finite dgrrrrllia’?)smnal space since it must contain a
is zero. The orthogonal complement koin the past input SPace isomorphic t6,™ ™ ((—oc, —1]). For example, ifn =
space we calh = u, ok, and it is a space characteristicl: the scalar case, thd@!s either0 or 1. In th_e first case, the
for the information that the systerdoes retain. It is also nullspacek = {0} is trivial and the natural input state space
the range ofH%. We call it the natural input state space It = ubecomes the entire input space, the system ‘remembers’
or reachability spaceof the system. At the output side therdlS complete input space, or, to put it differently, the state of
are the duals of these spaces. The range of the Hankel nif, System is but a tampered version of the complete input.
h, = ran(Hs) is the space of natural responses, those adfeOn the other hand = m = 1, thenk™ = uze=7*¢(c’®)

the responses of the system when the input is kept equalifiowhich ¢(¢’%) is a scalar function of unit modulus. The
zero. It is anatural output state spacer observability space natural input space becomés” = uz’ © uy'¢., which will

for the system. Its orthogonal complemdat = y; & h, is be a finite dimensional space whenis rational, and even
actually the kernel of the adjoint mapZ, i.e. the set of outputs Otherwise it is still a very ‘small’ space, the system forgets
{ys : yyHZ = 0}. All the spaces defined in this section have cllmost everything from its past.

course Fourier transforms, and their orthogonality relationshipsWe say that a system mwomy [2], [19], iff k& =m, i.e. iff

are preserved thanks to the Parseval theorem. We denote tf@8esystem has a pointwise fully dimensional nullspageis
Fourier transforms by &)™, e.g.k™ is the Fourier transform in that case not only co-isometric, but unitary as well. Then
of k (for readers familiar with Fourier theory we mention that #/€ have that/;,.S(z) = A, in which A, is a causal transfer
space like/3*([0, o0)) transforms to the celebrated Hardy spackinction, and we obtain thieft external factorization

ngl of the unit discT, so thatk}” andhg are subspaces of it. S(2) = Ve(2) AL (2)(= [Viu(2)] T Ag) @)
254 ((—o0, —1]) then transforms to the orthogonal complement
(Hy)*L of Hy* in L3(T)). which displays the caus&f(z) as a ratio of two anticausal

The nullspacék™ has the property that it is ‘shift invariant’ transfer functions. Hencé(z), which is analytic in the open
for the backward shiftk~z=! c k™, i.e. if some input unit disc, has an extension (in the sense of radial pointwise
U,(z) in the strict past generates the zero state, then so déigsts) to a function which is meromorphic outside the unit
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disc, i.e. it is pseudo-meromorphically continuable (as statédn

before, such an extension is necessarily unique). The external

factorization (7) is actually a *“left coprime factorization” S1(2) = A Vi(2) (10)
because it is minimal in the sense that every other such

anticausal factorization will involve left multiples df;, and .
Ay, (this fact needs some proof, see e.g. [19]). Hence, tgs)a

coprime factorization involves automatically the existence oL
a pseudomeromorphic continuation féf(z) as explained Sf(z) which is part of¥; (»)). Conversely, suppose tha (=)

before. The converse is true as well: 3{z) possesses a%" 5(») has a minimal unitary _embeddlng, _then It is roomy,
jan the Darlington embedding is actually a right external inner

pseudomeromorphic continuation, then it also possesse

coprime factorization of the type (7). This fact can fairl actor 1;or E&(z)h_ h £ mak f ial

easily be proven through the observation thatSifz) is fProo_—Sfet(i T f. proob ma esdufse 0 ?S%ec'(;" Eprolp;rty

pseudomeromorphically continuable, then its nullsp&ce ]? coprime a%onza |on§ (()jrrowz rorrt;és andar UC;] can

necessarily has full dimensian, since it will contain at least actorization theory and adapted to g, case. In the
standard theory we have that two polynomiaig(z) and

the space of alln-dimensional vectors with entries in the ime iff th ist pol ials 4
strict past that belong to the intersection of all the scalar inp%’l(z) are coprime iff there exist polynomiate(z) andn(z)

nullspaces of the entries; ;(z). such that the Bezout equatign(z)m(z) + pa(z)n(z) = 1 is

A dual theory, now on the output nullspake, is of course satlsflgd. The property extends to polynomial matrix functions,
also possible. In this case the Beurling—Lax theorem states tﬁ”{j W'th some effort also to our present case, _where some
there exists an integet,. and ak,. x n causal and isometric added difficulties may occur pecause of the pOSS|bI(_e presence
function V(=) such thatk?” = g+V,.(z) for all ¢; belonging of zeros on the unit circle wh!ch actually do. not participate in
to an auxiliary input spaggf offthe typek ([0, 00)). If the the division theory. The precise statement is [18jo causal

. LS _ _ and bounded transfer functionz) and B(z) are left coprime
system is roomy then it will be meromorphically contlnuable(m the H.. sense) iff there exist sequendes(z) and N(z)

and it will follow that #, = n. In that case w_e have thatof causal and bounded transfer functions such that
Vi (2)S.(z) = Ar(2) for a causalA,.(z) and a unitaryV,.(z),

and aright coprime external factorization

such thatA,.. is constant and can be chosfh, 0] and
(z) is a (minimal) unitary embedding f&; (z) (and also for

lim (AM; + BN;) =1

=00

S(2) = Ar(2)Vi(2)(= Ara(2)[Veu ()] ) (8) . . o
for the entrywise quadratic norm on the unit circle

follows, again exhibiting the pseudomeromorphic continua- ('I(;he difference V\_’lithhthe stabndarg <(:ja|§e_is r’:hat j\h?e and
tion. It is not too hard to prove thales(Uy(z)) = det(U, (), N, do not necessarily have a bounded limit themselves.) Two

a quantity which can be used as a kind of ‘generalized degr ditional mathematical remarks are in order: 1) the limiting
[19] procedure given has as a consequence uniform convergence

on compact subsets of the open unit disc and in particular
pointwise convergence and 2) the property actually expresses
] _ the ‘right outerness’ ofA(>) B(z)]). If we apply this principle
We are now ready to perform the general linear timg, the coprime right external factors fa (z) = AV, we

invariant (LTI) Darlington synthesis in abstract terms. Thgedyce the existence of series of causal and bounded transfer
method that we shall use can, however, easily be convertgdiricesis; and N; which are such that

into a constructive or algorithmic technique, at least for the

rational case, see the If_;\ter sec_tions of this paper. Let us assume lim (V,M; + AN;) = I.

that we are given an isometric and roomy (z). It can be i—00

obtained a$5(z) ¥12(2)], result of a spectral factorization, or

else directly be given as an isometkicc m transfer function. Premultiplying with A, and using the fact thah,.. A, = I
Because of the roominess assumptisn(z) will have a left Wwe find

coprime factorization:

V. GENERALIZED LTI DARLINGTON SYNTHESIS

A, = lim (21]\4Z + Nz)
1(2) = Ve(2) A (2) ©)

This expression asserts the existence of the limit in quadratic
in which A..(z) decomposes ag\;1. Agz.] in accordance norm on the entries ofA,.. from a series of elements which
with [S(z) Y12(2)]. We see thatS(z) and ¥;2(z) can share are all causal. Complex function theory then produces the
the sameV, factor, it is in fact not too hard to prove thatresult thatA,., must be causal as well. Since it is actually by
if S(z) is roomy with left coprime unitary factof%(z), definition anticausal, it can only be constant since this is the
then the minimal outer spectral factii»(z) has an external only type of transfer function that can be causal and anticausal
factorization with left factoV,(z) as well. We formulate the at the same time. Hence, if the isomefri¢c(z) has an external
generalized Darlington synthesis as a theorem. factorization, which happens iff it is pseudomeromorphically

Theorem 2: Let 3;(z) be a causal and isometric transfecontinuable, then it will have a Darlington embedding. The
function. If 3,(z) is roomy, then the right coprime factoriza-converse was already evident from the discussion in the
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previous section in which we showed that an embedsied I
is necessarily pseudomeromorphically continuable. [

A final remark for this section will provide the link with
the time-varying theory to be treated furtheron. It seems
that pseudomeromorphic continuability is the central property .
of transfer functions which allows for Darlington synthesis, w D,
but there is a time-domain criterion that is equivalent and
more general. From the Darlington construction by external
factorization given in Theorem 2, it follows thai; (=) will B,
have a Darlington synthesis iff its correspondikg has the
full range property, i.e. its constituent functions span the space
C 2m>2m gt each point of the unit circle (a.e.). In the time
domain, however, this property expresses an invariance which Tt+1
is of crucial importance, namely th&t” does not contain a rig. 3. The time-varying state space realization represents the calculation at
subspace that is doubly invariant, i.e. for whielk,” C kJ’ at given pointt in the time sequence.
and 'k’ C k. It is this property that will determine the
possibility for Darlington synthesis of time-varying system
for which there is no useful Laplace ertransform.

Yi

& (doubly infinite) matrix

S_1,-1 S_10 So1a
. o . S0,-1 50,1
Now we consider a system — y, which is time-varying, e Sio Sii
and given by a contractive transfer m#p (the distinction ’ ’
betweenS and S(z) is not relevant anymore). The Darlington
synthesis problem will consist in the solution of the questioR which eachs, , is a block matrix of dimensionsy; x ny,.
Whether S can be embedded n a Causal Un|tary transf@ausa|ity iS now expressed by a (b|ock) upper triangu|ar

VI. THE TIME-VARYING CASE S —

function ¥, property: S; ; = 0 wheni > j.
Connected to an upper transfer operator, there is a state
5 { S 212} (11) space realization possible, based on the assumption that at
T ey X |” each point in timet the system uses a statg that it has

remembered from its past history, inputs a veetgrcomputes

The input and output spaces are, as before, spaces of quadt&teV Stater(.1) and an outpuy;, and then moves on to the
ically summable series, but because of the time variance {iext time point. Because of the I!nearlty of the computation,
now have more freedom in allowing time variations from onthe local state space representation takes the form
time point to another. For example, we allow time varying A G,
dimensions for the vectors in the input and output spaces. We [zt vl = w] |:Bt DJ
suppose that at a poiktin time the input vectof:;, belongs to

a vector spacen;,, dependent ok, and likewisey;, belongs to in which the ‘realization’ {A,, B;, Cy, D:} is a collection
ang. my has dimensiomnk while ny has dimensiomk_ The of linear Opel’ators (aCting pOSSibly on an infinite dimen-
sequence of dimensions of the input sequence is then givé@nal state space). The (time) series of stdtes, z:,.. |

by #m = [...,m_i,mo, my,...]. We assume that each inputthen belongs to a not yet defined series of spabes=

sequence considered is bounded in quadratic norm; [ Do, -]—5_99 Fig. 3. . .
On the various spaces of time sequences we can define

0o standard operators as is also done in the time invariant case,

||ull3 = Z ||lus||? < 0. but now we have to be a little more careful because of
the changing dimensions, and the fact that operators which

commute in the time invariant case may not commute anymore

We do allow that any number of spaces. is actually empty, NOW- First there is the nondynamical operator of pgrformiqg
i.e. has dimension zero. Such a space then simply Correspoﬂaénstantaneous transformation on each entry of a time series:

(12)

i=—00

to a ‘place holder’[-] for which no value is available, i.e. atl - u-n,[ol ur, ] _[---’“—1D—1”“1D1’---]
a certain time point there is no input data. In this way w&hich corresponds to a diagonal operator
can easily embed finite matrix theory in our framework: we D = diag].. -,D_1,,D1, ]

take inputs as non existent up#e= 0 and from some positive

time pointt = N e.g. For higher precision of notation we shallD will be bounded iff there is a uniform bound on its entries:
henceforth denote the base input spacébas-in the sequel ||D| = sup,||D:||, and it will be boundedly invertible iff
we shall have to extend it. The transfer operatomaps an each D, is square invertible, and there is a uniform bound
input « to an outputy = «.S and can hence be represented byn the collection of inversesup, |D;*|| < oc. Next there
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is the causal shift operatoZ : [...,u_1,[to],%1,...] — The collection of the{H,}'s actually form the overall Hankel
[...,[t=1], wo, u1, - . .]. Z~1 will then be the anticausal shift. If operator for the systens under consideration. We build a

we collect the states of a computation in a serigthen we can system’s map for which this collection is a natural operator.
express the state space realization in terms of the four diagohhé trick is to consider not only one input time series at a

operatorsA = diag[..., 4¢,...] B =diag[..., B, .. ], etc..., given time point¢, but to consider an appropriate sequence
a for each and every time point. Stacking these input (and the
22! = 2 A+ uB resulting output) time series as one input object produces the
{y = 2C +uD (13) desired result. In this way, the input space becomes a space

of objects of the type
and we find, at least formally, the following expression for the

corresponding transfer operator: . . . . . -
S = D—i—BZ(I—AZ)_lC v U122 U_1,—-1 U_10 U_1,1 U_12

Uo,—2  Uo,—1 Ug,1  U0z2

Uy, —2 U1, —1 U1,0 U1,1 U2

U2, -2 U2, -1 U2,0 U2,1 U2,2

the expression will make sense if a precise meaning to thé=
operator( — AZ)~! can be given (depending on the context,
see further). An important remark at this point is that the
causal shiftZ does notcommute with the diagonal operators L. : : : : : e
ZA # AZ except whenA is Toeplitz, i.e. when all its entries . . (16)
on the main diagonal are equal (and then necessarily Squg}@ddltlon, we require that the complete scheme be bounded
of equal dimensions). Somewhat less is true, there is a kindiBfénergy, hence

pseudocommutation, and we have to introduce a new notation
for this:

00,00

10I3=" > fuixl < o
AZ = 7AW (14) i=—00, k=00

in which A is by definition adiagonal shiftof the matrix The space so obtained we calf™, it is again a (somewhat
A in the South—East direction. We can apply further shiftgomplicated) Hilbert space of quadratically summable time
and, with some abuse of notation because the dimensionssgfies. Since each row in this scheme corresponds to a simple
the shift operatoe vary along the main diagonal, we write  time series for time poirt, we have that/ can be decomposed
applications of the diagonal shift as in a strict past/, and a strict futurd/; so that[l,]; r = wi x
A®) — gk gAz—k when+i > k, and otherwise zero, whil@/;]; » = u; » when
¢ < k and otherwise zero. The space of the (i.e. the
A®) is a diagonal operator equal to a versionAf shifted ‘future’) we shall now callif;, while the space of thé/,
k notches in the South—East direction. The causal opefatoli.e. the ‘strict past’) we shall call,Z~*. We shall denote
can be represented by a collection of diagonal operators: the projection of X, on I, by P and the projection on
oo the orthogonal complement,Z %, P’ (these are genuine
S = Z VA orthogonal projections on the extended input and output spaces
t=0 andP’' + P = 1)
The action of a causal operatSron such a scheme is easy

in which Sy = diag]. : "Sflykfl”slykﬂ’ o] It tu.rns . to tally, we just have to stack inputs and outputs:
out that most of the time varying theory parallels the time in-

variant theory when one treats diagonals as ordinary ‘scalars’,
respecting noncommutativities.

It is to be expected that the time-varying equivalent of
the ‘Hankel operator’ will play a central role in a Darlington
theory for time varying transfer operators. As we saw in the
time invariant theory, the Hankel operator connects the ‘strict - ) ) ) ) =
past’ of the system to its future, and therefore characterizes ' : : : : '
the structure of its state. However, a time-varying system may S—1,-1 S-10 S-11 S-1p2
have a different state structure at each of its time points, Soo| So1  Soz
so we have to define a Hankel operator at each paint X 0 S11 Sie
H,—the Hankel map at poimt—will be defined by the map .

[ .. t—2,-1,0,0,...] ¥ [ye, Yt41, Y42, - -.] @and it will be .
given by the matrix representation (dropping unneeded zero L .
entries):

U_1,-1 U—_10 U_11 U_12
Uo,—1 Up,1  Up2
U1, —1 U1,0 U1,1 U1,2

Yy1,-1 Y10 y—L1 y 12
=1 Yo,-1 40,0 Yo,1 Yo0,2

H = Y1,—-1  Y1,0 Y1,1 Y1,2

Hi oy Hi_oyp1 Hiogyo (15)

Hi 1 Hi_1441 Hi1440
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Fig. 4. The time-varying Hankel operator consists in a collection of matrices each of which maps an input in the strict past to an output in the
future relative to a pointt.

We are now able to define the global Hankel operator for Theorem 3 (Generalized Beurling—Laxiny left DZ-
S as invariant subspacé, of Z/{g‘/ has the form

Hs =P(-9)|z,z-1(= -P'SP). (17) K, =UFV (20)

It consists in applying to elements oft; which are restricted for some causal and isometric operatori.e. VV* = I).
to the strict past, and looking at the effect only from time Sketch of Proof:One considers the (so called wandering)
on, for eacht, in one global operator. SincHs maps a two subspaceR = K, & ZK, and realizes that it is a sliced
dimensional scheme to another two dimensional scheme, isjgace as well. An orthonormal sliced basis #®rproduces
actually a tensor. At each time point Hs specializes to a the operator as the collection of these base vectors itself.
‘snapshot’ which is obtained by looking at its effect on th&his construction is identical to the construction used in the
t-th row of the input and looking at how it produces the classical case. For details see [21]. O
th row of the output—this turns out to be the local Hankel The (generalized) Beurling—Lax theorem leads, just as in the
matrix H;. A graphical representation of the Hankel operatarliassical case, to the construction of external factorizations for
is shown in Fig. 4. the operatorS and to Darlington synthesis, and will provide
Just as in the LTI case, the Hankel operator will generate ttiee conditions under which it is possible. The time-varying
system’s state geometry. The following spaces are importanase is considerably more involved than the LTI case, and

« Natural Input State Spack = ran(H3%) although we are able to formulate in abstract form necessary
« Natural Output State Spadé, = ran(Hs) and sufficient conditions for the Darlington embedding to

« Input NullspaceX = ker(Hs) exist (Theorem 6), to treat the embedding concretely let us
+ Output Nullspace, = ker(H%) assume at this point that we dispose of a concrete stable state

The crucial property of these nullspaces are their invariancg82c€ description fof, i.e. we assume that (1j is locally

We see thakC is invariant for the left application of a diagonalfiNite, that is, it has a realization based on a collectin
D and of the anticausal shiff—1: of finite dimensional local state spaces for each time pbint

and which is given, as explained above, by diagonal operators

{D’CI cK (18) 14, B,C, D} consisting of diagonals of finite matrices and (2)
Z—Kck the realization is such that the spectral radiysiZ) of the
Dually, K, is invariant for the application of a diagona! gp?ratccj)rAZ is strictly less than one. The spectral radius is
and the causal shift: elined as
DK, < K, 19) 0(AZ) = lim [|(AZ)|*. (21)
ZK, C K,

We denote this positive number s = o(AZ). It is actually
We call a D-invariant space aliced space because ifU'  equal to

belongs to it, then any row df with all other rows put to zero .

also belongs to it. A sliced space has a basis which consists t4= lim |A-ACD .. ACkD)

of time slices: for each time indexthere is a basis for the o

corresponding row. A generalized Beurling-Lax theorem iwhich follows from working out the power produ¢tdZ)®.
this setting is as follows: When /4 < 1 we say that the system has umiformly



50 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 1, JANUARY 1999

exponentially stable or ue-stable realizatiowhen /s < 1 When a ue-stable system is uniformly observable, then it
then left and right external factorizations fér are easy to will have a right external factorization. The construction of
produce. They are based on the construction of so callé factorization is based on the output normal form. We saw
normal formsfor the realization{ A, B, C, D}. We say that the in the preceeding paragraph that the system will have such a
realization is inoutput normal formif [A C] is isometric, i.e. ue-stable form if it is uniformly observable. Suppose now that
if AA*4+CC* =1, i.e. forallk, A, A} +C,Cf = 1. Dually, {A,B,C,D} is in output normal form, that istA* + CC* =

it will be in input normal form if [A* B*] is isometric, i.e. I. This means that eadi; Cj] is actually isometric. Let us
A*A+B*B = I. Given a ue-stable realization, both the outputow define two new diagonal operatdi, D,] so that the

and input normal forms can easily be constructed througbalization

a state transformation. Such a state transformation takes the A C

character of a bounded and boundedly invertible diagonal map |:B1’ D,J

R which transforms the state to ' = zR so that for each ] )

k, x, = xRy If one applies this transformation on the statdS unitary, and let/,. be the corresponding operator,

(26)

then one obtains a new, equivalent realization: U, =D, + B, Z(I - AZ)"'C.
! _ . p—1
{$k+1 = xijﬁlA’“R’““ + ik By it (22) To assess the properties &f we need the following lemma,
Y = @38, O + up D which plays a central role in the subsequent discussion on

in other words, the realizatiopA, B, C, D} transforms to the Darlington realizations: _

new equivalent realizatiofR~1AR-Y BR(-1) R-1C D} Lemma 1: Suppose thall = D + BZ(I — AZ) 'C is

(in which -(-1) represents the diagonal shift upward in th@ transfer operator which is ue-stable and for which the
North-West direction, of course). To obtain, say, the outpifalization operator

normal form, we must find? so that{R~'AR(-Y R~1(] A C
is isometric. WritingGG, = RR*, this amounts to solving the {B D}
equation:

is unitary. ThenU is unitary as well, i.eUU* = I and
AGEV AT +0C" =G, (23) vU =1
Sketch of Proof:The lemma can fairly easily be checked
by direct calculation, the crucial point in the verification is the
ArGorg) Ay + CrC = Gop. (24) existence and boundedness of the invéise AZ)~*, which

. . , is assured by the ue-stable assumption. O
These recursive equations are called ‘Lyapunov-Stein’ eqUayance 7. as defined. will be unitary ifA is ue-stable
Kl ’ .

tions. WhenA is ue-stable, then they have a unique solutiofy, ¢, -ns out to be the right inner factor for the right ex-
which with, fori = 1,2, ...,

or, in component form,

ternal, coprime factorization of. This we see simply by
Al = 44D L A=HD computing A, = U,.S*. During the computation one needs
the (generalized) partial fraction decomposition of the product
and A% = I, is found by solving (23) as a fixed pointz(; — Az)~'CC*(I — AZ)~*Z*, which, because afiA* +

equation: CC* = I is easily seen to equdH-Z(I — AZ)"t A 4+ A*(I -
A1) o AZ)~*Z*. Hence (we write X —* for (X—1)* = (X*)71)
Go = ; AT O @) A 2 BB+ DD+ BuZ(I — AZ)AB" +CD"]
i + [BA*+ D,.C*|(I — AZ)™" Z*B".
If we define® = [C AC(D AACDCED .. ] as [ I )

the observability operator, then we see tlifat is actually The last term in this expression is zero, because of the unitarity
a generalized Gramiaf¥, = OO*. To find the R needed for of the realization fotl/,.. Hence, a realization fad,. is given
the output normal form, we next have to factey, = RR*, by

which of course should be possible, since all the individual * *

. " AP A — A  AB*+CD
matricesG, . are positive semi-definite and can be factored as * = |B. B.B*+D,D*
Gor = RiR;. _

So far so good, but to achieve the output normal fornTogether these relations produce
yve_n_eed the bounded_ inver_tibility ak. This means that the A C1la* B* I Ca,
individual R; must be invertible, and that their inverses must B, D.||lc* D*| T |o Da

have a uniform upper bound. Alternativelgz, must have a

definite lower bound, i.e. there must exist an- 0 such that OF if the original realizatior§ for S would not have been in
G, > el. In other words, the system must be what we cafutput normal form (and further explicited per time point):
uniformly observablelt_should be clear thz?\t _this is not always A O] [Ri AL Bp] _ [Rp Ca, 97
the case, and we obtain the resalipcally finite system which B. C.||R* ©* Dt 0 D, (27)

. . e rk Tk k+1%k k Arp

is ue-stable will have a ue-stable output normal form if it is

uniformly observable(There is a somewhat more involvedn which now 4,; = R,lekREC_l) and C,;, = R,lek. At
converse to this property, which we skip for technical reasongdch time point;, this equation has the form of the famous
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JacobiQ-R factorization of numerical linear algebra. If we We terminate this section by showing how Darlington
assume that at time poiktwe know R, from the previous synthesis works for isometric systems, the more general (con-

calculation, then the matrix tractive) case is treated in the next section. Supposesthst
R A" B isometric, i.e.5S* = I and that it is locally finite, i.e. that
{R’f’lc’i D’:“} it has a finite dimensional state space realization at each time
k+1~k k

point. We proceed by constructing a particular realizatgon
is known, and is transformed by the unita@-fype) matrix  for .S, which is itself isometric, and by trying to embed it in
Ay Co a Iqrger realization WhiF:h is unitary and hence a candidate for
|:Brk Drk:| an inner transfer functio: that embedsS as

to upper-triangular form (at least to block-upper form, but Y= {;J (29)
nothing prevents a further transformation to fully upper). The
transformation produce®, which can then be used in theAs we saw before in the LTI case, the properties of the
calculation at the next time poit— 1, etc .. recursively. ~ output state spacel, of 5 will be crucial to the Darlington
We have obtained the following result: embedding theory and we may encounter some possibly very
Theorem 4: Suppose thatS is a ue-stable, locally finite Strange behavior here. An important property of an isometric
transfer function which is uniformly observable, then it hagystem likeS is the fact that its output nullspadé, actually

a right coprime external factorization given by contains the spacé/s”'S (this is the space of outputs to
. causal inputs under the action of the isometric oper&tor
S =AU, Hence,Uy' D H,(S) & UMS. But K, may be larger. It

in which U, is inner. A, andU, can be found by the squareWill &/so contain the kemneker(-5")|,..«, by definition, and
root algorithm of (27). clearly ker(-S*)[; 0 L U3Y'S @ H,(S). The ‘algebraic’ (i.e.
A kind of converse of the theorem is fairly easily demonunqualified) nullspaceer(-5*) of 5* will not only contain
strated by construction of ‘counterexamples’, namely by coker(+5™)[;.v, which is a leftZ-invariant space, but also the
structing anS with a ue-stable realization which is notlatter’s left shiftsvk > 1: Z=* ker(-5*)[;or, and hence their

uniformly observable. Such af will normally not have an closed union, which we denote as

external factorization The author does not know whether 0
the case whereS has a ue-stable realization which is not K = \/ zZk ker(-S*)|aév.
uniformly observable and for which a Darlington embedding k=0

exists actually do exist (he thinks they do), but normally thene spacéer(-5*)|,,. turns out to be the characteristic output
singularity of the Gramian will give rise to the existence ofy|ispace of the Cgmp|ememary entiy, ker(-S*)

what we shall call a defect space, and we shall see in Theorlt/etv@22 for an appropriate sequence of input spatesom-
2

5 that then a Darlmgton embedding dqes not exist. plementary toM. There is more the matter, however. The
Of course, there is a dual to the previous theorem, based‘gfbebraic nullspace’ker(-5*) may be larger thank’,. We
the input normal form. For that we need the notion of ‘uniforr@jenote that remaining space as o

reachability’ which will involve the reachability operat@®
and the reachability Gramia@, = R*R. We shall say that Kl =ker(-S*) o K, (30)
the realization is uniformly reachable if there existseaguch

|Z/té\" =

that & 7 We obtain: and will call it the right defect space of. The possible
aTh r > 65'_8 €0 aw:.h S i table. locally finit existence of this space has sometimes been overlooked in the
eorem 5: Suppose thab IS a ue-stable, locally hinite literature, but its properties appear to be crucial to the existence
transfer function which is uniformly reachable, then it has & the Darlington embedding
left coprime factorization given by The following theorem (which does not assume local finite-
S = UA}, (28) ness) gives, in addition to the essential properties needed, the
] ) o _ Darlington theory for isometric systems in abstract form.
in which U is inner.A; andU; can be found by an appropriate  Theorem 6: Let S be a causal isometric transfer operator
square root algorithm. and let™,(S) be its natural output state space @6(i(S) its

In contrast to what happens in the LTI case, it is possib}fght defect space. The output spded’ then decomposes as
that a ue-stable time-varying system possesses a left external

factorization but not a right one and vice versa. This will Uy’ =Ho(S) BUS B ker(-S™) |y (31)

be the casein general when the system has a uniformlyThere exists an isometric operatiis with the same output

reachable ue-realization which is not uniformly observable gf5¢e spacét,(S) and defect spack” (S) and such that, for
vice-versa, and this can already easily happen with syste@gne input space sequenke ?

that are locally finite. In the time invariant case all systems
with finite dimensional state spaces have right and left coprime ker(-S*)|px = Uy s (32)
factorizations. In contrast to the claim that ‘time-varyinge operator
system theory is but a small extension of time invariant theory’

we see that the two types of systems have very different - [5 }
properties indeed!
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will then be isometric as well, and such tHatr(-X*)[,.v = actually produces

{0}. X will be unitary (hence inner) iff the defect space D B

K/ = {o}. Y= [D } + {B }Z(I—AZ)‘IC
2 2

Sketch of Proof:The theorem is a direct consequence of
the generalized Beurling—Lax representation theorem appligth invertible (I — AZ)~! and its unitarity can be verified
to the left DZ-invariant subspacger(-S*)|,»v C U3™": by direct calculation as before in Lemma 1. O
ker(-S™)[ppry = UK, Furthermore, it is known from  Asin the LTI case, the Darlington synthesis is produced via
functional analysis that an isometric operator will actually ba right coprime factorization fof:
unitary iff it has full range, in the present case &/ = {0}.
For a complete, formal proof we refer to the book [21].C0 S=[I 0=

In the case of ues locally finite systems, the theorem leaglsq the algorithm is a version of the square root algorithm
to the following construction for the embedding. First, an iSCFresented before.
metric realization forS can be obtained from an orthonorma
basis for the natural output state spadg(S). Let, at time VI
point %k, F,; be an orthonormal basis for the range of the
Hankel matrixH},, which is assumed to be of finite dimension ] _ o _
5. Assembling all these bases as slices of an overall operato¥Ve Start out with a strictly contractive time-varying operator
F,, we see thaF, has the form of an upper operator. The® in state space form:
next step is the assertion that there exist diagonal operators S=D+BZ(I-Az)tC (34)
and C so thatF, can be represented as

. DARLINGTON EMBEDDING OF A CONTRACTIVE
TIME-VARYING TRANSFER FUNCTION S

and we assume, in addition, that the realization is ue-stable,
F,=C+AZF,. {4 = o(AZ) < 1. We try to find a solution to the Darlington

. . . L embedding problem, i.e. 8 such that® is inner and embeds
This fact is basic to state space realization theory and follo gp

directly from the shift-invariance property ¢f(,(S) which
states thaP(7*H,(S)) C H,(S). Hence, given the choice of v [ S 212}
basis, we may recover corresponding diagonal operéta@nsd o1 X

A by the recipeC’ = Po(F,) andA~ = PO(ZjFOFﬁ), N Before formulating the realization theorem, we search for the
which we have used the orthon_ormale(FoFo) =1I.The golution by following an inductive approach partly inspired
correspondingA C] will automatically be isometric, butl is by [22]. The Darlington idea is to augment input and output

not necessarily ue-stable. An isometric realizationas next  gpaces so that the resulting operator becomes unitary. A unitary
found by determiningB and D from the relationS = D +  gperator will have a unitary realization, so let us try to

BZF,, specifically,D = Py(S), B = P,(Z7'SF}). The  construct a realization foE, of the form:
point is that, in contrast to traditional realization theory, we

may not be able to expressdirectly asD+BZ(I—AZ)~*C A C G
because the inverse ¢f — AZ) may not exist. LD Dy (35)
By Dy Do

Since ker(-5*)[;»- is a DZ-invariant subspace, we have

from the generalized Beurling-Lax theorem that there wi§ind which has the additional property that there is a state
be an iS(;rgetriChanhd iau(szﬂ t)r|ansfer Zl?ceéél@;and an input transformationk which makes the transformed realization
sequencek such thatker(-S*)|,,~ = U}3,. A state space 1 1 1 1

realization forX, is easily derived from the realization fo, RBg(}Ei) : RDO RD 2 36

we just have to complete the local isometric matrices so that B R(-D D D12 (36)
they become unitary: 2 2 22
unitary. The diagonal matrid/ = RR* together with the

A Gy entriesCs, and D;»> must then satisfy at least the following
W= B Dy (33) equations:
By Do
AMGEYA + CC* + CoC =M
3, sharesH, with S, and remarkably, also the defect space BMEUB L DD 4+ DDy =1 (37)
K. AMTYB* + OD* + oD, =0

The isometricS will hence possess a Darlington embeddin?Eh ] . ) )
iff its defect space is zero. This abstract condition translates({the other entries will follow easily once these equations

a concrete criterion, in the following important special case@® Solved, see further.) Obs*erve “‘%1?”‘3 Dy, can be
Theorem 7: The locally finite and causal isometric transfefliminated further whed — DD™ — BM'~% B™ is invertible,
operator S will have a Darlington embedding if it has anto produce the famous discrete time Riccati equation:

isometric ue-stable realization. M =AMV A* 4 co* + (AM(—l)B* + CD¥)
Proof: An isometric realization has automatically a unit . (C1) gy~ (1) 4 "
(and hence strictly nonsingular) observability Grami@n If, x (I - DD* - BM'™VB ) (BM A"+ DC )

on top of that, alsd4 < 1, then the embedding given by (33) (38)
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We shall not handle this equation directly, but the theory that
we shall give produces a positive definite solution to it and
gives conditions for the required invertibility as well. For an
extensive study of Riccati equations and means to solve them
directly, see the book [23]).

Remarkably, the solution to (37), if it exists, has a closed
form for the positive definite/ and the related”; and D, P
which is found by a physical analysis of the properties of
the Darlington embedding. The secret lays in the study of the R
‘future operator’ connected to the embedded system which will
have to be unitary when the Darlington embedding exists, and
which we introduce now. Théuture operatorof a system is
found by decomposing inputs @ = U, 4+ U; and outputs
asY =Y, + Y, according to the decomposition of spaces
Xy = L2271 @ U>. When presented with the inpat,, the
systemS produces a state given hy—a diagonal operator
and the outpul’,, as given by the ‘map of the past’ U S,

[X Yp] = UP[R SP] (39)
in which R is the reachability map, anfi,, the mapl/,, — Y,
a restriction ofS to signals ‘in the past’. These expressions can
be made concrete by decomposing the signals and operators
in diagonals, see Appendix A for information and details. The
state X is in this case also a diagonal, which collects th&g. 5. The decomposition of the operatbras a past and a future operator

states obtained at each time potatNext, X together with Cconnected by the state.
Uy produce the output’; according to the ‘relations for the

X

future’:
v, =[x uy|® (40)
f= f Sy X
in which
O =[C,ACY AADCED ] o,
and Uy Sy Yy
;= (-9 Ky
The resulting maps look as in Fig. 5. Now we want to augment U K, v
inputs and outputs, and allow for a bounded and boundedly fa e Lo
invertible state transformatioR, so that the resulting system
becomes unitary. We call the additional inpufs, and Uy, w
and the state transformatidf and obtain the arrangement of
Fig. 6 and the equations: Fig. 6. The augmented system has a unitary map linking the state and the
R-10O R_IOa future input to the future output.
Yy Yrl=[X" Uy Uspl| Sy K1 (41)
Ko Koo Hence, in particular, with\/ = RR*
in which O,, K2, K21 and K», are new operators (an O0* + 0,0 =M
observability operator and three restriced transfer operators 0S4 +0uKjy =0 (43)
respect.) to be determined and wherebyis the transformed st; + Ki2Kfy = 1.
state.

Suppose now that a solution does exist indeed, and let $i§ice we assumed thétis strictly contractive, the same holds

compute the consequences. Unitarity requires at the least fiid@ for 5y, because it is a restriction &, and/ — 557 is
an invertible operator. Since

-1 -1
RS @ RK O, O*R™ S K3 1 s
f 12 ' - ¥ iy 128870 =L — 0O
Ko Koo O. R K12 K22
T we may conclude thaki> will be an invertible operator as
_ I 42) well (it still has to be determined), and one must have

d 0, = —0S}Kiy
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and VIII. DISCUSSION

The focus of the present paper is the existence of the
Darlington embedding, and we have seen that it is depended on
the absence of a nontrivial ‘defect’ space in the input or output
nullspace of the Hankel operator connected to the transfer

0,0 = OSHI — 5;57)715;0%.

Finally, we obtain the expression fd :

M=00- st;)—lo* (44) operator of the system to be embedded. This is an unexpected
conclusion, if one considers that the original problem statement
in terms of originally known data! as given by Darlington and the early researchers on the
Returning to the original embedding equations (37), we skpic, Belevitch [6], Oono-Yasuura [26] and Youla [27], all
(with some calculations, see [21]) that considered it to be a problem in rational matrix factorization.
The import of system theory for Darlington theory was most
R'ARCY R™'C R0, clearly realized by Vongpanitlerd and Anderson in their book
BR(-Y D Do [5], which gives a systematic account of the solution of clas-

sical circuit synthesis problems using state space formalism.

will be isometric, if M = RR* given by (44) is invertible. However, only in the early 1970's some insight in the role
In that case, the transformefi—* AR~V will be ue-stable played by external factorization and/or the Hankel operator
together withA4, and the realization can be augmented poinfthe two are closely related) in the problem started to dawn,
wise to a locally unitary realization with a ue-stable transitioand necessary and sufficient conditions for the existence of the
operator.M will be invertible iff the system is uniformly Dar|ington or inner embedding appeared [2], [3]' [19] Later,
observable, i.e. ifi? has a bounded inverse. If, on the otheg fairly complete picture for the time-varying case emerged
hand, the system is not uniformly observable, then, althouglbng the same lines of reasoning, but the time-varying theory
a unitary embedding for the realization can be derivedill s considerably more delicate that the time invariant [21].
usually not correspond to an inner embedding, because thererg conclude this paper, | want first to make the connection
will be nontrivial defect spacedn that case, the transformedof the abstract embedding theory as pregented in this paper
transition matrix A = R™'ARY will not be ue-stable. with the classical cascade multiport synthesis problem, which
This defective case is considerably more difficult to analyzg based on the factorization of the Chain Scattering Matrix,
than the straight case where the given systgns ue-stable and has considerable interest in its own right. | conclude
and uniformly observable. Nonetheless, we have obtaineditge discussion with some remarks concerning the practical
Darlington theorem for time-varying systems: use of Darlington theory. Darlington’s original goal was to

Theorem 8:1f S is a strictly contractive transfer operatolextend the cascade synthesis theory for a connecting network
with ue-stable Iocally finite realization which is uniformlyby factoring out a transmission zero at a point in the
observable, thenS possesses an inner embedding. If thglane which was not located on the imaginary (for which an
ue-stable realization foS is given by {A,B,C, D}, then extraction theory already existed known as ‘extraction of a
the embedding has the unitary realization given by (36), Brune section’). This gave rise to the so-called ‘Darlington
which the state transformation operatBris obtained from section’ [28]' [29] The cascade extraction theory can fa|r|y
M = O(I — S;53)7'O0* as M = RR*, which is also a easily be generalized to the LTI-multiport and even time-
positive definite solution of the Riccati equation (38). varying case. A recursive factorization theory as well as an

Proof—Sketch:Suppose thad/ is strictly positive definite, equivalent cascade state space realization theory are available
then it can be factored a&/ = RR* in which R is a bounded for each. In each instance, the most appealing way is to
and boundedly invertible operator. Then the state realizatiqwoque thechain Scattering matrixelated to the embedding
as given in Egs. (36) turns out be orthogonal, which is verified, and either to factor it directly into elementary sections
by writing Egs. (43) out in terms of the realizations. Sid¢é in the s-plane or thez-plane, or to consider its state space
bounded and boundedly invertible, the orthogonal realizatigfescription in an algebraically reduced form. If the inner

given by (36) is ue-stable and is therefore, as stated in Lem@ttering operator is given by the input-output description
1, the realization of an inner transfer operator. O

Square root algorithms to solve equations of the type (37) _ S X
and the connected Riccati equation (38) have been known b1 2] =[o1 o] i221 222i
for a long time (for a literature survey, see [24]). Their
interpretation as representative for factorization problems tfen the chain scattering description is defined by
the external or inner-outer type have been well documented
also in the recent literature, see [22], [25]. In the context of [az bo] =[a1 b1]O. (46)
the Darlington theory they get a particularly nice interpretation,
since, as we have argued, the Darlington embedding probldtmeta will be well defined if>1> or, equivalently,>s; is
reduces to a factorization problem. Conversely, to solve theundedly invertible, and it is then given by
Darlington embedding problem numerically, a square root
algorithm would provide for the appropriate means. We derivg, _ |12 — SY5 a2 —522_11i _ i S —SE
the algorithm in Appendix B, further information on its S5 Y22 5 SEm X
numerical properties can be found in the book [21]. 47)

(45)
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The elementary sections f@® to be used here have the
U m R e L N following general forms—see in this respect the general work
T71 T79 T7n on multiport inner and Blaschke factors by Potapov [32], we
by by give them for the sake of completeness:
m <— = = mre— . . .
« If the zeroa of © is located inD anda # 0 (multiport

Darlington section):
Fig. 7. A multiport cascade realization is obtained through the factorization

of the Chain Scattering Matrix, whereby each section realizes one transmission ”—a
zero. O(a,V)(z) = Lom + <ca 1 — 1) JVvv*
—az
We see that, in case of an LTI system, the pole®ddre the in which ¢, is a coefficient of modulus one arid is a
conjugates of the poles af;;-. WhenY is inner, then® has constant matrix such thdt*JV = I for some integer
important properties] some of which are: 1<k<m (the Smith—McMillan degree of such a section
« for the signature matrix: is exactly k). _
 If the zero of © is located at> = 0 (multiport Schur
J = {Im } section):
_Irn

© is paraJ-unitary, meaning that: 00, V)(2) = Lam + (o2 = 1)IVV

0JO, = 0,J0 = J, - if the zero of © is located atz = ¢/¢ (multiport Brune
section):
(in the LTV-case, a similar property will hold but with a )
more comple?< si'gnature operatgy; . O(*, V) = Loy — 1 Cfé + i Avare. (50)
* inside the unit disc of the complex plan®{z) will be ei® — 2

J-contractive, I.e. in which» > 0 is a strictly positive real number and is

J—0()J[O()] >0 a nonsingular, so called neutral matriX*JV = 0 (the
columns ofV span a so called isotropic space, i.e. a space
(remember that* denotes the Hermitian transform).  of elements that are all-orthogonal to each other);
This relation follows from the relation (dropping the . if the zero of© is located at a point € E outside the

z-dependence): unit disc:
_ e I =S5, e I 0 z—a
J-0Je" = [0 1 }[1 iRy ][_221* G 221*} O(a; V)(2) = Iopm — <c,,,1 — - 1) JVV (51)

obtained from the connection betweénand 3.
From the paraf-unitarity of ©, we see that the zeros ¢¥
(i.e. the poles of its inverse) are actually the conjugates of its,
poles, and vice versa. Hend®, shares zeros withl;s. This
point may be exploited for algebraic benefit, by writing the O(00; V)(2) = Lo — (Cooz ™t — 1)JVV* (52)
embedding formula fo© as

in which |c¢,] = 1 and nowV*JV = —I; for some
integerl < k < m;
and, finally, if the zero of® is at infinity:

[ S]=[Z2 O]© L. (48) where|co,| = 1 and V*JV = —I, for some integelk
. . o . such thatl < k& < m.
A cascade synthesis of will now consist in extracting The network-theoretical literature has been very much con-
elementary sections frofii:;, 0], since in practical problems cerneq with the properties of these various sections and certain
it is usually the transfer scattering matri;,(2) that is cascades of them. If a strict, minimal degree synthesis is
given. It turns out that such a multiport, recursive extractioffesired, then at each elementary extraction, the degree should
of elementary zeros using-contractive, lossless sections iS50 down by a number equal to the degree of the section that
always possible [30], [31] and results in a cascade synthegisyeing extractedk: for the sections given above. However,
as shown in Fig. 7. _ it is also possible to extract sections without the degree
Alternatively, one can produce a formula witho1, in yequction, but respecting the passivity of the remainder circuit.
which case an attractive embedding formula follows from th@ ihat case, correct approximating networks are obtained when
expression for appropriate interpolation conditions are satisfied. There is an
DD el I extensive literature on the properties of the approximations
PRI Y } obtained, it is of interest for circuit reduction in the VLSI
g 0 (49)  modeling context [33].
ot [—I} = [—E } | finish with a brief discussion of three important practical
2t problems which have found elegant solutions thanks to the
We shall exploit this formula in Appendix B to obtain a squargeneralized Darlington theory, but whose discussion falls
root algorithm for the embedding in state space formalism.outside the context of this paper.

e l=J0"J = [
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Broadband Matching:Darlington theory provides the key This is a basis decomposition in which the constituting ele-
ingredient in broadband matching theory, as it succeeds in r@pents are diagonal operators. Hence, viewed as séfiasd
resenting both the source impedance and the load impedanc® asan now be represented by series of diagonals:

a Darlington connecting network, and the broadband matching

problem then is converted to the design of a connecting U= [...,U_2,U_1,Uy, U, Us,..]
Ec,;G(:]tlon. See the literature for various approaches [34], [35], Vv — [ Y 0, Y 1, Yo, Y1, Ya, . ]
Minimal Algebraic Computations and Canonic Represen- ~ ~
; ; ; .__The operatorS, mapsU, = [...,U,U 4] t0 Y, =
tations of SystemsDarlington synthesis leads to numerical p P L ’ P
y g y t...,Y_Q,Y_l] and, taking notice of the rulez=*S, =

realizations of operators witminimal algebraic complexity Yo
see [21] for an extensive discussion of this topic. The ket 2 - it will be represented by
ingredient here is the fact that a unitary representation can be

realized with a number of elementary rotations which is alge- .o : :
braically minimal, i.e. equal to the number of free algebraic ~ o 8B B ¢
parameters. Although other methods of obtaining algebraically Sp = o 8 5%2) 5%2)
minimal realizations are possible, the one based on unitary 0 8 S
realizations and elementary rotations is particularly attractive 0

because it combines algebraic minimality with numericilikewise S; mapsU; to Y}, and will also be represented

operations that have minimal error propagation. Algebrallﬁ the diagonal bases chosen, by an oper&joconsisting of

minimality can be very important at least for two reasons, | , h 1E*s, — SCR 7k it will be ai
One is that a variation of a parameter in an algebraica&f}gonas' Using the rule™5e = 5, 2% it will be given

minimal realization will not change the class of the realizatior?
(for example: a lossless circuit will stay lossless). This fact

has been extensively exploited by the very elegant realization So fjl) 22
theory for Wave Digital Filters discovered and pioneered by . 0 S Sy )
A. Fettweiss [37]. The second reason is that algebraically Sr=10 0 Sé_ )

minimal realizations can be build in such a way that they form
a continuum for all possible realizations of a given degree and

hence can be used for circuit optimalization by continuous ]
variation of parameters. The connecting operator® and O generate the statel

Inversion of SystemsRecently, numerical inversion theorythrough the action of the Hankel operator, which, as expected,
of systems of equations has been extended to handle a prE#gfors out, sinces = D + BCYZ + BATHC 222
general type of infinite systems which are described withATVACDCEDZ8 4 as
a finite set of parameters. The class for which the best

solution have been obtained consists of systems which are [ : : :
time invariant fort — 400 but are varying in between. It fo s g® §®
appears that inner-outer factorization, the main mechanism for - 552) 5?()2) Sff)
Darlington synthesis, again plays the key role in solving the PSSO NI CO NS Cb)
inversion problem. -1 2 3
3 .2 1
APPENDIX A = |B )(’;1)( )(’f)( )
PAST-FUTURE DECOMPOSITION OF ACAUSAL OPERATOR S B Bél)
The concrete representation of operators sucly,aR, O ><_ [c ACCD  AACD A =3) ]

and S in (39) and (40) hinge on the choice of bases in the
input and output spaces of these operators. In our case,
handiest choice for the input spatieand the output spacy
are decompositions in diagonals as

the . . .
I—Pence, ‘concrete’ representations ®rand O in the diagonal
algebra are given by

U= Z U,z4 Y = Z Y; Z R B(g)A@)AQ)
T=—00 T=—00 B(?)A(l)
B

in which U; is thei-th diagonal ofU, properly positioned. Let

= (=D DA L
us also represent the operatbby its diagonal decomposition: o=[C AC AATEATEC )

It should be clear, then, thaf is indeed given by the diagonal:

S=> S5.7"
k=0 X =4+ U_3B®ADA® 4 7 ,B@ A0 4 y_ BD,
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APPENDIX B
SQUARE ROOT ALGORITHM FOR
THE DARLINGTON EMBEDDING

whereby a transfer scattering operaboy, is first converted

to an input scattering operataf, which is then further
realized using cascaded sections with the correct transmission
. The dual factorization method given in Section VIII

The square root algorithm for the Darlington embedding &§"°° ; ) ; ) .
a g g g a sense more interesting: it proceeds directly with the

: . S |
derived by [22] can be interpreted as a state space expres#faocr?mization of the givery,,, and produces botl® and S

oing so.

of the Darlington embedding equation (49), which itself is 8
special instance of an inner-outer factorization equation. If the
original scattering operatof has a realizatioq A, B, C, D},
then the outer spectral factdi,; of (I — 5*S) will share

the {A, C} with S, and will haveB; and D»; determined by
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R A CQrpeen
S.=| I B D [ 1}
I|[By Dn

(1]
is co-isometric (this is the dual case of the factorization case
considered in the main text of this paper, for good reasonz]
see the brief discussion at the end of this section). Expressii
the embedding (49) in terms of these diagonal state spa

operators now takes the form [4]

(5]

RA RC R1 0
®|lB D|=]| 0 0 (53) 6]
0o -1 —By —Dy

(7]
in which @ is actually a.J-unitary realization matrix for the

anticausal transfer functio®—*. These equations form the
basis of the square-root algorithm to compute the embedding.
They state that, given the original state space realizatio for [l
and the value ofz;, at a given pointk in the recursion, one [10]
finds Ry41, B2, and Dz by annihilating the middle rows of

- [11]
By, Dy, [12]
0 -1 [13]
using a.J-unitary transformation matrix, with [14]
I ] [15]

J= I ,
_J [16]
to produce [17]
(18]

Ry41 0

0 0 [19]
—Bort1 —Dat k1 20]

The existence of the Darlington embedding actually insures the
existence of the transformation matrix (if it had been unitar)Lz,ll
it would always exist, but/-unitarity is a different case). For [22]
further details on implementation and numerical properties,
see [21]. [23]
The square-root algorithm shown here computes an outer
companiony; and a causal embedding to S. This cor-
responds to the traditional Darlington embedding method
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