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On a hypergraph structuring semantic information for robots

navigating and conducting their task in real-world, indoor environments

Joris Sijs1 and James Fletcher2

Abstract— Robotic systems operating in the real world would
benefit from a clear semantic model to understand their
interactions with the real world. Such semantics are typically
captured in an ontology. Unfortunately, existing world models in
robotics focus on its navigation task. They adopt a hierarchical
structure decomposing the environment from large spaces into
small objects having a position, thereby limiting the robot’s
interactions as a “go-to-object” task. To allow a richer under-
standing of the real world this hierarchical structure should be
replaced with an ontology, yet one that does not limit the real-
time requirements of the robot when it is queried or updated
with new observations extracted from sensors. Such an ontology
is presented in this article. For now the ontology also focusses
on the navigation aspect of robots, yet it is open to model
other aspects of the real world as well. Experiments show that
multiple environments are successfully modelled supporting the
robot to go from one room to another to search for humans.

I. INTRODUCTION

Autonomous, robotic systems are expected to operate in

uncertain environments, and execute various tasks at various

locations. To do so, they plan their route and the execution

of their task based on information retrieved from the envi-

ronment. In the rescue operation addressed in this article the

robot needs to move between rooms to search for victims. In

such operations there is typically no time to first explore the

building and then search for humans, though one can expect

information regarding its floor map.

The traditional approach to acquire a geometric floor

map is known as simultaneous localization and mapping

(SLAM). Among the different SLAM techniques there are

approaches computing object maps, see [1], [2], and ap-

proaches producing semantic annotations on a point cloud,

on a mesh or on voxels such as [3], [4]. Other methods,

e.g., the ones presented in [5], [6], turn such geometric

maps into semantically meaningfull places (halls and rooms).

Recently, SLAM has been extended to produce maps that

include objects detected online, such as humans, chairs and

coffee cups. Scene graphs are such an extension, which

are computer graphics models to describe, manipulate, and

render complex scenes [7], [8]. State of the art scene graphs,

such as [9], [10], adopt class hierarchies to structure the

semantic information of spaces and objects. These class

hierarchies merely specify a spatial taxonomy to objects in

the scene, for example, which classes are spatially a subset

of others. Scene graphs support the robot to understand

typical navigation tasks as a Go-To. However, why a robot

1Joris Sijs is with Delft Univeristy of Technology, Mekelweg 2, Delft, The
Netherlands j.sijs@tudelft.nl2 James Fletcher is with Vaticle,
47-50 Margaret Street, London, UK james@vaticle.com

should go to a space or object cannot be modeled with

scene graphs, since their hierarchical structure is limited to a

spatial understanding of the world. For that, this hierarchical

model should be replaced with an ontology, yet ontologies

are known to be complex and cumbersome making real-time

aspects of the robot a challenge. Nonetheles, the benefits of

an ontology is the advanced logical reasoning to update its

semantic information, e.g., with routes between rooms via

doors so that path planning can be done locally per room.

To study these drawbacks and benefits of an ontology and

its inference rules this article presents an online knowledge

graph that captures geometric information in combination

with semantic -topological- information. Our knowledge

graph, or knowledge base, structures aspects of a robot rel-

evant for navigation in a building. The knowledge structure

itself is based on a hypergraph instead of RDF triples, as

in our experience real-world phenomena are more naturally

expressible in a hypergraph. The knowledge base is initial-

ized with prior information about the floor map, i.e., rooms,

walls and doors, and victims to search for (see Figure 1).

Once initialized it is used by the robot to plan routes and

paths to search for victims in the different rooms of the

building. Important aspects are whether the robot is able to

plan and execute the operation in a limited amount of time,

and whether the structure of the knowledge base is tractable.

Fig. 1: Knowledge that is relevant to the operation, such

as a floor map, victims and environmental conditions. This

knowledge will be implemented on an actual robotic system:

the Spot of Boston Dynamics extended with a camera,

microphone, speaker and an embedded PC.

The outline of this article is that Section II will cover rel-
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evant literature on ontologies for navigation and summarize

the aim of the knowledge base. Section III then continues

with the developed ontology, which has a general applicabil-

ity for robots that need to conduct tasks at various locations

and in different operational conditions. The section will also

cover some illustrative design patterns while presenting the

ontology. Some insights on the actual implementation of the

knowledge base is presented in Section IV. Then, Section V

discusses experimental results of the implementation, fol-

lowed by Section VI on conclusions and future work.

II. BACKGROUND AND CONTRIBUTION

The introduction of ontologies in robotics became apper-

ant with the standarization of a core ontology on robotics

and automation (CORA) in [11]. This ontology is directly

connected to SUMO, one of the largest upper-level ontolo-

gies that is publicly available and largely covered in [12].

Interesting for our use-case is that developments in the field

of “building information modelling” resulted in the open

standard called IFC (Industry Foundation Classes), which is

data structure to specify a building with all its objects and

components (plant, chair, HVAC, pipes, and so on). This

structure, or ontological model, has extenstions to robotic

navigation, e.g., [13], [14], yet the complexity of the model

render online updates by the robot infeasible. Still, the

(tractable) navigation ontology developed in this article will

benefit from the structure in IFC models so that parsers

between the two may be developped.

Long before the introduction of CORA, IFC, and ontolo-

gies in the robotics community, the importance of world

modeling and map representations has been central in the

robotics and AI community. Hierarchical structures that clas-

sify spatial and semantic information was already proposed

in [15], and inspired others to create their hierarchies to

represent concepts in the world [16]. Most interesting are

methods on scene graphs that also adopt this hierarchical

representation, although they have not yet taken the step

towards an ontological representation, i.e., a representation

of not only classes but also of relations and constraints. The

combination of scene graphs with ontologies is, however,

of extreme relevance for autonomous robots: scene graphs

are limited to spatial aspects of the objects from sensor

observations, while ontologies create a richer understanding

of the situation. For example, that doors are not only passages

between rooms for the robot -when open- but also for smoke

and noise, or that at night victims are more likley to be found

in a bedroom rather than the living room or kitchen.

Therefore, our first contribution is an actual, robotic

knowledge base in which new (factual) information from

sensor-data can be added online according to an ontology,

while extended (semantic) information may be derived from

that. It is thus possible to integrate our knowledge base with

state-of-the-art scene graph methods such as Kimera [10].

Our second contribution, as argued next, is that the ontol-

ogy is structured as a hypergraph instead of a plain graph,

thereby resulting in a more tractable and accessible knowl-

edge structure in which inference is not so cumbersome as

in plain graphs. To argue our second contribution, let us

review some of the existing ontologies in robotics. In [17]

an ontology was developed for planning and navigation in

indoor environments, while [18] presented a similar planning

ontology for underwater inspection. Studies on ontologies to

structure knowledge about the environment are also avail-

able. For example in [19] for household robots, or in [20] for

intelligent vehicles. Typically, existing methods are not able

to include new information, i.e., information derived from

sensor measurements. The main reason is that their imple-

mentation as a plain graph enforced developpers to create

large and complex structures within the knowledge base that

are too sensitive to be updated automatically online. Note that

this statement does not apply for knowledge bases in robotic

systems that adopt a hierarchical structure rather than an on-

tology. One approach does create an ontological knowledge

base for robots, which is KnowRob, first introduced in [21]

and later extended to an updated version in [22]. KnowRob

offers a solution to semantics in the kowledge structure of

robots operating in the household domain. Information of the

environment from sensor observations is further stored in the

knowledge base of the robot, followed by local knowledge

updates based on the robot’s contextual knowledge. However,

since KnowRob adopts a plain graph, its knowledge structure

is quite complex and thus sensitive to programming errors

from expert users. Nonetheless, KnowRob has been used on

actual robots, albeit for conducting a single task in a very

structured environment.

In future, robotic systems will operate more and more

in open and complex environments. Designing a knowledge

structure, such as an ontology, capturing such complexity as

a plain graph with edges linking two vertices often requires

a complex administration to maintain the proper structure

[23]. This limitation can be removed when the structure of

an ontology assumes a hypergraph design. This hypergraph

model is the main reason that a new ontology, or knowledge

structure, should be developed. Another reason, since robots

may conduct different tasks at different locations, is that

the ontology should allow non-spatial -semantic- information

relevant for the robot’s task and bring that in relation to its

spatial -semantic- information relevant for navigation.

III. A HYPERGRAPH ONTOLOGY

A. The concept of a hypergraph

In a hypergraph, such as the one depicted in Figure 2a, a

hyper-edge as e1 can join multiple vertices as v1, v2, v3 and

v4, while other edges between these vertices, such as e2 and

e3, can also be part of the “overarching” edge e1. For clarity,

a hypergraph may be drawn as a plain graph (Figure 2b) by

treating the hyper-edge as another type of vertices in the plain

graph and add an argument ri to each of the plain edges.

This article adopts the plain graph representation of a

hypergraph when developping its ontology. The ontology is

derived from three concepts (solid underline) and two links

(dotted underline), where a concept is either a hyper-vertice

or hyper-edge and a link is a plain edge:
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(a) original representation (b) plain graph representation

Fig. 2: An illustrative example of a hypergraph in its original

representation (a) and in a plain graph representation (b).

• Entity: A subclass of Concept that can consist indepen-

dent from any other concept (v1, v2, v3 in Figure 2);

• Relation: A subclass of Concept on how multiple enti-

ties and/or relations are joined (e1, e2, e3 in Figure 2);

• Attribute: A subclass of Concept with a value modelling

a property of an entity or relation (v4 in Figure 2);

• . . . . .Role: A subclass of . . . . . .Link expressing the role that the

entity or relation plays in a relation (ri in Figure 2);

• . . . .has: A subclass of . . . . .Link pointing to an attribute indi-

cating it is owned by some entity, relation, or attribute

(has arrow in Figure 2b).

With the concepts Entity, Relation, Attribute, and the links

. . . .has, . . . . . .Role, the ontology specifies possible links between two

concepts with the notation 〈Concept,Concept〉 : Link. Links

between concepts are inherited by subclasses. When the link

is a . . . . . .Role the ontology autogenerates both pointing options,

while a . . . .has link is unidirectional and pointing to an attribute:

〈Entity,Entity〉:Role ; 〈Entity,Attribute〉:has ;

〈Relation,Relation〉 :Role ; 〈Relation,Attribute〉 :has ;

〈Attribute,Attribute〉 :Role ; 〈Attribute,Attribute〉 :has ;

〈Entity,Relation〉:Role ⇔ 〈Relation,Entity〉:Role ;

〈Entity,Attribute〉:Role ⇔ 〈Attribute,Entity〉:Role ;

〈Relation,Attribute〉:Role ⇔ 〈Attribute,Relation〉:Role.

B. Hierarchy of classes

A first step in the construction of an ontology are the

class hierarchies of its concepts. Given that our hypergraph

has three concepts, i.e., entities, attributes and relations (with

roles linked to relations), three hierarchies are developed.

The first class hierarchy, depicted in Figure 3, is the

hierarchy of the Entity base class that is firstly divided into

Abstract and Physical, followed by other subclasses, such

as mathematical, or artifacts, spaces and intelligent beings.

For brevity, exact definitions per subclass or omitted and

we rely, for now, on a common interpetation by the reader.

Extensions to this hierarchy are possible, such as cats and

dogs as a subclass of animal. Yet, most importantly, the

subclass hierarchy of Artifact has direct relations with IFC

data model and may be extended as such.

The second class hierarchy, depicted in Figure 4, is that of

the Attribute base class indicating ownership, which at some

point in the hiearchy should be given a format (Boolean, dou-

ble, string). Common subclasses of attributes are Name and

Height. The combination of the other two subclasses Euler

Rotation and Linear Translation is needed for defining the

geometric position of any physical concept with respect to

Fig. 3: The Entity class hierarchy (rectangles) giving a type

specification. Each entity has a name (of type attribute).

Further, an open arrow specifies a has-relation, while a closed

arrow is a subclass-relation (or type-specification).

an origin (local or global). A geometric position is modelled

as a Normal distribution, which is specified by a mean value

(the actual postion defined with a linear translation in x, i.e.,

lin-x, a rotation around x, i.e., rot-x, etc.) and a sigma value

(the actual uncertainty w.r.t. the mean value defined by the

uncertainty on the linear translation in x, i.e., dlin-x, etc.).

Fig. 4: The Attribute class hierarchy (ellipses) giving a type

specification with a [format] per subclass. If not specified, a

subclass inherits (with recursion) the format of its superclass.

The third and final class hierarchy, depicted in Figure 5,

is that of the Relation base class, which also depicts the

roles that are defined in each relation. Relations are used to

link multiple entities, relations and/or attributes. Therefore,

a class (or concept) is a relation if it cannot exists solely by

itself, otherwise it is an entity, and if it cannot be owned,

otherwise it is an attribute. The relations in our ontology

either specify a spatial relation, such as Route, Location and

Composing, or some specific mathematical relation that is

either a definition, such as Connector or Collection, or how

math may model the real world, such as Enclosing, Taking

Form and Positioning. Note that some, e.g., location and

position, are often modeled in other ontologies as attributes

yet here as relations. Our argument is that an object is located

in some space, hence it is a relation, and that an object has

a position w.r.t. some origin -globally or locally of some

space- and is thus also a relation yet with the typical position

attributes. The next section on design patterns gives more

insight as to why a subclass is a relation, entity or attribute.
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Fig. 5: The Relation class hierarchy (diamonds) giving a

type specification and its roles (specified in italic text). If

applicable, a subclass inherits the roles of its superclass.

C. Patterns between classes

The developed ontology continues with so called design

patterns of knowledge, which are parts of the ontology

specifying how a logic set of concepts (entities, attributes

and relations) are joined through roles they may play in a

relation. Examples of how these knowledge patterns come

together in instantiations are presented in Section IV.

The first design pattern is with regards to the topological

knowledge in a floor map of buildings, indicating a compo-

sition of spaces, such as rooms, and where doors result in

routes between rooms, as depicted in Figure 6. The pattern

states that Building may play the role of . . . . . . . . . . . . . . .Composition to

specify that it is Composing of partitions as Room. In its

turn, a Room, or Closed Space, may also play the role of

. . . . . . . . . . . . . . .Composition to specify that it is Composing of partitions that

may be played by Structural Part, such as Wall, Window and

Door. A last specification in this pattern is the relation Route

modelling knowledge that Door, not Wall nor Window, may

play the role of . . . . . . . . .Passage between places like Room.

Fig. 6: The knowledge pattern specifying how buildings

are composed of rooms and how rooms are composed of

structural parts. A door may define a route between rooms.

The second design pattern concerns the location of beings

and artifacts in rooms, as well as their geometrical position

with respect to some origin (see Figure 7). It also concerns

how closed spaces, such as a room, are mathematically

modeled as a polygon, while a line (e.g., of a polygon) might

take the form of a structural part in the real physical world.

Now, the pattern defines that Intelligent Being and Artifact,

in their role of . . . . . . . . .Subject, may be Locating at a . . . . . . . . . .Location that

is a Space. Here, it is important to recall from Figure 6 that a

Room is a subclass of Closed Space, implying that intelligent

beings and artifacts may be located in rooms. The pattern

further specifies that Polygon may act as the . . . . . . . .Border that is

enclosing a Closed Space, where the Closed Space is the one

that is . . . . . . . . . .Enclosed. Polygon may also act as a . . .Set that is defined

by a Collection of . . . . . . . . . .Element(s) each played by Line. When a

Line acts as a . . . . . . . . .Straight. . . . . .Line, then it is defined by two . . . . . . . . .Vertices

each played by Point in the relation Connector. Further, Line

may act as a . . . . . . . . .Concept that is Taking Form in the real physical

world, in this case the . . . . . .Form of a Structural Part. The last

specification of this pattern is the relation of Positioning, for

which it is important to recall (Figure 5) that it has attributes

to define its geometric information. This Positioning models

a positioning-vector . . . . . .From a Global Origin or a Local Origin

. . .To either a Point, an Artifact, or an Intelligent Being. In

addition, this Positioning also models a positioning-vector

. . . . . .From a Global Origin . . .To a Local Origin.

Fig. 7: The knowledge pattern specifying how beings and

artifacts are located in a space. The pattern also specifies

how a closed space, like a room, is defined by a polygon

and how the lines in that polygon relate to the structural parts

that compose a closed space, while a line may be modeled

by (two) points. The position of points, artifacts and beings

is defined with a positioning relation that starts from either

a global or a local origin, while a local origin is also defined

with a positioning vector starting from a global origin.

IV. THE ONLINE KNOWLEDGE BASE

The ontology introduced in Section III has been imple-

mented as a hypergraph knowledge base using a tool called

TypeDB. The knowledge base is initialized with instances

of prior information assumed to be available before the

operation (floor map, victims to search for, etc.). These

instances represent the actual information the robot has about
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its environment. This section will discuss two examples of

geometric and semantic information of the floor map and

how they are captured by the knowledge base. Our dicussion

assumes a path planning ability in which the robot plans

a semantic route from one room to any other room in the

building, while planning a geometric path to go from any

point in a room to a point just at the other end of some

door that is part of that room. Planning of possible routes

between rooms may be done directly after the knowledge

base is initialized, thereby saving online computation time.

Our first example concerns actual information about a

single room, in this case the depot of the floor map of

Figure 1. The instances in the knowledge base related to

this room are depicted in Figure 8, while the mathematical

illustration of this room as a polygon is shown in its top-

right corner. There are instances that define a room, named

“depot”, which is composed of a wall and of a door named

“depot-door”. Creating these instances is done with variables

as a to define concepts and a.role to define edges.

insert(r ∈ Room),

r.hasName = {“depot”};

insert(w ∈Wall);

insert(d ∈ Door),

d.hasName = {“depot-door”};

insert(c ∈Composing),

c.composition = {r},c.part = {w,d}.

The instances further specify that the room is enclosed by a

polygon, which is a collection of six lines where each line is

a connector between two points (for clarity, not all lines and

points are depicted). Most lines represent a wall in the real

world (taking form). One line represents the depot-door. The

starting point of the polygon is the local origin of the room

while all other points of this room have a positioning relation

to this local origin specifying the position of that point in

2D from this local origin (lin-x, lin-y). For clarity of the

figure not all positioning relations are illustrated, just like the

position from the local to a global origin is not illustrated.

The advantage of this local origin is that it specifies the

position of the robot, of the door and of any other object

in that room, thereby scoping the navigation of the robot to

planning a geometric path within the polygon of that room.

When exiting the room a path is planned to go just accross

the polygon’s line that models the exiting door.

Our second example, depicted in Figure 9, focusses on

the topological information of the rooms depot, patio and

hall. It shows that each of those rooms is composed of walls

and doors. Note that the door of the depot is part of two

compositions, i.e., of the depot and of the patio. The same

holds for the front-door being part of both the patio and the

hall. Now, a logical rule may infer that when the same door

is part of two rooms, there is a route between those rooms:

the depot and the patio are linked to a route passing the

door of the depot, and there is a route between the patio and

the hall via the front-door. Furthermore, another logical rule

Fig. 8: Instances of the knowledge base to structure all

knowledge (semantic and geometric information) about the

room called depot, i.e., the structural parts is it composed of,

the polygon for a mathemtical represantation of the room,

and the geometry of this polygon as points to a local origin.

may infer that when there is a route between rooms A and B

and between rooms B and C, there is also a route between

rooms A and C: the depot and the hall are linked to a route

passing the depot door and the front-door. Therefore, when

the robot wants to go to any other room in the building it

may query its knowledge base upon an existing (semantic)

route between its current room and the destination room. If

such a route exists, than it will recieve a list of all doors that

it needs to pass. It may than plan a geometric path to exit

via the first door in the list, after which the robot will be in

a new room in which it may plan a geometric path to exit

via the next door on the list, and so on.

Fig. 9: Instances of the knowledge base to structure topolog-

ical information about rooms and their composition. Possible

routes between rooms can be logically inferred (bold lines).

V. DISUCSSION AND EXPERIMENTAL RESULTS

The previous example on how geometric information is

combined with semantic information, and how it may be

used for (semantic) route planning that scopes (geometric)

path planning, is just one example of how our ontology and

knowledge base is of use to the robot. This knowledge base
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has been implemented on an actual robot in a complete ROS2

setup to evaluate its practical feasibility. ROS2-modules

process actual sensor observations, for example to acquire

the robot’s current location and position every second, and

stores their results in the knowledge base at the same rate.

Other, ROS2-modules then query the knowledge base when

planning the operation of the robot. Details of the imple-

mentation may be found here https://youtu.be/suvSvXYec74.

In case the knowledge base is not able to keep track of

storing the location and position, then path planning will

produce incorrect paths. An actual experiment in which a

robot passes doors to go from one room to another, viewed in

this online video https://youtu.be/kzVILa6buO4, shows that

timing of these updates is done in real-time. A more extended

experiment in which the robot planned to go from room to

room and at its destination room approached a human may be

viewed here https://youtu.be/6m1-bsjVHi0, while a similar

operation in a completely different building may be viewed

here https://youtu.be/uP-B7rt7UWA.

The fact that a floor map of two different buildings could

be implemented within the knowledge base in just a few

hours shows that our ontology is simple and accessible.

Further, the succes of the experiments also shows that the

ontology is sound, as route planning is without errors, and

that it did not limit the real-time aspect of the robot. Also,

parsing software has been created that converts the floor map

of the knowledge base (of a third different building) in an

IFC model with walls and doors (see Figure 10).

Fig. 10: A floor map in the knowledge base as an IFC model.

VI. CONCLUSIONS

Implementing a knowledge base to understand the real,

physical world, while modelling such knowledge with classi-

cal ontologies in plain graphs, will require work-arounds ren-

dering the ontology complex and cumbersome. This article

studied the use of a hypergraph as the basis of an ontology,

thereby making the knowledge base tractable. Also demon-

strated was the compartmentalisation of the knowledge base

into distinct, but connected,“knowledge patterns”. The design

of the ontology focussed on the navigation task of a robot

in which it needs to combine both semantic information

about rooms and doors with geometric information, for

which rooms are modeled as polygons. Experimental results

revealed that the knowledge base was able to model the real,

physical world in a sensible way without limiting the real-

time aspects of our task and route planner.
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