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Isochronous Partitions for Region-Based
Self-Triggered Control

Giannis Delimpaltadakis

Abstraci—In this article, we propose a region-based self-
triggered control (STC) scheme for nonlinear systems. The
state space is partitioned into a finite number of regions,
each of which is associated to a uniform interevent time.
The controller, at each sampling time instant, checks to
which region does the current state belong, and corre-
spondingly decides the next sampling time instant. To de-
rive the regions along with their corresponding interevent
times, we use approximations of isochronous manifolds, a
notion first introduced in Anta and Tabuada (2012). This
article addresses some theoretical issues of Anta and
Tabuada (2012) and proposes an effective computational
approach that generates approximations of isochronous
manifolds, thus enabling the region-based STC scheme.
The efficiency of both our theoretical results and the pro-
posed algorithm is demonstrated through simulation exam-
ples.

Index Terms—Digital control, networked control sys-
tems, nonlinear control systems.

[. INTRODUCTION

ONTROL laws are, most often, implemented in a periodic
C fashion. However, despite periodic implementations facil-
itating controller design, they lead to overconsumption of avail-
able resources. Especially in networked control systems, such
implementations are considered inefficient, due to potential lim-
itations on communication bandwidth. The need for resource-
friendly control implementations has shifted the research focus
to aperiodic schemes, namely event-triggered control (ETC)
[2]-[9] and self-triggered control (STC) [1], [10]-[21]. For an
introduction to STC and ETC (see Heemels et al. [22]).

These strategies assume sample-and-hold implementations,
in which the control action is updated when a certain
performance-related condition (triggering condition) is satis-
fied. Triggering conditions are of the form ¢(((¢)) > 0, where
¢(C(t)) is a function of the state of the system, namely the rrig-
gering function (e.g., see Tabuada [4] and Girard [6]). Specifi-
cally in ETC, dedicated intelligent hardware constantly monitors
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the plant and detects when the triggering condition is satisfied.
To relax this constraint, researchers have proposed STC as an
alternative, according to which the controller predicts at each
sampling time instant the next time at which the triggering con-
dition would be satisfied. In this way, both ETC and STC promise
to reduce the number of communication packets’ transmissions
and controller updates, thus saving both bandwidth and energy.

Regarding STC for nonlinear systems, the amount of pub-
lished work is limited. In [11], the authors derive STC formu-
las employing interesting properties of homogeneous systems.
Based on these properties, a different STC formula is proposed
in [1], employing the notion of isochronous manifolds. In [12],
a Taylor expansion of the Lyapunov function is used to pre-
dict the triggering times. In [16], a self-triggered scheme is
derived, based on a small-gain approach. In [13], a triggering
condition that guarantees uniform ultimate boundedness for
perturbed nonlinear systems is presented, and a corresponding
self-triggered sampler is derived. Finally, the work in [21] de-
signs an STC scheme that copes with actuator delays.

The STC formula proposed in [11] proves to be conservative,
i.e., it leads to a large amount of updates, at least when compared
to the technique proposed here. This argument is illustrated
in one of the simulation examples later in this document. In
addition, Theodosis and Dimarogonas [21] admit that although
it addresses actuator delays, it is even more conservative than
Anta and Tabuada [11]. Regarding Anta and Tabuada [1], there
are certain theoretical and practical issues that are presented later
in this section and are thoroughly discussed in this document. An
important drawback of the rest of the STC techniques is that they
require heavy computations that need to be carried out online.

A clever way to provide a tradeoff between online compu-
tations and the number of updates in STC has already been
proposed for linear systems with state feedback in [18]. In par-
ticular, the authors in [18] discretized the state space of a linear
system into a finite number of regions, assigning a particular
self-triggered interevent time to each region that lower bounds
the event-triggered interevent times of all points contained in
that region. The computation of the self-triggered interevent time
for each region is carried out offline. Finally, in real-time, the
controller checks to which region of the state space does the
current state belong and assigns to it the interevent time of the
corresponding region. To the best of our knowledge, there are
no similar results for nonlinear systems.

Motivated by the advantages of Fiter et al. [18], in this article,
we derive a region-based STC scheme for nonlinear systems.
In contrast to the work in [18], in which the state space was

0018-9286 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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first discretized and afterward the corresponding self-triggered
interevent times were computed, we propose to first predefine a
set of specific interevent times and afterward derive the regions
that correspond to the selected times. Thus, in our approach,
the number of regions in the state space is always equal to the
number of times. This renders our approach more efficient and
tames the curse of dimensionality, as the number of regions is
independent of the dimensions of the system.

Toward discretizing the state space of nonlinear systems, we
elaborate on the notion of isochronous manifolds, originally in-
troduced in [1]. Isochronous manifolds are hypersurfaces in the
state space that consist of points associated to the same interevent
time T, i.e., if the system’s state belongs to an isochronous
manifold at a sampling time ¢;, then the next sampling time
instant is ¢;,11 = ¢; + 7. In [1], Anta and Tabuada proposed
a method to approximate these manifolds by upper bounding
the evolution of the triggering function, and then used the
approximations to derive an STC formula. Unfortunately, there
are some unaddressed theoretical and practical issues therein,
which render the approximations, in general, invalid and hinder
the application of the corresponding STC scheme. In particular,
the bounding lemma presented in [1, Lemma V.2], based on
which the upper bounds of the triggering function are derived,
is incorrect. Furthermore, we show that even if a valid bound
is obtained, the method proposed in [1] actually approximates
the zero-level sets of the triggering function, and not the actual
isochronous manifolds. Finally, although Anta and Tabuada [1]
proposed the use of SOSTOOLS [23] to derive the approxima-
tions, we have found it to be numerically nonrobust regarding
solving this particular problem.

This article tackles all of the aforementioned issues, in order
to derive a discretization of the state space for nonlinear systems
that enables a region-based STC scheme. Overall, the contribu-
tions of our article are the following.

1) We present a valid version of the bounding lemma, based
on a higher order comparison lemma [24].

2) Employing this new lemma, we propose a refined method-
ology to approximate the actual isochronous manifolds of
nonlinear ETC systems.

3) We adjust a counter-example guided iterative method
(see e.g., [25]) combining linear programming and sat-
isfiability modulo theory (SMT) solvers (e.g., [26]), to
derive an alternative algorithm that effectively computes
approximations of isochronous manifolds.

4) We derive anovel region-based STC scheme that provides
a framework to tradeoff online computational load with
the number of updates.

Finally, it is worth noting that isochronous manifolds are an
inherent characteristic of any system with an output. Thus, as in
[1], the theoretical contribution of deriving approximations of
isochronous manifolds might even exceed the context in which
this article is written.

[I. NOTATION AND PRELIMINARIES

A. Notation

We denote points in R™ as = and their Euclidean norm as
|z|. We use the symbol 3! to denote existence and uniqueness.

Forz,y € R", wewritex X yifz; <vy; (¢ =1,...,n), where
the subscript ¢ denotes the ¢th component of the corresponding
vector. When there is no harm from ambiguity, the subscript ¢
may be, also, used to denote different points x; € R".

If f:R™ — R™ is p-times continuously differentiable, we
write f € CP.Let X : M — T'M beavectorfieldand i : M —
R be a map. Lxh(x) denotes the Lie derivative of h at a point
x along the flow of X. Similarly, £ h(z) = Lx (L5 h(z)) is
the kth Lie derivative with £ h(x) = h(x).

Consider a system of first-order differential equations

¢(t) = f(t, (1) (M

The solution of (1) with initial condition (y and initial time ¢
is denoted as ((¢;to,¢p). When to (and () is clear from the
context, then it is omitted, i.e., we write {(¢; (o) (((2)).

B. ETC Systems

Consider a nonlinear control system

¢(t) = f¢B),v(¢(1))) )

where ( : R — R", f: R™ x R™ — R™, and a feedback con-
trol law v : R” — R™. A sample-and-hold implementation of
(2) is typically applied by sampling the state of the system ((t)
at time instants ¢;, ¢ = 0,1, 2, .. ., evaluating the input v({(t;))
and keeping it constant until the next sampling time

¢(t) = F(S(t), v(¢(8))),

We define the measurement error £(t) as the difference between
the last measured state and the current state

E(t) = C(ti) — C(t), te [ti,ti+1). (3)

As soon as the updated control input is applied at each sampling
time ¢t = t;, the state is measured and the error becomes 0, since
¢(t) = ((t;). With this definition, the sample-and-hold closed
loop becomes

te [ti,ti+1).

C(t) = F(¢1),v(e(t) +¢(1))). 4)

In ETC, the sampling time instants, or triggering times, are
defined as follows:

tit1 =t +inf{t > 0: ¢(C(t;2:),(£;0)) =0} (5)

and tgp = 0, where x; corresponds to the last measurement of
the state of the plant. We call (5) the triggering condition, ¢(-, -)
the triggering function, and the difference t; 1 — t; inter-event
time. Each point x; in the state space of the system corresponds
to a specific interevent time denoted by 7(x;)

T(x;) = inf{t > 0: ¢({(t;2,),2(¢;0)) = 0}. (6)

During the interval [¢;,¢;11), the triggering function starts
from a negative value and remains negative until ;. At
ti+1, it becomes zero. Typically, it is designed such that
d(C(t;1),e(¢;0)) < 0 implies certain stability guarantees for
the system. This justifies the choice (5) of sampling times.

If we consider the extended state  vector

T
E(t) :[CT(t) aT(t)} € R?", the ETC system is written
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in a compact way

F(C(8),v(C(t) + (1))
—f(¢(t), v(C(t) + (1))

fl(t¢++1) = 51(@11)
52(t¢++1) =0.

£(t) = =F((1), t € [tistit1)

(7

Remark 1: Our analysis is carried out within the time interval
[0,t;41 —t;) = [0,7(x;)). Due to time-invariance of F'(-), ¢(-),
this is equivalent to analyzing within the interval [t;, ¢;11).

At any sampling time ¢;, the state of (7) becomes &(¢;) =
(C(t;),0) = (24,0). Since we consider intervals between two
sampling times, we focus on solutions £(¢; ;) with & = (x;, 0).
Thus, we adopt the abusive notation ¢(£(¢; x;)), T(x;) (or later

(@i, 1), p(xi, t)) instead of G(E(t; &), 7(&)-

C. Self-Triggered Implementation

As aforementioned, self-triggered implementations remove
the need for continuous monitoring of the triggering condition
(5), by predicting events ¢(£(¢;x)) = 0. Specifically, an STC
strategy dictates the next sampling time according to a function
7+ :R™ — R* lower bounding the ETC interevent times

™(z) < 7(x). (8)

Since ¢(&(t;x)) < 0 for all t € [0, 7(x)), then it is guaranteed
that ¢(£(¢;2)) < Oforall ¢ € [0,74(x)), and the stability of the
system is preserved. Consequently, the STC interevent times
should be no larger than the corresponding ETC times in order
to guarantee stability, but as large as possible in order to achieve
greater reduction of updates. Finally, 7+(-) should be designed
such that 7+(z) > € > 0 for all  in the operating region of the
system, in order to avoid the scenario of infinite transmissions
in finite amount of time (Zeno phenomenon).

Ill. PROBLEM STATEMENT

Inspired by the work in [18], the goal of this article is to
design a region-based STC scheme for nonlinear systems, pro-
viding a framework for tradeoff between online computations
and updates. In a region-based STC scheme, the state space
of the original system (4) is divided into a finite number of
regions R; € R™ (: = 1,2,...), each of which is associated to
a self-triggered interevent time 7; such that

VeeR;: 7 <7(x) 9)

where 7(z) denotes the event-triggered interevent time associ-
ated to x [see (6)]. The STC scheme operates as follows.

1) Measure the current state £(t,) = (z,0).

2) Check to which of the regions R; does x, belong.

3) If x € R;, set the next sampling time to ¢ = ti + 7;.

The STC scheme preserves stability of the system, since the
STC interevent times lower bound the ETC ones [see (9)].

In [18], the state space is discretized into regions R ; a priori,
and afterward the times 7; are computed such that they satisfy (9).
However, we propose an alternative approach: first, a finite set of
times {71, 72, . .. 74} is predefined (e.g., by the user), which will

serve as STC interevent times, with 7; < 7,41, and then regions
R ; corresponding to times 7; are derived a posteriori, such that
(9) is satisfied. In this way, the number of regions is equal to
the number of times 7;, in contrast to the work in [18], and the
curse of dimensionality is tamed, as the number of regions does
not depend on the system’s dimensionality. Thus, the problem
statement is as follows.

Problem Statement Given a finite set of times {7y, ...
with 7; < 7,41 and ¢ > 1, find R; € R" that satisfy (9).

Note that Zeno behavior is ruled out by construction, since the
STC interevent times are lower bounded: 7+(z) > min,;{r;} =
71. The choice of times 7; and its effect is discussed later in this
document.

g}

IV. ISOCHRONOUS MANIFOLDS, TRIGGERING LEVEL SETS,
AND DISCRETIZATION

Here, we recall results from Anta and Tabuada [1] regarding
isochronous manifolds, we introduce the notion of rriggering
level sets and describe how isochronous manifolds and triggering
level sets are different. Finally, we point out how, given proper
approximations of isochronous manifolds, a state-space dis-
cretization is generated, enabling a region-based STC scheme.

A. Homogeneous Systems and Scaling of Interevent
Times

First, we briefly go through some definitions regarding ho-
mogeneous functions and systems, and results previously de-
rived in [11] regarding scaling laws for interevent times of
homogeneous systems. Regarding the former, only the classical
notion of homogeneity is presented. For the general definition
of homogeneity, the reader is referred to Kawski [27].

Definition IV.1 (Homogeneous Function [1]): A  function
f+R™ — R™ is homogeneous of degree o € N, if there exist
r; >0 =1,2,...,m)such that for all z € R"

fi()flxl, C ,)\.T"In) = )»a+r"’fi($17 - ,an) VA >0

where f;(x) is the ith component of f(z) and o > — min; r;.

Definition IV.2 (Homogeneous System): A system  (2)
is called homogeneous of degree « € R, whenever
F(C(t),v(C(t)) = f(¢(t)) is a homogeneous function of
the same degree.

‘We now review the scaling laws of interevent times previously
derived in [11]. Along lines passing through the origin (but
excluding the origin), the event-triggered interevent times scale
according to the following rule.

Theorem IV.1 (Scaling Law [11]): Consider a dynamical
system (7) homogeneous of degree «v and a triggering function
¢(-) homogeneous of degree 6. For all = € R™, the interevent
times 7 : R™ — R U {+oc0} defined by (6) scale as

T(Ax) =1"“7(x), A>0. (10)

In the following, we refer to lines going through the origin as
homogeneous rays. Notice that the scaling law for the interevent
times (10) does not depend on the degree of homogeneity of the
triggering function considered. The property derives from the
following useful lemma.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 03,2021 at 12:55:35 UTC from IEEE Xplore. Restrictions apply.
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Lemma IV.2 (Time-Scaling Property [11]): Consider an
ETC system (7) and a triggering function ¢(-) homogeneous of
degree av and 6, respectively. The triggering function satisfies

P(E(tar)) = p(AE(At ) = AP p(E(A ) (1D)

where the first equality is a property of homogeneous flows.

Assumption 1: For the remaining of this article, our analysis
is based on the following set of assumptions.

1) The extended ETC system (7) is smooth and homoge-
neous of degree o« > 1, with r; = 1 for all i.

2) The triggering function ¢(£(¢; «)) is smooth and homo-
geneous of degree 6 > 1, with r; = 1 for all 7.

3) For all ze€R"™—{0}, ¢(£(0;2)) <0 and 3t, €
(0, +00) such that ¢p(&(t,;z)) = 0.

4) Compact sets Z C R™ and = C R?", containing a neigh-
borhood of the origin, are given, such that for all = € Z:
P(§(t;x)) <0 = &(t;x) € E.

5) The system (2) has the origin as the only equilibrium.

Remark 2: The aforementioned analysis and Assumption 1
constitute the framework within which this article is carried
out. Nevertheless, as pointed out in [1, Lemma IV.4], any
smooth function can be rendered homogeneous, if embedded
in a higher dimensional space. Thus, our results are applicable
to general smooth nonlinear systems and triggering functions.
This is thoroughly discussed in Appendix D and showcased in
Section VII-B via a numerical example.

Remark 3: The set = could be Z = Z x E, where Z = {z €
R": V(z) <c},E={zg—2x €R": z,20 € Z},c > 0,and
V(+) is a radially unbounded Lyapunov function for the ETC
system. In most ETC schemes (e.g., [4]), V' (z) is given and the
triggering function satisfies: ¢(£(t; z)) < 0 = V(((t;x)) < 0.
Thus, trajectories of (7) starting from Z x {0} C = stay in
= = Z x E. The intuition behind this assumption is analyzed
in Section V-C. An alternative way of constructing Z and = is
demonstrated in Section VII-B.

B. Isochronous Manifolds and Triggering Level Sets

Definition 1V.3 (Isochronous Manifolds): Consider a closed-
loop system (7) and a triggering function ¢(-). The set M, =
{z € R" : 7(x) = 7.}, where 7(x) is defined by (6), is called
an isochronous manifold of time 7.

Alternatively, all points x € R™ that correspond to interevent
time 7, constitute the isochronous manifold M . Isochronous
manifolds are of dimension n — 1 (proven in [1]).

Definition IV.4 (Triggering Level Sets): We call the set

L, ={x eR": ¢(&(ry;x)) =0}

triggering level set of ¢(&(7,; «)) for time 7.

Triggering level sets are the zero-level sets of the triggering
function, for fixed ¢. Let us now make a crucial observation:
The equation ¢(&(t;x)) = 0 may have multiple solutions with
respect to time t for a given x. In other words, there might exist
points € R™ and time instants 7,1 < Ty 2 < ... < Ty, With
k> 1 such that ¢(&(75;2)) =0 for all ¢ =1,2,...,k. We
briefly present an example with a triggering function exhibiting
multiple zero crossings for given initial conditions.

(12)

-0.5

Triggering Function ¢(£(¢;x))

0 10 20 30
Time ¢

Fig. 1. Time evolution of ¢(z;t) for initial condition [—0.5, —1]T. It
exhibits multiple zero crossings.

Example: Consider the jet-engine compressor control system
from [28]

b(1) = ~6(0) — S80) - 3680), &0 =vl(El)

with control law v(£(¢)) = & (t) — 2(63(t) + 1) (y + &3 (t)y +

&1 (t)y?) + 2&1(t), wherey = 2 55%:512 . A triggering function that

guarantees asymptotic stability is the following [11]:
¢(E(t;2)) = |e]” - 0.820% ()%, o € (0,1).

The evolution of the triggering function ¢(¢(t; ) for the initial
condition [—0.5 — 1] " is simulated and illustrated in Fig. 1. It is
clear from the figure that it exhibits multiple zero crossings, for
t=m1,1~115sandt = 7, 0 &~ 3.22s. [ |

Interevent times are defined as the first zero crossing of the
triggering function [see (6)],i.e., 7(x) = 7, 1. Isochronous man-
ifolds are defined with respect to this first zero crossing, and any
point z € R™ — {0} belongs only to one isochronous manifold:
M, . However, the same point belongs to all triggering level
sets L, ,. For instance, in the previous example, the point
x = (—0.5, —1) belongs to both triggering level sets L7 15 and
L3 22, whereas it belongs to only one isochronous manifold,
i.e., My 15. In [1], isochronous manifolds and triggering level
sets are treated as if they were identical, which creates prob-
lems regarding approximating isochronous manifolds. This is
addressed later in this document.

Remark 4: 1f the triggering function ¢((¢; x)) has only one
zero crossing forall z € R™ — {0}, then the triggering level sets
do coincide with the isochronous manifolds, i.e., M, = {x €
R™:7(x) = 7.} = {z € R": $(¢(ruix)) = 0} = L.

Isochronous manifolds possess the two following properties.

Proposition 1V.1 (see [1]): Consider an ETC system (7), a
triggering function ¢(-), and let Assumption 1 holds. Each
homogeneous ray intersects any isochronous manifold only at
one point

V7, > 0and Vo € R"— {0} : 3!A, > 0 such that A, € M.
13)
Proof: According to (10) and (11), on any homogeneous ray,
times vary from 0 to +o00 as A, varies from +oo to 0. Thus,
for any 7, € R™T, there exists a point 2 on each ray such that
7(x) = 74. In addition, (10) implies that there do not exist two
different points on the same homogeneous ray that correspond
to the same interevent time.
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K-/ w Fig. 4. If isochronous manifolds did not satisfy (13), it would not be
possible to discretize the state space enabling a region-based STC

Fig. 2. Curve on the top is intersected only once by each homoge- scheme.

neous ray, thus it could be an isochronous manifold of a homogeneous
system. The two bottom curves are intersected by some homogeneous
rays more than once, thus they cannot be isochronous manifolds of a
homogeneous system.

B

7

Fig. 3. Isochronous manifolds M, , M,, and M, (red lines) for r; <
T2 < 73, and the operating region B (black line).

)

Proposition IV.2: Consider an ETC system (7), a triggering
function ¢(-), and let Assumption 1 holds. Consider isochronous
manifolds M, and M, , with 7; < 7;,4. The following holds
forall z € M,,:

M, € (0,1) st dpw € My, (A Bk, > 1sit. kpx € M.

Ti+1°
(14)
Proof: According to Proposition IV.1, since each homoge-
neous ray intersects any isochronous manifold only at one point,
A, > 0 such that A,z € M, |, where © € M,,. From the

scaling law (10), we get

Tit1 = T(Ao) = A, 9T = Ay = g’/(%) <1

since 7; < T;+1. There can be no other intersection of the ho-
mogeneous ray with M., i.e., Akg > 18t kpx € M, .1
Proposition I'V.2 states that isochronous manifolds for smaller
times are further away from the origin. Given (13), in Fig. 2,
the curve on the top could be an isochronous manifold of a
homogeneous system, whereas the two bottom curves cannot.
Remark 5: Properties (13) and (14) of isochronous manifolds

result directly from the time scaling property (11).

i1

+1°

C. State-Space Discretization and a Self-Triggered
Strategy

For the following, we assume that the system operates in
an arbitrarily large compact set 3 the whole time. Assume
that isochronous manifolds M, for 71 < 79 < 73 are given, as

Fig. 5. Isochronous manifolds M, (dashed lines) and their inner ap-
proximations M. (solid lines). The filled region represents R .

illustrated in Fig. 3. We define the regions between manifolds as
R, ={x € R" : 3k, > 1s.t. kpx € M, A

15)
I, € (0,1) stz € My, }

for 7; < T;41, and the region enclosed by the manifold M, as
Rs ={x € R" : 3k, > 1s.t. kyx € M., }. Since (14) holds, a
region RR; is the set with its outer boundary being M, and its
inner boundary being M-, , . The scaling law (10) implies that:
7(x) > 7; forall z € R;. Thus, isochronous manifolds could be
employed for discretizing the state space in regions I?; such that
(9) is satisfied. If isochronous manifolds did not satisfy property
(13), then the regions R; could potentially intersect with each
other (see Fig. 4). Hence, it would not be possible to derive a
discretization as the one described.

D. Inner Approximations of Isochronous Manifolds and
Discretization

Deriving the actual isochronous manifolds is generally not
possible, as nonlinear systems most often do not admit a closed-
form analytical solution. Thus, in order to discretize the state
space and generate a region-based STC scheme, we propose
a method to construct inner approximations of isochronous
manifolds, as shown in Fig. 5.

Definition 1V.5 (Inner Approximations of Isochronous
Manifolds): Consider a system (7) and a triggering function,
and let Assumption 1 holds. A set M. is called inner
approximation of an isochronous manifold M, if and only if
forallz € M,

Ik, > 18t kgw € My, and A, € (0,1) s.t. Az € M,
(16)
In other words, an inner approximation of an isochronous
manifold is contained inside the region encompassed by the
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isochronous manifold. Consider inner approximations M, of
isochronous manifolds (73 < 7o < ...) that satisfy properties
(13) and (14). We consider the regions between sets M .

Ri={r € R":3Ir, > Ist.wgz € M A

a7
I, €(0,1) st A € M

7',;+1}'

Aregion R; is the set with its outer boundary being M . and its
inner boundary being M (see Fig. 5). For such sets, by (10)
we get the following result.

Corollary 1V.1: Consider a system (7) and a triggering func-
tion ¢(-), and let Assumption 1 holds. Consider two inner
approximations M and M T of isochronous manifolds, with
7; < Tip1. Assume that M and Mﬂ,ﬂ satisfy (13) and (14).
For the region R; defined in (17), the following holds:

Ve e R; 1 < 7(x).

Proof: For all © € Ry, Ik, > 1 s.t. kzx € M. Thus,
Jky > Ky > 1sit.kyx € M., By (10), wehave 7 (k,z) = 7, =
7(x) = kS > 740 [ |

Thus, given inner approximations of isochronous manifolds,
the state space can be discretized into regions R;, enabling the
region-based STC scheme. This construction requires that inner
approximations should also satisfy (13) and (14). Deriving inner
approximations M . of isochronous manifolds such that they
satisfy (13) and (14) constitutes the main theoretical challenge
of this article.

Remark 6: As already noted, the number of regions R;
equals the number q of predefined times 7; (see Section III).
Given that 7; and 7, are fixed, as the number of times ¢ grows,
the areas of regions R; become smaller, as the same space is
discretized into more regions. Thus, the STC interevent times
7; become more accurate bounds of the actual ETC times 7(x).
However, during the online implementation, the controller in
general needs to perform more checks to determine the region
of a measured state. Hence, the number ¢ of times 7; provides a
tradeoff between computations and conservativeness.

Remark 7: Note that 7; has to be selected, such that the
operating region B lies completely inside the region delimited
by M (seee.g., Fig. 3). To check this, the approach of [11] or
an SMT solver (e.g., [26]) can be used.

Remark 8: For nonhomogeneous systems, there will always
exist a neighborhood around the origin that cannot be contained
in any region R;. However, this set can be made arbitrarily
small, by selecting a sufficiently small time 7;. For a thorough
discussion on this, the reader is referred to Appendix D.

V. APPROXIMATIONS OF ISOCHRONOUS MANIFOLDS

Here, a refined methodology is presented, which generates
inner approximations of isochronous manifolds that satisfy (13)
and (14). First, we show how the method of Anta and Tabuada [1]
actually approximates triggering level sets, and then we refine
its core idea to derive approximations of isochronous manifolds.

A. Approximations of Triggering Level Sets

The method proposed in [1] is based on bounding the time evo-
lution of the triggering function by another function with linear

dynamics: 1 (7, ) > ¢(¢(t ), with vy (2, 0) = B(£(0; 7)) <
0 for all z € R™ — {0}. The bound is obtained by constructing
a linear system according to a bounding lemma ([1, Lemma
V.2]). Unfortunately, this lemma is invalid and the function that
is obtained does not always bound ¢(&(¢; x)). Specifically, a
counterexample is given in [29, p. 2, Example 2]. However, later
in this document, we present a slightly adjusted lemma that is
actually valid. Thus, for this section, we assume that ¢ (x, t) is
an upper bound of ¢(&(t; x)).
Since 1 (z,t) > ¢(&(t;x)) and ¥ (2,0) < 0, if we define

Hx) = inf{t > 0 : ¥y (z,t) = 0}

then it is guaranteed that ¢(&(w;t)) <0 Vi€ [0, 7H(x)].
Hence, the first zero crossing of 11 (z, t) for a given = happens
before the first zero crossing of ¢(£(¢;x)), i.e., the interevent
time of z is lower bounded by 7+(z): 7(x) > 7+(z).

In [1], under the misconception that isochronous manifolds
and triggering level sets coincide, it is argued that to approximate
an isochronous manifold, it suffices to approximate the set
L, :={x € R": ¢(&(1y;x)) = 0}, i.e., a triggering level set.
Thus, the upper bound v (2, t) of ¢(&(t;x)) is used to derive
the following approximation: L, := {z € R" : 4y (x,7,) =
0}. However, as we have already pointed out for the triggering
function, 1 (x, t) might also have multiple zero crossings for
a given € R™. Thus, the equation ¢1 (x, t) = 0 does not only
capture the interevent times of points x, but possibly also more
zero crossings of ¢(t;x). Thus, we can say that the set L
is an approximation of the triggering level set L, , and not
of the isochronous manifold M, . Furthermore, observe that
11 (x, t) does not a priori satisfy the time scaling property (11).
Consequently, there is no formal guarantee that the sets L
satisfy (13) (see Remark 5). In other words, the sets L, might
be intersected by some homogeneous rays more than once, or
they may not be intersected at all.

Remark 9: In [1], given a fixed time 7, the equation

¢1(CZ;TU7T*) = 0

is solved w.r.t. A, in order to determine the STC interevent time
of the measured state xg as: 7+(zg) = A~°7,. Note that (18)
finds intersections %% of L, with the ray passing through .
Hence, the aforementioned observations imply that (18) may not
have any real solution, or may admit some solutions A such that
(z9) = A~%7, > 7(x), hindering stability.

(18)

B. Inner Approximations of Isochronous Manifolds

Although, the method of Anta and Tabuada [1] generates
approximations of triggering level sets, which do not satisfy
(13), we employ the idea of upper bounding the triggering func-
tion, and we impose additional properties to the upper bound,
such that the obtained sets approximate isochronous manifolds
and satisfy (13) and (14). Remarks 4 and 5 state that: first,
isochronous manifolds coincide with triggering level sets, if ¢(-)
has only one zero crossing w.r.t. ¢, and second, ¢(-) satisfying
(11) implies that isochronous manifolds satisfy (13) and (14).
Intuitively, we could construct a function p(z, t) that satisfies the
same properties and its zero crossing happens before the one of
#(-), and use the level sets M, = {x € R™ : pu(x,7,) = 0} as
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inner approximations of isochronous manifolds that satisfy (13)
and (14). The aforementioned are summarized in the following
theorem.

Theorem V.1: Consider an ETC system (7), a triggering func-
tion ¢(-), and let Assumption 1 holds. Let iz : R® x RT — R
be a function that satisfies

w(xz,0) <0 Ve eR" - {0}, (19a)
wlx, t) > o(&(t;x)) YVt e [0,7(x)] and Vo e R™ — {0}

(19b)
pax,t) = A% u(z, 2%) Vt,A > 0and Va e R™ — {0}

(19¢)
Vo € R" — {0} :  3!7, such that p(x, 7,,) = 0. (19d)

Thesets M, = {x € R™: p(x,7,) = 0} are inner approxima-
tions of isochronous manifolds A, and satisfy (13) and (14).
Proof: See the Appendix. |
Remark 10: Ttis crucial that inequality (19b) extends at least
until 7(x), in order for p(x,t) to capture the actual interevent
time, i.e., for the minimum time satisfying u(x, t) = 0 to lower
bound the minimum time satisfying ¢(£(¢; z)) = 0.

C. Constructing the Upper Bound of the Triggering
Function

In this section, we construct a valid bounding lemma and
we employ it in order to derive an upper bound p(z,t) of the
triggering function ¢(£(¢; x)), such that it satisfies (19).

Lemma V.2: Consider a system of differential equations
£(t) = F(£(t)), where £ : RT — R”, F: R" — R”, a func-
tion¢ : R™ — R,andaset )y = {x € R" : |z| < d}.Forevery
set of coefficients &g, 01, . . .,d, € R satisfying

p—1
LE¢(2) <D 6iLpd(2) + 06, VzeEQq

(20)
i=0
the following inequality holds for all &, € Qg4:
P(€(t;€0)) < ¥1(y(&o),t) Vi € [0,7¢,)
where ¢, is defined as
Te, = sup{r > 0:&(t;60) € Qq VYVt €[0,7)} 21

and 1 (y(&p),t) is the first component of the solution of the
following linear dynamical system:

(0 1 0 ... 0 0
0 0 1 ... 0 0
b= T =4y (22)
o o0 0 ... 1 0
do 01 2 ... Op1 1
o0 0 ... 0 0]
with initial condition
.
y(&o) = [#lc0) Lro(éo) .. Lh'lE) by
Proof: See the Appendix. |

Remark 11: The main difference between Lemma V.2 and
the bounding lemma in [1] is that in Lemma V.2, the coefficients
6; are forced to be nonnegative. We also include a proof, em-
ploying a higher order comparison lemma, since the comparison
lemma arguments used in the proof of Anta and Tabuada[1] are
invalid.

Let us define the open ball

Qg = {z e R* : |z| < d}. (23)
Consider the following feasibility problem.

Problem 1: Consider a system (7) and a triggering function
¢(-) and let Assumption 1 holds. Find dy, .. ., d, € R such that

p—1
Lh3(2) <Y 6iLup(2) +6, Vz€EQq (24a)
=0
000 ((2,0))+0, >€e>0 VzeZ (24b)
6;>0, i=0,1,...,p (24¢)

where € is an arbitrary predefined positive constant, d is such
that = C {4, and Z, = and €2, are given by Assumption 1 and
(23), respectively.

The feasible solutions of (24) belong in a subset of the
feasible solutions of Lemma V.2, i.e., the solutions of (24)
determine upper bounds of the triggering function. Moreover,
such 9; always exist, since to satisty (24) it suffices to pick 6, >
max{e,sup,cq, L%¢(z)} andd; = 0fori =0,...,p — 1. The
following theorem shows how to employ solutions of Problem
1, in order to construct upper bounds that satisty (19).

Theorem V.3: Consider a system (7), a triggering function
¢(-), and coefficients dy, ..., d, solving Problem 1. Let As-
sumption 1 holds. Let D = {x € R™ : || = r}, withr > 0 and
D C 7. Define the following function for all z € R™ — {0}:

o(rg0) ]
max <,cf¢> ((r‘i—‘,())) ,0)

€T 2] yex
w(z,t) = C<u)9+16A( Zlyet

T

max (ﬁ;% ((ré,())) ,o)
Jp

(25)
where A is asin (22), C =[10 ... 0], and v and 0 are the de-
grees of homogeneity of the system and the triggering function,
respectively. The function u(x, t) satisfies (19).

Proof: See the Appendix. |

Thus, according to Theorem V.1, the sets M, = {z €
R"™: u(z,7,) = 0} are inner approximations of the actual
isochronous manifolds of the system and satisfy (13) and (14).
The fact that u(x, t) satisfies (19) directly implies that the region
R; between two approximations M. and M. o (15 < Tit1)
can be defined as

Ri:={x e R": p(x,7;) <OAp(z,7i41) >0}  (26)
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Fig. 6.

To determine online to which region does the measured state
belong, the controller checks inequalities, such as the ones in
(26).

Let us explain the importance of Z, = from Assumption 1.
By solving Problem 1, an upper bound (&g, t) is determined
according to Lemma V.2 that bounds ¢(£(¢;&p)) as follows:

P(&o,t) > 0(&(t;:&0)) Vo € Qg and Vi € [0, 7¢, )

where T¢, is the time when the trajectory £(t; &) leaves 4 [see
(21)]. What is needed is to bound ¢(£(t;&p)) at least until the
interevent time 7(&) (see Remark 9), i.e., 7(§y) < 7¢,. This
is exactly what Assumption 1 offers: trajectories starting from
points & € Z x {0} stay in = C 0, at least until 7(&) (see
Fig. 6). In other words, for all points & € Z x {0}, we have
that 7(&y) < 7¢, (since = C ) and therefore

Y(&o,t) = d(€(t:&0)) Vo € Z x {0} and Vt € [0, 7(&o)]-
27
Regarding the {0}-part of Z x {0}, note that we only consider
initial conditions &, = («, 0), as aforementioned. Finally, trans-
forming ¢ (x,t) into p(x,t) by incorporating properties (19c)
and (19d), (27) becomes (19b). All these statements are formally
proven in the Appendix.

VI. ALGORITHM THAT DERIVES UPPER BOUNDS

Although in [1], SOSTOOLS [23] is proposed for deriving
the d; coefficients, our experience indicates that it is numeri-
cally nonrobust regarding solving this particular problem. We
present an alternative approach based on a counter-example
guided iterative algorithm (see e.g., [25]), which combines linear
programming and SMT solvers (e.g., [26]), i.e., tools that verify
or disprove first-order logic formulas, such as (24).

Consider the following problem formulation.

Problem Find a vector of parameters A such that

G(z)-A<blx) Vere (28)

where A € RP, G:R® - R™*P, p: R™” — R™, and Q is a
compact subset of R”.

For the initialization of the algorithm, a finite subset
O consisting of samples z; from the set 2 is obtained.
Notice that the relation: G(z;)-A < b(x;) Va; € Q can
be formulated as a linear inequality constraint: A-A<

A ) T
b, where A = [GT(aﬁl) G (z2) G (z;) } and

~ T o
b= [b(wl) b(x2) b(x;) ] Va; € Q. Each itera-
tion of the algorithm consists of the following steps.

1) Obtain a candidate solution A by solving the following
linear program (LP):

minimize ¢'A, subject to A-A<b

where ¢ can be freely chosen by the user (we discuss
meaningful choices later).
2) Employing an SMT solver, check if the candidate solution
A satisfies the inequality on the original domain, i.e., if
Gz)-A <b(x) Yre
1 If A satisfies (28), then the algorithm terminates
and returns A as the solution.
2) If A does not satisfy (28), the SMT solver returns
a point x. € {2 where this inequality is violated,
i.e., a counter-example. Add x. to Q) and update
accordingly the matrices Aand b. Go to step 1.
Note that in b) of step 2, a single constraint is added to the LP
of the previous step, i.e., G(x.) - A < b(z.), by concatenating
G(z.) and b(z,) to the A and b matrices, respectively.
In order to solve Problem 1, in particular, we define A =

T T
[50 01 Op| » b(')Z[—L’]}qﬁ(z) e ..ol
and
—0(2) —Lhp(z) 1]
—¢(£(0;20)) 0 -1
,]_ 0 0
co-| o 4 !
0 0 0
L 0 0 —1]

where z € )y and xy € Z, with Q4 and Z as in (23) and As-
sumption 1, respectively. Hence, the set Q) consists of points
Xi = (2i,x0,) € Qq X Z, and after solving the corresponding
LP, the SMT solver checks if G(X) - A < b(X) VX € Qg x Z.
Finally, intuitively, tighter estimates of £%.¢(z) could be ob-
tained by minimizing ,, and using the other £%.¢(z) terms in the

right-hand side of (20). Hence, ¢ = {0 0 1

a wise choice for the LP. In the following section, numerical
examples demonstrate the algorithm’s efficiency, alongside the
validity of our theoretical results.

Remark 12: 1t is recommended that the parameter d, which
determines the size of {24, is chosen relatively small, in order to
help the algorithm terminate faster. Moreover, our experiments
indicate that just two initial samples z; € () are sufficient for
the algorithm to terminate relatively quickly. Intuitively, this is
because letting the algorithm determine most of the samples
itself (by finding the counter-example points) is more efficient
than dictating samples a priori. Finally, p should be chosen
large enough so that the obtained bound pu(-,-) is tight, but
also small enough so that the dimensionality of the feasibility
problem remains small. According to our experience, a choice
of 2 < p < 4 leads to satisfactory results and quick termination
of the algorithm, in most cases.

constitutes

VII. SIMULATION RESULTS

In the following numerical examples, SOSTOOLS failed to
derive upper bounds, as it mistakenly reasoned that Problem 1
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Fig. 7. Approximations of isochronous manifolds of the ETC imple- Time(s)

mentation of (29).

is infeasible. The upper bounds were derived by the algorithm
proposed earlier.

A. Homogeneous System

In this example, we compare the region-based STC with
the STC technique of Anta and Tabuada [11] (which is also
computationally light) and with ETC (which constitutes the
ideal scenario). Consider the following homogeneous control
system:

G=G+0E, &G=0GG -GG+ (29)

with v(¢) = —¢3 — (1¢3. A homogeneous triggering function
for an asymptotically stable ETC implementation is

$(E(t;2)) = [e(t;2)]* = 0.0127%0°(( (B 2) |, o € (0,1)

where £(-) denotes the trajectories of the corresponding extended
system (7), €(-) is the measurement error (3), and z is the
previously sampled state. As in [1], we select o = 0.3.

In order to test the proposed region-based STC scheme, Prob-
lem 1 is solved by employing the algorithm presented in the pre-
vious section. In particular, we setp = 3,y = {x € R*: |z| <
09}, and= =7 x E,where Z = {x € R?: V(2) < 0.1},E =
{ro—z € R?: z,20 € Z},and V(z) = 2% + L2} isaLya-
punov function for the system. Observe that = C €24. The coeffi-
cients found are 69 = 0, 67 = 0.1272, 6 = 0, and 63 = 0.0191.
In order to construct u(x,t) according to (25), we fix r = 0.29
and the set D = {z € R? : |x| = r} indeed lies in the interior
of Z. The state space is discretized into 348 regions R; with
corresponding self-triggered interevent times 7348 = 0.1s and
7; = 1.01727; 1. Indicatively, four derived approximations of
isochronous manifolds are shown in Fig. 7. Observe that the
approximations satisfy (13) and (14).

The system is initiated at # = [1, 1] and the simulation lasts
for 5's. Fig. 8 compares the time evolution of the interevent times
of the region-based STC, the STC proposed in [11] and ETC. In
total, ETC triggered 383 times, the region-based STC triggered
554 times, whereas the STC of Anta and Tabuada [11] triggered
2082 times. Given Fig. 8 and the number of total updates for each
technique, we can conclude that: first, the region-based STC
scheme highly outperforms the STC of Anta and Tabuada [11]
and second, the performance of the region-based STC scheme
follows closely the ideal performance of ETC while reducing
the computational load in the controller.

Fig. 8. Time evolution of region-based STC, STC of Anta and Tabuada
[11], and ETC interevent times along the trajectory of (29).

B. Nonhomogeneous System

Consider the forced Van der Pol oscillator

G) = G1), @)= (1—E0))e) =) +u()
(30)
with v(t) = —Ca(t) — (1 — ¢3(t))(2(t). Assuming an ETC im-
plementation, and homogenizing the system with an auxiliary
variable w, according to the procedure presented in [1, Lemma
1V.4], the extended system (7) becomes

&w?
(w? — £)& — Gw? — eqw? — (w? — €])es
. 0
€= e 31
—(w? — )& + &w? + eu? + (w? — })er
0

where & = [(1, (o, w, €1, 62,640, €; = & + &;, with € being the
measurement error (3). The homogeneity degree of the extended
system is « = 2. Observe that the trajectories of the original
system (30) coincide with the trajectories of (31), if the initial
condition for w is wy = 1. A triggering function based on the
approach of [4] has been obtained in [30]

D(C(t;x),e(t;0)) = d(§(t; 2, wo)) = W(le|) — V(&1 &2)

where W (|e|) =2.222(s3 +e3) and  V(&,&) =
0.0058679¢2 + 0.0040791&; €5 + 0.0063682¢3 is a Lyapunov
function for the original system. Note, that ¢(&(t; 2z, wp)) is
already homogeneous of degree 1. We fix Z = [-0.01,0.01]?
and define the following sets:

d = U

20€[~0.01,0.01]2
E={rg—2€R?*: 29 € [-0.01,0.01]% = € &}
== x [-0.01,0.01] x E x {0}.

{z € R* : W(|lzg —x|) — V(zy,29) <0}

Notice that ® is exactly such that for all xy € [—0.01,0.01]?:
o(&(t; o, wo)) < 0= ((t;xp) € O. Then, from the definition
of E and the observation that w remains constant at all time, it is
easily verified that Z and = are compact, contain the origin and
satisfy the requirement of Assumption 1.
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Fig. 9. Evolution of region-based STC interevent times along the tra-
jectory of the forced Van der Pol oscillator.
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Fig. 10.  Evolution of ETC interevent times along the trajectory of the
forced Van der Pol oscillator.

Let us compare the region-based STC to the ideal performance
of ETC. Solving Problem 1 for p = 3, we obtain g = d3 ~ 0,
81 ~5-1077,and §, ~ 0.00181. To obtain p(x, w, t) asin (25),
we fix 7 = 0.09 and D = {z € R3 : |z| = r} indeed lies in the
interior of Z. The state space is discretized into 126 regions
R, with 7196 = 0.01 s and 7; = 1.0572 - 7;;1. The system is
initiated at * = [—0.3,1.7] ", and the simulation duration is 5 s.
In total, the ETC implementation triggered 114 times, whereas
the region-based STC implementation triggered 1448 times,
which implies that in this particular example, the region-based
STC is conservative. Intuitively, the root of conservativeness is
the fact that p(x, w, t) is now derived to bound the evolution of
¢(&(t; x,w)) along the trajectories of the extended system (31)
in R3, whereas we only care about the trajectories on the plane
w = 1.

Figs. 9 and 10 demonstrate the evolution of the sampling
times of region-based STC and ETC, respectively, along the
trajectory. In particular, the curve on the x; — x5 plane is
the trajectory of the system, whereas the 3-D curve above
the trajectory is the value of the interevent time of the corre-
sponding point on the trajectory. The direction of the trajectory
is from the blue-colored points to the red-colored points. In
Fig. 9, the intervals for which the interevent time remains
constant correspond to segments of the trajectory in which
the state vector lies inside one particular region R;. First,
note that in contrast to the previous example, the sampling
times do not increase as the system approaches the origin,

since the system is not homogeneous and the scaling property
(11) does not apply here, i.e., ¢(((t;1x)) = ¢(&(t; rx, 1)) #
AL G (et 2,1)) = A9 p(C(A%¢; ). In fact, as stated in
[1], the scaling law that applies is

P(E(t; hx, aw)) = AT B(E(A 2, w)).

However, the similarity of the two figures indicates that the sam-
pling times of the region-based STC approximately follow the
trend of the ETC sampling times. This indicates that the approx-
imations of isochronous manifolds determined by u(z,w,t)
preserve the spatial characteristics of the actual isochronous
manifolds of (30). Intuitively, the preservation of the spatial
characteristics could be attributed to the fact that p(z, w, t) also
satisfies (32), which determines the scaling of the isochronous
manifolds of the homogenized system (31) along its homoge-
neous rays. Besides, note that the isochronous manifolds of the
original system (30) are the intersections of the isochronous
manifolds of (31) with the w = 1-plane.

Remark 13: This simulation demonstrates that as mentioned
in Remark 2, the results presented in this article are transferable
to any smooth, not necessarily homogeneous, system.

(32)

VIIl. CONCLUSION AND FUTURE WORK

In this article, a novel STC policy that enables a tradeoff
between online computations and updates was presented. The
simulation results indicate that the scheme performs very well in
the case of homogeneous systems. However, it was also shown
that for nonhomogeneous systems, the performance deterio-
rated. Thus, future research will consider ways of improving
the performance for nonhomogeneous systems. Furthermore,
we aim at addressing perturbed and noisy nonlinear systems.
Finally, the approximations of isochronous manifolds could be
employed to derive a state-space discretization in accordance
to what is proposed in [31], in order to synthesize a scheduling
framework for networks of nonlinear ETC systems.

APPENDIX

To conduct the proofs of the previously presented lemmas and
theorems, we first introduce some preliminary concepts.

A. Higher Order Differential Inequalities

Definition VIIL. 1 (Type W* functions [24]): The function
g:R™ — R is said to be of type W* on a set S C R" if
g(x) <g(y) for all z,y €S such that z, = y,, x; <y;
(:=1,2,...,n — 1), where z; and y; denote the ith component
of the x and y vectors, respectively.

Definition VIII.2 (Right Maximal Solution [24]): Consider
the pth order differential equation

uP) (t) = g(tv u(t)a iL(t), cee

where v : Rt — R and g(-) is continuous on [0,7] x R?. A
solution w,, (t; to, Uy,), where tg is the initial time instant and
U,, € R? is the vector of initial conditions, is called a right
maximal solution of (33) on an interval [ty, o) C [0, T] if

L uP D (2)) (33)

ul (t;to, Uo) < ull) (tito, Unm), t € [to,a) N [to, @)
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for any other solution w(¢; to, Up) with initial condition Uy =
U,, defined on [tg,a*), foralli = 0,1,2,...,m — 1.

Lemma VIII. 1 (Higher Order Comparison Lemma [24]):
Consider a system of first-order differential equations

C(t) = f(£,¢(1))- (34)

Letv: D, = Randletv € CP, f € CP~! on D, where D, =
{(t,x)]0 <t <T < +o0, |x| < r}. Let g(-) of (33) be of type
W*on S C RP*! for each ¢, where

8 = { (£ 0(t,C(1), 0t ), .., vV (1,C(1) |
(t.¢t) € Dy }

and

_ V() | v ()

vt (1) 5 5

J(t,¢(t)).
Assume that

v (t,¢(8)) < g(t, 0(t, (1), (¢, ¢(1)), -, 0PV, ¢(1)))

for all (¢,{(t)) € D,. Let J denote the maximal interval of
existence of the right maximal solution u,, (¢; 0, U,,) of (33).
If v@(0,¢) = u'?(0;0,U,,) (=0,1,2,...
ug,i)(O; 0,U,,) are the components of the initial condition U,,
of U, (t;0, Uy, ), then

v (t,¢(;0,)) < ul(t;0,U,), teJN0,T]
forallt=0,1,2,...

,p—1), where

,p— 1.

B. Monotone Systems

Definition VIII.3 (Monotone System[32]): Consider a sys-
tem

{(t) = F(C(1)).
The system (35) is called monotone if
Co = 1 = ((t;to, Co) = C(t;t0,C1)-

Proposition VIII.1 (see [32]): Consider the system (35). If
the off-diagonal entries of the Jacobian ‘g—g are nonnegative, then
the system (35) is monotone.

(35)

C. Technical Proofs

Proof of Theorem V.1 Define 7+(z) = inf{t > 0 : u(z,t) =
0}. Equation (19d) implies that y(x, 7+(x)) = 0 is the only zero
crossing of p(z,t) w.r.t. ¢ for any given x. Hence

M. ={zeR":u(z,7)=0}={z € R": 7(z) = 7, }.

Equations (19c) and (19d) imply that M, satisfies (13) and (14)
(see Remark 5).

It is left to prove that M, is an inner approximation of M., .
Notice that ¢({(7(z);x)) = 0 together with (19b) and (19a)
imply that the first zero crossing of yu(x,t) happens before the
one of the triggering function

™(z) < 7(2). (36)

Furthermore, (19¢) implies that 7| (z) also satisfies the scaling
law (10) (the proof for this argument is the exact same to the
one derived in [11] for the scaling laws of interevent times). The
fact that both 7 (x) and 7(z) satisfy (10), i.e., they are strictly
decreasing functions along homogeneous rays, alongside (36)
implies that: 7(z1) = 7H(x2) = 7, = |21| > |22/, forall 21, 2o
on a homogeneous ray. Thus, since M satisfies (13), we get
that forall z € M

Nk, > st kew € M, and A, € (0,1) st hpx € M.

|
Proof of Lemma V.2 Introduce the following linear system:
[0 1 0 0]
0 0 1 0 0 0
X' — . . . . . X + (37)
o 0 0 ... 1 0 0
0 0o 0 ... 0 1 Op
00 01 02 Op—2 Op1]

Notice that (37) represents the pth order differential equa-
tion x () = Zf;é oix@ + d0p. The proof makes use of Lemma
VIII.1. Using the notation of Lemma VIII. 1, we identify

u(t,£(t) = ¢(£(t) VE(E) € Qa
f,€(1) = F(E@R) VE() € Qa

p—1
g <t7’l)7’U/, -“7,0(1)—1)) = Z 517](1) + (Sp.
=0

For t > 7¢,, £(t; §) may not belong to 4. Thus, v(-) is well
defined only in the interval [0, 7¢, ). Since §; > 0 for all 7, g is of
type W* in RT x RP. Moreover, it is clear that v € CP and f €
CPon [0, 7¢,) x Q4. Inequality (20) translates to v(P) (¢, 2) <
g(t, v, .., 0P D) for (t,2) € [0,7¢,) X Qa.

Furthermore, according to Proposition VIII.1, the linear sys-
tem (37) is monotone, since all off-diagonal entries of its Jaco-
bian are nonnegative (§; > 0 forall 7). This implies that any solu-
tion of (37) is a right maximal solution, and its maximal interval
of existence is J = [0, +00). Consider the solution x(¢; X (&p)),

T
where X (&) = [#(¢0) Lrol€o) ... Lh ()| . Ob-
serve that the components of the initial condition X (&;) and
Li¢(z) (i=0,1,2,...,p—1) are equal. All conditions of
Lemma (VIIL.1) are satisfied. Thus, we can conclude that for
all &y € Qq

¢(£(1:6)) < xa(t;X()) VE € [0,7¢,)-

Notice that 1(y(&o),t) = x1(¢; X(&o)) for all ¢. Hence,
O(E(E €0)) < r(yl(Eo) ) VEE [0,7%,). g
To prove Theorem V.3, we first derive the following results.
Proposition VIIIL.2: Consider coefficients §; (i = 0,1, ..., p)
solving Problem 1, and define an upper bound ¢ (x,t) of the
triggering function ¢(£(¢; ¢)) as dictated in Lemma V.2. Let

m(x,t) = C’eAtn(a:, 0) (38)
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where A is asin (22), C' = {1 0 O} ,and
¢ ((z,0))
max (£f¢ ((x,0)) ,O)
n(x,0) := : (39)
max (25710 ((,0)) )
L 51’ i
The function 7 (z, t) satisfies
m(z,t) > ¢(&(t;x)) Ve [0,7(x)] andVe € Z.  (40)

Proof: Notice that 7, is the first component of the solution
n(z,t) to the same linear dynamical system (22) as ¢, with
initial condition: ¢ (z,0) < n(x,0). Since the system (22) is
monotone, according to Proposition VIII.1, the following holds:

m(x,t) > 1(z,t) > o((t;x)) VEe€[0,7¢,) and Vo € Z

sincex € Z = & = (x,0) € E C Qy. By the definition of = in
Assumption 1,{(¢; x) € Eforallt € [0, 7(x)]. But 7¢, is defined
in (21) as the escape time of £(¢; ) from Qg4, and = C Qg; i.e.,
T(x) < T¢,. Thus, (40) is satisfied. [ |

Proposition VIII.3: The function 7 (z,t) of (38) is strictly
increasing w.r.t. ¢ for all £ > 0.

Proof: In the following, 7751) (z,t) denotes the ith derivative
of my(z,t) wrt. t. At t = 0, initial condition (39) implies that

0\ (2,0) > 0foralli=1,...,p— 1. Forn{" (x,0)
p—1

0) = 6imis1(x,0) + 6, =S¢ ((,0)) + &, > 0
=0

P (a,

since 7;41(x,0) >0 for all ¢ =0,...,p— 1, and (24b) and

(24c¢) hold. Differentiating n%p ) wrt. ¢, we get

p+1) (z,0) 2577(2“) (z,0) > 0.

Similarly, 7\" (,0) > 0, for all i. Hence, \"” (,0) > 0 for all
i € N — {0}, and, in particular, n(p)(ac, 0) > 0. This implies that
the function 7, (z, t) is strictly increasing for all ¢ > 0. [ |

We are ready to prove Theorem V.3.

Proof of Theorem V.3: First, notice that u(x,t) satisfies
(19¢), by construction. Let D = {x € R™ : |z| = r}, withr > 0
suchthat D C Z.Notice thatforx € D: pu(z,t) = n(z,t). Thus,
according to Proposition VIII.2

pw(x,t) =ni(x,t) > @(E(t;z)) YVt € [0,7(x)] and Vo € D.
(4D
Consider now any xp € R™ — {0} and a A > 0 such that xp =
Azg € D. Employing (19¢), (11), and (41), we get

w(ap,t) = ¢(§(t;xp)) V€ [0,7(zp)]

(o, At) = ¢(§(A*t; 20)) VE € [0,7(2p)] =

(o, t) = ¢(&(t;z0)) Vzo € R™ — {0} and t € [0, 7(x0)]
since A*7(xp) = 7(xg). Thus, u(z,t) satisfies (19b).

It remains to be shown that ;(x, t) satisfies (19d). Notice that
w(z,0) = ¢((x,0)) < 0forall z € R™ — {0}. Moreover, since
(19b) holds, we get that

pw(z, 7(x)) = o(&(7(2);

From Assumption 1, we have that 7(z) always exists.
Thus, for all z € R™ — {0}, there exists 7| (z) > 0 such that
w(z, 7 (z)) = 0. Moreover, since p(x,t) = n(z,t) for x € D,
then according to Proposition VIIL3, u(x, t) is strictly increas-
ing w.r.t. ¢ forall t > 0 and for all x € D. Finally, incorporating
(19c¢), we get that: p(z,t) is strictly increasing w.r.t. ¢ for all
t >0 and for all x € R™ — {0}; i.e., 7 (x) is unique. Thus,
w(x, t) satisfies (19d). [ |

x)) = 0.

D. Nonhomogeneous Systems

As stated in Remark 2, in [1], a procedure is proposed that
renders any smooth nonlinear system homogeneous of degree
a > 0, by embedding it to higher dimensions and adding an
extra variable w, with dynamics w = 0. Specifically, a nonlinear
system

C() = f(¢(®) 42)
with ¢(t) € R™ is homogenized as follows:
w1 (w™ (1))
o] | RO
Lb(t ] - : — e uv). @)
wt fo (wHC(1))
0

Likewise, an ETC system (7) is homogenized by introducing w
and the corresponding dummy measurement error €,, as

(07 T FCw.e .0
o w(t) B 0 B
= ey = |-Few.euy| = FED)
Ew(t) 0
(44)

where f(((t),e.(t), w(t)) is obtained as in (43).

An example of the use of the homogenization procedure is
demonstrated in Section VII-B. Similarly, one can homogenize
a nonhomogeneous triggering function ¢(¢(t; xo), ¢ (t;0)) as
B(E(t; 0, w0)) = WOt p(w ¢ (t; x0), w e (t;0)). Observe
that the trajectories of the original system (42) with initial
condition z € R" coincide with the ones of (43) with initial
condition (x,1) € R"*1, i.e., on the hyperplane w = 1. Hence,
the interevent times of the original system 7(z) coincide with
the interevent times 7((z, 1)) of (43). Consequently, in order to
apply the proposed region-based STC scheme to a nonhomoge-
neous nonlinear system, we first homogenize it by embedding it
to R™*!, and then derive inner approximations of isochronous
manifolds of the extended system (43), by replacing = with
(z,w) in (25).

However, a technical detail arises that needs to be emphasized.
Most triggering functions that are designed for asymptotic sta-
bilization of the origin (e.g., [4]) satisfy ¢((0,0)) = 0. Thus,
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Fig. 1. Inner approximation M of isochronous manifolds of a ho-
mogenized system.

Fig. 12. Discretization of the state space of a homogenized system
into regions R; delimited by inner approximations M . (colored lines) of
isochronous manifolds.

deriving the function p(z,w,t) as in Theorem V.3 for the ex-
tended system (43), results for all points (0, w) € R"*1 — {0}
on the w-axis in

max (Lfgb(z(o,())) 70)

w(0,w,t) = C(@)eﬂeA(@)at

| max (ﬁgil(; ((0,0)), 0)

L P i

This implies that for all these points: 14(0, w, t) > 0forallt > 0.
Hence, the w-axis does not belong to any inner approxima-
tion M, = {(z,w) € R""*: p(z,w,7.) = 0} of isochronous
manifolds. In other words, all inner approximations M are
punctured by the w-axis and obtain a singularity at the origin,
as shown in Fig. 11. Consequently, given a finite set of times
{m,...,7,}, discretizing the state space of the extended system
into regions R; delimited by inner approximations M will
always result in a neighborhood around the w-axis not belonging
to any region R;, as depicted in Fig. 12. This implies that a
neighborhood around the origin of the original system (42),
which is mapped to a subset of the hyperplane w = 1 around
the w-axis in the augmented space R™*!, is not contained to
any region R;. Thus, no STC interevent time can be assigned to
the points of this neighborhood.

However, note that this neighborhood can be made arbitrarily
small, by selecting a sufficiently small time 7; for the outermost
inner approximation M . Thus, in order to apply the region-
based STC scheme in practice, first we make this neighborhood
arbitrarily small, and then we treat it differently by associating
it to a sampling time that can be designed e.g., according to
periodic sampling techniques that guarantee stability (e.g., [33]).

In the numerical example of Section VII-B, we completely
neglect this region, as it was so small that it was not even reached
during the simulation.

Remark 14: Note that as the w-axis acts as a singularity for
both the isochronous manifolds M, (the actual interevent times
there are technically 0, and in practice they could be anything)
and their inner approximations M, the inner approximations
might look very different than the actual manifolds near the
w-axis.

Remark 15: The aforementioned technical issue does not
arise in cases where ¢((0,0)) # 0. Such an example is the
widely used mixed-triggering function ¢(&(t)) = |e¢(t)[* —
al¢(t)|? — €% (e.g., [34]), where o > 0 is appropriately chosen
and € > 0.
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