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To facilitate the shift from conventional to electric buses, the required charging infrastructure must be
deployed. This study models the charging station location selection problem for fixed-line public transport
services consisting of electric buses. The model considers the deadheading time of electric buses between the
final stop of their trip and the locations of the potential charging stations with the objective of minimizing
vehicle running costs. The problem is solved at a strategic level; therefore, several parameters of day-to-day
operations, such as deadheading distances, are included as aggregate data considering their average values.
In addition, it considers different charger types (slow and fast), which are subject to a day-ahead scheduling
of the charging sessions of the buses. The developed model is a mixed-integer nonlinear program, which is
reformulated as a mixed-integer linear program and can be solved efficiently for large networks with more
than 1940 bus trips and 336 charging installation options. The model is applied in the Athens metropolitan
area, demonstrating its potential as a decision support tool for selecting charging station locations and charger
types in large public transport networks.

1. Introduction electric buses comprised roughly 60% of the country’s public transport
fleet in 2021, under a continuously growing electrification trend [4].

As cities worldwide strive to reduce carbon dioxide (CO,) emissions,
there is a growing shift in the public transport sector towards transi-
tioning from conventional vehicles to electric ones. Numerous urban
centers have introduced electric bus fleets, and various public trans-
port authorities have established ambitious targets for accelerating the
electrification of their bus fleets. In Europe, over 80 cities have signed
the Clean Bus Declaration Act, with ambitious targets for exclusive
purchases of electric buses by 2025 in some cases (e.g., Athens, Paris)
and even achieving full electrification by 2030 in others (e.g., Oslo,
Copenhagen) [1]. In the U.S., the California Air Resources Board has
aims to achieve a fully zero-emission bus fleet by 2040, while the
city of Boston envisions to achieve this by 2030 [2]. In the UK.,

Clearly, public transport electrification is gradually becoming the norm
worldwide, calling for new strategic planning and design models.
More specifically, this transition necessitates and largely depends on
the development of adequate charging infrastructure. Initially, when
electric buses were first introduced, charging stations were predomi-
nantly located near large bus depots. Nevertheless, space limitations
and geographical factors may render bus depots unsuitable for charging
station deployment [4]. With the advent of new and more accessible
types of electric bus vehicle charging infrastructure, there has been
increased flexibility in choosing the placement of charging stations at
several locations of a given electric bus network [5]. The different types

the electric bus fleet is anticipated to experience a nearly threefold
expansion by 2024, while cities in South America, including Santiago
and Bogoté have already deployed several electric buses [3]. In China,

* Corresponding author.
E-mail address: kgkiotsalitis@civil.ntua.gr (K. Gkiotsalitis).

https://doi.org/10.1016/j.apenergy.2024.125242

of charging infrastructure can be distributed across different areas of
the city, such as bus stops or even transient, adaptable sites where mo-
bile charging units may be temporarily situated. In addition, the advent
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of fast charging technology allows for locating chargers at bus stops or
charging stations which may be shared among several providers [6,7].
These types of operational strategies allow for improved management
of infrastructure resources and can facilitate the transition to electric
bus systems under financial constraints. However, utilizing central-
ized charging stations typically involves covering substantial deadhead
distances. For instance, in Beijing, this translated to approximately
30,000 kilometers of deadhead travel, while it was estimated that more
than 1000 additional drivers were required daily in order to carry out
deadhead trips to charging stations [4]. Therefore, apart from the initial
investment cost, charging station deployment may result in increased
operational costs for public transport agencies.

Associated charging location decisions are anything but straight-
forward, as operators must determine optimal locations along with
infrastructure requirements and also ensure that charging activities do
not interfere with the schedule of the bus services. For example, while a
charging site near an electric sub-station may have lower construction
costs than a charger at a bus stop, it is essential to consider that
vehicles may not be able to reach the former while adhering to their
planned schedules. Additionally, the deployment of shared chargers,
either among several bus lines or among various operators, necessitates
the allocation of exclusive charging slots to vehicles in order to prevent
queuing and delays [7]. Hence, the challenge of charger placement is
intricately connected to scheduling decisions, necessitating the use of
decision support tools.

In this context, the objective of this study is to address the problem
of selecting optimal locations for charging stations and determining
the charger types and the schedule of charging requests at these lo-
cations for a fleet of fixed-line public transport services comprising
electric buses. In particular, in formulating the problem, we take into
consideration the average deadheading time, which refers to the time
electric buses spend traveling without passengers between their final
stop and potential charging stations. The aim is to minimize the op-
erational costs associated with vehicle running times, including these
deadheading times. To address this problem, a mathematical model is
proposed to optimally locate charging stations and allocate vehicles
to charging time slots, considering limited financial resources. The
proposed formulation aims to determine the set of charging stations
that would be required to cover vehicle energy needs while minimizing
the deadheading times, given certain resource constraints. The model
considers two types of charging stations (slow and fast) and determines
the assignment and scheduling of charging requests at charging sta-
tions. The set of potential charging time slots enables the formulation of
the problem given a daily (or day-ahead) charging scheduling approach
according to the bus fleet recharging needs. In this way, it is ensured
that each vehicle is assigned to an empty (available) charging slot,
which becomes occupied and cannot be used by another vehicle at the
same time. This mechanism is equivalent to consideration of charging
queues because vehicles in need of charging cannot use the occupied
charging slots and have to wait for an appropriate empty slot.

By applying this modeling approach, this study contributes to the
efficient planning and decision-making processes involved in the selec-
tion of charging station locations and charging scheduling optimization
for electric bus fleets in public transport systems. The findings can pro-
vide valuable insights for policymakers and transportation authorities
to optimize the placement and management of charging infrastructure,
thereby ultimately facilitating the adoption of electric vehicles and
supporting the goal of reducing CO, emissions in urban areas.

The remainder of this paper is organized as follows. Section 2
reviews the relevant literature, focusing on the charging station loca-
tion problem and the combined charging station location and vehicle
charging problem. Section 3 presents the mathematical formulation of
our model, and its reformulation to a mixed-integer linear program.
Section 4 presents experimental results and performance analysis on a
set of benchmark instances and in the network of the Athens metropoli-
tan area. Finally, in the concluding remarks section, the paper discusses
potential future research directions.
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2. Literature review

This section provides a brief overview of studies related to the
optimal selection of charging stations and the optimal scheduling of
charging requests. The section concludes by outlining the knowledge
gap which is addressed in this study.

2.1. Charging Station Location Problem

The Charging Station Location Problem (CSLP) involves strategi-
cally locating static charging infrastructure for a bus network. The
main objective is to efficiently provide electric power to buses under
considerations related to the installation cost and the energy require-
ments of electric vehicles. In the past few years, several mathematical
programming models have been proposed to determine the optimal
charging station locations for a bus route network, considering different
charging configurations.

Among the early approaches, Jang et al. [8] presented a mixed-
integer programming model for minimizing the initial investment cost
of charging infrastructure, with the goal of determining the number of
stationary chargers located at terminal stops along with the optimal
battery size. Adopting the same objective, Wang et al. [9] presented
integer linear programming models for locating chargers at terminals
and bus stops along with efficient heuristics to handle the complexity
of the problem. A group of studies optimized both charger locations
and battery costs, considering various cost components associated with
electric bus fleets. In the same vein, Kunith et al. [10] presented a
mixed-integer linear programming (MILP) model to determine both the
optimal placement of charging stations and the appropriate battery
capacity for each bus line. Bi et al. [11] presented a multi-objective
framework for locating wireless chargers in a multi-route electric bus
system, considering both system-level costs but also life cycle green-
house gas emissions and energy consumption over the entire lifetime of
the system. A genetic algorithm (GA) was used to solve the optimization
model and evaluate the trade-offs between installation and life cycle
costs. Considering the use of energy storage stations, He et al. [12]
developed a MILP to minimize the total cost of batteries, terminal
and opportunity charging stations, energy storage units and electricity
demand charges. Similarly, Lotfi et al. [13] identified the optimal
charging system configuration and battery capacity for various electric
bus types and charging infrastructures, using an MILP model that
minimized the total cost of ownership (TCO) of the fleet. Lin et al. [14]
presented a mixed-integer nonlinear programming model (MINLP),
representing the problem of sizing and locating plug-in charging sta-
tions for electric buses as a multi-step planning model and explicitly
modeling the interactions with the power grid. Under a similar context
of a gradual transition to electric bus fleets, He et al. [2] presented a
bi-objective MINLP to determine the locations of en-route and depot
chargers, along with the number of vehicles to be purchased and bus
lines to be electrified at each planning period.

A successive stream of studies sought to incorporate more realistic
considerations into the CSLP, such as uncertainty related to energy
supply or consumption and the formation of queues at charging stops.
Incorporating energy consumption uncertainty in the fast-charging sta-
tion location problem, Liu et al. [15] developed a robust optimization
MILP model to define the number and type of fast chargers at each stop
as well as the battery size of buses. An [16] devised a stochastic integer
program to concurrently optimize the placement of charging stations
and the bus fleet size, taking into account unpredictable variations
in charging demands and time-of-use electricity tariffs. Considering
energy supply uncertainty, Iliopoulou and Kepaptsoglou [17] devel-
oped a robust integer programming model for locating chargers at
bus stops under power variability at charging stations. Incorporating
grid-related considerations, Wu et al. [18] presented a two-stage non-
linear programming model to determine the capacity and locations of
charging stations. An Affinity Propagation algorithm was employed to
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generate potential charging sites first, and a Binary Particle Swarm
Optimization method was then used to find the locations and numbers
of corresponding stations. Tzamakos et al. [19] developed a MILP
model with the aim of minimizing the investment cost associated with
the deployment of opportunity and terminal charging facilities under
waiting time constraints, using an M/M/1 queuing model to handle bus
queuing.

2.2. Charging station location and scheduling

A branch of the related literature has formulated comprehensive
models that optimize both location and scheduling decisions for electric
bus charging. In this line of research, Rogge et al. [20] jointly examined
vehicle scheduling and charger location under depot charging, present-
ing a grouping GA and a MILP model for each task, minimizing the
TCO for an electric fleet. Liu and Ceder [21] introduced a model based
on the deficit function theory, along with a mathematical programming
model, to establish schedules for an electric bus fleet while optimizing
the number of fast-chargers deployed at terminal stations. Stumpe et al.
[22] presented a MILP to concurrently optimize both the opportunity
charging infrastructure and schedules for an electric fleet and presented
a Variable Neighborhood Search-based (VNS) algorithm to solve the
model. Using a VNS algorithm, Olsen and Kliewer [23] explored the
integration of depot charging planning and electric bus scheduling
with the aim of minimizing the overall cost, accounting for depot
charger installation, vehicle expenses, and operational costs. Adopting
a similar objective, Yao et al. [24] designed a hybrid GA to address the
Multi-Depot Electric Vehicle Scheduling Problem with multiple types
of vehicles, concurrently minimizing the number of chargers installed
at depots. Li et al. [25] addressed the problem of finding the optimal
assignment of trips to vehicles and the allocation of battery chargers to
charging stations under a partial charging policy and variable electric-
ity prices. The authors presented an adaptive GA to minimize the total
investment cost of the public transport system. Considering uncertainty
in passenger demand and travel times, Hu et al. [26] presented a
robust optimization model to optimize the location of en-route fast
chargers and charging schedules under time-varying electricity prices
and waiting costs.

Several studies incorporated battery sizing decisions in their model
formulations, along with practical constraints, with the objective of
minimizing annualized costs. In this line of research, He et al. [27]
presented a MILP model to concurrently optimize charger deploy-
ment, on-board battery capacity, and charging schedules. Subsequently,
a charging scheduling model was introduced, and a rolling horizon
approach was applied to optimize the real-time charging schedules
for electric buses. A branch of studies considered variability in in-
put parameters, in an effort to more realistically capture planning
decisions. Wang et al. [28] developed a MILP model for opportunity
charger deployment and bus scheduling that simultaneously determines
the optimal battery capacity, fleet size, charger locations and the
number of chargers installed at the central terminal under variable
ridership, dwell time, and travel times. Considering energy-related
variability, Foda et al. [29] presented an integer linear optimization
model that determined the location and capacity of charging infras-
tructure, battery capacity, and charging schedules under variable elec-
tricity prices, grid constraints and trip-level energy consumption rates.
Similarly, aiming to enhance the realism of modeling-related deci-
sions, Wang et al. [4] focused on resolving charging conflicts between
multiple bus lines, mitigating battery degradation resulting from over-
charge and over-discharge, and ensuring the seamless continuity of
the charging process. The authors presented two MILP models for en-
route charging station location, battery sizing and charging scheduling
optimization. In the only approach incorporating deadheading costs in
the objective function, McCabe and Ban [3] introduced a MILP model
to determine the locations and quantity of chargers, as well as the
location, duration, and sequence of charger visits for each bus.
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Several studies extend the integrated problem by incorporating
considerations related to the energy grid and energy consumption
dynamics. For example, in a recent survey, Foda and Mohamed [30]
introduced three alternative optimization models to achieve the opti-
mal configuration of electric buses’ charging infrastructure, including
chargers and Energy Storage Systems (ESS). Liu et al. [31] extend
the problem to include solar-powered bus charging infrastructure by
integrating Photovoltaic and Energy Storage Systems (PESS) to enhance
public transport resilience during charging service disruptions or in
cases when the charging capacity is compromised due to charging
service degradation. Another work by Liu et al. [32] proposes an opti-
mization model for electric bus charging infrastructure that considers
power matching between chargers and batteries as well as the seasonal
effects on battery performance. Using a surrogate-based approach, the
model significantly impacts bus scheduling and charging efficiency,
emphasizing the need to incorporate these factors in infrastructure
planning.

2.3. Study contribution

Several mathematical programming models have been proposed for
the CSLP over the past years which vary in terms of the planning
horizon, decisions, and the optimization objectives considered. A few
of these have addressed both location and scheduling decisions. Table 1
shows the contribution of our study in relation to the stream of studies
on optimal charging location and scheduling in detail.

In Table 1, the term aggregated means that the constraints do not
refer to scheduling conflicts for a specific charger but rather ensure
that the number of charging vehicles is less or equal to the number of
available chargers during a charging slot. The term scheduling decision
refers to the types of decisions that are considered for the optimization
of different types of schedules (i.e. vehicle-to-trip scheduling, vehicle
charging scheduling, or crew-to-vehicle scheduling). We also note that
bus stops also include terminal stops.

As can be seen in Table 1, the vast majority of relevant models
considered charging to take place at depots, terminals or bus stops,
overlooking the possibility of exploiting multi-use charging stations.
The only exceptions are the studies by Rogge et al. [20] and McCabe
and Ban [3], which, however, considered a single charger type with
the objective of minimizing a weighted cost value comprising various
cost components. In contrast, we assume that different charger types
can be deployed, as the number of charging requests assigned at a
given location may not warrant the installation of more expensive, fast
chargers. Further, we minimize deadheading costs, treating investment
costs through a budgetary constraint, in line with electrification sub-
sidization policies. Moreover, we utilize binary variables to explicitly
handle charging scheduling and prevent conflicts, allocating trips to
specific chargers and charging time slots. Methodologically, in the
following section, we propose a concise MILP model that exploits an
efficient mapping scheme to match charging stations to distinct power
levels, thereby reducing the number of variables needed. This results
in an effective formulation that can be solved to global optimality for
large problem instances, despite the NP-Hardness of the problem.

3. Formulation as a minimum deadheading problem
3.1. Mathematical program

The problem at hand entails determining the optimal charging
installation options, where a charging installation option is associated
with a physical location and a charger type (slow/fast). The problem
also entails the optimal scheduling of vehicle charging requests at the
selected charging installation options. In practical applications, a given
budget is available for installing chargers, while different types of
chargers (i.e., slow or fast) can be selected depending on the frequency
of charging requests at each location. Furthermore, charging requests



K. Gkiotsalitis et al.

Applied Energy 382 (2025) 125242

Table 1
Literature summary.
Reference Charging Scheduling Multiple charger Charger Deadheading to Optimization Solution
location decision types scheduling chargers goal approach
constraints
Rogge et al. [20] Charging stations Vehicle Charging explicit v TCO GA and exact
Liu and Ceder [21] Terminal stations Vehicle Charging Purchase cost Heuristic
Stumpe et al. [22] Bus stops Vehicle Charging TCO VNS
Olsen and Kliewer [23] Bus stops and Vehicle Charging TCO VNS
depots
Li et al. [25] Terminal stations Vehicle Charging explicit TCO Adaptive GA
Yao et al. [24] Depots Vehicle Charging to depot TCO GA-based
heuristic
Hu et al. [26] Bus stops Vehicle Charging explicit TCO exact
He et al. [27] Terminal stops Charging v TCO exact
and depots
Wang et al. [28] Bus stops Vehicle Terminal aggregated TCO exact
Charging
Foda et al. [29] Bus stops and Charging v aggregated TCO exact
depots
Wang et al. [4] Bus stops Charging v aggregated TCO exact
McCabe and Ban [3] Charging stations Charging aggregated v Purchase and exact
deadheading cost
Foda and Mohamed [30] Charging Charging Station, explicit TCO and exact
stations, depots Vehicle Charging emissions
Liu et al. [31] Depots Charging station, explicit Operating cost, exact
Vehicle Charging service
robustness
Liu et al. [32] Depots Charging station, explicit Operating cost, heuristic
Vehicle passenger
scheduling waiting time
This study Depots and Charging station, v explicit v deadheading cost exact

charging stations Charger Type,

Vehicle Charging

are typically managed in advance through a reservation policy that
mandates operators to reserve charging slots for vehicles at charging
stations. As such, the charging station location selection and scheduling
problem is cast as follows:

“Given a limited budget that allows to install a certain number of
charging stations with varying power levels and installation costs, a pool
of V potential charging station locations, a pool of N potential charging
station installation options, and K electric bus trips that require charging,
select the optimal types and locations of chargers from the pool of charging
station installation options and assign bus trips to charging slots in order to
reduce the overall deadheading costs.”

The main assumptions of the problem are the following:

1. Lines are not associated with dedicated charging locations. That
is, a bus trip can be freely assigned to any charging station if
deemed necessary.

2. Different types of chargers can be installed, i.e., slow and fast
charging.

3. The time needed to recharge after a trip varies depending on the
vehicle’s remaining battery level and the type of the correspond-
ing charger (slow or fast).

4. Vehicles leave charging stations after being recharged up to their
maximum allowed battery level.

5. A charging time slot is fully occupied by a vehicle, regardless of
the actual charging duration of the vehicle. That is, the corre-
sponding charger is considered occupied for the entire duration
of the time slot, even if the bus finishes charging before the end
of the slot.

6. The consideration of charging needs takes place according to a
daily charging schedule, considered to be known a day ahead.
In this way, the charging scheduling modeling and time slot

availability can be subject to a day-ahead booking system and
queuing at the chargers is taken into consideration in case of
unavailable time slots.

In this problem definition, we have a pre-selected pool of potential
charging station locations V. At each charging station location, we may
have several chargers of different types (slow/fast). This results in the
set of all possible charging installation options N. Note that ¥ € N
because multiple charging installation options might be offered at the
same physical location. The set N of possible charger installations
results in an expanded set of potentially available charging slots F.
Given the above, we have to allocate £ = {1,2,3,...} vehicle trips
that require charging to the available charging slots 7 such that the
deadheading times of all trips are minimized subject to budgetary
constraints. The deadheading times are average values (considering an
average bus speed [33] and the distance between the final stop and the
potential charging station).

The set of potential charger installations N can be decomposed
into the set of slow charging installation options N and the set
of fast charging installation options W,, respectively. These charger
installation options can be located at any point of the set ¥, which
represents the set of all possible physical locations of charging stations
and is a sub-set of N'. In addition, each charger j € N can be used
multiple times during the day resulting in a set of time slots 7. The
same holds for any charger j € N,, resulting in time slots 7.

The set of all bus trips is M, and the available time slots for slow
and fast charging are 7, and F,, as defined above. From the set of
all available bus trips, M, we indicate with K the subset of trips that
need charging (K C M). These |K| vehicle trips should be assigned
to the available charging time slots 7 = F; U F,, as described above.
This assignment of trips to charging time slots can be viewed as an
unbalanced assignment problem [34], where the number of charging
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time slots should exceed the number of trips in set K to guarantee the
feasibility of the problem.

Considering the parameters of the problem, the state of charge
of each trip k that has finished its operations and requires charging
is SOC,. The time that trip k is completed and needs to drive to a
charging station is 7;. In addition, its minimum allowed state of charge
is SOCf(“i“. The starting time for charging time slots for slow and fast
charging stations are c}l and c}z, respectively. Given the state of charge
of trip k when it requires charging, its latest time threshold to start
charging at a slow charger is p; and at a fast charger is pZ, respectively.

The battery consumption per traveled distance is e and the fixed
cost of installing a charger j € N is b;. The total available budget for
installing charging stations is »™**. Regarding the traveled distances,
the minimum travel distance between the last stop of trip k and a
potential charger location j is dy;, resulting in a |K| x |N'| matrix.
Similarly, the estimated deadhead time from the last stop of trip k and
a potential charger j is ;. Finally, we introduce binary parameters a,,
where a,; = 1 if charger j is reachable from the last stop of trip k given
its minimum state of charge constraints; and 0 otherwise.

The decision variables of the problem include:

x; € {0,1}, where x; = 1 if we decide to construct charger j € N,
and 0 otherwise. We note that N' = WN| U W, resulting in a
simultaneous selection of charging location and type.

qx; € (0,1}, where ¢;; = 1 if trip k € K is assigned to charger
j € N and 0 otherwise.

“i/ n€ {0, 1}, where “ij "= 1 if trip k starts charging at the time
slot f, € F, at the slow charger j € N|.

qu ;, € 10,1}, where qu h=1 if trip k starts charging at the time
slot f, € F, at the fast charger j € N,.

* ¥« € Ry, which indicates the deadheading time of each trip
ke k.

The notation of this problem is summarized in Table 2.

Using this nomenclature, we know in advance the state of charge
SOC, of each trip k € K that has finished its operations and requires
charging. Knowing also the minimum allowed state of charge SOC,‘(nin
of each trip k and the exact location of each potential charger j € N,
we can derive all potential chargers which are reachable by trip k.
These charger installation options are all options that can be reached
by trip k without its state of charge falling below SOC,i"i". That is, a
charger j is reachable by trip k if, and only if,

SOCy, - edy; > SOCP™ )
If the above condition is met for a charger j, we set a;; = 1. If not,

a;; = 0. Performing this check for all other pairs of trips k € K and

potential chargers j € N, we pre-compute the adjacency matrix:

an L b Y R (PN
ay, ay ay; ay N
A= : :
3} L AR TP
Qen de - Akl e KN

where each element q,; takes the value of 1 if the respective charger j
is reachable by trip k and 0 otherwise. To ensure that we will construct
chargers so that any trip k € K will be served by at least one charger
j € N, one can introduce a subset NV, C N which contains all charger
options that are reachable by trip k (that is, a;; = 1 ¥j € WN}) and
construct at least one charger from the options in set V. That is, force
that x; = 1 for at least one j € N}. Mathematically, this can be enforced
by the following inequality constraint:

Y x;>1 Vkek )
JENK

or, equivalently,

Y ayx; 21 Vkek 3
JEN
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Table 2
Nomenclature.

Sets

v set of all possible charging station physical locations.

N set of all possible installation options for chargers,
where ¥ C V.

N set of slow charger installation options.

N, set of fast charger installation options.

F set of time slots for slow chargers.

F, set of time slots for fast chargers.

K set of trips that need charging.

Parameters

S0C; state of charge of trip k after its completion.

SOC,‘Z““ minimum allowed state of charge of trip k.

c}] starting times for charging time slots of slow charging
stations.

c}, starting times for charging time slots of fast charging
stations.

7 time when trip k is completed.

A latest time threshold for trip k to start charging at a
slow charger.

oy latest time threshold for trip k to start charging at a
fast charger.

M a very large positive number.

e battery consumption per traveled distance.

b; fixed cost of installing charger j, i.e., if close to
inverter, the cost is smaller.

pmax total amount of installation budget.

dy; minimum travel distance between the final stop of
trip k and the potential charger location ;.

1y estimated deadhead time from the last stop of trip k
and the location of the potential charger j.

a; binary parameter that equals to 1 if there exists a

charger j € N which is reachable from the last stop
of trip k given its minimum state of charge, and 0
otherwise.

Decision Variables

b'q X=[xp, X, X 01T, where x; =1 if we decide to
construct j € N and x; = 0 if not.

o 0-1 matrix, where g,; = 1 if the trip k € K is assigned
to charger j and O otherwise.

Ui, binary variables, where Ui, if trip k starts charging
at slow charging time slot f, at charger j € V.

up, ” binary variables, where u}, 7, =1 if trip k starts
charging at fast charging time slot f, at charger
jEN,.

Variables

y Y =[5 Y- Vg |7 deadheading time of trip

kek.

Note that the above formulation is also used for the traditional

coverage problem [35].

In addition, each trip k € K should charge at exactly one charger
j € N. That is, each trip k should be assigned to exactly one charger .
This can be achieved by using the binary variables g, ; — where g,; = 1 if
the trip k € K is assigned to charger j and O otherwise — and enforcing

that:

Y ay=1Vkek

JEN

(4

Because a trip k can be assigned to a charger j if, and only if, we
have decided to construct this charger, the previous constraints should
be accompanied by the following:

ar; < x; Vke K, VjeN (5)

Constraints (5) indicate that a trip k cannot be assigned to charger
j if it has not been constructed (x ;= 0). Because a trip k cannot be
assigned to a charging station j if this charger is out of reach, we also

have that:

aj S a; VkEK, VjieN (6)
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Using the above constraints that assign each vehicle k to exactly
one charger j, the deadheading time of a trip k from its last stop to its
charger is defined as:

Ye= Y tya,; VKEK %)
JEN
where #;; is a parameter indicating the estimated deadhead time from
the end stop of trip k to charger ;.
Because we need to minimize the overall deadheading time of all
trips when traveling to the locations of their chargers, the objective
function of our problem is:

mm Z Vi (8
kek

which is a linear function. Chargers are available in two levels of
charging speed: slow or fast charging. In this manner, slow chargers
belong to subset N} C N and fast chargers belong to subset N, C WV,
where N NN, =@ and N, UN, = N. The use of subsets for indicating
the different types of chargers circumvents the need to consider a
separate decision variable to capture the power level of chargers, thus
simplifying the formulation without altering the problem.

Because a charger can be used multiple times during the day, we
consider that the time horizon is discretized into 7, (for slow chargers)
and F, (for fast chargers) homogeneous time intervals, which represent
charging time slots. We assume that vehicles arrive at chargers based
on an advance reservation policy [36]. Slot allocation and scheduling
must be hence performed prior to the start of the service. Consequently,
if a vehicle is assigned to a charger j after completing trip k, that is
qx; = 1, there exists a slot f; or f, such thatu; .. =1or “k H= =1, based
on the type of charger (slow/fast) that the velhlcle is bemg assigned
to. Depending mainly on the deadhead distance and the arrival time
at the depot, a vehicle can either occupy a slow charging slot f, at a
respective charging option (j € V) or a fast charging slot f, at a fast
charging option (j € N,). A vehicle can only be assigned to a charging
slot f if it can arrive on-time at the start of the charging period at
the corresponding charger j, while also maintaining its battery level
above the minimum state of charge. Advance slot allocation reflects
common practice by operators since vehicle charging schedules must be
known at the start of daily operations. Moreover, this approach allows
us to reduce the number of variables in the model. Note that we do not
aim to track the exact energy level of the vehicles but only to ensure
that the allocated charging time under the reservation policy suffices
for recharging the battery from the minimum to the maximum state of
charge. This is ensured through the selection of appropriate values for
the duration of charging slots and battery level thresholds, which are
problem parameters that can be pre-computed.

Considering the above, the charging station location selection and
scheduling problem with slow and fast charging options, which strives
to minimize the overall deadheading times, is summarized as follows:

) :

mm z Vi (C)]
kek
sti Y agx; >l Vke Kk (10
JEN
Vo= Dty Vk ek an)
JEN
Y x;b; < ™ (12)
JEN
qi; < x; Vke K VjeN 13)
Y a5, VjeN a4
kek
Y =1 Vk € K (15)
JEN

Z Uyt Z “ijz < gy Vke K,VjeN (16)

f1€F] [r€F,
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S
2 Xt X X d,=1 Vkek a7
S1€F) jeN; 12€F jeN,
Zu;m <1 Vi e NLVf, €F (18)
kek
Ui, <1 VieN,VfHheF,  (19)
kex
qkj <ay Vk e K.VjeN (20)
k,f } 2 (7 + 1)ty ity Vk € K,Vj € N,Vf €F
(21)
uzjfzcj'.z > (1 + tkj)qkjuzj/z Vk € K, Vj € Ny, Vf, €F,
(22)
uimc}] S(pi+tkj)qkjuim Vk € K,Vj € N1,Vf| € F
(23)
ugjfzcﬁz <@+ tkj)qkjuj;m Vk € KC,Vj € N>, Vf, €F,
24)
e {0,1} VieN (25)
Y €ERyy Vke K (26)
i € 10,1} Vke K,VjeN 27)
kjfe{OI} Vke CVNf eFVjeN
(28)
uk]fe{ou Vke KVNfeFNjeN
(29)

The objective function (9) seeks to minimize the deadheading time.
Constraints (10) ensure that the constructed chargers are such that
any trip k € K can reach at least one of them. Equality constraints
(11) compute the deadheading time of each trip k € K. Constraints
(12) ensure that the total installation cost of all chargers does not
exceed the total budget, #™**. Constraints (13) ensure that a trip can be
assigned to a charger j € N only if we decide to construct this charger
(x; = 1). Constraints (14) ensure that if there are no assigned trips
to charger j, then this charger is not constructed (x ; = 0). Constraints
(15) ensure that each trip is assigned to exactly one charger. Constraints
(16) guarantee that if one assignment of bus trip k to charger j takes
place (g; = 1), then this trip k has to be assigned to at least one of the
charging time slots f; or f, at charger j. At the same time, if ¢;; = 0
for any k and j, an assignment of trip k to charging time slots cannot
take place (left hand-side equals to zero). Constraints (17) ensure that
each trip k is assigned either only to a slow charger j € N at a specific
time slot f; € F, or only to a fast charger j € N, at a specific time slot
f> € F,, i.e., the two options are mutually exclusive. Constraints (18)
ensure that for each slow charger j € N| and for each slow charging
time slot f; € F;, we can assign at most one bus trip k. Constraints
(19) ensure that for each fast charging station j € M, and for each
fast charging time slot f, € F7,, we can assign at most one bus trip k.
Constraints (20) ensure that we cannot assign a trip k to a charger j if
the latter is not reachable.

Constraints (21) to (24) are introduced in order to ensure that the
scheduling of bus trips to charging time slots adheres to the operational
limitations imposed by their itineraries. Constraints (21) ensure that if
a trip k is assigned to a slow charger j € W) at charging time slot
f1, that is u; v = b then the time slot f; € 7, that is selected must
start after the arrival time of the trip at the final stop summed with the
travel time (denoted by 7, j) between the final stop k and the selected
charger j. Notice that if trip & is not assigned to time slot f;, constraints
(21) are satisfied by default since the left-hand side and the right-hand
side of the inequality constraint are equal to 0 because both of them
are multiplied by uij n= 0. Similarly, constraints (22) ensure that if
a trip k is assigned to a fast charger j € W), then the charging time
slot f, € F, must start after the arrival time of the trip at the final
stop and the travel time between the final stop and the charger. Hence,



K. Gkiotsalitis et al.

constraints (21) and (22) ensure that a trip k cannot start its charging
before its arrival at the respective charger.

Correspondingly, constraints (23) ensure that if a trip k is assigned
to a slow charger j € N, then the charging time slot f, € 7, must start
before the assumed latest charging time threshold p; summed with the
travel time between the final stop and the slow charger. Equivalently,
constraints (24) ensure that if a trip k is assigned to a fast charger
j € N,, then the charging time slot f, € F, must start before the
assumed latest time threshold pi’ and the travel time between the final
stop and the fast charger.

3.2. Reformulation to a mixed-integer linear program

Mathematical program (Q) is non-convex because constraints (21)-
(24) are nonlinear. The nonlinearity emerges at the right-hand sides of
these constraints, where variables g, ; are multiplied by variables u; kit
or "k/ 1y respectively. These nonlinearities in the constraints, proh1b1t
the computation of a globally optimal solution (see Gkiotsalitis [37]).
To address this, we introduce a big positive number M >> 0 and
we replace the nonlinear constraints (21)-(24) of (Q) by the following
linear constraints:

Vk € K,Vj € N|,Vf| EF,
(30)
Yk € K.Vj € Ny Vfy €F,
(€3]
Yk € K,Vj € N|,Vf, €F,
(32)
Vk € KVj € Ny Vf, EF,
(33)

Notice that constraints (30)-(33) and (21)-(24) are equisatisfiable.

We can thus cast (Q) as the following mixed-integer linear program 0):

(1- k/f )M+“k,f f —(Tk""k,)‘hq
ch
(1—uk”,2)M+uk/f2 7, 2 @+ 1)y
_ _ S s s S . X
(1 ukjfl)M+ukjf1Cf1 < (pk +tkj)qkj

h hoh h
-1 _ukjfZ)M+ukjfch2 < (P +tja;

O :

noY (34)
kek
s.t.: Equations (10)-(20), (25)—(29), (30)-(33). (35)
Theorem 3.1. Provided that the problem is feasible, the continuous

relaxation of the mathematical program (Q) has a globally optimal solution.

Proof. Mathematical program (Q) in Egs. (10)-(20), (25)-(29), (30)-
(33) is a mixed-integer linear program. Its continuous relaxation has a
feasible region which consists of affine functions in the form of equality
and inequality constraints, resulting in a polyhedron. The objective
function is a linear function, and thus the continuous relaxation of the
problem is both convex and concave. Consequently, any locally optimal
solution of the continuously relaxed problem is also a globally optimal
solution. W

Remark 1. From Theorem 3.1, it follows that we can solve our
mixed-integer linear program (Q) to global optimality by employing the
branch-and-bound solution method which exploits the solutions of the
continuous relaxation of (Q) to compute lower bounds.

Theorem 3.2. Mathematical program (Q) is NP-Hard.

Proof. One can cast the optimization problem (Q) as a decision
problem by checking whether the objective function Y, v, is not
greater than a value y for the problem instance y,.

This decision problem is a nondeterministic polynomial time prob-
lem (NP) because given a certificate y,, which constitutes a solution to
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the problem, a deterministic Turing machine can check in polynomial
time whether

ZYkSlI/

kek

and whether the constraints of the problem are satisfied. Note that the
constraints of the problem increase polynomially with the size of the
problem, and this is why all conditions in (10)—(29) can be checked in
polynomial time.

We will further prove that our decision problem is NP-complete.
Our decision problem is a generalization of the coverage problem
of Toregas et al. [35], which is an NP-complete decision problem. The
coverage problem is also poly-time reducible to (Q) since we can use
a polynomial time algorithm that translates problem instances of the
exact cover decision problem to problem instances of (Q) in such a way
that the instance of one decision problem has a ‘yes’ answer if, and
only if, the translated instance of the other decision problem has also a
yes answer (see Gkiotsalitis et al. [6]). Thus, (0) is also NP-complete.
Finally, (Q) is NP-Hard when expressed as an optimization problem
because its decision problem counterpart is NP-complete. |l

4. Numerical experiments

In our numerical experiments, we illustrate the model’s application
across three distinct cases. Firstly, we showcase its effectiveness using a
simplified network model based on synthetic data derived from Athens,
Greece. Subsequently, we delve into a series of experiments aimed
at assessing the computational complexity of the model by solving
problem instances of varying sizes. Lastly, we present a practical case
study involving real-world data from the bus network of Athens. This
study is particularly motivated by the imminent transition of the city’s
public transport authority to an electric bus fleet, commencing in
2024. Given this imminent shift, our focus lies on determining optimal
locations for charging stations, charger types, and charging slots for the
bus trips requiring charging.

Across the three applications of the model, there are several com-
mon considerations. First, an area that is serviced by 280 bus lines is
considered, which corresponds to the greater Athens metropolitan area.
Out of the total number of bus lines under consideration, a subset of X
services are selected for the transition to an electric bus fleet. Bus trips
of set K primarily operate between starting and ending stops within the
Athens Municipality, the central administrative region of the metropoli-
tan area, or directly adjacent municipalities, because the electric buses
in Athens will operate only in these areas. Regarding the candidate
charging station locations V, for each application of the model we
consider that multiple chargers can be placed at each location, that may
be slow (set ) or fast chargers (set V). Thus, each potential charging
station location offers several charger types and charging time slots.
Depending on the analysis conducted, the number and type of chargers
that can potentially be installed varies. Notwithstanding, across all
model applications we consider that chargers have a predetermined
number of charging time slots available, that are accessible at specific
times within the day. The mathematical model introduced in this study
allows for flexibility in the specification of chargers (slow/fast).

In addition to spatial and charging-related input factors, the math-
ematical model also accounts for the timing of charging and assigns
charging sessions to specific time slots. Within the daily time horizon
that is considered for this model, the first charging time slot is available
at 10 a.m., and the last charging time slot ends at 10 p.m. (charging
is completed for the last vehicle if charging option is utilized). The
slow charging stations are considered to provide six time slots within
the day for each charging option, with a duration of one hundred
and twenty minutes each. In addition, the fast charging stations are
considered to have 12 charging time slots, which are available every
sixty minutes, given that the duration of charging for fast charging
stations is equivalent to sixty minutes as well. This modeling of the
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Fig. 1. Toy bus network example. The final stops of the eleven trips that require charging are presented in orange. The candidate charger installation options are presented in

blue.

charging time slots enables the charging session scheduling based on a
day ahead booking system for the charging of electric buses. This, in
turn, ensures that each vehicle is assigned to an empty charging slot
and does not allow the utilization of the occupied charging slots. This
mechanism considers queuing and helps minimize it since vehicles in
need of charging cannot use the occupied charging slots and have to
wait for an appropriate empty slot.

All of the three cases of model application are solved using the same
program code implementation of the mathematical model presented
in Section 2. Python 3.7 is used, along with many of its standard
libraries, while the Branch-and-Cut solution method implemented in
Gurobi is used for the solution of the model. The Python code is
made publicly available along with the necessary documentation on
the GitHub repository [38]. The experiments are carried out on a
conventional computer machine with a 2.0 GHz processor and 8 GB
of RAM.

4.1. Demonstration on the toy network

To facilitate the reproduction of our model, we start our experimen-
tation with a demonstration of our model’s application in a small-sized
scenario with synthetic data from the central area of Athens—see Fig. 1.
For simplicity reasons, we consider four candidate chargers in this
area. Each is at a different location, thus ¥ = N. From the pool N
of the four candidate chargers, two are slow, and two are fast. More
specifically, candidate chargers #1 and #2 are slow (belong to set
N}), and candidate chargers #3 and #4 are fast (belong to set N,).
That is, N {1,2} and N, = ({3,4}. Furthermore, in Fig. 1, one
can notice the final stops for the trips of the bus lines that require
charging (orange markers). For this small-sized example, we consider
one trip per bus line (|K| = 11). This input decision is based on the
preliminary planning of the electric bus lines by the public transport
authority, which requires only one charging detour from the original

Table 3

Travel times 7,; in minutes between the end stop of each bus trip k € K and the

potential charger installation option j € N.

Kowa,

38 m

line k € K Charging station option j € N'
1 2 3 4

1 22.8 23.0 10.2 5.9
2 13.4 13.3 9.1 12.2
3 25.8 21.2 6.9 11.8
4 20.9 20.3 6.9 5.0
5 24.0 18.2 10.1 16.6
6 18.5 20.1 12.2 10.6
7 18.0 11.2 14.3 21.6
8 13.6 8.5 10.1 16.9
9 16.4 17.1 9.7 10.2
10 14.2 12.7 7.1 11.6
11 27.6 22.5 9.6 14.3

trip schedule during the daily operating hours (also discussed as partial
re-charging). However, one can consider more trips per line without
loss of generality. Finally, all eleven trips require charging when they
arrive at their final stop, and the exact coordinates of the locations
accompanying this example can be found at the GitHub repository.
Before solving the model and determining where to install the
chargers with the respective slow or fast charging options, we first need
to compute the travel distance between the end stop of each trip and
the respective charger, resulting in the 11 x 4 matrix of Table 3.
Along with the spatial data (bus stop locations, candidate chargers
locations) and the distances data, some synthetic temporal data must
be considered. These are the bus arrival times 7;, as well as the latest
charging time thresholds p; and pf for slow and fast chargers, as
reported in Table 4. In addition, in Table 5, we give the starting times
* and ch2 for charging slots for slow and fast chargers accordingly.

J1 f:
Given that we are modeling the electric bus operations on a daily

c
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Table 4

Values of temporal parameters for the toy bus network example: Arrival Time at the last stop 7, and latest time threshold for slow or fast chargers p; and pf (in minutes past
midnight, assuming continuous time representation).

1 2 3 4 5 6 7 8 9 10 11
T 656.4 710.7 807.1 890.5 876.8 971.2 892.5 918.9 1125.3 1160.6 1024.0
A 776.4 830.7 927.1 1010.5 996.8 1091.2 1012.5 1038.9 1245.3 1280.6 1144.0
Pl 716.4 770.7 867.1 950.5 936.8 1031.2 952.5 978.9 1185.3 1220.6 1084.0
Table 5
Starting times of charging time slots for the toy bus network example for slow chargers s and fast chargers C.};z (in minutes past midnight, assuming continuous time representation)
1 2 3 4 5 6 7 8 9 10 11 12
< 600 720 840 960 1080 1200 - - - - - -
c; 600 660 720 780 840 900 960 1020 1080 1140 1200 1260
Table 6

horizon, all of these temporal parameters are expressed in continuous
time representation in minutes past midnight (e.g. 19:04 is represented
by 1144.0).

In more detail, the bus arrival times 7, refer to the time the bus
trip k reaches its final stop and is available to its journey towards a
charger location v to charge a candidate charger j € N'. Regarding p;
and pz, these are two time thresholds defining the time window when
each bus can start its charging session at one of the candidate chargers
n. These time thresholds and the respective time window would have
to include the starting time of the charging slot cj.l or c?z for a bus to
start charging at that specific slot at any charger n.

For example, for this toy network and bus line k = 5, according
to Table 4, the bus arrives at each final stop at 7, = 876.8. To
start charging at any charger j € N and according to the linearized
constraints (30)—(33), which also account for the travel time, the bus
k =5 would have to reach the candidate charger j € N after 75 +1;; =
876.8 + 15;, depending on the travel time f5; to each charger. While
this serves as the earliest bound of a time window in which a charging
session can start, there are also the latest thresholds or bounds. These
are formed based on p; and pZ. For bus line k = 5, the charging session
must start before p; +15; = 996.8 +15;, if it is a slow charger, and before
pg‘ +1s5; = 936.8 +15; if it is fast charger. Given the travel time values for
bus line k =5 (15, = 24.0, 15, = 18.2, t53 = 10.1 and s, = 16.6, a subset of
the initial F; and F, times slots are available at the different chargers
j € N based on the emerging time windows. In this way, inspired by
practices followed by real-world public transport operators, the model
is incentivized to assign buses to chargers and charging time slots near
the ending locations of the trips but also close to the finish time of
the service for that trip. Still, the assignment process must account
for the maximum latest time thresholds p; and pZ for slow and fast,
guaranteeing that the buses do not wait and queue up at the chargers.

Based on this data for the toy network instance, the model’s op-
timal solution indicates that the installed chargers should be charger
#2 (slow charging), as well as #3 and #4 (fast charging). This was
computed with the Branch-and-Cut solution method of Gurobi, and
results in an optimal total deadhead time of 95.73 min for our eleven
bus trips.

Table 6 presents the optimal assignment of bus trips to chargers.
Regarding the optimal values of the three-dimensional binary variables

Values of g,; for the assignment of bus trips k € K to chargers j € N in the toy
network case study.

4, Charger option j € N

= O 0N OUThA WN -

OO OO OO0 OOO|N
=00 RO RO W
OO OO0 O RO, OO | N

=]
[= =il === llohle]

values of 1,; for this toy network instance as well as the values for
“;,z, 4 = ug,3.7 = 1, it can be noticed that bus line #8 does not get
assigned to the slow charger at location #2, which is the nearest one to
its final stop, but rather gets assigned to the fast charger at location #3.
When examining the solution and the input parameters 7, p; and pZ in
Table 4, as well as the values of ¢5 and ¢” of Table 5, one can notice
that bus lines #7 and #8 competel for the same time slots at charger
location #2, and more specifically the one described by variable ”}1,2, 4
Considering the travel times for bus lines #7 and #8 to locations #2
and #3, as they can be seen from the Travel time matrix (Table 3), the
optimization model correctly chooses line #7 to be assigned to charger
#2, saving 1.5 min from the total deadhead time, in comparison to the
scenario that bus trip #8 would be assigned the slow charging option
at location #2 and its fourth charging slot.

This first demonstration on the toy network illustrates the function-
ality of the model, with the model successfully assigning bus trips k
from set K to slow or fast chargers j € N, as well as charging time slots
f1 € F, and f, € F,. In this toy example, a competition for a limited
resource, namely charger availability, is only manifested for trips #7
and #8, which compete over slot ”i,z, 4> but this inherent property of the
problem becomes increasingly challenging as the size of the network
grows.

s h ich indi i i i . . . . .
Ui, and )/, fz which indicate the assignment of bus trips to charging 4.2. Numerical experiments for exploring the computational complexity

; ) I N

tlzne sloti, the n(;n Zero :l/alues ztlre. Ujpy = Ulyy = Uz = Uiz =

Ujge = Usse = Ugyg = Ugzy = Ugy1g = Ujgsy = U139 = Lt Namely, In this numerical analysis, we investigate the computational com-

trip 7 is assigned to the 4th time slot of charger 2, trip 1 to the 3rd
time slot of charger 4, etc. The detailed assignment to time windows
is presented at Table A.13 for slow chargers and Table A.14 for fast
chargers in Appendix section.

Given the optimal solution derived and the respective assignments
of bus trips k to charger options j, as well as time slots f; and f,, one
can notice that for this small network the assignment yielded by the
model is aligned with expectations: all bus trips charge at the nearest
candidate charger location, with only one exception. By examining the

plexity of our model. To this end, we further develop a Python module
to generate synthetic instances of the problem for the Athens region.
The Python module, given the values for the sizes of sets K, V and WV,
generates the remaining of the input parameters.

The strategy for defining the size of the synthetic problem through
the sizes of sets K, ¥ and N mainly focuses on increasing the size of
the problem by increasing the number of bus trips considered in set K.
Sets V and N are modified to facilitate the charging needs of fleet K for
each problem instance, while considering the ability to obtain a feasible
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Fig. 2. Number of charging station physical locations |V| considered for each of the 49 problem instances.
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Fig. 3. Number of bus trips |K| and the number of charger installation options |N'| for each of the 49 problem instances.

solution. That is, if the number of considered trips K is increased up to
the point that the provided charger installation options are not enough
to facilitate the charging demand, we increase the sizes of sets ¥V and
N'. This experimental design strategy can be conceptualized based on a
‘supply’ and ‘demand’ dynamic, which is created between the chargers
that provide the required charging and the bus trips which generate
the demand for charging. We adopted the following procedure: when
a problem instance becomes infeasible due to an increase in set K, we
first raise the number of charger options N up to a certain number
(i.e., 30 charger options per candidate location), and next when that
threshold is reached, the number of physical locations for charging
stations (set V) is increased.

10

The computational complexity results are reported for 49 syn-
thetic problem instances. We start from a problem instance of X =
{1,2,...,20} trips that require charging, ¥V = {1,2,3,4} physical loca-
tions for charging stations and N' = {1,2,...,8} charger installation
options. We then increase the sizes of the instances progressively until
going up to the size of £ = {1,2,...,1940}, ¥V = {1,2,...,12} and
N ={1,2,...,336}. Figs. 2-4 report the related results for each problem
instance, considering different combinations of values for sets K, V
and N. The same results are given in matrix format in Table A.11
in Appendix.

The results table in A.11, as well as Figs. 2-4, show that the MILP
model is solved within relatively short computational times, given its
size. For problems of smaller sizes (i.e., Problem 5) with up to 180 bus
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Computation time for each problem instance
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Fig. 4. Computation time for each of the 49 problem instances.

trips, 4 candidate charging station physical locations and 40 charger
installation options, the problem can be solved in less than 10 s in a
conventional computing machine. As the synthetic problem instances
grow, one can notice that even challenging problem instances, such
as Problem 26 with 1020 bus trips, 8 possible physical locations for
chargers and 224 charger installation options, are solved in a little over
5 min, which is still an acceptable computational time for an offline
scheduling problem. In the context of this numerical analysis, we solve
the problem for up to 1940 bus trips, 12 candidate physical locations
and 336 charger installation options in approximately 17 min. Beyond
this point, the model could not be solved within a reasonable time by
the conventional computer machine used for this experiment.

Based on the results of this experimentation, one can conclude that
our problem formulation can be effectively solved using exact methods
(Branch-and-Cut) within reasonable computation times, thereby pro-
viding solutions applicable to real-world problems, i.e., up to medium-
sized municipal areas within urban environments.

4.3. Case study on the bus network of central Athens

Our real-world model application utilizes actual data from the cen-
tral area of Athens. In this area, we consider nine candidate charging
station physical locations, each having two potential charger options,
one slow and one fast. If the model selects a candidate location,
both or either one of the two chargers may be installed. Thus, we
have a pool V of nine locations and a pool N of eighteen candidate
charger installation options: nine slow chargers and nine fast chargers.
More specifically, charger installation options #1, #3, #5, #7, #9,
#11, #13, #15, and #17 refer to slow charging options (set V),
and #2, #4, #6, #8, #10, #12, #14, #16 and #18 refer to fast
charging options (set N,). Hence, N} = {1,3,5,7,9,11,13,15,17} and
N, ={2,4,6,8,10,12, 14,16, 18}. The locations considered as candidate
locations for charging stations correspond to the actual locations of bus
depots because the public transport operator in Athens is willing to
install chargers only at the locations of the bus depots. However, our
model can consider more charging station locations which are not close
to bus depots, given our generalized formulation.

For the electric bus network, we consider 10 different lines with
electric buses. These 10 lines were chosen from Athens’ extensive net-
work of 280 bus lines because their conventional buses will be replaced
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by electric ones in 2024. The selection criteria were based on the
geographical positioning of the lines’ terminal stops, ensuring that they
fall within the boundaries of the Athens Municipality. Fig. 5 illustrates
the specific bus network layout considered for this case study. Because
these 10 bus lines are not long, the electric buses operating in these
lines will have to charge only once during the day. That is, we have a
total number of 10 trips that require recharging (one trip per line).

Before attempting to solve the model, the travel distance between
the terminal stop of each line and each of the candidate charging
stations needs to be computed. The result is a 10 x 18 matrix presented
in Appendix (Table A.12).

Similarly to the Athens toy network, in addition to the spatial and
distance parameters, some extra parameters are considered for the
temporal attributes of the Athens city network instance (Tables 7 and
8).

The bus arrival times 7, indicate when bus trip k finishes its
itinerary and is ready to head to a charger location v to charge at a
candidate charger j € N'. The parameters p; and pZ refer to two time
limits that define the period during which a bus can start charging at a
charger j € N at either charging slots c}l or cj’.z depending on its type
(fast or slow). As in the Athens toy network, all times are represented in
continuous time representation in minutes past midnight (e.g. 1114.0
represents 18:34).

Based on this input data, the model’s optimal solution (Table 9)
indicates that four charging options should be selected (i.e. #1, #2,
#15, #16) and chargers should be installed at locations #1 and #8.
The total deadhead time for this optimal solution is 50.23 min for the
ten bus trips of the respective lines.

Regarding the values of the three-dimensional binary variables uy 1
and qu f that handle the assignment of bus trips to charging slots, the

non-zero values are: ui 153

‘ . =h“§,15,2 =5 = “2,15,4. = “;,14,5. =gy =
Uy se = Ugoq = Usieq = Uigiei0 = I The detailed assignment to
time windows is presented in Appendix section at (Table A.15) for slow
chargers and (Table A.16) for fast chargers.

One can notice that only two charging station locations are selected
out of the 9 available locations: locations #1 and #8. Bus trips 3, 4,
7 and 8 are assigned to charging station location #1, while the rest of
the bus trips are assigned to charging station location #8. Given the
optimal solution derived and the respective assignments of bus trips k

to charging options j € N, as well as time slots f| € F; and f, € F,,
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Table 7
Values of temporal parameters 7,, p; and p} for the toy network example (in minutes past midnight, assuming continuous time representation).
1 2 3 4 5 6 7 8 9 10
7 723.0 699.0 783.0 950.0 892.0 851.0 987.0 955.0 1114.0 1090.0
P 843.0 819.0 903.0 1070.0 1012.0 971.0 1107.0 1075.0 1234.0 1210.0
P} 783.0 759.0 843.0 1010.0 952.0 911.0 1047.0 1015.0 1174.0 1150.0
Table 8
Values of the sets c;.l and c}’.ﬂ for the Athens city network example (in minutes past midnight, assuming continuous time representation).
1 2 3 4 5 6 7 8 9 10 11 12
c}' 600 720 840 960 1080 1200 -
CZ 600 660 720 780 840 900 960 1020 1080 1140 1200 1260
Table 9
Values of g, for the assignment of bus lines k € K to charging station options j € A" for the Athens case study with two types of charging stations.
Charging station option j € N'
1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Table 10
Values of g,; for the assignment of bus lines k € K to charging station options j € A" for the Athens case study with a single type of charger.
Charging station option j € N'
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

one can notice that in the Athens Municipality area, all ten bus trips
can charge at the nearest candidate charging location.

To demonstrate the relevance of the proposed model compared to
existing approaches, an additional experiment was conducted on the
Athens network, incorporating exclusively a single type of charger—
specifically, the slow chargers (N = N,). In the initial application of the
model, we considered up to two candidate chargers per location—one
slow charger and one fast charger. In this second application, however,
we experimented with two candidate chargers of the slow type at each
location. Consequently, the model may select only slow chargers at any
given location in this scenario.

The results differ substantially when the decision space is limited
to slow chargers compared to when both slow and fast chargers are
incorporated into the analysis. More specifically, the model selects an
optimal solution where the total deadhead time is 55.13 min, and an
extra charger is required at location #3. The optimal values for g;; can
be viewed at Table 10, while the optimal assignments of buses to time
slots are as follows: uj ;, = ”5152 S U3ga = Uiy = Us e = Ug sy =

‘7|5 = 148]4 0.166 = ;0] s6 = 1t Similarly to the rest of the case
studies, in Appendlx Table A.17, the detailed assignment of buses to
slow chargers and time windows can be found.

Overall, this case study on the Athens city network demonstrates
the functionality of the model using realistic data from the 10 bus lines
that operate within the Municipality of Athens. The model successfully

=u
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assigns bus trips to potential charging options j € N of nine candidate
charging station locations. Following the same approach, one can easily
extend the application of our model in several medium-sized cities and
parts of wider metropolitan regions. We finally note that the 10 selected
lines in Athens are short, and the electric buses operating in these lines
will have to recharge only once during their daily operations, resulting
in 10 trips that need recharging. Notwithstanding this, our model can
also be applied to longer lines for which electric buses might require
multiple rechargings during their daily operations.

Concluding remarks

The study proposes a novel mathematical optimization model for
the Charging Station Location Problem (CSLP), given a network of
electric buses while considering charger scheduling constraints and
multiple charger types. The model accounts for the minimization of
deadhead time, defined as the travel time between the last stop of each
trip and the location of the charging station. The deadheading times
are average values considering the distance mentioned above and the
mean speed of each bus. At the same time, the model accounts for
several constraints, such as the duration of charging and the number
of charging slots per day. This modeling of charging slots enables the
electric bus charging session scheduling as a day-ahead booking system.
In this way, buses cover their charging needs based on our day ahead
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Fig. 5. Athens network of the electric bus lines considered for the study, together with the physical locations candidates for the charging stations. Locations A, B and C on the
upper left corner represent depots in the Ano Liosia, Nea Philadephia and Anthousa regions.

knowledge of their charging needs, which helps avoid queuing for
charging at occupied charging slots.

Following the problem formulation, the model is applied in three
cases: (i) a toy network, with synthetic data from the metropolitan
region of Athens, Greece, (ii) a computational complexity numerical
analysis, where problems with up to 1940 bus lines, 12 candidate
charging station locations and 336 charging installation options are also
solved with synthetic data from the aforementioned region, and, finally,
(iii) a case study with real-world data from the bus lines that operate
in the central Athens, Greece.

The main contribution of this study is twofold: first, we introduce
a mathematical model which is formulated as a MILP and can be
solved to global optimality for instances with considerable size, thereby
enabling the provision of support towards strategic decisions related to
the transition of medium-sized cities to public transport networks that
include electric buses. On a second level, the study provides insights
from the real-world network of Athens, Greece, where the model is
applied to select specific locations for charging stations, and respective
charging station types, out of a wider set of charging station installation
options. Considering the assumptions of our model and the respective
limitations, future research directions could include:

+ The consideration of more than two charging type options (slow/
fast) in the model formulation.

+ The consideration of the possibility to charge a vehicle before the
end of its trip.

Future research directions should focus on addressing the above-
mentioned limitations. Additionally, further investigations could enrich
our understanding of three interconnected areas: the interaction be-
tween charging station networks and the power grid, the integration
with the Vehicle Scheduling Problem (VSP) and the consideration of
the Crew Scheduling Problem (also known as rostering). Regarding
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the first research direction, future studies should examine the capacity
and constraints of power grids near charging stations’ locations. This
investigation is crucial as the existing infrastructure might require
upgrades to support increased charging demands. Several scenarios
could be examined where these upgrades and up-front investment costs
can be counterbalanced with demand forecasting and smart energy
management systems. Regarding the second research direction pro-
posed, the optimal solution of the CSLP for a fleet of electric buses is
inherently linked with the timetable of the services (i.e. trips) and the
assignment of the set of available buses in the fleet to the trips of the
timetable. Therefore, it is proposed that solutions to the CSLP should
be co-analyzed along solutions to the VSP, which could lead to the op-
timization of both charging station utilization and the buses’ operation
as a whole. Lastly, electric bus network planning approaches should
consider the human factor by integrating the crew scheduling problem,
which includes parameters like work hour limits and mandatory breaks
between shifts. The VSP, which creates blocks for the vehicles, must be
aligned with the corresponding driver shifts and breaks, requiring both
to be analyzed together.
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Table A.11
Computational analysis for the 49 synthetic problem instances.

Number of Number of candidate Number of candidate Computation

bus lines K CS locations V' Charging Stations N time (s)
Problem 1 20 4 8 0.25
Problem 2 60 4 16 1.04
Problem 3 100 4 24 2.69
Problem 4 140 4 32 5.04
Problem 5 180 4 40 9.975
Problem 6 220 4 48 12.33
Problem 7 260 4 56 16.94
Problem 8 300 4 56 19.60
Problem 9 340 4 72 29.62
Problem 10 380 4 72 33.25
Problem 11 420 4 88 42.92
Problem 12 460 4 88 46.70
Problem 13 500 4 96 56.72
Problem 14 540 4 104 67.073
Problem 15 580 4 112 77.161
Problem 16 620 6 168 128.36
Problem 17 660 6 168 135.66
Problem 18 700 6 168 145.55
Problem 19 740 6 168 152.64
Problem 20 780 6 168 163.38
Problem 21 820 6 168 170.08
Problem 22 860 6 168 178.63
Problem 23 900 6 168 187.24
Problem 24 940 8 224 283.35
Problem 25 980 8 224 300.19
Problem 26 1020 8 224 308.15
Problem 27 1060 8 224 321.95
Problem 28 1100 8 224 337.98
Problem 29 1140 8 224 351.28
Problem 30 1180 8 224 364.23
Problem 31 1220 8 224 379.61
Problem 32 1260 10 280 498.92
Problem 33 1300 10 280 518.05
Problem 34 1340 10 280 533.24
Problem 35 1380 10 280 556.63
Problem 36 1420 10 280 575.05
Problem 37 1460 10 280 597.80
Problem 38 1500 10 280 605.60
Problem 39 1540 10 280 630.14
Problem 40 1580 10 280 648.92
Problem 41 1620 12 336 825.33
Problem 42 1660 12 336 852.06
Problem 43 1700 12 336 871.10
Problem 44 1740 12 336 918.16
Problem 45 1780 12 336 944.49
Problem 46 1820 12 336 964.59
Problem 47 1860 12 336 993.93
Problem 48 1900 12 336 1023.45
Problem 49 1940 12 336 1057.79

Table A.12
Travel times #,; in minutes between the end stop of each bus line k € K and the potential charging station options j € N

line i e N Charging station option j € N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 5.66 5.66 13.38 13.38 8.41 8.41 13.88 13.88 29.02 29.02 29.28 29.28 8.57 8.57 3.51 3.51 17.76 17.76
2 6.25 6.25 13.77 13.77 8.86 8.86 12.65 12.65 28.67 28.67 30.86 30.86 9.11 9.11 5.12 5.12 19.11 19.11
3 2.46 2.46 9.6 9.6 4.89 4.89 14.7 14.7 33.22 33.22 27.47 27.47 4.8 4.8 3.59 3.59 18.03 18.03

(continued on next page)
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line ie N/ Charging station option j € N'

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
4 0.25 0.25 7.86 7.86 2.92 2.92 1291 1291 3458 3458 29.35 29.35 3.01 3.01 5.66 5.66 20.24  20.24
5 15.2 15.2 22.9 22.9 17.94 1794 19.69 19.69 19.48 19.48 31.3 31.3 1811 1811 1099 1099 17.01 17.01
6 1572 1572 23.44 2344 1847 1847 20,51 20,51 1898 1898 30.85 30.85 1862 1862 11.28 11.28 16.46 16.46
7 4.44 444 941 941 569 569 17.12 17.12 34.83 3483 2519 2519 532 532 478 478  17.01 17.01
8 4.5 4.5 9.42 9.42 5.73 5.73 1718 17.18 3487 3487 2514 2514 5.35 5.35 4.82 4.82 16.99 16.99
9 6.02 6.02 1226 1226  8.08 8.08 1815 1815 3211 3211 24.08 24.08 7.83 7.83 2.56 2.56 1452 14.52
10 637 637 139 139 898 898 1274 1274 2854 2854 30.84 30.84 9.23 923 512 512  19.03 19.03
Table A.13
Assignment of bus trips k € K to chargers j € N; to time windows f, € F,, for slow chargers in the toy network case study.
Charger Trip assignment to time windows for slow chargers
10:00-12:00 12:00-14:00 14:00-16:00 16:00-18:00 18:00-20:00 20:00-22:00
2 - - - 7 - -
Table A.14

Assignment of bus trips k € K to chargers j € N, to time windows f, € F,, for fast chargers in the toy network case study.

Charger  Trip assignment to time windows for fast chargers

10:00- 11:00- 12:00- 13:00- 14:00- 15:00- 16:00— 17:00- 18:00- 19:00- 20:00- 21:00-
11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00
3 - - 2 - 3 5 8 - 11 9 10 -
4 - - 1 - - 4 - 6 - - - -
Table A.15
Assignment of bus trips k € K to chargers j € N, to time windows f, € F|, for slow chargers in the Athens case study.
Charger Trip assignment to time windows for slow chargers
10:00-12:00 12:00-14:00 14:00-16:00 16:00-18:00 18:00-20:00 20:00-22:00
1 - - 3 8 7 -
15 - 2 1 6 - 9

Table A.16

Assignment of bus trips k € K to chargers j € N, to time windows f, € F,, for fast chargers in the Athens case study.

Charger  Trip assignment to time windows for fast chargers

10:00- 11:00- 12:00- 13:00- 14:00- 15:00- 16:00- 17:00- 18:00- 19:00- 20:00- 21:00-
11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00
2 - - - - - - 4 - - - - -
16 - - - - - - 5 - - 10 - -
Table A.17

Assignment of bus trips k € K to chargers j € N, to time windows f, € F,, for the second experimentation in the Athens case study for a

single type of charges (slow).

Charger Trip assignment to time windows for slow chargers
10:00-12:00 12:00-14:00 14:00-16:00 16:00-18:00 18:00-20:00 20:00-22:00
1 - - 3 8 7 -
2 - - - 4 - -
6 - _ _
15 - - - 10
16 - - 5 - 9

Data availability

We share out data in a GitHub repository. The link for the repository
is provided in our manuscript.
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