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 A B S T R A C T

We consider nonparametric estimation of the distribution function 𝐹  of squared sphere radii 
in the classical Wicksell problem. Under smoothness conditions on 𝐹  in a neighborhood of 
𝑥, in Gili et al. (2024) it is shown that the Isotonic Inverse Estimator (IIE) is asymptotically 
efficient and attains rate of convergence √𝑛∕ log 𝑛. If 𝐹  is constant on an interval containing 
𝑥, the optimal rate of convergence increases to √𝑛 and the IIE attains this rate adaptively, i.e. 
without explicitly using the knowledge of local constancy. However, in this case, the asymptotic 
distribution is not normal. In this paper, we introduce three informed projection-type estimators 
of 𝐹 , which use knowledge on the interval of constancy and show these are all asymptotically 
equivalent and normal. Furthermore, we establish a local asymptotic minimax lower bound 
in this setting, proving that the three informed estimators are asymptotically efficient and 
a convolution result showing that the IIE is not efficient. We also derive the asymptotic 
distribution of the difference of the IIE with the efficient estimators, demonstrating that the 
IIE is not asymptotically equivalent to the informed estimators. Through a simulation study, 
we provide evidence that the performance of the IIE closely resembles that of its competitors, 
supporting the use of the IIE as the standard choice when no information about 𝐹  is available.

. Introduction

In the field of stereology, scientists study the three-dimensional properties of materials and objects by interpreting their two-
imensional cross-sections. This may allow to estimate three-dimensional quantities without the use of expensive 3D reconstructions. 
n the Wicksell problem, a number of spheres are embedded in an opaque three-dimensional medium. Because the medium is opaque, 
e are not able to observe the spheres directly. However, we can observe a cross-section of the medium, which shows the circular 
ections of the spheres that happen to be cut by the plane. It is assumed that the spheres’ squared radii are realizations from a 
umulative distribution function (cdf) 𝐹 , the object to be estimated. Following the same notation as in Groeneboom and Jongbloed 
1995) and Gili et al. (2024), a version of the density 𝑔 of the observable squared circle radii 𝑍 is given by (cf. Watson (1971)): 

𝑔(𝑧) = 1
2𝑚0 ∫

∞

𝑧

𝑑𝐹 (𝑠)
√

𝑠 − 𝑧
, (1.1)

here 0 < 𝑚0 = ∫ ∞
0

√

𝑠 𝑑𝐹 (𝑠) < ∞ is the expected sphere radius under 𝐹 . Wicksell (Wicksell, 1925) inverted this equation, by 
ecognizing an Abel-type integral, and found an expression for 𝐹  in terms of 𝑔, given by: 

𝐹 (𝑥) = 1 −
∫ ∞
𝑥 (𝑧 − 𝑥)−1∕2𝑔(𝑧) 𝑑𝑧

∫ ∞
0 𝑧−1∕2𝑔(𝑧) 𝑑𝑧

= 1 −
𝑉 (𝑥)
𝑉 (0)

, 𝑥 > 0, (1.2)
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where 

𝑉 (𝑥) ∶= ∫

∞

𝑥

𝑔(𝑧)
√

𝑧 − 𝑥
𝑑𝑧. (1.3)

(Furthermore 𝐹 (𝑥) = 0 for all 𝑥 ≤ 0). Therefore, in order to estimate 𝐹  at a point 𝑥 > 0, the essential object to be estimated is the 
function 𝑉  at 𝑥 and at 0. For a more detailed introduction to Wicksell’s problem, we refer the reader to Groeneboom and Jongbloed 
(1995), Stoyan and Kendall (1987) and Gili et al. (2024), where the asymptotic analysis of the reconstruction of 𝐹  from 𝑉  is also 
illustrated.

In this paper, we focus on the case in which the underlying cdf 𝐹  (and therefore 𝑉 ) is known to be constant on an interval of 
positive length. We conduct the analysis on a single interval [

̄
𝑥, �̄�], for 

̄
𝑥 < �̄�, of constancy. The same procedures can be applied 

if the underlying cdf 𝐹  is constant on multiple intervals. Note that even if 𝐹  is constant on [
̄
𝑥, �̄�], we do not observe any gap in 

the data. Indeed, the density 𝑔 in (1.1) is positive throughout the set {𝑥 ∶ 𝐹 (𝑥) < 1}. In this setting, we compare an estimator 
(the ‘‘Isotonic Inverse Estimator’’ IIE, cf. Groeneboom and Jongbloed (1995) and Gili et al. (2024) for a detailed introduction) that 
attains the √𝑛-rate of convergence adaptively, without using the information that 𝑉  is constant on [

̄
𝑥, �̄�], to three other informed

estimators that do use this information and are therefore constrained to be constant on this interval.
In Section 3, we then show that all the informed estimators are asymptotically equivalent and normal, but not asymptotically 

equivalent to the IIE. Next in Section 4, we derive a lower bound for the local asymptotic minimax risk of any estimator sequence 
in this setting, and show that this is attained by the informed estimators. In contrast, the IIE is inefficient. In fact, we show that its 
(non Gaussian) limit distribution is the convolution of the limit distribution of the informed estimators and a nondegenerate factor. 
However, the difference between the estimators is small, as we illustrate in a simulation study, in Section 5.

A summary of the findings is that in those rare cases, in which it is known that the distribution function 𝐹  is constant on one 
or more intervals, any of the informed estimators should be used for estimation on such intervals, resulting in efficient normal 
asymptotic behavior at √𝑛-rate. Whenever this information is not available, it is preferable to use the isotonic estimator, which 
behaves closely enough to the informed estimators.

Motivation, connections with the literature and conclusions.
There is a vast literature on Wicksell’s problem, see for instance (Groeneboom and Jongbloed, 1995, 2014; Jongbloed, 2001; 

Stoyan and Kendall, 1987; Golubev and Levit, 1998; Watson, 1971; Hall and Smith, 1988; Golubev and Enikeeva, 2001; Chan and 
Qin, 2016; Sen and Woodroofe, 2012; Deng et al., 2021; Gili et al., 2024). Wicksell’s problem has present-day applications as the 
estimation of the distribution of stars in a galactic cluster (cf. Sen and Woodroofe (2012)) or the estimation of the 3D microstructure 
of materials (cf. Lopez-Sanchez and LLana-Fúnez (2016) and Cuzzi and Olson (2017)). In applications, it is common to see the use 
of the so-called Saltykov methods, based on numerical discretization. These methods are far from being efficient and in some cases 
not even consistent. The estimation of 𝐹  given data from 𝑔 is of interest not only for stereological procedures, but also from the 
mathematical point of view, both because of the unusual rates of convergence and because of the non-standard efficiency theory.

For nonparametric estimation the best attainable rate of convergence for estimation of the cdf 𝐹  at a point is 
√

𝑛∕ log 𝑛. Many 
authors contributed to this problem (Groeneboom and Jongbloed, 1995; Jongbloed, 2001; Golubev and Levit, 1998; Watson, 
1971; Hall and Smith, 1988; Golubev and Enikeeva, 2001; Chan and Qin, 2016; Sen and Woodroofe, 2012; Deng et al., 2021; 
Gili et al., 2024), introducing various estimators. We believe the state-of-the-art is the Isotonic Inverse Estimator, introduced 
in Groeneboom and Jongbloed (1995). (This regularizes the naive plug-in estimator obtained by replacing 𝑔(𝑧) 𝑑𝑧 in (1.3) by 
the empirical distribution of the inverse radii.) As proved in Gili et al. (2024), this estimator maintains the rate of convergence 
√

𝑛∕ log 𝑛 across a range of smoothness conditions on 𝐹 , with varying asymptotic variance, and in this sense automatically adapts 
to smoothness, without needing the selection of a bandwidth parameter.

The scope of this paper is to understand the theoretical limits of estimation when information of the constancy of 𝐹  on [
̄
𝑥, �̄�] is 

available, with the final objective of gaining a better understanding of the IIE, which does not use this information. As shown in 
the paper, the situation with known [

̄
𝑥, �̄�] is particularly favorable, because it is characterized by normal limits, which makes the 

classical efficiency theory applicable (in contrast with the limit attained by the IIE which is non-normal, making even the definition 
of efficiency unclear). In this sense, the informed estimators serve as theoretical benchmarks. This is in the spirit of the oracle
estimation theory. We show that they are asymptotically efficient and that the IIE is not. However, our simulation study presents 
a typical example in which the IIE performs close to the efficient estimators, suggesting that in practice, the loss incurred by using 
the IIE should be small. Therefore, except in the rare cases in which 

̄
𝑥 and �̄� are known (e.g. it is known 𝐹  is the c.d.f. of a discrete 

random variable with known support points), we do not envision a direct practical utility for these estimators. In all other cases, 
precisely in view of this paper, we would recommend practitioners to use the IIE, as it behaves close enough to the oracle informed 
estimators.

2. Construction of the estimators

In this section, we introduce three projection-type informed estimators (2.7)–(2.9). We provide explicit constructions and prove 
that they solve determined minimization problems.

In all that follows, we assume that 𝑉  is supported on [0,𝑀], so 𝑉 (𝑦) = 0 for all 𝑦 ∈ [𝑀,∞). Relation (1.3) suggests a natural 
naive (empirical plug-in) estimator for 𝑉 , which For G𝑛 the cdf of a sample 𝑍1,… , 𝑍𝑛 from the density 𝑔, let: 

𝑉𝑛(𝑥) ∶= ∫

∞ 𝑑G𝑛(𝑧)
√

, (2.1)

𝑥 𝑧 − 𝑥

2 



F. Gili et al. Journal of Statistical Planning and Inference 240 (2026) 106299 
Using the ‘‘naive estimator’’, we construct all the other estimators as repeated projections of 𝑉𝑛 into designated spaces. Let 
̄
𝑥 < �̄�, 𝑉𝑛(𝑥) = 0 for 𝑥 > 𝑀 , and a fixed partition of [0,𝑀] into intervals. Let P = {[𝑥𝑖, 𝑥𝑖+1) ∶ 𝑖 = 1,… , 𝐼} be such that 
0 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝐼 = 𝑀 , and [

̄
𝑥, �̄�] = [𝑥𝑖, 𝑥𝑖+1] for some 𝑖. Define the spaces:

 ∶=
{

𝑉 ∶ [0,∞) ↦ [0,∞) ∶ 𝑉  decreasing, right-cont. 
}

, (2.2)


̄
𝑥,�̄� ∶=

{

𝑉 ∶ [0,∞) ↦ [0,∞) ∶ 𝑉 right-cont., piecewise-const. on P
}

, (2.3)


̄
𝑥,�̄� ∶=

{

𝑉 ∈  ∶ 𝑉 constant on [
̄
𝑥, �̄�]

}

. (2.4)

All the above-defined spaces are convex cones. We define projections relative to the discrepancy measure 𝑄𝑓 ∶ L2[0,∞) ↦ R, for 
a fixed function 𝑓 ∈ L1[0,∞): 

ℎ ↦ 𝑄𝑓 (ℎ) ∶= ∫

∞

0
ℎ(𝑠) (ℎ(𝑠) − 2𝑓 (𝑠)) 𝑑𝑠 (2.5)

Since ‖𝑓 − ℎ‖22 = 𝑄𝑓 (ℎ) + ‖𝑓‖22, minimizing ℎ → 𝑄𝑓 (ℎ) is equivalent to minimizing the L2-distance to 𝑓 in the case that 𝑓 is 
square-integrable. We use the discrepancy 𝑄𝑓 , because in our context the naive estimator 𝑉𝑛 is not square-integrable. We consider 
as estimators the projections of the naive estimator 𝑉𝑛 onto the three spaces (2.2)–(2.4) and its repeated projection onto  and next 
on 

̄
𝑥,�̄�:

𝑉𝑛 = argmin
𝑉 ∈

𝑄𝑉𝑛 (𝑉 ), (2.6)

𝑉 𝛱
𝑛 = argmin

𝑉 ∈
̄
𝑥,�̄�

𝑄𝑉𝑛 (𝑉 ). (2.7)

𝑉 P
𝑛 = argmin

𝑉 ∈
̄
𝑥,�̄�

𝑄𝑉𝑛 (𝑉 ), (2.8)

𝑉 𝛱
𝑛 = argmin

𝑉 ∈
̄
𝑥,�̄�

𝑄𝑉𝑛 (𝑉 ), (2.9)

(We note that projecting on a cone and then projecting again onto a subcone does not need to give the same result as projecting 
directly onto the subcone). Existence and uniqueness of the solutions of these minimization problems can be shown along the lines 
of Theorem 1.2.1 in Robertson et al. (1988). The first estimator 𝑉𝑛 is the Isotonic Inverse Estimator (IIE) introduced in Groeneboom 
and Jongbloed (1995). The other three estimators are informed estimators that take the local constancy of 𝐹  into account.

The following proposition gives explicit constructions of the estimators (2.6)–(2.9) (the first statement of the following 
proposition has been proved in Groeneboom and Jongbloed (1995)). For a continuous function 𝑘 on [0,𝑀], the Least Concave 
Majorant (LCM) and its right-hand side derivative, are given by:

𝑘∗(𝑥) ∶= min {𝑓 (𝑥) ∶ 𝑓 (𝑦) ≥ 𝑘(𝑦) for 𝑦 ∈ [0,𝑀], 𝑓 concave}, 𝑥 ∈ [0,𝑀]

(𝑘∗)′(𝑥) ∶= inf
𝑢<𝑥

sup
𝑣≥𝑥

𝑘(𝑣) − 𝑘(𝑢)
𝑣 − 𝑢

.

By definition, 𝑘∗(𝑥) ≥ 𝑘(𝑥) for all 𝑥 ∈ [0,𝑀], and 𝑘∗(0) = 𝑘(0), 𝑘∗(𝑀) = 𝑘(𝑀). Define functions 𝑈𝑛 and 𝑈 as

𝑈𝑛(𝑥) = ∫

𝑥

0
𝑉𝑛(𝑦) 𝑑𝑦 = 2∫

∞

0

√

𝑧 𝑑G𝑛(𝑧) − 2∫

∞

𝑥

√

𝑧 − 𝑥 𝑑G𝑛(𝑧), (2.10)

𝑈 (𝑥) = ∫

𝑥

0
𝑉 (𝑦) 𝑑𝑦 = 𝜋

2𝑚0 ∫

𝑥

0
(1 − 𝐹 (𝑦)) 𝑑𝑦. (2.11)

The last equality follows from (1.2).

Proposition 1 (Construction of estimators). Let 𝑈𝑛 be as in (2.10), ̄𝑥 < �̄� with [
̄
𝑥, �̄�) ∈ P and 𝑥 ∈ [0,∞). The solutions of the minimizations 

(2.6)–(2.9) are:
𝑉𝑛(𝑥) = (𝑈∗

𝑛 )
′(𝑥). (2.12)

𝑉 𝛱
𝑛 (𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑈∗
𝑛 (�̄�)−𝑈

∗
𝑛 (̄
𝑥)

�̄�−
̄
𝑥 , 𝑥 ∈ [

̄
𝑥, �̄�],

𝑉𝑛(𝑥), 𝑥 ∉ [
̄
𝑥, �̄�].

(2.13)

𝑉 P
𝑛 (𝑥) = 𝑉 (𝑥𝑖 ,𝑥𝑖+1)

𝑛 (𝑥), 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1), 𝑖 = 1, 2,… , 𝐼, (2.14)

where for 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1) ∈ P: 

𝑉 (𝑥𝑖 ,𝑥𝑖+1)
𝑛 (𝑥) =

𝑈𝑛(𝑥𝑖+1) − 𝑈𝑛(𝑥𝑖)
𝑥𝑖+1 − 𝑥𝑖

, (2.15)

𝑉 𝛱 (𝑥) = (𝑈∗)′(𝑥), (2.16)
𝑛 𝑛

3 
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where: 

𝑈𝑛(𝑡) ∶=

{𝑈𝑛(�̄�)−𝑈𝑛(̄
𝑥)

�̄�−
̄
𝑥 (𝑡 −

̄
𝑥) + 𝑈𝑛( ̄

𝑥), 𝑡 ∈ [
̄
𝑥, �̄�],

𝑈𝑛(𝑡), 𝑡 ∉ [
̄
𝑥, �̄�].

(2.17)

The proof of Proposition  1 is given in Appendix  A and the asymptotic properties of the constructed estimators are given in 
Theorem  1 below.

Remark 1.  For any 𝑣 ∈ [
̄
𝑥, �̄�] and 𝑥 ∈ [

̄
𝑥, �̄�] with 𝑣 ≠ 𝑥, we have:

𝑈 (𝑣) − 𝑈 (𝑥) − 𝑉 (𝑥)(𝑣 − 𝑥) = 0,

and thus by evaluating the above relation at 𝑣 = �̄� and 𝑥 =
̄
𝑥 we get: 

𝑈 (�̄�) − 𝑈 (
̄
𝑥) − 𝑉 (𝑥)(�̄� −

̄
𝑥) = 0. (2.18)

This gives an intuition for (2.15) and explains why 𝑉 (
̄
𝑥,�̄�)

𝑛 (𝑥), i.e. 𝑉 P
𝑛 (𝑥) for 𝑥 ∈ [

̄
𝑥, �̄�), can be called ‘‘empirical slope’’ on [

̄
𝑥, �̄�). It 

what follows we use the notation 𝑉 (
̄
𝑥,�̄�)

𝑛 (𝑥) to indicate 𝑉 P
𝑛 (𝑥) for 𝑥 ∈ [

̄
𝑥, �̄�).

The isotonic estimator in (2.6) can be implemented using (2.12), where the least concave majorant of a function can be computed 
by classical algorithms like the PAVA algorithm (cf. Groeneboom and Jongbloed (2014)). Similarly, the solutions to (2.7)–(2.9) can 
be easily implemented using (2.13), (2.15) and (2.16). Alternatively, the solution to the minimization problem (2.9) can be computed 
algorithmically using a profile procedure as follows. First, fix 𝑎 > 0 and compute the minimizer of 𝑄𝑉𝑛 (𝑉 ) over the space of decreasing, 
right-continuous functions 𝑉  that have value 𝑎 on [

̄
𝑥, �̄�], and call such minimizer 𝑉 𝑎

𝑛 . Next we optimize the mapping 𝑎 ↦ 𝑄𝑉𝑛 (𝑉 𝑎
𝑛 )

over 𝑎 > 0 and obtain the desired projection. We give a detailed version of this algorithm at the end of the Appendix.

3. Asymptotic distributions of the estimators

In Gili et al. (2024) (cf. Theorem 2.2), it was shown that if 𝑉 ∈ 
̄
𝑥,�̄� where 𝑥 ∈ (

̄
𝑥, �̄�), the biggest interval that contains 𝑥 on 

which 𝑉  is constant (and assuming (3.3) below), then as 𝑛 → ∞: 
√

𝑛
(

𝑉𝑛(𝑥) − 𝑉 (𝑥)
)

⇝ 𝐿𝑥, (3.1)

where, for any 𝑎 ∈ R: P(𝐿𝑥 ≤ 𝑎) = P(argmax𝑠∈[
̄
𝑥,�̄�]

{

Z𝑥(𝑠) − 𝑎𝑠
}

≤ 𝑥), for (𝑥, 𝑡) ↦ Z𝑥(𝑡) a centered continuous Gaussian Process with 
covariance structure given by: 

Cov
(

Z𝑦(𝑡),Z𝑥(𝑠)
)

= 4Cov
(

√

(𝑍𝑦)+ −
√

(𝑍𝑡)+,
√

(𝑍𝑥)+ −
√

(𝑍𝑠)+
)

. (3.2)

where (⋅)+ = max {0, ⋅} and 𝑍𝑢 ∶= 𝑍 −𝑢, 𝑍 ∼ 𝑔, 𝑢 ∈ R. In the present section, we use the characterizations of the informed estimators 
to obtain the first main result of this paper that puts the different estimators in perspective. Assume that: 

∫

∞

0
𝑠
3
2 𝑑𝐹 (𝑠) < ∞. (3.3)

Theorem 1 (Asymptotics). Let 𝐹  be the distribution function of the squared sphere radii and 𝑔 the corresponding density of the squared 
circle radii 𝑍 according to (1.1). Let 𝑥 ≥ 0, and 𝐾 ∶= [

̄
𝑥, �̄�], for 

̄
𝑥 < �̄�, the biggest interval that contains 𝑥 on which 𝐹  is constant and let 

(3.3) hold true. Then, as 𝑛 → ∞:

a. The estimators 𝑉 (
̄
𝑥,�̄�)

𝑛 , 𝑉 𝛱
𝑛  and 𝑉 𝛱

𝑛  are all asymptotically equivalent: 
√

𝑛
(

𝑉 𝛱
𝑛 (𝑥) − 𝑉 (

̄
𝑥,�̄�)

𝑛 (𝑥)
)

= 𝑜𝑝(1),
√

𝑛
(

𝑉 𝛱
𝑛 (𝑥) − 𝑉 (

̄
𝑥,�̄�)

𝑛 (𝑥)
)

= 𝑜𝑝(1).

Furthermore, they all attain the same limiting distribution, given by:
√

𝑛
(

𝑉 (
̄
𝑥,�̄�)

𝑛 (𝑥) − 𝑉 (𝑥)
)

⇝ 𝑁(0, 𝜎2
̄
𝑥,�̄�)

where: 
𝜎2
̄
𝑥,�̄� = Var

(

2 (�̄� −
̄
𝑥)−1

{

√

(𝑍
̄
𝑥)+ −

√

(𝑍�̄�)+
}

)

. (3.4)

b. The isotonic estimator 𝑉𝑛 is not asymptotically equivalent to 𝑉 (
̄
𝑥,�̄�)

𝑛 , as: 
√

𝑛
(

𝑉𝑛(𝑥) − 𝑉 (
̄
𝑥,�̄�)

𝑛 (𝑥)
)

⇝ 𝑊 , (3.5)

where, for any 𝑎 ∈ R, P (𝑊 ≤ 𝑎) = P
(

argmax𝑠∈𝐾 {Z(𝑠) − 𝑎𝑠} ≤ 𝑥
)

, for 

Z(𝑡) = �̄� − 𝑡
�̄� −

̄
𝑥
Z
̄
𝑥(𝑡) +

𝑡 −
̄
𝑥

�̄� −
̄
𝑥
Z�̄�(𝑡), (3.6)

and (𝑡, 𝑥) ↦ Z (𝑡) the centered Gaussian Process with covariance structure (3.2).
𝑥

4 
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c. Under the assumptions of Proposition  2, the sequences
√

𝑛
(

𝑉 (
̄
𝑥,�̄�)

𝑛 (𝑥) − 𝑉 (𝑥)
)

and
√

𝑛
(

𝑉𝑛(𝑥) − 𝑉 (
̄
𝑥,�̄�)

𝑛 (𝑥)
)

,

are asymptotically independent. 
The proofs of Theorems  1.a, 1.b and 1.c are given in Appendix  A. Combining 1.a, 1.b and 1.c of the Theorem, we see that 

the limit 𝐿𝑥 of the isotonic estimator in (3.1) is the convolution of the normal limit 𝑁(0, 𝜎2
̄
𝑥,�̄�) of the informed estimators and the 

distribution of 𝑊  in (3.5). Thus the limit distribution of the isotonic estimator is less concentrated than the limit distribution of the 
informed estimators.

4. Lower bound for the local asymptotic minimax risk

In this section, we show that the estimator (2.8) is asymptotically efficient, in the sense that its asymptotic variance is the smallest 
attainable. This proves that also (2.7) and (2.9), which are asymptotically equivalent to (2.8), are efficient. The claim is valid in the 
sense of both the local asymptotic minimax theorem and the convolution theorem (c.f. Chapter 25 of van der Vaart (1998)). The 
key is a LAN expansion for a submodel constructed by perturbing the true function 𝑉  in the least favorable direction.

We consider the estimation of 𝑉  at a point 𝑥 in (
̄
𝑥, �̄�), knowing that 𝐹 , and thus 𝑉 , are constant on this interval (cf. (B.1)). The 

associated version of the density of the observations in Wicksell’s problem is expressed in 𝑉  as: 

𝑔𝑉 (𝑧) = −∫

𝑀

𝑧

𝑑𝑉 (𝑠)
𝜋
√

𝑠 − 𝑧

(

= 1
2𝑚0 ∫

𝑀

𝑧

𝑑𝐹 (𝑠)
√

𝑠 − 𝑧

)

. (4.1)

We denote the corresponding probability measure by 𝐺𝑉 . We describe a so called ‘‘least favorable’’ submodel in terms of 𝑉 . We 
assume that the true parameter 𝑉  satisfies the following assumption. 

Assumption 1.  Let 𝑉 ∈  be supported on [0,𝑀], constant on [
̄
𝑥, �̄�], for 

̄
𝑥 < �̄� and possess Lipschitz continuous density 𝑣 on [

̄
𝑥, �̄�]𝑐 . 

Moreover ∃ 𝜂 > 0 such that: 

∫[
̄
𝑥,�̄�]𝑐

1
|𝑣(𝑠)|

𝑑𝑠 + ∫
̄
𝑥

̄
𝑥−𝜂

log2 (
̄
𝑥 − 𝑠)

|𝑣(𝑠)|
𝑑𝑠 + ∫

�̄�+𝜂

�̄�

log2 (𝑠 − �̄�)
|𝑣(𝑠)|

𝑑𝑠 < ∞. (4.2)

Define functions 𝑘(̄𝑥,�̄�), ℎ and ℎ0 by, for ̄𝑥 < �̄�:

𝑘(̄𝑥,�̄�)(𝑧) ∶= 2

√

(𝑧 −
̄
𝑥)+ −

√

(𝑧 − �̄�)+
�̄� −

̄
𝑥

,

ℎ(𝑧) ∶=

⎧

⎪

⎨

⎪

⎩

− 1
√

𝜋𝑣(𝑧)
∫ 𝑀

𝑧
(𝑘(̄

𝑥,�̄�)𝑔𝑉 )′(𝑠)
√

𝑠−𝑧
𝑑𝑠, 𝑧 ∉ [

̄
𝑥, �̄�],

0, 𝑧 ∈ [
̄
𝑥, �̄�],

(4.3)

ℎ0(𝑧) ∶= ℎ(𝑧) + 2
𝜋 ∫

𝑀

0

√

𝑠ℎ(𝑠) 𝑑𝑉 (𝑠). (4.4)

The least favorable submodel is defined by: 

𝑑𝑉𝑡(𝑠) =
1
𝑐𝑡
(1 + 𝑡ℎ0(𝑠))+ 𝑑𝑉 (𝑠), 𝑐𝑡 ∶= − 2

𝜋 ∫

𝑀

0

√

𝑠(1 + 𝑡ℎ0(𝑠))+ 𝑑𝑉 (𝑠). (4.5)

Note that ∫ ∞
0

√

𝑠 𝑑𝑉𝑡(𝑠) = − 𝜋
2 , that 𝑐𝑡 ≥ 0 and that the obtained 𝑉𝑡 is decreasing. In Appendix  B we show that the score function of 

the model 𝑡 ↦ 𝐺𝑉𝑡  at 𝑡 = 0 is the centered function 𝑘(̄𝑥,�̄�), the influence function of the informed estimators. Assumption  1 ensures 
that indeed ℎ0 is mapped to 𝑘(̄𝑥,�̄�) via the score operator and that − 2

𝜋 ∫ ℎ20(𝑠)
√

𝑠 𝑑𝑉 (𝑠) < ∞. A detailed explanation is contained in 
the study of the tangent spaces in the context of our problem in Appendix  B.

The next result shows the model 𝑡 ↦ 𝐺𝑉𝑡  is locally asymptotically normal (LAN, see van der Vaart (1998), Chapter 7). This result 
is fundamental because both Theorems  1.c and 2 rely on it. The proof of Proposition  2 is given in Appendix  A.

Proposition 2 (LAN expansion). Let 𝑉𝑡 be as in (4.5) and 𝑡𝑛 = 𝑡∕
√

𝑛 with 𝑡 ∈ R. If (3.3) and Assumption  1 hold true, then: 
𝑛
∑

𝑖=1
log

𝑔𝑉𝑡𝑛 (𝑍𝑖)

𝑔𝑉 (𝑍𝑖)
= 𝑡 𝛥𝑛 −

𝑡2

2
𝜎2
̄
𝑥,�̄� + 𝑜𝑝(1) (4.6)

where: 𝛥𝑛 ∶=
1
√

𝑛

∑𝑛
𝑖=1

(

𝑘(̄𝑥,�̄�)(𝑍𝑖) − E𝐺𝑉
𝑘(̄𝑥,�̄�)

)

⇝ 𝑁(0, 𝜎2
̄
𝑥,�̄�) and 𝜎2

̄
𝑥,�̄� is as in (3.4).

The second fundamental result of this paper gives a lower bound for the local asymptotic minimimax (LAM) risk of an arbitrary 
estimator, and the related convolution theorem.
5 
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Theorem 2 (LAM & Convolution). Let (3.3) and Assumption  1 hold true and let 𝜎2
̄
𝑥,�̄� be as in (3.4). Let then 𝓁 ∶ R ↦ [0,∞) be symmetric 

and subconvex. Then for any 𝑥 ∈ (
̄
𝑥, �̄�), and every estimator sequence (𝑉𝑛(𝑥)

)

𝑛∈N: 

sup
𝐼⊂R

𝐼 finite

lim inf
𝑛→∞

sup
𝑡∈𝐼

E𝐺𝑡∕
√

𝑛
𝓁
(

√

𝑛
(

𝑉𝑛(𝑥) − 𝑉𝑡∕√𝑛(𝑥)
))

≥ ∫ 𝓁 𝑑𝑁(0, 𝜎2
̄
𝑥,�̄�), (4.7)

Moreover, for any estimator sequence such that √𝑛
(

𝑉𝑛(𝑥) − 𝑉𝑡∕√𝑛(𝑥)
)

⇝ 𝐾 under 𝐺𝑡∕
√

𝑛, for every 𝑡 ∈ R, and some given distribution 𝐾, 
this distribution is the convolution of 𝑁(0, 𝜎2

̄
𝑥,�̄�) and some other distribution.

The proof of Theorem  2 is given in Appendix  A. By Theorem  1 the informed estimators attain equality in the LAM risk (for 
bounded continuous loss functions), and their limit distribution is 𝑁(0, 𝜎2

̄
𝑥,�̄�) without extra convolution factor. On the other hand, 

the limit distribution of the isotonic estimator contains the distribution of 𝑊  as in (3.5) as extra factor. Hence the isotonic estimator 
is not LAM.

5. Simulation study

In this section, we present a simulation study that shows that the isotonic inverse estimator, even if not efficient, behaves very 
closely to the efficient estimator. In practice, the information whether or not the cdf 𝐹  is constant on a specific interval is generally 
unavailable. In that situation the best choice would be to use the isotonic estimator, given the efficiency theory and the adaptivity 
results developed in Gili et al. (2024). However, if the cdf is known to be constant on some known interval, then the isotonic 
estimator will incur a loss in terms of efficiency. In this section, we perform a simulation study to illustrate the difference in terms 
of performance between the isotonic estimator 𝑉𝑛 and the efficient informed estimator 𝑉 (

̄
𝑥,�̄�). We consider an underlying distribution 

𝐹  of the squared sphere radii, which is constant on [2, 3], namely (see Fig.  1). :

Fig. 1. Underlying cdf 𝐹 and in light blue a histogram of a sample of size 1000 from 𝑔.

Fig.  2 shows the true underlying 𝑉  with all estimators defined in this paper within the specified interval. As 𝑉 𝛱
𝑛 , 𝑉 𝛱

𝑛 , and 𝑉 (
̄
𝑥,�̄�)

𝑛

are all asymptotically equivalent by Theorem  1, we focus on the comparison between 𝑉 (
̄
𝑥,�̄�)

𝑛  and 𝑉𝑛.
In Fig.  3, the scatter plot reveals a strong positive correlation between the two estimators, while the Tukey mean-difference 

plot indicates a lack of inherent bias. Taken together, the two plots in Fig.  3 demonstrate a substantial agreement between 
the two estimation methods. In Fig.  4, we observe that the distributions of √𝑛(𝑉 (

̄
𝑥,�̄�)

𝑛 (𝑥) − 𝑉 (𝑥)) and √𝑛(𝑉𝑛(𝑥) − 𝑉 (𝑥)) closely 
resemble each other. Moreover, we observe a strong resemblance not only between the estimators but also between their respective 
limiting distributions, 𝐿𝑥 and 𝑁(0, 𝜎2

̄
𝑥,�̄�). However, the violin plot with the standard percentiles, the second histogram with 

√

𝑛(𝑉𝑛(𝑥) − 𝑉 (
̄
𝑥,�̄�)

𝑛 (𝑥)) and 𝑊  and Table  1 indicate that the variance of 𝑉𝑛(𝑥) is slightly bigger than the one of 𝑉 (
̄
𝑥,�̄�)

𝑛 (𝑥).
The values in Table  1 were computed using varying sample size 𝑛 from 𝑔 as indicated, with 2000 samples from 𝑉𝑛(𝑥) and 𝑉 (

̄
𝑥,�̄�)

𝑛 (𝑥). 
All the Kernel Density Estimator plots were computed using Scott’s rule (where the bin size ℎ ∼ 3.5�̂�𝑛−1∕3) for the chosen bandwidth. 
For 𝑊  and 𝐿𝑥, 20000 samples were used.

Taken together, the simulation study confirms the theoretical findings of Theorems  1 and 2: the informed estimators are efficient 
and not asymptotically equivalent to the IIE. However, the empirical performances of 𝑉 (

̄
𝑥,�̄�)

𝑛  and 𝑉𝑛 show a high degree of proximity 
in the estimation scenario where the underlying function 𝑉  is constant on an interval. Even if 𝑉𝑛 is used in cases where it is indeed 
true that 𝑉  is constant within an interval, the incurred loss appears to be small.
Table 1
Standard deviations.
 𝑛 100 200 400 1000 2000 Limit  
 √𝑛(𝑉 (

̄
𝑥,�̄�)

𝑛 − 𝑉 )(𝑥) 0.5441 0.5439 0.5465 0.5467 0.5464 𝑁(0, 𝜎2

̄
𝑥,�̄�) 0.5466 

 √𝑛(𝑉𝑛 − 𝑉 )(𝑥) 0.5537 0.5592 0.5627 0.5664 0.5697 𝐿𝑥 0.5703 
6 
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Fig. 2. All estimators and the true function 𝑉 , which is constant on [2, 3], for a sample of size 𝑛 = 300.

Fig. 3. Scatter and Tukey mean-difference plots for 𝑛 = 1000 and 300 repetitions of 𝑉𝑛 and 𝑉 (𝑥,𝑥)
𝑛 .

Fig. 4. Based on 1000 samples from 𝑔, centered and rescaled histograms based on 300 repetitions, 𝑉 (𝑥,𝑥)
𝑛  and their difference compared with respective limiting 

distributions 𝐿𝑥, 𝑁(0, 𝜎2
𝑥,𝑥) and 𝑊 .
7 
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6. Conclusion

We conclude by stressing the fact that the local asymptotically minimax variance in Theorem  2 coincides with the one obtained 
in Theorem  1.a. This shows that in the setting in which 𝑉  is constant on [

̄
𝑥, �̄�], for 

̄
𝑥 < �̄�, the informed estimators (2.8)–(2.7) are 

asymptotically efficient, whereas the isotonic inverse estimator is not, as it is clearly shown by Theorem  2. However, we conjecture 
that the isotonic estimator remains asymptotically efficient in the situations in which the boundary points 

̄
𝑥, �̄� are allowed to 

converge to 𝑥 at an arbitrarily polynomial rate (or slower). In this case, the rate of convergence drops to 
√

𝑛∕ log (�̄� −
̄
𝑥)−1.

From a practical point of view, both the results of the current paper and Theorems 2.1–2.2 in Groeneboom and Jongbloed (1995) 
are difficult to use to obtain confidence bands, as they require estimating the density 𝑔, either at 𝑥 or globally to compute 𝜎2

̄
𝑥,�̄� or to 

compute the covariance structure of the limiting Gaussian process. We envision Theorems 2.1–2.2 in Groeneboom and Jongbloed 
(1995) and the asymptotic results of the current paper as the theoretical foundation, while the practical computation of confidence 
bands may be better addressed through bootstrap methods. A potential direction for further research would be proving formally 
why the bootstrap works. We believe that a formal justification would combine our theoretical results with the techniques used 
in Groeneboom and Jongbloed (2014) (which already shows consistency of the bootstrap for 𝛾𝑥 = 1 in the limiting variance of 
Theorem 2.1 in Groeneboom and Jongbloed (1995)).

Another potential direction for further investigation is whether the IIE is efficient in the setting in which there exists an interval 
of constancy for 𝑉  but the boundary points 

̄
𝑥, �̄� are unknown. However, the definition and assessment of efficiency in this context are 

unclear. For practical purposes, if the boundary points 
̄
𝑥, �̄� are unknown, the IIE remains the state-of-art as it behaves very closely 

to the efficient estimator (see Section 5) and in the 
√

𝑛∕ log 𝑛 rate setting is efficient and adaptive to the level of smoothness of 𝑉 .
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Appendix A. Proofs.

Proofs of Section 2.
To prove Proposition  1, we need an additional lemma that will be essential to show that the estimators (2.13)–(2.16) are indeed 

the projections. The proof of this lemma uses similar reasoning as contained in Anevski and Soulier (2011) and Groeneboom and 
Jongbloed (2010). Below for a function 𝑓 , 𝑓 (𝑡−) indicates the left limit of 𝑓 at 𝑡. 

Lemma 1.  Let 𝑉 ∈ L1 be given, define 𝑉 ↦ 𝑄𝑉 (𝑉 ) by (2.5) and 𝑉 ∈ 
̄
𝑥,�̄�. Suppose the following conditions hold true, for ̄𝑥 < �̄�:

1. ∫ 𝑡
0 (𝑉 (𝑥) − 𝑉 (𝑥)) 𝑑𝑥 ≥ 0, ∀ 𝑡 ∈ [0,∞) ∩ [

̄
𝑥, �̄�]𝑐 ,

2. ∫ 𝑡
0 (𝑉 (𝑥) − 𝑉 (𝑥)) 𝑑𝑥 = 0, ∀ 𝑡 ∈ [0,∞) ∩ [

̄
𝑥, �̄�]𝑐 with 𝑉 (𝑡) < 𝑉 (𝑡−).

3. The measure defined via 𝑉  and the one defined via 𝑉  are compactly supported on the positive real line.
Then 𝑉 = argmin𝑉 ∈

̄
𝑥,�̄�

𝑄𝑉 (𝑉 ).

Proof.  Let us recall the concept of Gateaux differentiability at a point 𝑉 ∈  , for some function space  . Let 𝑄 ∶  ↦ R be an 
arbitrary functional. It is called Gateaux differentiable at the point 𝑉 ∈  if the limit:

𝜕𝑄(𝑉 , ℎ) = lim
𝜀→0

𝑄(𝑉 + 𝜀ℎ) −𝑄(𝑉 )
𝜀

exists for every ℎ such that 𝑉 + 𝜀ℎ ∈  for small enough 𝜀. By straightforward computations, one can verify that:

𝑄𝑉 (𝑉 + 𝜀𝟏[0,𝑡]) −𝑄𝑉 (𝑉 ) = 2𝜀∫

𝑡

0
𝑉 (𝑥) 𝑑𝑥 + 𝜀2𝑡 − 2𝜀∫

𝑡

0
𝑉 (𝑥) 𝑑𝑥

Therefore the Gateaux derivative of 𝑄𝑉  is given by:

𝜕𝑄𝑉 (𝑉 , ℎ) = 2∫

∞

0
ℎ(𝑥)

(

𝑉 (𝑥) − 𝑉 (𝑥)
)

𝑑𝑥 (A.1)

Note that, since 𝜕𝑄𝑉 (𝑉 , 𝟏[0,𝑡]) = ∫ 𝑡
0 𝑉 (𝑥)−𝑉 (𝑥) 𝑑𝑥, the first two conditions of Lemma  1 entail the Gateaux derivative of the functional 

𝑄𝑉  along the test functions 𝟏[0,𝑡], ∀ 𝑡 ≥ 0 but 𝑡 ∉ [
̄
𝑥, �̄�].

Now we show that for any 𝑉 ∈ 
̄
𝑥,�̄�, 𝜕𝑄𝑉 (𝑉 , 𝑉 − 𝑉 ) ≥ 0. First notice:

𝑉 (𝑥) − 𝑉 (𝑥) =
𝑑(�̂� − 𝑈 )

(𝑥)

𝑑𝑥

8 



F. Gili et al. Journal of Statistical Planning and Inference 240 (2026) 106299 
Without loss of generality, we assume that the two supports of the measures associated with the functions 𝑉  and 𝑉  are contained 
in [0,𝑀1] and [0,𝑀2]. Defining 𝑀 ∶= max{𝑀1,𝑀2}. Using integration by parts and assumption 3, �̂� (0) −𝑈 (0) = �̂� (𝑀) −𝑈 (𝑀) = 0:

𝜕𝑄𝑉 (𝑉 , 𝑉 − 𝑉 ) = 2∫

∞

0

(

𝑉 (𝑥) − 𝑉 (𝑥)
)

(

𝑉 (𝑥) − 𝑉 (𝑥)
)

𝑑𝑥

= 2∫

𝑀

0

(

𝑉 (𝑥) − 𝑉 (𝑥)
)

𝑑(�̂� − 𝑈 )(𝑥) = 2
(

𝑉 (𝑥) − 𝑉 (𝑥)
)

(

�̂� (𝑥) − 𝑈 (𝑥)
)

|

|

|

|

𝑀

0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

−2∫

𝑀

0

(

�̂� (𝑥) − 𝑈 (𝑥)
)

𝑑
(

𝑉 (𝑥) − 𝑉 (𝑥)
)

By assumption 2, the support of the measure −𝑑𝑉  is included in the set {𝑥 ∶ 𝑈 (𝑥) = �̂� (𝑥)} (cf. Lemma 1 in Anevski and Soulier 
(2011)), therefore: ∫ ∞

0

(

�̂� (𝑥) − 𝑈 (𝑥)
)

𝑑𝑉 (𝑥) = 0. On the other hand, because 𝑉 ∈ 
̄
𝑥,�̄� the negative measure defined based on 𝑉

does not have mass in [
̄
𝑥, �̄�] and then, by using Assumption  1, we obtain:

∫

∞

0

(

𝑈 (𝑥) − �̂� (𝑥)
)

𝑑𝑉 (𝑥) ≥ 0

which proves indeed 𝜕𝑄𝑉 (𝑉 , 𝑉 − 𝑉 ) ≥ 0. Now define the convex function 𝑡 ↦ 𝑢(𝑡) = 𝑄𝑉 (𝑉 + 𝑡(𝑉 − 𝑉 )) where 𝑡 ∈ [0, 1]. Using (A.1) 
and what we just proved, we have that 𝑢′(0) = 𝜕𝑄𝑉 (𝑉 , 𝑉 − 𝑉 ) ≥ 0. Since 𝑢 is convex, the fact 𝑢′(0) ≥ 0 implies 𝑢(1) ≥ 𝑢(0), which 
indeed is 𝑄𝑉 (𝑉 ) ≥ 𝑄𝑉 (𝑉 ). □

Proof of Proposition  1.  The proof of (2.6) is provided in Groeneboom and Jongbloed (1995) (c.f. Lemma 2 in Groeneboom and 
Jongbloed (1995)).

Proof of  (2.7). First, we show that 𝑉 𝛱
𝑛 ∈ 

̄
𝑥,�̄�. By definition, for 𝑥 ∈ [

̄
𝑥, �̄�], for 

̄
𝑥 < �̄�:

𝑉 𝛱
𝑛 (𝑥) =

𝑈∗
𝑛 (�̄�) − 𝑈∗

𝑛 ( ̄
𝑥)

�̄� −
̄
𝑥

Let 𝑍∗
𝑘 for 𝑘 ∈ {1,… , 𝑚−1} be the points where 𝑈∗

𝑛  changes slope in [ ̄𝑥, �̄�]. Denote by 𝑍
∗
0  the closest point where 𝑈∗

𝑛  changes slope 
to the left of 

̄
𝑥. Similarly, denote by 𝑍∗

𝑚 the closest point where 𝑈∗
𝑛  changes slope to the right of �̄�. Now consider the fact that:

𝑈∗
𝑛 ( ̄
𝑥) =

𝑈𝑛(𝑍∗
1 ) − 𝑈𝑛(𝑍∗

0 )
𝑍∗

1 −𝑍∗
0

(
̄
𝑥 −𝑍∗

1 ) + 𝑈𝑛(𝑍∗
1 )

𝑈∗
𝑛 (�̄�) =

𝑈𝑛(𝑍∗
𝑚) − 𝑈𝑛(𝑍∗

𝑚−1)
𝑍∗

𝑚 −𝑍∗
𝑚−1

(�̄� −𝑍∗
𝑚−1) + 𝑈𝑛(𝑍∗

𝑚−1)

By telescoping we have:

𝑈𝑛(𝑍∗
1 ) − 𝑈𝑛(𝑍∗

𝑚−1) = −
𝑚−1
∑

𝑘=2
𝑈𝑛(𝑍∗

𝑘 ) − 𝑈𝑛(𝑍∗
𝑘−1)

And therefore all together we have on [
̄
𝑥, �̄�], for 

̄
𝑥 < �̄�:

𝑉 𝛱
𝑛 (𝑥) ∶=

𝑚−1
∑

𝑘=2

𝑍∗
𝑘 −𝑍∗

𝑘−1
�̄� −

̄
𝑥

𝑈𝑛(𝑍∗
𝑘 ) − 𝑈𝑛(𝑍∗

𝑘−1)
𝑍∗

𝑘 −𝑍∗
𝑘−1

+
𝑍∗

1 −
̄
𝑥

�̄� −
̄
𝑥

𝑈𝑛(𝑍∗
1 ) − 𝑈𝑛(𝑍∗

0 )
𝑍∗

1 −𝑍∗
0

+
�̄� −𝑍∗

𝑚−1
�̄� −

̄
𝑥

𝑈𝑛(𝑍∗
𝑚) − 𝑈𝑛(𝑍∗

𝑚−1)
𝑍∗

𝑚 −𝑍∗
𝑚−1

(A.2)

The fact that 𝑉 𝛱
𝑛 ∈ 

̄
𝑥,�̄� is now clear, because the computations given above prove that 𝑉 𝛱

𝑛  on [
̄
𝑥, �̄�] is just a weighted average of 

the values chosen by the isotonic estimator over [
̄
𝑥, �̄�]. This ensures both the monotonicity constraint and right-continuity, other 

than the fact that 𝑉 𝛱
𝑛  is constant on [

̄
𝑥, �̄�]. Let us now verify condition 1 of Lemma  1. Clearly, for 𝑡 ≤

̄
𝑥, the condition is satisfied 

as it is zero. Take 𝑡 ≥ �̄�. The primitive of 𝑉  is 𝑈∗
𝑛 . We verify the main condition. We split the integral into three bits. Clearly 

∫ ̄
𝑥
0 𝑉 𝛱

𝑛 (𝑥) − 𝑉𝑛(𝑥) 𝑑𝑥 = ∫ 𝑡
�̄� 𝑉 𝛱

𝑛 (𝑥) − 𝑉𝑛(𝑥) 𝑑𝑥 = 0. Now for [
̄
𝑥, �̄�]: ∫ �̄�

̄
𝑥 𝑉 𝛱

𝑛 (𝑥) − 𝑉𝑛(𝑥) 𝑑𝑥 = 0 by (2.13). Condition 2 can be verified 
immediately using the same strategy and condition 3 is verified as well by the definition of the isotonic estimator.

Proof of  (2.8). If we minimize 𝑄𝑉𝑛  over a space where we do not require the solution to be decreasing (but still constant on each 
[𝑥𝑖, 𝑥𝑖+1)), then we can split the minimization problem into different integrals over each [𝑥𝑖, 𝑥𝑖+1). When we minimize over [𝑥𝑖, 𝑥𝑖+1)
we obtain, setting 𝑉 (𝑥) = 𝑐 ∈ R for 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1):

∫

𝑥𝑖+1

𝑥𝑖
𝑉 (𝑥)

(

𝑉 (𝑥) − 2𝑉𝑛(𝑥)
)

𝑑𝑥 = ∫

𝑥𝑖+1

𝑥𝑖
𝑐2 − 2𝑐𝑉𝑛(𝑥)𝑑𝑥 = (𝑥𝑖+1 − 𝑥𝑖)𝑐2 − 2𝑐 1

𝑛

𝑛
∑

𝑖=1
∫

𝑥𝑖+1

𝑥𝑖

(

𝑍𝑖 − 𝑥
)−1∕2 𝑑𝑥

= (𝑥𝑖+1 − 𝑥𝑖)𝑐2 − 2𝑐
(

𝑈𝑛(𝑥𝑖+1) − 𝑈𝑛(𝑥𝑖)
)

.

By optimizing, we obtain 𝑐 = 𝑈𝑛(𝑥𝑖+1)−𝑈𝑛(𝑥𝑖)
𝑥𝑖+1−𝑥𝑖

.
Proof of  (2.9). We use Lemma  1. By (2.16), 𝑉 𝛱

𝑛 ∈ 
̄
𝑥,�̄�. Moreover, we have that condition 1 is obtained because it requires that 

∀ 𝑡 ∈ [
̄
𝑥, �̄�]𝑐 ∩ [0,∞):

∫

𝑡

0
𝑉 𝛱
𝑛 (𝑥) − 𝑉𝑛(𝑥) 𝑑𝑥 = 𝑈∗

𝑛 (𝑡) − 𝑈𝑛(𝑡) ≥ 0

but by construction 𝑈∗
𝑛 (𝑡) ≥ 𝑈𝑛(𝑡) = 𝑈𝑛(𝑡) for 𝑡 ∉ [

̄
𝑥, �̄�]. For condition 2, if 𝑉 𝛱

𝑛 (𝑡) < 𝑉 𝛱
𝑛 (𝑡−) then 𝑡 is a support point of the 𝑈∗

𝑛  and we 
also know by construction that all the support points of 𝑈∗ satisfy 𝑈∗(𝑡) = 𝑈 (𝑡). Condition 3 is trivially satisfied. □
𝑛 𝑛 𝑛
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Proofs of Section 3.
All the proofs that follow make use of the explicit constructions of the estimators (2.6)–(2.7) given in Proposition  1. We present 

the proof of Theorem  1.b first, as part of the proof of Theorem  1. List  a can be viewed as a special case of it.
To prove Theorems  1.a and 1.b we need the following additional lemma.

Lemma 2.  Let 𝓁∞(𝐾) be endowed with the uniform norm and ∀ 𝑠 ∈ 𝐾:

𝑍𝑛(𝑠) ∶=

√

𝑛
�̄� −

̄
𝑥

(

(𝑈𝑛(𝑠) − 𝑈𝑛( ̄
𝑥))(�̄� − 𝑠) − (𝑈𝑛(�̄�) − 𝑈𝑛(𝑠))(𝑠 − ̄

𝑥) − (𝑈 (𝑠) − 𝑈 (
̄
𝑥))(�̄� − 𝑠) − (𝑈 (�̄�) − 𝑈 (𝑠))(𝑠 −

̄
𝑥)

)

. (A.3)

Then 
𝑍𝑛 ⇝ Z in 𝓁∞(𝐾), (A.4)

where Z is the zero mean Gaussian Process given in (3.6) and has a version with continuous sample paths, with unique point of maximum.

Proof.  Because
(𝑈𝑛(𝑠) − 𝑈𝑛( ̄

𝑥))(�̄� − 𝑠) − (𝑈𝑛(�̄�) − 𝑈𝑛(𝑠))(𝑠 − ̄
𝑥)

= 2
𝑛

𝑛
∑

𝑖=1

{

(

√

(𝑍𝑖 − ̄
𝑥)+ −

√

(𝑍𝑖 − 𝑠)+
)

(�̄� − 𝑠) −
(

√

(𝑍𝑖 − 𝑠)+ −
√

(𝑍𝑖 − �̄�)+
)

(𝑠 −
̄
𝑥)

}

,

the stated convergence is equivalent to saying that the class of functions 𝑧 → (
√

(𝑧 −
̄
𝑥)+−

√

(𝑧 − 𝑠)+)(�̄�−𝑠)−(
√

(𝑧 − 𝑠)+−
√

(𝑧 − �̄�)+)(𝑠−

̄
𝑥), 𝑠 ∈ 𝐾 is Donsker. From Lemma 2.6.16 in van der Vaart and Wellner (1996), it follows that the class of functions {𝑧− 𝑠 ∶ 𝑠 ≥ 0}
is VC, next by Lemma 2.6.18 (ii) in van der Vaart and Wellner (1996) we see that the class {(𝑧−𝑠)+ ∶ 𝑠 ≥ 0} is VC. Again by Lemma 
2.6.18 (vii), (iv) and (v) in van der Vaart and Wellner (1996) we conclude that the class of functions {√(𝑧 − 𝑥)+−

√

(𝑧 − 𝑠)+ ∶ 𝑠 ≥ 0} is 
VC. Similarly, we conclude that the class of functions 𝑧 ↦

√

(𝑧 − 𝑠)+−
√

(𝑧 − �̄�)+ is VC. The two above-mentioned classes of functions 
have respective envelopes: 0 ≤

√

(𝑧 − 𝑥)+ −
√

(𝑧 − 𝑠)+ ≤
√

(𝑧 − 𝑥)+ and 0 ≤
√

(𝑧 − 𝑠)+ −
√

(𝑧 − �̄�)+ ≤
√

𝑧. Therefore these classes are 
𝑃 -Donsker for any 𝑃  with ∫ ∞

0 𝑧𝑑𝑃 (𝑧) < ∞. This is the case by assumption (3.3). Again by Lemma 2.6.16 in van der Vaart and 
Wellner (1996) we have that the classes of functions: {(�̄� − 𝑠) ∶ 𝑠 ∈ 𝐾} and {(

̄
𝑥 − 𝑠) ∶ 𝑠 ∈ 𝐾} are VC. They have clearly square 

integrable envelope as 𝐾 = [
̄
𝑥, �̄�] is compact. We therefore conclude that the uniform entropy integral for the class of functions of 

our interest is finite, using Lemma 7.21 (i) and (ii) from Sen (2022).
To prove that Z possesses a version with continuous sample paths, it suffices to show: 

E (Z(𝑠) − Z(𝑡))2 ≲ |𝑠 − 𝑡| + |𝑠 − 𝑡|2. (A.5)

This follows from the fact that the square root is Hölder continuous of degree 1∕2 and the fact that:
1

�̄� −
̄
𝑥

(

√

(𝑧 −
̄
𝑥)+ −

√

(𝑧 − 𝑠)+(�̄� − 𝑠) − (
√

(𝑧 − 𝑠)+ −
√

(𝑧 − �̄�)+)(𝑠 − ̄
𝑥)
)

=
√

(𝑧 −
̄
𝑥)+ −

√

(𝑧 − 𝑠)+ + 1
�̄� −

̄
𝑥
(
√

(𝑧 −
̄
𝑥)+ −

√

(𝑧 − �̄�)+)( ̄
𝑥 − 𝑠)

The covariance function of Z is given by, for 𝑍𝑥 ∶= 𝑍 − 𝑥:

Cov (Z(𝑡),Z(𝑠))

= 4Cov

(

(
√

(𝑍
̄
𝑥)+ −

√

(𝑍𝑡)+)(�̄� − 𝑡) − (
√

(𝑍𝑡)+ −
√

(𝑍�̄�)+)(𝑡 − ̄
𝑥)

�̄� −
̄
𝑥

,
(
√

(𝑍
̄
𝑥)+ −

√

(𝑍𝑠)+)(�̄� − 𝑠) − (
√

(𝑍𝑠)+ −
√

(𝑍�̄�)+)(𝑠 − ̄
𝑥)

�̄� −
̄
𝑥

)

.

This coincides with the covariance function of the process in (3.6).
By (A.5), we deduce that Var(Z(𝑡) − Z(𝑠)) ≠ 0 for 𝑠 ≠ 𝑡. Since Z is indexed by a 𝜎-compact metric space, we obtain from Lemma 

2.6 in Kim and Pollard (1990) that the location of the maximum of the sample paths of Z is a.s. unique. □

Proof of Theorem  1.b.  For 𝑎 > 0, the ‘‘switch relation’’ (see Groeneboom and Jongbloed (2014)) is gives: 
𝑉𝑛(𝑥) ≤ 𝑎 ⇔ argmax

𝑠≥0

− {

𝑈𝑛(𝑠) − 𝑎𝑠
}

≤ 𝑥. (A.6)

Here the argmax is defined as:
argmax

𝑠≥0

− {

𝑈𝑛(𝑠) − 𝑎𝑠
}

∶= inf
{

𝑠 ≥ 0 ∶ 𝑈𝑛(𝑠) − 𝑎𝑠 is maximal} .

Therefore for each fixed 𝑎 ∈ R we can, for all 𝑛 sufficiently large, write:
√

𝑛
(

𝑉𝑛(𝑥) − 𝑉 (
̄
𝑥,�̄�)

𝑛 (𝑥)
)

≤ 𝑎

⇔ argmax−
{

𝑈𝑛(𝑠) −
(

𝑉 (
̄
𝑥,�̄�)

𝑛 (𝑥) + 𝑎∕
√

𝑛
)

𝑠
}

≤ 𝑥

𝑠≥0

10 
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⇔ argmax
𝑠≥0

− {
√

𝑛(𝑈𝑛(𝑠) − 𝑈𝑛( ̄
𝑥) − 𝑈 (𝑠) + 𝑈 (

̄
𝑥)) −

√

𝑛((𝑈𝑛(�̄�) − 𝑈𝑛( ̄
𝑥))∕(�̄� −

̄
𝑥) − 𝑉 (𝑥))(𝑠 −

̄
𝑥)+

+
√

𝑛(𝑈 (𝑠) − 𝑈 (
̄
𝑥) − 𝑉 (𝑥)(𝑠 −

̄
𝑥)) − 𝑎𝑠

}

≤ 𝑥.

Here we used that the location of a maximum of a function is equivariant under translations and invariant under multiplication by 
a positive number and addition of a constant. We obtain that the above is equivalent to:

argmax
𝑠≥0

−
{

𝑍𝑛(𝑠) − 𝑎𝑠 −
√

𝑛ℎ𝑥(𝑠)
}

≤ 𝑥,

where:

𝑍𝑛(𝑠) ∶=
√

𝑛(𝑈𝑛(𝑠) − 𝑈𝑛( ̄
𝑥) − 𝑈 (𝑠) + 𝑈 (

̄
𝑥)) −

√

𝑛((𝑈𝑛(�̄�) − 𝑈𝑛( ̄
𝑥))∕(�̄� −

̄
𝑥) − 𝑉 (𝑥))(𝑠 −

̄
𝑥),

ℎ𝑥(𝑠) ∶= 𝑈 (
̄
𝑥) − 𝑈 (𝑠) − 𝑉 (𝑥)(

̄
𝑥 − 𝑠).

One can easily show that 𝑍𝑛 can be written as in (A.3). Therefore by Lemma  2 and the above computations, we conclude that the 
limiting behavior of:

𝑍𝑛(𝑠) ∶= 𝑍𝑛(𝑠) − 𝑎𝑠 −
√

𝑛ℎ𝑥(𝑠),

is determined by the process W defined by, for 
̄
𝑥 < �̄�:

W(𝑠) =

{

Z(𝑠) − 𝑎𝑠, for 𝑠 ∈ [
̄
𝑥, �̄�]

−∞, for 𝑠 ∉ [
̄
𝑥, �̄�].

This is because ℎ𝑥(𝑠) > 0 for all 𝑠 ∈ (0,
̄
𝑥) ∪ (�̄�,∞), and therefore multiplied by −√𝑛 will go to −∞, while ℎ𝑥(𝑠) = 0, ∀ 𝑠 ∈ [

̄
𝑥, �̄�], and 

thus on that interval the limiting behavior is completely determined by Z(𝑠) − 𝑎𝑠.
Let:

�̂�𝑛 ∶= argmax
𝑠≥0

−
{

𝑍𝑛(𝑠) − 𝑎𝑠 −
√

𝑛ℎ𝑥(𝑠)
}

, (A.7)

�̂� ∶= argmax
𝑠≥0

{W(𝑠)} = argmax
𝑠∈[

̄
𝑥,�̄�]

{Z(𝑠) − 𝑎𝑠} . (A.8)

To prove convergence in distribution of �̂�𝑛 to �̂�, we use the Portmanteau Lemma as done in Gili et al. (2024) (cf. proof of Theorem 
3) and show for every closed subset 𝐹 :

lim sup𝑛→∞ P
(

�̂�𝑛 ∈ 𝐹
)

≤ P (�̂� ∈ 𝐹 ). As in Gili et al. (2024) we choose a sequence 𝜀𝑛 ↓ 0 such that √𝑛ℎ𝑥( ̄
𝑥 − 𝜀𝑛) → ∞ and 

√

𝑛ℎ𝑥(�̄� + 𝜀𝑛) → ∞. For 𝐾𝑛 ∶= [
̄
𝑥 − 𝜀𝑛, �̄� + 𝜀𝑛] and for 𝐾 ∶= [

̄
𝑥, �̄�]:

lim sup
𝑛→∞

P
(

�̂�𝑛 ∈ 𝐹
)

≤ lim sup
𝑛→∞

P
(

�̂�𝑛 ∈ 𝐹 ∩𝐾𝑛
)

+ lim sup
𝑛→∞

P
(

�̂�𝑛 ∈ 𝐾𝑐
𝑛
)

≤ lim sup
𝑛→∞

P

(

sup
𝑠∈𝐹∩𝐾𝑛

𝑍𝑛(𝑠) ≥ sup
𝑠∈𝐾𝑛

𝑍𝑛(𝑠)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(1)

+ lim sup
𝑛→∞

P
(

�̂�𝑛 ∈ 𝐾𝑐
𝑛
)

.

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(2)

(A.9)

We show that (2) in (A.9) goes to zero. If ∀ 𝑠 ∈ 𝐾𝑐 we have 𝑍𝑛 as in (A.3), then: 

sup
𝑠∈𝐾𝑐

𝑛

𝑍𝑛(𝑠) = sup
𝑠∈𝐾𝑐

𝑛

{

𝑍𝑛(𝑠) − 𝑎𝑠 −
√

𝑛ℎ𝑥(𝑠)
} P
→ −∞ (A.10)

Note that:

sup
𝑠∈𝐾𝑐

𝑛

{

𝑍𝑛(𝑠) −
√

𝑛ℎ𝑥(𝑠) − 𝑎𝑠
}

≤ sup
𝑠∈𝐾𝑐

𝑍𝑛(𝑠) − inf
𝑠<

̄
𝑥−𝜀𝑛

𝑠>�̄�+𝜀𝑛

{

√

𝑛ℎ𝑥(𝑠) + 𝑎𝑠
}

≤ sup
𝑠∈𝐾𝑐

{
√

𝑛(𝑈𝑛(𝑠) − 𝑈𝑛( ̄
𝑥) − 𝑈 (𝑠) + 𝑈 (

̄
𝑥))} − inf

𝑠<
̄
𝑥−𝜀𝑛

𝑠>�̄�+𝜀𝑛

{

√

𝑛ℎ𝑥(𝑠) + 𝑎𝑠
}

+ sup
𝑠≥0

{

−
√

𝑛
(

𝑈𝑛(�̄�) − 𝑈𝑛( ̄
𝑥) − 𝑈 (�̄�) + 𝑈 (

̄
𝑥)
) 𝑠 −

̄
𝑥

�̄� −
̄
𝑥

}

= sup
𝑠∈𝐾𝑐

{
√

𝑛(𝑈𝑛(𝑠) − 𝑈𝑛( ̄
𝑥) − 𝑈 (𝑠) + 𝑈 (

̄
𝑥))} − inf

𝑠<
̄
𝑥−𝜀𝑛

𝑠>�̄�+𝜀𝑛

{

√

𝑛ℎ𝑥(𝑠) + 𝑎𝑠
}

+
√

𝑛
𝑈𝑛(�̄�) − 𝑈𝑛( ̄

𝑥) − 𝑈 (�̄�) + 𝑈 (
̄
𝑥)

�̄� −
̄
𝑥 ̄

𝑥

where the first and the last term on the right-hand side are 𝑂𝑝(1) by the convergence given in Lemma 1 in Gili et al. (2024). The 
rest of the proof is the same as in Gili et al. (2024), and it shows that: − inf 𝑠<

̄
𝑥−𝜀𝑛

𝑠>�̄�+𝜀𝑛

{

√

𝑛ℎ𝑥(𝑠) + 𝑎𝑠
}

→ −∞. Using (A.10):

P
(

�̂�𝑛 ∈ 𝐾𝑐
𝑛
)

≤ P
(

sup
𝑠∈𝐾𝑐

𝑛

𝑍𝑛(𝑠) ≥ sup
𝑠∈𝐾𝑛

𝑍𝑛(𝑠)
)

≤ P
(

sup
𝑠∈𝐾𝑐

𝑛

𝑍𝑛(𝑠) ≥ sup
𝑠∈𝐾

{

𝑍𝑛(𝑠) − 𝑎𝑠
}

)

→ 0. (A.11)

The last convergence is a consequence of (A.10) and the convergence 𝑍𝑛 ⇝ Z on 𝓁∞(𝐾), combined with the continuous mapping 
theorem (which implies that the term on the right-hand side of the last inequality is 𝑂 (1)).
𝑝

11 
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Now we argue the behavior of (1) in (A.9). For that, we need an additional convergence in probability given in (A.12): 

sup
𝑠∈𝐹∩𝐾𝑛

{

𝑍𝑛(𝑠) −
√

𝑛ℎ𝑥(𝑠) − 𝑎𝑠
}

− sup
𝑠∈𝐹∩𝐾

{

𝑍𝑛(𝑠) − 𝑎𝑠
} P
⟶ 0. (A.12)

First note:

0 ≤ sup
𝑠∈𝐹∩𝐾𝑛

{

𝑍𝑛(𝑠) −
√

𝑛ℎ𝑥(𝑠) − 𝑎𝑠
}

− sup
𝑠∈𝐹∩𝐾

{

𝑍𝑛(𝑠) − 𝑎𝑠
}

≤ sup
𝑠∈𝐹∩𝐾𝑛

{

𝑍𝑛(𝑠) − 𝑎𝑠
}

− sup
𝑠∈𝐹∩𝐾

{

𝑍𝑛(𝑠) − 𝑎𝑠
}

.

Define the process, for 
̄
𝑥 < �̄�:

𝑍𝑛(𝑠) ∶=

⎧

⎪

⎨

⎪

⎩

𝑍𝑛(𝑠) − 𝑎𝑠,  if 𝑠 ∈ [
̄
𝑥, �̄�],

𝑍𝑛( ̄
𝑥) − 𝑎

̄
𝑥,  if 𝑠 ∈ [0,

̄
𝑥],

𝑍𝑛(�̄�) − 𝑎�̄�,  if 𝑠 ∈ [�̄�,∞).

Because: sup𝑠∈𝐹∩𝐾𝑛
𝑍𝑛(𝑠) = sup𝑠∈𝐹∩𝐾 𝑍𝑛(𝑠) = sup𝑠∈𝐹∩𝐾

{

𝑍𝑛(𝑠) − 𝑎𝑠
}

, it follows that
|

|

|

|

sup
𝑠∈𝐹∩𝐾𝑛

{

𝑍𝑛(𝑠) − 𝑎𝑠
}

− sup
𝑠∈𝐹∩𝐾

{

𝑍𝑛(𝑠) − 𝑎𝑠
} |

|

|

|

=
|

|

|

|

sup
𝑠∈𝐹∩𝐾𝑛

{

𝑍𝑛(𝑠) − 𝑎𝑠
}

− sup
𝑠∈𝐹∩𝐾𝑛

𝑍𝑛(𝑠)
|

|

|

|

≤ sup
𝑠∈𝐹∩𝐾𝑛

|

|

|

𝑍𝑛(𝑠) − 𝑎𝑠 −𝑍𝑛(𝑠)
|

|

|

≤ sup
𝑠∈𝐹∩𝐾𝑛∩[0, ̄

𝑥]

|

|

|

𝑍𝑛(𝑠) − 𝑎𝑠 −𝑍𝑛( ̄
𝑥)||
|

∨ sup
𝑠∈𝐹∩𝐾𝑛∩[�̄�,∞)

|

|

|

𝑍𝑛(𝑠) − 𝑎𝑠 −𝑍𝑛(�̄�)
|

|

|

→ 0,

where we used the asymptotic equicontinuity of the 𝑍𝑛. Using that:

sup
𝑠∈𝐹∩𝐾

{

𝑍𝑛(𝑠) − 𝑎𝑠
}

⇝ sup
𝑠∈𝐹∩𝐾

{

Z𝑥(𝑠) − 𝑎𝑠
}

,

we conclude using Theorem 2.7 (iv) from van der Vaart (1998) and (A.12):

sup
𝑠∈𝐹∩𝐾𝑛

{

𝑍𝑛(𝑠) −
√

𝑛ℎ𝑥(𝑠) − 𝑎𝑠
}

⇝ sup
𝑠∈𝐹∩𝐾

{

Z𝑥(𝑠) − 𝑎𝑠
}

.

Term (1) in (A.9) can be upper bounded by:

lim supP

(

sup
𝑠∈𝐹∩𝐾𝑛

{

𝑍𝑛(𝑠) −
√

𝑛ℎ𝑥(𝑠) − 𝑎𝑠
}

≥ sup
𝑠∈𝐾

{

𝑍𝑛(𝑠) − 𝑎𝑠
}

)

≤ P
(

sup
𝐹∩𝐾

{

Z𝑥(𝑠) − 𝑎𝑠
}

≥ sup
𝑠∈𝐾

{

Z𝑥(𝑠) − 𝑎𝑠
}

)

≤ P(�̂� ∈ 𝐾𝑐 )
⏟⏞⏞⏟⏞⏞⏟

=0

+P (�̂� ∈ 𝐹 ) , (A.13)

where we used the above derivations, together with Lemma  2 and Theorem 2.7 (v) from van der Vaart (1998). Therefore by (A.9) 
combined with (A.11), (A.13) and the Portmanteau Lemma we obtain the desired convergence in distribution. □

To prove Theorem  1.a we need the following additional lemma, which uses similar arguments as in Carolan (2002). 

Lemma 3.  If 𝑈 is linear with positive slope on [
̄
𝑥, �̄�], for 

̄
𝑥 < �̄�, and there does not exist a larger interval containing [

̄
𝑥, �̄�] on which 𝑈 is 

linear, then:

𝑈∗
𝑛 (�̄�) − 𝑈𝑛(�̄�) = 𝑜𝑝(1∕

√

𝑛) and 𝑈∗
𝑛 ( ̄
𝑥) − 𝑈𝑛( ̄

𝑥) = 𝑜𝑝(1∕
√

𝑛)

Proof.  Because 𝑈𝑛(𝑥) =
2
𝑛
∑𝑛

𝑖=1

{

√

(𝑍𝑖)+ −
√

(𝑍𝑖 − 𝑥)+
}

, the same arguments as in the proof of Lemma  2 give in 𝓁∞(0,∞): 
√

𝑛
(

𝑈𝑛 − 𝑈
)

⇝ Z̃ (A.14)

for a Gaussian Process Z̃. By assumption 𝑈 is linear on [
̄
𝑥, �̄�]. Let 𝑙(𝑡) = 𝑈 (�̄�)−𝑈 (

̄
𝑥)

�̄�−
̄
𝑥 (𝑡 −

̄
𝑥) + 𝑈 (

̄
𝑥) be the line which is equal to 𝑈 (𝑡) on 

[
̄
𝑥, �̄�]. Recall that the upper script ∗ denotes the operation of taking the least concave majorant, for instance 𝑈∗ is the least concave 
majorant of 𝑈 . Then consider:

√

𝑛
(

𝑈∗
𝑛 ( ̄
𝑥) − 𝑈𝑛( ̄

𝑥)
)

=
√

𝑛
[

{

𝑈𝑛 − 𝑈 + 𝑈 − 𝑙 + 𝑙
}∗ (

̄
𝑥) − 𝑈𝑛( ̄

𝑥)
]

=
[

√

𝑛
{

𝑈𝑛 − 𝑈
}

+
√

𝑛 {𝑈 − 𝑙}
]∗

(
̄
𝑥) −

√

𝑛
(

𝑈𝑛( ̄
𝑥) − 𝑈 (

̄
𝑥)
)

, (A.15)

where we use that the least concave majorant of the sum of any function ℎ and a linear function 𝑙 is equal to the sum of the linear 
function 𝑙 and the least concave majorant of ℎ.

By Skorokhod’s representation theorem there exists a sequence of random variables 𝑍𝑛, with same distribution as 
√

𝑛
{

𝑈𝑛 − 𝑈
}

, 
which converges almost surely to ̃Z (or see Rio (1993) for strong approximation type of result). Furthermore taking the Least Concave 
Majorant is a continuous function (see Beare and Fang (2017)). Thus the expression in (A.15) has the same limiting distribution as:

[

Z̃ +
√

𝑛 {𝑈 − 𝑙}
]∗

(𝑥) − Z̃(𝑥).

̄ ̄

12 
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We proceed by an analytic argument to show that the above tends to zero in probability. Fix a sample path 𝑘 of 𝑍, which is a 
bounded and continuous function on [0,𝑀]. Because 0 ≤

√

𝑛(𝑈∗
𝑛 ( ̄
𝑥) − 𝑈𝑛( ̄

𝑥)), for 𝜀 > 0 we need to show ∀ 𝑛 large enough: 

{𝑘 +
√

𝑛[𝑈 − 𝑙]}∗(
̄
𝑥) < 𝑘(

̄
𝑥) + 𝜀 (A.16)

To do so, we construct a concave majorant of 𝑘 +
√

𝑛[𝑈 − 𝑙] on (
̄
𝑥,𝑀] passing through the point (

̄
𝑥, 𝑘(

̄
𝑥) + 𝜀) and we show that for 

all 𝑛 big enough it constitutes a concave majorant of 𝑘 +
√

𝑛[𝑈 − 𝑙] also on [0,
̄
𝑥], thus eventually on the whole [0,𝑀].

Let 𝑆𝑛 denote the largest slope of lines connecting the point ( ̄𝑥, 𝑘( ̄𝑥) + 𝜀) with (𝑡, 𝑘(𝑡) +√

𝑛[𝑈 − 𝑙](𝑡)) for 𝑡 >
̄
𝑥. Note that 𝑆𝑛 < ∞

for all 𝑛. Since 𝑈 is concave, increasing and linear on [
̄
𝑥, �̄�], 𝑈 − 𝑙 ≤ 0 and thus √𝑛[𝑈 − 𝑙] becomes progressively smaller on (�̄�,𝑀], 

implying 𝑆1 ≥ 𝑆2 ≥ ⋯.
Let 𝑙𝑛 be the line with slope 𝑆𝑛 that passes through the point ( ̄𝑥, 𝑘( ̄𝑥)+𝜀). (A.16) holds true if and only if 𝑘(𝑡)+√

𝑛[𝑈 (𝑡)−𝑙(𝑡)] < 𝑙𝑛(𝑡)
for all 𝑡 ∈ [0,

̄
𝑥]. Since 𝑆1 ≥ 𝑆𝑛, it suffices to show that for all 𝑡 ∈ [0,

̄
𝑥] for all 𝑛 large enough 

𝑘(𝑡) +
√

𝑛[𝑈 (𝑡) − 𝑙(𝑡)] < 𝑙1(𝑡), (A.17)

as for 𝑡 >
̄
𝑥, 𝑘 +

√

𝑛[𝑈 − 𝑙] < 𝑙1 by construction and 𝑆1 ≥ 𝑆𝑛. These imply:
{𝑘 +

√

𝑛[𝑈 − 𝑙]}∗ ≤ 𝑙1.

We prove (A.17). Because [𝑈 − 𝑙] ≤ 0, ∀ 𝛿 > 0, as 𝑛 → ∞

sup
0≤𝑡<

̄
𝑥−𝛿

(𝑘 +
√

𝑛[𝑈 − 𝑙])(𝑡) → −∞

this implies that for any 𝛿 > 0, on [0,
̄
𝑥 − 𝛿) for sufficiently large 𝑛: 𝑘 +

√

𝑛[𝑈 − 𝑙] < 𝑙1. For ̄𝑥 − 𝛿 ≤ 𝑡 <
̄
𝑥 and 𝛿 <

̄
𝑥 − 𝜀∕(2𝑆1),

𝑙1(𝑡) = 𝑘(
̄
𝑥) + 𝜀 + (𝑡 −

̄
𝑥)𝑆1 ≥ 𝑘(

̄
𝑥) + 𝜀∕2.

For 𝛿 small enough on [
̄
𝑥 − 𝛿,

̄
𝑥) and sufficiently large 𝑛, by the continuity of 𝑘:

sup
̄
𝑥−𝛿≤𝑡<

̄
𝑥
(𝑘 +

√

𝑛[𝑈 − 𝑙])(𝑡) ≤ sup
̄
𝑥−𝛿≤𝑡<

̄
𝑥
𝑘(𝑡) ≤ 𝑘(

̄
𝑥) + 𝜀∕2.

This implies that for 𝛿 small enough, on [
̄
𝑥 − 𝛿,

̄
𝑥) for sufficiently large 𝑛: 𝑘 +

√

𝑛[𝑈 − 𝑙] < 𝑙1.
The result for �̄� follows analogously. □

Proof of Theorem  1.a.  First, we show: 
√

𝑛
(

𝑉 𝛱
𝑛 (𝑥) − 𝑉 (

̄
𝑥,�̄�)

𝑛 (𝑥)
)

= 𝑜𝑝(1), (A.18)

Because 𝑉 𝛱
𝑛  is the left derivative of the least concave majorant of 𝑈𝑛, the switch relation gives, for 𝑎 ∈ R and sufficiently large 𝑛,

√

𝑛
(

𝑉 𝛱
𝑛 (𝑥) − 𝑉 (

̄
𝑥,�̄�)

𝑛 (𝑥)
)

≤ 𝑎

⇔ argmax
𝑠≥0

− {
√

𝑛(𝑈𝑛(𝑠) − 𝑈𝑛( ̄
𝑥) − 𝑈 (𝑠) + 𝑈 (

̄
𝑥)) −

√

𝑛(𝑉 (
̄
𝑥,�̄�)

𝑛 (𝑥) − 𝑉 (𝑥))(𝑠 −
̄
𝑥) +

√

𝑛(𝑈 (𝑠) − 𝑈 (
̄
𝑥) − 𝑉 (𝑥)(𝑠 −

̄
𝑥)) − 𝑎𝑠

}

≤ 𝑥,

where we used the usual properties of the argmax− as in the proof of Theorem  1.b. By the definition of 𝑈𝑛 in (2.17) and 𝑉 (
̄
𝑥,�̄�)

𝑛 (𝑥)
in (2.15), the above can be rewritten as:

argmax
𝑠≥0

−
{

𝑍𝑛(𝑠) − 𝑎𝑠 −
√

𝑛ℎ𝑥(𝑠)
}

≤ 𝑥,

where:

𝑍𝑛(𝑠) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

𝑛
�̄�−

̄
𝑥

(

(𝑈𝑛(𝑠) − 𝑈𝑛( ̄
𝑥))(�̄� − 𝑠) − (𝑈𝑛(�̄�) − 𝑈𝑛(𝑠))(𝑠 − ̄

𝑥)

−(𝑈 (𝑠) − 𝑈 (
̄
𝑥))(�̄� − 𝑠) − (𝑈 (�̄�) − 𝑈 (𝑠))(𝑠 −

̄
𝑥)

)

, 𝑠 ∉ [
̄
𝑥, �̄�],

0, 𝑠 ∈ [
̄
𝑥, �̄�],

ℎ𝑥(𝑠) ∶= 𝑈 (
̄
𝑥) − 𝑈 (𝑠) − 𝑉 (𝑥)(

̄
𝑥 − 𝑠).

From here on, we apply the argument of Theorem  1.b, using also for the current case the convergence in Eq.  (A.10). Presently

argmax
𝑠≥0

−
{

𝑍𝑛(𝑠) − 𝑎𝑠 −
√

𝑛ℎ𝑥(𝑠)
}

⇝ argmax
𝑠∈𝐾

{−𝑎𝑠} ,

as in this case the limiting process Z is constantly 0 on 𝐾. The argmax on the right is �̄� if 𝑎 < 0 and 
̄
𝑥 if 𝑎 > 0. Since 𝑥 ∈ (

̄
𝑥, �̄�) it 

follows that

P
(

argmax
𝑠≥0

−
{

𝑍𝑛(𝑠) − 𝑎𝑠 −
√

𝑛ℎ𝑥(𝑠)
}

≤ 𝑥
)

𝑛→∞
⟶ P

(

argmax
𝑠∈𝐾

{−𝑎𝑠} ≤ 𝑥
)

=

{

1 if 𝑎 > 0,
0 if 𝑎 < 0.
13 
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This concludes the proof of (A.18).
Second we prove: 

√

𝑛
(

𝑉 𝛱
𝑛 (𝑥) − 𝑉 (

̄
𝑥,�̄�)

𝑛 (𝑥)
)

= 𝑜𝑝(1). (A.19)

By the definitions of 𝑉 𝛱
𝑛  and 𝑉 (

̄
𝑥,�̄�)

𝑛  in (2.13) and (2.15):
√

𝑛
(

𝑉 𝛱
𝑛 (𝑥) − 𝑉 (

̄
𝑥,�̄�)

𝑛 (𝑥)
)

= 1
�̄� −

̄
𝑥

{

√

𝑛
(

𝑈∗
𝑛 (�̄�) − 𝑈𝑛(�̄�)

)

+
√

𝑛
(

𝑈∗
𝑛 ( ̄
𝑥) − 𝑈𝑛( ̄

𝑥)
)

}

.

Both terms on the right tend to zero by Lemma  3.
We conclude by giving the asymptotic distributions. By the Central Limit Theorem: 

√

𝑛
(

𝑉 (
̄
𝑥,�̄�)

𝑛 (𝑥) − 𝑉 (𝑥)
)

⇝ 𝑁(0, 𝜎2
̄
𝑥,�̄�). (A.20)

The estimators 𝑉 𝛱
𝑛 (𝑥) and 𝑉 𝛱

𝑛 (𝑥) have the same limiting behavior by Slutsky’s lemma and (A.18)–(A.19). □

The proof Theorem  1.c is deferred to the next section because it relies on Lemma  4, Lemma  5 and Proposition  2, which can be 
understood only in the context of Section 4.
Proofs of Section 4

Proof of Proposition  2.  Define:

𝐽𝑛,𝑖 ∶=

(

1 − 1
𝑐𝑡𝑛

)

+ 1
𝑔𝑉 (𝑍𝑖) ∫ 𝑐−1𝑡𝑛

(

1+𝑡𝑛ℎ0(𝑠)
)

{𝑠∈[𝑍𝑖,𝑀], (1+𝑡𝑛ℎ0(𝑠))≤0}

𝑑𝑉 (𝑠)
𝜋
√

𝑠 −𝑍𝑖
, (A.21)

𝛥𝑛,𝑖 ∶=
1

𝑐𝑡𝑛
√

𝑛

(

𝑘(̄𝑥,�̄�)(𝑍𝑖) − E𝐺𝑉
𝑘(̄𝑥,�̄�)(𝑍)

)

.

Using the definition of ℎ0: 
𝑡𝑛
𝑐𝑡𝑛 ∫

𝑀

𝑍𝑖

−
ℎ0(𝑠)𝑣(𝑠)

𝜋
√

𝑠 −𝑍𝑖
𝑑𝑠 = 𝑡𝛥𝑛,𝑖 𝑔𝑉 (𝑍𝑖). (A.22)

Now note that for any 𝑖, using 1 − (1+𝑥)+
𝑐 = − 𝑥

𝑐 + 1 − 1
𝑐 + (1+𝑥)−

𝑐  and (A.21)–(A.22):
𝑔𝑉𝑡𝑛 (𝑍𝑖)

𝑔𝑉 (𝑍𝑖)
− 1 = 1

𝑔𝑉 (𝑍𝑖)

(

∫

𝑀

𝑍𝑖

(

1 −

(

1 + 𝑡𝑛ℎ0(𝑠)
)

+
𝑐𝑡𝑛

)

𝑑𝑉 (𝑠)
𝜋
√

𝑠 −𝑍𝑖

)

(A.23)

= −
𝑡𝑛

𝑐𝑡𝑛𝑔𝑉 (𝑍𝑖) ∫

𝑀

𝑍𝑖

ℎ0(𝑠)𝑣(𝑠)

𝜋
√

𝑠 −𝑍𝑖
𝑑𝑠 + 𝐽𝑛,𝑖 = 𝑡𝛥𝑛,𝑖 + 𝐽𝑛,𝑖.

Through the Taylor expansion log {1 + 𝑥} = 𝑥 − 𝑥2

2 + 𝑥2𝑅(2𝑥) where 𝑅(𝑥) → 0 as 𝑥 → 0, we can express the log-likelihood ratio:
𝑛
∑

𝑖=1
log

𝑔𝑉𝑡𝑛 (𝑍𝑖)

𝑔𝑉 (𝑍𝑖)
(A.24)

=
𝑛
∑

𝑖=1

{

𝑡𝛥𝑛,𝑖 + 𝐽𝑛,𝑖 −
1
2
(𝑡𝛥𝑛,𝑖 + 𝐽𝑛,𝑖)2 + (𝑡𝛥𝑛,𝑖 + 𝐽𝑛,𝑖)2𝑅(2(𝑡𝛥𝑛,𝑖 + 𝐽𝑛,𝑖))

}

.

We start by showing that: 

𝑐𝑡𝑛 = − 2
𝜋 ∫

𝑀

0

√

𝑠
(

1 + 𝑡𝑛ℎ0(𝑠)
)

+ 𝑑𝑉 (𝑠) = 1 + 𝑜
( 1
𝑛

)

. (A.25)

Let 𝑆 ∼ 𝜇𝑉  for 𝜇𝑉  defined in (B.2). Since ∫ ℎ0 𝑑𝜇𝑉 = 0:

𝑐𝑡𝑛 ≥ − 2
𝜋 ∫

𝑀

0

√

𝑠
(

1 + 𝑡𝑛ℎ0(𝑠)
)

𝑑𝑉 (𝑠) = 1.

Now note:

𝑐𝑡𝑛 = − 2
𝜋 ∫ √

𝑠
(

1+𝑡𝑛ℎ0(𝑠)
)

𝑑𝑉 (𝑠)
{𝑠∈[0,𝑀], (1+𝑡𝑛ℎ0(𝑠))>0}

= 1 + 2
𝜋 ∫ √

𝑠
(

1+𝑡𝑛ℎ0(𝑠)
)

𝑑𝑉 (𝑠)
{𝑠∈[0,𝑀], (1+𝑡𝑛ℎ0(𝑠))≤0}

= 1 + E𝜇𝑉

[

|

|

1 + 𝑡𝑛ℎ0(𝑆)|| 𝟏{𝑡𝑛ℎ0(𝑆)≤−1}
]

.

If 𝑡𝑛ℎ0(𝑠) ≤ −1 then: |1 + 𝑡𝑛ℎ0(𝑠)| ≤ |𝑡𝑛ℎ0(𝑠)| ≤ 𝑡2𝑛(ℎ0(𝑠))
2, so that: 

1
2
𝟏{𝑡𝑛ℎ0(𝑠)≤−1} ||1 + 𝑡𝑛ℎ0(𝑠)|| ≤ (ℎ0(𝑠))2𝟏{𝑡𝑛ℎ0(𝑠)≤−1}. (A.26)
𝑡𝑛

14 
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Now E𝜇𝑉

[

ℎ20(𝑆)
]

≤ E𝜇𝑉

[

ℎ2(𝑆)
]

, which by (B.10) is bounded by (4.2), which is finite by assumption. Therefore: 

lim sup
𝑛→∞

1
𝑡2𝑛
E𝜇𝑉

[

|

|

1 + 𝑡𝑛ℎ0(𝑆)|| 𝟏{𝑡𝑛ℎ0(𝑆)≤−1}
]

= 0, (A.27)

by the Dominated Convergence theorem. This concludes the proof of (A.25) as 𝑡2𝑛 = 𝑡2∕𝑛.
By (A.25) and the Central Limit theorem: ∑𝑛

𝑖=1 𝛥𝑛,𝑖 ⇝ 𝑁(0, 𝜎2
̄
𝑥,�̄�). Now note that because the measure induced by 𝑑𝑉  is a 

nonpositive measure (since 𝑉  is decreasing), ∀ 𝑖: 
1

𝑔𝑉 (𝑍𝑖) ∫ 𝑐−1𝑡𝑛
(

1+𝑡𝑛ℎ0(𝑠)
)

{𝑠∈[𝑍𝑖,𝑀], (1+𝑡𝑛ℎ0(𝑠))≤0}

𝑑𝑉 (𝑠)
𝜋
√

𝑠 −𝑍𝑖
≥ 0, a.s. (A.28)

Again by (A.25), by Markov’s inequality and Fubini’s theorem, ∑𝑛
𝑖=1 𝐽𝑛,𝑖 = 𝑜𝑝(1) because ∀ 𝜀 > 0:

P𝐺𝑉

⎛

⎜

⎜

⎝

𝑛
∑

𝑖=1

1
𝑔𝑉 (𝑍𝑖) ∫ 𝑐−1𝑡𝑛

(

1+𝑡𝑛ℎ0(𝑠)
)

{𝑠∈[𝑍𝑖,𝑀], (1+𝑡𝑛ℎ0(𝑠))≤0}

𝑑𝑉 (𝑠)
𝜋
√

𝑠 −𝑍𝑖
> 𝜀

⎞

⎟

⎟

⎠

≤ 𝑛
𝜀 ∫

𝑀

0 ∫

𝑀

𝑧
𝟏{(1+𝑡𝑛ℎ0(𝑠))≤0} 𝑐

−1
𝑡𝑛

(

1 + 𝑡𝑛ℎ0(𝑠)
) 𝑣(𝑠)
𝜋
√

𝑠 − 𝑧
𝑑𝑠 𝑑𝑧

= 𝑛
𝜀𝜋 ∫ 𝟏{(1+𝑡𝑛ℎ0(𝑠))≤0} 𝑐

−1
𝑡𝑛

(

1 + 𝑡𝑛ℎ0(𝑠)
)

𝑣(𝑠)∫

𝑠

0

1
√

𝑠 − 𝑧
𝑑𝑧 𝑑𝑠 = 𝑛

𝜀𝑐𝑡𝑛
E𝜇𝑉

[

|

|

1 + 𝑡𝑛ℎ0(𝑆)|| 𝟏{𝑡𝑛ℎ0(𝑆)≤−1}
] (A.27)

= 𝑜(1).

All together this proves, for 𝛥𝑛 as in (4.6): 
∑𝑛

𝑖=1(𝑡𝛥𝑛,𝑖 + 𝐽𝑛,𝑖) = 𝑡𝛥𝑛 + 𝑜𝑝(1), proving the behavior of the linear term.
For the quadratic term, if max1≤𝑖≤𝑛 |𝑡𝛥𝑛,𝑖 + 𝐽𝑛,𝑖|

P
→ 0, by property of the function 𝑅, the sequence max1≤𝑖≤𝑛 |𝑅(𝑡𝛥𝑛,𝑖 + 𝐽𝑛,𝑖)|

P
→ 0 as 

well. By the triangle inequality:

max
1≤𝑖≤𝑛

|𝑡𝛥𝑛,𝑖 + 𝐽𝑛,𝑖| ≤ |𝑡| max
1≤𝑖≤𝑛

|𝛥𝑛,𝑖| +
𝑛
∑

𝑖=1
|𝐽𝑛,𝑖|.

The first term tends to zero in probability because for {𝑋𝑖, 𝑖 ≥ 1
} i.i.d. random variables with finite variance: max1≤𝑖≤𝑛

{

|𝑋𝑖|
√

𝑛

}

P
→ 0. 

The second term tends to 0 by (A.25) and (A.29).
By the Law of Large numbers, ∑𝑛

𝑖=1 𝛥
2
𝑛,𝑖 → 𝜎2

̄
𝑥,�̄� in probability. Therefore we are left with showing: 

𝑛
∑

𝑖=1
𝛥𝑛,𝑖𝐽𝑛,𝑖

P
→ 0 and

𝑛
∑

𝑖=1
(𝐽𝑛,𝑖)2

P
→ 0. (A.29)

The second follows because ∑𝑛
𝑖=1(𝐽𝑛,𝑖)

2 ≤ max1≤𝑖≤𝑛 |𝐽𝑛,𝑖|
∑𝑛

𝑖=1 𝐽𝑛,𝑖 and the first next follows with the help of the Cauchy–Schwarz 
inequality. □

For the proof of the LAM (locally asymptotically minimax) theorem, the first statement of Theorem  2, and for the proof of 
Theorem  1.c, we need the derivative of the map we are interested in estimating, in our case 𝑉 (𝑥) (cf. definition 1.10 in Bolthausen 
et al. (1999)). This is given in the following lemma.

Lemma 4.  Along the path given in (4.5), as 𝑛 → ∞,
√

𝑛
(

𝑉𝑡𝑛 (𝑥) − 𝑉 (𝑥)
)

→ 𝑡 𝜎2
̄
𝑥,�̄�,

where 𝜎2
̄
𝑥,�̄� is as in (3.4).

Proof.  Because ∫ 𝑠
𝑥

√

𝑤−𝑥
√

𝑠−𝑤
𝑑𝑤 = 𝜋

2 (𝑠 − 𝑥) for every 𝑥, we have, ∀ 𝑥 ∈ [
̄
𝑥, �̄�] by Fubini’s theorem:

∫

𝑀

0
2

√

(𝑤 −
̄
𝑥)+ −

√

(𝑤 − �̄�)+
�̄� −

̄
𝑥

𝑔𝑉 (𝑤) 𝑑𝑤 = − 2
𝜋

1
�̄� −

̄
𝑥

(

∫

𝑀

̄
𝑥 ∫

𝑠

̄
𝑥

√

𝑤 −
̄
𝑥

√

𝑠 −𝑤
𝑑𝑤𝑑𝑉 (𝑠) − ∫

𝑀

̄
𝑥 ∫

𝑠

�̄�

√

𝑤 − �̄�
√

𝑠 −𝑤
𝑑𝑤𝑑𝑉 (𝑠)

)

= − 2
𝜋

1
�̄� −

̄
𝑥 ∫

𝑀

̄
𝑥

𝜋
2
(�̄� −

̄
𝑥) 𝑑𝑉 (𝑠) = 𝑉 (

̄
𝑥) = 𝑉 (𝑥). (A.30)

Using the same computations as done for (A.23) we have:
(

𝑔𝑉𝑡 (𝑧) − 𝑔𝑉 (𝑧)
)

= −
𝑡𝑛
𝑐𝑡𝑛 ∫

𝑀

𝑧

ℎ0(𝑠)𝑣(𝑠)

𝜋
√

𝑠 − 𝑧
𝑑𝑠 +

(

1 − 1
𝑐𝑡𝑛

)

∫

𝑀

𝑧

𝑑𝑉 (𝑠)
𝜋
√

𝑠 − 𝑧
+ ∫ 𝑐−1𝑡𝑛

(

1+𝑡𝑛ℎ0(𝑠)
)

{𝑠∈[𝑧,𝑀], (1+𝑡𝑛ℎ0(𝑠))≤0}

𝑑𝑉 (𝑠)
𝜋
√

𝑠 − 𝑧
.

Because (E𝐺𝑉
𝑘(̄𝑥,�̄�)) ∫

𝑀
0 (𝑔𝑉𝑡 (𝑤) − 𝑔𝑉 (𝑤)) 𝑑𝑤 = 0, using (A.30), we obtain:

√

𝑛
(

𝑉𝑡𝑛 ( ̄
𝑥) − 𝑉 (

̄
𝑥)
)

=
√

𝑛∫

𝑀

0

(

𝑘(̄𝑥,�̄�)(𝑧) − E𝐺𝑉
𝑘(̄𝑥,�̄�)

)(

𝑔𝑉𝑡𝑛 (𝑧) − 𝑔𝑉 (𝑧)
)

𝑑𝑧

= 𝑡
𝑐𝑡𝑛 ∫

𝑀

0

(

𝑘(̄𝑥,�̄�)(𝑧) − E𝐺𝑉
𝑘(̄𝑥,�̄�)

)

(

−∫

𝑀

𝑧

ℎ0(𝑠)𝑣(𝑠)

𝜋
√

𝑠 − 𝑧
𝑑𝑠

)

𝑑𝑧 +
√

𝑛

(

1
𝑐𝑡𝑛

− 1

)

∫

𝑀

0

(

𝑘(̄𝑥,�̄�)(𝑧) − E𝐺𝑉
𝑘(̄𝑥,�̄�)

)

𝑔𝑉 (𝑧) 𝑑𝑧

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0
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+
√

𝑛∫

𝑀

0

(

𝑘(̄𝑥,�̄�)(𝑧) − E𝐺𝑉
𝑘(̄𝑥,�̄�)

)

∫ 𝑐−1𝑡𝑛
(

1+𝑡𝑛ℎ0(𝑠)
)

{𝑠∈[𝑧,𝑀], (1+𝑡𝑛ℎ0(𝑠))≤0}

𝑑𝑉 (𝑠)
𝜋
√

𝑠 − 𝑧
𝑑𝑧

𝑛→∞
⟶ 𝑡∫

𝑀

0

(

𝑘(̄𝑥,�̄�)(𝑤) − E𝐺𝑉
𝑘(̄𝑥,�̄�)

)2
𝑔𝑉 (𝑤) 𝑑𝑤 = 𝑡 𝜎2

̄
𝑥,�̄�.

by (A.22) and (A.27), where we use that 𝑘(̄𝑥,�̄�)(𝑧) − E𝐺𝑉
𝑘(̄𝑥,�̄�) is bounded on [0,𝑀]. □

The proof of Theorem  1.c, is based on the fact that the isotonic estimator is regular on the submodel 𝑡 ↦ 𝐺𝑉𝑡 , i.e. the limit 
distribution of the sequence √𝑛(𝑉𝑛(𝑥) − 𝑉𝐺𝑉𝑡𝑛

(𝑥)) under 𝐺𝑉𝑡𝑛
 is the same, for all 𝑡 ∈ R.

Lemma 5.  The IIE is regular in the submodel defined in (4.5).

Proof.  For clarity of notation, in this proof we denote 𝑈 (𝑥) as: 𝑈𝑉 (𝑥) = ∫ 𝑥
0 𝑉 (𝑦) 𝑑𝑦 and thus 𝑈𝑉𝑡𝑛

(𝑥) = ∫ 𝑥
0 𝑉𝑡𝑛 (𝑦) 𝑑𝑦. We show, under 

𝐺𝑉𝑡𝑛
: √𝑛(𝑉𝑛(𝑥) − 𝑉𝑡𝑛 (𝑥)) ⇝ 𝐿𝑥, which is independent of 𝑡. We use the same steps as in the proof of Theorem 4 in Gili et al. (2024). 

Using the switch relation, we study:
inf

{

𝑠 ≥ 0 ∶ (𝑈𝑛(𝑠) − 𝑈𝑛(𝑥) − 𝑈𝑉𝑡𝑛
(𝑠) + 𝑈𝑉𝑡𝑛

(𝑥)) + (𝑈𝑉𝑡𝑛
(𝑠) − 𝑈𝑉𝑡𝑛

(𝑥) − 𝑉𝑡𝑛 (𝑥)(𝑠 − 𝑥)) − (𝑎𝑠)∕
√

𝑛 is maximal }≤ 𝑥.

Using the same proof of Lemma 1 in Gili et al. (2024) it follows that, under 𝐺𝑉𝑡𝑛
:

√

𝑛(𝑈𝑛(𝑠) − 𝑈𝑛(𝑥) − 𝑈𝑉𝑡𝑛
(𝑠) + 𝑈𝑉𝑡𝑛

(𝑥) ∶ 𝑠 ≥ 0) ⇝ Z𝑥 in 𝓁∞[0,∞).

Furthermore:

𝑈𝑉𝑡𝑛
(𝑠) − 𝑈𝑉𝑡𝑛

(𝑥) − 𝑉𝑡𝑛 (𝑥)(𝑠 − 𝑥) = ∫

𝑠

𝑥

(

𝑉𝑡𝑛 (𝑦) − 𝑉𝑡𝑛 (𝑥)
)

𝑑𝑦 =

{

0, 𝑠, 𝑥 ∈ [
̄
𝑥, �̄�],

< 0, 𝑥 ⩽ �̄� < 𝑠, 𝑠 <
̄
𝑥 ⩽ 𝑥.

Now for 𝑠 = �̄� + 𝜀𝑛 and 𝜀𝑛 ↓ 0 as in the proof of Theorem 4 in Gili et al. (2024) and using the same reasoning as in the proof of 
(A.25), we obtain:

√

𝑛∫

�̄�+𝜀𝑛

�̄�

(

𝑉𝑡𝑛 (𝑦) − 𝑉𝑡𝑛 (�̄�)
)

𝑑𝑦

= −
√

𝑛∫

�̄�+𝜀𝑛

�̄� ∫

𝑦

�̄�
𝑐−1𝑡𝑛

(

1 + 𝑡
√

𝑛
ℎ0(𝑠)

)

+

𝑑𝑉 (𝑠)𝑑𝑦 = −
√

𝑛∫

�̄�+𝜀𝑛

�̄� ∫

𝑦

�̄�
𝑐−1𝑡𝑛

(

1 + 𝑡
√

𝑛
ℎ0(𝑠)

)

𝑑𝑉 (𝑠)𝑑𝑦 + 𝑜

(

1
√

𝑛

)

→ −∞,

since by the proof of Theorem 4 in Gili et al. (2024) we have: √𝑛 ∫ �̄�+𝜀𝑛
�̄� 𝑉 (𝑦) − 𝑉 (�̄�) 𝑑𝑦 → −∞. The same reasoning holds also for: 

√

𝑛 ∫ ̄
𝑥

̄
𝑥−𝜀𝑛

(

𝑉𝑡𝑛 (𝑦) − 𝑉𝑡𝑛 ( ̄
𝑥)
)

𝑑𝑦 → −∞. Using further the same computations as in the proof of Theorem 4 in Ghosal and van der Vaart 
(2017) we conclude:

P
(

√

𝑛
(

𝑉𝑛(𝑥) − 𝑉𝑡𝑛 (𝑥)
)

≤ 𝑎
) 𝑛→∞
⟶ P

(

argmax
𝑠∈[

̄
𝑥,�̄�]

{

Z𝑥(𝑠) − 𝑎𝑠
}

≤ 𝑥
)

. □

Proof of Theorem  1.c (c.f. Theorem 1 in Section 2.3 of Bickel et al. (1998)). The efficient estimator satisfies:
√

𝑛
(

𝑉 (
̄
𝑥,�̄�)

𝑛 (𝑥) − 𝑉0(𝑥)
)

= 𝛥𝑛 + 𝑜𝑝(1)

where 𝑉0 ≡ 𝑉  but this notation clarifies that it coincides with the perturbed 𝑉𝑡 in (4.5) evaluated at 𝑡 = 0. 𝛥𝑛 ⇝ 𝑁(0, 𝜎2
̄
𝑥,�̄�) is the 

linear term in (4.6) in the expansion of 𝛬𝑛(𝑡) ∶=
∑𝑛

𝑖=1 log
𝑔𝑉𝑡𝑛

(𝑍𝑖)

𝑔𝑉 (𝑍𝑖)
. The joint sequence

(
√

𝑛(𝑉𝑛(𝑥) − 𝑉 (𝑥,𝑥)
𝑛 (𝑥)),

√

𝑛(𝑉 (𝑥,𝑥)
𝑛 (𝑥) − 𝑉0(𝑥))

)

is uniformly tight (because marginally so). It suffices to show that every joint limit point under 𝑉0 has independent coordinates. A 
joint limit point takes the form (𝑇 − 𝛥, 𝛥) for (𝑇 , 𝛥) a joint limit of 

(

√

𝑛
(

𝑉𝑛(𝑥) − 𝑉0(𝑥)
)

, 𝛥𝑛

)

 under 𝑉0. We have:
(

√

𝑛
(

𝑉𝑛(𝑥) − 𝑉0(𝑥)
)

, 𝛬𝑛(𝑡)
) 𝑉0
⇝

(

𝑇 , 𝑡𝛥 − 1
2
𝑡2𝜎2

̄
𝑥,�̄�,

)

.

Therefore by Le Cam’s 3rd lemma (e.g. Theorem 6.6 in van der Vaart (1998)):
√

𝑛
(

𝑉𝑛(𝑥) − 𝑉0(𝑥)
)

𝑉𝑡∕
√

𝑛
⇝ 𝐿𝑡, 𝐿𝑡(𝐵) = E𝟏𝐵(𝑇 )𝑒

𝑡𝛥− 1
2 𝑡

2𝜎2
̄
𝑥,�̄�

because √𝑛
(

𝑉𝑡∕√𝑛(𝑥) − 𝑉0(𝑥)
) 𝑛→∞
⟶ 𝑡𝜎2

̄
𝑥,�̄� (see Lemma  4) we conclude:

√

𝑛
(

𝑉𝑛(𝑥) − 𝑉𝑡∕√𝑛(𝑥)
) 𝑉𝑡∕

√

𝑛
⇝ �̄�𝑡, �̄�𝑡(𝐵) = 𝐿𝑡

(

𝐵 − 𝑡𝜎2
̄
𝑥,�̄�

)

.

By regularity of the IIE (see Lemma  5): �̄�𝑡 = �̄�0, independent of 𝑡, so ∀ 𝑡, 𝑢

𝑒𝑖𝑢𝑦𝑑�̄�0(𝑦) = E𝑒𝑖𝑢
(

𝑇−𝑡𝜎2
̄
𝑥,�̄�

)

𝑒𝑡𝛥−
1
2 𝑡

2𝜎2
̄
𝑥,�̄� .
∫
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Choose 𝑡 = −𝑖𝑢 to find: ∫ 𝑒𝑖𝑢𝑦𝑑�̄�0(𝑦) = E𝑒𝑖𝑢(𝑇−𝛥)𝑒−
1
2 𝑢

2𝜎2
̄
𝑥,�̄� . Choose 𝑡 = −𝑖𝑢 + 𝑖𝑣 to find: ∫ 𝑒𝑖𝑢𝑦𝑑�̄�0(𝑦) = E𝑒𝑖𝑢(𝑇−𝛥)+𝑖𝑣𝛥𝑒

1
2
(

𝑣2−𝑢2
)

𝜎2
̄
𝑥,�̄� . Then:

E𝑒𝑖𝑢(𝑇−𝛥)+𝑖𝑣𝛥 = E𝑒𝑖𝑢(𝑇−𝛥)𝑒−
1
2 𝑣

2𝜎2
̄
𝑥,�̄� = E𝑒𝑖𝑢(𝑇−𝛥)E𝑒𝑖𝑣𝛥. □

Proof of Theorem  2.  The proof is a direct application of Theorems 25.20 and 25.21 from van der Vaart (1998), using Proposition 
2 and Lemma  4. The variance of the limiting random variable in (4.7) is given by �̇�(𝜎2

̄
𝑥,�̄�)

−1�̇� = 𝜎2
̄
𝑥,�̄�, where �̇� = 𝜎2

̄
𝑥,�̄� is the derivative 

of the functional of interest and (𝜎2
̄
𝑥,�̄�)

−1 is the Fisher information for 𝑡, given in Proposition  2. □

Appendix B. Efficiency theory

In this section we derive the least favorable submodel (4.5) from the semiparametric score calculus, as in Van Der Vaart (1991) 
(or Chapter 25 of van der Vaart (1998)).

The parameter 𝑉  belongs to the class (c.f. Groeneboom and Jongbloed (1995)), for 
̄
𝑥 < �̄�:

V
̄
𝑥,�̄� =

{

𝑉 ∈ 
̄
𝑥,�̄�, ∶ ∫

∞

0

√

𝑠 𝑑𝑉 (𝑠) = −𝜋
2
, zero on [𝑀,∞)

}

. (B.1)

Because the measure induced by 𝑑𝑉  is not a probability measure, it is convenient to work with its associated probability measure 
𝜇𝑉  defined for every measurable 𝐴 ⊆ [0,∞) by: 

𝜇𝑉 (𝐴) ∶= ∫𝐴
− 2
𝜋
√

𝑠 𝑑𝑉 (𝑠). (B.2)

We consider the associated space of ‘‘underlying’’ probability measures M
̄
𝑥,�̄� ∶= {𝜇𝑉 ∶ 𝑉 ∈ V

̄
𝑥,�̄�} and the space of the ‘‘observed’’ 

probability measures G
̄
𝑥,�̄� ∶= {𝑔𝑉 ∶ 𝜇𝑉 ∈ M

̄
𝑥,�̄�}. The tangent set ̇M

̄
𝑥,�̄� consists of all functions ℎ ∈ L2(𝜇𝑉 ) such that ∫ ℎ𝑑𝜇𝑉 = 0. 

The derivative of the map 𝜇𝑉 ↦ 𝑔𝑉  (the score operator) maps score functions in the tangent set ̇M
̄
𝑥,�̄� into scores in the tangent set 

̇G
̄
𝑥,�̄�. For any ℎ ∈ L1(𝜇𝑉 ) such that − ∫ 𝑀

𝑧
|ℎ(𝑠)|
√

𝑠−𝑧
𝑑𝑉 (𝑠) < ∞, define: 

(𝑇ℎ)(𝑧) ∶= ∫

𝑀

𝑧

ℎ(𝑠)
√

𝑠 − 𝑧
𝑑𝑉 (𝑠). (B.3)

Then the score operator 𝐴𝑉 ∶ ̇M
̄
𝑥,�̄� → ̇G

̄
𝑥,�̄�, for any ℎ ∈ ̇M

̄
𝑥,�̄�, is given by: 

𝐴𝑉 ℎ(𝑧) =
∫ 𝑀
𝑧

ℎ(𝑠)
√

𝑠−𝑧
𝑑𝑉 (𝑠)

∫ 𝑀
𝑧

𝑑𝑉 (𝑠)
√

𝑠−𝑧

=
(𝑇ℎ)(𝑧)
(𝑇 1)(𝑧)

. (B.4)

For instance, for bounded ℎ ∈ ̇M
̄
𝑥,�̄� define the following perturbation: 

𝑑𝑉𝑡(𝑠) = (1 + 𝑡ℎ(𝑠)) 𝑑𝑉 (𝑠). (B.5)

Then:

𝑑
𝑑𝑡

log

{

−∫

𝑀

𝑧

(1 + 𝑡ℎ(𝑠))
𝜋
√

𝑠 − 𝑧
𝑑𝑉 (𝑠)

}

|

|

|

|

|

|𝑡=0

=
∫ 𝑀
𝑧

ℎ(𝑠)
√

𝑠−𝑧
𝑑𝑉 (𝑠)

∫ 𝑀
𝑧

𝑑𝑉 (𝑠)
√

𝑠−𝑧

=∶ 𝐴𝑉 ℎ(𝑧).

We check that 𝐴𝑉  is a linear operator between the L2 spaces claimed above. Linearity is clear. We can check by using the 
Cauchy–Schwarz inequality and that ℎ ∈ L2(𝜇𝑉 ):

∫ (𝐴𝑉 ℎ)2𝑑𝐺𝑉 = ∫

∞

0

⎛

⎜

⎜

⎝

∫ ∞
𝑧

ℎ(𝑠)𝑑𝑉 (𝑠)
√

𝑠−𝑧

∫ ∞
𝑧

𝑑𝑉 (𝑠)
√

𝑠−𝑧

⎞

⎟

⎟

⎠

2
(

− 1
𝜋 ∫

∞

𝑧

𝑑𝑉 (𝑠)
√

𝑠 − 𝑧

)

𝑑𝑧

⩽ ∫

∞

0

⎛

⎜

⎜

⎜

⎜

⎝

√

∫ ∞
𝑧 − ℎ2(𝑠)

√

𝑠−𝑧
𝑑𝑉 (𝑠)

√

∫ ∞
𝑧 − 1

√

𝑠−𝑧
𝑑𝑉 (𝑠)

− ∫ ∞
𝑧

𝑑𝑉 (𝑠)
√

𝑠−𝑧

⎞

⎟

⎟

⎟

⎟

⎠

2
(

− 1
𝜋 ∫

∞

𝑧

𝑑𝑉 (𝑠)
√

𝑠 − 𝑧

)

𝑑𝑧

= − 1
𝜋 ∫

∞

0 ∫

∞

𝑧

ℎ2(𝑠)
√

𝑠 − 𝑧
𝑑𝑉 (𝑠)𝑑𝑧 = − 2

𝜋 ∫

∞

0
ℎ2(𝑠)

√

𝑠𝑑𝑉 (𝑠) = ∫ ℎ2 𝑑𝜇𝑉 < ∞. (B.6)

The function 𝑘(̄𝑥,�̄�) is the influence function of the (regular) estimator (2.15). To show that this estimator is asymptotically 
efficient, it suffices to show that 𝑘(̄𝑥,�̄�) is contained in the closed linear span of the set of all score functions 𝐴𝑉 ℎ. We shall show 
that in fact 𝑘(̄𝑥,�̄�) − E𝑘(̄𝑥,�̄�) = 𝐴𝑉 ℎ0 for ℎ0 given in (4.4). Equivalently, we show that ℎ0 solves 

⎧

⎪

⎨

⎪

(𝑇ℎ0) =
(

𝑘(̄𝑥,�̄�) − E𝐺𝑉
𝑘(̄𝑥,�̄�)

)

⋅ (𝑇 1)

∫ 𝑀
0 −|ℎ0(𝑠)| 𝑑𝑉 (𝑠) < ∞, ∫ 𝑀

0
√

𝑠ℎ0(𝑠) 𝑑𝑉 (𝑠) = 0.
(B.7)
⎩
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Proposition 3.  Under Assumption  1, the solution to (B.7) is given by (4.4).

Proof of Proposition  3.  We show that the function ℎ in (4.3) solves: 𝑇ℎ = 𝑞, for 𝑞 = 𝑘(̄𝑥,�̄�) ⋅ 𝑇 1. Then the solution ℎ0 is found by 
centering ℎ, i.e. ℎ0(𝑧) = ℎ(𝑧) − 𝑚 (since ∫ 𝑀

0
√

𝑠 𝑑𝑉 (𝑠) = − 𝜋
2 ) where 𝑚 is such that:

∫

𝑀

0

√

𝑠 (ℎ(𝑠) − 𝑚) 𝑑𝑉 (𝑠) = 0 ⟹ 𝑚 = − 2
𝜋 ∫

𝑀

0

√

𝑠ℎ(𝑠) 𝑑𝑉 (𝑠)

The equation 𝑇ℎ = 𝑞, for 𝑞 = 𝑘(̄𝑥,�̄�) ⋅ 𝑇 1 is the following Abel’s integral equation:

∫

𝑀

𝑧

ℎ(𝑠)𝑣(𝑠)
√

𝑠 − 𝑧
𝑑𝑠 = 2

√

(𝑧 −
̄
𝑥)+ −

√

(𝑧 − �̄�)+
�̄� −

̄
𝑥 ∫

𝑀

𝑧

𝑣(𝑠)
√

𝑠 − 𝑧
𝑑𝑠

By Theorem 2.1 in Samko et al. (1993) this equation is solvable for ℎ𝑣 ∈ L1[0,𝑀] iff:

𝑧 ↦ ∫

𝑀

𝑧

𝑞(𝑠)
√

𝑠 − 𝑧
𝑑𝑠

is absolutely continuous. Furthermore the unique in L1 solution is given by ℎ(𝑧)𝑣(𝑧) = − 𝑑
𝑑𝑧 ∫

𝑀
𝑧

𝑞(𝑠)
√

𝑠−𝑧
𝑑𝑠, where the derivative is 

understood in the sense of absolute continuity (AC). Moreover, if 𝑞 ∈ AC[0,𝑀], then this condition is satisfied and for 𝑧 ∉ [
̄
𝑥, �̄�]: 

ℎ(𝑧)𝑣(𝑧) = 1
√

𝜋

(

𝑞(𝑀)
√

𝑀 − 𝑧
− ∫

𝑀

𝑧

𝑞′(𝑠)
√

𝑠 − 𝑧
𝑑𝑠

)

. (B.8)

Now we prove that under the given conditions 𝑘(̄𝑥,�̄�) ⋅ 𝑇 1 = 𝑞 ∈ AC[0,𝑀]. Because √(𝑧 − 𝑥)+ = ∫ 𝑧
0

1
2
√

𝑠−𝑥
𝟏𝑠>𝑥 𝑑𝑠 we see that 

𝑘(̄𝑥,�̄�) ∈ AC[0,𝑀]. 𝑇 1 is the 1∕2-fractional integral of 𝑣. Because 𝑣 ∈ AC[
̄
𝑥, �̄�]𝑐 and 𝑣 = 0 on [

̄
𝑥, �̄�], we know that 𝑇 1 ∈ AC[0,𝑀] (c.f. 

property 3.2.(6).(b) pp. 209 in Bonilla et al. (1999)). The product of absolutely continuous functions is absolutely continuous.
Finally we show:

E𝐺𝑉
𝑘(̄𝑥,�̄�) = − 2

𝜋 ∫

𝑀

0

√

𝑠ℎ(𝑠)𝑣(𝑠) 𝑑𝑠.

For the given ℎ in (4.3) we just proved: 

∫

𝑀

𝑧
−
ℎ(𝑠)𝑣(𝑠)
𝜋
√

𝑠 − 𝑧
𝑑𝑠 = 2

√

(𝑧 −
̄
𝑥)+ −

√

(𝑧 − �̄�)+
�̄� −

̄
𝑥

𝑔𝑉 (𝑧). (B.9)

By integrating both sides between 0 and 𝑀 we get that the r.h.s. is E𝐺𝑉
𝑘(̄𝑥,�̄�), whereas the l.h.s.

∫

𝑀

0 ∫

𝑀

𝑧
−
ℎ(𝑠)𝑣(𝑠)
𝜋
√

𝑠 − 𝑧
𝑑𝑠 𝑑𝑧 = ∫

𝑀

0 ∫

𝑠

0
−
ℎ(𝑠)𝑣(𝑠)
𝜋
√

𝑠 − 𝑧
𝑑𝑧 𝑑𝑠 = − 2

𝜋 ∫

𝑀

0

√

𝑠ℎ(𝑠)𝑣(𝑠) 𝑑𝑠.

All together this proves that ℎ0 solves (B.7). □

Lemma 6.  For a fixed 𝜂 > 0, there exist constants 𝑐1, 𝑐2, 𝑐3 > 0 such that, for 𝑧 ∈ [
̄
𝑥, �̄�]𝑐 : 

|ℎ(𝑧)𝑣(𝑧)| ≤ 𝑐1 + 𝑐2 log
(

1

̄
𝑥 − 𝑧

)

𝟏{0<
̄
𝑥−𝑧≤𝜂} + 𝑐3 log

( 1
𝑧 − �̄�

)

𝟏{0<𝑧−�̄�≤𝜂}. (B.10)

Proof.  Because lim𝑧→𝑀 (𝑇 1)(𝑧) = 0, the function 𝑞 in (B.8) satisfies 𝑞(𝑀) = 0. Hence, for 𝑧 ∈ [
̄
𝑥, �̄�]𝑐 :

ℎ(𝑧) = − 1
√

𝜋𝑣(𝑧)

(

∫

𝑀

𝑧

(𝑘(̄𝑥,�̄�))′(𝑇 1)(𝑠)
√

𝑠 − 𝑧
𝑑𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(1)

+∫

𝑀

𝑧

(𝑘(̄𝑥,�̄�))(𝑇 1)′(𝑠)
√

𝑠 − 𝑧
𝑑𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(2)

)

where:

(𝑘(̄𝑥,�̄�))′(𝑠) =
1

(�̄� −
̄
𝑥)

(

1
√

(𝑠 −
̄
𝑥)+

− 1
√

(𝑠 − �̄�)+

)

.

We prove (2) is bounded. By the same proof of Corollary 2.1 in Samko et al. (1993) (pp. 32), since (𝑇 1) ∈ AC[0,𝑀] (see proof 
of Proposition  3), lim𝑧→𝑀 𝑣(𝑧) = 0, and denoting by I 12 (𝑓 ) the half–integral of 𝑓 (see Samko et al. (1993) for an introduction to 
fractional calculus):

𝑑
∫

𝑀 𝑣(𝑠) 𝑑𝑠
√

= ∫

𝑀 𝑣′(𝑠) 𝑑𝑠
√

− lim
𝑠→𝑀

𝑣(𝑠)
√

= I
1
2 (𝑣′),
𝑑𝑧 𝑧 𝑠 − 𝑧 𝑧 𝑠 − 𝑧 𝑠 − 𝑧
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where the derivative is understood in the sense of absolute continuity (AC). Thus (2) coincides with I 12 (𝑘(̄𝑥,�̄�) I
1
2 (𝑣′)). By Theorem 

3.6 in Samko et al. (1993), I 12 ∶ L𝑝 ↦ 𝐻1∕2−1∕𝑝, where 𝐻𝛼 denotes the space of Hölder continuous functions of degree 𝛼. Thus 
if 𝑘(̄𝑥,�̄�) I

1
2 (𝑣′) ∈ L𝑝 for 𝑝 > 2 we obtain the claim. Because 𝑘(̄𝑥,�̄�) is bounded we show I 12 (𝑣′) ∈ L𝑝 for 𝑝 > 2. By theorem 3.5 

in Samko et al. (1993), I 12 (𝑣′) ∈ L𝑞∕(1−𝑞∕2) if 𝑣′ ∈ L𝑞 . Because 𝑣 is Lipschitz on [ ̄𝑥, �̄�]
𝑐 and 0 on [

̄
𝑥, �̄�], ∃ 𝑞 > 1 such that 𝑣′ ∈ L𝑞 . As 

𝑞 > 1 ⟺ 𝑞∕(1 − 𝑞∕2) > 2, I 12 (𝑣′) ∈ L𝑝 for some 𝑝 > 2 and we obtain the claim.
Regarding the absolute value of (1), using the fact that (𝑇 1)(𝑠) = − 𝜋

2 𝑔𝑉 (𝑠), which is bounded as well as 𝑣:
|

|

|

|

− 1
√

𝜋 ∫

𝑀

𝑧∨
̄
𝑥

(𝑇 1)(𝑠)
√

(𝑠 −
̄
𝑥)(𝑠 − 𝑧)

𝑑𝑠
|

|

|

|

≲
|

|

|

|

∫

𝑀

𝑧∨
̄
𝑥

𝑑𝑠
√

(𝑠 −
̄
𝑥)(𝑠 − 𝑧)

|

|

|

|

.

For 𝑧 > �̄� the previous display is bounded. For 𝑧 <
̄
𝑥 it is upper bounded (up to constants) by:

|

|

|

|

sin−1
(√

𝑀 − 𝑧

̄
𝑥 − 𝑧

)

|

|

|

|

= 2 log
√

𝑀 − 𝑧

̄
𝑥 − 𝑧

+ 𝑂(1) + 𝑂
(

̄
𝑥 − 𝑧
𝑀 − 𝑧

)

as 𝑧 ↑
̄
𝑥.

The integral ∫ 𝑀
𝑧∨�̄�

(𝑇 1)(𝑠)
√

(𝑠−�̄�)(𝑠−𝑧)
𝑑𝑠 can be handled analogously. □

Minimization algorithm to find 𝑄𝑉𝑛  projection of the naive estimator

Algorithm 1: Compute 𝑉 𝑎∗
𝑛 ≡ 𝑉 𝛱

𝑛

Input: vector observations 𝐙 and Algorithm 2: Compute 𝑉 𝑎
𝑛 .

Output: 𝑉 𝑎∗
𝑛 ≡ 𝑉 𝛱

𝑛
Using the preferred minimization procedure of the reader: 
𝑎∗ = argmin𝑎∈R+ 𝑄𝑉𝑛 (𝑉 𝑎

𝑛 ) = argmin𝑎∈R+ ∫ ∞
0 𝑉 𝑎

𝑛 (𝑥)(𝑉
𝑎
𝑛 (𝑥) − 2𝑉𝑛(𝑥)) 𝑑𝑥,

where 𝑉 𝑎
𝑛  is computed using Algorithm 2.

Algorithm 2: Compute 𝑉 𝑎
𝑛 .

Input: 𝑎 > 0, vector observations 𝐙.
Output: 𝑉 𝑎

𝑛
Compute 𝑈𝑛 and 𝑈∗

𝑛 , the least concave majorant of 𝑈𝑛.
Initialize an evaluation grid 𝐱 =

[

𝑥1,… , 𝑥𝑁
]

.
L-LCM Compute the restricted Least Concave Majorant of 𝑈𝑛 from the Left, 𝑙𝑈∗

𝑛 .
Initialize appropriately 𝑙𝑈∗

𝑛 , and 𝑖 = 1. Let (𝑈∗
𝑛 )

′ be the r.h.s. derivative of 𝑈∗
𝑛 .

while (𝑈∗
𝑛 )

′(𝑥𝑖) > 𝑎 do
𝑙𝑈∗

𝑛 (𝑥𝑖) ← 𝑈∗
𝑛 (𝑥𝑖)

𝑖 ← 𝑖 + 1

𝑖∗ = max{𝑖 ∈ {1,… , 𝑁} ∶ (𝑙𝑈∗
𝑛)

′(𝑥𝑖) > 𝑎}
for 𝑗 ∈ {𝑖∗ + 1,… , 𝑁} do

𝑙𝑈∗
𝑛 (𝑥𝑖) ← 𝑎 ⋅ 𝑥𝑖

-LCM Compute the restricted Least Concave Majorant of 𝑈𝑛 from the Right, 𝑟𝑈∗
𝑛 .

Initialize appropriately 𝑟𝑈∗
𝑛 , and 𝑖 = 𝑁 .

while (𝑈∗
𝑛 )

′(𝑥𝑖) < 𝑎 do
𝑟𝑈∗

𝑛 (𝑥𝑖) ← 𝑈∗
𝑛 (𝑥𝑖)

𝑖 ← 𝑖 − 1

𝑖∗ = min{𝑖 ∈ {1,… , 𝑁} ∶ (𝑟𝑈∗
𝑛)

′(𝑥𝑖) < 𝑎}
for 𝑗 ∈ {1,… , 𝑖∗ − 1} do

𝑟𝑈∗
𝑛 (𝑥𝑖) ← 𝑎 ⋅ 𝑥𝑖

𝑖�̄� = argmin𝑖 ∶ 𝑥𝑖≥�̄�{|𝑥𝑖 − �̄�|}
𝑖
̄
𝑥 = argmin𝑖 ∶ 𝑥𝑖≤̄

𝑥{|𝑥𝑖 − ̄
𝑥|}

if 𝑥𝑖∗ <
̄
𝑥 or 𝑥𝑖∗ > �̄� then

𝑉 𝑎
𝑛 =

⎧

⎪

⎨

⎪

⎩

(𝑙𝑈∗
𝑛)

′(𝑥𝑖) for 𝑖 ∈ {1,… , 𝑖
̄
𝑥 − 1}

𝑎 for 𝑥𝑖 ∶ 𝑖 ∈ {𝑖
̄
𝑥,… , 𝑖�̄�}

(𝑟𝑈∗
𝑛)

′(𝑥𝑖) for 𝑖 ∈ {𝑖�̄� + 1,… , 𝑁}

else if 𝑥𝑖∗ ∈ [
̄
𝑥, �̄�] then

𝑉 𝑎
𝑛 =

{

(𝑈∗
𝑛 )

′(𝑥𝑖) for 𝑖 ∈ {1,… , 𝑖
̄
𝑥 − 1} ∪ {𝑖�̄� + 1,… , 𝑁}

𝑎 for 𝑥𝑖 ∶ 𝑖 ∈ {𝑖
̄
𝑥,… , 𝑖�̄�}
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