

Delft University of Technology

Sequential Neural Network Model with Spatial-Temporal Attention Mechanism for Robust Lane Detection Using Multi Continuous Image Frames

Dong, Y.; Patil, Sandeep; Farah, H.; Hellendoorn, J.

Publication date 2023

Document Version Final published version

Citation (APA)

Dong, Y., Patíl, S., Farah, H., & Hellendoorn, J. (2023). Sequential Neural Network Model with Spatial-Temporal Attention Mechanism for Robust Lane Detection Using Multi Continuous Image Frames. 1. Poster session presented at Transportation Research Board 102nd Annual Meeting 2023, Washington, District of Columbia, United States.

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Attention Mechanism for Robust Lane Detection Using

Multi Continuous Image Frames

THE AUTHORS Yongqi Dong y.dong-4@tudelft.nl Sandeep Patil sandeeppatil538@gmail.com Haneen Farah h.farah@tudelft.nl Hans Hellendoorn j.hellendoorn@tudelft.nl Delft University of Technology Lane detection serves as a fundamental task for automated vehicles and Advanced Driver Assistance Systems. This study develops a novel sequential neural network model with a spatial-temporal attention mechanism that can focus on key features of lane lines and exploit salient spatial-temporal correlations among continuous image frames for the purpose of enhancing the accuracy and robustness of lane detection. Experiments demonstrate the strength and the robustness of the proposed model outperforming available state-of-the-art methods in various testing.

RESULTS

Model

Table 1 Quantitative comparison on tvtLane testset #1 (normal)

		Test_Acc (%)	Precision	Recall	F1-Measure	MACs (G)	Para (M						
	Baseline Models												
	U-Net	96.54	0.790	0.985	0.877	15.5	13.4						
Models using single image	SegNet	96.93	0.796	0.962	0.871	50.2	29.4						
	SCNN*	96.79	0.654	0.808	0.722	77.7	19.2						
	LaneNet*	97.94	0.875	0.927	0.901	44.5	19.7						
	SegNet_ConvLSTM	97.92	0.874	0.931	0.901	217.0	67.2						
	UNet_ConvLSTM	98.00	0.857	0.958	0.904	69.0	51.1						
Models using	Proposed Models												
continuous	Tem_Att-UNet_LSTM	98.08	0.877	0.936	0.906	44.7	13.5						
images sequence	ST_Att-UNet_LSTM	98.09	0.879	0.941	0.909	44.8	13.5						
	STFC_Att-UNet_LSTM	98.14	0.887	0.941	0.911	44.9	13.5						
	STFC_Att-SCNN_UNet_LSTM**	98.20	0.906	0.936	0.921	68.9	13.7						

Table 3 Quantitative comparison on

 TuSimple testing set

 Test_Acc
 D
 F1 MACs
 Params

Table 2 Quantitative comparison on tvtLane testset #2 (12 challenging scenes)

PRECISION												
Challenging Scenes Models	1- curve & occlude	2- shadow	3- bright	4- occlude	5- curve	6- dirty & occlude	7- urban	8- blur & curve	9- blur	10- shadow	11- tunnel	12- dim & occlude
U-Net	0.7018	0.7441	0.6717	0.6517	0.7443	0.3994	0.4422	0.7612	0.8523	0.7881	0.7009	0.5968
SegNet	0.6810	0.7067	0.5987	0.5132	0.7738	0.2431	0.3195	0.6642	0.7091	0.7499	0.6225	0.6463
UNet_ConvLSTM	0.7591	0.8292	0.7971	0.6509	0.8845	0.4513	0.5148	0.8290	0.9484	0.9358	0.7926	0.8402
SegNet_ConvLSTM	0.8176	0.8020	0.7200	0.6688	0.8645	0.5724	0.4861	0.7988	0.8378	0.8832	0.7733	0.8052
Tem_Att-UNet_LSTM	0.8430	0.8909	0.7732	0.5740	0.8322	0.4692	0.4567	0.8358	0.8090	0.9244	0.7893	0.8046
ST_Att-UNet_LSTM	0.7938	0.8743	0.8013	0.7014	0.8894	0.5215	0.4935	0.8290	0.8517	0.9286	0.7516	0.8218
STFC_Att-UNet_LSTM	0.8239	0.8782	0.7646	0.7031	0.8871	0.5295	0.4848	0.7354	0.9023	0.9395	0.8794	0.7542

 U-Net
 0.8200
 0.8408
 0.7946
 0.7337
 0.7827
 0.3698
 0.5658
 0.8147
 0.7715
 0.6619
 0.5740
 0.4646

0.6127 0.8639 0.2110 0.4267 0.7396 0.7286

0.7245 0.8662 0.2417 **0.5682** 0.8323 **0.7852**

0.6404 0.4741 0.5718

3 0.7865 0.7947

Figure 1. The architecture of the proposed model.

Figure 2. Illustration of spatial-temporal attention with fully connected layers (STFC_Att).

Spatial-temporal attention mechanism

$$x^{(t+n)} = \left(x_{down4}^{(t+n)} * k_{in}\right)$$

(5)

(6)

(7)

		(%)	Precision	Recall	Measure	(G)	(M)	SegNet
		begiver						
s using	SegNet_ConvLSTM*	97.96	0.852	0.964	0.901	217.0	67.2	UNet_ConvLSTM
	UNet_ConvLSTM*	98.22	0.857	0.958	0.904	69.0	51.1	SegNet_ConvLSTM
uous	UNet_DoubleConvGRU*	98.04	0.875	0.953	0.912		13.4	Segree_Convestion
s nce		Tem_Att-UNet_LST						
	Tem_Att-UNet_LSTM	98.05	0.876	0.923	0.899	44.7	13.5	ST_Att-UNet_LSTM
	ST_Att-UNet_LSTM	98.14	0.881	0.925	0.902	44.8	13.5	
	STFC_Att-UNet_LSTM	98.20	0.886	0.950	0.917	44.9	13.5	STFC_Att-UNet_LS
nput image:	s: (a)							Input images:
			7		~			(a)
Fround Trut	h: (b)							Ground Truth
					\checkmark	ľ,		(b)
aseline Mo	dels: (c) SegNet; (d) UNet; (e) SegNe	t ConvLSTM; (f)	UNet ConvLSTI	М				`

07.2													
51.1 13.4	SegNe	et_ConvLSTM		0.8852	0.8544	0.7688	0.6878	0.9069	0.4128	0.5317	0.7873	0.7575	0.8503
13.4	Tem_4	Att-UNet_LSTM		0.8933	0.8657	0.8123	0.6513	0.8306	0.3530	0.5263	0.8290	0.7039	0.5338
13.5	ST_At	tt-UNet_LSTM		0.8548	0.8977	0.8253	0.7293	0.8254	0.3627	0.5543	0.8369	0.7480	0.6197
13.5 13.5	STFC	_Att-UNet_LSTN	M	0.8690	0.9059	0.8314	0.7456	0.8086	0.3660	0.5277	0.7715	0.7329	0.6543
		nput images: (a	2)			l	1			1	1		
- the	(a)	and the second sec	a)							te /			
	(b)	Ground Truth: ((b)	7 <						1			
	(c)	Baseline Model	s: (c)	SegNet;	(d) UN	et; (e) Se	gNet_C	onvLST	⁻ M; (f) U	JNet_C	onvLS	TM	
	(d)		/			- \	. //	1.		//			
	(e)	\sim		1			-/	1		1	(
	(f)	7\	/	\backslash		-		~ [.	•	1			
	P	roposed Mode	ls: (g)) Tem_At	t-UNet	_LSTM; (I	h) ST_A	tt-UNet	_LSTM	l; (i) ST	FC_Att	-UNet;	
	(g)		/	. /		77	1		`\				
	(h)	1	/			1			/	1			
	(i)		/			:	. /	\overline{j}		/	1		

0.8891 0.8411

Figure 3. Qualitative comparison on tvtLANE F testset #1 (normal).

Figure 5. Qualitative evaluation results on the LLAMAS dataset.

CONCLUSION

 The proposed spatial-temporal attention mechanism can focus on key features of lane lines and exploit salient spatial-temporal relevance among continuous frames.

Figure 4. Qualitative comparison on tvtLANE testset #2 (challenging).

Figure 6. Post-explanation: visualization of lane detection under a bridge with shadow and occlusion.

After processing the N images, and getting the average $\overline{x^{(t)}}$ for the selected sequence,

$$o^{(t+N)}, h^{(t+1+N)} = F(\overline{x^{(t)}}, h)$$
$$x_{out} = (o^{(t+N)} * k_{out})$$
$$h = h^{(t+1+N)}$$

- The proposed model can cooperate with other mechanisms or model structures, and outperforms available state-of-the-art methods in various testing.
- The proposed model possess fewer parameters and smaller multiply-accumulate (MAC) operations.

