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We present a coalgebraic generalisation of Fischer anddr&dPropositional Dynamic Logic (PDL)
and Parikh’s Game Logic (GL). In earlier work, we proved a ergnstrong completeness result
for coalgebraic dynamic logics without iteration. The gmddraic semantics of such programs is
given by a monad’, and modalities are interpreted via a predicate lifthgvhose transpose is a
monad morphism fronT to the neighbourhood monad. In this paper, we show that ihitbead

T carries a complete semilattice structure, then we can dafingeration construct, and suitable
notions of diamond-likeness and box-likeness of prediifttegs which allows for the definition

of an axiomatisation parametric i, A and a chosen set of pointwise program operations. As our
main result, we show that if the pointwise operations aregatien-free” and Kleisli composition
left-distributes over the induced join on Kleisli arrowseh this axiomatisation is weakly complete
with respect to the class of standard models. As specianoss, we recover the weak completeness
of PDL and of dual-free Game Logic. As a modest new result wainltompleteness for dual-free
GL extended with intersection (demonic choice) of games.

1 Introduction

Propositional Dynamic Logic (PDL) [4] and its close cousiare Logic (GL) [14] are expressive,
yet computationally well-behaved extensions of modaldsgiCrucial for the increased expressiveness
of these logics is the *-operator (iteration) that allowsctumpute certain, relatively simple fixpoint
properties such as reachability or safety. This featureasoama price: completeness proofs for deduction
systems of logics with fixpoint operators are notoriouslifidilt. The paradigmatic example for this
phenomenon is provided by the modaicalculus: Walukiewicz's completeness proof from][19] for
Kozen'’s axiomatisation [10] is highly non-trivial and pessly not widely understood.

Our main contribution is a completeness proof for coalgebdsginamic logicswith iteration We
introduced coalgebraic dynamic logics in our previous Waijkas a natural generalisation of PDL and
GL with the aim to study various dynamic logics within a umifoframework that is parametric in the
type of models under consideration, or - categorically kipge- parametric in a given monad. In [7] we
presented an initial soundness and strong completenads figssuch logics. Crucially, however, this
only coverediteration-free variants This paper provides an important next step by extendingpoey
vious work to the coalgebraic dynamic logic with iteratidgks in the case of PDL, strong completeness
fails, hence our coalgebraic dynamic logics with iteratame (only) proved weakly complete. While
the concrete instances of our general completeness resultedl-known [11] 14], the abstract coalge-
braic nature of our proof allows us to provide a clear analgdithe general requirements needed for
the PDL/GL completeness proof, leading to the notions of tamd diamond-like modalities and of a
left-quantalic monad. As a modest new completeness resultlvain completeness for dual-free GL
extended by intersection (demonic choice) of games.
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At this relatively early stage of development our work hals@anainly regarded as a proof-of-concept
result: we provide evidence for the claim that completepessfs for so-called exogenous modal logics
can be generalised to the coalgebraic level. This opens wpnder of promising directions for future
research which we will discuss in the Conclusion.

2 Coalgebraic Dynamic Logic

2.1 Coalgebraic modal logic

We assume some familiarity with the basic theory of coalgdh€], monads and categories [13]. We
start by recalling basic notions from coalgebraic modaidognd fixing notation. For more information
and background on coalgebraic modal logic, we refer to [12].

For a seiX, we defineProp(X) to be the set of propositional formulas over Formally,Prop(X) is
generated by the grammatrop(X) > ¢ :i= xe X | T | ¢ | p N .

A modal signature\ is a collection of modalities with associated arities. lis {aper, we will only
consider unary modalities. For a $&étwe denote by\(X) the set of expressions(X) = {Ox | & € A}
The set# (A, Py) of A-modal formulas oveA and a seB, of atomic propositions is given by:

FNP)2¢=peR|T|-9[prd[Cp  CeA

LetT: Set — Set be a functor. AT -coalgebraic semantiasf .% (A, Py) is given by associating with
each$ € A a predicate liftingh : 2 = 20T, where2 denotes the contravariant powerset functor. A
T-model(X,y,V) then consists of a carrier skt aT-coalgebray: X — TX, and a valuatiotV : Py —
Z(X) that defines truth sets of atomic propositiong/ps=V(p). The truth sets of complex formulas
is defined inductively as usual with the modal case given[Byp] = v *(Ax([¢])).

A modal logic.Z = (A, Ax,Fr,Ru) consists of a modal signaturg a collection of rank-1 axioms
Ax C Prop(A(Prop(Py))), a collection FIC .% (A, Ry) of frame conditions, and a collection of inference
rules RuC .# (A, Ry) x .% (\,Py) which contains theongruence rulefrom ¢ < ¢ infer &¢ < Oy for
any modality> € A.

Given a modal logicZ = (A,Ax,Fr,Ru), the set of.#-derivable formulas is the smallest subset
of .Z#(N\,Py) that contains AxJFr, all propositional tautologies, is closed under moduseps, uni-
form substitution and under applications of substitutiostances of rules from Ru. For a formula
¢ € Z(N\,P) we writet-¢ ¢ if ¢ is Z-derivable. Furthermore is .Z-consistentf ¥/, —¢ and a
finite setd C .7 (A, Ry) is -Z-consistent if the formulg\ @ is .#-consistent.

Next, we recall the followingone-step notionfom the theory of coalgebraic logic. L¥tbe a set.

e Aformula ¢ € Prop(A(2(X))) is one-stepZ-derivable denoted-1, ¢, if ¢ is propositionally
entailed by the sefyt | 7: P — Z(X), € Ax}.

o Aset®d C Prop(A(Z(X))) is calledone-stepZ-consistentf there are no formulag, ..., ¢, € ®
such that, g1/ A dp— L.

e Let T be aSet-functor and assume a predicate liftixg is given for each® € A. For a formula
¢ € Prop(A(Z(X))) theone-step semantidg], C T X is defined by putting©(U)], = AL (U)
and by inductively extending this definition to Boolean camations of boxed formulas.

e Fora setd C Prop(A(Z(X))) of formulas, we lef®]], = Ngcol[@],, and we say thab is one-
step satisfiabléf [®]), # 0.
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e Z is calledone-step sound for any one-step derivable formulp € Prop(A(Z2(X))) we have
[#], =TX, i.e., if any such formulg is one-step valid

e Z is calledone-step completd for every finite setX and every one-step consistent setC
Prop(A(Z(X))) is one-step satisfiable.

2.2 Dynamic syntax and semantics

In earlier work [7], we introduced the notion of a coalgebrdiynamic logic for programs built from
Kleisli composition, pointwise operations and tests. Heeeextend this notion to also include iteration
(Kleene star).

Throughout, we fix a countable dgi of atomic propositions, a countable gt of atomic actions,
and a signatur& (of pointwise operations such asin PDL). The setZ (P, Ao, Z) of dynamic formulas
and the sef = A(Py, Ag, Z) of complex actionare defined by mutual induction:

F(Po,A0,Z)2¢ = peR[L|-9[dpAD[ ()9
APy,Ap,Z) >0 = aeAg|a;ala(ag,...,on) | a*|¢?

whereg € X is n-ary.

Dynamic formulas are interpreted in dynamic structureschvisionsist of & -coalgebraic semantics
with additional structure. Operation symbalse % will be interpreted by pointwise defined opera-
tions on(T X)X induced by natural operations: T" = T. More precisely, ifo: T" = T is a natural
transformation, thews : (T X)*)" — (T X)X is defined byol (f1,..., fn)(X) = ox(f1(X),..., fa(X)). A
natural transformatio&T = T (when viewingZ as aSet-functor) corresponds to a collection of natural
operationso: T" = T, one for eacto € X.

In order to define composition and tests of actions/progganses,T must be a monadT, u,n)
such that action composition amounts to Kleisli composifior T. In order to define iteration of pro-
grams, we need to assume that the monad has the followingnyop

Definition 2.1 (Left-quantalic monad) A monad(T, u,n) is calledleft-quantalicif for all setsX, TX
can be equipped with a sup-lattice structure (i.e., a compidempotent, join semilattice). We denote
the empty join inT X by | tx. We also require that when this join is lifted pointwise te ileisli Hom-
sets#¢(T)(X,X), then Kleisli-composition left-distributes over joins:

Vi,g: X—>TXiel: fx\/g=\/fxg. q
i i

It is well known that Eilenberg-Moore algebras of the powermonad?’ are essentially sup-lattices,
and that relation composition left-distributes over usiaf relations, hence? is left-quantalic. We
observe that one way of showing thits left-quantalic is to show that there is a morphism of m@nad
T: #=T.

Lemma 2.2 Let (T,u,n) be a monad. If there is a monad morphiam &2 = T, then(T,u,n) is
left-quantalic.

Proof. A monad morphisnt: & = T induces a functo&’.# (T) — &.#(%?) by pre-composition.
It follows, in particular, that the fre@-algebra is mapped to a sup-lattiCEX, Lx o Trx). We extend
this sup-lattice structure o X pointwise to a sup-lattice structure o#?(T)(X,X), that is, for all
{ogiliel} C2UT)(X,X),

(V@) (9 = px(trx({ai(x) [1 €13)).
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Kleisli-composition distributes over this-induced join sinceux and T f preserve it, for all functions
f: X =Y, due to naturality ofr, and these maps beidgalgebra morphisms. QED

Note that any natural transformation &2 = T yields a natural transformation=% & = T, where
1= & picks out the empty set, such thiis pointed as defined in|[7].

Example 2.3 The three monads of particular interest to us were describdd]: The powerset monad
£, the monotone neighbourhood monad, the neighbourhood monad”. These are all left-quantalic.
For example, the transpose of the Kripke Bbx 1x : X — .# X defined byx (U) ={V C X |U CV}

is a monad morphism. The join o X induced byd is intersection of neighbourhood collections.
Dually, the transpose of the Kripke diamofg (U) = {V C X |UNV # 0} is also a monad morphism
&P = ., and its induced join is unions of neighbourhood collecsion

The generalisation of iteration for PDL-programs and Gimga is iterated Kleisli composition.
Given f: X — TX, we define for alh < w:
fO=nx, M U=fufll = \/ £ (1)
n<w
Definition 2.4 (Dynamic semantics)Let T = (T,n, u) be a left-quantalic monad, ar@t T = T a
naturalz-algebra. APy, Ao, 6)-dynamicT-modelNt = (X, yo,A,V) consists of a seX, an interpretation
of atomic actiongp: Ag — (T X)X, a unary predicate lifting : 2 = 20T whose transposg: T = .4

is a monad morphism, and a valuatn Py — 22(X). We define the truth sétp ™ of dynamic formulas
and the semanticg: A — (T X)X of complex actions if)t by mutual induction:

[P =V(p), [¢Awl™ =[] N[w]™, [-¢]™ =X\[o]™,
[{a)g]™ = (V&) toAx)([¢]™),

ya(ay,...,o0n) = og(y(ar),...,y(an)) whereg € 3 is n-ary,
y(a;B) = Y(a)*y(B) (Kleisli composition)
y(a*) = y(a)* (Kleisli iteration),
Y(9?)(x) = nx(x) if xe [¢]™, Ltx otherwise

We say thatht validates a formulap if [¢]™ = X. A coalgebray: X — (TX)" is standardif it is
generated by somg: Ag — (T X)X andV: Py — £ (X) as above, and we will also refer (X,y,A,V)
as af-dynamicT-model. N

Recall that PDL can be axiomatised using the box or usingidmaaehd, but the two axiomatisations
differ. For example, the axioms for tests depend on whichatiydis used. In the general setting we
need to know whether a predicate lifting corresponds to ado@diamond.

Definition 2.5 (Diamond-like, Box-like) LetA: 2 = 20T be a predicate lifting for a left-quantalic
monadT. We say that

¢ A isdiamond-likeif for all setsX, allU C X,and all{tj |[ie |} CTX:

VteAxU) iff Jiel:telk).

iel
e A is box-likeif for all setsX, allU C X,and all{t; |iel} CTX:

\VteAx(U) iff Viel:telxU).
iel <
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Remark 2.6 Note thatA is diamond-like iffAx(U) is a complete filter of the semilattice T X for all
U C X. One also easily verifies thatis diamond-like iff its Boolean dual is box-like. It is easysee
that if A is diamond-like then it is also diamond-like according to tald” definition in [7], similarly for
box-like. However, it is no longer the case that every piatgidifting is either box-like or diamond-like,
e.g., forT= 2, Ax(U)={V CX|0#V CU} is neither.

Example 2.7 It can easily be verified that the Kripke diamond (box) is edieliamond-like (box-like)
for #2. Taking T=.#, and union as join onZ X (i.e., the join induced b, cf. Examplé213), then the
monotonic neighbourhood modalitk (U) = {N € .#X |U € N} is diamond-like, but taking intersection
as the join on#Z X thenA is box-like. Similarly,A is diamond-like when viewed as a neighbourhood
modality for.4”-coalgebras with union as join. Note that this shows thahwad-likeness does not
imply monotonicity. We only have Afis diamond-like, thei : T = .4" is monotone.

We will use the following crucial lemma about the Kleisli cposition and predicate liftings.

Lemma 2.8 LetA: 2= 20T be a predicate lifting whose transpoz;e T = .4 isamonad morphism.
Forall f,g: X —TX,allxe X and allU C X, we have

(fxg)(x) €Ax(U) = f(X) € Ax(g (A (V))-

Proof. We have:
(fxg)(x) € Ax(U) iff
(def. of A) iff
(A monad morph.) iff
(def. of uN) iff

px (Tg(f(x))) € Ax(U)

U € Ax(Hx (Tg(f(x)))

Uepg” (r/V)\x()\Tx(Tg( (X))
Nox)(U) € A Ax (A)\TX(Tg(f(X))D

(def.of #) iff Ax™ (N (U)) € Arx(To(f(¥)))
(def.ofn) iff  {te TX|U € Ax(t)} € Arx(To(f(x)))
(def.ofA) iff {teTX|tex(U)} € Ars(Tg(f(x)))
(naturality ofA)  iff {t e TX |t € Ax(U)} € #g(Ax(F(X)))
(def.of.#) iff g L(Ax(U)) € Ax(f(X))
iff  f(x) € Ax(g71(Ax(V))) QED

2.3 Coalgebraic dynamic logic

Our notion of a coalgebraic dynamic logic relates to coalgebmodal logic in the same way that PDL
relates to the basic modal logdic. In the remainder of the paper, we assume that:

= (T,u,n) is a left-quantalic monad with joify : ZTX — TX,
e A: 2= 20T is a diamond-like with respect tTl X,\/), monotonic predicate lifting whose

transpos& : T = 4 is amonad morphism,

e 3 is a signature and for eachary g € % there is a natural operatiom: T" = T and a natural
operationy : 4" = .4 such that o 0 = X o A", We denote byp the collection{o | g € X}.
Using the last item above, we showed![in [7, section 4] how $peiate to each operation symhmk >

a rank-1 axiom(ag(asy,...,

an)>pH ¢()?7al7"'a

al’la p)

Briefly stated, we use that @: 4" = &

corresponds (via the Yoneda lemma) to an elenyenf the free Boolean algebral’(n- 2(2)) gener-
ated byn- 2(2). By assigning a rank-1 formula to each of the generators, bt@im a rank-1 formula

¢(X7alv"'>

an, p) for eachy. For example, the PDL axiortor U B)p «+» (a)pV (B)p is of this kind.

Our completeness result will be restricted to positive afpjens.
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Definition 2.9 (Positive natural operations) We call x: 4™ = .4 a positive operatiorif ¥ can be
constructed using only andV in .4 (n- 2(2)). If o: T"= T andy: 4" = .4 are such thad o0 =

X oﬁ”, then we callo positive if x is positive. The axioms for positive pointwise operatiohthe form
X= SA p are obtained by extending Definition 14 from [7] with a casedonjunction:

¢(8/\bvalv"'>an>p) :¢(87a17"'7aﬂ7p)Ad)(bvalv"'»an»p)‘ 9

Example 2.10 Positive natural operations o’ include union, but complement and intersection are
not natural on&. Positive natural operations o7 include union and intersection, but not the natural
operation dual.

Definition 2.11 (Dynamic logic) Let %, = ({<},Ax,0,Ru) be a modal logic over the basic modal
languageZ ({<},Py). We define = {(a) | a € A} and let Axa = JqeaAXa Where Ax, is the set of
rank-1 axioms over the labelled modal languagéPy, Ao, %) obtained by substitutinga) for < in all
the axioms in Ax. We define Rusimilarly as all labelled instances of rules in Ru.
The 6-dynamic logicover.%, is the modal logicZ = .Z(0,;,*,?) = (A,Ax',Fr,RU) where
AX" = AxaU{(g(oq,...,0n))p<+> @(X,01,...,0n,p) | O € Z,0i € A}
Fi' = {{a;B)p<+(a)(B)p|a,BEA peR}U
{{a)pe pvi{a){a’)p|a e AjU
{W2pe (WAP) [ Y e F(RAo2)}

(Vo -y

Proposition 2.12 If %, is sound wrt to the T-coalgebraic semantics then éhéynamic logic.Z is
sound wrt to the class of aBB-dynamicT-models. In other words, for alp € .#(Py,Ap,Z) and all
6-dynamicT-modelst = (X, y,A,V) we have

RU

Fo« ¢ impliesthat 9t validatese.

Proof. In [[7], we showed soundness of the axioms for pointwise dmers, sequential composition and
tests with respect t6-dynamicT-models (without iteration). Soundness of the star axionotdifficult

to check. Soundness of the star rule can be proven as folBugposelt = (X, y,A,V) is aB-dynamic
T-model such thait validates the formulda)y v ¢ — . For any state € X such tha = (a*)¢ we
have — by standardness pf— that y(a)*(x) € Ax([¢]). This implies\/; y(a)ll(x) € Ax([¢]) and,
by diamond-likeness of, there is aj > 0 such thaty(a)l!(x) € Ax([[¢]). Therefore, to show thamt
validates(a*)¢ — , it suffices to show that for ajl > 0 we haveJ; C [[@] where

Uj = {xe X | y(a)l(x) € A ([9])}-

We prove this by induction. For= 0 the claim holds trivially as by assumption the premiss efdtar
rule is valid and thuge ]| C [¢]). Consider now som¢=i+ 1. Then we have

Upr = e X 7)) € Ax([4])}
= {xeX|ya)«ya)(x) e Ax([9])}
2P iy e X | p(a)(x) € Ax(Ui)}

y(a)

{xeX|y(a)(x) € Ax([])}
[(a)y] < [y] (last inclusion holds by validity of rule premiss)

Nz

QED
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3 Weak Completeness

In this section, we will show that if the base logi is one-step complete with respect to the
coalgebraic semantics given Ry and 8 consists of positive operations, then the dynamic loffic=
Z(0,;,",?) is (weakly) complete with respect to the class of@lynamicT-models, i.e., every?-
consistent formula is satisfiable in@Gdynamic T-model. As in the completeness proof for PDL, a
satisfying model for a formulay will essentially be obtained from a filtration of the canaiicnodel

through a suitable closure ¢fy}.

A set® C .7 (P, Ao, 2) of dynamic formulas igFischer-Ladner) closed it is closed under subfor-
mulas, closed under single negation, that i i -y € ® theny € ®, and if ¢ € ® is not a negation,
then—¢ € ®, and satisfies the following closure conditions:

1. If (a; B)¢ € dthen(a)(B)p € .

2. For all 1-step axiomséa(ay,...,an))p <> ¢(X,01,...,0n, P), if (a(Q1,...,0,))P € @ then also
d(X,0a1,...,00, ) € .

3. If (Y?)p e dthenY A p € D.

4. If (a*)¢ € dthen(a)(a*)p and(a)¢p € P.

Given a dynamic formulg, we denote byCl(() the least set of formulas that is closed and contains
Y. A standard argument shows ti@i( ) is finite.

From now on we fix a finite, closed sét (which may be thought of a€l(y) for somey). An

Z-atom over®d is a maximally.Z-consistent subset @b, and we denote b$the set of alL¥-atoms
over®. For¢ € 7 (Py,Ap,Z) we putd = {A € S| ¢ € A}.
Note that, in particular, for each ¢ ® we haved = 0. A maximally .Z-consistent set (MCS} is a
maximally .Z-consistent subset of (P, Ao, %). Clearly, for each MCS we have= N ® is an.Z-atom.
Any subset ofScan be characterised by a propositional combination of fitemin®. It will be useful
to have a notation for these characteristic formulas at hand

Definition 3.1 (Characteristic formula) ForU C S, we define the characteristic formujg of U by

=V Aa

AcU
where for anyA € S A A is the conjunction of the elements bf N

We will use the following fact that allows to lift one-steprapleteness of the base logic{6.

Lemma 3.2 If %, is one-step complete for T the#f is one-step complete forT

The proof of this lemma is analogous to the proof of the cpwading statement in_[6]. The main
difference being that instead of arguing via MCSs one has¢oatioms. Note that only the axioms for
pointwise operations have influence on one-step propgedsethe ones for ; aridare not rank-1.

3.1 Strongly coherent models

As in the finitary completeness proof of PDOL [11] and the fimitedel construction in [18], we need a
coalgebra structure on the $0f all .#-atoms overb that satisfies a certain coherence condition which
ensures that a truth lemma can be proved.
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Definition 3.3 (Coherent structure) A coalgebray: S— (T9” is coherentif for all I € Sand all
(a)ped,  ya))ers(d) iff (a)perl. <

Lemma 3.4 (Truth lemma) Lety: S— (TS be a coherent structure map and define a valuation V
Py — Z(9) for propositional variables & Py by putting M p) = p. For eachl” € S andg € ® we have

(SyV)r=¢ it ¢el.

The lemma follows from a standard induction argument on theture of the formula - the base case
is a immediate consequence of the definition of the valuatlminduction step for the modal operators
follows from coherence.

In order to prove coherence for iteration prograafs we need the following stronger form of co-
herence, which is inspired by the completeness proof oftfitealGame Logic in[14].

Definition 3.5 (Strongly coherent structure) We say thay: S— (T 9 is strongly coherent foor € A
ifforall T eSandallu CS  y(a)(l) eAsU) iff (a)éy AT is Z-consistent. <

In the remainder of this subsection, we prove the followirigtence result.

Proposition 3.6 If %, is one-step complete for T, then there exisig & — (T S” which is strongly
coherent for alla € A.

Let (—)*: Prop(A(Z(S))) — Prop(A(Prop(®))) be the substitution map induced by taklng= &y
forallU € 2(S). Conversely, lef—)s: Prop(A(Prop(®))) — Prop(A(Z(S))) be the substitution map
induced by takingl's = Sand for ally € Prop(®), s={A e S|Atp_ Y}.

Lemma 3.7 (Derivability) For all ¢ € Prop(A(Prop(®))),
1. F}(i ¢s implies F¢ (¢S)ﬁ.
2. Fy (d)s)ﬁ <~ d)

Proof. Claim 1:For all y € Prop(A(2(9))), L, @ implies that- ¢ ¢~.
It is clear that Item 1 follows from Claim 1 - let us now proveaih 1. Suppose th&t}g Y, ie., assume
that @ is one-stepZ’-derivable. By the definition of one-step derivability, sfmeans that the s¢x o |
X € Ax,0 : P — 2(S)} propositionally entailgp. This implies thaty? is a propositional consequence
of the setW = {xo* | x € Ax,0 : P = 2(S)}. Any formula xo* € W can be written a1 with
T : P — Prop(®) defined asg(p) = &4(p) - in other words, all elements &Y are substitution instances
of .Z-axioms, /* is a propositional consequenceWfand hence, a¥ is closed under propositional
reasoning and uniform substitution, we get y* as required.

It remains to prove item 2. We prove that for élic Prop(®),

Fo ¢ < (9s)’ )

Item 2 then follows by applying the congruence rule and psammal logic. For[(2), it is easy to see
that for all ¢ € Prop(®), Fp (¢s)® — ¢ and hence- » (¢s)* — ¢. For the other implication, suppose
towards a contradiction that A —(¢s)? is .Z-consistent. Then there is a maximal§-consistent set
such thath, —(¢s)* € =. TakeA := =N ®. We have

forall ¢ € Prop(®): AFp @ or AbpL - 3)
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The proof is by induction ony. The base case wherg € @ is trivial. If ¢ = —y/, then by L.H.
AbpL ¢/ or Ap —y and it follows thatA Fp — or App Y. If Y = Yy A Yo, then by I.H. we have:

(A |—p|_ l.,U]_ or A |—p|_ —\LIJ]_) and (A |—p|_ l.,Uz or A |—p|_ —\LIJ2).

Considering all four combinations yields-p_ 1 A Yo or Abpp = (Y A Yh).

From [3) and$ € =, we obtain thai Fp. ¢. On the other hand, from(¢s)* € = it follows that
ApL (¢s)f, and hence, becausgs)’ = \/{AA|Ac SAFp ¢}, we haved i/ ¢. Thus we have a
contradiction, and we conclude thiai —(¢s)* is .Z-inconsistent which proves thaty ¢ — (¢s)f. QED

Lemma 3.8 (Existence lemma)Assume thatzs, is one-step complete for T. Foralle Aand alll € S
thereis a§ r € T(S) such that for all UC S,

1. Ifl Fo (a)éy thenr € Ag(U).
2. IfT kg =(a)éy thentyr € Ag(V).
3. IfM /¢ (a)é&y and(a)&y AT is £-consistent, thentr € As(U).
It follows that for alla € Aand alll” € S there is agr € T(S) such that for all UC S,

tor €As(U) iff T A{a)éy is . Z-consistent (4)

Proof. We spell out the details of the proof for the case thét a diamond-like lifting. For the case that
A is box-like the roles of the positive and negative formulathe form (a)¢ and—(a)¢ in the proof
have to be switched. We now turn to the proof of the lemma.

Suppose for a contradiction that thereniss A andl" € Ssuch that nd € T Ssatisfies conditions 1
and 2 of the lemma. Consider the formula

¢(M) = \/{{@)éx | X S ST FpL~(a)éx} Vv \/{=(a)éx | X S ST Fpe (a)éx}

and note that
¢ (Ms=\/{(a)X | XS ST FpL =(a)éx} vV \/{=(a)X | X C ST Fp (a)éx}

Then by our assumption am andl” we have[[¢ (IN)s]), = (T 9”. Recall from Lemm&3]2 that one-step
completeness af; implies one-step completeness.&f wrt TA. Therefore we obtain th&tfg o(MNs
and thus, by Lemm@a 3.7, thaty ¢ (). This yields a contradiction with our assumption thais .-
consistent. For eadh € Sanda € Awe fix an elemens, r € T Ssatisfying conditions 1 and 2.

Consider now” € Sand letU C Sbe such thaf /¢ (a)&y and(a)éy AT is Z-consistent. As
(a)éu AT is Z-consistent the sdt(a )&y } U{—(a)éx | T FpL —(a)éx} is Z-consistent and we can eas-
ily show - using Lemma 3]7 - that the sgior)U } U{—(a)X | T FpL —(ar)&x } is one-stepZ’-consistent.
Therefore by one-step completenessthere must be affr |, € (TS such that

fru =1 A @V U{=(a)X | T FpL ~(a)éx})
or, equivalently,
fru(a) € [Y({As(U)}U{S\As(X) | T FpL —(a)éx}).
Using the fact thafA is diamond-like we can now easily verify that for edcle Sanda € A the join

tar '=Vuez fru(a)Vserwith=={U CX|T ¥ (a)éy and(a)éuy AT is Z-consisten} satisfies alll
conditions of the lemma. QED

Propositiori 3.6 now follows immediately from Lemial3.8 biitg y(a)(I") :=ty r for all a € Ao.
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3.2 Standard, coherent models

We saw in the previous subsection that one-step completemssires the existence of a strongly coherent
structure. However, this structure is not necessarilydstech We now show that from a strongly coherent
structure, we can obtain a standard model which satisfiassiied coherence condition by extending the
strongly structure inductively from atomic actions to adtians a € A and proving that the resulting
structure magy: S— (T 9" is coherent.

We start by defining &: S— (T S which is almost standard. For technical reasons, we dgfire
tests from® in terms of membership. Once we prove that truth is membe(gl@mmd 3.16), it follows
thaty is standard. This way we avoid a mutual induction argument.

Definition 3.9 (Coherent dynamic structure) Let yo: S— (TS be the strongly coherent structure
that exists by Propositidn 3.6. Defire S— (T 94 inductively as follows:

y(a) = w(a) for a € Ag
ns(fy if¢ger and ¢
y@(r) = ¢ ns(M) ifredfxyy) and ¢ ¢
lTs otherwise.
ylo(ay,...,an))(T) = os(y(ar)(T),...,¥(an)()))
ya®)(r) = yla)"(T)
whereV is the canonical valuatiovi(p) = {A € S| pe A}. Q

The rest of the section will be dedicated to proving thad in fact coherent. This can be done largely
similarly to what we did in our previous work][6] for the it¢i@n-free case. The main difference is ob-
viously the presence of theoperator. Here a crucial role is played by the following motmme operator
on Z(S) that allows us to formalise a logic-induced notion of redudlitg.

Definition 3.10 (Fg) For 3 € AandX C Swe define an operator

Fr: 28 — 28
Y — {AeS|AA(B)E& consistenfUX

It is easy to see that this is a monotone operator, its legstifikwill be denoted b)ZE. <
Lemma 3.11 For all A € S and all XC S we haveA A <B>EZ§ is consistent = A€ Z;;(.

Proof. This is an immediate consequence of the fact #ais a fixpoint of . QED
The following technical lemma is required for the inductiy@of of the first coherence Lemrna 3.14.
Lemma 3.12 Let 8 € A be an action such that for all € S and all XC S we have

A (B)éx consistent =  Y(I') € Ag(X).

Thenl™ € Z impliesy(B*)(I) € As(X).
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Proof. This proof is using our assumption thais diamond-like. Recall first that by definition we have
Y(B*) = ¥(B)*, thus we need to show thgtB)*(I") € As(X). LetY ={A € S| y(B)*(A) € As(X)}. In
order to prove our claim it suffices to show tifgt(Y) CY, ie, thatY is a prefixed point ofFy‘ (asZj is
the smallest such prefixed point andZ%g Y is equivalent to the claim of the lemma). et Fg (Y).
We need to show thdt € Y. In casel’ € X we havey®(") = n(I') € As($) because) (") € As(¢)

is equivalent td” € X asA is a monad morphism. Suppose now that (3)¢&y is consistent. By our
assumption o8 this implies that

Y(B)(T) € As(Y) = As({A | V(B)"(B) € As(X)}).

Using Lemma 2.8 this implies
(V(B) = ¥(B)")(T') € As(X)
and

V(B)+V(B)" (M) = (v(B) = \/ (B (M) = \/ ()™ H(T)

where the last equality follows from the fact that we are virgkwith a monadl' whose Kleisli compo-
sition left-distributes over joins. A% is assumed to be diamond-like, it follows that there jsal such
thaty(B)U!(I) € As(X) and thus™ €Y as required. QED

We are now ready to prove two crucial coherence lemmas. Asrgvalmately only interested in the
truth of formulas in® we can confine ourselves to what we galevantactions:

Definition 3.13 (Relevant test, relevant action)A test¢ ? is calledrelevantif ¢ € ®. An actiona € A
is calledrelevantif it only contains relevant tests. N

The following lemma proves the first half of the announcedetehce.
Lemma 3.14 For all relevant actionsa € A,I" € S and all XC S we have
[ A{a)éx consistent = y(a)(I) € As(X).

Proof. By induction ona. The base case holds trivially §3$s strongly coherent for all atomic actions.
Leta = ¢? for somep € ® (here we can assungec ® as we only consider relevant actions) and suppose
I A (¢?)éx is consistent for som¥ C S. Then, ask is diamond-like, we havé A ¢ A éx is consistent.
This implies¢ € " andl” € X. As ¢ € I, we have by the definition gf thaty(¢?)(I") = ns(I") and thus
e X impliesy(¢?)(I') € As(X) as required.

For ann-ary pointwise operatiow € %, we want to show that

[ A(O(0a, .., an))Ex consistent = oS((a1)(F),..., ¥(an) (1)) € As(X)
Using theg-axiom and thah o g = X oﬁ”, this is equivalent to

FrA¢(X,01,...,0n,Ex) consistent = XeXS(X(V(al)(I')),...,X(V(an)(r))) (5)

and [3) can be proved by induction @rin a manner very similar to the one used in the proof of Lemma
27 in [6].

Supposed is of the forma = Bp; f1 and supposé A (fo; B1)éu is consistent for some C S
Using the compositionality axiom we have, (Bo; B1)&u <> (Bo){(B1)éu. Thereforel” A (Bo)(B1)éu is
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consistent. This implies in turn th&tA (Bo)(T A (B1)éu) is consistent and, as¢ T <> \/acs\A by

Lemma[3.7, we obtain thdt A (Bo) ((VaesAB) A (B1)éu) and thusl” A (Bo) (Vaes A(AA (Br)éu)) is
consistent. Clearly the latter implies tHat\ (Bo) (\/acy A(AA (B1)éu)) is consistent folf := {A € S|

A A (B1)éu consistent. Therefore we also haveA (By)&y is consistent. Now we apply the induction
hypothesis to get

V(Bo)(I) € As(Y) = As({A € S| AN (B1)&y consister}) C As({A € S| V(B1)(8) € As(U)})

and by LemmaZ]8 we conclude thafBo; B1) () = Y(Bo) * Y(B1)(I) € As(V).
Suppose nover = B*. It follows from Lemmd 3.1 and the |.H. ghthatl" € Zﬁ impliesy(B*)(IN) €

As(X). Therefore it suffices to prove thatA (3*)&x is consistent implie§ e Zé.
Suppose thdt A (*)&x is consistent and recall theinduction rule:
FBYVE -y
(B =Y

Our claim is that

- (B)Eg V Ex — &y (+)

Before we prove {)) let us see why it suffices to complete the proof| H)|(holds, we can apply the
induction rule in order to obtain

- (B & — & ©)

By assumption we havé A (8*)&x. Together with[(B) this implies thdt A EZE are consistent and thus,
by Lemmd 3.111, thaf Zé as required.

Proof of [+)} Suppose for a contradiction tHag) does not hold. This implies thﬁ(mfz; VEx) A
ﬂfzé is consistent. We distinguish two cases.
Case 1(B>EZ§ A ﬁfzé is consistent. Then there is a maximal consistenEseich thal(B)EzE , ﬁfzg €=,
Let A := =N ®. By definition and[(B) we know thah & ﬂézé and thusA € S\ Zé. Furthermore
AN (B>Ez§ is consistent. The latter implies, again by Len@.ll,ﬂmtzﬁ which is a contradiction
and we conclude tha(ﬁ)fzé A ﬂfzg cannot be consistent.
Case 2&x A ﬁfzg is consistent. Again - using a similar argument to the previcase - this implies that

there is an atord € S\ ZE‘ such thaiA A &x is consistent. But the latter entails thaE X C Zé which
yields an obvious contradiction. QED

Lemma 3.15 For all (a)¢ € ® and alll’ € S we have

ya)T)eAs(p) = (a)peT.

Proof. Again this is proven by induction oa. Let a = )? and supposg(y?)(I') € As($) for some
(Y?)¢p € ®d. As A is diamond-like, we havg(y?)(I") # L and thus, by the definition of, we have
Y el andns(l) € As(@). The latter implied” € @, ie, ¢ €. Bothy € and¢ € I imply, using the
axiombg (Y?2)¢ <> YA ¢, that(Y?)¢ €I as required.

Let o be of the forma = B* and letl" € Sbe such tha?( )(M) € As(@). Theny(a) = y(B)* and
thus we havey(B)*(I') € As(¢). This means thay; y(B)U(I") € As(¢). By diamond-likeness of this

)
s(
is equivalent to the existence of ofie> 0 such thay(B)(I") € As($).
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In casej = 0 we can easily see thate @, ie, @ € I which implies - using the axion¥3)(8*)¢ v

¢) < (B*)¢ -that(B*)¢ €T
Suppose now = m+1, ie, y(8)™Y () € As($). By Lemmd 2.8 this implies that

V(B)(T) € As({A] Y(B)™(8) € As(9)})

—

By I.H. onmwe have{A | y(8)™(A) € A($)} C (B*)¢ and hence, by monotonicity df, that

Y(B)(T) € As((B*)9).

By I.H. on 3 this implies that{3)(3*)¢ € I and thus - using again the same axiom as in the base case -
that(B*)¢ €T. QED

Lemma 3.16 (Dynamic truth lemma) The coalgebra structurg : S— (T 9 from Def.[3.9 together
with the valuation V: P — 2(S) given by \(p) = p for p€ P forms a6-dynamicT-model such that
for all ¢ € ® we havel[¢] = ¢.

Proof. It follows from Lemmd 3.4 and Lemnha 3115 that for @l)¢ € ® we have

(el iff  yla)(T)€As(P).

Therefore it follows by Lemm@a3.4 thip] = ¢ for all ¢ € ® as required. In particular this shows that
the resulting model i§-dynamic, since for all relevant tesp® we havep € I iff [ € [¢]). QED

Theorem 3.17 If %, = ({<¢},AXx,0,Ru) is one-step complete with respect to the T-coalgebraic se-
mantics given by\, and 8 consists of positive operations, then the dynamic lagie= .#(6,;,*,?) is
(weakly) complete with respect to the class ofGatlynamicT-models.

Proof. Assume thatp is an.Z-consistent formula. Le® be the set ofZ-atoms overd = CI(¢) and
lety: S— (TS be defined as in Definitidn 3.9 ailthe valuation given by/ (p) = p for p € Ry. By
Lemma3I6M = (S y,A,V) is a 8-dynamicT-model. Sincey is .#-consistent there is a¥’-atom
A € Sthat containgp and hence by the Dynamic Truth Lemma 3.46is true atA in M. QED

As corollaries to our main theorem we obtain completenesa fumber of concrete dynamic modal
logics.

Corollary 3.18 (i) We recover the classic result that PDL is complete witbpect toU-dynamic &-
models from the fact that the diamond version of the modat IKgis one-step complete with respect
to & (cf. [17]), U is a positive natural operation o?, and the Kripke diamondyx (U) = {V € &X |

V NU # 0} is monotonic and its transpose is a monad morphism. (i) fiakis base logicZs, the
monotonic modal logid! with semantics given by the usual monotonic neighbourhoedigate lifting
Ax(U) ={N e .#X |U € N} with rank-1 axiomatisatio®x = {<(pA Q) — <Op}, it is well known that
%5 is one-step complete fowZ, see alsol[6]. SinceJ is a positive natural operation o7, we get
that dual-free GL is complete with respectuiedynamic.#-models. (iii) Similarly, dual-free GL with
intersection is complete with respectiion-dynamic.#-models.
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4 Conclusion

There are several ways in which to continue our researchtlyive will look for other, new examples
that fit into our general coalgebraic framework. A first go@hdidate seems to be the filter monad
Z (cf. [5,8,[20]). It is easy to see that taking upsets yieldsamad morphisnt: &2 = % and the
induced join onZ X is intersection of filters. We note that filters are not clogeder unions (only under
updirected unions), sQ is not a natural operation o&. Taking_.%; to be the diamond version of
modal logicK, andA: 2 = 20.% to beAx(U) = {F € #X | X\U & F} (i.e., the dual of the usual
neigbourhood modality), thet¥, is complete with respect to the class of &lcoalgebras, since any
Kripke model(X,p: X — ZX,V) is pointwise equivalent with th&-model (X,Top: X — #X,V),
hence any that can be falsified in a Kripke model can also be falsifiedfilter coalgebra, cf/[[2]. We
conjecture that?,, is one-step complete fo¥ andA. From this, a completeness result would follow for
a new PDL-like logic for the filter monad with intersection actions.

Secondly, we will study variations of our coalgebraic fravoek to monads that carry quantitative
information to cover important cases such as probabilestid weighted transition systems. We expect
that we need to switch to a multivalued logic, using for exBnip(1) as truth value object, as ihl[3].
In general, we would also like to better understand how oogerous logics relate to the endogenous
coalgebraic logics of |3] and the weakest preconditionsiragifrom state-and-effect triangles in, e.gl, [8,
9]. One difference is that in [3], the monddis assumed to be commutative. This condition ensures that
the Kleisli category is enriched over Eilenberg-Moore blges. This could be an interesting approach
to obtaining a “canonical” algebra of program operationgnethough, Eilenberg-Moore algebras do
not have canonical representations in terms of operatiodseguations. Moreover, one of our main
example monads, the monotonic neighbourhood monad is momeative, but it is still amenable to
our framework.

Finally, our most ambitious aim will be to extend our coalgad framework to a completeness proof
which will entail completeness of full GL which remains areoproblem|[[15]. One reason that this is a
difficult problem is that, unlike PDL, full GL is able to exm®fixpoints of arbitrary alternation depth [1].
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