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Executive Summary

This report presents a thesis research into outbound distribution strategies in the downstream supply
chain of a large fast-moving consumer goods (FMCG) company. The focus is on evaluating the inte-
gration of direct distributions from production plants alongside the existing conventional two-echelon
distribution structure with usage of centralized distribution centers. The research was initiated in collab-
oration with Procter & Gamble (P&G), aiming to identify cost-efficient and sustainable solutions within
their European distribution network. The case study centers on shipments of Category X and Category
Y products from two manufacturing plants to customers in the Benelux market.
A mathematical optimization model was developed and implemented in Python using P&G’s historical
shipment data, to assess the impact of allowing direct plant shipments (DPS) in parallel to the regular
routing via distribution centers (DCs).

The research follows a Research and Design methodology. After reviewing literature on supply chain
management, hybrid distribution strategies and modeling approaches, a current state analysis of P&G’s
supply chain was conducted to identify modeling requirements and contextual constraints. These in-
sights informed the formulation of a flow-based two-echelon vehicle routing problem (2E-VRP) that jointly
optimizes logistics cost and emissions. The model incorporates practical constraints such as loading
thresholds, product eligibility, and customer-specific demand profiles. A structured set of scenarios and
configurations was then used to evaluate the results on several key performance indicators, including
logistics cost, emissions, service level performance, and stock allocation efficiency.

The results demonstrate that hybrid distribution can offer substantial logistics cost savings, especially
for high-volume, long-distance flows. In experiments where DPS was allowed as a distribution method
next to the two-echelon DC-based shipments, logistics costs decreased by up to 43.1% for long-haul
routes to customers in The Benelux with Category Y products from Plant 2, and by 15.8% for shorter-
distance, lower-volume routes like Category X products from the nearer located Plant 1. Service level
performance also improved consistently, with average gains of +1.0 to +1.5 percentage points across all
scenarios, seeming small but impacting greatly the commercial profit. DPS integration can additionally
relieve pressure on the DC by reallocating DPS volume to the plant, thereby improving stock allocation
efficiency and reducing the total weekly logistics costs by up to 4.8%. A break-even analysis confirmed
that the viability of shipping demand as DPS is highly route-specific, with required minimum volumes
ranging from 5 to 28 floor positions (FP) as most cost-efficient solution, depending on distance and
demand characteristics. These findings initially highlight that uniform Full Truckload (FTL) thresholds
are suboptimal, and that route-level differentiation enhances cost efficiency.

However, the environmental performance of DPS is significantly more nuanced. While average emis-
sions decreased by up to 11.7% in high-volume, long-distance cases, particularly for Category Y with
high vehicle utilization, these environmental gains did not generalize across all configurations. For short
transport distances on Category X shipments and scenarios with low FTL thresholds, emissions some-
times increased due to reduced vehicle fill rates (VFR) with increased usage of DPS. Notably, lowering
the FTL threshold led to greater DPS adoption but often worsened environmental outcomes. The model
consistently identified two-echelon flows as a vital aspect of an emission-optimal strategy, due to their
superior vehicle utilization and consolidation. This counterintuitive yet robust result, confirmed through
scalarization and e-constraint sensitivity analyses, demonstrates that maximizing DPS share as a cost-
efficient solution does not inherently support sustainability goals under current system conditions.

A central insight from the analysis is that cost-optimal and sustainability-optimal routing structures may
diverge. While customer-specific DPS thresholds and selective decentralization reduce logistics costs,
they often come at the expense of emissions performance. Without additional policy levers, such as
route-level emissions caps, minimum VFR constraints, or decentralized incentives, carbon pricing alone
does not sufficiently promote environmentally beneficial DPS use in the model. This underscores a
fundamental trade-off in hybrid distribution systems: DPS improves cost and service performance un-
der the right conditions, but its environmental benefits are conditional and require more than economic
optimization to be realized.
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These findings give direct implications for practice. To support a sustainable hybrid distribution strategy,
companies like P&G must adopt a cross-functional approach that balances economic and environmen-
tal objectives. This includes using differentiated DPS thresholds, aligning forecasting and planning of
stock allocation strategies with DPS implementation and customers’ demand profiles, and integrating
explicit emissions constraints into operational planning. A nuanced and policy-aware application of DPS
is essential to achieve long-term gains across the multiple key performance indicators cost, service, sus-
tainability, and inventory performance dimensions.

Beyond its practical relevance, this research contributes to academic literature on hybrid distribution
strategies by addressing the integration of direct plant shipments in a regional, cross-border FMCG con-
text. It introduces a flow-based adaptation of the two-echelon vehicle routing problem (2E-VRP) that
jointly optimizes logistics cost and emissions, while accounting for real-world constraints such as SKU
eligibility, FTL thresholds, and demand variability. This extends on existing similar problems that solely
focus on cost optimization. By demonstrating the trade-offs between cost and sustainability within a hy-
brid distribution network, the study highlights the need for integrated environmental constraints, offering
a bridge between theoretical modeling and practical decision-making in complex supply chains.



Nomenclature

Frequently Used Abbreviations

Abbreviation Definition

2E Two-Echelon

2E-VRP Two-Echelon Vehicle Routing Problem
3PL Third-Party Logistics

AQOV Advanced Order Visibility

ATW Access Time Windows

CD Cross-Docking

CF Customer Freight

CLP Customer Load Preparation

CRM Customer Relationship Manager
DC Distribution Center

DPS Direct Plant Shipments

EOQ Economic Order Quantity

FE First-Echelon

FEFO First Expired, First Out

FP Floor Positions

FTL Full Truckload

Cat X&Y Category X & Category Y (categories in scope)
ISF Inter Site Freight

KPI Key Performance Indicators

LTL Less-Than-Truckload

MILP Mixed-Integer Linear Programming
OSA On-Shelf Availability

SCM Supply Chain Management

SE Second-Echelon

SKU Stock Keeping Unit

SNO Supply Network Operations

SS Safety Stock

VFR Vehicle Fill Rate

VRP Vehicle Routing Problem
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Introduction

In today’s fast-moving and competitive market, companies are constantly looking for ways to make their
supply chains more efficient, flexible and sustainable. One of the key challenges in doing so is figuring
out the most efficient way of distributing their products through the supply chain. Traditionally, many
supply chains rely on multi-echelon networks with distribution centers (DCs), but this is not always the
most efficient or sustainable option, especially when customer demand or shipment volumes vary. When
searching for efficient distribution, interest has grown in utilizing hybrid distribution strategies, which
combine different delivery methods like distributions directly from the plant with distributions via multi-
echelon networks. Hybrid strategies could offer companies a better balance between economic and
environmental costs and delivery service to the customer.

This research will explore the potential and the effect of integrating such hybrid approaches through an in-
depth case study within the supply chain operations of Procter & Gamble in France and The Benelux. By
assessing both the practical feasibility and strategic impact of integrating direct shipments alongside multi-
echelon distributions, this research aims to contribute to the existing knowledge on hybrid distributions in
the literature, and provide actionable insights for building more efficient and sustainable supply networks.
This introductory section will outline the background and context of the research and the case study at
Procter & Gamble, and state the research objective, research questions and content of the report.

1.1. Background Procter & Gamble

Procter & Gamble (P&G) is a leading global consumer goods company with a commitment to innovation,
high quality and sustainability (Procter & Gamble, 2023). Founded in 1837, the company established
a strong foundation in more than 180 countries, offering products and new initiatives that improve daily
life of their consumers. P&G offers a wide range of categories including beauty, grooming, health care,
fabric care, home care, baby and family care, with a mission to deliver superior value to consumers
while fostering long-term growth and development. As the company continues to evolve in response to
changing market dynamics, its robust supply chain practices play a critical role in ensuring efficiency,
sustainability, and resilience in delivering high-quality products to millions of households worldwide.

1.1.1. Supply Network Operations

Supply Network Operations (SNO) is the department that is responsible for all critical processes of align-
ing demand and supply through collaborative planning, and ensuring shipments from P&G’s warehouses,
plants and distribution centers, by means of customer orders and transportation methods. The entire sup-
ply chain integrates the various functions, including sales, marketing, finance and production, to create
a unified plan to optimize inventory levels, enhance service levels, and improve overall operational effi-
ciency. The SNO process enables the company to respond swiftly to market changes, accurately meet
customer demands, and effectively manage resources. This holistic approach not only drives profitability
but also supports the company’s commitment to sustainability by maximizing use of resources through-
out the supply chain (Procter & Gamble, 2023).

Procter & Gamble distributes their products across the entire world. In Europe, SNO is divided in clusters
to manage the market operations efficiently. This research focuses on one specific cluster: France & The
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Benelux (FBNL). Next to the geographical division, the selling brands are operated through five industry-
based sector business units: Baby, Feminine and Family Care; Beauty; Health Care; Grooming; and
Fabric and Home Care (Procter & Gamble, 2025). The products are produced in different plants all over
Europe, often sector-specific. From the plants, the products are distributed to P&G’s DC’s, from where
orders are shipped Business-to-Business (B2B) to DC’s of P&G’s customers. The scope of this research
will be within the FBNL cluster for products only of two categories, from now on named as Category X &
Category Y, specifically shipped to customers in the Benelux (BNL).

1.2. Problem Statement and Trigger for Research

Within P&G’s supply chain, the need to continuously improve operational efficiency has become increas-
ingly pressing. In the current market context of rising costs, sustainability and evolving customer expec-
tations, traditional distribution strategies are under strain. The multi-echelon model, where goods are
shipped from production plants to distribution centers (DCs), and subsequently dispatched to customers,
has long been the backbone of P&G’s supply network. However, several operational challenges now
underscore the urgency to reassess this model.

Firstly, there is growing internal pressure to reduce logistics costs and increase cost-effectiveness across
the European network. With fluctuating demand levels and shipment volumes across markets, the cur-
rent centralized model does not always allow for the most economically optimal routing of goods. Po-
tentially, direct shipments from plants could offer a more flexible and cost-efficient alternative for certain
routes or customer segments, yet these have not been structurally integrated in all existing planning
frameworks.

Secondly, the current reliance on DCs creates operational bottlenecks, like pressure on space and out-
bound transport scheduling. During peak seasons or in times of supply disruptions, this pressure can
translate into delays and suboptimal service levels. By allowing a more dynamic use of direct shipments
alongside conventional flows, hybrid distribution strategies could alleviate this burden and release valu-
able capacity within the DCs.

Finally, service level performance remains a top priority for P&G to deliver their superior quality. On-
time delivery, responsiveness to changing customer requirements, and differentiated service for strategic
customers are essential metrics for customer satisfaction. A hybrid distribution strategy could provide the
opportunity to design more agile and responsive delivery setups that can better meet specific customer
needs.

In light of these challenges, P&G is seeking to explore hybrid distribution strategies that combine the
benefits of direct shipments from plants with the robustness of the multi-echelon network. While it sounds
promising in theory, the actual implementation of such strategies involves complex trade-offs between
cost, service, and operational feasibility. This research aims to investigate these trade-offs and assess
the potential for a structurally integrated hybrid distribution model within P&G’s supply chain.

1.3. Background and Rationale from the Literature

Scientific research into the facets of supply chain management and the utilization of distribution ap-
proaches is done in chapter 3. An analysis of the existing literature gives valuable insights and moreover
leads to knowledge gaps where this research jumps in. This section contains a concise rationale from
the literature review to give background to the proposed research objective and questions.

Supply chain management (SCM) has undergone significant transformations driven by evolving market
demands, technological advancements, and the increasing emphasis on sustainability. The fundamental
elements of SCM, such as creating customer value, enhancing competitive advantage, and maintaining
inter-organizational collaboration, remain relevant. In the realm of logistics management, various distri-
bution network strategies, including direct shipments, multi-echelon distribution, and cross-docking, offer
unique advantages and face specific challenges (Dondo et al., 2011; Potoczki et al., 2024). The integra-
tion of these strategies into hybrid distribution models has been highlighted as a potential strategy for
optimizing overall supply chain efficiency (Azizi & Hu, 2020; Musa et al., 2010). The Vehicle Routing
Problem (VRP) and its more complex variants, such as the two-echelon vehicle routing problem (2E-
VRP), provide robust frameworks for analyzing and optimizing distribution networks (Sluijk et al., 2023;
Zhou et al., 2024). Including practical constraints and sustainability metrics into these models can fur-
ther enhance their applicability to real-world scenarios, ensuring more efficient, resilient, and sustainable
supply chain networks.
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Considering the background of literature, this research aims to evaluate the impact of integrating direct
plant shipments alongside two-echelon distribution methods as a hybrid distribution strategy to improve
supply chain efficiency. Academically, this research contributes to the existing literature by addressing
several gaps. It explores the integration of hybrid distribution strategies, specifically integrating direct
shipments within a multi-echelon system, an area that has not been extensively studied. Additionally,
while prior studies often focus on urban logistics, this research extends the analysis to regional cross-
border distribution networks, providing insights in a different operational context. Furthermore, this study
will also assess the trade-off between logistics cost optimization and sustainability metrics such as car-
bon emissions, alongside the impact on customer service level, network and storage impacts that hybrid
distribution strategies cause. While service level is frequently mentioned as a conceptual performance
dimension, few empirical studies have quantified how hybrid distribution structures affect delivery reliabil-
ity, fulfillment rates, or responsiveness, especially in larger, cross-border supply chains. By considering
these factors together, this research provides a more in-depth assessment of the effects of integrating
direct shipments within an existing distribution framework.

1.4. Research Scope: A Case Study at P&G

In the FBNL cluster, P&G has established two major DCs in Belgium and Northern France to serve the
Benelux and French markets, respectively.

producing Category X and Category Y products for FBNL, other production plants are given in Table 1.1.

Table 1.1: Cluster FBNL Overview

Main Production Plants

Other Production Plants

Main Distribution Centers (DCs)

The map in Figure 1.1 gives a schematic overview of the product flow from the given plants. The orange
lines give the flow of Category X products that are shipped from plants to the DCs. The green lines give
the flow of Category Y products,

This research focuses solely of the production plants Plant 1 and Plant 2, since they account for the
largest segment of Category X and Category Y (Cat X&Y) products. Both plant locations have a slightly
different physical structure, which will be elaborated on here.

[Figure anonymized for confidentiality reasons]

Figure 1.1: Plants and Flows for Category X and Category Y to DCs

The hub in Plant 1 consists of more than a plant, because it has an automated warehouse located directly


vanderhulst.tp
Rectangle

vanderhulst.tp
Rectangle

vanderhulst.tp
Rectangle

vanderhulst.tp
Rectangle

vanderhulst.tp
Rectangle

vanderhulst.tp
Rectangle

vanderhulst.tp
Rectangle

vanderhulst.tp
Rectangle

vanderhulst.tp
Rectangle

vanderhulst.tp
Rectangle


1.4. Research Scope: A Case Study at P&G 4

next to the plant. Category X Segment A products that are produced in this plant, are automatically
packed on pallets and stored in the DC next to the plant. These pallets are shuttled to the DC 1 before
they are shipped to BNL customers. Next to Category X Segment A products produced in Plant 1, the
Plant 1 hub has other import flows of Category X products from external plants, and export flows to
external markets.

[Figure anonymized for [Figure anonymized for
confidentiality reasons] confidentiality reasons]
Figure 1.2: Product Flows at the Plant 1 Hub Figure 1.3: Product Flows at the Plant 2 Hub

Figure 1.2 gives an overview of the Plant 1 hub. The inflow of products in Plant 1 consists of 3 streams,
which are given in the pink arrows:

1. Category X Segment A SKUs products from Plant 1;

2. Category X Segment SKUs from plants outside Europe, entering Plant 1 via transshipment at the
import DC;

3. Category X Segment SKUs from European plants that are shipped to non-European markets.

The dotted line shows that external plants ship products from the Category X category and other cate-
gories to DC 1 as well, which further serves the Benelux customers.

The outflow of products from the hub can be given in 2 main streams, given in blue arrows:

1. Shipments to customer DCs in the Benelux via DC 1;

2. Shipments to other P&G sites, including Plant 2, to serve French customers and markets outside
FBNL.

Figure 1.3 gives an overview of the hub Plant 2. The inflow of products in Plant 2 DC consists of:

1. Category Y Segment A SKUs products from Plant 2;
2. Category Y Segment SKUs from external plants to distribute to FBNL market.

It is again visible that external Category Y plants also ship to DC 1 directly to stock inventory there for
shipments to Benelux customers.

The outflow of products is given with purple lines:

1. Shipments to customer DCs in the Benelux via DC 1;
2. Shipments to customer DCs in France and other P&G sites to serve markets outside FBNL.

The goal of this study is to optimize the supply chain by investigating the opportunity to integrate Direct
Plant Shipments (DPS) from the two production hubs directly to customer DCs in The Benelux (BNL).
These direct flows, schematically represented by the green arrows in Figure 1.2 and Figure 1.3, would
bypass the intermediate DC 1. Multiple stakeholders have emphasized the strategic importance and
operational potential of this integration.

To systematically assess this opportunity, four distinct DPS demand scenarios are defined. These sce-
narios differ based on the product category (Category X or Category Y), the origin hub (Plant 1 or Plant
2), and whether only locally produced products or also stored imports are included. The configurations
are as follows:

+ C1-Plant 1 Production Only: Direct shipments to Benelux customers of Category X Segment A
SKUs produced at Plant 1 (inflow 1 in Figure 1.2).

* C2 - Plant 1 Production + Storage: Direct shipments from Plant 1 of both produced Category X
Segment A SKUs and imported stored Category X SKUs (inflow 1, 2 & 3 in Figure 1.2).



1.5. Objective and Research Questions 5

* C3 - Plant 2 Production Only: Direct shipments to Benelux customers of Category Y Segment A
SKUs produced at Plant 2 (inflow 1 in Figure 1.3).

+ C4-Plant 2 Production + Storage: Direct shipments from Plant 2 of both produced and stored/im-
ported Category Y SKUs (inflow 1 & 2 in Figure 1.3).

These scenarios are designed to reflect realistic internal logistics options for enabling or restricting DPS
flows. They serve as the foundation for the experiments described in chapter 6, where each scenario is
evaluated under external conditions to determine its operational and strategic value.

An important requirement for a direct plant shipment is the order volume. The specifics of FTL are mea-
sured in the number of pallets and floor positions, which are elaborated on in chapter 4. Assessment will
be required of which specific customers order specific products in the right order volumes. For these po-
tential direct plant shipments, three key performance indicators (KPI's) will be assessed: cost (including
logistics costs and emissions), service level, and cash (stock allocation efficiency) (Desmet, 2018). Since
not all products are ordered in sufficient volumes, implementation of DPS will lead to hybrid distribution
methods to customers. Customers can receive direct shipments from Plant 1 and Plant 2, next to the
conventional shipments with consolidated orders from DC 1. This research therefore focuses not only
on potential economic and environmental benefits, but also on how DPS affects inventory distribution
(e.g., pressure on the DC) and customer service performance. The choice for these KPI's is obtained
form previous studies and the literature (see subsection 3.3.1).

1.5. Objective and Research Questions

The objective of this research is to evaluate the impact of integrating direct plant shipments (DPS) into
the existing two-echelon distribution network as a hybrid strategy, with the aim of optimizing performance
across the three interconnected pillars of the supply chain triangle: cost (including logistics costs and
emissions), service level, and cash (stock allocation efficiency) (Desmet, 2018).

This study builds upon both academic literature and industry practices. It starts with a comprehensive
literature review on current distribution methods, particularly focusing on the roles and challenges of
using distribution centers versus direct plant shipments in large FMCG networks. It will then explore the
factors influencing the feasibility and effectiveness of integrating new distribution methods, identifying
the key performance indicators and requirements through desk research and a stakeholder analysis.
Simultaneously, the research will analyze Procter & Gamble’s current supply chain setup in the France
and Benelux (FBNL) region to identify practical constraints and opportunities. Subsequently, a modeling
framework will be developed to evaluate hybrid configurations with an experimental design. The model
aims to simulate and compare network performance under several DPS configurations, focusing on the
three KPI’s.

This research objective has led to a main research question for this thesis and sub-questions to structure
the research and to ensure the investigation of both the theoretical and practical aspects of a hybrid
distribution strategy. The first four questions will entail the extensive literature review and analysis of
P&G’s current practices, the fifth question leads to the development and implementation of a suitable
modeling approach and the final sub-question will assess the potential benefits and impacts of a hybrid
strategy. In-depth research of all sub-questions leads to answering the main research question:

What is the impact of integrating direct plant shipments in an existing two-echelon distribution network - as
a hybrid strategy - on logistics and environmental costs, service level performance, and stock allocation
efficiency in a cross-border supply chain?

To answer the main research question (MRQ), the following sub-questions (SQ) are formulated:

1. What are the current logistical processes and challenges associated with using distribution centers
versus direct plant shipments, and how can their efficiency be measured?

2. What is a suitable modeling approach to evaluate the added value of direct shipping in hybrid
distribution strategies, and what theoretical requirements should be considered when modeling a
supply chain?

3. What is the current practice of P&G’s distribution model in the FBNL region, and what are the
opportunities and limitations for integrating a hybrid distribution approach that includes direct plant
shipments?

4. What are the key design requirements for modeling the integration of direct shipments into P&G’s
hybrid distribution network, considering both theoretical foundations and the practical conditions
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for customer eligibility?

5. How should the proposed modeling approach be structured to evaluate the impact of direct shipping
on supply chain efficiency?

6. How do different configurations of integrating direct plant shipments affect logistics and environ-
mental costs, service level, and stock allocation in the modeled hybrid distribution scenarios?

The first two SQ’s are answered in section 3.6. SQ3 and SQ4 are answered in section 4.5. SQ5 is
answered in section 5.6, and final SQ6 is answered in section 7.9. The MRQ will be answered in the final
conclusion, in chapter 8. In chapter 2, the methodology and full framework for answering the research
questions is further explained. It will furthermore explain why a case study approach is suitable for this
research, how data is collected and evaluated, and it gives a schematic overview of how the model
solving approach will look like.

1.6. Relevance and Academic Contribution

This thesis contributes to the academic field of supply chain management by addressing three key gaps
identified in the literature. First, while hybrid distribution strategies that combine direct plant shipments
(DPS) with two-echelon networks have been conceptually explored, few studies have developed and
evaluated such models across multiple performance dimensions. This research presents a structured
framework to assess hybrid distribution through a flow-based adaptation of the two-echelon vehicle rout-
ing problem (2E-VRP), explicitly considering cost, environmental, and service objectives. Second, the
study broadens the scope of performance evaluation by incorporating emissions and service reliability
alongside logistics costs. These dimensions are often discussed in theory but rarely integrated into op-
erational models of hybrid networks. This approach allows for a more comprehensive assessment of
supply chain performance. Third, whereas most existing work focuses on last-mile or urban logistics,
this thesis shifts the focus to regional, cross-border supply chains within a multinational FMCG context.
The model incorporates practical constraints such as SKU eligibility, full-truckload (FTL) thresholds, and
customer-specific policies, demonstrating how theoretical models can be adapted to real-world complex-
ities.

By applying the lens of the supply chain triangle, balancing cost, service, and cash, this research in-
troduces a structured and holistic evaluation of hybrid distribution strategies. Using P&G’s cross-border
supply chain in the FBNL region as a real-world case study, the results aim to provide not only operational
recommendations but also strategic insights into how hybrid logistics models are efficient in multinational
settings. As such, this work bridges theoretical modeling, stakeholder impact, and practical implementa-
tion, offering valuable contributions to both academic research and industry application.



Methodology

This section will outline the full methodology of the research, including the research framework and case
study approach, data collection and data analysis and the modeling and experimental approach.

2.1. Full Research Framework

To start with a summarizing overview of the research, Figure 2.1 presents the complete research frame-
work. This figure integrates the methodological components, connecting the problem definition, research
questions, and two-phased research approach to the modeling and experimental design. It shows how
the Research phase lays the groundwork through literature review, stakeholder analysis, and case study
exploration, while the Design phase translates these findings into a flow-based 2E-VRP optimization
model. The framework also highlights the feedback loops between the analysis and model design to the
MRQ and further outcomes.

Problem: Evaluate impact of integrating DPS into conventional two-
echelon distribution network to increase supply chain efficiency

Scientific Gap: hybridity of multiple distribution methods on multiple KPI's|
with adding to unexplored service and cash, and reflecting undefined
complexities of large-scale supply chains instead of urban last-mile

Discussion and Limitations
Further Research Directions
Recommendations P&G

part of P&G’s supply chain as a case study

[Objective: Investigate integration of DPS on multiple defined KPI's, using]

MRQ: What is the impact of integrating direct plant shipments in an existing two-echelon distribution network - Conclusion
— as a hybrid strategy - on logistics and environmental costs, service level performance, and stock allocation
efficiency in a cross-border supply chain?

KPIs Cost Service Cash

p
Research Phase Methodology -
SQ1: What are the current logistical processes and challenges associated with using
distribution centers versus direct plant shipments, and how can their efficiency be measured? [ Literature Review J
SQ2: What is a suitable modeling approach to evaluate the added value of direct shipping in
hybrid distribution strategies, and what theoretical requirements should be considered when . . Flow-based 2E-VRP Model
Interviews/Stakeholder Analysis
modeling a supply chain?
SQ3: What s the current practice of P&G's distribution model in the FBNL region, and what Cost-Service-Emission Trade-Offs
are the opportunities and limitations for integrating a hybrid distribution approach that includes Case Study Analysis . " .
) Scenario & Sensitivity Analysis
e | direct plant shipments? -
Design Phase Historical Data Analysis Stock Allocation Efficiency
SQ4: What are the key design requirements for modeling the integration of direct shipments Optimal FTL Thresholds for DPS
into P&G's hybrid di ion network, considering both theoretical and the Model Development
practical conditions for customer eligibility? .
Analysis
SQ5: How should the proposed modeling approach be structured to evaluate the impact of . .
Experimental Analysis
direct shipping on supply chain efficiency?
-~/
SQ6: How do different configurations of integrating direct plant shipments affect logistics
costs, service level, and stock allocation in the modeled hybrid distribution scenarios?
—

Figure 2.1: Full Research Framework
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2.2. Research Approach

This research will consider two phases; the Research phase and the Design phase. The Research
phase focuses on understanding the current situation. This includes evaluating P&G’s existing logistical
processes in the France and Benelux (FBNL) region, identifying key challenges, mapping influencing
factors, selecting a suitable modeling approach, and analyzing current practices and potential customers.
These topics are addressed with the first three research questions listed in Table 2.1. Once a clear
understanding is established, the Design phase follows. In this phase, a modeling approach will be
developed and tailored to the findings from the Research phase. Furthermore, the experiments will be
performed and computational results are obtained with the model.

The overall research uses a mixed-methods approach, combining both qualitative and quantitative tech-
niques. Qualitative insights from internal stakeholder interviews and operational observations will com-
plement quantitative analysis using shipment data and model-based simulations. This combination is
intended to ensure that the final recommendations are both data-driven and practically relevant. An
overview of how the research questions are distributed across both phases is given in Table 2.1.

Table 2.1: Sub-questions and Corresponding Methods

Sub-question | Research Methods | Data Collection

Research Phase

Literature review, Supply chain process

Scientific literature, internal supply chain

SQ1 . .
mapping documentation
sQ2 Conceptual modeling, Theoretical frame- Scientific literature
work development
sQ3 Case study analysis, Stakeholder consulta- | Semi-structured interviews, internal reports,

tion

operational datasets

Design Phase

SQ4

Requirement elicitation, Literature review

Semi-structured interviews, internal reports,
scientific modeling principles

SQ5

Mathematical modeling, Model formulation

Derived requirements, historical demand
and shipment data

Scenario-based simulation, Sensitivity anal-

Model outputs, quantitative performance

SQ6

ysis metrics

2.3. Case Study Approach

A case study is a robust research tool to explore the practical application of theoretical insights in a
real-world context. This thesis research uses a case study approach focused on Procter & Gamble’s
supply chain operations in the FBNL region. It provides valuable insights and practical solutions that
could be beneficial not only for P&G, but also for other companies in similar industries. Real-world
applications of hybrid distribution strategies are still underrepresented in the growing literature on multi-
echelon distribution and hybrid delivery models. This case study aims to contribute to closing that gap
by analyzing how such strategies could be applied in P&G’s operations. By collecting and analyzing
both quantitative data (e.g. shipment flows, order patterns, storage volumes) and qualitative data (e.g.
stakeholder experiences, operational limitations), the research aims to evaluate the benefits and trade-
offs of hybrid distribution strategies.

2.4. Data Collection and Analysis

The qualitative data collection and analysis includes an extensive literature review to establish a theoreti-
cal foundation and semi-structured interviews with key stakeholders at P&G. Quantitative data collection
consists of historical shipment and inventory data to analyze the demand, identify trends and assess
feasibility of customers. Additionally, internal reports and documents will provide context on current dis-
tributions and provide material for data validation. The quantitative analysis will formulate a Mixed-Integer
Linear Programming (MILP) model within an adapted Two-Echelon Vehicle Routing Problem (2E-VRP)
framework, inspired on existing models in literature, to directly evaluate the optimization of logistics and
environmental costs, and analyze the impact on service levels and stock allocation efficiency under differ-
ent configurations. The experimental data analysis will further assess trade-offs and model robustness,
which can provide insights into the benefits of hybrid distribution strategies.
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2.5. Modeling and Experimental Approach

To quantitatively assess the impact of integrating DPS into P&G’s distribution network, this research
develops a shipment-assignment optimization model adapted on the Two-Echelon Vehicle Routing Prob-
lem (2E-VRP), as reviewed in section 3.4. The modeling process begins by translating the case-specific
logistics context into a flow-based hybrid distribution model, further detailed in chapter 5. The overall
modeling framework follows a structured sequence of steps, as outlined in Table 2.2, ensuring both
theoretical rigor and practical applicability.

Table 2.2: Quantitative Modeling Research Framework

Define the full mathematical formulation as a Two-Echelon Vehicle Rout-
ing Problem (2E-VRP).

Collect, pre-process and analyze historical shipment and inventory data
to implement in the model.

Encode the MILP model using Python and the FICO Xpress Python API
as optimization tool.

Model Formulation

Data Preparation

Model Implementation

Test the model on a controlled dataset to verify logical outcomes when

Model Verification S .
adjusting decision and parameter values.

Align model output with theoretical expectations to assess the real-world
accuracy.

Model Data Validation

Define experimental conditions by combining configurations and demand
Experimental Design scenarios. Structure these experiments to evaluate various hybrid distri-
bution strategies.

Execute the optimization model across all defined experiments and per-
Solution and Analysis form sensitivity analyses to assess impacts on key performance indica-
tors.

This methodological structure ensures that the research results provide a comprehensive assessment
of the hybrid distribution model's impact on cost-efficiency, service level performance, and strategic in-
ventory placement, the three key dimensions of distribution network effectiveness in this case.

2.5.1. Applicable Modeling Approach

The model draws conceptual inspiration from several recent studies in two-echelon distribution modeling.
In particular, the 2E-VRPDDATW model developed by Zhou et al. (2024), which incorporates dynamic
demands, time window constraints, and direct deliveries, offers valuable insights into how the complex-
ities in this case can be embedded into an optimization model. However, in contrast to traditional VRP
formulations that emphasize route sequencing and vehicle scheduling, the model developed in this re-
search simplifies the structure into a flow-based framework. This means that vehicle tours and return
routing are not explicitly modeled. Instead, shipments are treated as point-to-point flows within capac-
ity and cost constraints. This modeling choice is grounded in the operational reality of P&G, which is
elaborated on in section 5.1. where outbound logistics are executed by a third-party logistics provider
(3PL).

2.5.2. Experimental Design

The optimization model is formulated as a Mixed-Integer Linear Programming (MILP) that integrates real-
world logistics constraints such as vehicle capacities, regional cost structures, and VFR thresholds. It
minimizes logistics costs and monetized emissions for a given demand scenario, while also supporting
configuration-based evaluations of service level and stock allocation efficiency.

To evaluate the impact of integrating DPS, the model is tested across a structured set of 48 experiments.
These combine four demand scenarios (reflecting different eligibility settings for DPS from Plant 1 and
Plant 2) with four internal model configurations that vary policy rules such as DPS activation and ship-
ment size thresholds, over three representative weeks. This scenario-based approach enables a com-
prehensive comparison of trade-offs across cost, emissions, and service KPIs under varying conditions
of operational flexibility.



Literature Review

3.1. Purpose and Scope

The purpose of this literature review is to develop a solid understanding of supply chain management
literature, with a focus on distribution methods in large-scale supply chains, and to identify opportunities
for improved efficiency and cost optimization. This foundation supports the development of the proposed
case study at P&G.

The review is structured into three main sections: (1) Supply Chain Management, (2) Hybrid Distribution
Methods, and (3) Modeling Approaches in Distribution Research. The first section is organized around
four key pillars: demand management, operations management, procurement management, and logis-
tics management. The current state analysis in chapter 4 will later focus specifically on demand and
logistics management. After establishing a general understanding of supply chain management, the
second section reviews literature on the integration of hybrid distribution methods. The third section
discusses modeling approaches commonly used in distribution research to inform the methodology for
this study. Each section begins with an overview of key sources and summarizes the main findings per
study.

3.1.1. Literature Search Strateqgy

An effective search strategy is crucial for conducting a structured and relevant literature review (Wohlin et
al., 2022). This review follows a comprehensive approach, beginning with the formulation of preliminary
research questions, followed by keyword selection and database searches using Google Scholar and
Scopus. The key terms and concepts used are listed in Table 3.1. To broaden the scope, a hybrid strategy
was applied, combining direct database queries with backward and forward snowballing (Wohlin, 2014).
Snowballing is an iterative process of identifying additional studies by examining reference lists and
citations. Inclusion and exclusion criteria were defined to ensure quality and relevance, with a focus on
studies published within the last fifteen years. This structured approach supports the development of a
solid knowledge base and helps identify research gaps relevant to the case study at Procter & Gamble.

Table 3.1: Concepts and keywords for literature review

Supply Chain Management; Logistics and Transportation; Vehicle

Concept groups Routing; Mathematical modeling

Supply Chain Management: supply chain design, distribution networks,
facility location planning

Logistics and Transportation: direct shipments, direct deliveries, multi-
echelon networks, two-echelon systems, hybrid distribution strategies
Vehicle Routing: vehicle routing problem, two-echelon vehicle routing
problem, Integer optimization

Mathematical modeling: mixed-integer linear programming, routing opti-
mization

(Supply Chain Management) OR (Logistics Transportation) AND (Vehicle
Routing) OR (Mathematical Modeling)

Keywords

Truncation

10
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3.2. Supply Chain Management

This first section of the literature will review general literature on supply chain management (SCM). After
introducing SCM, the review is structured in the pillars Demand Management, Operations Management,
Procurement Management and Logistics Management. Based on the structure of Altekar (2023), these
four aspects are overarching for all relevant aspects in SCM. This is schematically given in Figure 3.1.

Demand

Ll
Forecasting and
planning

Operations Procurement Logistics

Inbound:
Receiving and
warehousing

Procurement o
materials and
components

Production
planning and
manufacturing

Outbound:
Distribution and
delivery

Figure 3.1: Overarching Pillars in SCM

Demand Management in subsection 3.2.2 will explain the significance of demand forecasting, planning
and management in the supply chain. Operations Management in subsection 3.2.3 will dive in the co-
ordination of production processes and ensuring operational efficiency. Procurement Management in
subsection 3.2.4 discusses the importance of sourcing materials and managing supplier relationships.
The section on Logistics Management in subsection 3.2.5 will include transportation, warehousing, and

distribution strategies.

Relevant Studies

Table 3.2: Key Studies Literature Supply Chain Management

Source

Key findings \

Altekar, R.V. (2023)

Defining the supply chain and key elements of effective supply chain manage-
ment.

Helo, P., & Hao, Y. (2022)

Technology enhances operations in SCM such as planning, scheduling, opti-
mization and transportation.

Guo, Y., Liu, F, Song, J. S.,
& Wang, S. (2024)

Effective inventory management strategies significantly mitigate the impact of
demand surges and supply disruptions.

Marchuk, V. Y., Sergiy, G.,
Karpun, O., & Garmash, O.
(2020)

Warehousing logistics is essential for maintaining the flow of goods, accounting
for 40% of logistics costs.

Rebs, T., Thiel, D., Bran-
denburg, M., & Seuring, S.
(2019)

Stakeholder pressures significantly impact a company’s SCM performance.

Azizi, V. & Hu, G. (2020)

Direct shipments eliminate delays associated with intermediate distribution cen-
ters, enhancing responsiveness to customer demand.

Dondo, R., Méndez, C.A., &
Cerda, J. (2011)

Multi-echelon distribution strategies involve multiple layers of facilities to effi-
ciently manage the flow of goods from production to customers.

Potoczki, T., Holzapfel, A.,
Kuhn, H., & Sternbeck, M.
(2024)

Cross-docking consolidates products at a central facility, quickly transferring
them to delivery vehicles to reduce storage time and improve efficiency.

3.2.1. Definition and Relevance of SCM

SCM can be defined as the systematic, strategic coordination of traditional business functions within

a company and across various businesses within the supply chain, aimed at enhancing long-term per-
formance (Min et al., 2019). It involves managing product flows and integrating functions such as pro-
curement, production, and distribution to improve efficiency and responsiveness. The supply chain is
also simply defined as the bridge between demand and supply (Altekar, 2023), beginning with the pro-
curement of raw materials and ending in product consumption. According to Altekar (2023), SCM is
based on five pillars: Make to Order, Non-core Outsourcing, Multi-tier Supplier Partnership, Multiparty
Net-Logistics, and Highly Sophisticated IT Systems. These reflect the shift toward customer-driven pro-
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duction, external partnerships, multi-party logistics collaboration, and technology-enabled optimization.

A conceptual model for modern SCM is illustrated in Figure 3.2, referred to as the Collaborative Planning
Forecasting Replenishment (CPFR) approach (Altekar, 2023), in which all supply chain partners collabo-
rate to meet defined customer demands. The ultimate goal is to deliver value by integrating internal and
external operations.

Manufacturer

Retailer

Subcontractor -

Figure 3.2: CPFR Approach as SCM
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Manufacturer

SCM has evolved in response to changing market conditions and technological advancements, which re-
quire firms to maintain competitive advantage while addressing increasingly complex customer demands.
Although the core principles, creating customer value, competitive advantage, and collaboration, remain
intact, the tools and technologies have shifted significantly (Min et al., 2019). In today’s digital econ-
omy, supply chains are more customer-centric, emphasizing omnichannel strategies and real-time data
to enhance responsiveness (Zinn & Goldsby, 2017).

Sustainability has also gained importance, with companies adopting responsible sourcing and environ-
mentally friendly practices (Prashar, 2023). Firms are now accountable for the entire product lifecycle,
making sustainability a central part of SCM strategies. Overall, modern SCM focuses on leveraging
technology and collaboration to manage growing complexity effectively.

SCMin retail focuses on optimizing goods flow from suppliers to customers, balancing efficiency and ser-
vice quality (Potoczki et al., 2024). Retailers often manage complex logistics networks with warehouses
and distribution centers. Efficient SCM integrates cross-docking (CD) to consolidate smaller shipments
into more efficient loads (Vogt, 2010). This reduces logistics costs, improves truck utilization, and min-
imizes inventory. Flexibility is crucial to respond to market fluctuations while ensuring on-time delivery.
In short, successful retail SCM relies on supplier collaboration, demand forecasting, and technology to
improve visibility and efficiency (Potoczki et al., 2024).

3.2.2. Demand Management

Demand management is a key element of SCM, focusing on forecasting, planning, and managing cus-
tomer demand to ensure efficient supply chain operations (Altekar, 2023). Accurate forecasting helps
minimize inventory costs while meeting customer needs, using historical sales data, market trends,
and economic indicators. A common method is collaborative planning, forecasting, and replenishment
(CPFR), as shown earlier in Figure 3.2. Through collaboration with suppliers and retailers, businesses
can improve forecast accuracy and responsiveness. Segmentation is another useful strategy, allowing
supply chains to tailor responses to different customer groups or product lines. Access to demand infor-
mation across the supply chain enables rapid responses to market changes (Mahmood & Kess, 2014).
Close collaboration enhances forecast accuracy and overall responsiveness.

SCM typically applies two strategies: demand-pull and supply-push (Chiang & Huang, 2021). Demand-
pull focuses on unmet customer needs, emphasizing downstream collaboration and customer integration.
Supply-push, by contrast, involves technology development and upstream integration with suppliers to
drive innovation. While demand-pull supports responsiveness, supply-push facilitates proactive market
development. Effective supply chains strike a balance between the two, using customer insights and
supplier capabilities to improve performance.
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3.2.3. Operations Management

Operations management is essential to SCM, coordinating production processes and improving effi-
ciency across the supply chain network (Altekar, 2023; Helo & Hao, 2022). By digitalizing processes
and integrating stakeholders, it enhances responsiveness and supports competitive advantage. Best
practices include using advanced technologies, such as artificial intelligence, to increase visibility and
enable proactive decision-making, streamlining logistics and improving customer satisfaction (Helo &
Hao, 2022).

Lean manufacturing (LM), rooted in the Toyota Production System, focuses on efficiency and waste
reduction through just-in-time (JIT) production (Vanichchinchai, 2019). It aligns with operations manage-
ment goals to deliver the right products at the right time and cost. Recent studies emphasize extending
lean principles beyond internal operations to strengthen collaboration with supply chain partners. Build-
ing trust enhances both operational and supply chain performance. Still, balancing cost-focused, trans-
actional approaches with collaboration-based strategies remains a challenge. Integrating LM offers a
framework for creating sustainable, efficient, and responsive supply chains.

Inventory Management
Inventory management is a cornerstone of both operations and logistics management, essential for bal-
ancing customer demand with cost efficiency. It involves determining optimal stock levels using methods
such as Economic Order Quantity (EOQ), safety stock calculations, and Just-in-Time (JIT) strategies,
which align inventory with production schedules and demand forecasts while reducing holding costs and
waste (Guo et al., 2024).

From a resilience perspective, inventory strategies such as pre-positioning safety stock and employing
multiple sourcing channels help mitigate disruptions and demand surges (Guo et al., 2024). Techniques
like Vendor-Managed Inventory (VMI) and collaborative planning enhance coordination and responsive-
ness by sharing inventory data among supply chain partners.

Inventory management is closely linked to warehousing, which serves as the backbone of goods storage
and distribution. Warehousing can represent up to 40% of logistics costs and plays a direct role in
service level performance (Marchuk et al., 2020). Modern warehouses increasingly rely on automation
and robotics, while techniques like cross-docking reduce storage time by moving goods directly from
inbound to outbound transport, especially valuable for perishable or high-turnover items. By integrating
lean principles and inventory technologies such as real-time tracking systems, organizations can improve
operational efficiency, enhance visibility, and support a more agile and resilient supply chain.

3.2.4. Procurement Management

According to Ross (2015), procurement management is a core component of SCM, involving the strategic
sourcing, acquisition, and oversight of goods, services, and resources essential for operations. In FMCG
supply chains, characterized by high volume, fast turnover, and product variety, procurement must ensure
a steady flow of raw materials, packaging, and finished goods to support continuous production and wide-
scale distribution.

Effective procurement extends beyond cost reduction to include supplier collaboration, risk mitigation,
and demand-driven sourcing that aligns with shifting consumer preferences. Since procurement costs of-
ten represent a large share of total revenue, optimized sourcing directly influences profitability, resilience,
and responsiveness. Digital tools such as e-sourcing, predictive analytics, and real-time supplier moni-
toring increasingly streamline these processes (lvanov & Dolgui, 2020).

In hybrid distribution contexts, procurement must be closely integrated with multi-channel logistics to
ensure timely and efficient material and product flows (Ross, 2015). As FMCG supply chains grow more
global and complex, procurement management plays a strategic role in driving efficiency, cost savings,
and long-term sustainability.

3.2.5. Logistics Management

Distribution Network Strategies in Supply Chain

In SCM, the design of distribution networks is essential for efficiently delivering products to customers
(Dondo et al., 2011). Suppliers adopt various strategies based on product types and operational goals.
In a single-echelon strategy, manufacturers ship directly to customers. Distributor storage, by contrast,
uses distribution centers (DCs) or warehouses to maintain inventory closer to demand points, particularly
effective for fast-moving goods. Two-echelon networks combine factories and warehouses, enabling
both centralized shipments and local fulfillment.
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Cross-docking offers an alternative, consolidating products at a central facility for immediate transfer to
outbound vehicles, avoiding storage time and enhancing efficiency (Potoczki et al., 2024). Unlike DCs,
cross-dock (CD) facilities do not store or manipulate goods but focus on rapid throughput. In summary,
three core distribution strategies can be identified: direct shipping, multi-echelon distribution, and cross-
docking. Although cross-docking is often embedded in multi-echelon systems, it functions as a distinct
operational method. Each approach is selected based on product characteristics, cost efficiency, and
service level requirements, requiring a tailored design of distribution networks.

Direct Shipments

Direct shipments, or single-echelon distribution, involve sending products from factories directly to cus-
tomers or retailers without intermediate storage (Azizi & Hu, 2020). This strategy enables faster delivery
and reduces handling costs, especially for Full Truck Load (FTL) shipments. Itis highly responsive to cus-
tomer demand but can be less efficient when product volumes are low, resulting in Less-than-Truckload
(LTL) shipments and underutilized capacity (Potoczki et al., 2024). Coordinating delivery schedules and
managing transportation costs becomes more complex when direct shipping is integrated with other
methods like cross-docking or multi-echelon networks (Azizi & Hu, 2020). As a result, this strategy is
less commonly chosen, since multi-echelon systems often offer greater optimization in routing, timing,
and vehicle use (Sitek & Wikarek, 2015).

Multi-echelon Distribution

Multi-echelon distribution incorporates multiple facility layers, such as suppliers, warehouses, and DCs,
to manage goods flow from production to end customers (Dondo et al., 2011). This setup improves
inventory balancing and enhances responsiveness by enabling stock to be positioned closer to various
demand points. It allows consolidation, optimized routing, and lower transport costs. However, managing
these layers increases complexity, requiring close coordination of inventory levels and delivery schedules
across locations. This can make service level maintenance and stockout prevention more difficult in
volatile markets (Potoczki et al., 2024).

Cross-docking in Multi-echelon Distributions

Cross-docking is a strategy in which products are received at a central facility and immediately trans-
ferred to outbound vehicles without long-term storage or manipulation (Potoczki et al., 2024). It supports
transportation efficiency and reduces holding costs by consolidating inbound shipments and enabling
quick outbound dispatch. Unlike direct shipping or traditional warehousing, cross-docking facilitates the
rapid flow of goods, enhances truck utilization, and supports just-in-time (JIT) logistics (Hosseini-Nasab
et al., 2023). However, it introduces challenges such as the need for precise coordination of inbound
and outbound flows, longer lead times compared to direct shipping, and infrastructure investments.

3.2.6. Stakeholders in SCM

Across all segments of the supply chain, various stakeholders play a critical role in shaping supply chain
performance. Their influence significantly affects the efficiency and effectiveness of SCM practices. Ac-
cording to Rebs et al. (2019), stakeholder pressures, such as those from customers, suppliers, govern-
ments, and shareholders, can strongly impact a company’s supply chain outcomes. In demand man-
agement, customers influence product design and delivery expectations, requiring companies to adapt
accordingly. In operations management, employees and internal management are key to implementing
improvements and maintaining quality. Procurement is shaped by suppliers, who influence sourcing
strategies, costs, and material availability. In logistics, regulatory bodies enforce compliance standards
that directly affect transportation and distribution.

The interplay between stakeholder demands and a company’s internal capabilities determines how effec-
tively supply chain operations are managed. As stakeholder influence varies in intensity, organizations
must strategically navigate these pressures to optimize SCM practices and performance (Rebs et al.,
2019).
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3.3. Hybrid Distribution Methods

Relevant Studies

Table 3.3: Key Studies Literature Hybrid Distribution Methods

Source | Key findings \

Emphasize the significance of developing efficient distribution systems by inte-
grating various decision-making problems in a framework for hybrid distribution
strategies, such as the capacitated location of distribution centers, vehicle rout-
ing, and direct shipments.

Address transportation in a cross-docking network that combines direct and in-
direct shipments from suppliers to customers, using integer programming and
ant colony optimization to minimize transportation costs.

Propose a two-stage method for shipment consolidation and cross-docking
with direct delivery options, balancing transportation, inventory, and scheduling
costs.

A multi-objective model incorporates direct and indirect deliveries in a sustain-
able processed food supply chain, and it shows optimization of economic and
environmental objectives.

Azizi, V. & Hu, G. (2020)

Musa, R., Arnaout, J. P, &
Jung, H. (2010)

Ma, H., Wang, Q., & Xu, X.
(2011)

Mohammadi, Z., Barzinpour,
F., & Teimoury, E. (2020)

Hosseini-Nasab, H., Nasrol-
lahi, S., Bagher Fakhrzad, M.
& Honarvar, M. (2023)

A literature gap is identified regarding the combined use of direct and indirect
shipments within cross-docking networks for optimizing transportation costs.

The previous section reviewed three established distribution strategies. However, the integration of these
methods into hybrid distribution networks remains underexplored in certain contexts. Recent logistics re-
search increasingly highlights the potential of combining direct and indirect shipment methods to improve
supply chain performance.

Azizi and Hu (2020) emphasize the importance of integrated distribution systems that simultaneously
consider facility location, vehicle routing, and direct shipment decisions. Their study is relevant for hybrid
strategies as it frames distribution network design as a unified decision-making problem to optimize
overall efficiency.

Other researchers have also addressed combined distribution approaches. Musa et al. (2010) devel-
oped a model incorporating both direct and indirect deliveries within a cross-docking network, applying
integer programming and ant colony optimization to minimize transportation costs. Similarly, Ma et al.
(2011) proposed a two-stage solution method for shipment consolidation problems, balancing cost and
scheduling trade-offs in systems using both cross-docking and direct delivery.

Mohammadi et al. (2020) explore hybrid methods in the processed food industry, where product shelf
life makes direct delivery crucial. Yet, indirect shipments remain valuable for shipment consolidation.
Their multi-objective model compares direct and indirect approaches based on both economic and en-
vironmental outcomes—such as transport costs and carbon emissions. Direct shipments can reduce
handling stages, potentially improving both cost and sustainability performance.

Hosseini-Nasab et al. (2023) focus on cross-docking networks and highlight the cost implications of direct
versus indirect shipment strategies. Contrary to earlier findings, they argue that direct shipments over
long distances, especially for perishable goods, can lead to higher costs and inefficiencies. In contrast,
indirect shipments via cross-docking can reduce both transport costs and delivery times. Importantly, this
study points out a gap in the literature regarding hybrid use of direct and indirect methods within cross-
docking systems, an area with potential for performance improvement in complex, multi-node networks.

Together, these studies underline the value and complexity of integrating multiple distribution strategies.
Yet, the body of literature remains fragmented. Few studies address the simultaneous design and opti-
mization of hybrid systems in real-world, high-volume environments like in FMCG. This gap presents an
opportunity for further research, as pursued in this research.

3.3.1. Key Performance Indicators

Evaluation of distribution methods, particularly the effectiveness of hybrid approaches, relies on key
performance indicators (KPIs). Most studies assess hybrid distribution models using economic and en-
vironmental measures.
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Economic indicators often focus on maximizing profit by minimizing costs such as plant and DC estab-
lishment, transportation (for both direct and indirect shipments), raw materials, and inventory holding
(Mohammadi et al., 2020). Fishani et al. (2022) similarly use total cost minimization to evaluate their
hybrid model’s efficiency. Musa et al. (2010) and Ma et al. (2011) also focus on transportation-related
costs, including time, truck setup, fleet size, and inventory holding.

On the environmental side, carbon emissions are the primary metric. In the case of perishable products,
environmental KPIs can also include waste management costs (Fishani et al., 2022). These indicators
are essential for assessing the sustainability of hybrid distribution models.

Hosseini-Nasab et al. (2023) use a combination of KPIs to evaluate cross-docking and hybrid strate-
gies. Their primary economic KPI is total transportation cost, which includes facility, shipping, and truck
use costs. They also assess flow efficiency and cross-dock allocation. Environmental performance is
measured by minimizing unnecessary transport movements, thus reducing emissions.

Across studies, transportation costs and carbon emissions are the most frequently used KPIs. While cost
reductions primarily benefit the operating party by increasing profitability, they often align with sustain-
ability goals by reducing emissions, highlighting the dual value of optimized hybrid distribution strategies.

3.4. Modeling Approach in Distribution Problems

Relevant Studies

The following table presents key studies that provide background on modeling approaches relevant to dis-
tribution problems, such as the Vehicle Routing Problem (VRP) and Mixed-Integer Linear Programming
(MILP). These works serve as a theoretical foundation for this research. Specific examples of 2E-VRP
model variants applied in the literature are summarized separately in Table 3.5.

Table 3.4: Key Studies Literature Modeling Approaches in Distribution Problems

Source | Key findings \

Provides a systematic review of vehicle routing problems (VRPs), offering a
Nielsen et al. (2024) comprehensive overview of recent developments and their applicability to multi-
echelon distribution networks, particularly in logistics optimization.

Introduced the foundational savings algorithm for solving the classic VRP, laying
Clarke & Wright (1964) the groundwork for many subsequent variants, including capacitated and multi-
echelon routing models.

Applied Mixed-Integer Linear Programming (MILP) to optimize total transporta-
Dondo et al. (2011) tion costin 2E-VRP with cross-docking, demonstrating the effectiveness of MILP
in modeling complex distribution systems with intermediate depots.

Developed a comprehensive MILP-based framework integrating distribution cen-
Azizi & Hu (2020) ter location, vehicle routing, and direct shipments, offering a versatile modeling
approach for hybrid distribution strategies.

Emphasized the robust optimization capabilities of MILP in supply network de-
Garrido et al. (2025) sign, highlighting its ability to handle multi-objective and multi-constraint prob-
lems in both strategic and operational planning.

Identified a significant research gap in the utilization and optimization of satellite
Sluijk et al. (2023) facilities in 2E-VRP networks, and emphasized the value of integrating direct
deliveries and stochastic variables such as uncertain demand and travel times.

3.4.1. The Vehicle Routing Problem

Nielsen et al. (2024) refers to multiple studies that give a systematic review on vehicle routing problems.
By backward snowballing in this article, many relevant studies can be found that give insights into vehicle
routing problems that are occurring in multi-echelon networks like in this case study.

The Vehicle Routing Problem (VRP) is an extensively researched topic in the literature. A basic formu-
lation for the VRP is described as discrete quantities of commodities that are to be delivered to n clients
who are geographically dispersed around a central depot by m vehicles possessing identical capacity,
initially stationed at a central depot (Clarke & Wright, 1964).

In the context of evaluating direct shipments compared to traditional distribution methods, the VRP can
serve as a fundamental framework for analyzing the efficiency and cost-effectiveness of various logistics
strategies. The evolution of VRPs into more complex variants, particularly multi-echelon distribution
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networks, is relevant for direct shipment strategies, as these systems include points such as warehouses
and depots to enhance distribution efficiency (Mor & Speranza, 2022).

Two-Echelon Vehicle Routing Problem (2E-VRP)

In large freight transportation services with fast-moving consumer goods, two main distribution strate-
gies are applied: direct shipping (single-echelon) and multi-echelon distribution (Sitek & Wikarek, 2015).
In most real situations, the multi-echelon, and in particular the two-echelon, distribution is applied to
optimize features like the number of vehicles used, transportation costs, loading factors, and lead times.

Optimal routes for the fleet of vehicles to serve customers’ orders can be designed using the VRP. The
problem of routing vehicles in a two-echelon distribution network is known as the Two-Echelon Vehicle
Routing Problem (2E-VRP) (Sluijk et al., 2023). In such a problem, the distinction can be made between
first-echelon (FE) and second-echelon (SE) vehicles, which are, respectively, the delivery operations
between the supplier and the satellite, and the satellite and the customer (Guastaroba et al., 2016). The
satellite refers to intermediate facilities, like DCs, that consolidate the transshipment of goods between
vehicles on both echelons.

An illustration of a simplified two-echelon distribution network is given in Figure 3.3.

l___; Customer

—  Second-echelon route

Figure 3.3: Two-echelon Distribution Network (Sluijk et al., 2023)

An extension to the 2E-VRP is the consideration of capacity constraints. In the Two-Echelon Capacitated
Vehicle Routing Problem (2E-CVRP), freight delivery, containing FE between the plant and the satellite
and SE between the satellite and the customer, is subject to vehicle and intermediate distribution center
(satellite) capacity limits (Sitek & Wikarek, 2015). In this problem, timing of the deliveries is still ignored.
Over the past few years, other variants of the 2E-CVRP have appeared in the literature (Sluijk et al.,
2023). Examples of incorporated aspects that are experienced in real-life vehicle routing applications
include time windows, pick-up and delivery operations, multiple commodities, heterogeneous vehicles,
and stochastic demand and travel times.

Variations of the 2E-VRP

Sluijk et al. (2023) discuss the existing literature on the 2E-VRP and highlight a significant research
gap aiming at the utilization of satellite operations (distribution centers) within distribution networks. It
presents the opportunity for future research to explore the implications of optimizing satellite utilization,
alongside the potential for direct deliveries from the plant to customers in regions accessible by FE
vehicles.

Research into this dual or hybrid approach should quantify the benefits of direct shipments, assess their
impact on overall routing costs, and develop distribution strategies that foster a more balanced and
efficient use of satellite resources. This could eventually lead to a more streamlined and responsive
distribution system. The P&G case study can be a practical example of testing such a hybrid approach
using single- and two-echelon distributions, with a quantified impact on the solution cost as a result.
Moreover, stochastic demand and travel times are often not accounted for in 2E-CVRP models. A case
study like this could offer the opportunity to take these variables into account by using available historical
data.

Table 3.5 gives an overview of several variations on the VRP model found in literature.
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Table 3.5: Cross-table of 2E-VRP Variants and their Modeled Features in Literature

Study 2E A2E C TW CMC DD CD
Sluijk et al. (2023) X

Anderluh et al. (2017, 2021) X

Oliveira et al. (2022) X X

Song et al. (2017) X X

Marques et al. (2022) X X X

Grosso et al. (2018) X X

Wang et al. (2018) X X

Zhou et al. (2024) X X X

Azizi et al. (2020) X X

Abbreviations:
2E = Two-Echelon distribution network A2E = Adaptive Two-Echelon C = Capacitated TW = Time Windows ATW = Access
Time Windows CMC = Collaborative Multi-Center DD = Direct Deliveries CD = Cross-Docking

The multiple studies discuss different variations and end with results and several open gaps. Relevant
highlights from the studies are provided in this section.

Both studies of Anderluh et al. (Anderluh et al., 2021, 2017) develop two-echelon city distribution
schemes and highlight the importance of considering the city layout in freight distribution strategies. They
integrate 'grey zone’ customers into an optimization model for the 2E-VRP which balances economic, en-
vironmental, and social objectives (Anderluh et al., 2021). The results of both papers can mostly give
companies decision recommendations in planning a sustainable city distribution concept.

Oliveira et al. (2022) also focuses on addressing a variant of the 2E-CVRP within the context of city
logistics. The study explores the establishment of two-echelon distribution systems where freight from
the outskirts of the city is transferred at intermediate locations (satellites) from large urban freighters to
smaller, more environmentally friendly city freighters. It addresses the proposed Variable Neighborhood
Search (VNS) heuristic as a flexible and capable method for real two-echelon distribution problems with
varying operational characteristics.

An extension of the 2E-CVRP is discussed by Song et al. (2017), the Adaptive Two-Echelon Capacitated
Vehicle Routing Problem. This model allows multiple depots and enables direct deliveries from depots
to customers, bypassing the satellites if that is unnecessary. Unlike 2E-CVRP, where all shipments
must go through satellites, A2E-CVRP adapts to real-world logistics by optimizing costs through flexible
routing. The multiple shipments this model allows can be seen as shipments possible from multiple
plants, but which will always be directed via a DC, it does not inherently model direct shipments from the
manufacturer.

Additionally, Marques et al. (2022) presents the first exact algorithm for the multi-trip variant of the 2E-
CVRP with time windows (TW). The study demonstrates that allowing for storage and consolidation of
freight at satellites can significantly decrease total transportation costs compared to exact synchroniza-
tion. Their branch-cut-and-price algorithm solves instances notably faster than previous approaches.
Moreover, a study by Grosso et al. (2018) explores the effect of access time windows (ATW), solely for
classic VRPs in urban areas. Their mathematical model demonstrates higher energy consumption and
operational costs for carriers and provides a framework for evaluating and optimizing delivery routes
under ATW restrictions.

Another extension of the model, presented by Wang et al. (2018), accounts for collaboration between
logistics centers (LCs) and distribution centers (DCs). Unlike the 2E-VRP where depots and satellites
operate independently, this 2E-CMCVRP (Two-Echelon Collaborative Multiple Centers Vehicle Routing
Problem) allows synergies between different facility types to optimize costs and reduce emissions. The
study does not give an indication of the use of direct shipments from the manufacturer or plant; instead,
it focuses on collaboration between existing logistics centers within the two-echelon network.

The most extended variant found in the literature that is recently studied is the 2E-VRPDDATW by Zhou
et al. (2024). This model involves time windows, access time windows, direct deliveries, and synchro-
nization in a 2E-VRP and will form a good reference for modeling the situation in this specific research.



3.5. Discussion 19

3.4.2. MILP Models in VRP

Mixed-Integer Linear Programming (MILP) is highly relevant for formulating vehicle routing problems
due to its ability to handle complex decision-making scenarios characterized by multiple variables and
constraints (Azizi & Hu, 2020). MILP models basically involve problems in which some variables are
constrained to be integers while others can be non-integer (real) values.

In the context of SCM, MILP allows for the integration of various components such as the location of
distribution centers, vehicle routing, and direct shipment into a cohesive optimization model. Itis a robust
mathematical technique to derive optimal or near-optimal solutions efficiently. MILP has been widely
adopted in supply network design due to its robust optimization capabilities (Garrido et al., 2025). The
two-echelon vehicle routing problem with cross-docking (2E-VRPCD) is a well-known example where
MILP models have been applied to optimize the total transportation cost by managing freight delivery
from a single depot to customers via intermediate depots (Dondo et al., 2011).

Zhou et al. (2024) use MILP to integrate direct deliveries, time window constraints, and access time
window constraints into the VRP. This approach is necessary to accurately model the practical constraints
and synchronization requirements between the first and second echelons. The ability of MILP models to
integrate multiple components and constraints into a unified optimization model makes it a powerful tool
for solving complex vehicle routing and supply network problems.

3.5. Discussion

Despite significant advances in distribution modeling, several important research gaps remain. One key
area is the limited integration of hybrid distribution strategies. While direct shipments, multi-echelon
distribution, and cross-docking have been studied independently, few works address their simultane-
ous application. Given the increasing complexity of modern supply chains, understanding how these
strategies can be combined to balance cost efficiency, environmental performance, service levels, and
flexibility is crucial. This study addresses this gap by developing and evaluating an integrated hybrid
distribution model using a real-world case at P&G.

Beyond structural integration, the trade-offs of the impact of hybrid distribution on cost-optimality and
sustainability-optimality is also underexplored. Most studies focus on logisitics cost minimization, whereas
for example Zhou et al. (2024) and Sluijk et al. (2023), frequently used as reference for this research, do
not consider the environmental performance alongside cost-efficiency. This study contributes by evalu-
ating how hybrid strategies create certain trade-offs in balancing both these relevant KPI's in the model.

Another gap is the predominant focus on urban logistics. Much of the existing literature addresses intra-
city delivery challenges, such as traffic congestion and narrow time windows. By contrast, cross-country
supply chains face different complexities, including long-haul coordination, inventory placement, and bal-
ancing flexibility with cost efficiency. The integration of direct plant shipments in such contexts remains
largely unexamined. The P&G case study offers a valuable opportunity to assess hybrid distribution in
a cross-country FMCG network. Unlike last-mile city logistics, this context involves larger shipment vol-
umes, fewer delivery constraints, and a broader network structure. Understanding the trade-offs between
direct and multi-echelon deliveries in such settings can yield practical insights for optimizing large-scale
distribution strategies.

Together, these observations form the basis for answering SQ1 and SQ2 in the following conclusion. By
addressing the identified gaps, this research aims to contribute to the development of more integrated,
resilient, and service-oriented distribution models, with actionable implications for both academia and
industry.

3.6. Conclusion

This conclusion synthesizes the main insights from the literature review and addresses SQ1 and SQ2,
laying the foundation for the case study.

Supply Chain Management (SCM) involves the strategic coordination of procurement, operations, and
logistics to improve efficiency and responsiveness. Key pillars include demand forecasting, lean oper-
ations, strategic sourcing, and effective outbound logistics. Within distribution, three strategies stand
out: direct shipping, multi-echelon networks, and cross-docking. Each offers specific trade-offs in terms
of cost, complexity, and responsiveness. To optimize such systems, researchers often use modeling
approaches like the Vehicle Routing Problem (VRP), with Mixed-Integer Linear Programming (MILP)
commonly applied to handle complex logistical constraints.
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1. What are the current logistical processes and challenges associated with using distribution centers
versus direct plant shipments, and how can their efficiency be measured?

Distribution centers (DCs) support cost-efficient consolidation, improved routing, and inventory manage-
ment, but add complexity, coordination burdens, and lead times. Direct plant shipments reduce handling
and may offer faster delivery, particularly for high-volume or geographically close customers. However,
they can be less efficient for low-demand items due to limited vehicle utilization. Measuring the efficiency
of both strategies requires performance indicators related to cost, emissions, and customer service lev-
els, such as transportation cost, delivery time, and order fulfillment rates. Optimization tools like the VRP
enable comparative evaluation of these strategies under varying demand and capacity scenarios.

2. What is a suitable modeling approach to evaluate the added value of direct shipping in hybrid dis-
tribution strategies, and what theoretical requirements should be considered when modeling a supply
chain?

To evaluate hybrid strategies combining direct and DC-based deliveries, advanced VRP variants such
as the Two-Echelon VRP (2E-VRP) and its extensions (e.g., 2E-CVRP, 2E-VRPDDATW) are effective.
These models can incorporate real-world constraints like capacity, time windows, and stochastic demand.
MILP provides a robust framework for modeling such systems, enabling scenario comparison and op-
timal configuration selection. Theoretical modeling should include dynamic variables such as demand,
distances, vehicle constraints, and customer service levels. Hybrid modeling reflects modern logistics
practices more accurately and supports better decision-making for balancing cost, service, and flexibility.
This study builds on that by applying such models to a cross-country FMCG supply chain at P&G.



Current State Analysis P&G

Based on the literature review, stakeholder interviews, and additional data analysis, the current practices
at P&G, and specifically in the case study, will be given in this section. The most relevant pillars of
the supply chain for this research have followed from the literature review (section 3.2). The focus in
this current state section will be on Demand and Logistics Management. A brief overview is given in
Figure 4.1. Before evaluating the current practices of demand and logistics at P&G, an analysis of
relevant stakeholders that are involved in these processes will be given.

All information in this chapter is based on verified internal sources at P&G (including interviews, internal
documentation, and validated data analyses), and is therefore not referenced explicitly in the text.

Operations Procurement
I I

Production Procurement of
planning and materials and
manufacturing components

Demand

Forecasting and
planning

Logistics

fnbound: Receiving
and warehousing

Outbound:
Distribution and
delivery

Figure 4.1: SCM Overview (Focus on Demand and Logistics)

The entire supply chain process starts with demand, which serves as the foundation for all subsequent
activities. Accurate forecasting is crucial for predicting customer needs across the markets and different
product categories. This information leads to global production and supply planning, ensuring efficient
allocation of resources to meet the forecasts. P&G performs worldwide supply chain operations, with
production plants and customers across all continents. While many of P&G’s production facilities operate
as self-sustaining units within their respective regions, certain products are produced and shared globally,
needing robust overseas logistics capabilities. The global share of products adds complexity to the supply
chain, as it requires coordination between various manufacturing plants and warehouses. Additionally,
plants rely on raw materials from non-P&G suppliers, which further complicates the operational and
procurement landscape.

After completing production and procurement, the focus shifts to logistics management, which entails
both inbound and outbound logistics. The inbound logistics involve transportation and storage of raw
materials and components necessary for the final production. Outbound logistics refer to the distribution
of finished products to distribution centers and ultimately to customers. This research will focus on
distribution methods as part of the outbound logistics. Moreover, it is relevant to analyze the impact on
demand forecasting and planning if hybrid distribution approaches are applied.

4.1. Stakeholder Analysis

This section outlines the key stakeholders involved in the demand and logistics management processes
at P&G. The analysis is based on interviews and practice observations conducted during the Research

21
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phase. Each stakeholder plays a distinct role in the planning, execution, and optimization of the supply
chain.

Demand Planning and Forecasting - The Demand Planning and Forecasting teams are responsible
for generating accurate sales forecasts and translating them into actionable production and distribution
plans. This involves both statistical modeling and close collaboration with commercial teams to align
forecasts with promotions, seasonal trends, and market dynamics. Their forecasts serve as the basis
for supply planning, inventory management, and distribution decisions, namely the forecast on product
level is the eventual trigger for production.

Supply Chain Leaders - Supply Chain Leaders bridge demand and supply by ensuring that production
aligns with the forecast. They coordinate with manufacturing sites and DCs to ensure supply continuity
and efficiency. This means that all products that are needed at the DC because of the demand for that
market,need shuttles from plant locations to the DC. The Supply Chain Leaders at Plant 1 and Plant 2
are responsible for the production and distribution planning with an horizon of 12 weeks.

Demand Requirement Planners - The transportation process of the products must ensure timely de-
livery of goods from production plants or warehouses to customers. At P&G, these stakeholders are
called the Demand Requirement Planners (DRP). They are responsible for the deployment of products
from the plant to the DC, so, in this scope, from Plant 1 and Plant 2 to the DC 1. A DRP is focused
on family level of a plant and has several DCs in his/her scope. For example, the produced Category
X Segment A is deployed to the DCs by one DRP, based on the forecast of these DCs of the products
on this specific family level. The task of a DRP is limited to authorizing and planning the volumes that
have to be shuttled, while the transportation planning for the actual execution of these volumes is done
by Transport Planners.

Inventory Managers (SIP) - Inventory managers monitor stock levels at warehousing locations to en-
sure product availability while minimizing holding costs. Within P&G, these stakeholders are called Site
Integrated Planning (SIP) Leaders.

Warehouse Operators - Warehouse Operators are responsible for the day-to-day management of stock
within the warehouse. Their tasks include inventory handling, order picking, and ensuring timely dispatch
of goods to customers or distribution hubs. At the hub location in Plant 1, you could split the warehouse
operations into three teams; the first team is responsible for the product flow and stocking in the CIMAT
(automated warehouse), the second team is responsible for the management of the shipments of orders,
and the third team is responsible for the executing operations (picking, loading, transportation). The hub
location in Plant 2 has a similar set-up, further elaborated in subsection 4.3.5.

3PL - An external stakeholder, , manages warehousing operations under contract
(third-party logistics). They are owner of the DC and the transportation business from and to the DC.
P&G hires their services, which entails inventory holding costs and handling costs for utilizing the DC for
consolidation of the products.

Transport Operations Managers - Transport Operations Managers (T-OPS) are responsible for ex-
ecuting physical shipments across the supply chain, ensuring that the products move efficiently from
production sites to DCs or directly to customers. They manage carrier relationships, monitor real-time
transport flows, and ensure compliance and documentation for the transportation are in place. A key
responsibility lies in coordinating both full truckloads and consolidated shipments. Full loads incidentally
ship directly to customers, while partial loads or mixed-product shipments are routed and consolidated
through DC 1. T-OPS could track the potential DPS that could happen from plants to customer DCs. This
makes that they have a central role in optimizing transport strategies and shaping the future structure of
the direct or two-echelon distribution network.

Customers - P&G has a big scope of customers in Belgium and The Netherlands, which are large
retailers and smaller distribution companies of P&G’s products. Customers are served to their own
DC locations, there is no execution to small retail locations or to the end consumer. The retailers and
distributors are the end-consumer of P&G’s supply chain. Their ordering patterns, expectations, and
feedback influence upstream planning and logistics operations.

Order Management - The Order Management (or Availability Management) team is responsible for pro-
cessing and tracking customer orders from entry to delivery. They ensure that orders are accurately
captured and executed within the agreed lead times. Unlike aligning strictly with available inventory, the
team often ’cuts’ orders rather than delaying them to manage inventory constraints. This management
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involves coordination with customer service, inventory management, and transport execution to guaran-
tee a seamless end-to-end order fulfillment process. The order management is a coordinating role done
from the Supply Network Operations (SNO) office and is not physically located at the plants or DCs.

Customer Relationship Managers (CRM) - Customer Relationship Managers (CRMs) act as a bridge
between P&G and its customers. In addition to the responsibilities of Order Managers, CRMs handle
order processing on the customer side, manage delivery expectations, and resolve service issues to
ensure a smooth customer experience. Each CRM operates at customer level, managing orders across
all product categories. This means they are not limited to specific Cat X&Y plants, but these products are
part of the customers’ orders they manage. Furthermore, CRMs are responsible for generating customer-
specific forecasts (Business Intelligence) and for sharing forecasts for all events in the upcoming 2-3
months in collaboration with the customer, including any changes or updates.

Suppliers (Out of Scope) - Although not in the scope of this research, suppliers play a critical upstream
role in ensuring the availability of raw materials. Their lead times and reliability influence the downstream
planning and logistics processes. Many above mentioned stakeholders are in daily contact with suppliers
to maintain control over the production and distribution planning for in- and outbound logistics of the Cat
X&Y products.

Figure 4.2 provides a schematic overview of the key stakeholders involved in the demand and logistics
management processes at P&G, and illustrates the relationships and flows between them. The swimlane
structure categorizes stakeholders into three functional domains: Planning, Execution, and Customer.
The arrows indicate the direction of information flow, operational handover, or decision-making influence,
offering a visual representation of how responsibilities are distributed and interconnected across the
end-to-end network.
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Figure 4.2: Stakeholder Swimlane Diagram
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4.2. Demand Management at P&G

This section outlines how demand is managed within the P&G supply chain, starting from forecasting and
planning to customer order handling. The aim is to provide an integrated view of how demand triggers
supply and logistics activities across the European network.

4.2.1. Demand Forecasting

The forecasting process is essential to initiate the supply chain of goods. As mentioned in the litera-
ture review, forecasts are critical for minimizing inventory costs while meeting customer expectations
(Altekar, 2023). Forecasts are made on both customer and product category levels. Within P&G, each
product category is split into multiple value streams or families, each containing several product codes
that correspond to the final consumer products.

Every product progresses through five stages before reaching the market: Discover, Design, Qualify,
Ready, and Launch. The Discover phase involves researching consumer and business interest to identify
promising ideas. The Design phase focuses on early learnings and feasibility assessments. In the
Qualify phase, packaging, marketing, and customer plans are finalized. The Ready phase ensures all
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systems are prepared for expansion and local market entry. Forecasting becomes essential here to
trigger production and plan shipments to the correct distribution centers. Forecasts are made on family
level to drive production, while commercial forecasts are created with customer teams and managed
centrally from the European Supply Network Hub (SNH). This hub coordinates production across internal
and external European plants, ensuring they receive the necessary raw materials. Forecasts thus guide
planning and production to meet projected demand. Once demand inputs are used for supply execution,
the product can enter the Launch phase. Itis essential to adjust forecasts post-launch to ensure resource
efficiency.

P&G’s demand forecasting process includes three complementary cycles:

Together, these cycles form a layered structure that balances short-term responsiveness with long-term
alignment.

[Figure anonymized for confidentiality reasons]

Figure 4.3: Demand Forecasting Cycles

Final demand forecasts are built from three components: a statistical baseline, market intelligence, and
manual adjustments (Figure 4.4). The statistical forecast uses historical sales and predictive tools. Mar-
ket intelligence from customer teams, category leads, and external trends (e.g., promotions or macroe-
conomic shifts) is then integrated. Lastly, business insights and tools like cannibalization adjustments
are applied. Once finalized, forecasts are shared across Supply Planning, Finance & Accounting, and
Business Planning functions to enable end-to-end decision-making.

[Figure anonymized for confidentiality reasons]

Figure 4.4: Forecast Building Process (P&G, 2025)

Currently, demand forecasts are created and applied at DC level, with the Belgium DC serving BNL
customers and the Northern France DC serving FR customers. This setup triggers replenishment from
production plants to DCs. However, in a Direct Plant Shipment (DPS) setup, where shipments bypass
DCs, forecasts must be allocated to the respective plant instead.

This shift would require a hybrid forecast ownership model where both DC- and plant-level forecasts
coexist. In a hybrid distribution system, forecasts must specify not only the required volume but also
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the fulfilment source. Forecasting and planning systems must incorporate routing logic and customer-
specific requirements. Proper allocation helps ensure accurate inventory holding, minimize handling and
storage costs, and maintain flexibility to evaluate the cost and service trade-offs in hybrid models. Over-
or understocking at either DCs or plants should be avoided.

4.2.2. Demand Planning

Plant 1 and Plant 2 produce Cat X&Y, respectively. Plant 1 produces one large Category X family locally,
while others are sourced externally (see Table 1.1). Similarly, three major Category Y families are pro-
duced in Plant 2, and two others are imported. All products sold in the FBNL market are transported to
DCs in Belgium and Northern France based on demand planning. Monthly forecasts trigger production
and inventory levels at the DCs, further elaborated in section 4.3.

4.2.3. Customer Order Management
Order management is a daily process.

[Figure anonymized for confidentiality reasons]

Figure 4.5: Life of an Order (Day 1 to Day 3) (P&G, 2025)

On customer side, order volumes are typically generated automatically. Promotions or other activities
may lead to manual adjustments. Customers send their mixed-product orders to P&G systems, which
are verified and routed to the appropriate DCs for picking and shipping. Sometimes, customer orders are
unstructured, using wrong product codes or placing multiple small orders instead of one. This requires
manual corrections by P&G employees. To incentivize efficiency, P&G offers discounts for Full Truckload
(FTL) orders and for timely, correctly submitted orders.

AOV

With Advanced Order Visibility (AOV), customers place orders at least 17 days before Day 3. This
improves supply-side planning and reduces the risk of order cuts or delays. AOV enhances efficiency
through fewer stockouts, better truck utilization, and less DC waiting time.

4.3. Logistics Management at P&G

Logistics management is a relevant pillar within SCM for this study. In this section, the current practice
of specifically inventory management and transport are outlined.

4.3.1. Inventory Management at the DC

Based on accurate demand forecasting and planning, the right amount of inventory is available to meet
customer needs without over- or understocking. Though demand management is critical for holding the
correct inventory at the correct locations, the focus for this case analysis shifts to the logistics aspect.
Effective inventory management within logistics ensures that inventory is tracked, stored and distributed
efficiently while minimizing the costs. An important consideration in the inventory management strategy
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of P&G is the maintenance of safety stocks at the different locations. Safety stock, or buffer stock, is
the inventory level that protects against unforeseen events such as inaccuracies in demand forecasts or
unexpected delays in supply (ABC Supply Chain, 2023).

Demand uncertainty arises from fluctuations in customer needs, which can be triggered by the flexibility
P&G delivers to customers. Ordering patterns of customers are not always consistent and the forecasting
process is critical to give the best estimates. Lead time uncertainty is caused by the unpredictable
nature of supply chain processes, including order delays, production lead times, transit times and the
customization process of products. Figure 4.6 gives an illustration of how inventory levels are managed
using safety stock (SS) in a supply chain like Procter & Gamble’s. The green line shows how stock
decreases over time as products are sold, and new stock is deployed to locations to avoid hitting the
safety stocks. The red dots show the point of reordering or reproducing in advance of reaching the
SS volume. Combining the Economic Order Quantity (EOQ) with SS, ensures optimization of ordering
quantities and protection against uncertainty.

(@Dsupplychain

Figure 4.6: Safety Stock lllustration (ABC Supply Chain, 2023)

P&G applies the First Expired, First Out (FEFQO) principle to prioritize dispatch of products nearing expira-
tion. Because incoming products often start as safety stock, this principle ensures that SS is not treated
separately but remains part of the dynamic inventory flow, helping to manage shelf life efficiently.

In the current setup, demand forecasts and inventory flows are centered around distribution centers
(DCs), with customer orders fulfilled from stock held at these sites. This two-echelon structure allows
consolidation of products from multiple plants before shipment. However, this centralized approach also
creates dependency on DC operations and stock levels. As a result, integrating DPS would significantly
impact inventory positioning and flow decisions across the network, which is explored in the next section.

4.3.2. Stock Allocation in a Hybrid Distribution Setup

Integrating DPS into the distribution network introduces important changes to how and where inventory
is held. This directly affects the third key performance indicator of this study: Stock Allocation, referring
to how inventory is strategically positioned across the supply chain. With DPS, some demand would be
fulfilled directly from plants, reducing the need for inventory at DCs, particularly at externally managed
sites like DC 1, where P&G incurs storage and handling costs. Avoiding these costs by shifting inven-
tory upstream can result in significant financial benefits. Additionally, direct shipments reduce internal
handling, sorting, and transfer activities at the DC. A crucial note for this research is that the Plant 1 and
Plant 2 offer sufficient physical space to accommodate this upstream stock reallocation, making such a
shift operationally feasible within the new strategy.

However, this upstream shift introduces operational challenges. Direct fulfillment requires sufficient stock
availability at the plant at the moment of dispatch, placing more pressure on production planning and
forecast accuracy. Moreover, plants like Plant 1 lack the infrastructure for customer-specific services
such as case-picking or Customer Load Preparation (CLP), which includes pallet customization, box
opening, and labeling. As a result, only certain products and customers are suitable for DPS.

While DC 1 is sometimes compared to a cross-dock facility, it does not fully align with cross-docking
principles. Rather than acting as a transient hub, DC 1 serves as a consolidation center with strategic
stockholding. It facilitates planned consolidation of products from different plants to complete customer-
specific shipments, making it an essential buffer in the current network. One of the advantages of in-
troducing DPS from Plant 1 and Plant 2 is the potential cost reduction at the 3PL-operated DC 1, by
lowering storage and handling needs for volumes that can bypass the DC altogether.
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4.3.3. Transport

Transportation plays a crucial role in P&G’s supply chain design and is a central component in evaluating
the potential for hybrid distribution strategies. The current setup follows a two-echelon structure in which
finished products are first transported from the production Plant 1 and Plant 2 to the DC 1 (first echelon,
or FE), and subsequently from DC 1 to customer locations in Belgium and the Netherlands (second
echelon, or SE).

Transport costs between the plants and the DC are referred to as Inter Site Freight (ISF) costs. This is
a fixed shuttle price per vehicle. Customer deliveries from DC 1 are associated with Customer Freight
(CF) costs. These costs are fixed per destination region and based on haulier agreements. While they
do not directly scale with exact distance, costs differ per region based on the distance. Every customer
location is part of one region and has the respective CF transport cost. The same hauliers and vehicle
types are often used across both FE and SE movements, with similar truck capacities and vehicle fill rate
(VFR) considerations.

While routing decisions are partly automated based on forecast logic and shipment volumes, manual
interventions by transport planners are common to prevent inefficiencies. For example, FTL orders from
Plant 1 may be routed through DC 1 if additional products need to be added to the order from other
plants. Since part of the order fills a full truck with origin from the plant, orders are directed through DC 1
unnecessarily, either due to system defaults or no manual correction. This shows the network is not fully
equipped to support DPS for Cat X&Y within the region. An example where the direct shipment setup is
currently being used more structural for another category, is discussed in subsection 4.5.2.

Transport benefits of DPS

Several transportation-related benefits are associated with a hybrid distribution strategy that includes
DPS. First, direct shipments bypass intermediate handling at the DC, avoiding the associated unloading,
storage, and reloading costs. This also helps alleviate storage pressure at the DC, which has been re-
ported as a current problem. Secondly, DPS reduces the number of transport steps and trucks needed
across the network. By shipping full truckloads directly from the plant, Vehicle Fill Rate (VFR) is opti-
mized, potentially reducing the total number of trips, fuel consumption, and emissions, an outcome that
aligns with P&G’s environmental goals. Thirdly, DPS reduces reliance on shuttle capacity between plants
and the DC. These shuttle movements (ISF) are not unlimited, so a decrease in needed shuttles is bene-
ficial. When large customer orders are delivered directly from the plant, the freed-up shuttle capacity can
be redeployed to handle smaller or urgent orders requiring DC consolidation. This indirectly increases
responsiveness from the DC in cases where flexibility is needed.

VFR and FTL/LTL
The distribution model distinguishes between Full Truckload (FTL) and Less-Than-Truckload (LTL) trans-
port.

This is an initial internal policy decision for considering
a shipment as eligible for dispatch as direct flow. Because a DPS flow would always involve full pal-
lets, because no case-picking is possible at plants, they allow for better double-stacking and inherently
achieve a high VFR.

An overview of key cost and operational parameters is presented in Table B.1 in Appendix B. For all
shipments originating from the DC 1, fixed Customer Freight (CF) costs are available for each destination
region based on historical haulier contract data. These rates serve as a reliable reference for modeling
transportation costs within the two-echelon distribution setup, where the DC acts as the consolidation
and dispatch point. For DPS from Plant 1 and Plant 2, historical CF cost data is only partially available
from incidental vehicle trips on this direct flows. Consequently, several regions lack observed freight
rates from these origins. To enable consistent modeling across the whole network with reliable data
input, missing values have been estimated. These assumptions are elaborated in section 5.2.
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It is observed that the CF rates from Plant 1 to customer locations are generally higher than those from
Plant 2. This discrepancy is due to the fact that the available CF values from Plant 1 are based on a small
number of historical DPS operations that actually occurred, which turned out to be relatively expensive.
These specific cases, although limited in number, have been contractually executed and therefore reflect
real, but possibly non-representative, costs. This could lead to relatively higher DPS CF cost in the model
with the estimated rates, which would only support the eventual cost reductions with DPS more, if the
actual rates would be lower.

4.3.4. Plants in Scope for DPS Integration: Plant 1 - Category X

Plant 1 is the main production site for Segment A of the Category X category and also serves as an
import hub for other Category X segments produced overseas. These imported products arrive via an
import DC, where they are palletized and then shipped to .
There is no direct flow from the import DC to DC 1; if DC 1 is the final destination, shipments must first
pass through Plant 1 (see Figure 4.7 and Figure 1.2).

[Figure anonymized for confidentiality reasons]

Figure 4.7: Setup Import DC - Plant 1 - DC 1 (P&G, 2025)

4.3.5. Plants in Scope for DPS Integration: Plant 2 - Category Y
Plant 2 is the primary production site for the main families within the Category Y category. While its setup
is comparable to Plant 1, the local distribution infrastructure differs slightly.

For the purpose of this research, Plant 2 is considered as a single
origin point for DPS to BNL customers. The internal split between CIMAT and Big Box is not further
distinguished in the analysis, as the focus lies on evaluating the feasibility of DPS at the plant level.

4.4. Service Level Metric
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In this research, the impact of DPS on service level will be assessed to determine whether DPS improves
or decreases this service level metric. To measure service, historical service levels per shipping location
are used to estimate the effect of DPS on service. From P&G data, service levels are given per origin
shipping location and for specific destinations, such as customer groups or markets. For this research,
the service level of the past 8 months from the three locations, Plant 1, Plant 2, and DC 1, is taken to
make an estimation for the change in service level with new routing decisions as with DPS. This is further
elaborated in subsection 5.1.6.

4.5. Conclusion

This section answers SQ3 of the Research Phase: What is the current practice of P&G’s distribution
model in the FBNL region, and what are the opportunities and limitations for integrating a hybrid distribu-
tion approach that includes direct plant shipments? The analysis of P&G’s two-echelon setup, supported
by stakeholder input and logistics examples, revealed tangible opportunities to integrate DPS into the
current network. However, several operational and planning limitations must be addressed to ensure
feasibility. These insights form the foundation for the Design Phase of the research. SQ4 guides this
transition and is formulated as follows: What are the key design requirements for modeling the integra-
tion of direct shipments into P&G’s hybrid distribution network, considering both theoretical foundations
and the practical conditions for customer eligibility?

SQ3 and SQ4 will be answered in this section by separate discussion of the current state, the opportu-
nities, the model requirements and finally a reference to the section where customer eligibility is treated.
The requirements are categorized into hard and soft requirements and linked to the research KPIs and
relevant stakeholders, ensuring that the model developed in the next phase is both theoretically and
practically grounded.

45.1. Current Distribution Practice at P&G

The current distribution model of P&G in the FBNL region is structured as a two-echelon network, in which
Cat X&Y goods from the Plant 1 and Plant 2 respectively are transported to the DC1 before reaching
customer DCs. This setup enables product consolidation and value-added services at DC 1, but also
introduces additional handling costs, inventory holding costs, and routing inefficiencies. Where incidental
usage of direct shipments in historical data is seen, the need for exploring full hybrid distribution strategies
with direct shipments from Plant 1 and Plant 2, comes from the increasing pressure on the DC, the
service level targets to be maintained, and on the other hand the urge of looking for cost optimizing
solutions. Moreover, it is observed that many shipments from the DC’s are FTL shipments that are
entirely shuttled from the plant to the DC before being delivered to the customer, often without requiring
further consolidation. This has raised the question of whether DPS could structurally replace certain
two-echelon distributions, especially when customer orders are large enough to justify a FTL shipment
from the plant.

The urgency of exploring DPS has also appeared from stakeholder interviews across multiple stakeholder
groups. Demand planners and supply chain planners experience pressure to streamline production-to-
delivery flows amid rising forecast granularity and demand volatility. DRPs and T-OPS face increasingly
complex deployment schedules and rising transport costs, while inventory managers are tasked with min-
imizing storage footprints with the current capacity constraints at the DC. At the same time, warehouse
operators and 3PL providers are confronted with space saturation and costly double handling. For cus-
tomers and CRMs, ensuring delivery reliability and high service levels remains essential, yet current
two-echelon structures can introduce delays or can lead to order cuts, impacting the service measure.
By researching and quantifying the potential of DPS integration, this study addresses a critical opera-
tional need: enabling P&G to move towards a more responsive and cost-efficient distribution network
that helps reduce pressure and inefficiencies across different stakeholder tasks in their supply chain.
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4.5.2. Opportunity for Hybrid Distribution in FBNL Scope

This demonstrates that hybrid distribution strategies, combining direct shipments with two-echelon flows,
are not entirely new to P&G’s network. Building on this precedent, there is an opportunity to investigate
whether similar approaches could be beneficial for the Cat X&Y categories within the FBNL scope. Cus-
tomers with high-volume, homogeneous orders that meet FTL thresholds may be suitable candidates
for DPS. Exploring this potential requires careful analysis of demand patterns, routing logic, and plant
capabilities, but the fact that real implementations exist elsewhere strengthens the case for evaluating
hybrid distribution in this region. Furthermore, this research is needed because of the need for a detailed
evaluation of the impact of full integration of DPS on the defined KPlIs, to see whether the hybrid strategy
is beneficial on the long-term.

45.3. Key Design Requirements

To support the integration of DPS into P&G’s hybrid distribution model, several operational and planning
requirements have been identified based on the current state analysis. These requirements clarify both
the technical feasibility and organizational readiness for implementing DPS. They are categorized into
two groups: hard requirements, which are essential prerequisites for DPS to function reliably, and soft
requirements, which are desirable enhancements that improve overall performance but are not strictly
necessary for feasibility.

Each requirement has been linked to one or more of the KPI's: cost (logistics and environmental costs),
service (service level performance), and cash (stock allocation efficiency). Additionally, the requirements
have been mapped to the primary stakeholders responsible for, or impacted by, that condition. This
stakeholder-KPI-requirement matrix ensures alignment between the modeling approach and practical
implementation concerns across P&G’s supply chain.

Table 4.1: Hard and Soft Requirements for Integrating DPS, Linked to KPIs and Stakeholders

Requirement Impacted KPI Primary Impacted Stakeholder

Hard Requirements

Physical network layout Cost/Service/Cash Warehouse Operators,  Supply
Chain Leaders

Fulfill FTL thresholds Cost Transport Operations Managers

No splitted or multi-drop orders Service Transport Operations Managers

Plant-Level forecast allocation Cash Demand Planning and Forecasting

Loading ability DPS orders Cost/Cash Warehouse Operators and Trans-
port Operations Managers

Vehicle availability at all origins Cost/Service/Cash Transport Operations, Supply Chain
Leaders

Weekly demand must be met Service DRP, CRM

Scalable plant storage capacity Cash Warehouse Operators, Inventory
Managers

Soft Requirements

Reduction of logistics costs Cost Supply Chain Leaders, Warehouse
Operators

Minimization of handling Cost Warehouse Operators, Transport
Operations Managers

Ensured safety stock adaptability Cash Warehouse Operators, Inventory
Managers

Accommodation of order volume variability | Service DRP, CRM, Customers

Scalable and flexible DPS framework Service Supply Chain Leaders

Contribution to sustainability goals Cost Supply Chain Leaders, Transport

Operations Managers

Hard Requirements:

» Physical network layout: The current network in scope with one DC must be respected in the
model as there is no possibility for changing the physical locations.
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Fulfill FTL thresholds: DPS must be performed with fulfilling the FTL threshold of . Below
this threshold, DC consolidation currently remains required based on internal policy decisions.

No splitted or multi-drop orders: Delivery of multi-drop or splitted orders is not an option for
shipments directly from the plant nor the DC, based on internal policy decisions. Every shipment
to a customer is originated from one source.

Plant-Level forecast allocation: Forecasting systems must allocate volumes to specific plants
rather than all directly to the DC to enable automated identification of DPS opportunities.

Loading ability DPS orders: Plants must support loading of full-pallet, multi-SKU orders as DPS
to customers without case-picking or customization.

* Vehicle availability at all origins: The 3PL vehicles must be sufficiently available at the plants to

be able to perform DPS, next to the ongoing availability of vehicles at the plant.

* Weekly demand must be met: In order to integrate DPS successfully maintaining service levels,

all weekly demand must be met in baseline.

Scalable plant storage capacity: Plant-side storage should be able to flexibly scale to support
additional DPS flows, especially under shifting distribution scenarios.

Soft Requirements:

Reduction of logistics costs: It is wishful that the distribution setup minimizes transport and
routing costs across both DPS and two-echelon flows.

Minimization of handling: Reducing intermediate unloading and reloading is desirable to limit
operational complexity and avoid additional handling costs at the DC.

Ensured safety stock adaptability: It is preferred that safety stock (SS) levels can dynamically
adjust in response to different lead times and demand variability under DPS.

+ Accommodation of order volume variability: A hybrid system should flexibly serve both large

(FTL) and small (LTL) customers without service disruption.

Scalable and flexible DPS framework: The DPS approach should support a configurable struc-
ture with a frequent and clear DPS shipment pattern that could also be adjusted to customer needs.

Contribution to sustainability goals: By maximizing VFR and reducing unnecessary shuttle
miles, DPS should support P&G’s carbon and fuel reduction targets.

Based on the identified requirements and their alignment with the cost—service—cash dimension, the
next chapter presents the development of the model to evaluate the performance of hybrid distribution.
Requirements can be translated into modeling assumptions in subsection 5.1.1, that will form the basis
of modeling and simplifying the distribution system to make trade-offs between two-echelon shipments
and DPS.

4.5.4. Practical Conditions for Customer Eligibility

The second part of SQ4 concerns identifying which customers may benefit from integrating DPS into
the distribution model. This is evaluated through a detailed statistical analysis of historical demand data,
focusing on customer-level demand consistency and volume adequacy on Categories X & Y. The results
of this evaluation are given in subsection 5.2.4. These findings serve as the foundation for further mod-
eling and simulation of hybrid distribution strategies in the design phase, giving the model assessment
a focus on fewer customers that could actually be eligible for structurally using DPS.



Hybrid Distribution Model: a
Flow-Based Adaptation of the 2E-VRP

As discussed in section 2.5, the Research Framework for the modeling approach is stated in Table 2.2.
This chapter covers the first steps of that framework: model formulation, data preparation, model im-
plementation, verification, and validation. Once the model is set up, the different configurations will be
reported in the Experimental Design (chapter 6).

The developed model is designed to support strategic decision-making by simulating trade-offs between
the three defined KPls, based on the supply chain triangle; minimizing logistics costs and emissions
(cost), while assessing the implications for service level (service) and stock allocation efficiency (cash).
The optimization identifies the most cost- and emission-efficient distribution strategy for a given demand
configuration. Based on this optimal solution, the resulting effects on the other two KPIs, service level
and stock allocation, will be evaluated as post-analysis after the optimization.

5.1. Model Formulation

This section outlines the mathematical structure of the optimization model developed for the analysis.
While inspired by traditional two-echelon vehicle routing problem (2E-VRP) formulations, such as those
by Zhou et al. (2024), Sluijk et al. (2023), and others (subsection 3.4.1), the model applied in this re-
search adopts a simplified structure tailored to the real-world context at P&G. Unlike classical 2E-VRP
models that explicitly route vehicles across multiple destinations, include return requirements, and en-
force time synchronization between stages, this model focuses on shipment assignment rather than
route construction. It does not model detailed vehicle routing or sequencing, return trips to the origin,
or time-synchronized flows between first-echelon (plant to DC) and second-echelon (DC to customer)
shipments.

Instead, the model assumes decoupled inbound and outbound flows at the DCs, enabled by sufficient
inventory buffering to avoid temporal coordination constraints. This approach aligns with P&G’s opera-
tional reality, where transportation is fully outsourced to their 3PL providers. Vehicle routing, reuse, and
return logistics are managed externally and not by P&G itself. Thus, the core decision for P&G is whether
a given customer shipment should be fulfilled directly from the plant or routed through the DC, with the
goal of minimizing cost while meeting demand and capacity constraints.

Transport costs are calculated per shipment leg, and both legs of a two-echelon shipment are charged
separately. As such, even though each two-echelon delivery involves two vehicle movements, the model
does not explicitly track the number of vehicles used. This simplification is justified by the absence of
fixed vehicle start costs and the fact that transportation is fully outsourced; P&G incurs transport charges
per trip rather than per vehicle. Consequently, the model evaluates the share of shipments executed via
DPS versus 2E, but this does not reflect the actual number of vehicle movements, which would be higher
for 2E due to the two legs.

Two distribution methods are modeled:

+ Direct Plant Shipments (DPS): Products are shipped directly from the plant to the customer;

32
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* Two-Echelon Distribution (2E): Products are routed via an intermediate DC before reaching the
customer.

The model captures these flows using binary decision variables that indicate whether a shipment is
assigned to a specific leg, and continuous variables that represent the volume of goods shipped on each
leg. Vehicle capacity constraints are respected, and each shipment is modeled as a full truckload move or
fixed-volume allocation. However, vehicle availability is not a limiting factor and is therefore not explicitly
modeled. Return trip costs and empty ride penalties are embedded in the transport rates provided by
the 3PL and used as input to the model.

This modeling approach reflects a flow-based 2E-VRP variant, suitable for evaluating hybrid distribu-
tion strategies. It provides strategic insights into how direct and two-echelon shipments can be optimally
combined, without the computational complexity of route-level optimization. The formulation retains com-
patibility with the broader 2E-VRP literature, particularly drawing on the MILP-based hybrid models and
cost structure decompositions proposed by Zhou et al. (2024) and Sluijk et al. (2023), while adapting the
framework to the decision-making realities faced by P&G. As detailed in subsection 3.4.1, the literature
offers various 2E-VRP extensions that address practical logistics challenges. Table 3.5 summarizes the
key features of these studies.

5.1.1. Assumptions

The model development is grounded in a structured approach that begins with identifying the require-
ments from the current state (subsection 4.5.3). These requirements present fundamental needs that
can be partly translated to modeling assumptions. The following assumptions provide fundamental de-
tails to define the model’s constraints and parameters, ensuring that the model accurately reflects the
real-world logistics setup of P&G and operational conditions, with simplified model assumptions to be
able to perform the analysis.

Network Structure
» The network consists of two plant locations (origins), one DC (satellite), and multiple customer
delivery locations (destinations).

+ Connections exist from each plant to both the DC and the customers, and the DC is also connected
to all customers. There are no connections between plants or between customers themselves.

» Three types of shipment legs are modeled:

— First echelon (FE): from plant to DC

— Second echelon (SE): from DC to customer

— Direct shipment (DPS): from plant to customer
» DPS flows are modeled as part of the FE vehicle set.

Transportation and Vehicle Use
+ Two homogeneous vehicle sets are modeled: V for FE shipments (plant origin), W for SE ship-
ments (DC origin).

» Each vehicle has a capacity of , the demand unit in the model.
* The minimum volume required to trigger an FTL shipment is , based on internal P&G policy.
» DPS is only allowed for orders above

Orders below cannot be split, combined, or shipped to multiple destinations (no multi-drop).

All transport is executed by a 3PL. Vehicle availability is assumed sufficient. Return routing and
repositioning are irrelevant and not modeled.

» Transport costs are fixed per FTL and are determined by origin-destination pairs, regardless of
distance.

« While 2E shipments involve two vehicle legs, vehicle counts are not explicitly tracked as transport
is charged per shipment leg rather than per vehicle.
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Vehicle Fill Rate and Capacity
» For the FE of a 2E distribution, Inter-site Freight (ISF) shipments, the shuttles between the plants
and DC, are always stacked to FTL, also mixed with other SKUs to be shuttled. Multiple shuttles
are driven daily between the two locations with a fixed cost per vehicle.

» For the SE of a 2E distribution, shipments with Cat X&Y SKUs are always consolidated with other
SKUs to the customer, to fulfill the FTL threshold. Transport cost in the objective function are
measured per unit to evaluate the cost for specifically Cat X&Y.

Region-Based Transport Costs
» Outbound transport costs (Customer Freight: CF) from plants or DCs to customers are region-
based, as is practice at P&G.

« Each customer belongs to a geographic region with a fixed FTL transport rate (see subsection 5.2.2).
* ISF costs are fixed per FTL between Plant 1 and DC 1, and Plant 2 and DC 1.
» Transport cost rates for CF are fixed and given in Table B.2 in Appendix B.

Customer Demand and Service Constraints
» Each customer is served by only one source per shipment (plant or DC).

» Forecasted demand is flexibly allocable to either a plant or the DC, depending on feasibility of DPS
and the stock allocation choices made.

* Orders below 1 pallet are not eligible for DPS. Therefore, the analysis uses FP as unit to only
include full-pallet orders.

+ Unloading costs are uniform across all transport methods and are for the cost of the customer, so
not included in the optimization.

Storage and Inventory Allocation
+ Safety stock levels are assumed to adjust dynamically with distribution flow shifts.

+ Plant storage capacity is assumed scalable to accommodate DPS volume.

5.1.2. Mathematical Notation
Indices and Sets

tabularx

peP Set of origin nodes (Plant 1 and Plant 2)

deD Set of satellite nodes (DC 1)

celC Set of destination nodes (customers)

N=PuUDUC Set of all nodes in the network

vey Set of vehicles assigned to first echelon (plant origin)

weWw Set of vehicles assigned to second echelon (DC origin)
Parameters

The parameters represent the known inputs for the model, which can be extracted directly from the data
or assumed based on other sources if it is lacking in the dataset.

Dy Weekly demand from origin p to customer ¢ (in FP)

Q Vehicle capacity (in FP)

dist;; Travel distance between node i and node j, where (i,j) € N x N

¥ Fixed ISF transportation cost from plant p € P to DC d € D (in €/FTL)

cS¥ Fixed CF transportation cost from DC d € D to customer ¢ € C (in €/FTL)
¥ Fixed CF transportation cost from plant p € P to customer ¢ € C (in €/FTL)
cpead Average loading cost at origin node : € P U D (in €/FP)

cynload Average unloading cost at destination node j € D UC (in €/FP)

cstore Average storage cost at origin node i € P U D (in €/FP)

All cost parameters are assumed to be non-negative:

¢pa =20, Cac>0, cpe>0, ¢2'>0, >0,
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Decision Variables

The decision variables in this model include both binary routing decisions and continuous flow quantities.
Binary variables determine whether a specific transport leg is used by a vehicle in the network, while flow
variables represent the corresponding transported volumes.

Binary routing variables:

Zpdw € {0,1} Binary variable indicating whether vehicle v € V is assigned to transport SKUs
from plant p € P to DC d € D (first leg of the two-echelon strategy).

Ydew € {0,1} Binary variable indicating whether vehicle w € W is assigned to transport SKUs
from DC d € D to customer ¢ € C (second leg of the two-echelon strategy).

Zpew € {0,1} Binary variable indicating whether vehicle v € V is assigned to a direct shipment

from plant p € P to customer ¢ € C (DPS).

Continuous flow variables:

Gpcv > 0 Quantity of FP transported directly from plant p to customer c using vehicle v € V
(DPS).

Opaw > 0 Quantity of FP transported from plant p to DC d using vehicle v € V (first echelon
of the two-echelon route).

Ogew > 0 Quantity of FP transported from DC d to customer ¢ using vehicle w € W (sec-

ond echelon of the two-echelon route).

The structure of the network and binary routing arcs is visualized below:

Xpdv ={0,1}
(FE)

Ydcw =1{0,1}
(SE)

]

chv= {0,1}
(FE)

Figure 5.1: Leg Structure of the Modeled Two-echelon Hybrid Network

5.1.3. Objective Function: Logistics Cost Minimization

To identify the conditions under which DPS outperform 2E distributions, the model minimizes the total
logistics cost required to satisfy customer demand. These costs include fixed routing costs (per shipment)
and variable loading/unloading costs (per FP), enabling evaluation of hybrid distribution configurations.

Inspired by Zhou et al. (2024) and Sluijk et al. (2023), the objective function structure builds on their two-
echelon distribution models, but replaces arc-based flow routing with only binary decision variables that
indicate whether a shipment is carried out along a given node pair. This formulation allows for flexible
modeling of hybrid distribution strategies while preserving a clear cost breakdown across routing and
handling components.

- . Opa
i Zos = 3575 [ o (%)
—— Q —_——

pEP deD veY

loading cost at ~————~——"unloading cost at
plant transport cost DC
plant—DC

oau 9010
+ZZ Z [edcw cl d+ dcw'< (ég ) ch] (51)

deD ceC wew loading cost at

DC transport cost
DC—customer

+ 5 [ e ]
~~

C
pEP ceCvey Ioad'ng cost at transport cost

plant plant—customer

The objective function minimizes the total logistics cost associated with two alternative routing strategies:
» Two-echelon distribution (via DC):

= Opay - (12** — Variable loading cost per FP at the plant.
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- (%) - I3 — Transport cost from plant p to DC d, proportional to FTL.

= Opay - c3?°2d — Variable unloading cost per FP at the DC.
= Ogew - 924 — Variable loading cost per FP at the DC for outbound delivery.

- (%) . chCF — Transport cost from DC d to customer ¢, proportional to FTL.
* Direct Plant Shipment (DPS):

= Gpev - ¢! — Variable loading cost per FP at the plant.

- Zpew * cgf — Transport cost from plant p to customer ¢ per activated direct shipment.

Note that the transport costs for the two-echelon terms of the equation are divided by the vehicle capacity
@, since the corresponding flows 6,4, and 6,.,, are assumed to be able to occupy only part of a FTL; the
remaining capacity will always be filled by other product flows, allowing transport costs to be shared. In
contrast, for direct plant shipments, the transport cost ¢S} is not divided by @ because the flow g, is
assumed to be the only load on the vehicle and thus bears the full transport cost of the trip.

The binary routing variables 4., yacw, 2per indicate whether a specific vehicle is assigned to a routing leg
in the network. The continuous flow variables 6,,4,, O4cw, gper represent the volume of goods transported
by the assigned vehicles and determine the variable (FP-unit based) cost contributions. Although the
first-echelon flow 6,4, does not directly reference customer indices, its volume is indirectly driven by
downstream customer demand fulfilled via the DCs.

Table 5.1: Overview of cost components in the objective function

Cost component Explanation

ol Fixed ISF cost for FTL shipments from plant p to DC d (Table B.1)

S¥ Fixed CF cost for FTL shipments from DC d to customer ¢ (Table B.2)

Cgf Fixed CF cost for FTL direct shipments from plant p to customer ¢ (DPS) (Table B.2)
ci)oad Loading cost per pallet at plant p.

cload Loading cost per pallet at DC d.

cunload Unloading cost per pallet at DC d.

5.1.4. Constraints
The following constraints ensure the feasibility and integrity of the routing and flow decisions within the
hybrid distribution network model.

Demand satisfaction per origin plant
ST tper + 3. baew=Dpe VpEP, VeeC (5.2)

veEY deED weW

The full demand originating from each plant for each customer must be satisfied, either directly via DPS
or indirectly via a two-echelon flow through the DC.

Flow activation and vehicle capacity constraints

Gpcv < Q * Zpcv Vp € P, Ve € C, Yo ey (53)
epdv < Q * Tpdv VP eP, Vd € D, Yv ey (54)
Odcw < Q - Ydew Vd € D, VeeC, Yw e W (5.5)

Flow variables can only be positive if the corresponding routing arc is activated. Each flow is also
bounded by the vehicle capacity Q.

FTL eligibility and volume range for DPS
pcv < Q * Zpcv

VpeP,Veel, YveV (5.6)
Qpcv Z T * Zpcv

Where represents the minimum threshold for direct shipment eligibility (DPS), and is the
maximum vehicle capacity.
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DC flow balance

S i =>_> bacw VdED (5.7)

pEP veV ceC wew

The amount of goods arriving at a distribution center (DC) must equal the amount of goods leaving that
DC, aggregated over all vehicles.

Vehicle task exclusivity per echelon

ZZzpCU—&-ZZmpdv <1 YweVy (5.8)

pEP ceC peEP deD

Each first-echelon vehicle can be assigned to only one task: either a direct plant-to-customer shipment
(DPS) or a plant-to-DC leg of a two-echelon route, but not both simultaneously.

SN Yaew <1 Vwew (5.9)

deD ceC

Each second-echelon vehicle can serve at most one DC-to-customer connection to maintain simple
routing and capacity logic per vehicle.

DPS assignment: one customer per vehicle

DN sy <1 VoV (5.10)

p€EP ceC

Each vehicle assigned to direct plant-to-customer shipments (DPS) may serve at most one customer.
This constraint reinforces the full-truckload nature of DPS flows and simplifies routing logic. While this
condition is logically implied by the vehicle task exclusivity constraint (5.8), it is included explicitly to
improve model transparency and reduce computational complexity by narrowing the feasible space.

Variable domains

Tpdv, Zpev € {0,1} VpeP,VdeD,Veel, YVveV (5.11)
Yaew € {0,1} Vde D, VeeC, YweW (5.12)
Gpev, Opdv, Bdew > 0 VpeP,VdeD,Veel, YVveV, YweW (5.13)

Binary routing decisions and non-negative continuous flow variables, where non-negativity is enforced
directly in the variable definitions by setting the lower bound to zero.

5.1.5. Incorporating Emissions in the Objective Function

In addition to minimizing the logistics costs with the previous formulation, it is increasingly important
to consider the environmental impact of transportation in distribution network design. This research
incorporates an environmental objective that quantifies transport-related emissions based on the total
distance traveled by vehicles in the network:

P (z )PP IPFRIING 35 35 IIINITSIES 3) 50 SRR distpc>

pEP deD veV deD ceC wew pEP ceCveEY
(5.14)

Here, dist;; denotes the travel distance between nodes i and j, and v = 0.90 kg CO,/km per vehicle
is based on empirical truck emissions estimates (Rodriguez et al., 2020). This hybrid emissions objec-
tive combines flow-based and vehicle-based components. For two-echelon (2E) flows, emissions are
proportional to the transported volume 6 and distance traveled, normalized by vehicle capacity @, and
incurred only if a vehicle is assigned to the route (via =4, OF y4cw)- This reflects partial vehicle usage
and shared emissions. In contrast, DPS are modeled as dedicated trips; if a direct shipment is assigned
(zpev = 1), the entire distance dist,. is counted as emissions, regardless of the transported volume.

To incorporate emissions into the optimization process, the model uses a scalarized objective function
that combines logistics cost and emissions, both expressed in monetary terms:

Ztotal = Zcost +A- Zemissions (5-1 5)
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Here, )\ (€/kg CO;) represents a carbon pricing factor that can reflect external carbon markets, such
as the EU ETS price of €0.065/kg (International Carbon Action Partnership, 2024), or can serve as
an internal weight to explore the sensitivity of the distribution choices to emissions. This scalarization
method follows the approach proposed by Pereira et al. (2022).

This formulation is used consistently across all experiments, including the main cost optimization scenar-
ios. Changing the value of A\ adjusts the relative importance of emissions in the objective function but
does not alter the model structure. It remains a single-objective optimization problem, solved for a given
value of A to obtain cost-optimal solutions under different environmental priorities.

To investigate the trade-offs between logistics cost and environmental impact more systematically, two
complementary sensitivity analyses were conducted. The first uses the scalarization method to explore
routing decisions under varying carbon prices (\). The second applies an e-constraint approach, in
which emissions are minimized directly as the main optimization function under constrained logistics
costs to assess behavior under a sustainability-first objective. The setup of both analyses is detailed in
subsection 6.5.3 and subsection 6.5.4, with outcomes discussed in section 7.8.

5.1.6. Service Level Performance

To evaluate customer service performance under different distribution strategies, this research applies
a post-solution estimation method based on historical service benchmarks. Rather than modeling real-
time product availability, the approach estimates the overall service level as a weighted average of past
performance from each shipping origin (plants and DC). This allows for a realistic and interpretable
assessment of how changes in shipment allocations, so increasing DPS, influence expected service
levels. The method supports both operational evaluation and commercial interpretation, aligning with
internal KPIs at P&G.

Post-Solution Estimation Based on Historical Service Levels

Service level
rates from Plant 1 and Plant 2 are estimated based on the incidental shipments that have occurred to
certain customers in the historical data of service performance. The total shipped volume where this rate
is based on is very low, so there might be bias. Nevertheless, as product availability tends to be higher
at plants, where production occurs, shipments would typically achieve higher fulfilment rates compared
to DCs, which can have stockouts and allocation constraints.

* Slpant2 = average historical service level for shipments from Plant 2;
* Slpiant1 = average historical service level for shipments from Plant 1;
» Slpc ¢ = average historical service level for shipments from the DC 1;
* VOlpiant2 = D cce D ver QPlant 2, cv = total volume shipped directly from Plant 2 to customers;
* Volpjant1 = Zcec Zvev gpiant 1, v = total volume shipped directly from Plant 1 to customers;
* Volpc 1 = ) ce D wew OpC 1, cw = total volume shipped from DC 1 to customers.
Figure 5.2 shows the service level rates of the past months, for both Category X and Category Y, for

shipments from the DC and from incidental plant shipments. Plant rates are generally higher, due to the
bias of the low number of historical shipments that occurred.

[Figure anonymized for confidentiality reasons]

Figure 5.2: Monthly Service Level Rates per Category and Origin
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Considering these historical patterns, averages are taken in the post-solution estimation, given in Ta-
ble 5.2. For the DC 1, the average of Cat X&Y together is taken for the evaluation.

Table 5.2: Average SL % per Origin Shipment Location

Slpc 1 X%
Slpiantz X%
Slpant1 X%

The estimated overall service level to BNL customers is calculated as a weighted average across the
three origin locations in Equation 5.16. The equation will support the comparison of scenarios with and
without DPS, to see if more DPS would enhance the service level KPI.

SLpiant 2 - VOlpiant 2 + SLpiant 1 - VOlpjant 1 + SLpc 1 - Volpe 1
Volpjant 2 + VOIpjant 1 + VOolpg 1

SI—estimated = (5-16)

Impact of Service Level Changes on Net Outside Sales
In addition to influencing operational performance, service levels also have a direct financial impact.

This relation-
ship highlights the strategic importance of maintaining high service levels, particularly from origin points
with greater product availability as the plants, as even minor improvements in fulfilment performance can
lead to measurable gains in sales. With this, post-solution evaluation of service levels not only informs
supply reliability but also provides insight into potential commercial outcomes.

5.2. Data Preparation

5.2.1. Data Overview
To support the model, historical shipment data was extracted from P&G’s

Model parameters such as customer demand (D,.), vehicle capacity (@), and transport distances (dist;;)
were derived directly from this dataset or assumed based on internal knowledge. Fixed transportation
costs, including ISF costs (c;y") for plant-to-DC movements, CF costs (cg!, c5. ) for DC-to-customer
and direct plant-to-customer deliveries, were sourced from region-based transport rates provided by the
Transport Operations (T-OPS) team or estimated where needed. Loading and unloading costs (cl°2d,
c}‘“l"ad) were extracted from haulier contract data. Finally, storage costs were taken from internal DC
and plant operations records.

5.2.2. Region-based Transport Costs

Table B.2 in Appendix B presents the transport costs in €/FTL for all destination regions. These costs
represent Customer Freight (CF) transport rates, which are fixed per route between origin and destination.
Each customer location is assigned to a specific region, and the transport cost for that region is used
accordingly.

The green-highlighted values in the table reflect known CF rates, obtained from historical data provided
by P&G’s T-OPS. All rates for destinations with origin DC 1 are known. In contrast, several values for
direct shipments from Plant 1 and Plant 2 were unavailable, primarily because such direct shipments
have not historically occurred so no rates from contracted carriers are yet recorded. To address these
gaps, estimates were made for the missing rates. The orange-highlighted cells indicate these estimated
values. The estimation involved calculating the distance from the plant location to the centroid of the
corresponding region and then applying a rate per kilometer derived from the known historical rates of
occurred direct shipments. This approach yields a reasonable approximation of the fixed CF transport
cost per shipping route.

5.2.3. Distance matrix

Distances between origin nodes (plants and DC) and the selected customer locations were obtained with
Python using the openrouteservice API. The calculation was based on the precise geographical coordi-
nates (latitude and longitude) of each node. The distances are summarized in Table B.3 in Appendix B,
where 14 DPS-eligible customers, coming from the analysis in subsection 5.2.4, are listed alongside the
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region they belong to and their corresponding distance to each origin node. The resulting distance ma-
trix was stored in a Pandas DataFrame, with rows representing origin nodes and columns representing
customer destinations. This matrix is provided in Table B.3 in Appendix B.

Although these distances are not used in the transport cost calculations, because transport costs are
region-based and fixed, they are essential for the environmental performance evaluation. Specifically,
the model multiplies distance traveled by emission factor + to estimate the CO, emissions per shipment
route, as detailed in subsection 5.1.5. This allows for a sensitivity analysis of the environmental impact
of DPS versus two-echelon distribution.

5.2.4. Demand Data: Narrowing the Customer Set

The full selected demand dataset contains historical weekly shipment volumes for customers, seg-
mented by product category and origin plant. Each row represents a unique combination of customer,
category (Category Y or Category X), origin production location and initial storage location: either one
of the main production plants (Plant 1 or Plant 2) or the DC 1. The dataset spans 41 calendar weeks:
from week 27 of 2024 (starting July 1st) to week 14 of 2025 (ending April 1st). This selection gives a
sufficient amount of data and span over multiple seasons to trace variability. Demand is expressed in
Floor Positions (FP), which approximates the required vehicle space per shipment.

To reduce the dataset, a first analysis on the demand patterns is performed. To identify which customers
are viable candidates for DPS, a statistical screening was conducted. Key metrics were calculated per
customer-category combination: mean weekly demand, standard deviation, coefficient of variation (CV),
and the number of weeks in which demand exceeded a specific operational threshold. The threshold was
set at , giving the minimum volume at which a vehicle delivery is considered FTL-eligible and would
be shipped. However, to be considered a structurally suitable DPS candidate, customers were required
to demonstrate an average weekly demand of at least , which is the theoretical FTL threshold.

Considering these statistics, 14 DPS-eligible customers were identified whose average demand ex-
ceeded for Category X and Category Y. Their demand profiles, including weekly variability and
FTL consistency, are detailed in Table C.1 in Appendix C. By narrowing the analysis to these higher-
volume customers, the research maintains a practical focus on those with a realistic potential for DPS
integration. Additional details on their demand reliability are provided in Table C.3 in Appendix C, which
reports the number and share of weeks in which their demand exceeded the threshold. These
findings show that most DPS-eligible customers not only surpass the average volume requirement but
also display consistent week-by-week FTL-eligible volumes, strengthening their potential for DPS.

The demand behavior across these 14 DPS-eligible customers altogether, is plotted per product category
in Figure 5.3 and Figure 5.4. It shows the weekly average demand (in FP) per customer for Category
Y and Category X products, respectively. The dotted blue line indicates the average demand across
all weeks, where the dotted red line marks the FTL threshold at . These graphs highlight weekly
variation and underscore the structural differences in demand levels and volatility between Cat X&Y. It
could already be concluded that Category Y appeals more potential for DPS because of the high average
weekly demand.

Average Demand (FP)
Average Demand (FP)
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Assessing Other Category Demand to Finalize Customer Set

After identifying the initial selection of 14 DPS-eligible customers with high demand for Cat X&Y prod-
ucts, a further scoping step was conducted to ensure that implementing DPS would not compromise the
integrity of existing logistics. In the current distribution system, all of these customers also receive prod-
ucts from other categories, which are shipped via the central DC 1. While DPS is considered for their Cat
X&Y flows from Plant 1 and Plant 2, the residual demand for other categories must remain sufficiently
high to independently support weekly full truckloads from the DC. This ensures that introducing DPS for
Cat X&Y does not erode the volume base needed to sustain efficient DC-based deliveries.

To assess this, demand for non-Cat X&Y was analyzed over the same 41-week period. Figure 5.5
highlights the top five customers with the highest overall demand, showing the number of weeks in which
demand exceeded the FTL threshold of . This threshold ensures that at least

are filled, accounting for a typical mix of pallet types. The final five selected customers as
DPS candidates are: Customer 1, Customer 2, Customer 3, Customer 4 and Customer 5 (geographical
locations given in Figure 5.6).
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Figure 5.5: Number of Weeks (out of 41) with Demand Above Thresholds for Cat X&Y and Other Categories

Descriptive statistics for these five customers are shown in Table 5.3. The coefficient of variation (CV) is
included to indicate the relative demand stability. A low CV suggests more predictable weekly volumes,
which supports the feasibility of decoupling Cat X&Y flows (for DPS) from DC-based shipments.

Table 5.3: Demand Statistics for Top 5 Customers

Customer  Weekly Avg Cat X&Y (PAL) Std Cat X&Y CV Cat X&Y

Customer 1
Customer 2
Customer 3
Customer 4
Customer 5

Customer  Weekly Avg Non-Cat X&Y (PAL) Std Non-Cat X&Y CV Non-Cat X&Y

Customer 1
Customer 2
Customer 3
Customer 4
Customer 5
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[Figure anonymized for confidentiality reasons]

Figure 5.6: Map of Top 5 Customers, Plants and DC

Autocorrelation Test

To evaluate the temporal consistency of weekly demand among the five DPS candidates identified in
the previous section, the autocorrelation function (ACF) was computed. ACF measures the correlation
between current and past demand values over different time lags. For each customer-category combi-
nation, the average ACF over lags 1 to 3 was calculated. This reflects short-term memory in the data,
so whether demand in one week is dependent on demand in the preceding weeks.

The results, presented in Table C.4 in Appendix C, show that most average ACF values range between
-0.2 and 0.1, suggesting weak short-term autocorrelation. This implies that week-to-week demand is
not strongly predictable for and may be subject to operational variability or customer-specific ordering
behavior. While this indicates that short-term volatility is present, it does not rule out the value of long-
term planning of DPS based on overall averages, especially in combination with volume stability.

Stationarity Analysis: Augmented Dickey-Fuller Test

To complement the ACF analysis, the Augmented Dickey-Fuller (ADF) test was performed to assess the
stationarity of the weekly demand series for the same five DPS candidates. Stationarity indicates that
key statistical properties (such as mean and variance) remain stable over time, which is essential for
forecasting and strategic planning.

As shown in Table C.5 in Appendix C, 7 out of 10 customer-category combinations exhibit stationarity,
indicated by p-values below the 0.05 significance threshold. These include both categories for customers
Customer 1, Customer 4, and Customer 5, as well as the Cat X&Y for Customer 3. This means that the
null hypothesis of non-stationarity can be rejected for these cases.

In contrast, both categories for Customer 2 and the 'Other’ category for Customer 3 are found to be non-
stationary, indicating higher volatility or underlying trends in those demand series. These cases require
more caution in planning and may benefit from further analysis or smoothing techniques. Overall, the
predominance of stationary series supports the assumption that historical weekly demand behavior is
a reliable basis for DPS planning. The presence of stable demand patterns across most customers
reinforces the feasibility of using long-term averages for strategic decision-making.

Conclusion: Statistical Demand Properties of 5 Key DPS Candidates

After reducing the original set of customers to 14 DPS-eligible candidates, a further refinement step
resulted in a final selection of 5 customers included as DPS candidates in the analysis. For these 5
customers, in summary, the analysis of short-term autocorrelation and long-term stationarity shows that
weekly demand is stable over time, though not highly predictable week to week. These findings support
the use of long-term demand averages for DPS planning, while maintaining sufficient reliability in the
traditional DC-based flows.

5.3. Model Implementation

The mathematical model was implemented in Python, using FICO Xpress 9.5 as the optimization solver,
which is the internal used optimization tool within P&G. The purpose of this implementation is to translate
the adapted 2E-VRP with hybrid distribution into a computational framework capable of solving realistic
planning scenarios based on historical demand and cost data. The implementation includes routing
decisions, shipment quantities, and flow allocations across the direct and two-echelon distribution paths.
The Python Model in code format is given in Appendix F.
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FICO Xpress 9.5 is a commercial optimization engine specialized in solving large-scale mixed-integer
linear programming (MILP) problems. It applies a combination of branch-and-bound, cutting planes, and
heuristic algorithms to efficiently search the solution space. The branch-and-bound method systemat-
ically explores partial solutions, pruning suboptimal branches based on bounds, while cutting planes
are used to eliminate fractional solutions and accelerate convergence. Heuristics help identify good
feasible solutions early in the process, improving solver performance. These optimization techniques
are handled internally by the solver, allowing the modeler to focus on formulating the problem structure
and constraints. The resulting framework allows for flexible scenario testing and analysis of trade-offs
between direct shipments and two-echelon deliveries.

5.4. Model Verification

A verification on the model is performed to confirm that the implementation of the hybrid 2E-VRP model
behaves as intended and corresponds to the mathematical formulation. Both structural consistency and
behavioral response to changes in decision variables and parameters are assessed.

5.4.1. Model Consistency

The model formulation described in subsection 5.1.2 was implemented in Python and solved using FICO
Xpress 9.5. Verification was performed on a simplified test instance derived from the real-world dataset,
using a small subset of the data (two plants, one DC, and two customers: Customer 1 and Customer
3). This ensures that routing logic, parameter sensitivity, and constraint behavior could be inspected
in a controlled environment. Verification started with ensuring alignment between the code and the
mathematical model in terms of:

+ Set definitions: Sets for plants (P), DCs (D), and customers (C) were checked to ensure correct
dimensionality and mapping to the historical demand dataset.

+ Variable logic: All routing variables (zp4v, Ydcw Zpev € {0,1}) and flow variables (6pq4v, Odcws ¢pev >
0) were confirmed to match their defined purpose in the formulation and produce feasible values
under some simple test scenarios.

* Objective function: The main objective function for logistics costs was implemented and results
of the separate cost components were printed to see if the total cost correctly aligns with the split
in cost components. The additional functions for service level and emissions are also tested on
consistency and components are split out to ensure the expected output is correctly aggregated.

+ Constraint implementation: All constraints are cross-checked against their mathematical repre-
sentation. Specific constraints are manually tested by inspecting solution outputs to ensure logical
correctness (e.g., no dual flows to the same customer).

In addition, the demand, distance, and cost datasets were checked for consistency by inspecting printed
values for selected customer and location combinations and verifying this with the data files, confirming
that data inputs were interpreted and used correctly within the model.

5.4.2. Behavioral Testing with Parameters

To evaluate the robustness and interpretability of the model under extreme parameter settings, a series
of behavioral tests of the parameters is conducted. In each test, a single parameter is varied while all
other parameters are held constant. This approach allows for the identification of whether the model
reacts logically to changes and continues to produce consistent, explainable outputs.

Before performing the parameter variations, the base performance of the model is first evaluated using
default parameter settings. This base test scenario considers two customers (Customer 1 and Customer
3) with demand originating from both plants and includes only Cat X&Y products. The corresponding
results are shown in Figure 5.4. To assess the model’s behavioral robustness, a series of extreme
parameter value tests were conducted, summarized in Figure 5.5. These tests examine the impact of
varying transport costs, vehicle capacity, and emission factors on model performance.
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Table 5.4: Parameter Testing: Base Output Table 5.5: Behavioral Tests with Extreme Parameter Values

Week Number 46 Test Parameter Test Values
oo neele oy T 0PS vansportcost 7
T2 SE transport cost ¢§F
Total cost T3 Vehicle capacity @
Total distance traveled T4 Emission factor ~

Total emissions
Direct shipments (DPS)
Two-echelon trips (2E)

T1: Variation in DPS Transport Cost

Table 5.6 presents the results when varying the DPS cost parameter. When the DPS cost is set to
zero, the total logistics cost decreases; however, the number of DPS remains unchanged due to the
enforcement of the Full Truckload (FTL) constraint. When this constraint is relaxed and the DPS cost
remains zero, the model selects only DPS routes, including for smaller quantities, further decreasing the
total cost. In contrast, setting the DPS cost to a prohibitively high value results in all demand being routed
through the two-echelon network.

Table 5.6: T1: Parameter Testing: DPS cost cgf

| DPScostcgF =[]
Total cost

DPS cost c;,. =0

Total cost

Total distance traveled
Total emissions

Direct shipments (DPS)
Two-echelon trips (2E)

Total distance traveled
Total emissions

Direct shipments (DPS)
Two-echelon trips (2E)

DPS cost c;. =0
(Relaxed FTL Enforcement constraint)

Total cost

Total distance traveled
Total emissions

Direct shipments (DPS)
Two-echelon trips (2E)

T2: Variation in Second Echelon Transport Cost

In Test T2, the cost of shipping from the DC to the customer (SE) is varied. With the FTL constraint
enforced, changing this parameter has limited effect on the shipment strategy. However, once the FTL
constraint is relaxed, an increase in SE cost leads to a higher number of direct shipments (DPS), as
expected. This confirms that the model responds logically to cost differentials when not constrained by
FTL requirements.

Table 5.7: T2: Parameter Testing: SE cost ¢

SE cost ¢" = 10000

Total cost

Total distance traveled
Total emissions

Direct shipments (DPS)
Two-echelon trips (2E)

SEcostc" =0

Total cost

Total distance traveled
Total emissions

Direct shipments (DPS)
Two-echelon trips (2E)

SE costc§F =0
(Relaxed FTL Enforcement constraint)

SE cost ¢ =10000
(Relaxed FTL Enforcement constraint)

Total cost

Total distance traveled
Total emissions

Direct shipments (DPS)
Two-echelon trips (2E)

Total cost

Total distance traveled
Total emissions

Direct shipments (DPS)
Two-echelon trips (2E)
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T3: Variation in Vehicle Capacity

Test T3 examines the impact of vehicle capacity on routing outcomes. Reducing capacity results in
significantly more 2E trips and higher total costs due to an increased number of small shipments. On
the other hand, increasing vehicle capacity reduces both the number of trips and the total cost. These
outcomes are in line with expectations, confirming that the model adjusts routing decisions based on
available vehicle capacity.

Table 5.8: T3: Parameter Testing Vehicle Capacity Q

# DPS
# 2E
Total cost

T4: Variation in Emission Factor

Finally, test T4 explores the impact of varying the emission factor . As shown in Table 5.9, modifying
this parameter directly affects the total emission values, as expected. However, the routing decisions
remain unchanged across all values tested. This suggests that the contribution of emissions to the total
cost is relatively small, and thus does not drive changes in routing when cost minimization is the primary
objective.

Table 5.9: T4: Parameter Testing Emission Factor ~

| =090 ~=0.10 ~v =2.00

#DPS
# 2E
Total emissions

5.4.3. Behavioral Testing with Decision Variables

Another series of behavioral tests is performed by manually fixing key binary and continuous decision
variables. These tests simulate extreme routing conditions and isolate specific routing mechanisms,
allowing verification of model consistency, feasibility handling, and constraint integration. Each test is
performed on the previously mentioned simplified instance. By selectively enabling or disabling shipment
options and flow variables, the model’s response to controlled scenarios is observed and interpreted in
Table 5.10.
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Table 5.10: Behavioral Tests on Binary Decision Logic

Test Description Result

T1 Force z,. = 1 (DPS activated for all eligi- Infeasible solution: Model correctly identifies that not all
ble customers); disable DC flows (x,, = 0, demand can be routed via DPS due to eligibility, volume,
Yge = 0) or FTL constraints.

T2 Force z,. = 0 (DPS disabled) Feasible solution: All customer demand is routed via the

two-echelon network, confirming that the model correctly
switches to 2E routing when DPS is disabled.

T3 Force y3, = 0forall d,c Initially infeasible: With FTL enforcement active, no fea-
sible solution to route all volume via DPS was possible.
After relaxing the FTL constraint, a feasible solution was
found using only DPS shipments.

T4 Disable DPS flow: set q,. = 0forall p,c,v  Feasible solution: All flow is routed through the two-
echelon network, confirming that the model correctly en-
forces 2E routing when DPS flow is disabled.

T5 Disable 2E flow: set 6,4, and 64.., to 0 for  Initially infeasible: With FTL enforcement active, DPS rout-

all valid indices ing alone could not meet all demand. After relaxing the
FTL constraint, a feasible solution was found using only
DPS flows.

T6 Fix a single DPS flow: set q,. = 33 for Feasible solution: One DPS shipment from Plant 2 to Cus-

Plant 2 — Customer 1, disable all other tomer 1 was enforced as intended; the remaining demand

DPS flows to Customer 1 was served via two-echelon routes, confirming correct in-
tegration of flow and routing logic.

5.4.4. Solver and Performance Checks
To ensure that the model formulation is correct and solvable, several verification and performance checks
were performed using the FICO Xpress Solver (v9.5.0). These checks confirm the model’s numerical
stability, feasibility, and computational efficiency:

» The solver successfully found optimal solutions for small instances, based on a reduced test dataset
containing two customers (Customer 1, Customer 3), one DC, and both plants. This subset was
chosen to reflect representative routing scenarios while ensuring full transparency of variable as-
signments. Optimal solutions were found within 5 seconds, with all binary routing decisions cor-
rectly assigned.

+ The model’s integrity was confirmed by toggling constraints such as full truckload (FTL) enforce-
ment and single-task eligibility. These toggles influenced routing decisions and solution structure,
as expected.

+ For the main test case with 2 customers and 1,000 variables, the presolved problem was signifi-
cantly reduced to 550 variables and 554 constraints, indicating efficient preprocessing.

» The optimal solution in this test run was obtained with a final objective value of €6,480.25 and zero
primal and integer infeasibility.

* The solver achieved this solution in under 0.05 seconds, with only two branch-and-bound nodes
explored, demonstrating high solver performance and problem tractability.

These solver and performance checks support the model’s suitability for application in more complex test
cases and form the basis for the overall behavioral assessment presented in the following conclusion.

5.4.5. Conclusion

The behavioral tests confirm that the model logic is sound, robust, and responsive to variations in key
input parameters. For cost-related parameters (T1 and T2), the model appropriately adjusts routing de-
cisions in line with cost incentives, particularly when the full truckload (FTL) enforcement constraint is
relaxed. Infeasibilities are correctly triggered when constraints conflict with routing possibilities over the
DPS arc, but once relaxed, the model successfully reroutes demand via alternative paths. Changes
in vehicle capacity (T3) affect routing complexity and cost efficiency as expected, while adjustments to
the emission factor (T4) influence only environmental performance outputs, leaving routing decisions
unchanged. These outcomes demonstrate not only the internal consistency of the model but also its
transparency and controllability, as routing behavior can be accurately directed through fixed decision
variables. Together, these findings confirm the correctness of the formulation and its suitability for ana-
lyzing more complex or larger-scale instances.
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5.5. Model Data Validation

To ensure that the optimization model is built on realistic and credible inputs, a data validation was
performed. This process confirms that the data structures, assumptions, and parameter values used
in the hybrid distribution model correctly reflect the operational setup at P&G. Following the principles
described in Sargent (2010) for model validation and data credibility, this section focuses on validating
the alignment between the model’s parameterization and actual logistics data.

The validation is based on data provided by P&G’s T-OPS team, including transport cost structures, his-
torical routing volumes, and known rates for both two-echelon and direct shipment flows. While customer-
specific invoice data from ERP systems was not available, the reference values used here were sourced
directly from T-OPS operational reports and planning documents. As such, they serve as authoritative
benchmarks to test the model’s data realism and consistency.

5.5.1. Validation of Two-Echelon Input Data (CO)

The standard two-echelon (2E) configuration currently in use at P&G was used as the basis for this valida-
tion. In configuration CO, direct shipment options are disabled and all customer demand is routed through
the plant-DC-customer chain. The goal is to validate whether the model’s inputs and data interpretation
correctly reproduce the expected cost and flow behavior for known customers.

Table 5.11 summarizes the model results for two key customers (Customer 1 and Customer 3) under
scenario S1 (Category X demand from Plant 1), and compares the modeled transport cost breakdown
to the expected historical cost structure used by T-OPS. Full details of the model output are provided in
Table D.1 in Appendix D.

Table 5.11: Data Validation of 2E Transport Costs and Volumes (Configuration C0O, Week 46)

Customer Metric Model Output Expected Benchmark

Total volume fulfilled
Transport cost (Plant 1 — DC
1 — Customer 1)

Customer 1

Total volume fulfilled
Transport cost (Plant 1 — DC
1 — Customer 3)

Customer 3

The results show that the model cost logic (based on fixed ISF and CF rates, truckload capacity, and
proportional volume allocation) corresponds exactly to historical planning logic. This confirms that the
model correctly interprets input data, reflects how truckload-based costs are calculated in practice, and
maintains fidelity to real-world constraints on volume fulfillment.

5.5.2. Validation of Direct Shipment Cost Inputs (C1)

While direct plant shipments (DPS) are not yet a standard part of P&G’s logistics network, historical full-
truck DPS shipments have occasionally occurred. The transport rates for these incidental shipments
were shared by the Transport Operations (T-OPS) team (see Table B.2) and serve here to validate the
cost assumptions applied to DPS arcs in the model.

Table 5.12 presents a comparison of model-derived DPS transport costs with historical FTL rates for two
customer destinations in scenario S3 (Category Y from Plant 2). The model’'s DPS costs were computed
using fixed cost parameters and estimated transport distances, assuming FTL usage. A detailed cost
breakdown of the model run is given in Table D.2.

Table 5.12: Validation of DPS Cost Input Values Against Historical FTL Rates

Route Model DPS Cost FTL Cost Data T-OPS Deviation

Plant 2 — Customer 1
Plant 2 — Customer 3

The results show minimal deviation for the Plant 2-Customer 1 route and a somewhat larger deviation for
the Plant 2-Customer 3 route. These variations can likely be attributed to differences in VFR between the
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modeled shipments and the shipments from the historical data. Despite these differences, the results
confirm that the model's DPS cost assumptions are within a reasonable range of operational reality,
supporting the credibility of its cost parameterization.

5.5.3. Conclusion

The data validation confirms that the hybrid distribution model is built on consistent, realistic, and credible
data inputs. Cost structures for both two-echelon and direct shipment configurations were shown to
match operational benchmarks provided by the P&G logistics team. While this validation does not assess
predictive performance or model accuracy in new scenarios, it provides confidence that the foundational
data and parameter assumptions in the model are aligned with real-world logistics operations.

This type of validation primarily qualifies as data validation, confirming that the model inputs, cost com-
ponents, and parameter values align with real-world logistics data. While not a full conceptual validation,
this step is essential to ensure that the model is grounded in realistic and operationally meaningful data
(Sargent, 2010).

5.6. Conclusion

This chapter presented and verified a flow-based optimization model to support strategic decision-making
on hybrid distribution at P&G. The model captures both DPS and two-echelon flows, incorporating real-
world cost structures and fixed-capacity constraints. Unlike classical VRP models that construct vehicle
routes, this formulation abstracts vehicles as capacity units, reflecting P&G’s outsourced transport oper-
ations where routing is managed by 3PL providers. Transport costs are therefore modeled per shipment
leg, and vehicle availability is assumed.

The model was implemented as a Mixed-Integer Linear Program (MILP) using Python and the FICO
Xpress solver. Behavioral testing confirmed that the model behaves logically under varying demand
scenarios and parameter values. Solver diagnostics further demonstrated its numerical stability and
tractability for small to medium instances, with solution times under one second.

To answer SQ5, How should the proposed modeling approach be structured to evaluate the impact of
direct shipping on supply chain efficiency?; The modeling approach is structured as a flow-based MILP
variant of the two-echelon vehicle routing problem. It optimizes shipment assignments from plants or
DCs to customers, based on fixed transport costs and vehicle capacities, without explicitly routing vehi-
cles. This abstraction aligns with P&G’s operational context and enables scalable analysis of strategic
distribution decisions. The structure supports scenario-based evaluation of logistics cost, service level,
and emissions outcomes, providing insight into the conditions under which integrating DPS improves
performance in a two-echelon network.



Experimental Design

This chapter outlines the experimental framework used to evaluate the performance of the hybrid trans-
port network, under different conditions with and without DPS. The goal is to assess the trade-offs be-
tween logistics costs, environmental impact, customer service performance and the impact on stock
allocation for various structural scenarios and policy configurations of the network.

To support a robust experimental design, a clear distinction is made between exogenous parameters
(external, fixed inputs) and endogenous parameters (internally configurable model choices):

+ Exogenous parameters: Fixed input data that are outside the control of P&G as the decision-
maker. These include historical customer order patterns, demand volumes’, transport costs, han-
dling and storage costs, travel distances, and the baseline carbon emissions factor 1.

* Endogenous parameters: Internally configurable model decisions, including the DPS activation
status, full truckload (FTL) volume thresholds for DPS eligibility, the structure of the transport net-
work (two-echelon vs. DPS-enabled flows), and the carbon price factor A\ used to value emissions.

This classification supports a robust experimental design by clearly separating input assumptions from
configurable levers. Based on this, the experiments consist of testing multiple exogenous scenarios
(demand streams) across different endogenous configurations (model settings), as detailed below.

6.1. Demand Scenarios: DPS-Eligible Streams

The four scenarios represent different exogenous demand streams that are eligible for DPS. While the
underlying customer demand data is fixed, the eligibility of certain product-origin flows for DPS is an
endogenous design decision that reflects internal policy choices. The four demand scenarios define
which combinations of product types and origins are allowed to bypass the DC.

+ 81 — Category X ex Plant 1 (Production only): Only Category X SKUs produced at Plant 1 are
eligible for DPS.

+ 82— Category X ex Plant 1 (Production + Storage): DPS is allowed for both produced and stored
Category X SKUs at Plant 1 (in the CIMAT warehouse).

+ 83 — Category Y ex Plant 2 (Production only): DPS is allowed for Category Y SKUs produced
at the Plant 2 plant.

+ 84 - Category Y ex Plant 2 (Production + Storage): DPS is allowed for both produced and stored
Category Y SKUs at Plant 2 (FBNL shared codes).

These scenarios reflect different internal strategies regarding which volumes are considered for DPS.
Allowing plant-location stored SKUs in addition to produced ones increases potential DPS volume and
provides additional flexibility in plant-to-customer deliveries.

To illustrate the structural differences between the demand scenarios, Figure 6.1 provides a schematic
representation of the demand streams in a simplified two-echelon network comprising a plant P, a distri-
bution center D, and a customer C'. Extended versions of this illustration, tailored to Plant 1 and Plant 2,
were previously given in Figure 1.2 and Figure 1.3.

"While demand volumes are exogenous, the selection of which demand streams are eligible for DPS is an endogenous choice

49
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The illustration in Figure 6.1 is explained using the example of Category X demand originating from Plant
1. In the baseline configuration (C0), all three Category X Segments of demand are routed via the DC,
meaning no direct shipments from the plant to the customer are allowed.

When enabling DPS (in configuration C1-C3) for scenario S1, only those Category X SKUs that are
produced at Plant 1 (stream 1) are eligible for DPS, enabling direct shipments for a subset of demand.
Scenario S2 extends this by also allowing DPS for Category X SKUs that are sfored at Plant 1 (in the
CIMAT warehouse), even if they are not produced there (stream 2). Thus, scenarios S1 and S2 progres-
sively increase the potential DPS volume.

The expected effect of broadening DPS possibilities between S1 and S2, is a shift in volume away from
the P-D-C path toward direct P-C deliveries. This would reduce the load through the DC in terms of both
throughput volume and storage, and potentially lowering logistics costs and improving service levels.

Figure 6.1: Demand Scenarios lllustrative Example

This illustrative example also holds for scenarios S3 and S4, reflecting the demand of Category Y from
Plant 2. Scenarios S3 and S4 also progressively increase the potential DPS volume. All scenarios
will be run separately through the model to assess the impact of enabling DPS under varying levels of
operational flexibility. For each scenario, customer-level demand data will be filtered according to the
applicable SKUs and origin constraints.

6.1.1. Impact of Including Stored SKUs on Weekly Demand Patterns

To assess the impact of including stored SKUs not produced at the plant, Figure 6.2 and Figure 6.3
show the weekly demand distributions per customer for Category X and Category Y, respectively. These
boxplots compare demand before (S1/S3, blue) and after (S2/S4, orange) adding stored SKUs. The
white diamond represents the mean value in each case.
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Figure 6.2: Weekly Demand Distribution per Customer for Figure 6.3: Weekly Demand Distribution per Customer for

Category X (S1 vs. S2) Category Y (S3 vs. S4)
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Table 6.1 shows the average percentage increase in weekly demand per customer when stored SKUs
are included. The impact varies notably between customers and categories. While Customer 2 and
Customer 5 show substantial average increases for Category X, other customers such as Customer
1 and Customer 3 are only affected in the Category Y category, and exhibit no meaningful change in
Category X. Overall, the effect of adding storage demand is highly customer- and category-specific.
These low additional values can be explained by the fact that the largest segment of Category X and
Category Y products within the categories are produced at the plants in this scope. This result suggests
that while DPS potential increases slightly for some customers, it does not significantly affect demand
volatility.

Table 6.1: Mean Percentage Additional Stored SKUs on Weekly Demand per Customer for Category X and Category Y

Customer  Category X (S1to S2) Category Y (S3 to S4)

Customer 1
Customer 2
Customer 3
Customer 4
Customer 5

Avg

6.2. Model Configurations: Policy Settings

To test each demand scenario under varying internal logistics policies, four model configurations are
defined. These configurations vary key endogenous parameters, such as whether DPS is allowed and
what shipment volume thresholds apply. The objective is to observe how performance outcomes change
under different internal rules.

+ CO0 - Baseline (No DPS): Two-echelon network with DC-based delivery only. Used as benchmark

in the model.

* C1 - Full DPS Enabled: DPS allowed for all eligible orders with . Used to test routing
decisions with the most realistic integrated DPS configuration.

* C2 - DPS Threshold Relaxation: FTL threshold relaxed to , potentially increasing DPS

opportunities. Evaluates the effect of partial relaxation policies on cost-efficiency.

+ C3 — DPS Threshold Removed: FTL threshold fully removed (r = 0 FP), allowing DPS for all
shipment sizes. Assesses the impact of highly flexible shipment policies.

Each of the four demand scenarios (S1-S4) is tested under the four model configurations (C0-C3), re-
sulting in 16 main experiments.

6.3. Customer and Time Selection for Experimental Analysis

To enable in-depth scenario testing while maintaining computational efficiency, the experimental analysis
focuses on a subset of five high-demand customers. These were selected based on a broader demand
screening described in subsection 5.2.4, which evaluated weekly shipment volumes for customers
over a 41-week period.

The five selected customers (Customer 1, Customer 2, Customer 3, Customer 4, and Customer 5) were
chosen due to their consistently high demand in both the Category Y and Category X product category,
along with sufficient residual volume in other product categories to sustain DC-based flows. This ensures
that DPS integration can be tested without disrupting the viability of existing logistics.

Week Selection for Experimental Input

For each selected customer, the full demand in FP for a set of 3 representative weeks is used as model
input. This choice enables the evaluation of different distribution strategies and scenario settings under
realistic, disaggregated demand conditions while capturing natural week-to-week volatility. Limiting the
analysis to 3 weeks ensures a manageable number of experimental runs, 48 in total, with 16 experiments
conducted across 3 weeks, gaining a practical balance between analytical depth and computational
feasibility.
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The decision to include multiple consecutive weeks is grounded in the statistical demand analysis pre-
sented in subsection 5.2.4, particularly the autocorrelation and stationarity results in Figure 5.2.4 and
Figure 5.2.4. The autocorrelation analysis revealed weak short-term memory in the demand patterns,
which gives sign of operational volatility on a week-to-week basis. At the same time, the stationarity
analysis showed that most customer-category combinations are stable in the long term, supporting the
validity of using representative historical data for planning purposes. Together, these findings justify the
use of three consecutive weeks: they are sufficient to capture short-term volatility while remaining within
a stable long-term demand environment, offering a realistic and statistically sound basis for model input
without inflating the number of experimental runs beyond feasible limits.

To ensure that the selected weeks reflect the central tendency and variability in weekly demand, a sta-
tistical boxplot was created for the total weekly demand summed across the five selected customers,
shown in Figure 6.4 and Figure 6.5. These figures depict the interquartile spread, medians, and outliers
in demand over the 41 weeks for Category X and Category Y, respectively. The associated descriptive
statistics are shown in Table 6.2.

Total Weekly Demand
Total Weekly Demand

- L |
Total (All Customers) Total (All Customers)
Figure 6.4: Total Weekly Demand Across all 5 Customers in Figure 6.5: Total Weekly Demand Across all 5 customers in
Category X Category Y
Table 6.2: Descriptive Statistics of Total Weekly Demand (41 weeks)
Category Mean Std Min 25% Median 75% Max 95% ClI 95% CI
LL UL
Category X
Category Y

To ensure representativeness, the three selected weeks are chosen to correspond to statistical markers
within the interquartile distribution of total weekly demand. Specifically, one week was selected near the
25" percentile, one near the mean, and one near the 75" percentile of total demand. This approach
ensures that the experimental analysis captures a diverse and representative range of operational con-
ditions. The choice for percentiles rather than the 95% confidence interval bounds is deliberate: while
confidence intervals quantify statistical uncertainty around the mean, percentiles reflect the actual spread
and variation in observed weekly demand. Selecting weeks based on the interquartile range therefore
provides a more realistic basis for modeling typical low, average, and high demand scenarios.

For Category X, weeks 36 to 38 from the data align well with this strategy. Week 36 corresponds closely
with the 25th percentile, week 38 is near the median, and week 37 approximates the 75th percentile. As
shown in Table E.6, the demand volumes of these weeks are respectively 49, aligning with the statistical
markers.

However, demand in week 36 to 38 for Category Y falls consistently above the 75th percentile. As such,
this selection does not meet the intended criterion of representativeness. Therefore, an alternative set
of weeks will be used for Category Y, ensuring that the new selection aligns with the 25th, median, and
75th percentile values as shown in Table 6.2. A revised set of weeks, 30, 31, and 32, was selected to
meet the same representativeness criteria. Week 30 approximates the 25th percentile, week 32 lies near
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the mean, and week 31 falls just above the 75th percentile threshold. Together, these weeks reflect the
diversity of demand conditions without including statistical outliers, ensuring realistic and balanced input
for scenario-based routing analysis (full demand specifics can be seen in Table E.3 and Table E.8).

6.4. Summary of Experimental Design

The experimental design follows a full-factorial structure, combining different exogenous and endoge-
nous conditions across selected time periods. Summarized, the experiments are defined along the fol-
lowing three dimensions:

+ Demand scenarios (S1-S4): These represent different sets of eligible DPS demand, based on
product type and origin (as described in section 6.1). Each scenario defines which SKUs can
bypass the distribution center.

* Model configurations (C0-C3): These vary internal logistics policy parameters, such as DPS
activation and the full truckload (FTL) eligibility threshold, as detailed in section 6.2.

* Representative weeks (Week 1-3): For both category-plant combination, three representative
weeks were selected to reflect low, medium, and high demand conditions, based on statistical
markers (see section 6.3).

By testing all combinations of these dimensions - 4 demand scenarios x 4 model configurations x 3 rep-
resentative weeks - a total of 48 experiments is conducted. This setup enables systematic evaluation
of internal design decisions (e.g., DPS thresholds) under fixed external conditions (e.g., demand eligi-
bility), while capturing realistic weekly demand volatility. The design also ensures comparability across
experiments and supports robust analysis of performance trade-offs.

6.5. Post-Optimization and Sensitivity Analyses

After running the optimization with the flow-based VRP model, and assessing the results for the main
KPI’s, the following sections describe the post-optimization analyses to be performed, to give further
insights into the effects of integrating DPS into a conventional two-echelon network.

6.5.1. Stock Allocation Impact Analysis

To assess how DPS adoption influences inventory positioning, a post-optimization analysis on the KPI
Stock Allocation is conducted. Based on the model outputs, this analysis quantifies the shift in volume
from DC-based fulfillment to plant-based fulfillment. These shifts are relevant for understanding impacts
on storage cost, working capital, and the “cash” dimension of supply chain performance.

6.5.2. Break-Even Analysis of FTL Thresholds

Beyond the predefined configurations (C0-C3), a break-even analysis was performed to explore whether
the full truckload (FTL) threshold for DPS eligibility should vary by customer or route. By calculating
break-even volumes per plant-customer path, this analysis helps identify more efficient, cost-aligned,
customer-specific DPS policies that could improve the robustness of the transport network design.

6.5.3. Sensitivity of Emission Pricing on Share of DPS (\ Variation)

A dedicated sensitivity analysis is conducted to assess how internalizing carbon costs affects routing
decisions and emissions outcomes. This was performed under configuration C4 (full DPS enabled)
across all four demand scenarios, with the carbon price factor \ varied from €0.00 to €4.00 per kg CO,.
Unlike the main experiments, which vary structural configurations, this analysis keeps the network setup
fixed and isolates the effect of emission valuation in the objective function. While the pricing levels
are hypothetical, results could offer insight into how increased emphasis on emissions could influence
decision-making at P&G.

The sensitivity analysis follows the scalarization approach described by Pereira et al. (2022), where a
composite objective function is optimized based on a weighted sum of logistics cost and emissions (see
Equation 5.15 in subsection 5.1.5). Varying A\ from €0.00 to €4.00 per kg CO, allows exploration of
trade-offs between cost and emissions under different carbon valuation scenarios.

6.5.4. e-constraint Analysis: Emissions Minimization Under Cost Caps
To complement the scalarization-based sensitivity analysis, an additional analysis is performed using
the e-constraint method. In this approach, emissions are minimized directly as the sole objective, while
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the logistics costs are constrained to remain within a specified upper bound. This formulation helps to
explore how the model behaves when sustainability is prioritized above cost, and whether alternative
routing decisions, such as a shift from DPS to two-echelon flows, emerge under a purely environmental
objective.

The use of the e-constraint method in multi-objective optimization has been widely adopted in emissions-
related domains. For instance, Ghorbani et al. (2020) applied this approach in economic emission dis-
patch, demonstrating its effectiveness in isolating emission-minimizing strategies without introducing
scalarization bias. Their study shows that this method supports more transparent exploration of trade-
off frontiers, especially when evaluating operational decisions under real-world constraints. Inspired by
this rationale, the present study applies a similar approach in a logistics context to evaluate whether
emission-optimal routing patterns can be achieved independently of explicit cost minimization, while still
respecting economic feasibility constraints.

6.6. Key Performance Indicators (KPI's)

Performance is evaluated using a set of KPI's derived from the research objective (section 1.5), which
emphasizes the three pillars of the supply chain triangle: cost, service, and cash (Desmet, 2018). A
distinction is made between KPI's that are explicitly optimized within the model and those evaluated
post-solution based on model outputs and domain logic.

6.6.1. KPI's Optimized in the Model

 Zeost: Total logistics cost (€), including transport, loading, and unloading costs across both two-
echelon and DPS routes;

* Zemissions. Total kg CO, emissions, derived from traveled distances and flow assignments, capturing
the environmental impact of transport decisions;

* Zwta: Combined cost objective (€), incorporating monetized emissions using the carbon price factor
A, thus internalizing environmental costs into the optimization.

6.6.2. KPI's Evaluated Post-Optimization
+ Estimated service level (SLestimated): Volume-weighted average fulfillment performance, based on
historical delivery reliability per shipping location (see Equation 5.16);

» DPS share and stock allocation: Share of total shipment volume transported via DPS, reflecting the
degree of decentralization in the DC and its impact on stock allocation toward plants rather than the
DC. This metric captures the number of DPS vs 2E shipments, but does not reflect the total number
of vehicle movements, as 2E shipments involve two legs and the model does not explicitly track
vehicle usage. Transport costs are modeled per shipment leg, consistent with P&G’s outsourced
cost structure.

6.7. Experimental Execution and KPI Collection
To evaluate each scenario and configuration, the following standardized workflow is applied:
1. Model Solution: The optimization model is solved using the scalarized objective function, based on
the active configuration parameters;

2. Extraction of Decision Variables: Key outputs such as flow allocations, routing decisions, and ve-
hicle assignments are collected post-optimization;

3. KPI Calculation: All relevant performance indicators are computed, including optimized and post-
optimization KPI’s;

4. Result Aggregation and Visualization: Outcomes are organized into structured summary tables
and visualized through comparative plots to support scenario comparison.

This workflow enables systematic assessment of trade-offs across cost, sustainability, and service, in
line with the supply chain triangle framework. It also gives understanding of how the expanded DPS
eligibility affects the operational efficiency and KPI’s.

6.8. Conclusion

This chapter has defined the experimental design used to assess the hybrid distribution model under a
range of structural scenarios and internal policy configurations. By distinguishing between exogenous
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demand scenarios and endogenous configuration levers, the design allows for targeted analysis of how
changes in logistics rules affect system performance. Combining customer-level demand inputs, config-
urable DPS policies, and emissions valuation, the design lays the foundation for the performance com-
parisons presented in the next chapter, which evaluate the cost-effectiveness and operational impact of
integrating direct plant shipments into the current network design.



Computational Results

This chapter presents the results of the experiments defined in chapter 6. Each experiment combines
one of four exogenous demand scenarios (S1-S4) with one of four endogenous policy configurations
(C0-C3), resulting in a structured comparison across varying supply and demand conditions.

In all scenarios, demand is defined at customer-week level and fulfilled through individual shipments
per customer, without inter-customer or inter-week consolidation. This modeling choice reflects and
simplifies operational realities and ensures that shipment-level decisions (e.g., route choice, vehicle as-
signment) are evaluated per customer delivery.

The experiments are evaluated using the KPI framework introduced (section 6.6), covering logistics
and environmental costs, service level, and stock allocation. The primary objective is to quantify the
added value of structurally integrating DPS into the existing two-echelon network in the research scope
and to explore how this hybrid strategy affects performance across the cost-service-cash dimensions of
the supply chain. Key trade-offs and stakeholder-relevant outcomes are discussed for each scenario—
configuration combination.

Full numerical results of all experiments of the model optimization are given per scenario in section E.5,
section E.6, section E.7, and section E.8, but the extensive interpretation of the results is given in the
following sections with supporting plots, for the Category X scenarios and Category Y scenarios respec-
tively.

Next to the supportive plots to show the results, performance of different distribution configurations is sys-
tematically evaluated by pairwise comparison across the defined scenarios, as this approach is widely
recommended for simulation-based performance evaluation and ranking (Xiao et al., 2023). For each
configuration (C1-C3), results were compared to the baseline configuration (C0O) on KPI’s logistics costs,
emissions, and service level. The comparative analysis is based on the three weekly replications per
configuration within each scenario (S1-S4). First, the average and standard deviation of the percent-
age difference between each configuration and the baseline were calculated per scenario. Then, these
scenario-level comparisons were aggregated into final averages across all four scenarios. This two-step
averaging approach ensures that each scenario contributes equally to the overall comparison, indepen-
dent of the absolute values of its KPIs.

7.1. Model Feasibility and Performance

First of all, the model has been checked for feasibility and the appearance of optimal performance. All
experiments have found an optimal solution, with solving times beneath 1 second. An example of the
performance for the first demands scenario is given in Table 7.1. Further elaboration on solving times is
left out of this report, but is controlled and has shown stable results.
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Table 7.1: Feasibility and Solve Time Summary (Scenario S1)

Experiment | Status (Optimal/lnfeasible) | Solve Time (s) | Gap (%)

S1-C0-W37 Optimal 0.01 0.00000%
S1-C1-wW37 Optimal 0.06 0.00001%
S1-C2-W37 Optimal 0.02 0.00000%
S1-C3-W37 Optimal 0.01 0.00000%

7.2. Cost and Environmental Impact

To evaluate the effect of DPS on logistics cost and environmental performance, experiments are per-
formed for demand of the five top customers. This section summarizes the extended results in subsec-
tion 7.2.1 and subsection 7.2.2. The impact of the model’s routing decisions on the optimization of the
logistics costs and emission KPlIs are as follows:

* Logistics costs: Across all demand scenarios, enabling DPS leads to lower logistics costs. The
model tends to prioritize DPS when volumes and travel distances are sufficient, reducing reliance on
the DC. The average logistics cost decrease over all experiments is 26.4% under the configuration
with a regular FTL threshold.

* Emissions: Emission reductions are only observed when DPS volumes support efficient vehicle
utilization. For smaller volumes or short travel distances, the environmental benefits are limited or
may even reverse under low FTL thresholds due to underutilized vehicle capacity. The average
decrease in emissions is 7.0% under regular FTL thresholds.

* FTL threshold effect: Lowering the FTL threshold across configurations C1 to C3 results in a
marginal additional decrease in logistics costs, driven by the model’s increased selection of DPS
as the preferred distribution method. On the other hand, lowering the threshold shows a negative
impact on emissions, even increasing emissions in certain scenarios.

7.2.1. Scenario Sl and S2 - Category X from Plant 1

To evaluate the cost and environmental impact of integrating DPS for Category X products originating
from Plant 1, the results for scenarios S1 and S2 are plotted in Figure 7.1 and are analyzed in this section.
Figure 7.1 illustrate the outcomes of each configuration across the selected weeks for both scenarios.
Plotted results for the scenarios separately, are found in section E.1 in Appendix E.

— Total Logistics Cost (€) Total Emissions (kg CO:2)

S1 - Week 36
S1 - Week 37
__________ - —8— S1- Week 38

it S — ° S2 - Week 36
S2 - Week 37

~M- S2 - Week 38

kg CO2

co Cc1 c2 c3 co Cc1 c2 c3

Figure 7.1: Weekly Logistics Cost and CO, Emissions for Category X Scenarios S1 and S2

The first observation for both scenarios is that allowing the model to choose DPS as a distribution method
consistently results in a reduction in logistics costs. Comparing configurations C1, C2, and C3 to the base-
line configuration CO using a pairwise comparison over all three weeks, yields the percentage differences
shown in Table 7.2. These results indicate that enabling DPS always leads to cost savings in logistics.
Further relaxing the FTL threshold, moving from C1 to C3, results in modest additional reductions. The
primary driver behind these savings is the increased proportion of DPS deliveries, which reduce reliance
on DC-based flows. As illustrated in Figure 7.1, certain low-volume demand weeks, such as week 36,
do not exhibit logistics cost reductions when DPS is used. This is because the model does not select
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DPS for smaller volumes; instead, it opts for two-echelon distribution, which offers better consolidation
and is therefore more cost-efficient in such cases.

However, allowing DPS in these scenarios does not lead to a reduction in total emissions. For small
shipment volumes, transporting goods via the convential DC yields lower emissions per unit shipped.
This is due to the assumption that DC-based vehicles are fully loaded with aggregated demand, thereby
distributing emissions over a larger volume of units in the vehicle. In contrast, DPS shipments are mod-
eled as dedicated trips, where the full vehicle emissions are attributed solely to the specific Category
X load. Given the short distance between Plant 1 and DC 1, the additional distance savings with DPS
are relatively small, limiting their potential environmental benefit. It can be seen that lowering the FTL
threshold (in C3 fully to 0), will even lead to an increase of emissions for the demanded volume, if the
model performs the scalarized optimization run where the most cost-efficient solution is found.

Table 7.2: Pairwise Comparison of Configurations vs Baseline CO (Scenarios S1 and S2)

Logistics Cost Emissions
Scenario \ Comparison | Mean % diff Std % diff | Mean % diff Std % diff

C1vs CO -12.1% 10.5% -1.2% 4.0%

S1 C2vs CO -13.0% 11.3% 0.4% 1.5%
C3vs CO -16.3% 12.8% 7.4% 10.4%

C1vs CO -11.2% 9.8% -1.1% 3.7%

S2 C2vs CO -12.1% 10.5% 0.4% 1.4%
C3vs CO -15.4% 12.4% 7.7% 7.5%

C1vs CO -11.7% 10.1% -1.2% 3.9%

Avg (S1 & S2) C2vs CO -12.6% 10.9% 0.4% 1.5%
C3vs CO -15.8% 12.6% 7.6% 9.0%

Scenario S2 expands demand eligibility by including not only plant-produced, but also stored Category
X SKUs at Plant 1. Adding the stored volumes to the demand in the model gives an average increase
of % over all five top customers (Table 6.1). Despite this higher volume, the relative impact on logistics
cost and emissions remains similar to S1 (Table 7.2). Logistics costs continue to decrease significantly in
configurations C1 to C3 compared to CO, but the marginal benefit of further lowering the DPS threshold
beyond is limited. Emissions results are similar to scenario S1.

Overall, the analysis of scenarios S1 and S2 indicates that enabling DPS for Category X demand from
Plant 1 significantly reduces logistics costs, especially when demand volumes are sufficiently high (e.g.,
week 37). However, for low-volume weeks, the model favors DC-based shipments, which benefit from
consolidation with aggregated demand. Emission-wise, allowing DPS shows minimal benefits and low-
ering the DPS threshold can adversely affect emissions due to underutilized vehicles in DPS shipments.

7.2.2. Scenario S3 and S4 - Category Y from Plant 2
Figure 7.2 present the results of the optimization experiments for scenarios S3 and S4, for Category Y
demand from the plant in Plant 2. Separated graphs for both scenarios are seen in section E.1.

As concluded from the demand analysis, compared to the Category X scenarios, Category Y demand of
the five top customers is significantly larger, and distances from the plant to both the DC 1 and to cus-
tomers are substantially longer. As a result, the model is more decisive in optimizing routing through DPS,
even under stricter internal FTL thresholds. This indicates that bypassing the DC can yield considerable
cost and distance advantages, especially for high-volume, long-haul flows.

The optimization clearly shows a substantial reduction in both logistics costs and emissions upon en-
abling DPS. Configuration C1 achieves an average logistics cost reduction of over 42.1% relative to the
baseline (CO) (Table 7.3). These cost benefits remain relatively stable across configurations C1 through
C3, suggesting that the model already prioritizes DPS at higher thresholds due to the compelling cost dy-
namics. Emissions show a similar improvement, decreasing by up to 11.7% compared to C0. However,
just like in Category X, the emission benefits decline with lowering the FTL threshold further. The overall
benefits of DPS in Category Y scenarios are notably more pronounced than in Category X, primarily due
to the higher-volumes than fill the trucks and the longer distance savings that can be made.
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Total Logistics Cost (€) Total Emissions (kg CO:)

S3 - week 30
S3 - Week 31
—8— 53 - Week 32
S4 - Week 30

kg COz

54 - Week 31
-m- 54 - Week 32

T T T T T T T T
co Ccl c2 c3 co Ccl c2 c3

Figure 7.2: Weekly Logistics Cost and CO, Emissions for Category Y Scenarios S3 and S4

Scenario S4 expands DPS eligibility to include stored SKUs in addition to those produced at Plant 2 with
on average % weekly (Table 6.1). Despite this added volume, the outcomes for configurations C1 to
C3 in Figure 7.2 remain nearly identical to those for both scenarios. This suggests that the model had
already maximized DPS utilization under the high production volumes of S3 and that a marginal increase
in DPS-eligible volume in S4 does not significantly alter routing decisions in finding the optimal solution.

Table 7.3: Pairwise Comparison of Configurations vs Baseline CO (Scenarios S3 and S4)

Logistics Cost Emissions
Scenario \ Comparison | Mean % diff Std % diff | Mean % diff Std % diff

C1vs CO -41.6% 4.5% -10.9% 8.1%

S3 C2vs CO -42.9% 4.4% -9.5% 8.3%
C3vs CO -42.9% 4.4% -9.5% 8.3%

C1vs CO -42.7% 5.0% -12.6% 7.7%

S4 C2vs CO -43.3% 4.8% -11.0% 8.5%
C3vs CO -43.3% 4.8% -11.0% 8.5%

C1vs CO -42.1% 4.8% -11.7% 7.9%

Avg (S3 & S4) C2vs CO -43.1% 4.6% -10.2% 8.4%
C3vs CO -43.1% 4.6% -10.2% 8.4%

This plateau effect highlights a key insight: in scenarios with high demand and long distances, the cost-
optimizing model inherently favors DPS, even at strict FTL thresholds. Consequently, the benefit of
lowering the FTL threshold (from to to O pallets) becomes less impactful in terms of cost savings, as
the model already shifts large volumes directly from the plant whenever possible. However, the FTL
threshold does influence VFR and with that emissions. Higher volumes allow for better utilization of DPS
vehicles, making direct shipments more environmentally efficient by spreading emissions across larger
loads.

Overall, scenarios S3 and S4 underscore the importance of shipment volume and transport distance in
determining the effectiveness of DPS. Cost and emissions savings are significant, but lowering the FTL
threshold will not further improve this. It is primarily affecting emissions through its influence on VFR
efficiency, rather than altering route selection itself.

7.3. Service Level and Network Effects

Service level and network effects resulting from changes in routing decisions are analyzed to assess the
operational robustness of each experiment. Key insights across all four scenarios are summarized in
this section and further elaborated in subsection 7.3.1 subsection 7.3.2.

+ Service level: Across all scenarios, enabling DPS consistently improves service levels. Even un-
der restricted configurations, DPS allows for higher fulfillment rates directly from the plant, reducing
dependency on DC inventory and increasing responsiveness to customer demand. These improve-
ments translate into commercial value, as discussed in subsection 7.3.3,
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* Network effects: The shift from conventional two-echelon routing to DPS is most pronounced in
high-volume and long-distance scenarios (S3 and S4). In these cases, DPS becomes the dominant
routing mode as soon as it is enabled. Although extending DPS eligibility to stored SKUs (in S2 and
S4) adds some flexibility in vehicle utilization, the incremental effect on routing and service levels
is limited. This indicates that the initial demand volume and shipment distance are more decisive
factors than extending eligibility in determining routing preferences.

* FTL threshold effect: Lowering the internal FTL threshold offers only marginal gains in both DPS
share (network effects) and service level. Especially in scenarios with already high DPS adoption,
such as S3 and S4, the performance stabilizes quickly after DPS is enabled, suggesting a saturation
point in the benefits of further relaxing FTL constraints.

7.3.1. Scenario S1 and S2 - Category X from Plant 1

Figure 7.3 shows the trend of service level performance over the configurations for both demand sce-
narios in Category X. Next to that, the share or division of routing choices, DPS vs the conventional
two-echelon distribution, is given in the bars, for both scenarios separately.
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Figure 7.3: Service Level and Routing Choice for Category X in S1 and S2 over the Configurations

Integrating DPS has a clear positive effect on service level performance, as illustrated by the green
lines in Figure 7.3. Over the three evaluated weeks, the average service level for the top five customers
increases from X% in the baseline configuration (C0) to above X% in configuration C3. This improvement
is driven by more flexible and direct fulfillment options enabled by DPS, which reduce dependency on
DC inventory availability. As shown in the graph, the share of DPS deliveries increases from 0% in CO
to over 40% in C3, closely tracking the rise in service level.

The pairwise comparison results in Table 7.4 further supports this trend: although C1 already yields no-
table improvements, the largest relative gain over the baseline is observed in C3. This confirms that
while enabling DPS already provides a strong boost to service performance, relaxing the FTL thresh-
old further continues to yield modest additional benefits. These findings highlight that DPS enhances
responsiveness in the supply network, especially when volume and delivery frequency allow for more
direct routing.
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Table 7.4: Pairwise Comparison of Configurations vs Baseline CO for Service Level (Scenarios S1 and S2)

Service Level
Scenario | Comparison | Mean % diff Std % diff

C1-C0 1.0% 0.9%

S1 C2-Co0 1.2% 1.0%
C3-C0 1.5% 0.6%

C1-CO0 1.0% 0.9%

S2 C2-C0 1.1% 0.9%
C3-C0 1.5% 0.6%

C1-Co0 1.0% 0.9%

Avg (S1 & S2) C2-C0 1.1% 1.0%
C3-C0 1.5% 0.6%

The impact of adding the additional stored demand in scenario S2 is minimal; both scenarios exhibit
a very similar pattern in service level improvement across configurations C0O to C3. However, service
level for S2 is consistently slightly higher than for S1. This difference can be attributed to the additional
volume included in S2, which is more frequently assigned to DPS deliveries. As a result, a larger share of
demand is fulfilled more efficient with DPS, marginally increasing the overall service level. This suggests
that the inclusion of stored demand in scenario S2 has only a limited effect on service level outcomes
compared to S1.

7.3.2. Scenario S3 and S4 - Category Y from Plant 2

The results for scenarios S3 and S4 are presented in Figure 7.4 and the pairwise comparison is detailed
in Table 7.5. In both scenarios, integrating DPS in configuration C1 leads to a high increase in DPS
share, exceeding X% on average, and a corresponding rise in service level from X% to approximately
X%. This level remains stable across configurations C1 to C3, indicating that most gains are achieved
immediately upon enabling DPS in high-volume scenarios.
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Figure 7.4: Service Level and Routing Choice for Category Y in S3 and S4 over the Configurations
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Table 7.5: Pairwise Comparison of Configurations vs Baseline CO for Service Level (Scenarios S3 and S4)

Service Level
Scenario \ Comparison | Mean % diff Std % diff

C1-Co0 1.0% 0.0%

S3 C2-Co 1.0% 0.0%
C3-Co 1.0% 0.0%

C1-CO 1.0% 0.0%

S4 C2-Co 1.0% 0.0%
C3-Co 1.0% 0.0%

C1-Co0 1.0% 0.0%

Avg (S3 & S4) C2-CO0 1.0% 0.0%
C3-Co 1.0% 0.0%

The consistently high DPS share and service levels suggest that the model quickly converges to an
optimal routing structure when demand volumes are high and transport distances are long, as is the
case for Category Y shipments from Plant 2. Relaxing the FTL threshold beyond configuration C1 does
not yield further improvements, confirming that the system reaches a saturation point in performance
once DPS is allowed.

Scenario S4, including stored SKUs in addition to plant-produced SKUs, shows a nearly identical trend
to scenario S3. While the added volume does not negatively impact performance, it also does not
structurally change the routing outcomes. These results highlight that in this already high-volume, long-
distance settings, the model strongly favors DPS from the outset, and further adjustments to eligibility
rules or thresholds have limited additional value.

7.3.3. Estimated Commercial Impact of Service Level Improvements
While this study primarily evaluates logistics performance, the service level improvements observed
across DPS-enabled configurations also have strategic commercial implications.

, as mentioned in subsection 5.1.6.

To illustrate this relationship, Table 7.6 presents the estimated NOS impact on the shipments of the
supply chain in this FBNL scope, derived from the average service level gains achieved in scenarios S1
to S4. These figures are indicative and assume a linear relationship between service level and sales
performance, without accounting for category-specific price or margin differences.

Table 7.6: Estimated Relative NOS Impact Based on Service Level Gains

Scenario Configuration Service Level Gain (%pt) Estimated NOS Gain (%)

S1 Co0—C3 +1.5
S2 C0—C3 +14
S3 Co—C3 +1.0
S4 Co—C3 +1.0

These results demonstrate that marginal increases in service level, enabled through more flexible routing
such as DPS, can lead to meaningful sales improvements for P&G’s supply chain on Category Y and
Category X in FBNL. The commercial value of enhanced fulfillment performance reinforces the impor-
tance of supply chain design decisions not only from a logistics cost perspective, but also in terms of
customer satisfaction and potential NOS increase.

7.4. Key Scenario Comparison

This section compares the four demand scenarios to evaluate what form of DPS eligibility yields the
greatest benefits under shared policy configurations. Scenarios are shaped by demand volume and the
distance between the plant and the DC, which affect both cost and service outcomes. The values in
Table 7.7 are calculated averages of the full results in E.1 and Table E.2.

+ Key differences Category X (Plant 1) and Category Y (Plant 2): The contrasting effects between
Category X (Plant 1) and Category Y (Plant 2) scenarios emphasize the role of shipment volume
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and distance in determining the effectiveness of DPS. From Plant 1, small-volume direct shipments
yield minimal benefits, whereas from Plant 2, even moderate volumes justify DPS due to larger
distances and associated cost savings. Where the effect on service level performance of integrating
DPS is similar, the logistics cost and emission changes are way more impactful for Category Y from
Plant 2, visible in Table 7.7.

* 81 vs. S2 (Category X - Plant 1): Expanding DPS eligibility to include stored SKUs in scenario
S2, which is on average % additional volume (Table 6.1), provides no marginal improvements over
production-only flows in scenario S1. Given the relatively small volumes and the short distance
between Plant 1 and the DC, direct shipments offer limited added value and can even lead to
higher emissions when underutilized vehicles below FTL thresholds would be deployed.

+ S3 vs. S4 (Category Y - Plant 2): In contrast to S1 and S2, S3 and S4 benefit strongly from DPS,
driven by higher volumes and longer transport distances. Scenario S4 includes stored SKUs and
increases the total DPS-eligible volume, but performance outcomes remain only slightly higher than
S3. This suggests that the model already fully leverages the DPS potential under production-only
flows.

Table 7.7: Average Percentage Change from CO to C1 per Scenario

Metric | s1 $2 | s3 S4

Average Logistics Cost Change (%) | —12.1 —11.2 | —41.6 —42.7
Average Emission Change (%) —1.2 -1.1 | =109 —-126
Average Service Level Change (%) | +1.5 +14 | +1.0 +1.0

7.5. Pairwise Comparison of Key Performance Indicators

As explained in the introduction of this chapter, a pairwise comparison is useful to systematically evaluate
the performance of different distribution configurations on the KPI’s.

The full pairwise comparison tables are given in Appendix E in Table E.1 and Table E.2, displaying the
results for logistics cost and emissions, and service level respectively, including average differences and
standard deviations. The aggregated comparison on KPI's costs and emissions across all configurations
for Cat X&Y together, is shown in Figure 7.5, while Figure E.6 in section E.2 breaks down the results by
product category (Category X vs. Category Y).
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Figure 7.5: Full Comparison Across Both Categories of Logistics Cost and Emissions Savings over the Configurations

Similarly, the numerical results for service level are presented in Table E.2 in section E.4, with an overall
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view for aggregated Cat X&Y visualized in Figure 7.6. To provide further insight into category-specific per-
formance, separate graphs are provided in the Appendix for Category X and Category Y in Figure E.12.
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Figure 7.6: Full Comparison Across Both Categories of Service Level Change over the Configurations

The main observations to be done from the pairwise comparison aggregated for Cat X&Y together on
the KPls, is that lowering the FTL threshold of the vehicles for DPS, will have a positive trend on logistics
costs, with an ultimate cost benefit of 29.7%. On emissions, a negative trend is seen with lowering the
thresholds, where on average a high FTL threshold yields emission savings of 7.0%, but the full relaxed
threshold only yields savings of 1.1% compared to C0O. The effect on service level shows a positive trend,
with an average ultimate service level increase of 1.3% in C3. This can be explained by the increase
in DPS share which ultimately leads to service performance increase based on the estimation. These
results enable a robust understanding of the relative impact of different configurations across the key
performance metrics on an aggregated level.

7.6. Stock Allocation Impact (Cash)

To evaluate how integrating DPS influences inventory positioning and storage costs, a post-optimization
stock allocation analysis was conducted. As a representative example, this section focuses on scenario
S3 (Category Y - Plant 2), Configuration C1, in week 31, in which DPS is enabled under the threshold
setting of FP. The full output of this experiment is given in Table E.10.

7.6.1. Observed Inventory Shift and Cost Impact

The optimization results reveal a substantial reallocation of SKU flows from two-echelon via DC 1 to DPS
from Plant 2. In the baseline configuration (CO0), the entire weekly Category Y demand of X FP is routed
through the DC. In Configuration C1, X FP are fulfilled directly from the plant, while only X FP remain
routed via the DC.

This reallocation implies a reduction of X FP in inventory holding requirement at the DC. Since storage
costs at the plant are negligible (because P&G owned), financial impact is driven by the cost savings
from avoiding DC storage. The estimated storage cost at the DC is per pallet (average B1/B2)
per day (Table B.1). A floor position (FP) is assumed to occupy 1.5 pallet positions (2 B1 pallets or 1 B2
pallet), resulting in an average cost of per FP per day. Assuming an average storage duration of
X days (based on weekly inbound and outbound flows), the total inventory cost reduction for this single
experiment is calculated as follows:

Inventory Cost Savings =| |

This calculation represents the weekly savings, of this particular experiment, in storage costs, due to the
shift in stock allocation from the DC to the plant, aggregated over the five top customers.

7.6.2. Interpretation and Broader Implications
The observed experiment illustrates that DPS not only improves service levels and transportation effi-
ciency, but also contributes to inventory cost reduction by relocating stock from higher-cost DC storage
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in DC 1 to the plants. In this example, over 90% of weekly demand is fulfilled as DPS, effectively mini-
mizing the role of the DC as an intermediate storage point. The margin of savings on logistics costs for
this single experiment, which showed a total of €X (Table E.9), is 4.8% on weekly costs. While this per-
centage may appear modest, a structural weekly cost reduction of 4.8% could translate into substantial
financial benefits when scaled across the full distribution network.

Next to logistics cost savings, this stock shift also alleviates pressure on DC storage capacity, which has
become an increasingly urgent concern in recent operations. By freeing up space at the DC, DPS offers
a potential solution to short-term capacity constraints.

Another important consideration is that reallocation of stock from the DC to the plant implies a shift
in demand planning responsibility and forecasting accuracy. While observed cost savings are clearly
positive from this case study, they must be weighed against the potential cost and risk of misaligned
forecasts. Demand is not always predictable or consistent, particularly for lower volume on for example
Category X SKUs. In such cases, maintaining availability at the DC remains critical, as it enables flexible
response to small or unexpected orders. Fully relocating such SKUs to the plant could jeopardize service
reliability.

However, for high-volume products with regular ordering patterns, such as those in the Category Y cate-
gory, demand tends to be more stable and predictable. In these cases, keeping a portion of the inventory
at the plant would be both operationally feasible and financially advantageous, without compromising re-
sponsiveness. This segmentation of SKUs based on volume and variability could help determine which
SKUs are suitable for permanent DPS-based fulfillment and which require DC-based buffering.

7.7. Customer-Specific DPS Threshold Analysis

While the experiments reveal the broader impact of DPS thresholds, a more granular analysis can help
determine when DPS becomes cost-optimal at different demand levels. One illustrative case is the
Sold-To customer linked to Ship-To locations Customer 1 and Customer 5. Although these locations
are treated separately in the optimization, their combined demand already triggers a high share of direct
shipments (9 out of 10 routes) even under the standard FP threshold. Lowering this thresholdto  FP
or even removing it entirely does not lead to additional DPS selection, indicating that threshold relaxation
alone is insufficient if the demand volume per route is too low.

This limitation highlights the need for a different perspective: rather than adjusting thresholds under fixed
demand, the following section investigates the minimum demand volume per plant-customer route at
which DPS becomes more cost-efficient than two-echelon distributions. This demand-based break-even
analysis enables a data-driven approach to determining customer-specific DPS policies.

7.7.1. Demand-Based Break-Even Analysis

To move beyond fixed-threshold testing in the previous experiments, a more insightful approach is to
identify the minimum demand volume at which DPS becomes favorable according to the model opti-
mization. Rather than adjusting thresholds under static demand, this break-even analysis incrementally
increases weekly demand for specific plant-customer routes, which reveals the break-even point at which
the model switches from two-echelon flows to DPS. This method provides a route-level view of where and
when DPS is cost-optimal, and lays the groundwork for designing customer-specific thresholds based
on underlying cost structures.

Table 7.8 shows the manually identified break-even demand volumes for each relevant origin—destination
pair, covering the top five customer locations from both Plant 2 and Plant 1. These values represent the
minimum volume for which a direct shipment is selected by the model as cost-optimal solution, thus
reflect the optimal threshold P&G could offer each customer to align the incentives with cost-efficiency.
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Table 7.8: Minimum Demand Volume Required for DPS Selection by Plant-customer Combination

Origin Plant Customer Ship To Break-even Demand Volume (FP)

Plant 2 Customer 1
Plant 2 Customer 5
Plant 2 Customer 2
Plant 2 Customer 3
Plant 2 Customer 4
Plant 1 Customer 1
Plant 1 Customer 5
Plant 1 Customer 2
Plant 1 Customer 3
Plant 1 Customer 4

To investigate whether these break-even thresholds are systematically related to distance, Figure 7.7
shows the break-even DPS thresholds plotted against the direct transport distance from the origin plant
to the customer (see Table E.14 in section E.10 for detailed data for this graph). Each point is color-coded
by origin and labeled with the customer name. Thin lines connect the customers per origin to indicate
the trend.
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Figure 7.7: Break-even DPS Threshold (FP) vs. Direct Distance from Plant to Customer

This expanded analysis reveals a consistent and intuitive trend. For both origin plants, there is a clear
positive relationship between the direct distance to the customer and the cost-efficient break-even DPS
threshold. That is, as transport distance increases, the minimum volume needed to justify a direct ship-
ment also increases. This makes sense from a logistics cost perspective: longer direct distances mean
higher fixed CF transport costs per shipment, which require more volume to be offset by avoiding handling
and transshipment costs at the DC.

For Plant 1 in particular, the relationship is steep. Moving from nearby customers like Customer 2 (X
km, threshold X FP) to further ones like Customer 5 (X km, threshold X FP) shows a marked rise in
break-even volume. The trend for Plant 2 is more gradual, but still visible, with thresholds rising from X
FP (Customer 3, X km) to X FP (Customer 5, X km). This flatter trend at longer distances likely reflects
the fact that more of the potential cost savings from bypassing the DC are already realized even at lower
volumes. That s, on longer routes, the marginal gain from increasing shipment size decreases because
the fixed cost of the direct leg becomes more dominant in the total cost structure.

This analysis demonstrates that the FTL threshold for DPS should not be a one-size-fits-all rule (e.g., X
FP), but could instead be customized based on the plant—customer distance and associated cost trade-
offs. By aligning the threshold to match the break-even point per route, P&G encourages cost-optimal
routing behavior through a more data-driven and tailored DPS policy. However, it is important to note that
these break-even thresholds are based solely on minimizing logistics costs and monetized emissions,
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and do not account for broader operational or sustainability considerations, such as Vehicle Fill Rate
(VFR) targets or Scope 3 emission reduction goals.

Model output shows that even when DPS are chosen at the break-even volume, the total emissions (in
kg CO,) are equivalent to those of a fully filled truck. As a result, the emission intensity per unit FP
increases when smaller volumes are shipped directly (seen in section 7.2). However, since emissions
have limited influence in their monetized form in the current objective function, the model still favors these
lower-volume DPS routes under a cost-minimization framework (Equation 5.15).

The following section explores this trade-off explicitly: What happens when environmental objectives are
prioritized more strongly in the model? Can carbon pricing or direct emission minimization shift routing
behavior away from cost-driven DPS? To explore this trade-off, sensitivity analyses investigate whether
stronger environmental objectives, such as carbon pricing or direct emissions minimization, can shift
routing behavior away from cost-driven DPS decisions.

7.8. Sensitivity Analysis: Emissions-Oriented Routing Behavior
Building on to the previous analysis, two additional sensitivity analyses are conducted to evaluate how
environmental cost considerations influence routing behavior. The first approach applies a scalarization
method to assess cost-emissions trade-offs under varying carbon pricing (Pereira et al., 2022). The
second analysis applies the e-constraint method, where emissions are minimized directly under logistics
cost caps (Ghorbani et al., 2020). Together, these analyses provide insights into whether environmental
incentives encourage shifts between DPS and two-echelon (2E) flows.

7.8.1. Impact of Emission Pricing on Share of DPS

This analysis evaluates how varying levels of carbon pricing affect the share of DPS within the hybrid
distribution network. All results correspond to configuration C3, in which the model is free to choose the
most volume-efficient shipment sizes without enforcing a FTL threshold. This configuration choice allows
for more flexible vehicle utilization and reflects an unconstrained optimization of shipment consolidation.

Using the scalarization method described in subsection 5.1.5, the model optimizes a composite objective
function that combines logistics cost and emissions:

Ztotal = Zcost +A- Zemissions (7-1)

The scalarization parameter X represents a hypothetical carbon price (€/kg CO,) and is varied from 0.00
to 4.00. For each value of A, the model produces a new optimal routing configuration, balancing cost
and emissions under the given weight.

Figure 7.8 shows how the share of DPS in total weekly demand evolves as a function of the carbon price
for all four demand scenarios: Category X (S1 and S2) and Category Y (S3 and S4). The figure clearly
illustrates that, across all scenarios, the DPS share remains virtually constant, even as carbon pricing
increases significantly.

This suggests that under the current network and parameter configuration, the inclusion of carbon costs
in monetized form in the objective function has no meaningful influence on the model’s routing decisions.
The minimal change in DPS share indicates that the cost savings from 2E flows continue to outweigh
any additional emissions penalties, even at higher X\ values.

The findings underscore a key insight: carbon pricing in the objective alone is insufficient to drive struc-
tural changes in routing or shipment modality. This suggests that complementary policy measures or
operational constraints (e.g., stricter emissions caps or sustainability targets) would be needed to shift
distribution behavior toward more direct and potentially more sustainable shipment options.
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Figure 7.8: Share of DPS Across Carbon Price Levels (\) for All Scenarios under Configuration C3

7.8.2. e-constraint: Emissions Minimization Under Cost Caps

To complement the scalarization-based sensitivity analysis, an additional experiment was conducted us-
ing the e-constraint method. Instead of minimizing a weighted combination of logistics cost and emissions
in €, this approach directly minimizes total emissions in kg CO,, subject to an upper bound (¢) on total
logistics cost (in €). This framing allows sustainability to take precedence in the objective function, while
ensuring economic feasibility remains enforced through explicit cost caps.

The method was applied on two representative demand scenarios, S2 and S4, each evaluated over the
three representative weeks. The experiments are run in configuration C3, where DPS is permitted without
a FTL threshold, allowing inefficient low-fill routes if chosen. To prevent cost from dominating decisions,
several cost caps were set, ranging from the original cost-optimal value from the initial optimization, up
to generous allowances of €X.

The resulting routing choices, values of the e-constraint, and performance metrics are shown in Ta-
ble E.13 (see section E.9). The relative trade-offs are visualized in Figure 7.9, where all normalized
emissions and corresponding DPS shares across the scenarios are aggregated into a single Pareto
front. Different colors denote different weeks, and a trend line is fitted across all points.

1.00 1 [ ] [ ] o0 0

0.98 4

o

©

o
|

Week
S2 W36
S2 w37
S2 W38
S4 W30
S4 W31
5S4 W32
—— Trend line (linear fit)

o
©
=
|
L]

o
©
N
|
o000

Relative Emissions (normalized per week)
o
o
o
!

0.88

0.86 -

0 20 40 60 80
Share of Direct Shipments (%)

Figure 7.9: Aggregated Relative Emissions vs. DPS Share (Pareto Front across S2 and S4)



7.9. Conclusion 69

A striking outcome is visible: minimizing emissions does not inherently favor higher DPS usage. In fact,
across both scenarios, increasing the budget for emissions reduction always led to lower DPS shares.
For example, in scenario S4, week 30, allowing emissions to be minimized under a relaxed cost cap of
€X led to a reduction in emissions, but also a decrease in DPS share, from x out of X shipments to x
out of X shipments. This pattern is visible in the overall trend line, which slopes downward: as relative
emissions decrease, DPS share also declines.

This counterintuitive result is explained by structural trade-offs in the model. Two-echelon (2E) routes,
although involving intermediate handling and longer absolute trasnport distances, benefit from higher
VFR and shorter per-unit delivery distances. The optimization model thus favors consolidated shipments
under emission minimization, often reverting back to 2E flows even when the budget allows full cost
flexibility. In this context, direct routes can be less efficient on a per-unit emission basis due to lower
vehicle utilization.

These findings highlight the need for careful evaluation of sustainability strategies. Simply prioritizing
emissions in the objective function does not yield increased use of DPS or more decentralized distri-
bution. Instead, the results demonstrate that emission-optimal decisions often align with high VFR and
consolidated routing structures, reinforcing the importance of analyzing emissions per unit delivered
rather than just absolute emissions or structural distribution modes.

7.8.3. Synthesis of Findings on Emissions-Oriented Routing Behavior

The sensitivity analyses show that when emissions are prioritized over cost, either through carbon pricing
or direct emissions minimization, the model does not seem to favor a bigger share of DPS, or even shifts
towards more consolidated 2E flows. This stands in contrast to the demand-based break-even analysis,
where DPS emerged as cost-optimal at lower volumes under relaxed thresholds. The results highlight
a key trade-off: while cost-efficient solutions favor decentralized routing through DPS, emissions-based
optimization favors consolidation and higher VFR, reinforcing the conventional 2E structures.

7.9. Conclusion

To answer SQ6: How does the integration of direct plant shipments (DPS), under different configuration
thresholds, affect logistics and environmental costs, service levels, and stock allocation within hybrid
distribution scenarios?, this concluding section synthesizes the outcomes of the experiments.

Across all scenarios, enabling DPS significantly improves logistics cost performance, particularly in con-
figurations that allow more flexible shipment volumes. The magnitude of improvement is strongly influ-
enced by the volume and transport distance of the flows:

» For high-volume, long-haul shipments (e.g., Category Y from Plant 2), the model consistently pri-
oritizes DPS routes, achieving up to 43% cost reductions in configurations C1-C3. Environmental
performance also improved, with average emission reductions of 11.7% compared to the baseline.

» For lower-volume, short-distance flows (e.g., Category X from Plant 1), logistics costs decreased
by a smaller margin (12.6% on average), and emissions results were nuanced, sometimes even
increasing due to inefficient VFR with DPS usage.

Notably, lowering the FTL threshold from X to O pallets increased DPS adoption but often worsened
environmental performance. Emission-optimal routing was consistently associated with higher vehicle
utilization through two-echelon flows. This counterintuitive but robust finding, confirmed through scalar-
ization and e-constraint sensitivity analyses, demonstrates that greener routing decisions do not align
with higher DPS shares under current system conditions. Without structural changes or additional policy
levers, such as route-level emission caps, minimum VFR requirements, or incentives for decentralized
delivery, carbon-focused objectives alone may reinforce centralized distribution patterns rather than shift
them. As such, cost-optimal and sustainability-optimal routing structures may diverge in hybrid networks
without targeted policy support.

From a service perspective (defined as the proportion of fulfilled demand originating from a given shipping
location), integrating DPS led to measurable improvements in product availability and delivery reliability
across all scenarios. Average service level gains ranged from +1.0 to +1.5 percentage points, with
the highest values observed in flexible configurations and high-volume demand weeks. This improved
responsiveness translates into commercial benefits on NOS results. The majority of gains occurred upon
enabling DPS in the first place (C1), the subsequent threshold reductions delivered diminishing returns.
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In terms of inventory and cash, DPS causes a significant reallocation of stock from the DC to the plant. For
example, in the Plant 2-Category Y case, over 90% of volume was fulfilled with DPS in configuration C1,
reducing storage needs at the DC and savings of 4.8% in weekly logistics costs in a representative case.
This shift supports better working capital efficiency, but also implies greater responsibility for forecasting
and planning at plant-level. Products with volatile or low demand remain less suitable for such strategies,
as the risk of misalignment increases when DC buffering is eliminated.

Finally, the break-even analysis revealed that optimal DPS decisions are route-specific and highly de-
pendent on distance. The volume required to justify cost-efficient DPS ranged from x to X FP, scaling
with the plant-customer distance. This suggests that a fixed DPS threshold is suboptimal, and that cus-
tomized, route-level thresholds would better align operational decisions with cost efficiency. On the
other hand, a key insight emerges when comparing these break-even thresholds with the results of the
emissions-based sensitivity analyses: even when the model identifies DPS as the most cost-efficient
choice under current volume and distance conditions, a stronger valuation of emissions in the objective
function causes the model to revert back to 2E flows. This shift underscores a fundamental trade-off in
hybrid networks: carbon-optimized routing does not necessarily align with the cost-optimal use of DPS.
Instead, emissions-based incentives systematically favor consolidated, high-fill routes, highlighting the
need for deliberate coordination between cost and sustainability goals in designing effective DPS poli-
cies.

In summary, the integration of DPS in hybrid distribution networks offers substantial cost and service
improvements under the right conditions. However, its environmental benefits are nuanced and only
realized when shipment volumes allow efficient vehicle utilization. To maximize DPS impact, policies
should account for volume, distance, and emission efficiency, possibly through differentiated thresholds
and additional constraints. A cross-functional approach is required to balance cost savings, service
improvement, environmental goals, and inventory agility, aligning operational decisions with strategic
supply chain objectives.



Conclusion

This research examined the effect of integrating Direct Plant Shipments (DPS) alongside conventional
two-echelon distribution as a hybrid distribution strategy, focused on a case study of the supply chain of
Procter & Gamble in France and The Benelux. The central aim was to evaluate how such integration
impacts three main KPIs, cost (including logistics and environmental cost), service (service level), and
cash (stock allocation efficiency), in a cross-country distribution network, with a structured Research
& Design approach. Using a flow-based adaptation of the Two-echelon Vehicle Routing Problem (2E-
VRP), a hybrid distribution model was developed and applied on a selection of high-demand customers
in the case study, using real historical data. The model jointly optimizes logistics cost and emissions,
with post-evaluation of the impact on service level performance and stock allocation to different storage
locations.

This chapter will discuss the conclusion of the sub-questions and the final main findings to formulate an
answer to the main research question:

What is the impact of integrating direct plant shipments in an existing two-echelon distribution network - as
a hybrid strategy - on logistics and environmental costs, service level performance, and stock allocation
efficiency in a cross-border supply chain?.

The key discussion points, scientific contributions, and future research directions are elaborated in chap-
ter 9. Based on these findings, case-specific recommendations for P&G’s hybrid distribution strategy are
also included in this chapter.

8.1. Sub-questions

Answering the sub-questions throughout the report provided a structured foundation for addressing the
main research question. Each sub-question contributed a specific insight that, together, supported the
development and evaluation of the hybrid distribution model.

Two-echelon distribution systems offer advantages in terms of shipment consolidation and network ef-
ficiency, but they often come at the cost of additional logistics handling, flexibility and pressure on the
supply chain. Single-echelon shipments, on the other hand, enhance responsiveness and reduce lead
times but are only cost-effective when customer demand volumes are high enough to justify full loaded
transport.

A suitable modeling approach identified from the literature is the arc-based formulation of the two-echelon
vehicle routing problem (2E-VRP), which supports both routing and flow-based decision-making in multi-
layered supply chains. This structure was adapted to evaluate hybrid distribution networks by allowing
both direct plant-to-customer shipments (DPS) and two-echelon flows via a distribution center. The
model design draws on theoretical requirements such as vehicle capacity constraints, cost minimization,
and customer eligibility conditions, while enabling flexibility in representing real-world configurations and
policy scenarios. This approach proved well-suited for capturing the complexities of hybrid distribution
and comparing alternative strategies in a structured, data-driven way.

P&G’s distribution in the FBNL region currently relies on its two-echelon flows via the DC 1. The analysis
shows that high-volume, stable-demand customers, especially those farther from the DC like Customer
1 and Customer 5, are strong candidates for DPS, offering cost and service benefits. However, the main
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limitation remains the loss of consolidation, which can reduce VFR and increase emissions for smaller
shipments.

To ensure the model’'s applicability, several key design requirements were embedded in its formulation.
These include hard constraints such as shipment volume thresholds, single-origin shipment rules, and
fulfilment of all weekly demand. In addition, soft requirements were addressed where feasible, such
as minimizing handling and supporting a scalable DPS framework. The formulation also incorporates
real-world factors such as transport cost variability by distance, product allocation logic, and service level
measures, ensuring that the model reflects the operational realities of P&G’s hybrid distribution network.

The resulting model is a flow-based adaptation of the 2E-VRP, scenario-based and highly configurable,
allowing structured experimentation with DPS settings and threshold rules. It supports sensitivity anal-
yses by allowing changes in cost-emission trade-offs, pricing for emissions, and customer allocation
strategies, making it as a useful tool for evaluating the impact of internal policies under different de-
mand configurations. Its flexible structure facilitates the assessment of logistics cost, service level, and
emissions under a variety of realistic supply chain setups.

Implementing a hybrid distribution strategy that integrates DPS with conventional two-echelon flows
can significantly enhance logistics performance and service reliability, particularly for high-volume, long-
distance customers. However, the benefits of DPS are conditional: while logistics costs decrease sub-
stantially and service levels improve when shipment volumes justify full truckloads, environmental per-
formance often deteriorates due to lower vehicle fill rates in smaller or shorter-distance flows. Stock
reallocation from the DC to the plant improves working capital efficiency but increases the demand for
accurate forecasting at the source. Additionally, the analysis shows that a fixed DPS threshold is subop-
timal. Route-specific characteristics, especially volume and distance, should guide DPS eligibility. But
even in this cost-optimal solutions with DPS, the model demonstrates that environmental goals are bet-
ter served by two-echelon flows in the absence of policy levers such as route-level emission caps or
minimum vehicle fill requirements. These findings highlight a fundamental trade-off in hybrid networks:
emission-optimal routing does not necessarily align with cost-optimal DPS decisions. To maximize the
impact of DPS, future strategies should incorporate differentiated thresholds and environmental con-
straints, balancing cost, service, and sustainability priorities. A cross-functional approach is essential to
align operational policies with strategic supply chain objectives.

8.2. Main Findings

The model results show that integrating DPS leads to a notable reduction in logistics cost, particularly
for high-demand customers with longer transport distances from the plant to the customer. Within a
hybrid network structure, this selective use of DPS complements the efficiency of two-echelon flows
by offering a more responsive alternative where conditions allow. In configurations C1-C3, logistics
costs were reduced by up to 43% for high-volume, long-haul flows, such as Category Y from Plant 2.
For lower-volume, short-distance flows such as Category X from Plant 1, logistics cost reductions were
more modest, averaging around 12.6%. These findings confirm that the cost efficiency of DPS strongly
depends on shipment volume and transport distance.

The environmental performance of DPS is more nuanced. While average emissions decreased by up
to 11.7% in high-volume, long-distance cases, particularly for Category Y, emissions did not consistently
improve across all configurations. In fact, for Category X, emissions sometimes increased, especially in
configurations with lower full-truckload (FTL) thresholds, due to reduced VFR. Notably, lowering the FTL
threshold from  to O pallets led to greater DPS adoption but often worsened environmental outcomes.
Emission-optimal routing was consistently achieved through two-echelon flows, which offer higher vehicle
utilization and lower emissions per unit delivered. This counterintuitive but robust finding, confirmed
through scalarization and e-constraint sensitivity analyses, demonstrates that greener routing decisions
do not align with higher DPS shares under current system conditions. Without additional policy levers,
such as route-level emission caps, minimum fill rate requirements, or incentives for decentralized delivery,
minimizing emissions alone is unlikely to promote more decentralized logistics. As a result, cost-optimal
and sustainability-optimal routing structures may diverge, and environmental goals cannot be achieved
through carbon pricing or cost minimization alone.

From a service perspective, integrating DPS consistently improves fulfilment performance across all
scenarios. Average service level gains ranged from +1.0 to +1.5 percentage points, with most of the
improvement realized in the shift from the baseline configuration (CO) to the first DPS-enabled setup (C1).
Further relaxing the FTL threshold beyond C1 led to only marginal additional gains, indicating diminishing
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returns. This pattern suggests that enabling DPS enhances responsiveness and reduces dependency
on DC inventory, particularly in the initial phase of implementation, while further adjustments offer limited
incremental benefit.

In terms of inventory and working capital, DPS offers a structural opportunity to reduce storage costs by
shifting stock from DC'’s to plants. This shift alleviates pressure on DC capacity and avoids storage costs,
particularly because plant storage is available and P&G owned. In cases where DPS is fully allowed and
integrated, weekly logistics cost reductions of around 4.8% can be achieved, as illustrated in an example
scenario of Category Y from Plant 2. However, this reallocation also shifts forecasting responsibility
upstream and may reduce responsiveness for SKUs with volatile or low demand. To fully capture the
benefits of DPS without compromising service levels, it is essential to segment SKUs based on demand
stability and tailor stock allocation strategies accordingly.

A break-even analysis confirmed that the cost-optimal viability of DPS is highly route-specific. The vol-
ume required to justify DPS in a cost-optimal solution varied between floor positions (FP),
depending on the plant-to-customer distance. This suggests that a uniform DPS threshold for cost min-
imization is suboptimal; instead, targeted, route-level thresholds offer greater cost efficiency. However,
such thresholds, while economically justified, could undermine vehicle utilization and increase emissions
intensity when shipment volumes are too low to maintain high fill rates.

In summary, the integration of DPS improves logistics cost and service level under the right conditions,
particularly for high-volume, long-distance customers. However, its environmental benefits are condi-
tional and not guaranteed without additional constraints to safeguard vehicle efficiency. These findings
underscore the value of a hybrid distribution strategy that selectively combines DPS and two-echelon
flows based on route- and customer-specific trade-offs, rather than fully shifting to either mode. A nu-
anced, policy-aware application of DPS is necessary to align operational decisions with broader cost-
efficient, sustainability, service performance and inventory management goals.



Discussion and Recommendations

This chapter firstly reflects on the scientific contribution and key limitations of this research. Next, op-
portunities for model improvement are discussed and areas for case-specific recommendations to the
problem owner P&G are outlined. While the results offer valuable insights on the integration of Direct
Plant Shipments (DPS) into P&G’s hybrid distribution strategy, several assumptions and simplifications
made in the modeling process ask for further consideration.

9.1. Scientific Contribution

This research contributes to the academic field of supply chain management by addressing several key
gaps identified in the literature. First, while hybrid distribution strategies have been conceptually pro-
posed, few studies have rigorously modeled and empirically evaluated the integration of direct plant
shipments in a two-echelon network across multiple key performance indicators. Where cost minimiza-
tion is often the sole objective in such models, this study explicitly includes the performance on emissions
and service level, thus expanding the scope of performance evaluation. By developing a novel flow-
based adaptation of the 2E-VRP that jointly optimizes economic and environmental costs, evaluates the
associated change in service level performance, and extends the experiments with post-optimization
analyses, this study complements traditional modeling approaches beyond cost-focused frameworks.
Using a case study of real-world operations in the FMCG sector, the model demonstrates how hybrid
distribution structures affect these multiple objectives under realistic demand and routing conditions.

A central insight emerging from this multi-objective modeling is the persistent trade-off between cost
efficiency and environmental performance in hybrid routing decisions. Although DPS often reduces lo-
gistics costs, it can increase the total emissions when vehicle fill rates are low. Sensitivity analyses
reveal that even when emissions are highly valuated in monetized form or explicitly minimized as the
objective, the model tends to still prioritize centralized two-echelon flows due to their superior vehicle uti-
lization and consolidation. This finding indicates that the emissions inefficiency of underutilized vehicles
can outweigh the logistics benefits of direct flows. This challenges the assumption that expanding direct
shipping inherently supports sustainability goals and highlights a saturation point beyond which further
adoption may become counterproductive. The research therefore adds to the theoretical understanding
of how hybrid routing interacts with environmental policy goals, suggesting that more explicit integration
of emissions, via hard constraints or adaptive policies, may be needed to ensure alignment between
economic and ecological objectives.

Secondly, while most prior research has focused on urban or last-mile logistics, this thesis shifts the lens
to regional, cross-border distribution within a multinational FMCG network. By evaluating the effects of
transport distance and volume thresholds on routing decisions, it enriches theoretical perspectives on hy-
brid logistics at scale. The model also embeds practical constraints such as SKU eligibility, full-truckload
(FTL) thresholds, and customer-specific policies, demonstrating how abstract VRP-based formulations
can be adapted for a scenario analysis in real business contexts.

Finally, the case study at P&G provides empirical evidence that hybrid configurations can outperform
conventional strategies under specific conditions. It offers strategic insights into when and how direct
shipping adds value, and identifies operational trade-offs related to inventory allocation, emissions inten-
sity, and service responsiveness. In doing so, this work bridges the gap between theoretical optimiza-
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tion and real-world supply chain design, contributing to both academic advancement and managerial
decision-making.

9.2. Limitations of the Current Model and Assumptions

The model developed in this research is a flow-based adaptation of the two-echelon vehicle routing prob-
lem (2E-VRP), intentionally abstracting away from vehicle-level routing, synchronization, and vehicle
counting. It assumes unlimited vehicle availability at both the plant and the distribution center (DC), a
simplification justified by the involvement of third-party logistics (3PL) providers who manage P&G’s trans-
port execution and charge per shipment leg rather than per vehicle. Although two-echelon shipments
require two vehicle trips, this is not reflected as a separate KPI, as transport costs are modeled per leg
and fixed vehicle start costs are not included. However, omitting specific vehicle assignment, returns,
and time synchronization limits the model’s operational realism, particularly in contexts with constrained
vehicle availability, loading schedules, or driver hours. Incorporating these factors could improve accu-
racy in high-utilization settings and help identify potential bottlenecks in vehicle coordination, especially
during peak periods or in geographies with limited 3PL flexibility.

The current model does not include delivery time windows or lead time as a factor in the optimization or
as a KPI. This means that while logistics costs and emissions are optimized, the time responsiveness
of the supply chain is not explicitly assessed. DPS can offer shorter lead times due to fewer handling
steps, which can improve service performance from a customer perspective. On the other hand, if DPS
results in less frequent deliveries to customers, this could lead to increased holding time or uncertainty
at customer sites.

The optimization was performed over three consecutive weeks that were statistically selected to repre-
sent typical operational variability. While this approach ensures a solid baseline for evaluating model
performance, it does not fully capture long-term dynamics such as seasonal demand shifts, promotional
effects, or supply chain disruptions. In the FMCG sector, such factors can influence the feasibility and
attractiveness of DPS strategies. Expanding the time horizon could help assess how well the model
generalizes under varying demand conditions.

While this study incorporates emissions into the objective function through monetized carbon pricing,
this approach aligns with P&G’s current incentive structure, where total cost minimization remains the
dominant driver. However, results show that even at elevated carbon prices, routing decisions remain
largely unchanged, revealing that pricing alone does not meaningfully influence route selection under the
current network configuration. To address this, the e-constraint method was used to isolate the impact
of pure emissions minimization. These results suggest that stronger integration of emissions into the
decision logic, such as hard constraints on emissions per route or minimum vehicle fill requirements,
may be required to achieve meaningful sustainability improvements.

Furthermore, although the model assumes unconstrained shipment volumes and no enforced FTL thresh-
old in some configurations, environmental performance was still strongly driven by vehicle utilization. This
indicates that emissions inefficiency is structurally embedded in certain direct shipping patterns, particu-
larly for small or fragmented flows. The current model does not prevent low-fill shipments when they are
cost-efficient, even if they are environmentally suboptimal. As a result, threshold-based policies should
be refined to reflect both cost and environmental trade-offs, ideally through adaptive or route-specific
criteria.

The analysis shows that DPS can reduce inventory at the DC and lower storage costs by shifting ful-
fillment upstream to the plant. In P&G’s setting, where plant storage capacity typically exceeds that of
the DC, this shift is operationally feasible from a capacity standpoint. However, it increases reliance
on accurate decentralized forecasting and tighter planning at the plant level. For low-volume or highly
variable customer demand, the removal of the DC buffer may reduce service reliability or increase the
risk of stockouts. The current model does not capture these operational trade-offs, nor the potential
implications for planning complexity, upstream workload, or overall system resilience.

9.3. Directions for Future Research and Model Development

The limitations outlined above offer several pathways for scientific advancement. This section proposes
how future research could build on the current model to enhance realism, applicability, and decision
support capacity.

First, future research could explore the integration of time-based routing constraints and vehicle syn-
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chronization into hybrid distribution models to assess their impact on feasibility and system performance
under more realistic operational conditions. This includes modeling vehicle availability limits, return trips,
and multi-stop tours, as well as constraints related to driver working hours, loading windows, and coordi-
nation across echelons. Such extensions would enable a more granular analysis of temporal bottlenecks
and resource allocation trade-offs, especially during peak demand periods or in regions with limited 3PL
flexibility.

In addition to time-based routing, subsequent work should incorporate lead times and delivery frequency
into the optimization framework to better evaluate the service-related trade-offs of hybrid distribution
strategies. These temporal dimensions affect not only customer responsiveness but also the regularity
of deliveries and inventory dynamics at customer sites. Capturing them would allow for more balanced
planning between cost, emissions, and service performance.

Moreover, expanding the temporal scope of the analysis to cover a broader set of representative weeks
or full-year demand cycles would help capture long-term variability, including seasonal effects and pro-
motional campaigns. While the current selection of statistically representative weeks offers a robust
snapshot, testing the model under more extreme or volatile conditions would provide deeper insights
into the consistency and robustness of the proposed strategies.

To move beyond the current cost-driven framing of emissions, future research could further explore multi-
objective optimization frameworks that treat cost and environmental impact as distinct but equally impor-
tant objectives. This would support more balanced trade-off analyses and help align model outputs with
long-term sustainability goals. Additionally, the exploration of alternative policy mechanisms, such as
absolute emission caps or efficiency thresholds, could enrich the understanding of how regulatory or
corporate targets shape optimal logistics configurations.

From an inventory management perspective, the decentralization of stock from DCs to plants raises
questions about forecasting accuracy, planning responsibilities, and upstream operational dynamics.
Future research could focus on developing simulation-based or integrated inventory-transport models to
evaluate how such structural shifts affect system resilience and workload distribution under uncertainty,
beyond just physical storage concerns.

Finally, future work should consider how to refine DPS threshold policies to align more closely with both
cost efficiency and environmental goals. Rather than applying a single static threshold, adaptive strate-
gies that incorporate unit-based emissions constraints and customer-specific thresholds based on dis-
tance and shipment profiles could lead to more sustainable and nuanced decisions. This would help
avoid promoting low-fill but cost-efficient shipments that are misaligned with broader environmental ob-
jectives.

9.4. Case-Specific Strategic Recommendations for P&G

This section presents specific recommendations obtained from the findings of this research, to provide the
problem owner P&G with valuable insights for implementing DPS within their hybrid distribution strategy.

Pursue structural DPS implementation with high-potential customers: This research has provided
a broad eligibility assessment across the full BNL customer set, identifying customers with favorable
demand volumes, routing conditions, and cost-emission profiles for DPS. As a next step, P&G should
focus on strengthening collaboration with selected high-potential customers, such as Customer 1 and
Customer 5 for Category Y demand from Plant 2, to explore opportunities for more structural and con-
sistent use of DPS. Engaging these customers in tailored agreements or service-level discussions can
support more regular DPS flows and help establish best practices for wider rollout across the network.

Limit DPS scope to plant-produced SKUs for operational simplicity: Restricting DPS to SKUs that
are both produced and stored at the plant can streamline operations and reduce complexity. Including
stored SKUs that require internal transfers or cross-warehouse coordination introduces additional logis-
tical challenges, often for limited additional benefit. A focused DPS scope ensures smoother integration
with production schedules, simplifies outbound handling, and still captures a substantial share of the cost
and emissions savings potential.

Stimulate AOV-based ordering to support DPS opportunities: To enable better planning and exe-
cution of DPS, efforts could be made to encourage customers to place more structural Advance Order
Volume (AOV) orders specifically for SKUs produced at the plant. These orders, typically used for mixed
shipments from the DC, could be adapted to fit DPS planning needs when aligned with plant-produced
product flows. Tailored incentives, such as differentiated discounts for solely DPS-eligible SKUs, may
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help increase customer adoption. This approach leverages DPS-related cost savings to create a mutually
beneficial arrangement that supports operational efficiency.

Differentiate DPS policies based on customer-specific characteristics and environmental thresh-
olds: Rather than applying uniform DPS thresholds, P&G could consider differentiated policies based
on break-even volumes, routing efficiency, and environmental impact. Customers closer to the plant or
with stable mid-to-high demand may qualify for lower DPS thresholds, provided that vehicle fill rates re-
main sufficient to avoid emissions inefficiencies. To ensure alignment with sustainability goals, threshold
differentiation should be guided by combined economic and ecological criteria, potentially incorporating
minimum fill rate constraints or emissions caps into DPS decision rules.

Assess and plan plant storage requirements for DPS volumes: As DPS shifts fulfillment upstream,
sufficient storage and handling capacity at the plant becomes a key enabler of success. Although capac-
ity may not be a structural constraint in P&G’s current situation, planning for temporary buffers, dynamic
volume shifts, and order consolidation is critical to prevent congestion or delays. Ensuring that physi-
cal space, labor planning, and outbound processes are adapted to accommodate DPS flows will help
maintain reliability and avoid undermining the expected efficiency gains.

Integrate DPS logic into forecasting and planning processes: Decentralized fulfillment models such
as DPS increase dependency on accurate local forecasts and coordinated planning. Without the buffer-
ing effect of a central DC, mismatches between demand and supply can have a greater impact on service
level performance. Embedding DPS considerations into forecasting systems and strengthening align-
ment between demand planning and transport decisions can mitigate this risk and ensure more reliable
order fulfillment.

Further assess DPS feasibility for selected customers from Plant 1: While the analysis shows that
DPS is most cost-attractive for Category Y shipments from Plant 2, opportunities also exist for selected
customers served by Plant 1. For the customers with relatively high and stable volumes and with fa-
vorable location and routing characteristics, like Customer 5 and Customer 4, DPS may offer a viable
alternative to conventional distribution. Specific case-by-case evaluation of demand patterns and order-
ing behavior could inform whether structural DPS agreements would be feasible and beneficial in these
cases.
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Navigating the Cost-Emission Trade-Off in Hybrid Distribution Networks: Insights
from a Flow-Based Vehicle Routing Problem Integrating Direct Plant Shipments
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Abstract

Amid increasing pressure to decarbonize logistics operations, hybrid distribution strategies that combine di-
rect plant shipments with conventional two-echelon networks are gaining attention in the fast-moving consumer
goods (FMCG) sector. This study explores the trade-offs between logistics costs and environmental performance
in such hybrid distribution networks. Using a novel flow-based adaptation of the two-echelon vehicle routing
problem (2E-VRP), a multi-objective optimization framework is developed and applied to a real-world FMCG
case study. Through scalarization and e-constraint methods, the results reveal that although direct shipments
reduce logistics costs, environmental performance gains are not guaranteed: when emissions are directly min-
imized, direct shipments are often deprioritized in favor of two-echelon flows due to higher vehicle utilization
in the latter. Sensitivity analyses show that carbon pricing alone does not substantially alter routing decisions,
while direct emission optimization with cost constraints leads to more sustainable but centralized logistics pat-
terns. This reveals a structural misalignment between purely cost-efficient and environmentally optimal distri-
bution strategies. The findings highlight the need for route-specific eligibility criteria and additional opera-
tional constraints, such as minimum vehicle fill rates, to align logistics decisions with sustainability objectives.

Keywords: direct shipments; distribution network design; emissions optimization; hybrid logistics; carbon pricing

1 INTRODUCTION

With increasing attention to sustainability, many companies are re-evaluating traditional logistics structures. A hybrid distri-
bution strategy, where direct shipments from manufacturing plants are combined with conventional two-echelon distribution
networks, offers potential benefits such as shorter lead times and increased flexibility. However, the impact of such strate-
gies on both logistics cost and environmental performance remains insufficiently understood in practical applications. This
study investigates the trade-offs between logistics cost and carbon emissions in hybrid distribution systems. A flow-based
formulation of the two-echelon vehicle routing problem (2E-VRP) is applied to assess how routing decisions are affected
when environmental considerations, such as carbon pricing or emissions minimization, are incorporated alongside economic
objectives. The analysis is based on a real-world case from a major fast-moving consumer goods (FMCG) company, ensuring
practical relevance. The central research question addressed is: How do environmental incentives, such as carbon pricing
or emissions minimization, influence routing behavior in hybrid distribution networks? The findings provide insight into the
extent to which sustainability goals align, or conflict, with cost-driven logistics decisions.

2 LITERATURE REVIEW
2.1 Hybrid Distribution and the 2E-VRP

Hybrid distribution strategies integrate multiple delivery models, such as direct deliveries, multi-echelon flows via distribution
centers (DCs), and cross-docking, to optimize logistics networks. While classical distribution networks often separate direct
and indirect deliveries, hybrid approaches aim to combine their strengths, offering cost-efficiency and increased flexibility.
Recent studies have started to incorporate both direct and indirect flows within distribution models, particularly in controlled
or urban logistics settings. For instance, Azizi and Hu (2020), formulates a hybrid approach combining capacitated location,
routing and direct shipments. Musa, Arnaout, and Jung (2010) and Ma et al. (2011) integrate direct shipments into cross-
docking networks, using integer programming to balance transport costs and scheduling requirements. In the food sector,
Mohammadi, Barzinpour, and Teimoury (2020) emphasize the value of hybrid models for managing shelf-life and optimizing



the trade-offs between consolidation and speed.

However, within the domain of two-echelon vehicle routing problems (2E-VRPs), where flows typically pass from plants
through distribution centers to customers, only a few studies allow flexible combinations with direct routes. The model of
Zhou et al. (2024) is one of the few to incorporate direct deliveries alongside time windows and synchronization constraints.
Still, broader research on hybrid distribution, especially in large-scale or cross-country networks, with real-world data, re-
mains limited, presenting a significant opportunity for further exploration.

2.2 Key Performance Indicators in Hybrid Distribution

Evaluating hybrid distribution strategies requires clear performance metrics. Economic performance is commonly assessed
through total costs, which include transportation, establishment, and handling costs (Fishani et al., 2022; Mohammadi, Barz-
inpour, and Teimoury, 2020). Environmental performance is increasingly measured through emissions or energy consump-
tion, as supply chains aim for more sustainable operations (Fishani et al., 2022; Hosseini-Nasab et al., 2023). Key indicators
found in hybrid distribution studies include:

» Transportation costs: includes truck mileage, load factors, and fuel use.

» Carbon emissions: derived from routing distance and vehicle type.

* Inventory and handling cost: influenced by the number and role of the DCs.
* Service level metrics: include delivery lead tmie and fulfillment rates.

Most existing work emphasizes cost minimization (Musa, Arnaout, and Jung, 2010; Ma et al., 2011), with limited integration
of customer-centric or resilience indicators. Zhou et al. (2024) introduces time windows and direct delivery prioritization,
demonstrating how hybrid approaches may enhance service while optimizing logistics KPIs. However, empirical assessments
of trade-offs between cost, emissions, and service in hybrid models remain scarce.

2.3 Modeling Approaches for Hybrid Distribution Networks

Modeling hybrid distribution networks requires combining multiple logistics structures and decision layers. The Vehicle
Routing Problem (VRP) forms the basis of most modeling approaches. Two-echelon VRPs (2E-VRPs) extend classical VRP
formulations by introducing satellites or DCs between plants and customers (Sluijk et al., 2023; Sitek and Wikarek, 2015).
In most 2E-VRPs, all customer demand is served through a two-stage distribution flow. However, hybrid models could aim
to relax this by allowing direct routes as well.

Mixed-Integer Linear Programming (MILP) is widely applied for solving such models due to its flexibility in encoding
routing, capacity, time, and synchronization constraints (Azizi and Hu, 2020; Zhou et al., 2024). MILP formulations have
successfully incorporated cross-docking (Dondo, Méndez, and Cerd4, 2011), direct delivery logic (Mohammadi, Barzinpour,
and Teimoury, 2020), and even adaptive routing in urban settings (Song, Gu, and Huang, 2017). Nevertheless, most models
still assume deterministic conditions and are designed for city logistics contexts.

2.4 Research Gap and Contribution

Hybrid distribution strategies, such as integrating direct shipments into two-echelon networks, are increasingly recognized
for their potential to reduce lead times and logistics costs. However, the environmental implications of these strategies remain
underexplored, particularly the trade-offs they introduce between cost efficiency and carbon emissions. This gap is especially
pronounced at a regional cross-border scale in FMCG networks, where shipment volumes are fragmented and transport
emissions substantial.

Existing optimization models in the literature predominantly focus on minimizing cost objectives, without explicitly capturing
the structural tension between economic and environmental goals. Moreover, few studies investigate how hybrid routing de-
cisions behave under real-world constraints such as heterogeneous shipment eligibility, varying vehicle fill rates, and demand
volatility in cross-border supply chains.

This study addresses that gap by developing a flow-based two-echelon vehicle routing problem (2E-VRP) model that incor-
porates both direct and indirect flows, calibrated on real operational data from a real-world European FMCG network. A key
contribution lies in the integration of emissions as an explicit performance dimension, enabling a dual-perspective evaluation
of routing decisions.

Through cost-emission sensitivity analyses, the study reveals a consistent and policy-relevant insight: while direct ship-



ments often minimize logistics costs, it leads to lower vehicle utilization and thus higher emissions per unit. Conversely,
emission-optimized solutions may favor consolidated two-echelon routes in some cases, even when direct shipping would
be economically justified. This result underscores a structural misalignment between cost-optimal and sustainability-optimal
routing behavior.

By quantifying this trade-off and identifying the conditions under which environmental priorities shift routing outcomes, this
research advances theoretical understanding of hybrid network dynamics. It also informs practice by demonstrating that cost-
driven hybrid distribution policies may require additional operational constraints or incentive structures to align with broader
sustainability goals.

3 METHODOLOGY

This study develops a flow-based adaptation of the two-echelon vehicle routing problem (2E-VRP) to explicitly quantify
trade-offs between logistics cost and transport-related emissions in hybrid distribution networks. The model captures two
routing strategies, conventional two-echelon flows and direct shipments, and is formulated as a Mixed-Integer Linear Pro-
gramming (MILP) problem. It is calibrated on real operational data from a European FMCG network, enabling practical
insights into sustainability-aware supply chain design.

3.1 Flow-Based 2E-VRP Formulation

The initial model minimizes the total logistics cost of fulfilling customer demand under operational constraints. Two distri-
bution modes are modeled: (1) two-echelon shipments from plant — DC — customer, and (2) direct shipment from plant —
customer. Binary variables represent shipment activations on each leg, and continuous variables assign shipped volumes.

Unlike classical 2E-VRP models, vehicle tours and return routing are not explicitly modeled. This simplification reflects
the operational setup in the case study, where third-party logistics providers (3PLs) handle transportation and availability
is assumed sufficient. Transport costs and emissions are incurred per full truckload (FTL) movement, and vehicle capacity
constraints ensure feasible allocation. All indices, sets, parameters and decision variables in the model are given in Table 1.

Table 1: Overview of model notation for indices, parameters, and variables

Indices and Sets

peP Set of origin nodes (plants)

deD Set of satellite nodes (DC)

ceC Set of destination nodes (customers)

N =PUDUC  Setof all nodes in the network

vey Set of vehicles assigned to first echelon (plant origin)

weW Set of vehicles assigned to second echelon (DC origin)
Parameters

Q Vehicle capacity (in FP)

dist;; Travel distance between node ¢ and node j, where (i,5) € N x N
c;fj Fixed transportation cost from origin ¢ to destination j (in €/FTL shipment)
cload Average loading cost at origin node i € P U D (in €/FP)

c‘jmload Average unloading cost at destination node j € D U C (in €/FP)

Decision Variables

Binary routing:

Tpaw € {0,1} 1 if vehicle v transports SKUs from plant p to DC d (first echelon)

Ydew € {0,1} 1 if vehicle w transports SKUs from DC d to customer ¢ (second echelon)

Zpew € {0,1} 1 if vehicle v transports SKUs directly from plant p to customer ¢ (DPS)
Continuous flow:

Gpev = 0 FP volume transported directly from plant p to customer c using vehicle v (DPS)
Opdv > 0 FP volume transported from plant p to DC d using vehicle v (first echelon)

Odew > 0 FP volume transported from DC d to customer c using vehicle w (second echelon)




The logistics cost objective Zost includes fixed transport rates and variable handling costs per unit of flow, in this case given
by floor positions (FP), accounting for origin destination pairs and shipment size eligibility (see Equation 3.1).

Opa
min Zcost = Z Z Z |:9de load +$pdv < 22 ) . C;Ed + epd'u . anload]

pEP deD veV

Ioadmg cost at — unloading cost at
plant transport cost DC
plant—DC
9 load Ocw T
+ dcw Cq FYdew - Q *Che (3 1)
d€D ceC weWw ’
loadmg cost at —_—
DC transport cost
DC—customer

load T
+ E E E |:Qpcv : +2pev Cpe :|
pEP ceC vEY ~~~
loadmg cost at transport cost
plant plant—customer

The environmental objective Zemissions captures transport-related emissions based on route distance, vehicle fill rates, and a
fixed emissions factor per kilometer (see Equation 3.2).

Zemissions =79 Z Z Z pdv * Tpdv * dlStpd + Z Z Z edcw *Ydew * distdc + Z Z Z Zpev * diStpc (32)

pEP deD veV deD ceC wew pEP ceC veV

Together, these formulations allow the model to reflect real-world routing constraints, cost structures, and carbon output, with-
out requiring detailed vehicle routing or fleet scheduling assumptions. This level of abstraction is appropriate for strategic-
level planning, where the focus lies on shipment allocation and network design rather than route sequencing.

To ensure consistency with the per-unit cost formulation (/@) in the two-echelon flows, the model assumes that first-echelon
shuttles between plant and DC, as well as second-echelon deliveries from DC to customers, are always consolidated to full
truckloads. In contrast, direct plant-to-customer shipments are modeled at full fixed cost per trip, since these flows are not
assumed to be filled to FTL and this is highly relevant for the optimization. Furthermore, the model is subject to a broader
set of constraints defined in the extended thesis report, including flow conservation, capacity restrictions, shipment activation
logic, and customer demand fulfillment.

3.2 Sensitivity Analysis: Emissions-Oriented Routing Behavior

To systematically analyze the tension between cost efficiency and environmental sustainability, the model incorporates a
multi-objective optimization approach. While minimizing logistics costs is a primary operational goal, reducing CO, emis-
sions is increasingly prioritized in both corporate policy and regulation. The resulting trade-offs are not trivial: lower-cost
routes may involve suboptimal vehicle utilization and higher emissions, whereas environmentally favorable strategies may
increase operational costs.

To reflect this dual objective, the model evaluates two established methods that balance economic and environmental per-
formance: a scalarization approach that combines both objectives using a weighted sum, and an e-constraint method that
minimizes emissions under budget constraints. These techniques enable systematic exploration of trade-offs and offer insight
into how routing decisions shift under different sustainability priorities.

* Scalarization: A carbon price parameter A (€/kg CO,) is introduced to compute a weighted sum objective:

Zlotal = Zcosl + A Zemissions (33)

By varying A, the model explores Pareto-optimal trade-offs between cost and emissions. This approach reflects in-
ternalization of carbon pricing in logistics decision-making and aligns with recent studies on sustainability-aware
optimization.

* c-constraint method: The emissions objective is minimized directly as the sole objective, while logistics costs are
constrained to remain within a specified upper bound. This approach reveals which routes and strategies are favored
when emissions reduction is prioritized and cost becomes a constraint, without the influence of subjective weight
settings.



Both methods are applied to multiple demand scenarios and policy configurations to assess routing behavior across a wide
solution space. Together, they provide complementary perspectives on how different forms of environmental prioritization,
implicit (via pricing) and explicit (via constraints), affect supply chain design and operational choices.

3.3 Case Application and Experimental Setup

The model is applied to a distribution network in an international European region, involving two production plants, one
distribution center (DC), and a subset of high-volume destinations eligible for direct plant shipments. Historical shipment
data and transport contracts inform the model parameters, including demand volumes, transport costs, and emissions per
route.

Before introducing the environmental analyses described in subsection 3.2, the model was first solved under the cost-
minimization framework (Equation 3.1) to understand baseline routing behavior.

3.3.1 Baseline Behavior: Break-Even Analysis

To explore when direct plant shipments become economically preferable, a break-even analysis is conducted. For each
plant—destination pair, shipment volumes are gradually increased to determine the minimum threshold at which the model
switches from two-echelon routing to direct shipment.
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Figure 1: Break-even Threshold vs. Direct Distance to Customer

The resulting break-even thresholds as seen in Figure 1, reflect underlying cost trade-offs: longer transport distances require
higher volumes to offset fixed full-truckload costs. The graph shows clear linear trends: customers located farther from a
plant generally require higher shipment volumes to justify direct delivery. This indicates that uniform eligibility rules for
direct shipments may be suboptimal. Instead, data-driven, route-specific thresholds could more effectively align operational
decisions with cost-efficiency.

The trend for Plant 1, which serves customers at generally longer distances, appears less steep. This suggests that at higher
distances, the marginal cost savings from direct shipments become more uniform, meaning that even modest increases in
volume can justify switching to direct delivery. In contrast, for shorter distances (orange line), the threshold rises more
steeply with distance, indicating stronger sensitivity to volume in determining cost-effectiveness.

These findings suggest that uniform eligibility rules for direct shipments may be suboptimal. Instead, route-specific, data-
driven thresholds could better align operational decisions with cost-efficiency. Moreover, they provide context for the sen-
sitivity analysis: although direct shipments may be cost-optimal at these break-even points, their typically lower vehicle
utilization increases emissions per unit shipped, revealing a trade-off between economic and environmental objectives.



3.3.2 Sensitivity Analysis Design

To examine this trade-off in greater depth, experiments are conducted by combining four demand scenarios within internal
policy configurations. Each experiment is solved using both sensitivity approaches described in subsection 3.2, enabling
systematic exploration of how routing behavior shifts under varying levels of environmental prioritization. The resulting
solutions form Pareto frontiers and trade-off curves that could identify thresholds where emissions objectives begin to override
purely cost-driven decisions.

4 RESULTS

This section presents the results of two sensitivity analyses performed under the configuration in which no full-truckload
(FTL) threshold is imposed. In this setup, the model has full flexibility to select shipment volumes that minimize cost and/or
emissions, allowing a clearer view of how environmental objectives affect routing behavior when volume constraints are
removed.

4.1 Scalarization: Cost-Emission Pareto Frontier

The scalarization approach reveals that increasing the carbon price parameter A in its monetized form, leads to higher total
logistics costs, as expected. However, routing structures remain largely unchanged, indicating that optimal flows are main-
tained unless environmental incentives reach a substantial threshold. Even at prices as high as €4/kg CO,, changes in routing
remain limited, suggesting a structural misalignment between cost-efficient and low-emission routes in the current network.

The scalarization analysis reveals that increasing the carbon price parameter A (in €/kg CO,) leads to a linear rise in total
logistics costs, as expected. However, the routing structure remains largely unchanged across scenarios. As shown in Figure 2,
emissions remain nearly constant despite rising costs, indicating that environmental pricing must reach very high levels before
shifting route choices. Only in scenario S4 is a small emissions decrease observed at A = 0.13, caused by a marginal shift
toward a more emission-efficient route.

1.0

0.8

0.6 Scenario
—e— S1

S2
—o— S3
—o— S4
0.4

Share of Direct Shipments (%)

0.2

0.0

0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0
Carbon Price A (€/kg CO2)

Figure 2: Pareto frontier of total logistics cost vs. CO, emissions across all scenarios

Total logistics cost is expressed as a percentage increase relative to the baseline (A = 0), enabling a consistent cost comparison
across scenarios. The results in Figure 2 highlight a structural misalignment between cost-optimal and emission-optimal
routing decisions: pricing emissions alone does not meaningfully influence route selection under current network conditions.

4.2 ¢-Constraint Method: Emissions vs. Share of Direct Shipments

The e-constraint method reveals a different pattern. When total CO, emissions are minimized directly (subject to a maximum
allowable cost increase, the e-constraint), the model exhibits notable changes in routing behavior. As shown in Figure 3,
the share of direct shipments declines across all scenarios as emissions are pushed downward. This is because direct flows

tend to operate with lower vehicle fill rates, making them less emission-efficient compared to two-echelon flows consolidated
through the DC.
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Figure 3: Relative CO, emissions vs. direct shipment share across the aggregated Pareto front

As cost constraints become stricter, the model increasingly shifts to centralized routing structures with higher utilization,
thereby reducing emissions. The inverse relationship between emissions and direct shipment share seen in this analysis
suggests that limiting emissions through direct constraints or utilization-based incentives is more effective than relying on
carbon pricing alone.

S DISCUSSION
5.1 Threshold Effects and Sustainability Misalignment

The results reveal a persistent trade-off between cost efficiency and environmental performance in hybrid distribution net-
works. Under the model configuration where no full truckload (FTL) threshold is imposed and shipment volumes are un-
constrained, the model was free to choose the most efficient routing structure based on cost and/or emissions. Even in this
flexible setting, expanding direct shipments does not align with sustainability goals when emissions are explicitly minimized.

The e-constraint analysis shows that direct shipments are systematically deprioritized in favor of two-echelon flows when
emissions are minimized. This shift arises because direct routes in cost-optimal solutions can suffer from low vehicle uti-
lization, which increases emissions per shipped unit compared to consolidated deliveries via the DC. Notably, even without
FTL constraints, the environmental cost of direct routes outweighs their logistics savings in many cases. This highlights a
saturation point beyond which further direct plant shipping adoption may be environmentally counterproductive, particularly
for small or fragmented flows.

These findings underscore the limitations of cost-driven routing in sustainability-oriented supply chains. They also demon-
strate that two-echelon routing retains its environmental value, not only for low-volume or short-haul customers, but even for
some high-volume routes where vehicle fill rates can be better optimized through central consolidation.

5.2 Strategic Implications for Sustainable Logistics

The scalarization results show that carbon pricing, in its current form, has limited influence on routing decisions. Even
at elevated carbon prices (up to €4/kg CO;), the model maintains cost-optimal routes with minimal emissions reduction,
signaling a structural misalignment between economic and environmental objectives. This inertia reflects the weak sensitivity
of current network configurations to environmental pricing alone.

To address this, more targeted environmental interventions are needed, such as route-level emission constraints, minimum
VFR requirements, or differentiated service policies based on environmental performance. Adaptive eligibility rules that
assess the real-time trade-off between cost and emissions could further improve alignment between direct shipment decisions
and sustainability goals.

Overall, sustainable logistics design should move beyond static eligibility thresholds or pricing signals alone. Integrating
emissions directly into the operational optimization logic, whether through hard constraints, dual objectives, or adaptive
policies, offers a more effective strategy for balancing economic and environmental priorities in hybrid distribution networks.



5.3 Scientific Contribution

This research provides a detailed quantitative assessment of hybrid distribution networks that integrate direct plant shipments
with two-echelon flows under flexible vehicle fill conditions. By systematically varying emission constraints and carbon
prices in a fully unconstrained threshold configuration, the study offers novel insights into how routing structures respond to
environmental incentives.

The dual application of scalarization and e-constraint methods reveals that vehicle utilization, rather than eligibility thresh-
olds, is the key driver of emissions performance. This challenges conventional assumptions that direct shipment strategies will
always yield greener outcomes and highlights the nuanced trade-offs between cost, emissions, and service. The study con-
tributes methodologically by applying multi-objective optimization and route-level emission accounting in a hybrid logistics
setting, relevant for both academic and applied contexts.

6 CONCLUSION AND FURTHER RESEARCH RECOMMENDATIONS

This study has demonstrated that hybrid distribution systems can improve logistics performance and service levels, especially
for high-volume, long-distance routes, while reducing DC-based inventory costs. However, these benefits are conditional:
direct shipping does not guarantee emission savings unless vehicle fill rates remain high. Environmental performance is often
superior in consolidated two-echelon flows, even in cost-neutral conditions.

From a strategic perspective, fixed thresholds for direct shipping eligibility appear suboptimal. A more dynamic, route-
specific approach to different customers, accounting for volume, distance, and emission intensity, would better align opera-
tional efficiency with sustainability goals. Additionally, carbon pricing in its current form is insufficient to trigger meaningful
routing shifts, indicating the need for more direct or constraint-based interventions.

Future research could extend this work by:

* Incorporating stochastic demand and delivery variability to test direct shipping robustness under uncertainty;
* Expanding the model to include return flows, intermodal options, or vehicle routing considerations;

* Applying the framework to different sectors or geographies to assess generalizability;

* Investigating behavioral or organizational barriers to implementing dynamic direct policies in practice.

Together, these directions would deepen the understanding of how to operationalize hybrid, sustainable logistics at scale.
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Transport Data

Table B.1: Overview of Transportation Parameters in the Current State

Parameter

Value/Range

Explanation

Transport costs

ISF cost: Plant 1 to DC 1

ISF cost: Plant 2 to DC 1

CF cost from DC 1 to customer

CF cost from Plant 1 to customer

CF cost from plant Plant 2 to cus-
tomer

Fixed transport cost for the shuttle Plant 1 to DC 1

Fixed transport cost for the shuttle Plant 2 to DC 1

Range fixed CF rate to a customer-region based on histor-
ical data (see Table B.2)

Range fixed CF rate to a customer-region based on histor-
ical data (see Table B.2)

Range fixed CF rate to customer-region based on histori-
cal data (see Table B.2)

Handling and storage costs

Loading cost (Inbound) per FP at
plant

Loading cost (Inbound) per FP at DC

Unloading cost (Outbound) per FP
atDC

Average storage cost per pallet at
DC 1 (3PL)

Average storage cost per pallet at
plant (P&G owned)

Standardized loading cost per Floor Position (FP) at the
plant locations

Standardized loading cost per Floor Position (FP) at DC 1

Standardized unloading cost per Floor Position (FP) at DC
1

Cost for holding 1 pallet (B1 or B2) at DC 1 owned by the
3PL

Cost for holding pallets at the plant (P&G owned)

Other known parameters

Vehicle capacity

FTL threshold for DPS — customer

FTL threshold from DC — Belgium
customer

FTL threshold from DC — Nether-
lands customer

Homogeneous vehicles on all routes (besides the different
hauliers)

Below this, no DPS possible from this origin

Below this, LTL is usually more cost-effective

Higher threshold than Belgium due to longer distance from
DC1

"Based on known average handling cost at Plant 2 DC for a B1 or B2 pallet, multiplied unit by 1.5 to reflect cost per FP
2Calculated as the average of handling one B2 pallet and two B1 pallets per FP.
3Calculated as the average of handling one B2 pallet and two B1 pallets per FP.
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Table B.2: CF Transport Costs (€/FTL) from Each Origin to Destination Region. Green = known, Orange = estimated

Destination Region

Region Name

DC1 [ Plant1 | Plant2

Drenthe
Flevoland
Friesland
Gelderland
Groningen
Limburg (NL)
Noord-Brabant
Noord-Holland
Overijssel
Utrecht
Zuid-Holland
Antwerpen
Brabant (BE)
Henegouwen
Limburg (BE)
Luik

Luxemburg (BE)
Namen
Oost-Vlaanderen
West-Vlaanderen

Table B.3: Customer—Origin Distance Table (DC 1, Plant 1, Plant 2)

| Customer (Region)

| dij DC 1 (km) | di; Plant 1 (km) | d;; Plant 2 (km) |
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Statistics Demand Data

Table C.1: Summary Statistics for DPS-eligible Customers (per Customer-Category Combination)

# Customer* Category Mean (FP) Std CV
1 Customer 6 Category Y
1 Customer 6 Category X
2 Customer 7 Category Y
2 Customer7 Category X
3 Customer 8 Category Y
3 Customer 8 Category X
4  Customer 9 Category Y
4  Customer 9 Category X
5 Customer 10 Category Y
6 Customer 11 Category Y
7 Customer 1 Category Y
8 Customer 2 Category X
9 Customer 3 Category Y
9 Customer 3 Category X
10 Customer 4 Category Y
10 Customer 4 Category X
11 Customer 12 Category Y
11 Customer 12 Category X
12 Customer 5 Category Y
12 Customer 5 Category X
13 Customer 13 Category Y
14 Customer 14 Category Y

Table C.2: Explanation of Key Demand Statistics

Metric Description

Mean Average weekly demand in Floor Positions (FP) for each customer-
category-origin combination over the studied period.

Std Standard Deviation: Measures the variability in weekly demand; higher
values indicate greater fluctuations week to week.
cv Coefficient of Variation: Calculated as CV = -39_: it normalizes demand

mean’
variability, where a lower CV indicates more stable demand, favorable

for DPS planning.
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Table C.3: FTL Consistency of DPS-eligible Customers (weeks = 28 FP) - aggregated per Customer-Category

# Customer Category FTL weeks Share FTL weeks DPS-eligible

1 Customer 6 Category Y Yes

1 Customer 6 Category X Yes

2 Customer7 Category Y Yes

2 Customer 7 Category X Yes

3 Customer 8 Category Y Yes

3 Customer 8 Category X Yes

4 Customer 9 Category Y Yes

4  Customer 9 Category X Yes

5 Customer 10 Category Y Yes

6 Customer 11  Category Y Yes

7 Customer 1 Category Y Yes

8 Customer 2 Category X Yes

9 Customer 3 Category Y Yes

9 Customer 3 Category X Yes

10 Customer 4 Category Y Yes

10 Customer 4 Category X Yes

11 Customer 12 Category Y Yes

11 Customer 12  Category X Yes

12 Customer 5 Category Y Yes

12  Customer 5 Category X Yes

13 Customer 13 Category Y Yes

14 Customer 14 Category Y Yes
Table C.4: Average Autocorrelation ACF (lag 1-3) for Each Table C.5: ADF Stationarity Test Results for DPS Candidate

DPS Candidate Demand Series

Customer  Category ACF Customer  Category ADF p-value Stat.
Customer 1 Cat X&Y -0.191 Customer 1 Cat X&Y  -6.381 0.000 True
Customer 1 Non-Cat X&Y  0.118 Customer 1 Other -4.469 0.000  True
Customer 2 Cat X&Y 0.238 Customer 2  Cat X&Y -0.576 0.876 False
Customer 2 Non-Cat X&Y  0.067 Customer 2 Other 0.180 0.971 False
Customer 3 Cat X&Y -0.029 Customer 3 Cat X&Y -5.740 0.000  True
Customer 3 Non-Cat X&Y  0.247 Customer 3  Other -2.307 0.170 False
Customer4 Cat X&Y 0.017 Customer4 Cat X&Y  -2.974 0.037  True
Customer4 Non-Cat X&Y -0.133 Customer4  Other -3.162 0.022  True
Customer 5 Cat X&Y -0.042 Customer 5 Cat X&Y -4.899 0.000 True

Customer 5 Non-Cat X&Y  0.056 Customer 5 Other -5.032 0.000 True
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Model Output for Data Validation

Table D.1: Detailed Cost Breakdown for Selected 2E Shipments in Validation Run

Plant DC Customer Vol. PD DC Transp. LoadP. Load DC Unload DC Total
Dist. Dist. Cost Cost Cost Cost Cost

Plant1 DC1 Customer 1
Plant1 DC1 Customer 1
Plant1 DC1 Customer 3

Table D.2: Detailed Cost Breakdown for Selected DPS Shipments in Validation Run

Plant DC Customer Vol. PC Transp. LoadP. Load DC Unload DC Total
Dist. Dist. Cost Cost Cost Cost

Plant2 None Customer 1
Plant2 None Customer 3
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Computational Results

E.1. Results Cost and Environmental Impact per Scenario
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Figure E.1: Total Logistics Cost and CO, Emissions — S1 // C0O-C3 // Week 36-38
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Figure E.2: Total Logistics Cost and CO, Emissions — S2 // C0O-C3 // Week 36-38
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E.2. Pairwise Comparison of Logistics Cost and Emissions Results 97
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Figure E.3: Total Logistics Cost and CO, Emissions — S3 // C0O-C3 // Week 30-32
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Figure E.4: Total Logistics Cost and CO, Emissions — S4 // C0-C3 // Week 30-32

E.2. Pairwise Comparison of Logistics Cost and Emissions Results

Table E.1: Pairwise Comparison of Configurations vs Baseline CO

Logistics Cost Emissions

Scenario \ Comparison | Mean % diff Std % diff | Mean % diff Std % diff
C1vs CO -12.1% 10.5% -1.2% 4.0%
S1 C2vs CO -13.0% 11.3% 0.4% 1.5%
C3vs CO -16.3% 12.8% 7.4% 10.4%
C1vs CO -11.2% 9.8% -1.1% 3.7%
S2 C2vs CO -12.1% 10.5% 0.4% 1.4%
C3vs CO -15.4% 12.4% 7.7% 7.5%
C1vs CO -41.6% 4.5% -10.9% 8.1%
S3 C2vs CO -42.9% 4.4% -9.5% 8.3%
C3vs CO -42.9% 4.4% -9.5% 8.3%
C1vs CO -42.7% 5.0% -12.6% 7.7%
S4 C2vs CO -43.3% 4.8% -11.0% 8.5%
C3vs CO -43.3% 4.8% -11.0% 8.5%
C1vs CO -26.4% 7.5% -7.0% 5.4%
Total Avg C2vs CO -27.3% 7.8% -4.9% 4.9%
C3vs CO -29.7% 8.1% -1.1% 8.2%
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E.2. Pairwise Comparison of Logistics Cost and Emissions Results 98
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Figure E.5: Full Comparison Across Both Categories of Logistics Cost and Emissions Savings over the Configurations
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Figure E.9: Service Level and Delivery Type Split — S3
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Figure E.8: Service Level and Delivery Type Split — S2
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Figure E.10: Service Level and Delivery Type Split — S4

CO0-C3, Average over Week 30-32

E.4. Pairwise Comparison of Service Level Results

Table E.2: Pairwise Comparison of Configurations vs Baseline CO for Service Level

Scenario | Comparison

Service Level

Mean % diff Std % diff

C1-C0 1.0% 0.9%

S1 C2-Co 1.2% 1.0%
C3-Co 1.5% 0.6%

C1-CO0 1.0% 0.9%

S2 C2-C0 1.1% 0.9%
C3-C0 1.5% 0.6%

C1-CO 1.0% 0.0%

S3 C2-Co 1.0% 0.0%
C3-Co0 1.0% 0.0%

C1-C0 1.0% 0.0%

S4 C2-Co 1.0% 0.0%
C3-Co 1.0% 0.0%

C1-C0 1.0% 0.6%

Total Avg C2-C0 1.1% 0.6%
C3-Co 1.2% 0.5%
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E.5. Detalled Results Demand Scenario 1
Table E.3: Demand — Category X Scenario S1 — Top 5 Customers (Weeks 36-38)
Plant Customer Week 36 (FP) Week 37 (FP) Week 38 (FP)
Plant 1 Customer 1
Plant1 Customer 2
Plant1 Customer 3
Plant 1 Customer 4
Plant1 Customer 5
Total
Table E.4: Results — Category X Scenario S1 (Production only) for Weeks 36-38
Configuration | Metric | Week 36 | Week 37 | Week 38
Total logistic costs
Total distance
(o] Total emissions
2E/DPS shipment-ratio
Total service level
Total logistic costs
Total distance
Cc1 Total emissions
2E/DPS shipment-ratio
Total service level
Total logistic costs
Total distance
C2(DPS Threshold = D) Total emissions
2E/DPS shipment-ratio
Total service level
Total logistic costs
Total distance
C3(DPS Threshold = 0) | Total emissions
2E/DPS shipment-ratio
Total service level
Table E.5: Detailed Cost Breakdown Example: S1// C1 // Week 37
Plant DC Cust. Vol. PC PD DC Transp. LoadP. Load DC Unload DC Total
Dist. Dist. Dist. Cost Cost Cost Cost Cost
Plant1 None Customer 3
Plant 1 None  Customer 5
Plant1 DC 1 Customer 1
Plant 1 DC 1 Customer 2
Plant1 DC 1 Customer 3
Plant1 DC 1 Customer 4
Plant1 DC 1 Customer 5
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E.6. Detailed Results Demand Scenario 2

Table E.6: Demand — Category X Scenario S2 — Top 5 Customers (Weeks 36-38)

Plant Customer Week 36 (FP) Week 37 (FP) Week 38 (FP)

Plant 1 Customer 1
Plant1 Customer 2
Plant1 Customer 3
Plant1 Customer 4
Plant1 Customer 5

Total

Table E.7: Results — Category X Scenario S2 (Production + Storage) for Weeks 36-38

Configuration

Metric | Week 36 | Week 37 | Week 38

Total logistic costs
Total distance

Cco Total emissions
2E/DPS shipment-ratio
Total service level

Total logistic costs
Total distance

C1 Total emissions
2E/DPS shipment-ratio
Total service level

Total logistic costs
Total distance

C2(DPS Threshold =[ ) | Total emissions
2E/DPS shipment-ratio
Total service level

Total logistic costs
Total distance

C3(DPS Threshold = 0) | Total emissions
2E/DPS shipment-ratio
Total service level
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E.7. Detailed Results Demand Scenario 3

Table E.8: Demand — Category Y Scenario S3 — Top 5 Customers (Weeks 30-32)

Plant Customer Week 30 (FP) Week 31 (FP) Week 32 (FP)

Plant2 Customer 1
Plant2 Customer 2
Plant2 Customer 3
Plant2 Customer 4
Plant2 Customer 5

Total

Table E.9: Results — Category Y Scenario S3 (Production only) for Weeks 30-32

Configuration | Metric | Week30 | Week 31 | Week 32

Total logistic costs
Total distance

Cco Total emissions
2E/DPS shipment-ratio
Total service level

Total logistic costs
Total distance

C1 Total emissions
2E/DPS shipment-ratio
Total service level

Total logistic costs
Total distance

C2(DPS Threshold =[ ]) | Total emissions
2E/DPS shipment-ratio
Total service level

Total logistic costs
Total distance

C3(DPS Threshold = 0) | Total emissions
2E/DPS shipment-ratio
Total service level
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Table E.10: Detailed Cost Breakdown Example: S3 // C1 // Week 31
Plant DC Cust. Vol. PC PD DC Transp. LoadP. Load DC Unload DC Total
Dist. Dist. Dist. Cost Cost Cost Cost Cost
Plant2 None Customer 1
Plant2 None Customer 1
Plant2 None Customer3
Plant2 None Customer 3
Plant2 None Customer 3
Plant2 None Customer 3
Plant2 None Customer 3
Plant2 None Customer 3
Plant2 None Customer 3
Plant2 None Customer 3
Plant2 None Customer4
Plant2 None Customer4
Plant2 None Customer4
Plant2 None Customer4
Plant2 None Customer 5
Plant2 None Customer5
Plant2 None Customer 5
Plant2 None Customer5
Plant2 DC1 Customer 1
Plant2 DC1 Customer 2
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E.8. Detailed Results Demand Scenario 4

Table E.11: Demand — Category Y Scenario S4 — Top 5 Customers (Weeks 30-32)

Plant Customer Week 30 (FP) Week 31 (FP) Week 32 (FP)

Plant2 Customer 1
Plant2 Customer 2
Plant2 Customer 3
Plant2 Customer 4
Plant2 Customer 5

Total

Table E.12: Results — Category Y Scenario S4 (Production + Storage) for Weeks 30-32

Configuration

Metric | Week 30 | Week 31 | Week 32

Total logistic costs
Total distance

Cco Total emissions
2E/DPS shipment-ratio
Total service level

Total logistic costs
Total distance

C1 Total emissions
2E/DPS shipment-ratio
Total service level

Total logistic costs
Total distance

C2(DPS Threshold =[_]) | Total emissions
2E/DPS shipment-ratio
Total service level

Total logistic costs
Total distance

C3(DPS Threshold = 0) | Total emissions
2E/DPS shipment-ratio
Total service level
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E.9. Numerical Results e-constraint Analysis

Table E.13: Results of the e-constraint Analysis for S2 and S4, Minimizing Emissions under Varying Cost Caps

Scenario

€ (€) Cost (€)

Emissions (kg CO;) 2E/DPS Count

S2 (Week 36)

Initial Cost Optimization Solution

S2 (Week 37)

Initial Cost Optimization Solution

S2 (Week 38)

Initial Cost Optimization Solution

S4 (Week 30)

Initial Cost Optimization Solution

S4 (Week 31)

Initial Cost Optimization Solution

S4 (Week 32)

Initial Cost Optimization Solution

E.10. Data Demand-Based Break-Even Analysis

Table E.14: Overview of Distances and Break-even DPS Thresholds by Customer and Origin

Cust Origin Plant—-Cust (km) Plant-DC (km) DC-Cust (km) Threshold = (FP)
Customer 1 Plant 2
Customer 1 Plant 1
Customer 5 Plant 2
Customer 5 Plant 1
Customer 2 Plant 2
Customer 2 Plant 1
Customer 3 Plant 2
Customer 3 Plant 1
Customer4 Plant 2
Customer4 Plant 1
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T 1

Python Model

The mathematical flow-based 2E-VRP model described in chapter 5 was implemented in Python using Vi-
sual Studio Code. This appendix presents the main code blocks that form the core of the implementation,
highlighting the most relevant components used in model formulation and optimization. Non-essential
sections (e.g. scenario testing, extended analyses, and visualization scripts) are excluded from this
appendix to maintain clarity and focus on core model components.

mwmn

VS Code Editor

Thesis Tessa wvan der Hulst

nunn

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from IPython.display import display, Markdown
import os

os.environ['XPRESS'] = r"c:\Users\vanderhulst.tp\xpauth.xpr"
import xpress as xp

from itertools import combinations

from xpress import *

Data Preprocessing

# Load and preprocess raw demand data
df _raw = pd.read_csv("demand_full_2.csv", skiprows=1)
df _raw.columns = df_raw.columns.str.strip()

# Reshape from wide to long format

df_long = df _raw.melt(
id_vars=['Customer Ship To Name', 'Category', 'Origin Plant', 'First Storage Location'],
var_name='Week',
value_name='Demand_FP'

) .rename (columns={

'Customer Ship To Name': 'CustomerID',
'Origin Plant': 'Origin',
'First Storage Location': 'StorageLoc'

b

# Clean and convert columns

df_long[['CustomerID', 'Category', 'Origin', 'StorageLoc']] = df_long[['CustomerID', 'Category',
— 'Origin', 'StorageLoc']].£f£fill()

df _long['Week'] = df_long['Week'].astype(int)

df_long['Demand_FP'] = pd.to_numeric(df_long['Demand FP'], errors='coerce')
df_long.dropna(subset=['Demand_FP'], inplace=True)

107
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3}

#

df_long['FTL_eligible'] = df_long['Demand_FP'] >=
# Select data for specific weeks (e.g., week 37)

se

Flag FTL-eligible shipments

lected_weeks = [37]

df_weeks = df_long[df_long['Week'].isin(selected_weeks)].copy()
# Aggregate demand per week per origin-customer combination

df

)
#
df

)
#
df

)

# Average demand per week across SELECTED weeks

df

)

_grouped = (
df _weeks

.groupby (['CustomerID', 'Category', 'Origin', 'Storageloc', 'Week'])['Demand_FP']

.sum()
.reset_index()

Total demand across selected weeks
_final = (
df _grouped

.groupby(['CustomerID', 'Category', 'Origin', 'StorageLoc'])['Demand_FP']

.sum()
.reset_index()

.sort_values(by=['CustomerID', 'Category', 'Origin', 'StorageLoc'])

Average demand per week across ALL weeks
_avg_allweeks = (
df_long

.groupby (['CustomerID', 'Category', 'Origin', 'StorageLoc'])['Demand_FP']

.mean ()
.reset_index()

.rename (columns={'Demand_FP': 'Avg_Demand_FP_per_week_allweeks'})

_avg = (
df _grouped

.groupby(['CustomerID', 'Category', 'Origin', 'StorageLoc'])['Demand_FP']

.mean ()
.reset_index()

.rename (columns={'Demand_FP': 'Avg_Demand_FP_per_week'})

# Load cost data and create cost parameter dictionaries
df_costs = pd.read_csv("csv_fixedtransportcosts.csv")
c_pd_ISF = {(r['From'], r['To']): r['Cost'] for _, r in df_costs[df_costs['Type'] ==

—

'plant_to_dc'].iterrows()}

c_dc_CF = {(r['From'], r['To']): r['Cost'] for _, r in df_costs[df_costs['Type'] ==

>

'dc_to_customer'] .iterrows()}

c_pc_CF = {(r['From'], r['To']): r['Cost'] for _, r in df_costs[df_costs['Type'] ==

—

'plant_to_customer'].iterrows()}

# Aggregate total demand per customer and storage location, excluding DC 1

a_

pc_c2c4 = (
df _final[df_final['StorageLoc'] !'= 'DC 1']
.groupby (['CustomerID', 'StorageLoc'])['Demand FP']
.sum()
.reset_index()

Model Formulation: Sets, Parameters, Distance Matrix, Decision Variables

# --- Demand dictionary: {(plant, customer): demand} ---

a_

#
C
P
D

pc_small = {

(row['StorageLoc'], row['CustomerID']): row['Demand_FP']

for _, row in gq_pc_c2c4.iterrows()

--- Define sets ——-

sorted(set(c for (_, c¢) in q_pc_small))

= sorted(set(p for (p, _) in g_pc_small))[1:]
sorted(set(d for (d, _) in c_dc_CF))

# Customers
# Plants (e.g., [1:] for Plant 1)
# Distribution Centers
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# —-—— Filter demand to selected plants only ——-—
g_pc_small = {
(p, ©): q for (p, ¢), q in g_pc_small.items()

if pin P
¥
# —-—-- Vehicle sets ---
V = list(range(50)) # Plant-based vehicles
W = list(range(50, 100))  # DC-based wvehicles
# —-—— Filter transport cost dictionaries based on selected customers —---

c_pc_CF_small = {(p, c): cost for (p, c), cost in c_pc_CF.items() if ¢ in C}
c_dc_CF_small = {(d, c): cost for (d, c), cost in c_dc_CF.items() if ¢ in C}
c_pd_ISF_small = c_pd_ISF.copy() # Use full plant=DC cost dict

# —-—— Create optimization model —-—-
prob = xp.problem()

# —-—— Define global parameters ——-

Q = # Vehicle capacity in FP
c_load_plant = {p: for p in P}

c_load_dc = {d: for 4 in D}

c_unload = {d: for d in D}

lambda_emission = 0.065 # €/kg CO2
gamma = 0.90 # kg CO2 per km
# —-—-- Load and clean distance matriz —-—-

distance_matrix_all = pd.read_csv("full_distance_matrix.csv", index_col=0)
distance_matrix_all.index = distance_matrix_all.index.astype(str).str.strip()
distance_matrix_all.columns = distance_matrix_all.columns.astype(str).str.strip()
distance_matrix_all.rename(

index=lambda x: x.replace("Plant", "").replace("DC", ""),
columns=lambda x: x.replace("Plant", "").replace("DC", ""),
inplace=True

)

# ——— Build full distance lookup ——-

distance_lookup = {
(i, j): distance_matrix_all.loc[i, j]
for i in distance_matrix_all.index
for j in distance_matrix_all.columns
if not pd.isna(distance_matrix_all.loc[i, jl)

# —--- Distance dictionaries per leg ——-—

d_pc = {(p, c): distance_lookup[(p, c)] for (p, c) in c_pc_CF_small if (p, c) in
— distance_lookup}

d_pd = {(p, d): distance_lookup[(p, d)] for (p, d) in c_pd_ISF_small if (p, d) in
— distance_lookup}

d_dc = {(d, c): distance_lookup[(d, c)] for (d, ¢) in c_dc_CF_small if (d, ¢) in
— distance_lookup}

# --- Binary routing variables ---

# z_{pdv}: Plant + DC (first leg of 2FE)

x = {(p, d, v): xp.var(name=f"x_{p}_{d}_v{v}", vartype=xp.binary)
for (p, d) in c_pd_ISF_small for v in V}

# z_{pcv}: Direct Plant -+ Customer (DPS)

z = {(p, ¢, v): xp.var(name=f"z_{p}_{c}_v{v}", vartype=xp.binary)
for (p, ¢) in c_pc_CF_small for v in V}

# y_{dcw}: DC + Customer (second leg of 2F)

y = {(d, ¢, w): xp.var(name=f"y_{d}_{c}_w{w}", vartype=xp.binary)
for (d, ¢) in c_dc_CF_small for w in W}

# —--- Continuous flow variables ---
# g {pcv}: DPS flow in FP
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q = {(p, ¢, v): xp.var(name=£f"q_{p}_{c}_v{v}", 1b=0)
for (p, ¢) in c_pc_CF_small for v in V}

# _{pdv}: First leg of 2E (Plant - DC)

theta_pd = {(p, d, v): xp.var(name=f"theta_pd_{p}_{d}_v{v}", 1b=0)
for (p, d) in c_pd_ISF_small for v in V}

# _{dcw}: Second leg of 2E (DC -+ Customer)

theta_dc = {(d, c, w): xp.var(name=f"theta_dc_{d}_{c}_w{w}", 1b=0)
for (d, c) in c_dc_CF_small for w in W}

Model Formulation: Objective Function, Constraints

# Add variables to the problem

prob.addVariable(
list(x.values())
list(y.values())
list(z.values())
list(q.values()) +
list(theta_pd.values()) +
list(theta_dc.values())

+ + o+

# OBJECTIVE FUNCTION: LOGISTICS COST

objective_terms = []

# Two-echelon: plant -+ DC

for (p, d, v), flow in theta_pd.items():
cost_transport = c_pd_ISF_small.get((p, d4), 0)
load_p = c_load_plant.get(p, 0)
unload_d = c_unload.get(d, 0)

objective_terms.append(flow * load_p)
objective_terms.append((flow / Q) * cost_tramnsport * x[(p, d, v)])
objective_terms.append(flow * unload_d)
# Two-echelon: DC -+ customer
for (d, c, w), flow in theta_dc.items():
cost_transport = c_dc_CF_small.get((d, c), 0)
load_d = c_load_dc.get(d, 0)

objective_terms.append(flow * load_d)

objective_terms.append((flow / Q) * cost_transport * y[(d, c, w)])
# DPS: direct plant -+ customer
for (p, ¢, v), flow in q.items():

cost_transport = c_pc_CF_small.get((p, c), 0)

load_p = c_load_plant.get(p, 0)

objective_terms.append(flow * load_p)
objective_terms.append(z[(p, ¢, v)] * cost_transport)

# Set the objective
prob.setObjective(xp.Sum(objective_terms), sense=xp.minimize)

# OBJECTIVE FUNCTION: EMISSIONS
objective_emissions = []
for (p, d, v), flow in theta_pd.items():
if (p, d) in d_pd:
dist = d_pd[(p, d)]
objective_emissions.append((flow / Q) * dist * gamma * x[(p, d, v)])
for (d, c, w), flow in theta_dc.items():
if (d, ¢) in d_dc:
dist = d_dc[(d, ¢)]
objective_emissions.append((flow / Q) * dist * gamma * y[(d, c, w)1)
for (p, ¢, v) in z:
if (p, ¢) in d_pc:
dist = d_pcl(p, )]
objective_emissions.append(gamma * dist * z[(p, c, v)])
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55 Z_emissions = xp.Sum(objective_emissions)
56

s7  # CONSTRAINTS

s8 # This turns on and off the constraints
se  config = {

60 "demand_constraints_per_plant": True,

61 "flow_activ_vehiclecap_constraints": True,
62 "ftl_enforcement": True,

63 "dc_flow_balance": True,

64 "single_task_per_vehicle": True,

65 "limit_dps_to_one_customer": True

66 )

67
68 # Demand Satisfaction
es if config["demand_constraints_per_plant"]:

70 for (p, c), demand in q_pc_small.items():

71 direct = xp.Sum(q[(p, ¢, v)] for v in V if (p, ¢, v) in q)

72 indirect = xp.Sum(theta_dc[(d, c, w)] for d in D for w in W if (d, ¢, w) in theta_dc)
73 prob.addConstraint(direct + indirect == demand)

74
75 # Flow Activation & Vehicle Capacity
76 if config["flow_activ_vehiclecap_constraints"]:

7 for (p, ¢, v) in q:

78 prob.addConstraint(q[(p, c, v)] <= Q * z[(p, ¢, ¥]1)

79 for (p, d, v) in theta_pd:

80 prob.addConstraint (theta_pd[(p, d, v)] <= Q * x[(p, 4, 1)
81 for (d, c, w) in theta_dc:

82 prob.addConstraint (theta_dc[(d, ¢, w)] <= Q * y[(d, c, v 1)

83
sa # DPS Threshold Enforcement
ss DPS_THRESHOLD =

86 if config["ftl_enforcement"]:

87 for (p, ¢, v) in z:

88 demand = q_pc_small.get((p, c), 0)

89 if demand > DPS_THRESHOLD:

20 prob.addConstraint(q[(p, ¢, v)] <= Q * z[(p, ¢, ¥])

91 prob.addConstraint(q[(p, ¢, v)] >= DPS_THRESHOLD * z[(p, c, v)])
92 else:

93 prob.addConstraint(z[(p, ¢, v)] == 0)

o4
95 # DC Flow Balance
96 if config["dc_flow_balance"]:

97 for d in D:

98 inflow = xp.Sum(theta_pd[(p, d, v)] for p in P for v in V if (p, d, v) in theta_pd)
99 outflow = xp.Sum(theta_dc[(d, ¢, w)] for ¢ in C for w in W if (d, ¢, w) in theta_dc)
100 prob.addConstraint (inflow == outflow)

101
102 # Vehicle Task Exclusivity
103 if config["single_task_per_vehicle"]:

104 for v in V:

105 dps = xp.Sum(z[(p, ¢, v)] for p in P for ¢ in C if (p, ¢, v) in z)

106 twoe = xp.Sum(x[(p, d, v)] for p in P for d in D if (p, 4, v) in x)

107 prob.addConstraint (dps + twoe <= 1)

108 for w in W:

109 prob.addConstraint (xp.Sum(y[(d, ¢, w)] for d in D for ¢ in C if (d, ¢, w) in y) <= 1)

110
1m  # DPS: One Customer per Vehicle
12 if config["limit_dps_to_one_customer"]:

13 for v in V:
14 prob.addConstraint (xp.Sum(z[(p, ¢, v)] for p in P for ¢ in C if (p, c, v) in z) <= 1)
Problem Solver & Output

1 # Z_total Objective: include emissions cost
2 emission_cost_expr = e * Z_emissions
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total_cost_with_emissions = xp.Sum(objective_terms) + emission_cost_expr
prob.setObjective(total_cost_with_emissions, sense=xp.minimize)

# Solwve
status = prob.solve()

# -—- Main results ---

print (f"\n[Fixed Carbon Pricel")

print (f"Total Cost (logistics): €{prob.getSolution(xp.Sum(objective_terms)):.2f}")
print(£"Total Emissions: {prob.getSolution(Z_emissions):.2f} kg CO")

print (f"Emissions Cost: €{prob.getSolution(emission_cost_expr):.2f}")
print(f"Total Cost incl. Emissions: €{prob.getObjVal():.2f}")

# Summary trackers
dps_total_cost = 0
e2_total_cost = 0
dps_emissions_total = 0
e2_emissions_total = 0
dps_emissions_arc = 0O
e2_emissions_arc = 0
total_distance = 0
dps_count = 0

e2_count = 0

logistics_cost = float(prob.getSolution(xp.Sum(objective_terms)))
emissions = float(prob.getSolution(Z_emissions))

print(f"\n Logistics-Only Cost: €{logistics_cost:,.2f}")
print(f" Emissions: {emissions:,.2f} kg CO")

# DPS
print ("\nDirect Plant -+ Customer (DPS) Routes:")
for (p, ¢, v) in q:
flow = float(prob.getSolution(ql(p, c, v)1))
if flow > 1le-3:
dps_count += 1
arc_used = float(prob.getSolution(z[(p, c, v)]1))
dist = d_pc.get((p, c), 0)
cost = arc_used * c_pc_CF_small.get((p, c), 0) + flow * c_load_plant.get(p, 0)
emissions_flow = gamma * dist * (flow / Q)
emissions_arc = gamma * dist

dps_total_cost += cost
dps_emissions_total += emissions_flow
dps_emissions_arc += emissions_arc
total_distance += dist

print(f" - Plant {p} - Customer {c} | Vehicle {v} | Flow: {flow:.1f} | "
f"Cost: €{cost:.2f} | Emissions: {emissions_flow:.1f} kg (flow-based), "
f"{emissions_arc:.1f} kg (arc-based) | Distance: {dist:.1f} km")

# 2E-routes
print ("\nTwo-Echelon Routes (Plant -+ DC - Customer):")
for (p, d, v) in theta_pd:
flow_pd = float(prob.getSolution(theta_pd[(p, 4, v)1))
if flow_pd > 1le-3:
for (d2, c, w) in theta_dc:
if d2 == d:
flow_dc = float(prob.getSolution(theta_dcl[(d, c, w)1))
if flow_dc > 1le-3:
e2_count += 1
cost = (
flow_pd * (c_load_plant.get(p, 0) + c_unload.get(d, 0)) +
(flow_pd / Q) * c_pd_ISF_small.get((p, d), 0) +
flow_dc * c_load_dc.get(d, 0) +
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print ("\nSummary:")

print (£"
print (£"
print(£"
- (arc)™)
print (£"
print(£"
print (£"
print (£"
print (£"
print (£"

(flow_dc / Q) * c_dc_CF_small.get((d, c), 0)
)
dist_pd = d_pd.get((p, d), 0)
dist_dc = d_dc.get((d, c), 0)
segment_distance = dist_pd + dist_dc
emissions_flow = gamma * segment_distance * (flow_dc / Q)
emissions_arc = gamma * segment_distance

e2_total_cost += cost
e2_emissions_total += emissions_flow
e2_emissions_arc += emissions_arc
total_distance += segment_distance

print(f" - Plant {p} = DC {d} - Customer {c} | Vehicles {v}/{w} | "
f"Flow: {flow_dc:.1f} | Cost: €{cost:.2f} | Emissions:
— {emissions_flow:.1f} kg (flow), "
f"{emissions_arc:.1f} kg (arc) | Distance: {segment_distance:.1f} km")

DPS Total Cost: €{dps_total_cost:,.2f}")
2E Total Cost: €{e2_total_cost:,.2f}")
DPS Emissions: {dps_emissions_total:.1f} kg (flow), {dps_emissions_arc:.1f} kg

2FE Emissions: {e2_emissions_total:.1f} kg (flow), {e2_emissions_arc:.1f} kg (arc)")
Total Emissions (hybrid): {e2_emissions_total + dps_emissions_arc:.1f} kg")

Total Emissions (arc-based): {e2_emissions_arc + dps_emissions_arc:.1f} kg")

Total Distance Traveled: {total_distance:.1f} km")

# DPS Shipments: {dps_count}")

# 2E Shipments: {e2_count}")

# SERVICE LEVEL PERFORMANCE
# —-—-- Estimated Service Level Calculation -—-

# Historical service level per origin

SL_Plant 2
SL_Plant 1
SL.DC 1 =

# Initialize shipped volumes per source

Vol_Plant 2 =

Vol_Plant 1
Vol DC 1 =

0
=0

0

# DPS volumes (from plants)
for (p, ¢, v), var in q.items():

flow =

prob.getSolution(var)
if flow > 1le-3:

if p == "Plant 2":

Vol_Plant 2 += flow

elif p == "Plant 1":

Vol_Plant 1 += flow

# Two-echelon volumes (from DC 1)

for (d, c, w), var in theta_dc.items():

flow =

prob.getSolution(var)

if flow > le-3 and d == "DC 1":
Vol _DC 1 += flow
# Total shipped wvolume
total_shipped = Vol_Plant 2 + Vol_Plant 1 + Vol_DC 1

# Weighted service level calculation
if total_shipped >

SL_estimated

SL_Plant 2
SL_Plant 1
SL_DC 1 * Vol_DC 1

0:
(
* Vol_Plant 2 +
* Vol_Plant 1 +
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) / total_shipped

3
print (f"\nEstimated Service Level (weighted by origin): {SL_estimated:.4f}")
print(£" Volume from Plant 2:  {Vol_Plant 2:.1f}")
print (£" Volume from Plant 1: {Vol_Plant 1:.1f}")
print (£" Volume from DC 1 DC: {Vol_DC 1:.1f}")
else:

print ("\nNo shipments executed - cannot estimate service level.")
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