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Figure 1. The architecture of the proposed model.
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Figure 2. lllustration of spatial-temporal attention with fully connected layers (STFC_Att).

Spatial-temporal attention mechanism
r
(xS * i (1)
Z(t+n) — (Ux(t+n) " Vh) (2)
wtt = softmax(Wz(E) (3)
(t) W (t+n)x (t+n) (4)

n 1

x(t+n)

After processing the N images, and getting the average x® for
the selected sequence,

0(t+N)’ h(E+1+N) — F(m, h) (5)
Xout = (0(t+N) * Koyt ) (6)
h = h(t+1+N) (7)

available state-of-the-art methods in various testing.

METHODS RESULTS

Table 1 Quantitative comparison on Table 2 Quantitative comparison on tvtLane
tvtLane testset #1 (normal) testset #2 (12 challenging scenes)
Tes (t/? Precision Recall | F1-Measure M(égls Pazlr\i PRECISION
Baseline Models Challenging| 1.
U-Net 96.54 0.790 0.985 |0.877 15.5 134 Scenes curve 2
Models us|ng & shadow | bright | occlude | curve | & |[urban | & | blur |shadow | tunnel &
single image SegNet 96.93 0.796 0.962 |0.871 50.2 29.4 Models  loaude | | | | occlude are | 1 ecclude
*
SCNN %79 0654 10808 |0.722 i 19.2 U-Net 07018 |0.7441|0.6717 |0.6517 |0.7443|0.3994 |0.4422 |0.7612 [0.8523 |0.7881 | 0.7009 | 0.5968
LaneNet* 97.94 0.875 0.927 (0.901 44.5 19.7
SegNet_ConvLSTM 9792 |0874 10931 |0.901 2170 672 SegNet 06810 |0.7067 [0.5987 |0.5132 |0.7738|0.2431 | 0.3195 | 0.6642 |0.7091 | 0.7499 |0.6225 | 0.6463
_ UNet_ConvLSTM 9800 |0857 [0.958 [0.904 69.0 511 UNet_ConvLSTM 07591 |0.8292 [0.7971 |0.6509 | 0.8845 |0.4513 | 0.5148 | 0.8290 |0.9484 |0.9358 |0.7926 | 0.8402
Models using Proposed Models
continuoUs  [Fo " At-UNet LSTM 9808 10877 10936 10906 147 135 SegNet_ConvLSTM 08176 |0.8020 [0.7200 |0.6688 | 0.8645 |0.5724 | 0.4861|0.7988 |0.8378 |0.8832 [0.7733 | 0.8052
images — ~
sequence ST_Att-UNet_LSTM 98.09 0.879 0.941 10.909 44.8 13.5 Tem_Att-UNet_LSTM 08430 [0.8909 |0.7732 |0.5740 | 0.8322 |0.4692 | 0.4567 | 0.8358 | 0.8090 | 0.9244 | 0.7893 | 0.8046
STFC_Att-UNet LSTM 98.14 0.887 0.941 |(0.911 44.9 135
STEC Af-SCNN UNet LSTM** 0320 looos 10936 |0.921 68.9 13.7 ST_Att-UNet_LSTM 07933 |0.8743 [0.8013 |0.7014 |0.8894 |0.5215 | 0.4935 | 0.8290 |0.8517 |0.9286 |0.7516 | 0.8218
STFC_At-UNet_LSTM  [0.8239 |0.8782 [0.7646 |0.7031 | 0.8871|0.5295 | 0.4848 | 0.7354 |0.9023 |0.9395 [0.8794 | 0.7542

Table 3 Quantitative comparison on

. ] F1-MEASURE
TuSimple testing set
~ U-Net 0.8200 |0.8408|0.7946 |0.7337 |0.7827 | 0.3698 | 0.5658 | 0.8147 | 0.7715 | 0.6619 | 0.5740 | 0.4646
Test_Acc .. F1- MACs | Params
by Precision | Recall M r G M
(%) _ easure (©) (M) SegNet 0.8042 |0.7900 |0.7023 |0.6127 |0.8639 | 0.2110 | 0.4267|0.7396 | 0.7286 | 0.7675 | 0.6935 | 0.5822
Baseline Models
SegNet_ConvLSTM* 97.96 0.852 0.964 |0.901 217.0 |67.2 UNet_ConvLSTM 0.8465 |0.8891 [0.8411 |0.7245 |0.8662|0.2417 | 0.5682 | 0.8323|0.7852 | 0.6404 | 0.4741 | 0.5718
. UNet_ConvLSTM* 98.22 0.857 0.958 [0.904 69.0 51.1
Models using SegNet_ConvLSTM 0.8852 |0.8544|0.7688 |0.6878 |0.9069 |0.4128 | 0.5317|0.7873|0.7575 |0.8503 |0.7865 | 0.7947
continuous UNet_DoubleConvGRU*  |98.04 0.875 0.953 [0.912 13.4
images Proposed Models Tem_Att-UNet_LSTM 0.8933 | 0.8657 [0.8123 |0.6513 |0.8306 | 0.3530 | 0.5263|0.8290 | 0.7039 | 0.5338 | 0.5225 | 0.5226
sequence
q Tem_Att-UNet_LSTM 98.05 0.876 0.923 |0.899 44.1 135 ST_Ait-UNet_LSTM 0.8548 |0.8977 |0.8253 |0.7293 |0.8254 | 0.3627 | 0.5543|0.8369 | 0.7480 | 0.6197 | 0.5522 | 0.5363
ST_Att-UNet LSTM 98.14 0.881 0.925 |0.902 44.8 135
STEC Att-UNet LSTM 98.20 0.886 0950 [0.917 44.9 135 STFC_Att-UNet LSTM  |0.8690 |0.9059 | 0.8314 |0.7456 |0.8086 | 0.3660 | 0.5277|0.7715 | 0.7329 | 0.6543 | 0.6471 | 0.5852
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Figure 3. Qualitative comparison on tvtLANE

Figure 4. Qualitative comparison on tvtLANE
testset #1 (normal).

testset #2 (challenging).
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Figure 5. Qualitative evaluatlon results on Figure 6. Post- explanatlon. visualization of
the LLAMAS dataset. lane detection under a bridge with
shadow and occlusion.

CONCLUSION

 The proposed spatial-temporal attention mechanism can focus
on key features of lane lines and exploit salient spatial-temporal
relevance among continuous frames.

 The proposed model can cooperate with other mechanisms or
model structures, and outperforms available state-of-the-art
methods In various testing.

 The proposed model possess fewer parameters and smaller
multiply-accumulate (MAC) operations.
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