
European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2006
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Abstract. Compressible multiphase models have been studied for a long time inspired
on different applications in diverse engineering areas. Solutions for these equations are
not simple and researcher have spent much time trying to bring answers. The possibility
to properly solve these equations and perform real simulations represent a very ambitious
goal. Today new numerical techniques show a promising path to reach the goal.

We are concerned with the construction of Godunov-type schemes for compressible mul-
tiphase flows. In particular we study finite volume methods for the Baer-Nunziato equa-
tions,1 a system of seven equations for the 1D case.

First we assess the stratified approach reported in,2 whereby the two-phase Riemann
problem is reduced to a set of simpler ones in which the initial states are single phases.

Then we propose the extension of the EVILIN 3 approach to solve approximately the
complete two phase Riemann problem. Numerical results for test problems with exact
solutions4 are presented.

1 INTRODUCTION

For nearly 30 years multiphase models have been widely studied and a number of
models have been proposed, see for example Baer-Nunziato1 for deflagration to detonation
transition and Saurel-Abgrall5 for two compressible fluids. See also Romenski,8 Stewart
and Wendroff,9 Drew,10 Ishii11 or Gidaspow12 amongst others. It is known today that
the fact of having two pressure models preserves hyperbolicity. Considering numerical
methods for hyperbolic equations the experience is vast for simple problems, now this
experience is coming into multiphase models and a major effort has been put into it, for
example the work of Andrianov and Warnecke with their inverse problem,7 Chang and
Liou,16 Abgrall13 or Schwendeman et al.4 where an iterative two step Riemann solver is
used, amongst others.

The work4 is very interesting where they manage to solve the complete Riemann prob-
lem iteratively, in a similar way as the Riemann solver presented in Castro and Toro6
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for the Saurel-Abgrall isentropic model. Here the key point is to find proper jump rela-
tions across the solid contact, making use of an auxiliary variable and then solving the
decoupled system for the solid and gas phase. As Schwendeman et al. say in the article,
this procedure is expensive in computational time and a less expensive procedure is still
needed.

In this article we deal with the problem of approximating solutions of compressible
multiphase flow using finite volume numerical methods of the Godunov type. A major
problem is the calculation of the numerical fluxes, which in the Godunov approach come
from the solution of the Riemann problem.

Two approaches are used to solve the Riemann problem: one applies the EVILIN
Riemann solver and the other uses a stratification hypothesis2 prior to the application
of the EVILIN3 or the exact Riemann solver.14 Because the interaction between the two
phases represents a major difficult numerically, which results in a contact wave, complete
Riemann solvers are needed. Numerical results for typical test problems are presented,
including convergence rate tests.

The paper is organized as follow: in section 2 the Baer-Nunziato multiphase model is
written; in section 3 the numerical method is developed; in section 4 test problems are
presented and finally in section 5 conclusions are drawn.

2 THE BAER-NUNZIATO MULTIPHASE MODEL

The multiphase model proposed by Baer-Nunziato1 represents the interaction between
two compressible fluids considering non-equilibrium pressure. Originally presented as a
deflagration to detonation transition model (DDT) was analized by Embid et al.15 The
two compressible fluids are denoted by suffixes k = 1, 2. The interphase velocity and
pressure are respectively denoted by u1, p2. Due to the presence of interphase terms the
system cannot be cast in conservative form. Neglecting exchange terms such as chemical
reactions and drag forces, the homogeneous one dimensional model is written in (1),
using the regular notation where ρk denotes density, uk is particle velocity, pk is pressure,
Ek = ρk(

1
2
u2

k+ek) is total energy, ek is specific energy and αk is the void fraction, assuming∑
αk = 1.

∂
∂t(α1ρ1) + ∂

∂x(α1ρ1u1) = 0
∂
∂t(α1ρ1u1) + ∂

∂x(α1[ρ1u
2
1 + p1]) − p2

∂
∂x(α1) = 0

∂
∂t(α1E1) + ∂

∂x(α1u1[E1 + p1]) − p2u1
∂
∂x

(α1) = 0
∂
∂t(α2ρ2) + ∂

∂x(α2ρ2u2) = 0
∂
∂t(α2ρ2u2) + ∂

∂x(α2[ρ2u
2
2 + p2]) + p2

∂
∂x(α1) = 0

∂
∂t(α2E2) + ∂

∂x(α2u2[E2 + p2]) + p2u1
∂
∂x(α1) = 0

∂
∂t(α1) + u1

∂
∂x(α1) = 0





(1)
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The first three equations in (1) represent the space and time evolution of fluid 1,
as the classical gas dynamic Euler system, plus the inclusion of the interaction terms
between both phases. An analogous description applies for the fourth to sixth equations
for fluid 2. The seventh equation is a closing relation that represents the advection of
the interface between fluids. For both fluids the stiffened equation of state (EOS) is used
giving properly values for γk and po

k. The specific energy ek and sound speed ak are,

ek =
pk + γkp

o
k

ρk(γk − 1)
, a2

k = (γk − 1)(
pk

ρk

+ ek) (2)

System (1) can be written in vectorial notation as follows,

∂tQ + ∂xF(Q) + A(Q) ∂xW(Q) = S(Q), (3)

where vector Q is the conservative unknown vector, F(Q) is a flux, A(Q) is a coefficient
matrix with variable entries. Equation (3) represents a general hyperbolic system with
conservative and non-conservative terms and their choice is somewhat arbitrary. In our
experience the following represents the most desirable combination for system (1).

Q =




α1ρ1

α1ρ1u1

α1E1

α2ρ2

α2ρ2u2

α2E2

α1




F(Q) =




α1ρ1u1

α1[ρ1u
2
1 + p1]

α1u1[E1 + p1]
α2ρ2u2

α2[ρ2u
2
2 + p2]

α2u2[E2 + p2]
0




(4)

A(Q) =




0 0 0 0 0 0 0
0 0 0 0 0 0 −p2

0 0 0 0 0 0 −p2u1

0 0 0 0 0 0 0
0 0 0 0 0 0 p2

0 0 0 0 0 0 p2u1

0 0 0 0 0 0 u1




W(Q) =




ρ1

u1

p1

ρ2

u2

p2

α1




(5)

An alternative formulation for system (1) is the fully non-conservative one where the
unknowns are the physical variables. This formulation will allow us to extract very useful
information from the eigenstructure of the system which in quasi-linear form reads.

∂tW + B(W)∂xW = 0 , (6)
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where W is the vector of physical variables and B(W) is the Jacobian matrix.

W =




ρ1

u1

p1

ρ2

u2

p2

α1




B(W) =




u1 ρ1 0 0 0 0 0

0 u1
1
ρ1

0 0 0 p1 − p2
α1ρ1

0 a2
1ρ1 u1 0 0 0 0

0 0 0 u2 ρ2 0
ρ2(u1 − u2)

α2

0 0 0 0 u2
1
ρ2

0

0 0 0 0 a2
2ρ2 u2

a2
2ρ2(u1 − u2)

α2

0 0 0 0 0 0 u1




(7)

The (real) eigenvalues are

λ1 = u1 − a1, λ2 = u2 − a2, λ3 = u2, λ4 = λ5 = u1, λ6 = u2 + a2, λ7 = u1 + a1 (8)

with corresponding right eigenvectors

R(1) =




−ρ1/a1

1
−ρ1a1

0
0
0
0




, R(2) =




0
0
0

−ρ2/a2

1
−ρ2a2

0




, R(3) =




0
0
0
1
0
0
0




, R(4) =




1
0
0
0
0
0
0




, (9)

R(5) =




0
0

α2(p2 − p1)
(
(u1 − u2)

2 − a2
2

)

α1ρ2

(u1 − u2)
2

−a2
2(u1 − u2)

ρ2

a2
2(u1 − u2)

2

α2

(
(u1 − u2)

2 − a2
2

)

ρ2




, R(6) =




0
0
0

ρ2/a2

1
ρ2a2

0




, R(7) =




ρ1/a1

1
ρ1a1

0
0
0
0




, (10)

From (8) we see that all eigenvalues of B(W) are real; however they are not distinct and
therefore this system is not strictly hyperbolic. Possible singular points are: (a) u1 = u2,
(b) u1 = u2 ± a2, (c) u1 ± a1 = u2, and (d) u1 ± a1 = u2 ± a2. Condition (b), called
sonic condition or chocked flow condition, represents a real problem in which case the
eigenvectors do not form a complete set of linear independent vector.

Characteristic fields associated with λ1, λ2, λ6 and λ7 are genuinely non-linear fields
consequently shock or rarefaction waves are produced. Waves associated to λ3, λ4 and
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λ5 are linearly degenerated fields therefore contact waves are produced, more over, λ3 is
associated to fluid 2, λ4 is associated to fluid 1 and λ5 connect both fluids and collide
with λ4. For details see the work of Embid and Baer.15

In the following, two numerical methods are constructed for solving this system. The
first one solve the Riemann problem considering the hole system applying the EVILIN3

approach while the second one assume a stratification hypothesis2 and simpler problems
are solved before constructing the solution of the full system.

3 NUMERICAL METHODS

Integrating equation (3) over the control volume Vi = [xi−1/2, xi+1/2]× [tn, tn+1] in x− t
space with x = i∆x, t = n∆t and assuming a local linearization of A(Q) we have

Qn+1
i = Qn

i −
∆t

∆x

[
Fi+ 1

2

− Fi− 1

2

]
−

∆t

∆x
Ai

[
Wi+ 1

2

− Wi− 1

2

]
+ ∆tSi (11)

Qn
i ≈ 1

∆x

∫ x
i+1

2

x
i−

1
2

Q(χ, tn) dχ

Fi+ 1

2

≈ 1
∆t

∫ tn+1

tn
F(Q(xi+ 1

2

, τ)) dτ

Wi+ 1

2

≈ 1
∆t

∫ tn+1

tn
W(Q(xi+ 1

2

, τ)) dτ

Ai = A
(

1
2
(Wi+ 1

2

+ Wi− 1

2

)
)

Si ≈ 1
∆x∆t

∫ tn+1

tn

∫ x
i+1

2

x
i−

1
2

S(Q(χ, τ)) dχ dτ

(12)

In (12) Qn
i is a spatial integral average within volume i of length ∆x at time level n,

Fi+ 1

2

is the numerical flux at the interface x = xi+ 1

2

integrated in time from tn to tn+1

while Wi+ 1

2

is a time integral average of the state at the same interface; the coefficient
matrix Ai is an average within the cell i and the source term Si is an approximation to
a space-time integral over the control volume Vi; ∆t is the time step computed from a
stability condition in the range 0 < Ccfl ≤ 1, where Ccfl is the usual Courant number
coefficient. Scheme (11) is an explicit one step method for updating cell average. The
scheme is defined once an intercell quantities and numerical sources are known. A key
quantity is Qi+ 1

2

. For a first-order method this is obtained by the classical Riemann
problem.
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∂tQ + ∂xF(Q) + A(Q) ∂xW(Q) = S(Q),

Q(x, 0) =

{
QL = Qn

i if x < xi+ 1

2

QR = Qn
i+1 if x > xi+ 1

2





(13)

Solving the Riemann problem (13) with pice-wise constant data have been a goal for

xi xi+1
x

λ7

λ1

λ2

λ3 λ4

λ6

λ5

t

1

2
i +x

1

2
i +Q

Qi Qi+1

Figure 1: Riemann problem for the full system with initial data Qi and Qi+1. The fan is opened with
seven waves and the intercell state Qi+ 1

2

is on the t-axes

many years. There are two ways of going about to calculate interface quantities and thus
to determine a numerical schemes. These are the subjects of the following two sections.

3.1 Stratified formulation

The stratified formulation of our interest was reported in2 where the two-phase Rie-
mann problem is reduced to a set of simpler ones in for single phases. These simpler
problems obey the single phase gas dynamic Euler system for which more choices to solve
the Riemann problem are available. Here we will couple this formulation with the exact
and EVILIN Riemann solvers.

In general multifluid models are constructed from averaging techniques11 where the
ratio of the volume occupied by each fluid is known but not the spatial distribution.
Applying the stratified hypothesis this spatial distribution is constructed based on the
void fraction αk producing a very interesting configuration. In figure 2 this is graphically
represented, where two adjacent cells contain a mixture of two phases and after the
hypothesis a clear stratified representation is shown where three interfaces are clearly
visibly. Four interactions are possible depending the void fraction in each cell. These
interaction account for: fluid 1 - fluid 1, fluid 1 - fluid 2, fluid 2 - fluid 1 and fluid 2 - fluid
2. Each interaction has a weight ωl with l = 1, 2, 3, 4 defined as follow
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ω
4

ω
3

ω
1

α

1

0
x

α1

1 1

2
2

α1

α2α2

1

2
i +xi x

i+1 x

Figure 2: Stratified approach: The upper figure shows two adjacent cells with two fluid mixtures. The
bottom figure shows the representation of the data after applying the stratification hypothesis.

ω1 = min{α1i, α1i+1} ω4 = min{α2i, α2i+1}
ω2 = max{0, α1i − α1i+1} ω3 = max{0, α2i − α2i+1}

, (14)

with the conditions ω2 ·ω3 = 0 and ω1 +ω2 +ω3 +ω4 = 1. With these weights it is possible
to compute the intercell state Qi+ 1

2

= ω1Q
(1)

i+ 1

2

+ ω2Q
(2)

i+ 1

2

+ ω3Q
(3)

i+ 1

2

+ ω4Q
(4)

i+ 1

2

where Q
(l)

i+ 1

2

is the solution of the Riemann problem for a single phase Euler system.

∂tQ + ∂xF(Q) = 0

Q(x,0) =

{
QL = Qk,i if x < xi+ 1

2

QR = Qk,i+1 if x > xi+ 1

2





(15)

The initial data Qk,i and Qk,i+1 with k = 1, 2 are computed for cell i as

Qi =




α1ρ1

α1ρ1u1

α1E1

α2ρ2

α2ρ2u2

α2E2

α1




i

⇒

Q1,i =




ρ1

ρ1u1

E1




i

Q2,i =




ρ2

ρ2u2

E2




i

(16)

The Riemann problems 15 have a well known wave structure. The velocity u∗ between
each pair of non-linear waves, (the velocity of the contact wave) plays a very important
role. We define the pair {kL, kR} with kL = 1, 2 and kR = 1, 2 for all combinations
between fluid 1 or 2 into cell i(L) or i + 1(R). Following Table 1 the solution of the

Riemann problem is correctly assigned to Q
(l)

i+ 1

2

.
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kL kR l
1 1 1
2 2 4
1 2 2 if u∗ > 0
1 2 3 if u∗ < 0
2 1 2 if u∗ < 0
2 1 3 if u∗ > 0

Table 1: Correct assignment for intercell vectors Q
(l)

i+ 1

2

3.2 EVILIN Riemann solver for a non conservative formulation

In this section we present the EVILIN Riemann solver for the Baer-Nunziato system.
EVILIN approach was presented by Toro3 and the idea is to evolve the initial data by a
simple scheme and solve a linear Riemann problem with evolved data as initial condition.
EVILIN follows the framework of the MUSTA19 Riemann solver, but includes upwind
information. In figure 3 the initial data Q0 = Qi and Q1 = Qi+1 is evolved to Q̄L and
Q̄R using the non conservative step of equations (17-18).

Q0 Q1

QL QR

d

τ

λ7

λ1

λ2

λ3 λ4

λ6

λ5
1

2
i +Q

Figure 3: Evilin Riemann solver for non conservative formulation. Q0 and Q1 is the initial data evolved
to Q̄L and Q̄R which is solved with a linear solver in order to obtain Qi+ 1

2

. All performed in local space
χ − τ

Q
1

2

L = Q0

Q
1

2

C = 1
2
(Q0 + Q1) −

1
2

∆τ
∆d

[F(Q1) − F(Q0)] −
1
2

∆τ
∆d

Ã
1

2

C [W(Q1) − W(Q0)]

Ã
1

2

C = A
(

1
2
(Q0 + Q1)

)

Q
1

2

R = Q1

(17)
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Q̄L = 1
2
(Q

1

2

L + Q
1

2

C) − 1
2

∆τ
∆d

[
F(Q

1

2

C) − F(Q
1

2

L)
]
− 1

2
∆τ
∆d

ÃL

[
W(Q

1

2

C) − W(Q
1

2

L)
]

Q̄R = 1
2
(Q

1

2

C + Q
1

2

R) − 1
2

∆τ
∆d

[
F(Q

1

2

R) − F(Q
1

2

C)
]
− 1

2
∆τ
∆d

ÃR

[
W(Q

1

2

R) − W(Q
1

2

C)
]

ÃL = A

(
1
2
(Q

1

2

L + Q
1

2

C)
)

ÃR = A

(
1
2
(Q

1

2

C + Q
1

2

R)
)

(18)

Once the initial data have been evolved to Q̄L and Q̄R, a linear Riemann solver is used
in order to find the intercell state Qi+1/2 solving the initial value problem (19).

∂tW + B̂∂xW = 0,

W(x, 0) =

{
WL ≡ W(Q̄L) if x < 0
WR ≡ W(Q̄R) if x > 0





(19)

Qi+1/2 is used in (11) for updating cell averages.

3.3 The MUSCL Hancock method

A second order scheme17 can be constructed using the MUSCL Hancock approach.
Data reconstruction is performed using piece wise linear functions and boundary extrap-
olated values are evolved by half a time step and then used as initial data for a piece-wise
constant data Riemann problem. Non oscillatory properties come from TVD slope lim-
iters applied to the data reconstruction step. See18 for more details. The piece wise linear
reconstruction has boundary extrapolated values

WL
i = Wn

i −
1

2
∆i , WR

i = Wn
i +

1

2
∆i , (20)

where

∆i =
1

2
(1 + ω)∆i− 1

2

+
1

2
(1 − ω)∆i+ 1

2

,

∆i− 1

2

= Wi − Wi−1 , ∆i+ 1

2

= Wi+1 − Wi ,

with ω ǫ [−1, 1]. The boundary extrapolated values (20) are evolved thus

W
L

i = WL
i +

1

2

∆t

∆x
B̃i

[
WL

i − WR
i

]
, (21)

W
R

i = WR
i +

1

2

∆t

∆x
B̃i

[
WL

i − WR
i

]
, (22)

leading to the expressions

W
L

i = Wn
i −

1

2

[
I +

∆t

∆x
B̃i

]
∆i , W

R

i = Wn
i +

1

2

[
I −

∆t

∆x
B̃i

]
∆i , (23)

where the coefficient matrix is taken as B̃i = B(Wn
i ). The extrapolated values will be

used in any of the method presented in section 3.1 or 3.2 as initial conditions.
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4 TEST PROBLEMS

In this section we present two test problems to assess the numerical solutions. The first
test is a shock tube problem for liquid and gas, while the second one is a convergence test.
For each test three numerical solutions are shown, EVILIN, StraEv and StraEx. EVILIN
comes from applying the EVILIN Riemann solver to the full seven equation system.
StraEv comes from applying the stratification hypothesis plus EVILIN Riemann solver
for the interaction between identical fluids and the exact Riemann solver for different
fluids. Finally, StarEx consist of the stratification hypothesis plus the exact Riemann
solver for all interactions. For test 1, first and second order numerical solutions are
presented with two meshes, 100 and 800 cells. For test 2 a smooth initial condition is set
and evolved until t = 0.1.

4.1 Test 1: Shock tube problem for liquid and gas

This test problem generates the interaction between one liquid and one gas with the
following constants for the equation of state: γ1 = 4.4, po

1 = 6.0 × 108, γ2 = 1.4 and
po

2 = 0.0. The initial discontinuity is at x = 0.5, the CFL coefficient is Ccfl = 0.5 and the
output time is t = 0.25× 10−3 s. The wave structure of the solution is shown in figure 4.
Rarefaction waves travelling to the left are present in both fluids and shock waves travel
to the right, also in both fluids. All three contact waves travel slowly to the right and are
indistinguishable from each other. Initial conditions are given in table 2.

x

t
Red: Fluid 1

Blue: Fluid 2

Figure 4: Wave pattern for test 1 with two left rarefactions, 2 right shocks and 3 contact waves

In figures 5 and 6 numerical results are presented. In each one first and second order
numerical methods are presented, with the first order method shown on top. For the
results shown in figures 5 and 6 we used 100 and 800 cells, respectively. The figures
show the density of fluid 1 and the velocity of fluid 2. The exact solution (courtesy of

10
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ρ1 u1 p1 α1 ρ2 u2 p2

WL 0.1 × 104 9.0 0.2 × 107 0.8 0.15 × 101 9.0 0.2 × 106

WR 0.1 × 104 5.0 0.18 × 106 0.2 0.1 × 101 5.0 0.18 × 106

Table 2: Initial conditions for shock tube problem for liquid and gas

Schwendeman et al.4) is shown by the black line. It is observed that results may be
improved by going from a first order to a second order scheme or by refining the mesh
from 100 to 800 cells. The EVILIN approach is more accurate in the presence of shocks
and rarefactions. All three methods produce spurious oscillations near the contact waves,
which tend to disappear with mesh refinement. A special comment on slowly moving
contacts is in order: these waves are badly smeared by ‘non-complete’ Riemann solvers,
whereas our method recognizes all of them and resolve them properly.

As mentioned above, computational cost can be a limitation when exact Riemann
solvers are used. The exact solution presented by Schwendeman et al. is computed
iteratively in two steps. In table 3 we compare the computational cost of the exact,
EVILIN, StraEv and StraEx Riemann solvers. It is clear that the exact solver is more
expensive than the others by a factor of three to five in the first order code. When the
order of the method increases this factor reduces to two to three, mainly to the additional
reconstruction procedure. An important aspect to emphasize is that as the order of the
method increases, the exact Riemann solver pays off. In our computations we observe
that the cost increase is about 20 percent for the exact solver, while the others show an
increase close to 50 percent.

Method 1st cpu time (s) ratio 2nd cpu time (s) ratio
Exact 27.53 1.00 33.68 1.00
EVILIN 8.79 0.32 15.22 0.45
StraEv 7.03 0.25 13.73 0.40
StraEx 5.45 0.19 12.05 0.35

Table 3: Computational cost for numerical methods normalized to the exact Riemann solver for Test 1
with 800 cells and first and second order.

4.2 Test2: Numerical convergence

With this test the numerical convergence rate is tested where the initial condition
generates a smooth solution with no discontinuities. In order to have a reference solution,
because no exact solution exists, a numerical solution with very fine mesh is used. The
initial data was taken from Schwendeman et al.4 and consists of constant density and
pressure for both fluids, constant velocity for fluid 2 and smooth transition for void fraction
and for the velocity of fluid 1, as follows.

ρ1(x, 0) = ρ2(x, 0) = 1.0, p1(x, 0) = p2(x, 0) = 1.0, v2(x, 0) = 0.0, (24)

v1(x, 0) =
1

2
+

1

2
tanh(20x − 10), α1(x, 0) =

1

2
+

2

5
tanh(20x − 8) (25)

11



C. E. Castro and E. F. Toro

Position x (m)

F
lu

id
1

D
en

si
ty

(K
g/

m
3 )

0 0.25 0.5 0.75 1

1000

1001

1002

1003

EVILIN
StraEV
StraEX

Position x (m)

F
lu

id
2

V
el

oc
ity

u
(m

/s
)

0 0.25 0.5 0.75 1

10

20

30

40

Position x (m)

F
lu

id
1

D
en

si
ty

(K
g/

m
3 )

0 0.25 0.5 0.75 1

1000

1001

1002

1003

Position x (m)

F
lu

id
2

V
el

oc
ity

u
(m

/s
)

0 0.25 0.5 0.75 1

10

20

30

40

Figure 5: Numerical results for Test 1: First order method on top while second order solution is bellow.
100 cell are used.
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Figure 6: Numerical results for Test 1: First order method on top while second order solution is bellow.
800 cell are used.

Parameters for the equation of state are γ1 = 4.4, po
1 = 0.0, γ2 = 1.4 and po

2 = 0.0. The
computational domain is [0, 1] for times t ∈ [0, 0.1]. Transmissive boundary conditions
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are used and four mesh sizes are employed: 100, 200, 400 and 800 cells. The convergence
rate and errors are computed using L1, L2 and L∞ norms. Convergence rates for first

L1 L2 L∞

Cells Error r Error r Error r
100 2.24 × 10−4 0.00 3.82 × 10−4 0.00 1.48 × 10−3 0.00
200 5.61 × 10−5 1.99 9.58 × 10−5 2.00 3.72 × 10−4 2.00
400 1.41 × 10−5 2.00 2.40 × 10−5 2.00 9.28 × 10−5 2.00
800 3.52 × 10−6 2.00 5.99 × 10−6 2.00 2.31 × 10−5 2.01

Table 4: L1, L2 and Linf norm for EVILIN method with MUSCL Hancock reconstruction.

L1 L2 L∞

Cells Error r Error r Error r
100 2.25 × 10−4 0.00 3.84 × 10−4 0.00 1.44 × 10−3 0.00
200 5.58 × 10−5 2.01 9.51 × 10−5 2.01 3.59 × 10−4 2.01
400 1.39 × 10−5 2.01 2.36 × 10−5 2.01 8.94 × 10−5 2.01
800 3.46 × 10−6 2.01 5.88 × 10−6 2.01 2.22 × 10−5 2.01

Table 5: L1, L2 and Linf norm for StraEv method with MUSCL Hancock reconstruction.

L1 L2 L∞

Cells Error r Error r Error r
100 2.28 × 10−4 0.00 3.88 × 10−4 0.00 1.44 × 10−3 0.00
200 5.73 × 10−5 1.99 9.74 × 10−5 2.00 3.62 × 10−4 1.99
400 1.43 × 10−5 2.00 2.44 × 10−5 2.00 9.05 × 10−5 2.00
800 3.58 × 10−6 2.00 6.08 × 10−6 2.00 2.26 × 10−5 2.00

Table 6: L1, L2 and Linf norm for StraEx method with MUSCL Hancock reconstruction.

the order scheme are not shown here but the expected order is reached. For second order
schemes using TVD limiters the order of convergence is around 1, as expected. If no
limiter is used and MUSCL reconstruction is performed, the order 2 is reached in all
norms and for all three numerical schemes, see table 4, 5 and 6.

5 CONCLUSIONS

We have presented three alternatives for the solution of the Riemann problem for the
Baer-Nunziato multiphase system. The EVILIN approach solves the full seven-equation
system, while StraEv and StraEx use the stratification hypothesis to solve smaller and
simpler problems. All three approaches constitute complete Riemann solvers. Conver-
gence to second order is reached using MUSCL reconstruction. The computational cost
indicates that these three solvers are less expensive than the exact solver and thus repre-
sent a promising alternative.
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