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Very high and very low Fisher information for small displacements of a plasmonic silver nanowire
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2ASML Research Netherlands B.V., De Run 6501, 5504 DR Veldhoven, The Netherlands

(Received 24 June 2025; accepted 22 October 2025; published 1 December 2025)

In this paper, we study the effects of plasmonic resonances on the Fisher information in the far field, of the
position of a silver nanowire with respect to the center of a focused spot. We study theoretically a nanowire
embedded in a high refractive index substrate that is illuminated by a dark-field focused spot. The position of
the nanowire is determined from the scattered far-field intensities. The Fisher information is computed for both
a lateral and longitudinal displacement of the nanowire, and its dependence on the illumination frequency is
analyzed. The resonance frequencies of the nanowires are determined. We find that frequencies near a plasmonic
resonance can enhance the Fisher information. However, at the resonance frequency itself and very close to it,
the scattered far field corresponds to an information dark state. The phenomenon is demonstrated for silver, and
the underlying physical mechanism is explained with an analytical model. As is shown, the dark state can be
converted into a state with very high Fisher information about the positions of the nanowire by modifying the
focused spot.

DOI: 10.1103/m4cm-545j

I. INTRODUCTION

Optical metrology plays a key role in many modern
applications such as biomedical imaging or semiconductor
manufacturing. In the field of optical metrology, an incidence
beam illuminates an unknown target, and the intensity of the
scattered light is measured at a detector usually positioned in
the far field. The aim is to estimate the properties of the un-
known target from the far-field measurements. In the field of
semiconductor manufacturing, the unknown target is typically
a periodic grating of which some feature must be determined
[1,2].

The measurements in the far field are always subject to
Poisson shot noise; hence, there is a fundamental limit to
the precision of the estimates. This limit is quantified by the
Cramér-Rao lower bound (CRLB), which gives us a lower
bound on the precision of a minimum-variance unbiased es-
timator based on the measured intensities. A lower CRLB
means a more precise estimator. The CRLB is given by the
reciprocal of the square root of the Fisher information, so a
high Fisher information means a low CRLB.

The CRLB has been studied in various optical appli-
cations, including the localization of single particles [3,4],
ptychography [5,6], the design of metagratings [7], coherent
diffractive imaging [8], and wave front shaping [9]. Other
recent works on Fisher information and the CRLB in op-
tics include Ref. [10], where it is shown that the scattering
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environment of a particle does not influence the Fisher in-
formation of its properties, and Ref. [11], where a continuity
equation for the Fisher information is introduced.

The influence of the target’s intrinsic optical properties
(specifically, the presence of plasmonic resonances) on the
CRLB has however not yet been explored.

In this work, we investigate how plasmonic resonances in
a silver nanowire influence the Fisher information and hence
the CRLB. We consider an infinite nanowire embedded in a
high refractive index substrate, illuminated by a cylindrical
lens that generates a one-dimensional focused spot. A high
refractive index, comparable to that of silicon, is needed for
the ambient medium to guarantee that the nanowire has a
plasmonic resonance. The scattered intensities are determined
within a certain numerical aperture of a detector in the far
field, and the Fisher information is computed with respect
to the lateral and longitudinal displacement of the nanowire.
The (complex) resonance frequencies of the nanowire are
computed under the assumption of the Drude model for the
permittivity of silver.

Our results show that when the illumination frequency is
close to a plasmonic resonance, the Fisher information is
larger than for nonresonant frequencies, leading to a more
precise estimator. (Fisher information with respect to a lat-
eral shift is between ∼1018 and ∼1019 m2 for a nonresonant
nanowire made of Cr, compared to between ∼1020 and
∼1022 m2 for the resonant nanowire of Ag, both for a laser
with power 2 mW.) However, at the resonance frequency
itself and extremely close to it, an information dark state
emerges, where no information on either the transverse or the
longitudinal position is present in the far-field measurements.
It is found that by changing the illumination, the informa-
tion dark state can be eliminated. This is shown through
a simplified analytical model similar to analyses done in
Refs. [12,13].
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This paper is structured as follows. In Sec. II, the Fisher
information and Cramér-Rao lower bound are defined and
computed for the case of an illumination and detection system.
In Sec. III, the dark-field illumination system that we use is
defined. In Sec. IV, the model of our scattering is explained.
In Sec. V, the theory of plasmonic resonances for the nanowire
is explained. In Sec. VI, the occurence of the information dark
state is demonstrated for the silver nanowire. The cause of the
dark state is explained in Sec. VII. In Sec. VIII, the illumina-
tion is changed with a phase shift, and it shown that the dark
state is changed into a state with high Fisher information. In
Sec. IX, it is discussed how the material of the substrate and
the radius of the wire affect the results. It is also explained how
the results can be used for extremely precise position around
the optical axis. Finally, the conclusions are in Sec. X.

II. FISHER INFORMATION AND CRAMÉR-RAO LOWER
BOUND FOR POISSON SHOT NOISE

Typically, in statistics, a number of samples {x1, . . . , xM}
are drawn from a probability distribution with probability den-
sity function (pdf) f (x|θ ). The pdf depends on an unknown
parameter θ , which is to be estimated from the samples. In
our case, these samples are the intensities measured by the
pixels of the detector in the far field, and the parameter θ is a
transverse or longitudinal displacement of the nanowire. The
estimator for θ is a function of the samples and is denoted
by θ̂ ,

θ̂ = θ̂ (x1, . . . , xM ). (2.1)

Let E denote the expected value. The estimator is called
unbiased if

E[θ̂] = θ,

where θ is the true value of the parameter, and it is called
biased if

E[θ̂] �= θ.

For many applications, it is crucial to understand how precise
the estimator is for the parameter θ . In fact, we look for the
minimum variance unbiased estimator. This is an estimator θ̂

such that θ̂ is unbiased and

E[|θ̂ − E[θ̂]|2] (2.2)

is minimal. A lower bound on the variance of the estimator
[Eq. (2.2)] is given by the reciprocal of the Fisher informa-
tion. Given the pdf, the Fisher information of the probability
distribution can be computed. Denote by Eθ the expectation
conditional on θ . This means that the parameter θ , upon which
the model depends, is assumed to be deterministic in this
expectation. The Fisher information Jθ is then given by

Jθ = Eθ

[(
d

dθ
log f (x|θ )

)2
]
. (2.3)

It is important to note here that the Fisher information Jθ still
depends on the true value of the parameter θ , and therefore it
is a function of θ . In this notation, we have√

E[|θ̂ − E[θ̂]|2] � J −1/2
θ . (2.4)

This is called the CRLB. So the higher the Fisher information,
the lower the CRLB, and hence the more precise an estimator
can be.

We assume that our measurements are limited by the Pois-
son shot noise. Then the probability mass function for the
number of photons is given by the Poisson distribution. Let
ω be the frequency of the light. If the detector consists of
K pixels and the power measured by pixel k is Pk , the number
of photons per unit of time measured by this pixel is

Nk = Pk

h̄ω
. (2.5)

For each k, the expected value of Nk is denoted by nk , and it
depends on the parameter θ of the target,

E[Nk] = nk = nk (θ ). (2.6)

The probability that the detected number of photons Nk is
equal to m is

P (Nk = m) = nm
k

m!
e−nk . (2.7)

Using Eqs. (2.3) and (2.7), we can compute the Fisher infor-
mation with respect to θ first at a single pixel k

Jθ (k) = 1

nk (θ )

(
d

dθ
nk (θ )

)2

= 1

h̄ω

1

Pk (θ )

(
d

dθ
Pk (θ )

)2

.

(2.8)
The Poisson shot noise is independent for all the pixels.
Hence, the total Fisher information of all the pixels is obtained
by summing Eq. (2.8) over all the pixels:

Jθ =
K∑

k=1

Jθ (k). (2.9)

III. MODEL OF THE DARK-FIELD SETUP

We consider the scattering by a long metallic nanowire
embedded in a substrate of high refractive index. We use the
coordinate system (x, y, z) shown in Fig. 1, with the z axis
equal to the optical axis, z being positive in the direction of
the incident field and with the y axis equal to the axis of the
nanowire.

The nanowire is placed inside of the substrate, at a fo-
cal distance f from the lens (this includes the height of the
substrate; see Fig. 1). It is illuminated by a cylindrical spot
obtained by focusing a TM (transverse magnetic) polarized
plane wave by a cylindrical lens. TM polarization means that
the magnetic field is parallel to the y axis (the axis of the cylin-
der). The polarization and a high index medium surrounding
the cylinder are chosen such that a plasmonic resonance exists.
When the nanowire is considered to be infinitely long, the
total field is also TM polarized, and we shall therefore use
the magnetic field component Hy everywhere below.

The wavelength of the illumination is varied between 550
and 900 nm. We shall consider subsequently the models for
the illumination, the scattering by the wire, and the detection.
The time dependence of all fields is given by e−iωt , and k = ω

c
will be the wave number in vacuum.

The refractive index of the surrounding medium is taken
to be n = 4.0 for all of the wavelengths and the radius of

043227-2



VERY HIGH AND VERY LOW FISHER INFORMATION … PHYSICAL REVIEW RESEARCH 7, 043227 (2025)

FIG. 1. Considered configuration with dark-field illumination
using a cylindrical lens of a metallic nanowire embedded in a high
refractive index substrate. The cylindrical spot is TM polarized; i.e.,
the magnetic field is parallel to the y direction in order to excite a
plasmon in the metallic wire.

the wire is a = 20 nm. The refractive index of the substrate
is comparable to that of silicon at a wavelength of around
600 nm. The radius is chosen such that it is subwavelength,
but not so small that it scatters like a point dipole [12]. The
material of the nanowire is silver under the Drude model.
Incident light transmits through the surface of the substrate,
then focuses at the center of the nanowire, where it is scattered
by it.

A plot of the modulus squared of the Hy field at the focus
point for this dark-field illumination is given in Fig. 2. Due
to not having the full lens for the illumination, we see large
lobes around the focus. The spot is also more elongated in the
z direction.

IV. MODEL OF THE SCATTERING

We consider a coordinate system (x, y, z) with the z axis
along the optical axis and pointing in the direction of the
incident light. The nanowire is inside the substrate and its
center is at the origin of the coordinate system. The interface
is at z = z0, with z0 < 0. The incident spot is expanded into
TM-polarized plane waves, and the transmission through the
interface is taken into account of using the Fresnel coeffi-
cient. The plane waves that are incident on the nanowire
are expanded into Bessel radial modes. The Hankel modes
that are generated by the scattering of Bessel modes by the

FIG. 2. The modulus squared of Hy inside the silicon substrate, at
a grid ranging from −4 to +4 µm in both directions around the focus
point, which is at the origin. The illumination angles in degrees are
θmin = 30◦ and θmax = 50◦. The transmission through the air-silicon
interface has been taken into account. In this plot, no nanowire is
present.

cylinder are expanded in plane waves to take account of the
transmission by the interface.

A. Dark-field illumination

In this subsection, the dark-field illumination is explained,
as well as the transmission of the illumination through the air-
silicon interface.

In our dark-field illumination setup, the outer part of the
lens is chosen for the illumination of the nanowire, and the
inner part for the detection (see Fig. 3). This is done so that the
reflection from the incident beam off the substrate and onto the
detector does not interfere with the scattered field that results
from the nanowire. The permittivity of free space is denoted
by ε = 1 and the (real) permittivity of the substrate is denoted
by ε1.

The cylindrical lens is parametrized by x components ki
x

of the incident wave vectors ki. Because we only illuminate
with the outer part of the lens, it has an inner numerical
aperture NAinner and an outer numerical aperture NAouter, with
0 < NAinner < NAouter < 1. We denote

K = {ki
x : NAinner < |ki

x/k| < NAouter} (4.1)

and

ki
z =

√
k2ε − (

ki
x

)2
. (4.2)

We write P for the total power of the incident light, in units
of watts (W), dx for the length of one side of the lens in the
x direction in units of meters (m), and dy for the length of the
lens in the y direction in units of meters (m). The amplitude of
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FIG. 3. A sketch of the illumination and detection setup. The
nanowire inside the substrate is illuminated with a focused spot from
the outer parts of the lens in the far field. The scattered field is
detected in the center part of the pupil.

the incident field is given by

Ain =
(

2
√

ε0

μ0

P

2dxdy

)1/2

(A m−1). (4.3)

The incident field after the lens is

H in
y (x, z) = − i f e−ik f

2π
Ain

∫
K

1

ki
z

eiki ·r dki
x, (4.4)

with ki = (ki
x, ki

z )T . The plane waves in the integral [Eq. (4.4)]
propagate in the positive z direction toward the interface at
z = z0 < 0. At the interface, each plane wave picks up a
transmission coefficient t p(ki

x ) and a phase shift. The phase
shift is because the interface is not located at z = 0, for which
typically the Fresnel coefficients are computed. The wave
vector inside the substrate (after transmission) is given by
ki

1 = (ki
x, ki

1z )T , with

ki
1z =

√
k2ε2

1 − (
ki

x

)2
. (4.5)

The transmission and reflection coefficients in TM polariza-
tion (or p polarization) are given by

rp(kx ) = ε1kz − εk1z

ε1kz + εk1z
, t p(kx ) = 2ε1kz

ε1kz + εk1z
. (4.6)

The part of the incident field that transmits through the air-
silicon interface is given by

Ht
y (x, z) = − i f e−ik f

2π
Ain

∫
K

t p
(
ki

x

)
ki

1z

ei(ki
z−ki

1z )z0 eiki
1·r dki

x, (4.7)

The part of the incident field that reflects off the substrate and
propagates back to the lens is given by

Hr
y (x, z) = − i f e−ik f

2π
Ain

∫
K

rp
(
ki

x

)
ki

z

e2iki
zz0 eiki ·(x,−z)T

dki
x.

(4.8)

FIG. 4. A sketch of the polar coordinate systemused in the an-
alytical computation of the field scattered by the nanowire. The
incident light propagates in the positive z direction, the fields and
the nanowire are independent of y.

This is a superposition of plane waves propagating in the neg-
ative z direction, with kx between ±kNAinner and ±kNAouter.
However, the far-field detection is chosen in such a way that
only angles with k within NAdet are detected, with NAdet <

NAinner. So, the reflected field [Eq. (4.8)] is not detected.

B. Scattering of the incidence field by the nanowire

In this subsection, the scattering of the incident field [Eq.
(4.7)] by the nanowire is determined. A cylindrical coordi-
nate system (r, ϕ, y) is introduced such that x = r cos ϕ and
z = r sin ϕ (see Fig. 4). The nanowire is independent of y and
has radius r = a. The permittivity of the metal is ε2. The re-
fractive indices are n1 = √

ε1 and n2 = √
ε2. All of the fields

that we consider are time harmonic with time dependence
given by exp(−iωt ), with frequency ω > 0. Set k = ω/c for
the waven umber in vacuum, with c the speed of light in
vacuum. In TM polarization, the incident H field only has a
nonzero y component. Under these assumptions, Maxwell’s
equations reduce to a scalar Helmholtz equation for the total
Hy field, from which all other field components can be deter-
mined. We have

∇2Hy(r, ϕ) + k2ε1Hy(r, ϕ) = 0, r > a, (4.9)

∇2Hy(r, ϕ) + k2ε2Hy(r, ϕ) = 0, r < a. (4.10)

The following conditions hold on the boundary of the cylinder
r = a:

lim
r↓a

Hy(r, ϕ) = lim
r↑a

Hy(r, ϕ), (4.11)

lim
r↓a

1

ε1

∂Hy

∂r
= lim

r↑a

1

ε2

∂Hy

∂r
. (4.12)

The solution to Eqs. (3.9) and (4.10) is found by expanding
the field Hy into radial Hankel and Bessel modes, inside and
outside of the nanowire, respectively. The coefficients of the
radial modes are then computed using the matching conditions
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at r = a. The full expression for the solution is given in
Chapter 2 of Ref. [14].

A general incident field can be decomposed into Bessel
modes,

H in
y (r, ϕ) =

+∞∑
m=−∞

Ain
mJm(kn1r)eimϕ. (4.13)

The total field outside of the wire is the sum of the incident
and scattered field, where the latter can be expanded in modes
containing Hankel functions of the first kind because these
satisfy the outgoing radiation condition:

Hy(r, ϕ) = [t]
+∞∑

m=−∞

[
Ain

mJm(kn1r)

+ Ain
mBmH (1)

m (kn1r)
]
eimϕ, r > a, (4.14)

In the above, H (1)
m is the Hankel function of the first kind of

order m. The total field inside the wire can be written as

Hy(r, ϕ) =
+∞∑

m=−∞
Ain

mCmJm(kn2r)eimϕ, r < a (4.15)

The coefficients Bm and Cm are, for TM polarization, given by

Bm =
k
n2

Jm(k1a)J ′
m(k2a) − k

n1
J ′

m(k1a)Jm(kn2a)
k
n1

Jm(k2a)H (1)′
m (k1a) − k

n2
J ′

m(k2a)H (1)
m (k1a)

, (4.16)

Cm =
k
n1

Jm(k1a)H (1)′
m (k1a) − k

n1
J ′

m(k1a)H (1)
m (k1a)

k
n1

Jm(k2a)H (1)′
m (k1a) − k

n2
J ′

m(k2a)H (1)
m (k1a)

, (4.17)

with the abbreviation k1 = kn1 and k2 = kn2. For incident
field (4.7), the coefficients Ain

m are given by

Ain
m =

∫
K

ap
(
ki

x

)
k1z

eim arctan(ki
x/k1z ) dki

x, (4.18)

with amplitude function

ap
(
ki

x

) = − i f e−ik f

2π
Aint p

(
ki

x

)
ei(ki

z−ki
1z )z0 . (4.19)

The scattered field outside of the wire and inside the substrate
is given by the part of the total field containing the Hankel
modes, since these satisfy outgoing radiation condition:

Hs
y (r, ϕ) =

+∞∑
m=−∞

Ain
mBmH (1)

m (kn1r)eimϕ. (4.20)

C. Scattered field at the detector

To compute the scattered field at the detector, the field
(4.20) is expanded into plane waves again. These plane waves
are partially transmitted and reflected by the interface (see
Fig. 5). We use the plane wave expansion of the Hankel modes
for z < 0. We write ks = (kx,−k1z )T , θs = arctan(kx/k1z ),
and r = r(cos ϕ, sin ϕ)T :

H (1)
m (kn1r)eimϕ = i−m

π

∫ kn1

−kn1

exp(iks · r + im(θs − π/2))
dkx

k1z

(4.21)

FIG. 5. The wave vectors ks, ks
r , and ks

t of the scattered field,
reflected scattered field, and scattered field transmitted through the
interface.

= (−1)−m

π

∫ kn1

−kn1

exp(iks · r + imθs)
dkx

k1z
. (4.22)

The scattered field, for z < 0, is given by

Hs
y (r, ϕ) = 1

π

+∞∑
m=−∞

(−1)mAin
mBm

∫ +kn1

−kn1

eiks·r+imθs
dkx

k1z

(4.23)

= 1

π

∫ +kn1

−kn1

( +∞∑
m=−∞

(−1)mAin
mBmeimθs

)
eiks·r dkx

k1z

(4.24)

= 1

π

∫ +kn1

−kn1

F (kx, k1z )eiks·r dkx

k1z
. (4.25)

Here, we have written

F (kx, k1z ) =
+∞∑

m=−∞
(−1)mAin

mBmeimθs , (4.26)

with θs = arctan(kx/k1z ). The field (4.25) propagates toward
the interface, where it now transmits through the interface to
the detector. Similar to before, each plane wave is now also
multiplied by a phase shift and a transmission coefficient. The
transmission and reflection coefficients in TM polarization,
for the plane waves from the substrate into free space, are
given by

rp(kx ) = εk1z − ε1kz

ε1kz + εk1z
, t p(kx ) = 2εk1z

ε1kz + εk1z
. (4.27)

After transmission through the interface, the scattered field
(4.25) becomes in free space

Hs,t
y (x, z) = 1

π

∫ +k

−k
F (kx, kz ) e−ik1zz0t p(kx ) eiks

t ·r0
dkx

kz
,

(4.28)
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with ks
t = (kx,−kz )T and r0 = (x, z − z0)T . The far-field de-

tector is parametrized by the kx. We detect the intensities of
the plane waves with

−kNAdet < kx < +kNAdet. (4.29)

The scattered far field is given by

HFF
y (kx ) = 1

π
F (kx, kz ) e−ik1zz0

t p(kx )

kz
. (4.30)

Due to the lens, the field is corrected with a factor kz/ f ,
leading to a far field at the detector

Hdet
y (kx ) = 1

π f
t p(kx )F (kx, kz ) e−ik1zz0 . (4.31)

There is also a part of the scattered field that reflects back
off the interface, into the substrate. This reflected, scattered
field is given by

Hs,r
y (x, z) = 1

π

∫ +kn1

−kn1

F (kx, k1z ) e−ik1zz0 rp(kx )eiks
r ·r0

dkx

k1z
,

(4.32)

with ks
r = (kx, k1z )T . This field propagates back to the wire,

where it scatters again. For typical parameters f = 10−2 m,
z0 = 10 × 10−6 m, and incident wavelength λ = 632 nm, the
intensity of the back-reflected scattered field at the wire is
two orders of magnitude smaller than the intensity of the
initial focus, and hence its scattering by the nanowire can be
neglected.

In order to compute the expectation for the number of
photons per pixel at the detector, the power at the pixels of
the detector needs to be computed. Let kx be the x component
of the k vector corresponding to a pixel 	 in the detector. Once
the scattered field Hdet(kx ) has been computed, the power at
pixel 	 is given by

P	 = 1

2

√
μ0

ε0
|Hdet(kx )|2 · Apixel, (4.33)

with Apixel denoting the surface area of the pixel. Dividing P	

by h̄ω gives the expected number of photons at pixel 	.

V. PLASMONIC RESONANCES FOR THE NANOWIRE

Plasmonic resonances in an infinite metallic nanowire arise
from collective oscillations of free electrons. The occurrence
of a plasmonic resonance depends on the permittivity of
the nanowire and the ambient medium. These resonances are
solutions to the problem [Eqs. (4.9) and (4.10)] without an
incidence field.

The permittivity for which a plasmonic resonance occurs
is usually derived in the static limit, such that only solutions
to the Laplace equation need to be found for r < a and r >

a. In the static limit, this condition on the permittivity of the
nanowire is [15]

ε2 = −ε1. (5.1)

This relation shows that for a resonance to exist, a metal
with high conductivity (i.e., strongly negative real part of the
permittivity) must be surrounded by a dielectric with high
positive permittivity such as silicon.

FIG. 6. Plot of the determinant for m = 1, as a function
of the real and complex part of the frequency ω = ωr + iωi.
The resonance frequency is marked by the cyan cross, at
ωres = 2.330 × 1015 to 6.497 × 1014i s−1. This is for Ag under the
Drude model.

The approach we use to determine the resonances does not
require taking the static limit. The conditions on the nanowire
to support a resonance are determined from the matching
conditions on the boundary without an incident field. It is
found that there is a resonance if it holds that

− k

n2
J ′

m(kn2a)H (1)
m (kn1a)

+ k

n1
H (1)′

m (kn1a)Jm(kn2a) = 0, (5.2)

for some m. The above equation is explained in detail in the
Appendix. We use the Drude model for the dispersion of
ε2. For ωp the plasma frequency of the material and γ the
damping rate of the material, we set

ε2(ω) = 1 − ω2
p

ω2 + iγω
. (5.3)

After substitution, the determinant in Eq. (5.2) depends on the
frequency ω through k and the refractive index n2. Hence,
the frequency ω of the incidence light at which there is a
resonance can be found by finding the zeros of Eq. (5.2) as
a function of complex ω.

As an example, we consider a nanowire made of silver
(Ag) with radius a = 20 nm, with ωp = 1.293 × 1016 s−1 and
γ = 7.956 × 1013 s−1 in the Drude model. These values are
computed by equating the real and imaginary part of n2(ω)
in the Drude model with the true refractive index, at a wave-
length λ = 587.6 nm.

The absolute value of the determinant (5.2) for m = 1 is
plotted in log10 scale in Fig. 6. For all m, the resonance
frequencies all have a negative imaginary part. Since our time
dependence was given by exp(−iωt ), a negative imaginary
part of the frequency corresponds to exponential decay.

The real part of the resonance frequency from Fig. 6 corre-
sponds to a wavelength of λ = 808.3 nm. When only the real
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FIG. 7. The modulus squared of the total H field for the Ag wire
with radius a = 20 nm, illuminated by a single plane wave with unit
amplitude, propagating in the direction of the positive z axis. In
the left plot, we take wavelength λ = 808.3 nm, corresponding to
the real part of the resonance frequency for m = 1. In the right
plot, the wavelength corresponding to the real part of the resonance
frequency for m = 2 is λ = 668.1 nm.

part of the resonance frequency is substituted into the Drude
model, the permittivity is ε(ω) = −29.7 + 1.04i s−1.

For m = 2, we have ωres = 2.818 × 1015 to 9.627 ×
1013i s−1. The real part here gives a wavelength of
λ = 668.1 nm with ε(ω) = −20.0 + 0.59i. For both frequen-
cies, we plot the scattered near field in Fig. 7.

We can see from Fig. 7 that the resonance for m = 1 gives
dipole scattering and m = 2 gives quadrupole scattering.

It is noted that as m gets large, the frequencies accu-
mulate around ω = 3.133 × 1015 to 3.976 × 1013i s−1. The
permittivity that the Drude model gives at this frequency is
ε(ω) = −16.072 + 0.43420i. This is very close to the reso-
nance permittivity derived in the static limit (5.1).

VI. RESULTS FOR A SILVER NANOWIRE

We consider a silver (Ag) nanowire with radius a = 20 nm
embedded in the substrate. The permittivity of Ag under the
Drude model is plotted in Fig. 8. For both frequencies we
plot the scattered near-field in Fig. 7. Animations of the fields
are in the supplemental material [16]. We set the distance of
the center of the cylinder to the surface of the substrate at
10 µm. The distance of the cylindrical illumination lens to the
interface is set at 10−2 m. The cylindrical lens has dimensions
dx = 2.4 × 10−2 m in the x direction and dy = 2.4 × 10−3 m
in the y direction, and we are illuminating only with the outer
parts of the lens (in the x direction, so from 0.6 × 10−2 m to
1.2 × 10−2 m, and from −1.2 × 10−2 m to −0.6 × 10−2 m).
This means that the NA has minimum of 0.36 and maximum
of 0.77. The power of light focused by the lens is 2.0 mW.

The detector is placed in the far field and detects only
angles within NA 0.3; hence, it does not detect the field that
is directly reflected at the surface of the substrate, and all
the field detected originates from the nanowire. We assume
that the detector has 2000 × 200 pixels, with a spacing be-
tween the pixels of 20% of both the length in the x direction
and the y direction. This gives each pixel a surface area of
10 μm × 10 μm.

The Fisher information with respect to both the shift in the
x direction and the z direction is computed numerically with a
central finite difference.

FIG. 8. The real and imaginary parts of the permittivity of silver
as a function of the wavelength under the Drude model, compared
with the measured permittivity. We are interested in wavelengths
between 550 and 900 nm, marked by the dashed vertical lines.

In the following plots, the frequency of the incident field
ω is varied between 2.093 × 1015 and 3.425 × 1015 s−1. This
corresponds to wavelengths between 900 and 550 nm. The
Fisher information is plotted for the x shift and the z shift,
both in log10 base, in the left of Fig. 9. The expected total
number of photons detected is plotted in the right of Fig. 9.
The corresponding CRLB is shown in Fig. 10.

In Fig. 9, the real parts of the complex resonance frequen-
cies ω(m)

res for m = 1, 2 are marked by the dashed lines. We
note that the effect of the dipole resonance (m = 1) does not
have a significant effect on the Fisher information. This is
because the imaginary part of ω(1)

res is ∼6.5 × 1014 s−1, while
the imaginary part of ω(2)

res is ∼9.6 × 1013 s−1, and hence
closer to the real axis.

It can be seen in the plot that the Fisher information reaches
its maximum near the real part of the quadrupole resonance
frequency, but has a sharp local minimum at the real part of
the resonance frequency. This is because the asymmetry of the
scattered field, caused by a shift in the (positive or negative)
direction, flips right at the resonance frequency. We visualize
this by comparing the intensities at each pixel of the detector,
for both a +�x shift and a −�x shift. To do this, we plot
the following quantities as a function of ω and the scattering
direction kx:

I−�x(ω, kx ) − I (ω, kx ), I+�x(ω, kx ) − I (ω, kx ). (6.1)

Here, we define I (ω, kx ) as the intensity of the scattered light
[the absolute value squared of Eq. (4.31)] for a frequency ω

and scattering direction kx, when the center of the wire is on
the optical axis. I±�x is the intensity of the scattered light
for a nanowire shifted in the x direction with shift ±�x. The
results, two 2D plots of the scattered intensity differences, are
shown in Fig. 11.

From Fig. 11, it can be clearly seen that the asymmetry
caused by a shift in the x direction is maximal for ω close
to the real part of ω(2)

res , but exactly at and very close to
the real part of the resonance frequency itself, there is only
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FIG. 9. Left: the Fisher information for the shift in the x direction and in the z direction, as a function of frequency ω of the incidence field,
in log10 scale. Right: the total expected number of photons at the detector as a function of frequency ω. The incident power is 2.0 mW and for
the dark-field illumination with the numerical apertures as stated in the text.

negligibile asymmetry. This causes a very small derivative
∂�xI , and hence much smaller Fisher information is obtained
at ω = Re(ω(2)

res ). We are in a so-called information dark
state [17].

VII. CAUSE OF THE INFORMATION DARK STATE

We investigate the cause of the information dark state by
analyzing the scattering coefficients Bm [see Eq. (4.16)] as
functions of ω. We will see that this dark state is caused by
interference between the dipole and quadrupole modes.

The analysis is similar to the one done in Ref. [12]. We fo-
cus specifically on the behavior near the resonance frequency
ω = ω(2)

res , which we abbreviate as ωres from now on. For silver,
the dominant scattering contributions come from modes with
m = ±1 and m = ±2. The coefficients Bm with |m| � 3 are all
at least an order of magnitude smaller. The coefficients B0(ω),
B1(ω), and B2(ω) are plotted in Fig. 12.

We also have the symmetry Bm = B−m for all m. From
Fig. 12, it is clear that B0 is small compared to B1 and B2.
Moreover, coefficients with m > 2 (not shown in Fig. 12) are
an order of magnitude smaller than B1 and B2.

At the resonance frequency ωres, the imaginary part of
B2 changes sign from positive to negative, crossing zero at

FIG. 10. The CRLB in units (nm) as a function of frequency ω.
This is for the silver nanowire with a = 20 nm.

this frequency, i.e., Im(B2(ωres)) = 0. The reason this sign
change occurs at the resonance frequency is because (as can
be seen from Fig. 12) the coefficient B2 is approximated by a
Lorentzian curve close to ωres,

B2(ω) ≈ −iβ

ω − ωres
,

for some β > 0. The Lorentzian curve is more apparent for
the m = 2 mode, since the imaginary part of the resonance
frequency is an order of magnitude smaller than for m = 1.
Hence, the sign change at ω = ω(2)

res .
To demonstrate how this sign change affects the symmetry

of the scattering observed at the detector, we use a simplified
model. In this model, the incident field consists of two plane
waves illuminating the wire symmetrically from angles −θ

and +θ relative to the z axis. The intensity of the interference
of the plane waves has a maximum at (+�x, 0)T . This gives

H in
y (r, ϕ) =

+∞∑
m=−∞

Ain
mJm(kn1r)eimϕ, (7.1)

with

Ain
m = e−ikn1�x sin θeimθ + e+ikn1�x sin θe−imθ (7.2)

= 2 cos(mθ − kn1�x sin θ ). (7.3)

Note that the Ain
m also depends on ω through the k. The

scattering can be approximated by taking only the m = ±1
and m = ±2 terms from the expansion in Hankel modes.

FIG. 11. Plot of the two quantities from Eq. (6.1), where the ω

again is varied between 2.093 × 1015 and 3.425 × 1015 s−1 and kx is
between −0.3 and +0.3, corresponding to the NA of the detector.
The black dashed line is at ω(2)

res .
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FIG. 12. Real and imaginary parts of the scattering coefficients
Bm as functions of frequency ω, in the range from 2.0 × 1015 to
3.5 × 1015 s−1. The resonance frequency ωres is indicated by the
black dashed line.

We have

Hs
y (r, ϕ, ω) ≈ Ain

−2B−2(ω)H (1)
−2 (kn1r)e−2iϕ

+ Ain
−1B−1(ω)H (1)

−1 (kn1r)e−iϕ

+ Ain
1 B1(ω)H (1)

1 (kn1r)eiϕ

+ Ain
2 B2(ω)H (1)

2 (kn1r)e2iϕ. (7.4)

Because we are interested in the far-field pattern, we use
the following approximation for large z (see Eq. (21.27) in
Ref. [18]),

H (1)
m (z) ≈

√
2

πz
ei(z− mπ

2 − π
4 ), (7.5)

which gives for r large,

H (1)
m (kn1r)eimϕ ≈

√
2

πkn1r
eikn1reim(ϕ− π

2 )e−i π
4 . (7.6)

Then using the fact that Bm = B−m gives

Hs
y (r, ϕ, ω) ≈

√
2

πkn1r
eikn1re−i π

4

× [
Ain

−2B2(ω)e−2i(ϕ− π
2 ) + Ain

−1B1(ω)e−i(ϕ− π
2 )

+ Ain
1 B1(ω)ei(ϕ− π

2 ) + Ain
2 B2(ω)e2i(ϕ− π

2 )
]
.

(7.7)

Let ω− and ω+ be the frequency where Im(B2(ω)) is
maximum and minimum, respectively. As is seen in Fig. 12,
ω− < ωres < ω+. We show in Fig. 13 the polar plot of the
modulus of Hs

y as a function of ϕ for the case that �x =
100 nm and the angle of incidence for the two plane waves
is θ = ±30◦.

It can be seen from Fig. 13 that, although the spot is shifted
in the same direction for both ω− and ω+, the radiation pattern
almost flips its symmetry around the z axis. This is because
the sign of the imaginary part of B2(ω) changes between
ω− and ω+, which causes a phase difference in the quadrupole
(m = ±2) Hankel modes for ω− and ω+, and hence causes the
flip in the far-field intensity pattern.

FIG. 13. Polar plot of the modulus of Eq. (7.7) as a function of ϕ

in degrees, for two frequencies ω− and ω+. The plots are for a wire
shifted by −�x (left) and a wire shifted by +�x (right).

At the exact resonance ω = ωres corresponding to m = 2,
the Fisher information becomes zero. This can also be seen by
looking at the scattering of the dipole and quadrupole modes.
This is explained in detail in the Appendix. We have at the
resonance that (see also the Appendix)

d

d�x
I (ϕ) ∝ −4kx sin(2kx�x), (7.8)

so at �x = 0,

d

d�x
I (ϕ)

∣∣∣∣
�x=0

= 0. (7.9)

We conclude that also in this approximative simplified model,
we have an information dark state at exactly the resonance;
i.e., the Fisher information for small lateral displacements
vanishes. Furthermore, this holds for any angle of incidence
of the plane waves and for all scattering angles, i.e., for all
pixels.

As is shown in the Appendix, the fact that Eq. (7.9) holds
for all pixels follows from the fact that B1(ωres)B2(ωres)∗
is real. This is a special property that holds only for the
case of the nanowire of Ag with radius 20 nm. For a
nanowire with radius 20 nm made of potassium, for exam-
ple, the plasmonic resonance is rather sharp (not as sharp
as for Ag), but the phase of B1(ωres)B2(ωres)∗ is approxi-
mately 5.25 rad and therefore the Fisher information does not
vanish.

VIII. ASYMMETRIC ILLUMINATION

If the two incident plane waves have a phase difference of
φ = π/2, the amplitudes Ain

1 en Ain
2 become:

Am = e−iπ/4e−ikx�xeimθ + eiπ/4eikx�xe−imθ . (8.1)

By following the computation in the Appendix with φ = π/2,
the term of the far-field intensity that depends on �x becomes

I (ϕ) ∝ 2 cos(2kx�x + φ) = 2 cos(2kx�x + π/2)

= −2 sin(2kx�x). (8.2)
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FIG. 14. Results for the silver nanowire illuminated by the spot
obtained by illuminating with a pupil field with phase difference of
π/2 between the left and right half of the pupil.

Hence, we now have

d

d�x
I (ϕ) ∝ −4kx cos(2kx�x), (8.3)

which gives nonzero Fisher information for �x = 0, indepen-
dently of the angle of incidence of the plane waves and for all
scattering angles.

In fact, it can be shown that when the angle of incidence
does not exceed 60°, for phase difference of π/2 between the
two incident plane waves, the Fisher information is maximum
(in all pixels) compared to any other phase difference between
the incident plane waves.

This can be further confirmed by a numerical experiment.
We illuminate the silver nanowire. Using the same dark-field
illumination as before, we set the phase of the plane waves on
the left side of the lens to +π/2. The phase of the plane waves
on the right side stays 0. The Fisher information and expected
number of photons are computed in the same way as for Fig. 9.
The result for the asymmetric illumination is in Fig. 14, and
the CRLB is plotted in Fig. 15.It can be seen in the figure that
now there is no deep minimum in the Fisher information at
the resonance frequency. The shallow minimum is due to a
minimum in the number of photons at the detector at the
resonance. The asymmetry “flip,” as we had for the pupil field

FIG. 15. The CRLB in units (nm) as a function of frequency ω,
for the Ag nanowire and pupil field with phase shift π/2 between the
left and right sides.

FIG. 16. Plot of the two quantities from Eq. (6.1) for the shifted
silver nanowire, where ω again is varied between 2.093 × 1015 and
3.425 × 1015 s−1 and kx is between −0.3 and +0.3. The black dashed
line is at ω(2)

res . The result is for the difference of π/2 in the phase
between the left and right half of the pupil field.

with uniform phase, does not occur in this case (see Fig. 16
and compare with Fig. 11).

IX. DISCUSSION

In the above analysis, a very specific set of parameters
was chosen in order to induce a plasmonic resonance. As
mentioned in Sec. V, the permittivities of the substrate (ε1)
and nanowire (ε2) are chosen in such a way that we are close
to the resonance condition for the electrostatic case (5.1). The
radius of the nanowire is chosen to be small compared to the
wavelength.

In this section, we briefly discuss how critical the param-
eter values are for the observed phenomena. For a substrate
with index of refraction equal to n1 = 2.5, an information dark
state occurs, but at a different wavelength (see Fig. 17). In the
figure, the resonance frequencies have been recomputed for
this substrate index.

For these shorter wavelengths however, the Drude model
for Ag is not as accurate as for longer wavelengths, as can
be seen from Fig. 8. This is also why, in the previous analysis,
the choice was made for a substrate with (very) high refractive
index. Alternatively, the Lorentz-Drude model could be used
to model the permittivity of Ag for smaller wavelengths as
well [19].

In our analysis for the wire with radius a = 20 nm, taking
the modes for m = 1 and m = 2 to approximate the scattered
field was sufficiently accurate. However, when the radius
of the wire becomes larger, more scattering terms need to

FIG. 17. Results for the silver nanowire inside a dielectric sub-
strate with refractive index n1 = 2.5. The quadrupole resonance now
occurs for frequency ω = 4.380 × 1015, corresponding to a wave-
length of around λ = 430 nm.
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FIG. 18. Results for the silver nanowire with radius a = 80 nm
inside a substrate with index n1 = 4.0.

be added in the approximation. When we set the radius to
a = 80 nm, we see dark states around the resonance frequen-
cies obtained for m = 4, m = 5, and m = 6 as well (The
resonance frequencies for m = 1 up to m = 3 have a wave-
length larger than 900 nm) (see Fig. 18).

Note that there is an offset between the m = 4 resonance
frequency and the actual dark state: This is because this
complex frequency has an imaginary part that is more than
twice as large as the imaginary part for m � 5. The results
for a nanowire with a = 5 nm are shown in Fig. 19. Note
that the overall Fisher information is much lower than for the
case a = 20 nm. There is no dip in the number of detected
photons at the m = 2 resonance frequency, but there is still an
information dark state.

A plasmonic resonance of the nanowire can be used exper-
imentally to determine extremely small lateral displacements
�x of the wire from the optical axis of the illuminating
system, using dark-field illumination. By minimizing the dif-
ference between computed and measured pixel intensities, �x
can be retrieved with very low standard deviation. When the
illumination is symmetric, the frequency should be chosen
slightly off resonance to avoid the information dark state and
utilize the local maximum of the Fisher information. It is
seen in Fig. 10 that for laser power of 2 mW, the CRLB of
�x is below 0.1 nm for these frequencies. At the resonance
frequency and very close to it, where the Fisher information
has a sharp minimum, the CRLB is ∼3 nm for this laser power.
A precision lower bound of ∼3 nm would already be too high
in a typical semiconductor metrology setting.

When the illumination of the left and right half of the lens
pupil differs by π/2, the dark state is eliminated and then the
Fisher information is high and consequently the theoretical
CRLB is as small as 0.001 nm for a range of frequencies at
and close to the resonance (see Fig. 15).

FIG. 19. Results for the silver nanowire with radius a = 5 nm
inside a substrate with index n1 = 4.0.

In retrieving �x, one could minimize the difference be-
tween the simulated and measured amplitudes of the field
in the pixels, or alternatively use the maximum likelihood
estimator. Both methods are suitable in the case of Poisson
noise, while the latter has the advantage that in the case of
sufficiently many repeated measurements the CRLB for the
standard deviation is achieved. Comparing different retrieval
methods is a subject for further research.

X. CONCLUSIONS

In this paper, the effect of plasmonic resonances on the
Fisher information with respect to small lateral and longi-
tudinal displacements of a long silver nanowire was studied
through a two-dimensional analytical model. First, the Fisher
information and Cramér-Rao lower bound were explained for
Poisson shot noise. The illumination and detection system
was then explained, as well as the analytical model used to
simulate sensitivitiy of the detected intensity to small dis-
placements. A dark-field illumination system was used in
order to separate the incidence field and the field scattered
by the nanowire. The complex resonance frequencies of the
plasmonic resonances occurring in a metallic nanowire were
computed analytically.

Then, the Fisher information with respect to very small
lateral and longitudinal displacements was computed as a
function of frequency, for a nanowire of radius 20 nm made
of Ag.

It was found that, although the Fisher information is en-
hanced for ω close to the real part of the magnetic quadrupole
resonance frequency ω(2)

res , there is a sharp local minimum at
the exact quadrupole resonance frequency. We have studied
this by looking at the far-field scattering as a function of scat-
tering angle for ω below, at, and higher than the quadrupole
resonance frequency. From the radial dependence of the far
field, it can be seen that the lateral translation of the nanowire
induces an asymmetry. This asymmetry flips with respect to
the z axis at the quadrupole frequency. At the exact quadrupole
frequency, the flip occurs, and hence the scattered field shows
little asymmetry for shifts in the two directions. Hence, at the
resonance frequency we have an information dark state for
lateral and longitudinal displacements.

Although the analysis was done for nanowire with a radius
of 20 nm, the phenomenon occurs more generally and for
different radii of the nanowire.

Finally, we have shown that the flip of the asymmetry
can be prevented by changing the incident wave front. By
introducing a phase shift of π/2 betwen the pupil fields in
the left and right half of the pupil, the information dark state
is eliminated. We have derived this first with a simplified ana-
lytical model, and confirmed this result with the full model.

In conclusion, plasmonic near resonances can be used to
improve sensing for precise retrieval of far subwavelength
displacements, when the frequency of the illumination is close
to but not at the plasmonic resonance. However, exactly at
resonance frequencies, the Fisher information is decreased by
several orders of magnitude causing an unreliable estimation.
By introducing a phase difference in the focused pupil field,
this information dark state can be prevented and very accurate
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displacement estimation can be obtained, even at the reso-
nance frequency itself.
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APPENDIX A: DERIVATION OF EQUATION FOR
RESONANCE FREQUENCIES

We derive Eq. (5.2) by solving the Helmholtz equation for
the infinite cylinder for TM polarization, with no incident
field present. In this case, it means that we solve for the y
component of H field. As before, the radius of the cylinder is
given by a, and the refractive index of the cylinder by n2. The
refractive index of the surrounding medium is denoted by n1.
We have

�Hy(r) + k2n2
1Hy(r) = 0, r > a, (A1)

�Hy(r) + k2n2
2Hy(r) = 0, r < a. (A2)

On the boundary of the cylinder, we have the following match-
ing conditions in cylindrical coordinates:

lim
r↑a

Hy(r, ϕ) = lim
r↓a

Hy(r, ϕ), lim
r↑a

Eϕ (r, ϕ) = lim
r↓a

Eϕ (r, ϕ).

(A3)
We now want to rewrite the second condition in terms of
Hy. Note that we have Eϕ = − sin ϕEx + cos ϕEz. We use
Faraday’s law. For ω > 0 the frequency and ε the permittivity
(which is equal to ε1 = n2

1 inside the cylinder and ε2 = n2
2

outside the cylinder),

−iωε(r)E = ∇ × H. (A4)

It follows that

Ex = 1

−iωε(r)

∂Hy

∂z
, Ez = 1

iωε(r)

∂Hy

∂x
. (A5)

If we rewrite the radial part of E, we get

Eϕ = 1

iωε(r)

{
sin ϕ

∂Hy

∂z
+ cos ϕ

∂Hy

∂y

}

= 1

iωε

{
∂y

∂r

∂Hy

∂z
+ ∂x

∂r

∂Hy

∂x

}
= 1

iωε(r)

∂Hy

∂r
. (A6)

Hence, the matching condition (A3) for the radial part of E
becomes

lim
r↑a

1

ε2

∂Hy

∂r
= lim

r↓a

1

ε1

∂Hy

∂r
. (A7)

We are looking for resonance solutions of Eqs. (A1) and (A2),
so we have no incident field. We can thus write Hz as a

Bessel wave inside the cylinder, and a Hankel wave outside
the cylinder,

Hy(r, ϕ) = AH (1)
m (kn1r)eimϕ, r > a, (A8)

Hy(r, ϕ) = BJm(kn2r)eimϕ, r < a, (A9)

where m is in Z. The constants A and B are determined by
plugging these fields into Eqs. (A3) and (A7). This gives a
2 × 2 system of equations

AH (1)
m (kn1a) = BJm(kn2a),

A

ε1

d

dr
H (1)

m (kn1a) = B

ε2

d

dr
Jm(kn2a).

By using the fact that ε1 = n2
1 and that ε2 = n2

2 and taking the
derivative with respect to r, we obtain(

H (1)
m (kn1a) −Jm(kn2a)

k
n1

H (1)′
m (kn1a) − k

n2
J ′

m(kn2a)

)(
A
B

)
=

(
0
0

)
.

A nonzero solution for A and B can only exist when this
determinant equals zero. We obtain the equation

− k

n2
H (1)

m (kn1a)J ′
m(kn2a) + k

n1
Jm(kn2a)H (1)′

m (kn1a) = 0.

(A10)

APPENDIX B: INTERFERENCE BETWEEN DIPOLE AND
QUADRUPOLE MODES

At the exact resonance ω = ωres, the Fisher information
becomes zero. We explain this using the simplified model for
the scattering as in Sec. VII. We also assume that the two
incident plane waves can have a phase difference of φ, so

Ain
m = e−iφ/2e−ikn1�x sin θeimθ + eiφ/2eikn1�x sin θe−imθ . (B1)

We use

B1(ωres) = −0.96 + 0.019i ≈ −0.96, (B2)

and for B2(ωres) we approximate

B2(ωres) ≈ −0.66.

The terms with B1 and B2 in Eq. (7.7) are now grouped
together. We write

� = kn1�x sin θ + φ/2. (B3)

This gives the following expression for the scattered far field:

Hs
y (r, ϕ, ω) ≈ 2

√
2

πkn1r
eikn1re−i π

4

× {
B1(ωres)[e−i� sin(ϕ − θ ) + ei� sin(ϕ + θ )]

− B2(ωres)
[
e−i� cos(2(ϕ − θ ))

+ ei� cos(2(ϕ + θ ))
]}

. (B4)

The intensity of Hs
y as a function of ϕ is given by

I (ϕ) ∝ |B1(ωres)|2|e−i� sin(ϕ − θ ) + ei� sin(ϕ + θ )|2

+ |B2(ωres)|2|e−i� cos(2(ϕ − θ ))

+ ei� cos(2(ϕ + θ ))|2
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+ 2Re{B1(ωres)B2(ωres)∗

× [e−i� sin(ϕ − θ ) + ei� sin(ϕ + θ )]

× [e−i� cos(2(ϕ − θ )) + ei� cos(2(ϕ + θ ))]}. (B5)

We have

I (ϕ) ∝ |B1(ωres)|2[sin2(ϕ − θ ) + sin2(ϕ + θ )

+ 2 cos(2�) sin(ϕ − θ ) sin(ϕ + θ )]

+ |B2(ωres)|2[cos2(2(ϕ − θ )) + cos2(2(ϕ + θ ))

+ 2 cos(2�) cos(2(ϕ − θ )) cos(2(ϕ + θ ))]

+ 2Re{B1(ωres)B2(ωres)∗[sin(ϕ − θ ) cos(2(ϕ − θ ))

+ sin(ϕ + θ ) cos(2(ϕ + θ ))

+ e−2i� sin(ϕ − θ ) cos(2(ϕ + θ ))

+ e2i� sin(ϕ + θ ) cos(2(ϕ − θ ))]}. (B6)

We now use that B1 and B2 are purely real. The approximation
(B6) can be split in a part that is independent of �x, and a part
that depends on �x. The part of the intensity that is dependent

on �x is given by

I (ϕ) ∝ 2 cos(2�){|B1(ωres)|2 sin(ϕ − θ ) sin(ϕ + θ )

+ |B2(ωres)|2 cos(2(ϕ − θ )) cos(2(ϕ + θ ))

+ B1(ωres)B2(ωres)[sin(ϕ − θ ) cos(2(ϕ + θ ))

+ sin(ϕ + θ ) cos(2(ϕ − θ ))]}. (B7)

We can immediately see from Eq. (B7) that

d

d�x
I (ϕ) ∝ −4kx sin(2�). (B8)

So when φ = 0 and �x = 0, we have � = 0, and hence

d

d�x
I (ϕ)

∣∣∣∣
�x=0

= 0. (B9)

This gives Fisher information zero at the resonance for the
simplified model. However, when there is a phase differ-
ence of φ = π/2 between the incident plane waves, Eq. (B8)
becomes

d

d�x
I (ϕ) ∝ −4kx sin(2kx�x + π/2) = −4kx cos(2kx�x),

(B10)

and hence Eq. (8.3) holds for the derivative with respect to the
displacement �x.
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