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In several machine learning problems, a relatively small subproblem is
present in which combinations of (negating) objects or structures result
in a negation or otherwise other classification compared to when these
(negating) objects are not present. To be more specific, a variant of the
XOR problem is present in a small amount of objects in these classification
problems. Examples of this could be negating words in textual sentiment
classification or the presence of sarcasm when one wants to determine seri-
ousness in speech. As negations are usually present in a small part of much
larger datasets, it is important to recognize these relatively rare negation
structures within objects’ data. Correctly recognizion and handling nega-
tions could improve overall classification performance in machine learning
problems that inhibit negations in some of their dataset objects. To lay
the groundwork for solving these problems, the subproblem of recognizing
negation words in sentiment classification is solved by employing a word
embedding neural network to recognize text structure and to correctly clas-
sify these negations while at the same time this neural network is used to
classify complete sentences in the problem of sentiment classification.
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1 Introduction

1.1 Negation recognition

Within classification problems, there exists a subproblem that is called negation recog-
nition (and handling). This problem is characterized by classification objects contai-
ning a structure within these objects that, when present, negate or reverse the meaning
(classification) of this object. So if this negation structure is present, the meaning (and
thus resulting classification) of an object is negated compared to when this structure
is not present in said object. An example of a negation within the machine learning
problem of textual sentiment classification (determining whether a text sentence is of
positive or negative sentiment) is presented in Table 1.

Table 1: An example of a negation within the problem of textual sentiment classifica-
tion (determining whether a text sentence is of positive or negative sentiment).

Object (sentence) Desired classification
”The weather is so good today.” Positive
”The weather is not good today.” Negative

The example given in Table 1 clearly shows how negations within a text complicate
the classification of said texts. The negation structure, in this case the word or words
that cause the classification result to be negated, is easily recognized: the word ’not’
followed by the word ’good’ in the second object indicate a negation of a positive term,
thus leading to a negative classification.

As the more practical experiments in this research will be focused on the problem
of negation recognition, as well as complete sentiment classification, using a word
embedding neural network, it is important to first clarify the relation between negation
recognition and other machine learning notions and problems, as well as the drawbacks
of existing machine learning methods with respect to negation recognition. In these
following subsections, the relations between the problem of negation recognition and
other machine learning concepts, as well as the appearance of negations in real-world
datasets are discussed.

1.1.1 Two-class classification

Not necessarily connected to any negation recognition problem, two-class classification
describes classification problems and datasets where the objects within these datasets
can be labelled as one of two classes.
In relation to the problem of negation recognition and handling, it is relatively straig-
htforward to handle negations (if present) in two-class classification problems. This
due to the fact that it is easy to negate or ’flip’ the predicted class of an object, as there
are only two classes to choose from. When an object is predicted to be of a certain
class, this class is simply ’flipped’ when a negation is detected. When classification
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problems are attempted to be solved with more than two possible classes to classify
objects as, negation recognition is much less straightforward as there is no easy way
to negative the classification label of an object, as there are more possible alternative
labels for objects containing a negation.

1.1.2 Negation recognition and the XOR problem

A relatively simple problem that will form the base for the more complex problem
of negation recognition and handling is the XOR problem. The XOR-problem is of-
ten mentioned when one wants to make a distinction between linear and non-linear
classifiers[21]. Table 4 presents the XOR-problem, with its possible inputs and ex-
pected outputs. Figure 1 displays these values in a 2D space, displaying the relation
between the XOR problem and the problem of negation recognition and handling and
immediately making it clear why the objects in this problem cannot be separated by
a linear classifier.

1.1.3 Negations within datasets

As mentioned earlier, recognizing and handling negations is often a subproblem of a
larger machine learning problem. The reason negation recognition is seen as a sub-
problem of said larger machine learning problem is that often the datasets relating to
certain machine learning problems contain only a relatively small amount of objects
that actually contain a negation.
When the objective of training and testing a classifier is to maximize the achieved
classification performance (during training), these negation objects will often not be
deemed important enough to significantly influence the training of said classifiers. This
due the fact that learning to recognize and handle these negations will have a high
cost (much larger training time, increasing error on non-negation objects, etc), which
usually does not outweigh the relatively small increase in overall accuracy.
Because of the fact that negation recognition and handling is often a subproblem that
has to be learned from a subset of an entire machine learning dataset, the classifiers
that perform well on this subproblem are often not the same classifiers that do per-
form the best on the much larger, original, machine learning problem. An example of
the use of a special classifier that aims to maximize the classification performance of
negation objects is that neural network that is discussed as a result of this research.

Now that the notion of negation recognition and the relation between a negation
recognition problem and other, more general machine learning problems is explained,
some practical examples of negations within datasets are explored.

1.2 Practical example: Sentiment Classification

This problem was briefly discussed earlier in this section and will be thoroughly ana-
lysed when the actual experiments of this research are done. Before the problem of
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negation recognition within textual sentiment classification is introduced, some pro-
blem definitions of larger and more general machine learning problems are introduced.
The problems that are introduced are, in order of appearance: document classification,
(textual) sentiment classification, negation recognition within sentiment classification
and the notion of short text classification.

1.2.1 Document classification

Document classification is the task of assigning a document to one or more document
categories, also called document classes. Classification of a document is done by deter-
mining the probability distribution of all possible classes based on the contents of said
object. As this classification result entails a probability distribution, it must mean
that the sum of all class probabilities p(ci|D) must be 1, as formulated in equation (1)
(with D the document, ci each of the classes and C the total number of classes).

C∑
i=1

p(ci|D) = 1 (1)

The definition of a document can differ as well, as multiple sources of data can be
considered ’documents’. These sources range from textual data to images or audio.
These different sources of data require different methods of processing to perform clas-
sification. This research is focussed on textual data, which means a document can be
described as an ordered set of words (sometimes also called terms). By following this
definition, a document D can be formulated as:

D = {w1, w2, ..., wN − 1, wN} (2)

In this formulation, N denotes the size of document D, in number of words (also writ-
ten as |D|).

1.2.2 Sentiment classification

Sentiment classification, sometimes also known as sentiment analysis, is a case of
document classification. Textual sentiment classification refers to the use of natural
language processing methods to classify the sentiment of textual data. The most
straightforward sentiment classification is classification of documents as one of two
categories (also called classes), often the ’positive’ and ’negative’ classes (or something
similar). Sentiment classification with more than two classes can be done as well, in
which the classes usually indicate the strength of positivity and negativity (or the
strength within some other range).
To give a practical example of sentiment classification, consider the tweets displayed
in Table 2. For a human reader, it should instantly be clear which of the example
objects display a positive sentiment and which ones display a negative sentiment.
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Table 2: An example of sentiment classification. The objects in this example are
tweets, classified as positive or negative.

Object Classification
”back from school. I fell down 3 flights of stairs today... you could
see the tissue in my leg. im sore all over”

Negative

”now ive got a bruise on my hand cause i flung and hit the table
when i put them on.”

Negative

”i have a new brother wow im so happy XD” Positive

Within the problem of sentiment classification, there are a few special situations, in
which objects have certain semantic characteristics that influence the classification of
said objects. Often, a more in-depth knowledge of the used language is required to
grasp these characteristics and to correctly classify the objects. Some of these semantic
characteristics are shown here, including an example sentence:

• ”Monday mornings are the best!” (Possible sarcasm)

• ”Bad weather only occurs very occasionally” (Adverb influences the sentiment)

• ”I do not like basketball” (Negation of positive term)

• ”The weather is not bad today” (Negation of negative term)

1.2.3 Sentiment negation handling

As demonstrated in some of the examples presented earlier, the case of recognizing
negations of positive and negative words is a special subproblem within sentiment
classification and is a less straightforward problem compared to general sentiment
classification.
The problem of negation handling, also called negation recognition, is defined as recog-
nizing combinations of words that, together, have a different classification compared to
these words separately. To be more specific, the combinations of negating words and
positive or negative words. Negations, which contain a negation word and a positive or
negative word need to be recognized and classified correctly. An example of a negation
would be the text ”not cool”. This text should be classified as a negative sentence,
while the word ”cool” with a neutral word (a non-negating word) in front of it should
be classified as a sentence with a positive sentiment.
A complete overview of all possible combinations of negating words, positive and nega-
tive words, and neutral words and their respective classifications is displayed in Table
3.
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Table 3: Description of different objects in the negation recognition problem and their
desired classifications.

Object description Example sentence Desired classification
negating word + positive word ”not happy” Negative
negating word + negative word ”not bad” Positive
neutral word + positive word ”is awesome” Positive
neutral word + negative word ”so boring” Negative

The different objects in the negation recognition problem can be mapped to the 4
different objects in the XOR problem(and the other way around), as shown in Table 4.
The objects in the negation recognition problem are not linearly seperable, as shown
in Figure 1. This means that there is no linear classifier that is capable of correctly
classifying the objects in the negation recognition problem.

Table 4: Objects in the negation recognition problem and their relation to objects in
the XOR problem.

Negation recognition object Negation recog-
nition classifica-
tion

XOR
object

XOR clas-
sification

negating word + positive word
Negative

(1, 1) 0

negating word + negative word
Positive

(1, 0) 1

non-negating word + positive word
Positive

(0, 1) 1

non-negation word + negative word
Negative

(0, 0) 0
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Figure 1: The four objects that represent the negation recognition problem(as well
as the XOR problem). The red objects represent objects of negative sen-
timent(0) and blue objects represent positive sentiment(1). It can be seen
that these objects are not linearly separable.

1.2.4 Short text classification

Short text classification can be seen as a (special) case of document classification. This
case of document classification is encountered when the objects to classify are relatively
small texts. For certain natural language processing problems, having short texts
means different classification methods have to be used[26]. Some of these classification
methods are tailored specifically to small texts, or are needed because the more general
methods suffer from the relatively small amount of information in short texts.

1.3 Practical example: Sarcasm in speech recognition

Another interesting machine learning problem is the problem of speech recognition.
Methods and classifiers related to this problem are focussed on interpreting human
speech and translating it to a format that is understandable, and can be processed
by, computers[25][12]. Within the area of speech recognition, more specifically, the
problems of classifying seriousness or sentiment, certain types of negations exist. One
example of these negations would be the presence of sarcasm in speech data where a
classifier aims to recognize the sentiment of this speech data.

In this research, the focus lies on textual data and the relevant negation problems
that arise. However, the versatility of machine learning models could mean that any
insights gained in text classification problems could be used for speech recognition as
well. This notion of using models previously constructed for image and text related
classification problems in speech recognition has been done before, with results that
are often an improvement compared to earlier models[17].
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1.4 Outline

Now that the notion of negation recognition is explained, including some real-world
examples, an overview of the objectives and research questions addressed in this rese-
arch is presented. The objectives of this research are as follows, these objectives are all
related to the problem of negation recognition within textual sentiment classification:

• Finding out the best classifier design for use for negation recognition within the
context of sentiment classification;

• Developing strategies for preprocessing the dataset that is used during training
and testing of the chosen classifier;

• Finding out what can be learned about individual words when training the clas-
sifier: do the learned word representations say anything about the meanings of
said words?

• To propose techniques for combining classifications of (fixed-size) subsets of input
sentences, providing ways to classify complete input sentences.

These research objectives will lead to experiments that are done on, or utilizing, a
word embedding neural network. The notions of neural networks and word embed-
dings, as well as relevant background methods and techniques that lead up to them,
will be introduced in the next chapter of this report.

This report is outlined as follows. Chapter 2 will provide background knowledge
about the machine learning concepts that are relevant to negation recognition, docu-
ment classification, neural networks and/or any of the objectives listed above. Chapter
3 will provide an overview of the setup of all experiments that are constructed to per-
form the research objectives, it will provide information on how to setup datasets and
classifiers, and how to interpret the result data. Chapter 4 will contain the actual
results of said experiments, and will provide explanations of these results and their
meaning in the broader context of negation recognition. Chapter 5 will reiterate over
the research that is done, and will provide a concluding summary of the research, as
well as directions for future research that follow from the findings in this report.
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2 Background

This section will contain background information relevant to the experiments that
will be done and the conclusions that will be drawn based on these experiments.
The theory presented here is linked to the natural language processing problems of
document classification in general, sentiment classification and to negation recognition,
as well as the methods used to solve these problems, which includes the technique of
neural networks, word embedding and the attention mechanism. Furthermore theory
on balancing datasets is presented, as the problem of imbalanced datasets will be
encountered in the later experiments that are done and presented in the next section.

2.1 n-grams

A relatively common structure that is used in the area of natural language processing,
more specifically in the area of text processing, is the n-gram structure. This structure
can be seen as a string consisting of n terms (words). When an input text contains
more than n words, the n-grams are taken by taking all sets of consecutive words such
that each set contains n words. An example of creating these n-grams is shown in
Table 5.

Table 5: An example of creating a collection of n-grams

Original
text

”The quick brown fox jumps over the lazy dog”

2-gram {”The quick”, ”quick brown”, ”brown fox”, ”fox jumps”, ”jumps
over”, ”over the”, ”the lazy”, ”lazy dog”}

3-gram {”The quick brown”, ”quick brown fox”, ”brown fox jumps”, ”fox
jumps over”, ”jumps over the”, ”over the lazy”, ”the lazy dog”}

As clarified in the example shown in Table 5, the set of all n-grams obtained from a
sentence, text or document depends on the parameter n that is chosen. A document
consisting of l terms will have l − n + 1 different n-grams (given n ≤ l).

2.2 Models for document classification

One model for document classification is the bag-of-words model. In the bag-
of-words model, a document is modelled as an unordered collection of words. This
modelling can be done in two slightly different ways: encode the document by coun-
ting the frequency of each word in the document or encode the document by simply
keeping check whether a word appears in the document or not (without keeping an
actual count value). Document classification can be done by transforming the bag
representing each document to a feature vector. These feature vectors can then be
used to train classifiers. Some practical examples of this include using the naive Bayes
classifier for the purpose of detecting e-mail spam[2] and training a Support Vector
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Machine on bags of words representing documents[14]. This transformation of a do-
cument to a bag of words is displayed in Figure 2: a list is constructed of all possible
words in the dataset, and the list (the bag of words) has non-zero values (the value 1)
if the word represented by the position in the list is present in the document. This can
be visualized by displaying a list of all unique words that appear in the input dataset
before transformation, as done in the figure below.

Figure 2: An example of generating a bag of words from an input sentence. The
simplest form of bag-of-words generating is applied: word frequencies are not
counted. In computer memory, this ’bag’ would be a long list of zeroes and
ones indicating whether each possible word is present in the input sentence.

Another model for document classification is Latent Semantic Indexing. With
this method, the mathematical technique of Singular Value Decomposition(SVD) is
used to reduce the size of input set objects by transforming these input objects set to
objects in a latent space in which the distance between words or documents can be
used to calculate similarity, as done in (Deerwester et. al., 1990)[8]. This model allows
for representing documents (and invidual words) into latent values (which can that
are discovered during the SVD process). An example of input documents transformed
to this so-called latent space is shown in Figure 3.
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Figure 3: Example of applying SVD on an example dataset, as done in (Deerwester
et al., 1990)[8], with as result two values (dimensions) for each word and
document.

As seen from the latent space displayed in the figure, a way for classification would
be taking the latent values of (in dimensionality reduced) objects, which are calculated
by performing SVD, and using them to train and classify using a classifier, for example
the Support Vector Machine(SVM)[27].

2.3 Neural networks and language processing

Another powerful tool for language processing is the neural network. Neural networks
are data processing structures that are inspired by what is known about the working
of human brains. The neural networks that are used in machine learning are also
called artificial neural networks, as they attempt to replicate the way humans process
information.
Neural networks consist of layers of individual neurons that, when classification is at-
tempted using said neural network, propagate information from each layer to the next.
This propagation can be done by ’connections’ which form links between neurons in dif-
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ferent layers. These links are represented by weights that are used to multiply neuron
output values with before using them as input in neurons in further layers. Training
of these neural network weights can be done by the technique of backpropagation[10].
As neural networks are extremely versatile and can be used in a variety of applicati-
ons, they can also be used for in the area of document (text) processing. Several text
processing problems that can be solved by artificial neural networks include, but are
not limited to: machine translation[3][7], language (sentence) modelling[15][23] and
named entity recognition[6][16].

2.4 Language processing through word embedding

Word embedding entails the use of machine learning techniques to map words to
vectors containing real values. As most classifiers and machine learning techniques
require (real-valued) numbers as input, word embedding enables these techniques to
handle words (or sentences) as input. This principle of word embedding is nowadays
very common in neural networks that tackle some kind of natural language processing
problem[4][18].
Usually, trained word vectors show relations to desired output classifications or to
each other. An example of this would be when the technique of word embedding
is used for language modelling, i.e. predicting the next word based on a number of
previous words. Table 6 displays learned word vectors within the problem of language
modelling as presented in (Pennington et. al., 2014)[24]. It can be seen that, with the
word embedding technique that is used, word vector (Euclidean) distance can be a
good measurement for word similarity. An explanation for this would be that similar
words are expected to yield similar classification outputs. This similar output will
lead to embeddings being similar as well, due to the way the classifier is trained in the
analysed experiment[24].
It is important to note that this example is not based on a neural network, showing
that the notion of word embedding itself can be seen as a separate technique from the
technique of neural networks.
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Table 6: The first 10 features of 50-dimensional feature vectors of the word ’frog’ and
the top 7 closest words(Euclidean distance) as constructed by (Penningtion,
Socher & Manning, 2014)[24].

frog frogs toad litoria
leptodac
tylidae

rana lizard
eleuthero
dactylus

0.61038 0.16142 -0.00255 0.47092 0.61412 -0.54875 0.32068 0.80984
-0.20757 -1.0424 -0.42187 0.099646 1.683 -0.31127 -0.36405 0.4459
-0.71951 -0.46239 -0.92706 -0.25081 -1.1209 -0.411 -0.96793 -1.3083
0.89304 0.77606 0.5046 0.97404 2.0704 0.4231 0.38308 1.0127
0.32482 0.26464 -0.22752 0.25243 1.7839 -0.25693 0.62911 1.2817
0.76564 0.31932 0.85034 0.31009 -0.53265 -0.38582 -0.11026 1.0654
0.1814 -0.76033 0.10351 1.5959 0.99716 0.742 0.23428 1.8016
-0.33086 -0.52584 -0.40195 -0.81645 0.97641 -0.41833 -0.72842 0.64034
0.79173 0.38692 0.41292 0.22613 1.8206 0.081392 0.71771 1.7055
-0.31664 0.01985 0.13847 -0.02093 -0.84315 -0.22236 -0.3195 0.1681

2.5 Combining neural networks and word embedding

While standalone word embedding techniques, they can be combined with the use of
neural networks as well[4][19]. As discussed earlier, neural networks consist of indivi-
dual layers that are connected to each other. Word embedding can be included into
a neural network simple by adding another layer to said neural network. This word
embedding layer has the task of processing the input words and outputting embed-
ding vectors coupled to said input words. Training of a word embedding layer can be
done through the widely-used technique backpropogation, used in training complete
neural networks[10]. When this technique of backpropagation is used, the embedding
output values per word are simply changed based on the feedback from succeeding
layers in the neural network. This change, or learning of the embeddings, starts with
the embeddings being initialized to random values, and then being learned by this
backpropagation.
Because the individual neurons in a neural network operate on real numbers, the
technique of word embedding layers in a neural network is often applied when a trans-
formation is required between the textual data found in datasets and the real numbers
required by each of the layers of a neural network.

2.6 The attention mechanism in neural networks

In neural networks that perform image processing, attention is a way to focus on a
specific part of an image. This specific part is dynamically chosen based on the in-
put image and the trained neural network[29]. The advantage of using this attention
mechanism is that there can be a focus on a specific, important part of the image,
meaning less computing power is wasted on the other, less important, parts of the
image. On top of this detailed focus lies another advantage: choosing the right part
to focus on, the part that represents the image the best, can make sure that the clas-
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sification output is the best for the whole image. This neural attention mechanism
is loosely based on how the human visual attention mechanism works, with the same
characteristics and advantages[30].

The attention mechanism can of course be seen as a general method for improving
neural network performance, and thus it can be used on other problems as well. This
mechanism has in fact been used to aid in performing machine translation[3] as well
as in text comprehension and question answering[11], as shown in Figure 4.

Figure 4: An example of the attention mechanism, where the important part of the
input text(dependent on the query below) is correctly identified, as shown
in (Hermann et al., 2015)[11].

In combination with the earlier presented concept of word embeddings, the attention
mechanism can be found back as well in some instances. In these instances, the more
important words in certain input texts have relatively strong (relatively high or low
values) or otherwise discerning embeddings. In this case, it is important to keep in
mind that this attention to certain words or parts of sentences is not always explicitly
defined as a seperate value, but can be implicitly included within the learned values
of a classifier. The fact that this attention is often included in a classifier in some
way is also the reason it is not discussed further, but can be determined by object
representation values or by learned classifier parameters, as the later learned word
embeddings will show.

2.7 Imbalanced datasets and sampling

An often appearing problem when one wants to use a dataset to train a classifier is
that this dataset contains classes or categories of objects that are not equal in size.
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When this happens, it is said that the dataset is imbalanced. The main disadvantage
of these imbalanced datasets is that the class or category that is the smallest is likely
to have a much larger classification error of its objects, as the training of the classifier
will focus more on correctly classifying the class of which there are a relatively large
amount of objects. This because correctly classifying the larger amount of objects in
the majority class usually results in smaller training error rates. A way of solving this
problem of imbalance between classes or categories is by applying sampling. There are
a multiple of sampling techniques, ranging from simply copying or removing objects
from a dataset to more complex techniques in which artificial objects are added to the
dataset[5][9]. In these more complex techniques, the objects that are artificially crea-
ted and added to the dataset depend on the objects that are present in the imbalanced
dataset.

The techniques that are used to solve the problem of imbalanced dataset in this rese-
arch can be categorized in two categories: oversampling and undersampling. Several
oversampling and undersampling techniques are presented, with a description on how
to transform the dataset such that it is no longer imbalanced. In all of these methods,
it is important to know which class or category constitutes the majority class and
which class constitutes the minority class. This is usually determined by the number
of objects within each of the classes.

2.7.1 Undersampling of the majority type

The most common and straightforward way of undersampling is simply removing
random objects from the majority class or category. Using this method, objects from
the majority class or category are picked at random and are removed from the data-
set. This will go on until the number of majority class objects equals the number of
minority class objects, thus resulting in a balanced dataset.

2.7.2 Oversampling of the minority type

The opposite of undersampling the majority type is the method of oversampling the
minority type. Using this method, objects from the minority class are copied to incre-
ase the number of minority objects. This copying will go on until both classes are equal
in size. Determining which objects to copy can be done by copying one random objects
at a time or by copying the objects fairly, thus resulting in each minority objects being
copied the same number of times.

2.7.3 Focused oversampling

Focused oversampling (sometimes called resampling or selective oversampling) con-
sists of oversampling only the objects of the minority type that lie on the boundary
between the minority and majority types. In practice, this usually results in only the
minority objects that are misclassified being oversampled, instead of oversampling all
the minority objects, as explained in the previous method description.
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To figure out which objects are misclassified, a classifier is first trained on the original,
imbalanced dataset. After that, training objects are classified to determine which of
the minority class objects are being misclassified. Knowing which objects are misclas-
sified, the focused oversampling is performed, oversampling only the objects that are
classified incorrectly. This oversampling leads to an altering dataset, which is then
used to again train a classifier and to again find out which minority objects are incor-
rectly classified.
These steps of oversampling and retraining form the core of this method and can also
be described as follows:

1. If the minority class size is larger or equal to the majority class size, or if the
minority class size is classified without any error, stop the method

2. Train a classifier on the dataset

3. Determine which minority objects are misclassified

4. Copy these misclassified minority objects in the dataset

In the end, this method will result in either a balanced dataset or and imbalanced
dataset in which the minority objects are all correctly classified during training.
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3 Experimental setup

As mentioned in the introduction, ths section will describe how all experiments to
perform the research objectives is performed. First, a description is made of the
excact classification technique that will be used, which is the word embedding neural
network. Next, more is written on the dataset that will be used for the experiments,
including a description on the class balance, the size of the dataset and the presence
of objects relevant to the problem of negation recognition. After this information on
the dataset is presented, experiments to figure out the highest performance neural
network design are described. More experiments are then done on the different ways
of preprocessing the dataset and whether this is a useful thing to do. Not really an
experiment but still an interesting task leading to some results is the inspection of
the learning word representations, which is presented in its own subsection as well.
Last, ways are described to combine the classifications that are done on object subsets
(n-grams), which will in turn form complete object classifications which can later be
compared to the existing state-of-the-art.

3.1 Classification method: Word Embedding Neural Network

The method of classification chosen for the following experiments is a neural network.
More specifically, a neural network that performs word embedding on its input, with
as output a value denoting the predicted class, ranging from 0 to 1 (continuous). The
reason for choosing to use a neural network is that it fits the aim of this research,
which is to perform negation recognition and handling without any assumptions on
the underlying data. Furthermore, it is known that a neural network is able to solve
the XOR problem, which is paramount to solving the negation recognition problem.
The specific reason for using a word embedding layer within this neural network is
that word embedding is known to work well with machine learning problems that are
based on textual data, for example the earlier mentioned research by (Bengio et. al,
2003)[4] or the more recent research by (Mikolov et. al, 2013)[19].

The design of the neural network is made with two principles in mind: achieve the hig-
hest classification performance for negation recognition (on the whole dataset) while
keeping the design as simple as possible. The final design, which adheres to these two
principles, is show in Figure 5. This design is not made up beforehand but is the result
of the results of experiments on different design parameters. This testing of different
design parameters is described in a later section.
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Figure 5: The design of the final neural network that is used for negation recognition
and handling, with its parameters determined by experiments and presented
in Table 14.

3.2 Dataset

Before any experiments can be done, one or multiple datasets have to be found and
chosen to be used first. The dataset that is used during the experiments presented
in this research is actually a combination of several distinct sentiment classification
datasets[20]. These individual datasets originate from a classification competition[22]
as well as from a pattern recognition laboratory at a machine learning company[1].
All of these datasets contain data from Twitter, that is to say, tweets. These tweets
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are taken without any filter in mind: all information except for the tweet text and the
classification is removed.
Some characteristics of this whole dataset are displayed in Table 7.

Table 7: Characteristics of the used dataset

Total number of tweets 1577278
Average tweet length (in words) 12.67
Number of unique words 267613
Ratio positive/negative tweets 50.1/49.9

3.2.1 Negation recognition objects within the dataset

As this dataset contains a large number of tweets taken without any (known and
relevant) filtering criteria, it also contains a lot of words and tweets that are irrelevant
for the problem of negation recognition. To determine the most relevant tweets or
parts of tweets, a small list of words is made. This list can be used as an overview of
some of the most appearing positive and negative words. These words, relevant to the
problem of negation recognition, are listed in Table 8.

Table 8: A list of some of the most appearing positive and negative words in the
complete tweet dataset

Term Number of appearances
Positive

great 33378
nice 23502
happy 26358
awesome 18124
cool 14344

Negative
sad 29229
bad 27059
sorry 26043
sick 15787
boring 4416

3.3 Neural network design

Even though the general structure of the neural network has been determined: it
will be a word embedding neural network, there are still some design parameters to
determine. These design parameters include the embedding dimension, as well as
the structure of the hidden layers within the neural network. A detailed list of the
parameters that are tested, including their possible values, is presented in Table 9.
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Table 9: Description of the different neural network design parameters to test, and
their tested values

Parameter description Tested values
Embedding dimension 1, 2, 4, 8, 16, 32
Amount of hidden layers 1, 2
Number of nodes in the first hidden layer 1, 2, 4, 8, 16
Number of nodes in the second hidden layer (if applicable) 1, 2, 4, 8

3.4 Negation recognition and handling

Two broad strategies can be considered when attempting to solve the problem of
recognizing and handling negations within text. These strategies are different in the
amount of data that is used to train the classifier that will recognize and handle said
negations. One option is to slim down the dataset such that only objects relevant to
the problem of negation recognition are included and used during training. Another
option is to decide to use the complete dataset, without removing or filtering out any of
the objects. This will result in a more realistic dataset that also contains objects that
are not directly relevant to the problem of negation recognition. Keep in mind that
the negation recognition experiments described in this section are done on 2-grams,
which are taken from the whole tweets in the dataset.

3.4.1 Training on a slimmed down dataset

One of the ways to train the negation classifier is to slim down the dataset before
training the classifier. With this technique, preparing the dataset for training entails
only including objects useful for learning to perform negation recognition and handling.
The way the dataset objects are filtered is done by performing the following steps:

1. Identify the objects relevant for negation recognition

2. Filter out all objects that are considering irrelevant

3. Perform preprocessing and training of the classifier on the resulting dataset

The first step of identifying which objects are relevant is based on the list of most
appearing positive and negative words, as listed in Table 8. The objects that are
considered relevant for training can be described as follows: every 2-gram that contains
one of the top words as listed in Table 8 as second word is considered relevant and
thus included in the slimmed down dataset. Table 10 provides a good indication of
the rigorousness of this filtering step. It can be seen that less than 1% of the objects
are retained after filtering.
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Table 10: Quantification of the filtering step

Original dataset size 16850698
Absolute number of objects after filtering 159975
Relative number of objects after filtering 0.95%

The remaining dataset, after completing this process of slimming down, is still an
extremely unbalanced dataset: only 2286 objects, which equals to 1.4% of the objects
after filtering, contain a negation. To balance out objects of these different types, a
balancing method has to be used. To find out which balancing method performs the
best, experiments are done with the following balancing methods:

• Undersampling of the majority type;

• Oversampling of the minority type.

The workings of these balancing methods are described in the earlier section on the
background of these methods.

3.4.2 Training on the full dataset

The other strategy for training the negation handling classifier is to train a classifier
on the complete dataset. This way, the training is focused on more than just the
relative small amount of objects that are relevant to the negation recognition problem.
Furthermore, by training on the complete dataset, the neural network can learn the
sentiment of more different words, including rare words or words that are not strongly
positive or negative. By learning the sentiment of all of these individual words while
still training the neural network to perform negation recognition and handling, a model
capable of true generalization over all positive and negative words could be constructed.

When training on the complete dataset, no changes to the dataset of 2-grams should
be made. This dataset, which contains all 2-grams that originate from the original
set of tweets, is called the raw dataset. In the optimal situation, a classifier trained
on this raw dataset should be able to perform the task of negation recognition and
handling without any mistakes or errors. When classifiers trained on datasets that
are alterations of this raw dataset are measured, this raw dataset will serve as a ba-
seline and thus as a benchmark to compare these different alterations of the dataset to.

As mentioned, some alterations of the original 2-gram dataset are used to train and test
the neural network as well. One of these alterations is the dataset in which negation
recognition objects are artificially added to the original 2-gram dataset. Experiments
are done to find out whether it would be possible to completely eliminate any misclas-
sifications of the relevant negation recognition objects. Also, finding out whether the
neural network is able to generalize over negations and relevant negation recognition
objects when some of these negation recognition objects are not explicitly added (in-
cluded in the artificial dataset) is a great way of testing the generalization ability of
the neural network.
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3.5 Word embeddings

Another interesting ’experiment’ is looking at the word embeddings that are a result
of the training of the neural network. These word embeddings can show relations
between the words in an input sentence and its label. Word embeddings can also show
relations between individual words and their meanings. As different neural network
designs can lead to different word embeddings (with different embedding dimensions),
multiple experiments can be done with these word embeddings.
Experiments on word embeddings include looking at how positive and negative words
are embedding after training the neural network. This will show the possible relations
between the meanings of these words and their embeddings.

3.6 Combining partial classifications

To find out whether the used classification technique (word embedding neural net-
works) is able to hold its own, not only on 2-grams but on complete short texts (in
this case tweets), experiments are done to figure out the best way to combine these
partial classifications. Since these experiments will result in performance figures over
entire tweets, there is a baseline to compare against. According to the original re-
search that presented the dataset that is used[20], their state-of-the-art performance
is a binary accuracy of 75%. That is, 75% of test objects during their testing were
correctly classified.
Since the 2-gram classification is a way of classifying a fixed length sentence, it cannot
be used for real-world tweet classification. Several categories of methods for combining
fixed-length classification results are:

• Taking a (weighted) average of the subset classification results;

• Using machine learning techniques with internal memory (for example recurrent
neural networks) to combine subset classifications;

• Combining results by discarding certain subset classification (throwing away sub-
set classification that are deemed ’not important’).

Experiments are done on a multiple of combining methods for (partial) fixed-length
classifications. These combining methods are described in the following subsections.

3.6.1 Combining method: Averaging subset n-gram classifications

The most straightforward way of combining these partial classification is by calculating
the average (mean) over all n-gram (subset) classifications. It is important to note
that, with our current practical setup of classifying 2-grams, this method will not be
completely fair with respect to the first and last word in the input sentence, as these
words are only present in one 2-gram, while the other words will be present in two
2-grams.
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3.6.2 Combining method: Averaging the minimum and maximum subset
classifications

Another method of combining partial classification results is to calculate the average
(mean) of just the lowest and highest subset classification results. This way, the focus
lies purely on the outliers (the highest and lowest subset results), meaning the other
subset results are simply deemed ’not important’ and are thus discarded.

3.6.3 Combining method: Taking the strongest of the minimum and maximum
values

This combining method is similar to the previous method, in the sense that the mini-
mum and maximum classification results are the only determinants of the full sentence
classification output. However, the difference here lies in the computation of this full
sentence classification output. This method simply outputs the minimum or maximum
value, depending on which one is stronger. In this case, the strong value is the value
that lies further away from the middle of the range (which is 0.5 as the [0, 1] range is
used for the output values). By applying this method, the assumption is made that
this strongest value is the most important value of all the classification values. Thus,
the words that result in this strongest subset classification are the most important
words in the entire text.

3.6.4 Combining method: Taking the (first) negation subset classification

This combining method differs from the other combining methods in the sense that
it can only be applied when the input sentence (and thus the corresponding subset
classifications) contain a negation. In this combining method, only the classification
value of the first subset that contains a negation is considered relevant and is thus
taken as the result of this combining method. Because only one subset classification
result is taken, it means that all other subsets are considered irrelevant and thus will
have no influence on the final full sentence output.

3.6.5 Experimental dataset setups

As some of these combining methods can only be used when classifying sentences that
are known to contain a negation, multiple experimental setups are presented. These
setups differ in the dataset that will be used.
The first experimental setup consists of experiments on all tweets in the dataset.
During these first experiments, the first three combining methods ’averaging subset
n-gram classifications’, ’averaging the minimum and maximum subset classifications’
and ’taking the strongest of the minimum and maximum values’ are tested.
The second experimental setup consists of experiments that are only done on the tweets
that contain a negation. In this setup, all of the combining methods are tested and
compared to each other. This results of these experiments are used not only to find
out which combining method works the best in this setup, but also to draw conclu-
sions on these special subsection of tweets that contain a negation, and their ease of
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classification.

These combining methods rely on an underlying classifier to classify the subsets of
entire sentences. During all of the described experiments, this classifier is the best-
performed word embedding neural network as determined by the experiments on neural
network design. This best design is taken and trained on the full 2-gram dataset, with
a training round of 100 epochs. The word embeddings and neural network weights
that result from this training are used as the classifier for the 2-grams that are later
combining used the methods described in this section.

28



4 Results

This section presents results on the experiments presented in the section on the ex-
perimental setup. Each individual section shortly described the experiments again,
describes the achieved results and draws a certain conclusion based on the description
of the setup of the experiment and the research objectives as presented in the intro-
duction section.
First, the results of the experiments on the neural network design are presented, this
to determine the actual neural network (design) to use in the later experiments. After-
wards, experiments are done to figure out whether it would be useful to perform dataset
preprocessing by slimming down the dataset to include less objects irrelevant to the
problem of negation recognition. Afterwards, more dataset preprocessing results are
presented, this time on the full dataset, and to the full dataset with artificial objects
added. Results on the training of word embeddings is presented as well, showing the
actual word embeddings and their relations between the words that are represented.
Last, the results on the method for combining n-gram classifications are described,
showing the classification performance on entire tweets.

4.1 Neural network design

As described earlier, it is important to know the best possible design parameters to
make sure the neural network achieves optimal performance on this problem. As
described in Table 9, several design parameters are tested. This testing is done by
constructing a neural network with these parameters and then training and testing
this neural network on the complete dataset. For training, 90% of the dataset will be
used, leaving a testing set consisting of 10% of the dataset. Average errors will be taken
over 5 training and testing rounds, with 20 epochs per training round. The training and
testing results with these different design parameters is displayed in Table 11. Results
on the classification of negation recognition objects (these objects are displayed in
Table 16) are also displayed. These results are again displayed as the average Mean
Squared Error (MSE) over 5 training and testing rounds.

Table 11: Different neural network design parameters and the average Mean Squared
Error (MSE) over 5 training and testing rounds (with 20 epochs per training
round). Sample standard deviations are displayed as well.

Embed-
ding di-
mension

# of nodes in
the first hid-
den layer

# of nodes
in the second
hidden layer

Test set
MSE
(standard
deviation)

Negation
recognition
objects
MSE (std.
dev.)

1 8 N/A 0.227(0.000) 0.304(0.005)
2 8 N/A 0.226(0.001) 0.215(0.047)
4 8 N/A 0.225(0.000) 0.168(0.024)
8 8 N/A 0.225(0.000) 0.124(0.018)
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16 8 N/A 0.225(0.001) 0.133(0.015)
32 8 N/A 0.225(0.000) 0.130(0.010)
8 1 N/A 0.227(0.000) 0.286(0.006)
8 2 N/A 0.226(0.000) 0.199(0.026)
8 4 N/A 0.225(0.000) 0.155(0.016)
8 8 N/A 0.225(0.000) 0.124(0.018)
8 16 N/A 0.225(0.001) 0.141(0.022)
8 8 1 0.226(0.001) 0.158(0.016)
8 8 2 0.226(0.000) 0.163(0.024)
8 8 4 0.226(0.000) 0.143(0.030)
8 8 8 0.226(0.000) 0.156(0.039)

One of the results in Table 11 is the Mean Squared Error (MSE) on a test set that is
taken from the dataset. What can be seen is that changing the design of the network
has little to no influence on this MSE performance measurement. Modifying design
parameters to make the neural network simpler or more complex does not result in a
significant (if any) improvement in test performance. This performance issue could be
linked to several causes, which were all investigated. The possible causes for this lack
of improvement or decrease in performance with different design hyperparameters are:
wrong or irrelevant error measurements, wrongly chosen other learning parameters
(learning rate, number of epochs) or the word embeddings needing to be relatively
simple (meaning a more complex model will not lead to improved performance). Each
of these potential causes is described in the following subsections.

Wrong or irrelevant error measurements
One probably cause of this lack of improvement could be that the error measurement
that is used, which is the Mean Squared Error (MSE), is not capturing classification
improvements as well as expected (when design hyperparameters are changed). To
verify whether this could be an actual reason for the performance issue, other perfor-
mance measurement methods have been tried as well. These other performance me-
asurements include absolute (non-squared) classifcation error, the Area Under Curve
(AUC) error measurement and the error during training (after each epoch). Classifica-
tion results measured in the absolute (non-squared) error, as well the the Area Under
Curve (AUC) errors are displayed in Table 12. This table shows only minimal classifi-
cations improvements when the design complexity of the neural network is increased,
with these displayed error measurements. This would mean that even when different
error measurements are used to compare the networks to each other, there is still no
significant improvement in performance when the neural network design increases in
size and complexity. It can thus be concluded that using wrong or irrelevant error
measurements it not the reason for the perceived lack of improvement when the neural
network is designed to allow for more complexity.

Wrongly chosen other learning parameters
Besides the testing design parameters, some learning parameters also play a role in the
learning and thus the performance of the training neural network. The two learning
parameters that might influence the test results are the number of epochs per training
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Table 12: Classification results when using error measurements other than MSE.
Average results and sample standard deviations are taken over five training
and testing rounds.

Neural network design (em-
bedding dimension:nodes in
hidden layer one)

Absolute average
test error (standard
deviation)

AUC error (stan-
dard deviation)

1:8 0.450 (0.000) 0.672 (0.000)
2:8 0.447 (0.002) 0.676 (0.002)
4:8 0.443 (0.001) 0.681 (0.001)
8:8 0.439 (0.002) 0.687 (0.002)

round and the gradient descent learning rate. As seen in Table ??, the test perfor-
mance of the classification does not significantly improve after increasing the number
of epochs per training round beyond a certain amount. To confirm this, another run
has been done in which the classifier is trained for 100 epochs per training round, the
results of this training do not show a noteworthy improvement compared to the earlier
used value of 20 epochs per training round. Thus, the amount of epochs per training
round is ruled out to be a possible cause of the encountered performance issue.
Another important parameter is the learning rate parameter within the gradient des-
cent optimization technique that is used for training the neural network. To figure
out whether changing the learning rate will solve the problem of the classification
performance not improving, different learning rate parameters are set as hyperpara-
meter in neural networks that are trained and testing. The learning rate parameter
values for which experiments are done are: 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0. Experiments
done with these different learning parameters did not show any improvement in per-
formance, ruling out the choice of the learning rate parameter as a potential origin of
this problem.

Word embeddings
Another possible source of this problem could be that the word embeddings of each
input word are only needed to be relatively simple. This would mean that the neural
network will train the word embeddings to be relatively simple and that the word
embeddings would be comparable to each other even when the network itself becomes
more complex. When these word embeddings stay relatively simple and do not contain
much more hidden information, it would mean that the rest of the neural network is
expected to also be relatively simple, resulting in no performance gain when the neural
network is design to allow for a more complex structure.
A way to check this is to compare simple word embeddings (with a low dimensio-
nality/vector size) to word embeddings that allow for more complex representations
(having a higher embedding dimension). This comparison is done by first training the
neural network with different embedding dimension hyperparameters (thus leading to
different word embedding dimensions) and then performing a dimensionality reduction
on these word vector of different sizes. This dimensionality reduction will result in (re-
duced) word vectors of the same size, which can then be compared to each other.
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This dimensionality reduction is done by performing Principal Component Analysis
(PCA)[28] and reducing the target embedding dimensionality to 1.
Table 13 shows the differences of the embeddings with different dimensions after the
reduction step to reduce the dimensionality to 1. Also shown is the amount of vari-
ances captured in the first PCA dimension compared to a second dimension (if target
dimensionality was 2 instead of 1).
The ”Difference between 1D embedding and PCA result” value is calculated using the
following formula:

avg(
∣∣w1d − wpca 1d

∣∣)
with w1d the trained 1-dimensional embedding and wpca 1d the n-dimensional embed-
ding reduced the a 1D embedding (through PCA). This average (mean) is taken over
all words for which an embedding exists (meaning all unique words in the dataset).

Table 13: Average differences of word embeddings between PCA result (reduced to 1
dimension) and the learned 1D representation by the neural network. Also
shown is the percentage of variance captured in the 1st dimension, if PCA
reduction to 2 dimensions is done

PCA per-
formed on

Difference between 1D em-
bedding and PCA result

Variance captured in 1st
dimension compared to
sum of 1st and 2nd di-
mension

1D represen-
tation

0.000 N/A (cannot reduce 1D word
vector to 2D word vector)

2D represen-
tation

0.012 90.4%

4D represen-
tation

0.030 83.9%

8D represen-
tation

0.033 84.4%

Standard de-
viation of 1D
word embed-
dings

0.126

When the differences between the 1D word embeddings and the results of the PCA
reductions are compared to the standard deviation of the 1D word embeddings, it can
be seen that these differences are (and remain) relatively small. This would mean that,
even if the embedding dimension hyperparameter increases, the actual information
stored and the underlying complexity of the embeddings remains almost the same.
This can be further confirmed by the variances captured by the first dimension of the
PCA result. Compared to the second hidden dimension (when reduction to 2D space
is performed), the first hidden dimension captures a large part of the variance.
With these results in mind, it can be concluded that the issue of the performance not
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increasing with a more complex neural network is caused by the fact that increasing
the embedding complexity (and overall network complexity) will not result in more
complex embeddings or more information (useful for the general-purpose sentiment
classification) stored in the embeddings or in the rest of the neural network.

4.1.1 Embedding dimension

As seen in Table 11, the averaged Mean Squared Errors (MSEs) of the different embed-
ding dimension parameters are not differing much. This means that it is necessary to
take into account the Mean Squared Errors (MSEs) on the tested negation recognition
objects as well. The classification errors of these negation recognition objects shown
a much larger difference between the different embedding dimension parameters. As
seen, having an embedding dimension of 8 will result in the least averaged MSE for
the negation recognition objects.

4.1.2 Nodes in the first hidden layer

As the best embedding dimension parameter has been determined in the previous step,
experiments can now be done to find out the best amount of nodes in the first hidden
layer. Again, the averaged Mean Squared Errors (MSEs) of the different amount of
nodes in the first hidden layer are not differing much. So again, the MSEs on the
tested negation recognition objects have to be taken into account as well. As seen,
having 8 nodes in the first hidden layer will result in the least averaged MSE for the
negation recognition objects.

4.1.3 Second hidden layer

With both the best embedding dimension value and the best amount of nodes in the
first hidden layer known, it might be useful to add another hidden layer before the
final (output) layer. Measurements have been done in the exact same way as with
the previous design parameters and have been displayed again in Table 11. As seen,
adding a second hidden layer does not result in an improved performance compared
to using only one hidden layer. Thus, a second hidden layer will not be included in
the final neural network.

4.1.4 Final design

The parameters chosen for the final word embedding neural network are displayed in
Table 14. These parameters have been chosen by inspecting the results for general sen-
timent classification and the results for negation recognition. As these results, which
are displayed in Table 11, are mostly the same for the general sentiment classifica-
tion problem, the actual decision is based on the results for the negation recognition
problem.
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Table 14: Chosen parameters for the final neural network, based on achieved results.

Design parameter Value
Embedding dimension (per word) 8
Amount of hidden layers 1
Nodes in the first hidden layer 8

4.1.5 Influence of the number of epochs on classification performance

To test out the learning speed of the neural network, several training experiments have
been performed. These training experiments have been done using the chosen (best
performing) neural network design on the same raw dataset of 2-grams. The difference
in these experiments in the number of epochs per training round. As seen in the
previous subsection, iterating through the entire dataset 20 times per training round
(20 epochs) will result in a mean squared error of 0.124 on the negation recognition
objects. The influence of using different epoch numbers per training round is shown in
Figure 6, displaying the achieved testing mean squared error when different amounts
of iterations through the dataset are performed.

Figure 6: The influence of different epoch amounts on the achieved testing Mean Squa-
red Error (MSE). These errors are calculated on classification averages of 5
training rounds, comparable to the process leading to the results in Table
17.
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4.2 Slimmed down dataset

As described in the experimental setup, several ways to combat the problem of the
imbalance in the training dataset can be performed. The performance of these different
sampling methods are displayed in this section.
To compare each of these methods, a way of measuring the performance of these
methods has to be defined first. In this case, the performance of each method is
measured by calcuting the Mean Squared Error (MSE) on the negation recognition
objects. These negation recognition objects are defined in Table 16, with the positive
and negative terms originating from Table 8(the most important positive and negative
terms in the used dataset).

Table 15: Structure and expected classification results of the objects that are used to
test the trained classifiers.

Object structure Expected classification result
Neutral term + positive term 1
Negating term + positive term 0
Neutral term + negative term 0
Negating term + negative term 1

To measure the performance of each of the sampling methods, the Mean Squared
Error (MSE) is calculated per balancing method. The mean squared error works by
calculating the mean of the squared differences between expected classifications of test
objects and their actual classifications.
Before any of the earlier presented sampling methods are tested, a base case measure-
ment has to be presented first. This base case, which contains the raw (unbalanced)
dataset of 2-grams, will serve as a method to compare these sampling method against.
The results of training and testing the neural network on the unbalanced dataset, as
well as the datasets that have been balanced using the presented balancing methods,
are presented in Table 16. This table includes the Mean Squared Errors (MSEs) for
each of the balancing methods and for the base case.

Table 16: Results of training and testing on the datasets that resulted from different
balancing methods. Classifications are averaged over 5 training rounds(with
20 epochs per training round).

Classified
Object

Expected
classifica-
tion

Classification
(raw dataset)

Classification
(undersam-
pling)

Classification
(oversam-
pling)

’so great’ 1 0.653 0.724 0.619
’not great’ 0 0.302 0.371 0.362
’so nice’ 1 0.639 0.603 0.604
’not nice’ 0 0.190 0.205 0.164
’so happy’ 1 0.809 0.601 0.790
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’not happy’ 0 0.097 0.126 0.051
’so awesome’ 1 0.733 0.719 0.695
’not awe-
some’

0 0.234 0.350 0.246

’so cool’ 1 0.769 0.614 0.725
’not cool’ 0 0.145 0.178 0.133
’so sad’ 0 0.039 0.108 0.031
’not sad’ 1 0.465 0.110 0.569
’so bad’ 0 0.155 0.431 0.153
’not bad’ 1 0.614 0.550 0.656
’so sorry’ 0 0.093 0.282 0.093
’not sorry’ 1 0.361 0.157 0.422
’so sick’ 0 0.059 0.150 0.063
’not sick’ 1 0.391 0.109 0.265
’so boring’ 0 0.169 0.365 0.168
’not boring’ 1 0.533 0.209 0.683
Mean
Squared
Error
(MSE)

0.106 0.226 0.105

4.2.1 Results

With the Mean Squared Error (MSE) scores per balancing method, as seen in Table 16,
the different balancing methods can be compared against each other. The relatively
good performance of the base (unbalanced) dataset indicates that balancing is not
necessary when the only objective is to maximize classification performance. When
achieving the highest classification performance on the slimmed down dataset is not
the (main) goal, it may be wise to in fact employ a balancing method. This could
be done when one wants to train a classifier that is ’fair’ to both types of objects
(negations and non-negations). In this case, it is recommended to use the method
of oversampling the minority type for balancing, as this method performed the best
during testing. It is important to note that the balancing is not done on classes of
objects(the classes depicting positive sentiment and negative sentiment) but rather
on more complex categories of objects, which are in this case the negations and the
non-negations.

4.3 Full dataset

4.3.1 Baseline performance

Before the results of the different experiments on the full dataset are listed, the classi-
fication results on the raw (baseline) dataset are presented. These classification results
are presented in Table 17.
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Table 17: Classification results after training on the raw (baseline) dataset. Five se-
parate measurements are done, each with 20 epochs per training round.
Sample standard deviations based on these 5 measurements are also presen-
ted. Mean Squared Error (MSE) is calculated based on the individual errors
between the expected classifications and the mean actual classifications.

Classified Ob-
ject

Expected
classifi-
cation

Mean Actual
classification

Standard de-
viation

Error

’so great’ 1 0.752 0.040 0.248
’not great’ 0 0.364 0.056 0.364
’so nice’ 1 0.686 0.029 0.314
’not nice’ 0 0.324 0.066 0.324
’so happy’ 1 0.795 0.018 0.205
’not happy’ 0 0.166 0.035 0.166
’so awesome’ 1 0.777 0.040 0.223
’not awesome’ 0 0.390 0.035 0.390
’so cool’ 1 0.751 0.046 0.249
’not cool’ 0 0.225 0.016 0.225
’so sad’ 0 0.046 0.010 0.046
’not sad’ 1 0.400 0.113 0.600
’so bad’ 0 0.149 0.027 0.149
’not bad’ 1 0.574 0.072 0.426
’so sorry’ 0 0.118 0.032 0.118
’not sorry’ 1 0.449 0.099 0.551
’so sick’ 0 0.072 0.008 0.072
’not sick’ 1 0.325 0.040 0.675
’so boring’ 0 0.173 0.024 0.173
’not boring’ 1 0.520 0.035 0.480
Mean Squa-
red Error
(MSE)

0.119

As seen in Table 17, results of misclassified objects are marked red. An object is
considered misclassified if the rounded result value is not the same as the actual class
of the object. These results mean that there is still work to be done on improving the
training and construction of the actual classifier. A way of improving classification
performance would be to add artificial objects to the dataset. Which objects to add is
determined by the weakness of the classifier, in other words: what (type of) objects are
misclassified during testing of the classifier? Results on experiments with artificially
enhanced datasets are displayed in the relevant upcoming sections.
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4.3.2 Adding artificial objects to the dataset

As seen in the previous section, using the best performing neural network design to
train and test on the raw dataset of 2-grams will result in a few misclassified nega-
tion recognition objects. In this section, not the neural network design is optimized,
but the input dataset itself. As seen in the previous subsection on training with a
smaller and more specialized dataset, it is possible to use sampling to influence the
classification results on certain objects (or the dataset as a whole). As the title of
this subsection says, the method of adding additional artificial objects to the dataset
is attempted. This method entails creating (or copying) relevant negation recognition
objects of which the performance falls short. The aim of adding these artificial objects
is to improve the negation recognition performance on these objects and preferably on
the entire dataset.
Table 18 shows the Mean Squared Error (MSE) and the misclassified negation recog-
nition objects after adding a certain amount of artificial negation recognition objects.
This amount is displayed as the percentage of objects in the original raw 2-gram da-
taset. This original 2-gram dataset size is displayed in Table 10. The artificial objects
that are added consist of randomly chosen objects from the relevant negation recogni-
tion object list as shown in Table 17.

Table 18: Classification performance after adding artificial objects. These artificial
objects consist of all negation recognition objects. The number of object
added is displayed as percentage of the original 2-gram dataset size.

# of objects added to
the raw dataset

MSE Objects misclassified

0% 0.119 ”not sad”, ”not sorry”, ”not sick”
0.1% 0.022 -
0.5% 0.004 -
1% 0.001 -
2% 0.000 -
3% 0.000 -
4% 0.000 -
5% 0.000 -

As seen in Table 18, adding only a relatively small set of artificial negation recogni-
tion objects enable the neural network to train itself such that these negation recog-
nition objects are no longer misclassified. The only drawback of this improvement is
that additional assumptions on the dataset have to be made: the objects to include in
the artificial addition set have to be chosen based on their meaning in the language of
the dataset.
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4.3.3 Generalization when adding artificial objects to the dataset

To test out whether the classifier, the neural network, is able to learn to not only
correctly classify the objects that are artificially adding, but also relating negation
recogntion objects, more tests are done. In this test, some of the relevant negation
recognition are added, which are displayed in Table 19. The aim of this test is to figure
out whether the neural network is able to generalize and improve the classifications of
the other negation recognition object as well (also displayed in Table 19).
Table 20 shows that Mean Squared Error (MSE) and the misclassified negation re-
cognition objects after adding a certain amount of these selected artificial negation
recognition objects. This amount is displayed as the percentage of objects in the ori-
ginal raw 2-gram dataset. This original 2-gram dataset size is displayed in Table 10.
The artificial objects that are added consist of randomly chosen objects from the set
of relevant negation recognition objects to include (displayed in Table 19).

Table 19: Setup of the generalization experiments, presenting an overview of which
objects to artificially add to the dataset and which not to add.

Objects artificially added
’so bad’
’not bad’
’so boring’
’not boring’
Objects not artificially added
’so great’
’not great’
’so nice’
’not nice’
’so happy’
’not happy’
’so awesome’
’not awesome’
’so cool’
’not cool’
’so sad’
’not sad’
’so sorry’
’not sorry’
’so sick’
’not sick’
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Table 20: Classification performance after adding the selected set of artificial objects.
The number of object added is displayed as percentage of the original 2-gram
dataset size.

# of objects added to
the raw dataset

MSE Objects misclassified

0% 0.119 ”not sad”, ”not sorry”, ”not sick”
0.1% 0.115 ’not sad’, ’not sorry’, ’not sick’
0.5% 0.108 ’not sorry’, ’not sick’
1% 0.099 ’not sorry’, ’not sick’
2% 0.125 ’not sorry’, ’not sick’
3% 0.112 ’not sorry’, ’not sick’
4% 0.101 ’not sorry’, ’not sick’
5% 0.097 ’not sorry’, ’not sick’

As seen in Table 20, adding a selected set of artificial negation recognition objects
to the dataset before training the neural network will result in a slight improvement in
the classification of other negation recognition objects that are not explicitly including
in the artificial addition set. However, this improvement proves to be small and some
of the negation recognition objects are still being misclassified. An explanation for
this would be the complexity of the dataset, which often contains wrongly classified
objects. Furthermore, not every 2-gram relevant to negation recognition contains the
same sentiment as the entire tweet. All of this, combined with the fact that not all of
these words are trained to be very similar (that is, have a similar word embedding),
results in the neural network being able to only show a limited form of generalization
capability.

4.4 Word embeddings

4.4.1 Embedding of sentiment

When the problem of sentiment recognition is considered, the first and foremost ob-
jective of the neural network is to learn embeddings and weights that results in positive
input words being classified as a positive sentence, and vice versa. This learning of
positive and negative can be seen by looking at the individual word embeddings as
well. To show this, Table 21 shows the embeddings of the words that are distinctly
positive or negative and are relevant to the problem of negation recognition.
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Table 21: Learned 1D word embeddings of the important negation recognition terms

Term 1D embedding
’great’ −0.365
’nice’ −0.256
’happy’ −0.282
’awesome’ −0.362
’cool’ −0.262
’sad’ 1.62
’bad’ 0.518
’sorry’ 0.521
’sick’ 0.973
’boring’ 0.375

Note that it might seem strange that these positive words have such a strong nega-
tive embedding and that these negative words have such a strong positive embedding.
However, this is possible due to the fact that within the whole neural network that
processes these embeddings there might be multiplications with negative weights, tur-
ning these negative embeddings into positive result values for positive words and these
positive values for negative embeddings into negative result values.
Another interesting set of word embeddings is the set of most positive and negative
words based on their embeddings. This list of words can be computed by calculating
all word embeddings through the normal neural network training and then inspecting
the word embeddings that have the largest (absolute) values. For this experiment,
words that appear 1000 times or less or ignored, as these words are not fairly repre-
sented in the dataset, meaning the learned sentiments values of these words might be
too extreme. Table 22 lists the top 10 most positive and negative words based on their
embeddings after training the word embedding neural network.
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Table 22: Top 5 words that are the most positive or negative, according to their 1D
embeddings

Term 1D embedding
’congratulations’ −0.972
’welcome’ −0.742
’www’ −0.654
’proud’ −0.646
’congrats’ −0.642
’smile’ −0.632
’thanks’ −0.569
’thank’ −0.547
’cheers’ −0.525
’hehehe’ −0.505
’sad’ 1.621
’bummed’ 1.517
’fathers’ 1.429
’gutted’ 1.400
’depressed’ 1.312
’sadly’ 1.268
’upset’ 1.187
’hurts’ 1.153
’disappointed’ 1.134
’hurting’ 1.124

As seen in the table, most of the words from the list of strongest embeddings are
clearly (strongly) positive or negative, meaning the process of calculating 1D word
embeddings is a reliable method of finding out the most positive and negative words
in a sentiment dataset. Again, it can be seen that the most postive words are embedded
as negative values, and the most negative words are embedded as the most positive
values. This is again because the neural network will multiply these word embeddings
with a negative number during the classification process, resulting in a positive output
for positive sentences and a negative output for the sentences of negative sentiment.

4.5 Combining partial classifications

As described in the section on the experiment setups, the problem of combining partial
(subset) classifications is tested used two different experimental setups. In these two
experimental setups, there is a difference in the dataset but also in the combining
methods that are tested. These different combining methods are displayed again in
Table 23.
The results of these experiments are displayed in Table 24.
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Table 23: The different combining methods, including a short description

Method name Method description
Averaging all n-grams Taking the average of all subset n-gram classifi-

cations
Averaging min and max n-
gram result

Taking the average of the minimum and the max-
imum n-gram classifications (out of all classifica-
tion)

Strongest result Taking the strongest (largest outlying) result
from all n-gram classifications

Negation n-gram result
only

Only taking the result of the negation n-gram

Table 24: The classifcation errors on entire tweets (plus sample standard deviation)
of the tested combining methods in the two different experimental setups.
Errors and error standard deviations are taken from 5 trials.

Averaging
all n-
grams

Averaging
min and
max
n-gram
result

Strongest
result

Negation
n-gram
result
only

Naive
Bayes
(original
state-of-
the-art)

Setup 1: all
tweets

0.410
(0.001)

0.403
(0.003)

0.257
(0.006)

N/A 0.242 (0.001)
/ 0.25[20]

Setup 2:
only tweets
containing
a negation

0.432
(0.003)

0.426
(0.004)

0.267
(0.006)

0.392
(0.006)

0.289 (0.001)

For both the experimental setups, it can be seen that the method which takes the
strongest minimum and maximum values is the best performing method for combining
individual 2-gram classifcations to form a classification on a complete sentence. As
mentioned earlier, the state of the art performance on these entire tweets is a binary
classification performance of 75%[20], meaning this best performing combining method
has a performance comparable to the state-of-the-art performance.
The fact that the other combining methods, which take more values into account and
then averages them, perform less well shows that taking all subset classifications into
account is a much too conservative and much too careful approach. This difference
in combining method performances also show that, most of the time, only a relatively
small part of the full sentence is actually important in determining whether a sentence
is of positive sentiment or of negative sentiment.
Another important result is the slight underperformance of all methods on experiment
setup 2: the subset of tweets that do contain a negation. A cause for this could be
that these tweets that do contain a negation are often more complex and/or contain
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misleading subsets (n-grams) of text. Often the subset of the sentence that does
contain the negation is the most important subset (as seen in the performance of the
method taking only the negation subset into account). However, only paying attention
to the subset of the full sentence that does contain a negation will not yield the best
classification results.
The last, but probably most useful result is the classificiation result of the state-of-the-
art method introduced in the paper describing the original dataset[20] on the tweets
containing a negation. It can be seen that using the combining method which takes
the strong result into account with individual (subset) classifications originating from
a word embedding neural network will result in an outperformance of the (state-of-
the-art) classification method discussed by the original author of the dataset, which is
the Naive Bayes classifier.
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5 Conclusion

To conclude the research, several subsections are written to summarize what has been
written in this paper. First of all, an overview of the actual experiments is given. Next,
the conclusions drawn from the results of these experiments is reiterated in one section.
Last, an overview of potential improvements and future work is given, highlighting the
shortcomings and future challenges that arise from the drawn conclusions.

5.1 What has been done?

In this thesis, the problem of recognizing and handling negations has been addres-
sed. These negations are observed in a variety of machine learning problems. In
most of these problems, negation handling is a sub-problem of a much larger, more
well-known machine learning problem. Apart from this theoretical notion of negations,
more practical experiments with actual problems on real-world datasets have also been
done. These experiments were based around the problem of sentiment classification
in short texts (in this case tweets from a Twitter dataset) and the sub-problem of
recognizing and handling negations to improve the overall classification of sentiment
in these short texts.
With the problems of sentiment classification and negation handling within the con-
text of sentiment classification defined, several experiments have been performed:
The first set of experiments was done to figure out the best performing design para-
meters of the classifier (a word embedding neural network). Several important design
parameters have been identified and multiple values were tested to figure out what
parameter values lead to the highest performance.
The next experiments were done on the performance of negation recognition using the
neural network. Experiments have been done on 2-grams that have been taken from
the tweets in the dataset. The aim of these experiments was to figure out whether it
would be beneficial to perform dataset preprocessing before performing the actual clas-
sifying using the word embedding neural network. These experiments have been done
on the full dataset and on a slimmed down dataset that is specifically pre-processed to
only include objects relevant for negation recognition within sentiment classification.
Experiments have also been done to show the performance and ability of the word
embedding layer within the neural network. Word embeddings of word relevant to the
problem of negation recognition have been inspected. On the other hand, word em-
beddings have been inspected to figure out whether there was a relation between the
values of these embeddings and the actual meanings of the words that are embedding
(in the context of negation recognition for sentiment classification).
The last set of experiments was done to figure out whether it would be possible to
combine said n-gram classifications to perform classification on whole texts. This to
be able to fairly compare this combining performance to the state-of-the-art. Several
combining methods have been measured, with several different dataset setups.
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5.2 What can be concluded?

The actual conclusions from these experiments can be formulated as follows:
First of all, the formulated theoretical notion of negation recognizing and handling
does exist within several larger machine learning classification problems. Some of the
machine learning problems that do contain the sub-problem of negation handling in-
clude detecting sarcasm in speech classification and recognizing negations of positive
or negative words in the problem of textual sentiment classification.
For negation recognition in the context of sentiment classification, using the neural
network design displayed in Figure 5 results in the highest performance. Another
important conclusion to draw from these design experiments is that the problem of
sentiment classification itself is not complex enough to warrant a (more) complex neu-
ral network design. However, the problem of negation recognition and handling does
require a more complex, less than basic, neural network design. Thus, a relatively
complex neural network design has been chosen as the final design, to accommodate
both of these classification problems.
The preprocessing experiments showed results that do make an argument for per-
forming preprocessing before training the classifying neural network. However this
preprocessing requires additional assumptions on the dataset: namely knowing which
objects are of strong sentiment and relevant to the problem of negation recognition.
In this case, when preprocessing can be performed, it is recommended to add artificial
objects relevant to the problem of negation recognition to the dataset. The neural
network is capable of some generalization, meaning that there is a slight increase in
classification performance on some negation word structures when other negation data
is explicitly added to the dataset in the form of artificial objects.
When looking at the word embeddings, the sentiment of individual words can clearly
be told from their respective embeddings. This words both ways: words that are
known as strongly positive or negative have relatively strong embedding values, while
at the same time the strongest (both positive and negative) embedding vectors are
tied to strongly positive and negative words.
Some strong n-gram combining methods have been found, which show a performance
comparable to the state-of-the-art methods that are used. For the short texts that do
contain a negation, an improvement of the state-of-the-art has been made with the
training neural network combined with one of the combining methods.

5.3 Future work

The main shortcoming of the neural network design, as well as the experiments done
is that they’re only done on 2-grams taken from the entire texts to classify. Even more
complex negations could be identified if the n-gram size would be increased. However,
this would require the dataset to be of higher quality than the one used now, with
more of these negations to learn from included. When a fixed input size to the neural
network is required, there will always be a certain patterns in the dataset that are
not recognized, as the input size is just too small to accommodate for these latent
structures.
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Another area in which the classifier could be improved in an improved way of combi-
ning individual subset (n-gram) classifications. An interesting technique for this would
be to include the combining in the neural network itself. This can be done either by
keeping an internal memory (for example by using a recurrent neural network) or by
performing some sort of reduction of the input size (for example through convolution
and pooling[13]).
Finally, can the other special situations (textual sarcasm and adverbs influencing the
sentiment) within sentiment classification be solved using the same methodology and
models that have been used for negation recognition handling? How will word em-
bedding neural networks perform on these problems? Are they able to pick up/learn
these complex semantic structures?
In recent machine learning research, a lot of attention has been given to neural networks
for all kinds of problems. These small but often complex and challenging sub-problems,
combined with the power of neural networks, could be the point of focus for future
research, in which hopefully new insights are gained and performance increments are
achieved.
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