
Generating Web-based Semantically
Aware Source Code Editors

Master’s Thesis

Richard G. Vogelij

Generating Web-based Semantically
Aware Source Code Editors

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Richard G. Vogelij
born in Vlaardingen, the Netherlands

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

c© 2012 Richard G. Vogelij.

Generating Web-based Semantically
Aware Source Code Editors

Author: Richard G. Vogelij
Student id: 4052676
Email: richard@vogelij.nl

Abstract

This thesis describes spoofax2ace, the tool to generate source code editors which
can run in the browser. The features which are common in stateof the art desktop-
computer based source code editors are investigated after which the difficulties in get-
ting these features running on the Web are discussed. We present, implement, and
compare multiple approaches in constructing a fully semantically aware source code
editor which runs in the browser. The most useful aspects in these approaches are
combined in the proposition of our “editor-generator” which produces browser-based
source code editors with as sole input a language declaration in the form of a Spoofax
project.

Thesis Committee:

Chair: Dr. E. Visser, Faculty EEMCS, TU Delft
University supervisor: Dr. L.C.L. Kats, Faculty EEMCS, TU Delft
Committee Member: Dr. M. Pinzger. Faculty EEMCS, TU Delft
Committee Member: Dr. A. Iosup. Faculty EEMCS, TU Delft

richard@vogelij.nl

Preface

I would like to thank my supervisor, Eelco Visser, for “bringing me in” and providing me
with this project. Also, I would like to thank Lennart Kats and Karl Trygve Kalleberg
for always being available to answer any questions I had along the way. I have had some
very interesting conversations which broadened my horizongreatly. Also, having worked
closely with Eelco, Lennart and Karl on a paper: “Software Development Environments on
the Web: A Research Agenda” [38] which got accepted for the Onward! Conference 2012
has been a great experience.

Finally I would like to thank my girlfriend, parents, and family for their ongoing interest
and support in the road to completing this thesis.

Richard G. Vogelij
Delft, the Netherlands

December 4, 2012

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 The Web . 1
1.2 Developing Web applications .. . 2
1.3 Regular Integrated Development Environments 3
1.4 Research Questions . 4
1.5 Previous work . 5
1.6 Outline . 5

2 Language specific IDE components 7
2.1 Syntax . 7
2.2 Parsing . 7
2.3 Semantics . 10
2.4 Language workbenches . 11

3 Requirements 17
3.1 Background . 17
3.2 Deliverables . 20

4 Client based editor services 21
4.1 Architecture . 21
4.2 GWT . 23
4.3 Measurements . 24
4.4 Syntax . 26
4.5 Stratego to Java to JavaScript 32
4.6 Stratego to JavaScript .. 35

v

CONTENTS

5 Server based editor services 41
5.1 Disadvantages . 41
5.2 Advantages . 42
5.3 Justification . 42
5.4 Proof of concept . 43
5.5 Discussion . 49

6 Generation 51
6.1 Front-end . 51
6.2 Spoofax . 53
6.3 Dependencies . 54
6.4 Target platforms . 55
6.5 Client/Server Balancing .. . 56

7 Future work 61
7.1 Optimizations . 61
7.2 Extensions . 62
7.3 Collaboration . 63
7.4 Editor state URIs . 63

8 Related work 65
8.1 Source code editors . 65
8.2 Web IDEs . 66

9 Contributions and Conclusions 69
9.1 Contributions . 69
9.2 Conclusions . 70

Bibliography 73

A Glossary 79

vi

List of Figures

1.1 A Google Spreadsheet instance running entirely in a web browser 2
1.2 Editor services in a desktop-based IDE 5

2.1 The various relevant grammar spaces for programming languages. 9
2.2 Syntactically valid but semantically invalid code snippet 11
2.3 The SDF grammar rules for an example language (the EntityLanguage) 12
2.4 En example program in the Entity language 13
2.5 AST For the entity language .. . 13
2.6 Stratego code to perform a semantic check on the Entity language 14
2.7 Form of the stratego entrypoint for editor feedback in Spoofax 15
2.8 List of errors returned by the example semantic check 15

4.1 Recursive JavaScript benchmark test 22
4.2 Iterative JavaScript benchmark test 22
4.3 Performance of JavaScript on multiple platforms recursive 23
4.4 Performance of JavaScript on multiple platforms iterative 23
4.5 A JSNI native JavaScript method body called from Java 24
4.6 The Stratego definition of the MDS metric 25
4.7 Performance of JSGLR vs JSSGLR - Java (random set) 28
4.8 Performance of JSGLR vs JSSGLR - Java (normalized) 28
4.9 Performance of JSGLR vs JSSGLR - Mobl (generated) 29
4.10 Performance of JSGLR vs JSSGLR - Mobl (random set) 30
4.11 Memory usage of JSGLR vs JSSGLR .. 31
4.12 Performance of the Java vs JavaScript based semantic analysis for Mobl 33
4.13 Performance of the Java vs JavaScript based analysis for Mobl up to 250 LOC . 34
4.14 A Stratego call to a primitive function 37
4.15 Performance of the S2JS output compared to native Java 39
4.16 Performance of the S2JS output compared to GWTd Java 39

5.1 The amount of incoming bytes for the client-server basedapproach 45
5.2 The amount of outgoing bytes for the client-server basedapproach 45

vii

L IST OF FIGURES

5.3 The working times for the client-server based approach 46
5.4 Overhead of executing the diff/match/match algorithm (first run) 47
5.5 Overhead of executing the diff/match/match algorithm 47
5.6 Outgoing bytes in our extended client-server implementation 47
5.7 Incoming bytes in our extended client-server implementation 47
5.8 Comparison of the original versus the extended client-server implementation . . 48
5.9 Table comparing performance between s2js and gwt build products 49
5.10 Graph comparing performance between s2js and gwt buildproducts 49

6.1 A semantically aware Ace Web editor running the Entity language example . . 53
6.2 A Cloud9 Web IDE showing Tiger-language semantic feedback 55
6.3 A showcase of the features of our generated web-editor for a mobl program . . 57
6.4 Event-based pseudo code of our client-server balancingalgorithm 59

viii

Chapter 1

Introduction

Ever since the the World Wide Web (The Web) was introduced it has become an important
source of information and interaction. Most of its content is added through web-applications
which allow increasingly easy access to the various assets the Web has to offer. Regretfully,
the tools which are used tocreateapplications with are not yet universally available on this
platform. Even though there are a number of online code editors, most of them support the
programming languages they are built for very generically.A lot of feedback programmers
have grown accustomed to in desktop environments such as type checking and reference
resolving, explained in Section 1.3, can not be taken for granted in typical web based source
code editors. This lack in availability of programming tools is mainly because on the Web
the technologies to create client-side programs are very limited and server-side resources
can become costly.

1.1 The Web

The Web is in its core built on three main technologies:

• URI (Uniform Resource Identifier) [6]

• HTTP (HyperText Transport Protocol) [20]

• HTML (HyperText Markup Language) [50]

These mostly static content enabling technologies still provide the building blocks on
which the Web is built. Since the introduction of richer client-side technologies such as
JavaScript, Cascading Style Sheets(CSS), theExtensible Markup Language(XML) and
Asynchronous JavaScript And XML(Ajax) [46] web pages became greatly more dynamic
and interactive. This added interactiveness introduced the Web as it is implemented today,
the user-generated Web, or Web 2.0. Practically all websites which currently exist make
use of these Web 2.0 technologies and allow a degree of interaction with a web page visi-
tor. Such interactions can vary from executing a search query [4] at the Google website to
logging in and posting messages on a forum.

1

1. INTRODUCTION

Web Applications

Many of the current websites can rightfully be called applications as they can in principle
provide nearly the same, and sometimes much more, functionality a traditional desktop ap-
plication could. Take for instance Google Documents or Google spreadsheet in Figure 1.1
which allows a user to create and edit spreadsheets fully on the Web. It features the same
functionalities Desktop spreadsheet applications such asMicrosoft Excel provides.

Figure 1.1: A Google Spreadsheet instance running entirelyin a web browser

1.2 Developing Web applications

There are some fundamental differences when designing and implementing an application
which will run on the web compared to classical desktop applications. In typical web ap-
plications the actual work is done remotely on a web-server or the cloud where the user is
presented with a user interface built in HTML. Through the use of GET/POST requests or
AJAX communication is handled from the client to the server.This communication layer
with the back-end is arguably where most differences between desktop and web applica-
tions lie because of its inherent asynchronous nature. At the server side a programmer has
virtually unlimited options in which he implements the web application back end. However
at the client side the web application has to be presented in aweb browser. Currently this
means the implementation is bound to only use flavours of (X)HTML, CSS and JavaScript.

Even though many Web applications have been created by software developers, there
currently are few web applications which provide the necessary tools to actually create ap-
plications with. The small amount of tools which do exist, such as CoRED[41, 2] and

2

1.3. Regular Integrated Development Environments

Cloud91, are fundamentally limited in the sense that they only support a select set of lan-
guages. Even though Cloud9 supports language plug-ins, these plug-ins still have to be
implemented specifically for that platform (in JavaScript)and are mainly implemented us-
ing regular expressions which make sophisticated editor feedback impossible. In this thesis
will focus ongenerating desktop quality code editors which can run in thebrowser, based
on the higher level definition of the syntax and semantic constraints of a programming lan-
guage.

1.3 Regular Integrated Development Environments

IDE stands for Integrated Development Environment and typically consists of a set of tools
which work together to provide a means to positively influence the productivity of an ap-
plication developer. This set of tools is integrated into a single application, an IDE. Even
though many IDEs frameworks currently exist such as Eclipse[21], Netbeans [7] and Vi-
sual Studio [48], most IDE implementations are mainly targeted at a small fixed set of
programming languages. Modern IDEs do however usually provide a way to add language
specific functionality in the form of plug-ins. Implementing such a plug-in for a previously
unsupported language is however a difficult task [11, 21].

We can split the functionalities of any given IDE into two groups, namely language spe-
cific and non-language-specific. The latter consists of features such as version management
support, searching/replacing in files, keyboard shortcutsand so on. In this thesis we will
focus on thelanguage specificaspects of an IDE.

1.3.1 Language specific aspects

In this subsection we will identify the components in a typical IDE which are, or are based
on, language specific tooling.

A modern IDE provides a number of common features which are seen in most desktop
based IDEs. In its core functionality obviously lies the ability to write or modify source
code (textual of visual). Usually the source code editor in an IDE differs from a normal
text editor in the amount of feedback a programmer gets whileadapting or writing source
code. This feedback is possible thanks to a back-end which “understands” the source code
to some degree. Such understanding is achieved through the use of a parser which checks
the syntax, described in Section 2.2, and possibly even a semantic analysis, described in
Section 2.3.

In most allround text editors, including the ones intended for editing source code such
as Notepad++2 and UltraEdit3, a basic form of language specific feedback is achieved

1http://c9.io/site/features/
2http://notepad-plus-plus.org/
3http://www.ultraedit.com/

3

http://c9.io/site/features/
http://notepad-plus-plus.org/
http://www.ultraedit.com/

1. INTRODUCTION

through the use of regular expressions. These editors use a regular expression based ap-
proach to highlight keywords and for instance make sure an opening bracket is followed by
a closing bracket.
While this is acceptable for an allround code editing tool, the editor an IDE provides should
provide more meaningful feedback. The following features can in principle only be imple-
mented when the editor has access to a deeper “understanding” of the language in the form
of semantic knowledge:

• Outline
A code outline gives a brief summary of a piece of code which isbeing edited. It
can for instance show all method names in a class and usually also provides a way to
quickly navigate to a portion of code.

• Folding
Code folding is used to hide and show a region of source code. The editor has a
syntactic knowledge of the program which is being edited which allows a block of
code to be collapsed with a single click. This can for instance be used to hide the
body of methods in a class to improve the readability of the code.

• Hover help
Hover help is shown when a programmer hovers his mouse over a piece of source
code. Useful information can be shown such as the (possibly inferenced) type of a
variable or an explanation regarding a syntactic keyword.

• Error marking
When an error occurs, the IDE can provide useful feedback regarding the origin of an
error. This can be any type of error, ranging from a syntacticproblem to uncompilable
code due to the use of an erroneous type. In advanced IDEs, error marking is also
often used to provide hints to a programmer when a code smell (common bad practise)
is detected.

• Reference resolving
Reference resolving is used to determine the origin of a piece of code. This can be the
interface a class is implementing, the definition of the typeof a variable and so on.
Usually this is implemented using control+click, where thetext beneath the mouse
pointer becomes a clickable link. When this link is clicked,the editor jumps to the
relevant piece of code.

The editor services shown in Figure 1.2 are made possible dueto language specific
knowledge. We split up the “understanding” an editor can gain about a program into two
concepts. Syntax, explained in Section 2.1 and semantics, explained in Section 2.3.

1.4 Research Questions

We have formulated the following research questions which will be answered in this docu-
ment.

4

1.5. Previous work

Figure 1.2: Editor services in a desktop-based IDE (from [37]).

1. Can a web-based, Desktop IDE quality, source code editor be created for any context-
free programming language?

2. Is generating a semantically aware Web based source code editor feasible?

1.5 Previous work

Previous work has been done at Delft University which lays the groundwork for some of the
work we will present in this thesis [49, 59]. Especially the JSSGLR parser implementation
described in Section 4.4 is leaning heavily on this work. This work is highly specific and
in order to keep a chronological order in which we will present this thesis we explain the
previously done work in the sections where this is relevant instead of in an introduction or
related work section.

1.6 Outline

We will begin to identify the various components a general IDE consists of. These compo-
nents will be briefly discussed and we will attempt to identify the components which change
between multiple programming languages, the language/specific components in Chapter 2.
We will further divide these language specific components into their respective groups and
elaborate on the theory behind these components in Section 2.1. Finally we will introduce
the language-workbench Spoofax in Section 2.4.1 and explain the steps which are required
to generate an IDE using definitions in SDF and Stratego. Next, we will enumerate the
difficulties which rise when designing an application specifically for the Web and mirror

5

1. INTRODUCTION

these difficulties to the implementation of the previously discussed IDE components in a
Web environment in Section 3.1. We will continue to enumerate a number of deliverables
we will produce in the form of benchmark results, proof of concept implementations and
tooling in Section 3.2.

We will present our work in designing, and implementing, aclient-sidebased approach
to perform the static analysis for our semantically aware Web-editor. In Chapter 4 we will
introduce NodeJS, the architecture in which we will executeour JavaScript based bench-
marks. We use GWT (The Google Web Toolkit) to transform the Java implementation of
the SGLR parser, JSGLR into JavaScript and compare the performance of the Java and
JavaScript implementations in Section 4.4. In Section 4.5 we will introduce our first ed-
itor back-end which runs fully on JavaScript. Next we will explain s2js, the Stratego to
JavaScript compiler in Section 4.6 and provide a comparisonof performance between the
GWT and s2js result implementations. Our second major approach is aclient-serverbased
approach in Chapter 5. In this approach the actual syntacticand semantic calculations are
performed server side. We will identify the problems and propose ways to overcome these,
while presenting performance statistics comparing the various paths we have tried.

In Chapter 6 we introducespoofax2ace. Using this tool an implementation of a seman-
tically aware Web editor can be generated based on one of the earlier discussed approaches.
The input for this tool is a Spoofax project. The final addition we have made is a balancing
algorithm which aims at automatically switching between the various approaches we have
defined. In Chapter 7 we will go into a number of possible areasof future research and
work and we will present some related work which is currentlybeing done in Chapter 8.
Finally, in Chapter 9 we will briefly summarize our work, and discuss our conclusions and
contributions.

6

Chapter 2

Language specific IDE components

2.1 Syntax

The syntax of a programming language specifies the requirements source code must meet in
order to be part of the set of all possible programs for that programming language. For pro-
gramming languages, or formal languages, the syntax is defined as a set of rules which pose
constraints on which symbols can be used together in some specific order. Such symbols
can be non-terminal and terminal. Analogous to natural languages, terminal symbols are
the building blocks which are used to define words, so they canbe in a sense thought of as
letters. Non-terminal symbols are used to represent variable terminal or other non-terminal
symbols. Combining these symbols is done through production rules. A production rule
consist of a left-side, an arrow and a right side. On the left-side there has to be a non-
terminal symbol which can be replaced into an at the right-side defined order of terminal
and non-terminal symbols [10].

A formal grammar can be used to define the syntax of a formal language using a set of
terminal symbols, nonterminal symbolsandproduction rules[10]. In [35] a solid case is
made in favor of using SDF in [63, 26] to represent these threeelements which are required
to define a formal language. Such a formal grammar definition can in turn be used toparse
source code in order to for instance determine whether the source code is consistent with
the syntax of the language or to produce an abstract syntax tree (AST).

2.2 Parsing

In order to provide useful syntax based feedback, the targetsource code has to be parsed.
Much research has been done in order to design optimal parserimplementations. Most
parsers are implemented using a lexer which forms a layer between the actual input and the
parser implementation. There are two main strategies in implementing a parser, namely LL
based, discussed in Section 2.2.1, and LR based, discussed in Section 2.2.2.

Either of these parsing strategies use a parse table in some form. Possibly encoded in

7

2. LANGUAGE SPECIFICIDE COMPONENTS

an (automatically) derived parser implementation or an explicitly defined table. In essence
a parse table contains information a parser needs in order tomake decisions based on a
current symbol. LL and LR parsers can be defined in a so called LL(k) or LR(k) manner
wherek indicates the number of lookaheads the parser implementation can use. [1, 47, 16]

2.2.1 LL Parsing

An LL parser parses input fromLeft to right in a topdown fashion, constructing aLeftmost
derivation. LL parsers can fundamentally not recognise thefull set of regular grammars.
The grammars an LL parser can recognise is however a subset ofthe context free grammar
space and is called theLL grammar space. Because of the topdown approach, starting at
a special start symbol is a somewhat intuitive approach which makes implementations of
LL parsers quite popular due to its relative simplicity. Another major upside of a topdown
approach is easy error recovery; It is known what is expectednext, if an expected token is
not there an error can be marked and the parsing can continue in a straightforward manner by
acting as if the missing token was found. Also, multiple LL grammars can not be composed
to form a new language. [40, 51]

2.2.2 LR Parsing

An LR parser uses an opposite approach compared to LL parsers. LR parsers read input text
from Left to right, but utilize aRightmost derivation, meaning the grammar rules are applied
bottom up. The parsing ends at a start symbol rather than starting at one. Because of this the
parser can handle ambiguities more easily than LL parsers, allowing them to recognise the
LL grammar space, but also some languages LL parsers cannot recognise. Even though LR
parsers can recognise more languages than LL parsers they are much more complicated and
counter intuitive to implement. We will call the grammars anLR parser can recognise theLR
grammar space. In Figure 2.1 we have used Chomsky’s representation of grammars to show
which set is a subset of another set. Compared to LL parsers, it is also difficult to implement
general error recovery because of the bottom up nature whichmakes the naive solution of
simply continuing more complicated as there might be multiple “paths” up. As is the case
with LL parsers, a typical LR parser cannot recognise ambiguous grammars. Multiple LR
grammars can however becomposedto form new languages, enabling sub languages in
a main language. In LR definitions it is for example possible to define SQL syntax rules
within the Java syntax enabling the possibility of for instance a type safe Java+SQL hybrid
language. [39, 1]

SGLR Parsing

The GLR parser [56, 43] is an extension of the LR parser algorithm to cope with ambiguous
and non-deterministic grammars. This is done through a notion of parallelism by traversing
the parse table in all possible manners when an ambiguity is found. This is done in a
breadth-first manner.

In [60] and [57] the GLR parser and a number of other parsing techniques such as SLR
[53] (The Scannerless LR parser, which eliminates the need for a lexing step) are combined

8

2.2. Parsing

into SGLR introducing a parser which can recognise all context free grammars [22]. In
Figure 2.1 we have emphasized the languages an SGLR parser can recognise with a gray
color.

Figure 2.1: The various relevant grammar spaces for programming languages. Based on
[35, 10, 56, 43, 57]

2.2.3 Parser implementation strategies

The general way of implementing a parser is by using aparser generator.A parser generator
takes a definition of a target language and compiles it into animplementation of a parser.
It is of course also possible to manually implement a parser [1]. This is in fact what is
being taught at most compiler construction classes to familiarize students with the concept
of parsing source code. Obviously, a major downside of such alow level approach lies in
the fact a language designer is focusing more on the implementation of the parser instead
of the syntax rules themselves. Also when extensions or alterations need to be made in
the syntax definition of a language, changing the parser implementation might be close to
impossible.

2.2.4 Parser generators

Parser generators are also known as compiler compilers. With respect to current compilers
this name is not sufficient as a parser generator merely handles the syntactic aspect of a

9

2. LANGUAGE SPECIFICIDE COMPONENTS

compiler. There exist a number of parser generators such as ANTLR 1, Bison2 and Yacc
[31]. In this thesis we will focus on JSGLR [58, 32, 34] which is a Java based implementa-
tion of an SGLR parser, discussed in Section 2.2.2. JSGLR is not strictly a parser generator
because the language specific dynamic aspects of JSGLR are handled through the use of an
external parse table.

JSGLR

JSGLR is an SGLR parser implementation written in Java. It uses a parse table which
contains all syntactic information for a target grammar. Such a table can be derived from
an SDF [63, 26] (The Syntax Definition Formalism) based definition of a grammar. Since
SDF has abstracted away from practically all implementation issues it is very easy to take a
generative approach to design the syntax for a (new) language. Recently JSGLR has been
extended with sophisticated error recovery functionalities allowing the parser to mark an
error, and continue the parsing to still provide a valid AST.[13, 36] This makes JSGLR a
very suitable back-end for an IDE because as a programmer is typing there will be many
moments where the program under construction is not strictly syntactically correct. Due to
this error recovery a semantic analysis which relies on the existence of an up to date AST
can still be executed.

Furthermore, SDF and JSGLR lie at the core of the Spoofax Language workbench which
allows for the generative development of a fully featured integrated development environ-
ment for programming languages. In Section 2.4.1 we will explain Spoofax and its relevant
components in more detail.

2.3 Semantics

The semantics of a language go further than a language’s syntax. While a syntax checker
merely tests whether a program is well formed with relation to the syntax definition, there
is no guarantee the program is actually runnable or even compilable.

A straightforward example would be the assignment of a variable identifier in Java of a
variable that was not declared in the scope in which it was used. Syntactically the program
would be perfectly valid, however a semantic analysis wouldpick this up and provide the
programmer with a suitable error message. See Figure 2.2.

A semantic analysis also allows an editor to gain knowledge about context and be able to
provide suggestions to the programmer about what keywords are expected next as he types
(code completion). Of course, depending on the complexity of the language, implementing
the semantic analysis is usually a non-trivial task. Take for instance the Java language in
which inheritance is a major feature which greatly impacts the way a type compatibility
check would be implemented. Refactoring functionality, for instance renaming all occur-
rences of some identifier in its scope is also in most cases a semantically aware operation.

1http:/antlr.org
2http://www.gnu.org/software/bison/

10

http:/antlr.org
http://www.gnu.org/software/bison/

2.4. Language workbenches

class Test
{
public static void main(string[] args)
{

x = 5; //semantic error since x is not defined yet
int x;

}
}

Figure 2.2: Syntactically valid but semantically invalid code snippet

2.4 Language workbenches

The most widely used set of tools to implement domain specificlanguages (DSLs) is Xtext
[18, 17, 5]. In Xtext the semantic aspects of languages are implemented in a set of goal
specific domain specific languages such as a code completion language. Grammar rules are
also entered in a specific DSL. A major downside of Xtext is that the parser (ANTLR [47])
used to transform source code into an AST is limited to theLL grammar space, discussed in
Section 2.2.1. Because of this limitation, languages such as C++ can fundamentally not be
implemented using Xtext, indicating Xtext’s popularity bysimplicity comes at a high price.

The alternative we have investigated, Spoofax, has arguably a steeper learning curve,
but is also a lot more powerful. In the next section we will explain Spoofax in relevant
depth and provide some examples of the various components Spoofax is based on.

2.4.1 Spoofax

The Spoofax language workbench is a toolset to build textualsource code editors with. In
essence, it is an Eclipse plug in to create Eclipse plug ins with. Eclipse3 is an IDE written
in Java aimed at being extensible by being very plug-in friendly. Using SDF definitions the
full set of context free languagescan be described. By declaring term rewrite rules in the
Stratego language an AST can be traversed and manipulated. In the following paragraphs
we will elaborate SDF and Stratego.

SDF

As mentioned in Section 2.2.4, an SDF definition can be converted into an SGLR parse ta-
ble. The JSGLR parser implementation uses this parse table to build an abstract syntax tree
based on ATerms. An ATerm is basically a tree node which can consist of ATerms itself.
ATerms can carry additional arbitrary information as attachment. In JSGLR such ATerms
contain for instance information about where in the source code that tree node originated
from.

3http://www.eclipse.org/

11

http://www.eclipse.org/

2. LANGUAGE SPECIFICIDE COMPONENTS

SDF is used in Spoofax to define the syntax of the designed language. Spoofax takes
care of the conversion of the SDF definitions to an SGLR parse table using an external tool
which resides in the “SDF2 Bundle”4. When an SDF definition is updated and stored, the
equivalent SGLR parse table is automatically derived in thebackground allowing the lan-
guage designer to instantly see the effects his changes havemade on a derived AST. This
makes debugging and tweaking the syntax definition of the designed language a straightfor-
ward task.

In Figure 2.3 we have included the syntax definition for an example language, the Entity
language, in SDF. In Figure 2.4 we have included a program in this example language

%% Grammar for the Entity language

module Test

imports Common

exports
context-free start-symbols

Start

context-free syntax

"module" ID Definition * -> Start { cons("Module")}
"entity" ID "{" Property * "}" -> Definition { cons("Entity")}
ID ":" Type -> Property { cons("Property")}
ID -> Type { cons("Type")}

Figure 2.3: The SDF grammar rules for an example language (the Entity Language)

and finally Figure 2.5 illustrates the AST an SGLR parser produces based on this example
program and syntax definition.

4http://www.program-transformation.org/Sdf/SdfBundle

12

http://www.program-transformation.org/Sdf/SdfBundle

2.4. Language workbenches

module example

entity User {
name : String
password : String
homepage : URL
homepage2 : URL2

}

entity BlogPosting {
poster : User
body : String

}

entity URL {
location : String

}

Figure 2.4: An example program based on the language defined in Figure 2.3

Module(
"example"

, [Entity(
"User"

, [Property("name" , Type("String"))
, Property("password" , Type("String"))
, Property("homepage" , Type("URL"))
, Property("homepage2" , Type("URL2"))
]

)
, Entity(

"BlogPosting"
, [Property("poster" , Type("User")), Property("body" , Type("String"
))]
)

, Entity("URL" , [Property("location" , Type("String"))])
]

)

Figure 2.5: The resulting AST for the example program in Figure 2.4

13

2. LANGUAGE SPECIFICIDE COMPONENTS

Stratego

The Stratego language is a small domain-specific language for program transformation.
Stratego is, next to SDF, the core language in Spoofax. Usingrewrite rules and so called
strategies an AST can be traversed and altered. Such rewriterules are based on pattern
matching. Using a number of strategies a tree can be traversed in a number of ways. There
is for instance the option of using a bottom up or top down strategy which allows the ap-
plication of a rewrite rule to all nodes in a tree. The third major concept in Stratego is the
notion of dynamic rules. A dynamic rule can be defined while traversing the tree. This can
for instance be used when in a topdown traversal a scope needsto be defined. Such rewrite
rules are globally accessible and can therefore also be usedto store information which needs
to be accessed from some other part in the traversal steps. Dynamic rules are particularly
useful to store declarations of variables in their scope, allowing a language designer to be
able to retrieve type information when such a variable is used further on in the program.

In Figure 2.6 we have included an example semantic check for the example Entity lan-
guage which determines whether a referred type is valid or not.

strategies

analyze = topdown(try(record-entity))

rules

/*Records the definition of an entity in
a dynamic rule called ’GetEntity’*/

record-entity:
Entity(x, body) -> Entity(x, body)
with
rules(

GetEntity :+ x -> x
)

rules

/* Reports an error if a property type is undefined.
This error is reported on the type name ’type’*/

constraint-error:
Property(x, Type(type)) -> (type, $ [Type [type] is not defined])
where

not(!type => "String");
not(!type => "Int");
not(<GetEntity> type) //$ no entity for this type

Figure 2.6: Stratego code to perform a semantic check on the Entity language

Spoofax executes strategies through an entry-point rule ofthe form shown in Figure 2.7.
Spoofax also allows for the creation of custombuilderswhich are also a hooking point to
directly call a Stratego strategy. There could for instancebe a builder to call a strategy

14

2.4. Language workbenches

which transforms an AST into an equivalent implementation in a different language. If that
different language would be bytecode, or an intermediate language, it is effectively acom-
piler for the source language if the resulting AST is pretty-printed into an executable file.
Pretty printing is essentially the conversion of an AST backinto source code.

rules

editor-analyze:
(ast, path, project-path) -> (ast, errors, warnings, notes)
with

editor-init;
analyze;
errors := <collect-all(constraint-error, conc)> ast;
warnings := [] ;
notes := []

Figure 2.7: Form of the stratego entrypoint for editor feedback in Spoofax

The rule shown in Figure 2.7 matches on a tuple of the form(a,b,c) wherea represents
the AST which was returned by the JSGLR parsing step. This tuple is rewritten (or returns)
a tuple of the form(ast,errors,warnings,notes) whereerrors, warningsandnotesare lists
of tuples of the form(node,string). Thenodepart is the node in the tree where the error,
warning or note originated and the accompanyingstring is the actual message which was
defined in the semantic check which should be shown to the programmer.

In our example in Figure 2.4, the typeURL2 is not defined for propertyhomepage2.
The semantic check we have shown in Figure 2.6 and Figure 2.7 returns the list of errors
shown in Figure 2.8.

[("URL2" , "Type URL2 is not defined")]

Figure 2.8: List of errors returned by the example semantic check

Note that in Figure 2.8URL2 is actually the tree node which, in turn, is actually an
ATerm which (hiddenly) contains attached information about where in the source code this
node originated. Spoofax extracts this location from the tree nodes and shows the reported
error in the editor accordingly.

Moving on

As should be clear, Spoofax is a very powerful workbench to design languages with. The
SDF definitions and accompanying Stratego programs providea general way to implement

15

2. LANGUAGE SPECIFICIDE COMPONENTS

advanced language analysis for existing and new languages.

In the following sections of this document we will use Spoofax as a base line to research
the possibilities and difficulties of building a semantically aware Web based source code
editor.

16

Chapter 3

Requirements

Since applications built for the Web are constrained to the use of technologies which are
available in the browser (JavaScript), implementation of aDesktop IDE quality analysis is
not a trivial task. In this section we will define the requirements the back-end components
of our source code analysis tooling should meet.

3.1 Background

In order to capture the essence of what would enable a Web based IDE, we will enumerate
the minimal functionalities our back end will need on which afully featured Web IDE could
be built.

In Section 2.4.1 we have enumerated editor services typicalcurrent IDEs support. All of
these editor services can be implemented using rewrite rules as explained in Section 2.4.1.
In our proof of concept design we will not actually implementall mentioned flavours of
editor services. Instead we will solely focus on the qualitychecking of source code. By
this we intend to be able to return Desktop IDE quality feedback regarding errors, warnings
and notes. Since we will be investigating multiple angles ofapproach we need some way
to compare these angles. We add the requirement of being ableto benchmark our proof of
concept implementations.

3.1.1 Benchmarks

For Web IDE based editor services to be feasible, the rate of feedback should be comparable
to a desktop based IDE. Based on our experience with IDEs the time it takes for language-
specific feedback to be visible is roughly around 300 milliseconds. This would allow for
up to around three full update cycles per second. We have set this goal at 300 milliseconds
as a subjective answer to the question whether an editor “feels” smooth while modifying
code. In real world situations Desktop editors provide feedback in a non-constant time as
the size of the program or complexity of an edit fluctuates. Obviously the complexity of a
target language will also have great impact on the amount of time it will take to (re)analyse
a program in that language.

17

3. REQUIREMENTS

Since there are multiple steps our back-end will have to perform, at least parsing and
analyzing, it would likely be of help to increase the resolution of our data by obtaining
statistics about each back-end step. Such an increase of resolution could help in identifying
bottlenecks and provide clues where to introduce optimizations.

3.1.2 Quality

In order to guard the quality of the feedback our back-end would provide to a front-end
editor we add the requirement of being able to run tests batchwise. This would allow us
to compare the feedback our back-end provides to the resultsobtained from a proven to be
correct set of feedback based on a set of input programs.

3.1.3 Maintenance

Because our work will be based on state of the art technology there is a likelihood that
dependencies evolve. In order to make sure our proof of concept implementation keeps
working while ongoing maintenance on dependencies is done,it would be useful to auto-
matically rebuild our tools as soon as a dependencies get updated in order to identify issues
as early as possible.

Another advantage of building automatically means the potential complicated build
steps are programmatically defined. Anyone who wants to extend or use our tools could
gain knowledge about the build complexities by investigating the build files. The Nix [14]
package manager has support for all of the above. Through functional definitions, packages,
their dependencies and build setups can be defined. Such build setups can be automatically
built as soon as one of the dependencies gets altered. Another advantage of using Nix is the
fact most of the dependencies Spoofax is based on have nix release scripts.

3.1.4 Responsiveness

Since JavaScript was introduced it has mainly been used to provide a way to execute some
simple client side scripts in order to handle for instance input validation or visual effects.
Because of this, JavaScript code is inherently implementedto run in the same program
thread as the presentation layer of web pages. Even though recent leaps in optimization and
performance of JavaScript engines, a “heavy” JavaScript function will still freeze the user
interface of a web browser until the function finishes.

In order to provide a way around this, W3C has proposed WebWorkers in HTML5
1[42]. WebWorkers basically introduce threads to JavaScript and are particularly useful
when needing to execute longer running code on the background without having the execu-
tion time interfering with the user interface.

Because our proof of concept Web Editor should not freeze during the times an analysis
runs, interrupting the programmer, we add the requirement of a non blocking user interface.

1http://www.w3.org/TR/2012/CR-workers-20120501/

18

http://www.w3.org/TR/2012/CR-workers-20120501/

3.1. Background

3.1.5 Generation

As added requirement in order to answer the “Is generating a semantically aware Web based
source code editor feasible?” research question, we propose a tool which can take any
typical Spoofax project and generate an equivalent back-end which can run in the browser.
This would also introduce the possibility for future integration of a Web editor builder in
the Spoofax language workbench itself and provides a solid abstraction on which to base
the experiments for this thesis.

3.1.6 Use cases

In this section we will list some languages for which we want to provide a Web editor. Since
we will base our work on the input of a Spoofax project, in principle any typical Spoofax
project should be convertible to a Web-based source code editor using the products of this
thesis.

Entity Language

When a new project is created with Spoofax (Section 2.4.1), aminimalistic example lan-
guage template is added called the Entity language. This language implementation includes
a simple but “door opening” definition for some simple errorssuch as a check on duplicate
names. It would be a good starting point to start with this simple language and introduce
more sophisticated languages from there.

Tiger Language

Since there already exist some Spoofax projects which implement editor services for lan-
guages it would be useful to extend our use cases with some of these real world scenarios.
The second use case next to the entity language we propose is the more complicated Tiger
language [3]. The Spoofax based editor for the Tiger language features semantic analysis
for typed variables, functions, etc.2 Even though a powerful language, its specifications3

are concise and therefore make Tiger a very suitable language to be used to illustrate the
various components a language consists of. In fact, the Tiger language is currently used in
the Compiler Construction course at Delft University to help explain how modern compilers
can be implemented.

Mobl Language

The last use case language we will explicitly create a Web editor for is the Mobl language.
[29, 28, 30, 27]4 The Mobl language is a statically typed domain specific language (DSL)
which can be used to implement web applications. These Web applications are aimed at mo-
bile devices, optimizing the resulting UI implementation for low resolution displays. Mobl

2http://strategoxt.org/Tiger/TigerLanguage
3http://www.lrde.epita.fr/ ˜ akim/ccmp/tiger.html
4http://www.mobl-lang.org/

19

http://strategoxt.org/Tiger/TigerLanguage
http://www.lrde.epita.fr/~akim/ccmp/tiger.html
http://www.mobl-lang.org/

3. REQUIREMENTS

also exposes most recent HTML5 features such as offline cached applications, interaction
with GPS hardware and gyroscope libraries. Mobl is closely related to WebDSL [62]. We
have chosen to use Mobl instead of WebDSL because WebDSL makes use of much custom,
non-Spoofax native, functionality in the semantic aspect of the analysis implementation.

The Entity, Tiger and Mobl language all have an open-source implementation in Spoofax.

3.2 Deliverables

Based on the previously discussed requirements we propose the following deliverables our
research should produce:

• Being able to benchmark the various components

• Being able to run quality tests

• Provide Desktop IDE Editor comparable feedback

– Syntactic

– Semantic

– Location of the point in the program where the feedback originated from

– Acceptable (300 ms) delay between an edit and feedback

– Non-blocking user interface while an analysis runs

We will present the following deliverables:

• A Web IDE back-end generator

• Proof of concept implementations

– A Web editor back-end for Mobl

– A Web editor back-end for Tiger

– A Web editor back-end for the Entity language

• Benchmark results

• Automatic builds (Nix [14])

20

Chapter 4

Client based editor services

With “ fully client sidebased editor services” we mean having the complete back-endwhich
calculates the editor feedback to be executed locally in thebrowser. No connectivity to a
web server is required and no server side load or bandwidth isused. In this chapter we
will discuss, implement and compare two approaches in obtaining a fully browser-based
back-end for a semantically aware source code editor. The quality of the back-ends we will
present will meet the requirements discussed in Chapter 3.

Because we are mainly interested in the feasibility of automatically deriving a seman-
tically aware source code editor based on JavaScript, the browser programming language,
we will not actually implement a front-end. Instead, we willmainly focus on comparing
the various aspects of our implementations such as size, performance and memory usage.
In Chapter 6 we will present a front-end capable of actually using and displaying the output
of the back-ends we will discuss in this chapter.

4.1 Architecture

NodeJS [55] is a platform which can execute JavaScript programs from the command line.
NodeJS is based on V81 which is used as JavaScript engine in the Google Chrome browser
and is one of the most optimized JavaScript engines currently available.

Because NodeJS and Chrome both use V8 as JavaScript engine, the performance be-
tween the two should be very similar if not equal when tested on the same machine. In
order to confirm this similarity we have devised an experiment where we run the same
JavaScript program in both NodeJS and the Google Chrome browser. We have implemented
a deliberately inefficient iterative prime number enumerator and a recursive Fibonacci se-
quence determination function for JavaScript in (Figure 4.1) and timed the execution times
on NodeJS, Chrome and FireFox.

All benchmarks were performed on aAMD quad core 3.2GHz 8 GB Ramcomputer
running Windows 7. The version of NodeJS was0.7.2 and the version of Chrome was
18.0.1025.

1http://code.google.com/p/v8/

21

http://code.google.com/p/v8/

4. CLIENT BASED EDITOR SERVICES

Each test was executed five times straight, after which we took the average run time. In
Figure 4.4 and Figure 4.3 we present the benchmark results ofexecuting these algorithms
on both NodeJS and Chrome.

function fib ($n)
{

if ($n < 2)
return $n;

return fib ($n-1)+ fib ($n-2);
}

Figure 4.1: Recursive Fibonacci function in JavaScript forperformance comparison

function PrimeCount ($max)
{

var $c = 0;
for ($i = 2; $i < $max; $i ++)
{

if (isPrime ($i))
$c ++;

}
return $c ;

}

function isPrime ($num)
{

$isPrime = true;
for ($i = 2; $i < $num; $i ++)
{

if (Math . round ($num / $i) === ($num / $i))
$isPrime = false;

}
return $isPrime ;

}

Figure 4.2: Inefficient iterative JavaScript based function to count the amount of prime
numbers smaller than $max

Clearly NodeJS and Chrome show a very similar performance. We expected the V8
implementation running in Chrome to always have a slightly worse performance due to
overhead caused by the browser itself. This was however onlythe case in our heavily
recursive test whereas the iterative test was practically equal. As is also obvious from these
numbers, FireFox performs orders of magnitude worse for both our tests.

Since the in this document described work revolves around a proof of concept we have
deemed it acceptable to mainly target Chrome. Also, a large number of the benchmarks we
have performed and will present in the next chapters were done on NodeJS for convenience

22

4.2. GWT

Platform 40 38 34 30
NodeJS 1931.4 738.2 108.0 16.4
Chrome 2128.0 814.6 119.4 17.2
FireFox crashes crashes 5366.8 785.4

Figure 4.3: Performance in milliseconds of running the recursive JavaScriptf ib(x) test from
Figure 4.1 on multiple platforms.

Platform 20K 15K 10K 5K
NodeJS 3333.2 1865.0 819.4 205.4
Chrome 3316.4 1868.2 830.6 210.4
FireFox 8311.2 4534.6 2019.0 523.4

Figure 4.4: Performance in milliseconds of running the inefficient iterative
PrimeCount($max) JavaScript from Figure 4.2 on multiple platforms.

of being able to create scripts for a command line tool whereas automating performance
tests in a UI based application such as Chrome would be cumbersome. Because of our
presented benchmark results between Chrome and NodeJS in Figure 4.4 and Figure 4.3, we
are of opinion using NodeJS to make claims about performancewe could achieve in the
Chrome browser is justified in the following sections.

4.2 GWT

Spoofax produces a Java based back-end for editor services which are created for a target
language. The Google Web Toolkit (GWT) contains a transformation tool to convert Java to
JavaScript. Since our goal is to investigate the various aspects of Web basedDesktop quality
editor services, GWT is an obvious first attempt at obtaininga proof of concept JavaScript
based implementation of the Java based back-end.

4.2.1 Difficulties

Regretfully GWT cannot transform the full set of Java languages into JavaScript. There
is for instance no support for file I/O and threading. Even though the Spoofax generated
back-end currently does not actually rely on threading, thread safe data types were used
to keep threading an option in the future. The back-end Spoofax produces for the Eclipse
editor was likely designed without the requirement of it ever being portable to JavaScript
in mind. Therefore when attempting to use GWT to directly port a Java based back-end to
JavaScript a lot of problems are reported by the transformation tool.

We have spent a fair amount of time manually fixing these compilation problems in the
generated Java code by for instance implementing dummy I/O classes. These implemen-

23

4. CLIENT BASED EDITOR SERVICES

tations were made using JSNI (JavaScript Native Interface). Using JSNI it is possible to
write native JavaScript code inside Java methods. These native JavaScript methods can be
called from Java to JavaScript converted classes. There is also the possibility to have the
GWT compilerreplaceJava classes with a manually implemented JavaScript version. In
Figure 4.5 is an example of JSNI. We have in addition to our ownfixes used the totsp-emu
library2 which is a set of JSNI Java classes which enabled us to add a great amount of
missing Java functionality in JavaScript and “repair” GWT build errors.

public static native int alert(String msg) /*-{
$wnd.alert(msg);

}-*/;

public void test () {
alert(‘‘Native JS alert popup message’’);

}

Figure 4.5: A JSNI native JavaScript method body called fromJava

4.2.2 Limitations

Because JavaScript has a browser based nature some featuresin typical current program-
ming languages such as persistent storage access can not be taken for granted. As previously
mentioned, GWT does not support converting Java to JavaScript if it makes use of file I/O
classes. This poses a problem in particular for our IDE back end because any arbitrary pro-
gramming language is very likely to support the inclusion ofexternal files. Take for instance
the possibility to reference public classes in Java or the inclusion of library functions which
are defined in another set of files.

These limitations are however in theory solvable by wrapping all Java I/O calls, and
forwarding them to some sort of client/server JavaScript API where a required file can be
downloaded on request through HTTP or by embedding all possible required external file
contents in the analysis engine itself. However since we want to restrict ourselves to afully
(and potentially offline) browser based analysis of a program we have decided not to include
external file support in our initial proof of concept design.

4.3 Measurements

Measuring and capturing performance statistics on Desktopapplications is usually a rather
straightforward task. There is however a complication whenattempting to gather uniform
performance statistics on client and/or server side Web applications. Since we want to keep
the possibility open to measure performance between both command-line run JavaScript

2http://code.google.com/p/totsp-emu/

24

http://code.google.com/p/totsp-emu/

4.3. Measurements

applications and JavaScript programs which run in the browser we have decided to take a
logging-server based approach. The main advantage is that given the Web based nature of
our research, (HTTP) requests can easily be made. This in great contrast with easy access to
persistent storage. Also having a single entity gather the data in a uniform manner allows us
to interpret the information more efficiently than having tomanually gather measurement
results from various locations.

We have implemented a data gathering service which listens for incoming results us-
ing a simple custom TCP protocol which allows for a (remotely) measuring entity to post
statistics. In order for the data to be meaningful we have added the possibility of clients to
also provide a metric concerning the amount of work and whichtask they were perform-
ing. Obviously in our use of this server we have taken steps toassure the posting of the
results, or the measuring itself, does not influence what is being measured. This method of
measurement was used throughout the graphs and tables we provide in this document.

4.3.1 Metrics

The obvious first metric one thinks of when trying to compare programs together is to count
the lines of code (LOC). Even though we shall mostly use LOC asmetric we have attempted
to define aneasy to obtainmore in-depth metric which should provide insight into the com-
plexity of a program. Because we will be working with programs in multiple programming
languages, this metric should be applicable to any arbitrary programming language.

The metric we will now present has been named “MDS”, short forMax Depths Summed.
Since we will base most of our measurements on SGLR parsable languages we can easily
obtain an AST for any given program in a language for which an SGLR parse table exists.
MDS is calculated using the Stratego program in Figure 4.6. In essence, a leaf node has the
weight 1, and each parent gains a point, where it takes the maximum value of their children
if it has multiple. The result is a list of numbers which is finally summed together forming
a weight for the source program.

max-depths-summed = <sum><max-depths>
max-depths = collect-all(max-depth, conc)

max-depth = max-depth(|1)
max-depth(|d):

ast -> max-depth
with

params := <?_#(< id>)> ast;
max-depth := <list-max> [d|<map(max-depth(|<inc> d))> pa rams]

Figure 4.6: The Stratego definition of the MDS metric

This metric is especially useful when comparing sets of programs which are written with
very different programmer signatures, where for instance one programmer tends to make
one-liners a lot and another prefers to add comments before each statement. MDS provides

25

4. CLIENT BASED EDITOR SERVICES

an easy to use method to obtain a comparable complexity-based weight to programs written
in any language. In this document we will use either MDS or LOCas horizontal metric in
our graphs depending on the uniformness of the input-program set.

4.4 Syntax

Because a native JavaScript implementation for the SGLR parsing algorithm does not exist,
we have prioritized getting JSGLR to run reliably on JavaScript. It would have also been
possible to fully implement JSGLR in pure JavaScript but since the Java implementation
consists of around 11,000 lines of code and relies on a number of extra libraries such as
the Stratego Terms library it would have taken too much time to implement SGLR in pure
JavaScript in the time frame of this thesis.

4.4.1 Previous work

A major step in previously conducted work has been the creation of the JSSGLR project in
[49]. GWT was used to port a wrapped version of the java based JSGLR parser implemen-
tation to JavaScript. Most of the work done revolved around optimizing the loading times
for a JSSGLR parser. The time to initialize the JSGLR parser is heavily dependent on the
parse table it is using.

In [49] an approach to transform a parse table from a file/string representation into
JavaScript functions is described. The transformation of aregular parse table into this
“JavaScript Functions” based representation of the input parse table is implemented as a
Stratego program. The resulting representation of the parse table is smaller than its original
because of a number of optimizations such as the sharing of recurring terms and optimally
renaming of internal tokens. Using this approach they have improved the initialization times
for JSSGLR.

The final relevant contribution in this previously conducted work has been the introduc-
tion of a wrapping JavaScript WebWorker, also mentioned in Section 3.1.4. A JavaScript
WebWorker is in essence a thread which can execute a long-running task in the background
without slowing down the UI.

In order for this previously done work to be viable in our research we have decided to
rewrite much of JSSGLR so we could make use of the newest version of the JSGLR parser
so we could benefit from state of the art work such as [13, 36]. Also in order to be able
to conduct performance tests in a straightforward manner wewanted JSSGLR to produce
a stand alone build rather than the product presented in the previous work which is highly
aimed at, and depends on, its target architecture. Finally,we required the parser to be able
to produce custom AST nodes which would be more JavaScript friendly, discussed in Sec-
tion 4.6.

26

4.4. Syntax

In the previously conducted work in [49], most measurementsand effort went into
speeding up the loading times of JSSGLR. Because we are mainly interested in the run
time performance of JSSGLR we have conducted a number of experiments involving ran-
domly picked and generated source files for different languages. In the following section
we will present the relevant statistics regarding the performance JSSGLR offers.

4.4.2 Comparison

In order to be able to compare JSSGLR to JSGLR we have added identical measurements
regarding performance of speed and memory usage inside bothimplementations.

The Java Virtual Machine and a large number of CPUs become slightly faster when they
have been busy with a workload directly prior to measuring performance. This difference
in performance is due to in-memory optimizations the Java Virtual machine makes, and
possible power saving functionalities which put an idle CPUat a lower clock frequency.
Therefore, all the measurements we have performed are preceded by a preheating of run-
ning the parser for ten iterations.

The results we present in the following sections were obtained by running all bench-
marks on the same Windows 7AMD quad core 3.2GHz 8 GB Rammachine, Java version
Java(TM) SE Runtime Environment (build 1.7.0 04-b22)and NodeJS version0.7.2.

Size

The size of the to JavaScript transformed implementation ofthe SGLR parser was (at max
GWT optimization and obfuscation setting) 162KB. The combined size of the Java imple-
mentation jars is 265KB. We will present performance graphs for both the Java and Mobl
language. The parse table for Java is 363KB and the parse table for Mobl is 624KB.

Speed

We will present a comparison between the native Java JSGLR and the JavaScript based
JSSGLR implementation. We have used the Java syntax definition and a random selection
of 50 Java source files from the open source TomCat3 project. We ran the tests three times
per input program and took the average numbers in our data setto base our analysis on.

3http://tomcat.apache.org/

27

http://tomcat.apache.org/

4. CLIENT BASED EDITOR SERVICES

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Lines of code

Time (ms)

JSGLR

++++++++++++++++ ++++ + + + + +

JSSGLR

××××××××
×××××
×××

××

××
× ×

×
×

×

Figure 4.7: Performance of executing the Java based JSGLR versus the JavaScript based
JSSGLR parser on arandomset of Java source code files

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000 7000

Time(ms)

MDS (as described in Section 4.3.1)

Java

++++ +++ + ++ ++ ++ + +

JavaScript

×
××

×
×

×
×× ×

× ×

×

×

×

×

×

Figure 4.8: Performance of executing the Java based JSGLR versus the JavaScript based
JSSGLR parser on arandomset of Java source code files (Removed results for source files
with more than 200 LOC)

As can be seen in Figure 4.7 the native Java implementation isclearly a lot faster than
the JavaScript version. This graph however does show a linear growth in direct relation to

28

4.4. Syntax

the amount of lines of code indicating JSSGLR scales linearly, as JSGLR does. In Fig-
ure 4.8 we have graphed the same data set, without the (> 200) lines of code containing
Java source files. In this graph the curve is less straight which is most likely caused by fluc-
tuating complexity per source file. We have plotted this graph using the MDS, discussed in
Section 4.3.1, metric because simply looking at lines of code does not take the syntactical
complexity, especially deep nesting, into account. The changes in syntactical complexity
are in this case especially significant because this is a random test set in which also Java
interfaces with large comment blocks reside. We can conclude the JavaScript implemen-
tation is slightly less stable performance wise compared tothe Java implementation but
does follow the general curve which was also visible in the large test set from Figure 4.7.
Since our previous comparison in Figure 4.7 was based on arandomset of source files we
will now present a test based ongeneratedsource files. Each test steadily increases in size
which guarantees a reliable comparison. The following graph in Figure 4.9 shows the per-
formance of JSGLR vs JSSGLR when parsing a generated set of programs created in the
Mobl [29, 28, 30] language and parsed using the Mobl SGLR syntax parse table.

0

1000

2000

3000

4000

5000

6000

7000

0 500 1000 1500 2000 2500
Lines of code

Time(ms)

Java

+ + + ++ + + + ++ + + + + + ++ + + + +

JavaScript

×
×
×
××
×
×
×
××

×
×
×
×
×
××
×
×

× ×

Figure 4.9: Performance of executing the Java based JSGLR versus the JavaScript based
JSSGLR parser on ageneratedset of mobl source files

29

4. CLIENT BASED EDITOR SERVICES

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100
Lines of code

Time(ms)

Java

+ +++ + +++ + + + + +++ +

JavaScript

×
×
×

×
×
××× ×

×

×

×

×

×

×

×

Figure 4.10: Performance of executing the Java based JSGLR versus the JavaScript based
JSSGLR parser on arandomset of mobl source files

Figure 4.9 shows a similar straight linear curve as the graphin Figure 4.7 which was
to be expected because we used a generated set of programs. Inour final comparison of
the Java vs the generated JavaScript based implementation of SGLR we present the per-
formance of a set ofrandomMobl source files taken from the Mobl back-end library and
example files in Figure 4.10. Interpreting these graphs we can conclude that the JavaScript
based implementation of the SGLR parser performs in a stablemanner and can be scaled
up to parse very large input files.

Memory

Finally we will present our obtained statistics regarding memory usage. The memory usage
is of particular interest because this is currently a significant factor on portable devices.
Current portable devices have about 256 MB RAM. In Figure 4.11 we present our results
for the generated Mobl programs set. As can be seen, the memory required for JSSGLR
begins at roughly 30 MB and increases around 1 MB per thirty lines of code. Memory wise,
these are promising results when looking at the possibilityof running JSSGLR on a portable
device.

30

4.4. Syntax

4

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Memory (MB)

Lines of code

Java

+
+ +

+
+

+ +
+

+

+
+

JavaScript

×

×

×

×

×

×

×

×

×

×

×

Figure 4.11: The memory usage of the Java based JSGLR and the JavaScript based JSSGLR
parser, parsing a set ofgeneratedMobl source files

Discussion

The resulting size of the JavaScript implementation and therequired parse table are quite
large. These sizes are however not prohibitive for usage on the Web. The parser implemen-
tation and parse tables are also static and can therefore easily be cached on the client after a
single transfer.

Comparing the curves of both SGLR and JSSGLR, it appears thatJSGLR runs eight
times as fast as JSSGLR. This very noticeable difference in speed between JSGLR and
JSSGLR in the previous graphs was to be expected for multiplereasons. For one, JSGLR
is optimized for Java in particular. Also, even though thereis no fundamental reason for
JavaScript to run slower than Java [44], in reality the stateof the art JavaScript engines run
much slower than current Java Virtual Machines (JVMs). Thisdifference is mainly because
of the historical difference of priority in which both technologies were developed. There
simply has been a lot more research and effort into speeding up Java compared to JavaScript.
Given that the performance gap steadily decreases as JavaScript gains more public interest
in the ongoing movement toward Web applications, JSSGLR appears to have a future.

Looking at the performance of JSSGLR, and knowing this is theperformance we can
get when actually executing this JavaScript program in an actual browser, we qualify the
results as actually promising. For Mobl, every ten lines of code account for roughly 15ms
increase in parsing time. Also, the average number of lines of code for our Mobl test set
lies around 70 lines of code which accounts for an average of 150ms parse time. These

31

4. CLIENT BASED EDITOR SERVICES

results indicate that producing a syntactical feedback in aweb editor is possible in around
150 milliseconds, which would “feel” quite responsive to anend user.

Maintenance

We have created a Nix script, mentioned in Section 3.1.3, which can automatically build
the JSSGLR project4. This build 5 is executed automatically as soon as the project itself
or a dependency is changed. The great advantage is a fully up to date build can always
be downloaded. This makes it unnecessary to manually compile JSSGLR which requires
checking out a number of dependency projects while JSSGLR isstand alone after it has been
compiled. This makes it easy for other projects to depend on JSSGLR and also provides
future maintainers of the software a thorough insight into the requirements to compile this
tool.

4.5 Stratego to Java to JavaScript

In this section we will provide the results of our experimentto automatically convert a gen-
erated Java based semantic analysis to JavaScript using GWT(Section 4.2). The Spoofax
language workbench compiles an in Stratego defined languageanalysis into a Java based
implementation. This Java based implementation is normally run natively (in the JVM) on
the Desktop pc, providing the back-end for an Eclipse [21] language plug-in.

Our first approach to building a Web editor back-end with the same semantic functional-
ity would be to automatically port the Java implementation to JavaScript. Since we require
to have no dependency on Eclipse, because Eclipse does not run on JavaScript, we have
created a custom Stratego entry point like Figure 2.7 which takes a source code string as
parameter and returns a list of tuples with semantic errors.This would allow us to call
the derived Stratego program from command line and enable usto compare the “modified
Java” and “through GWT to JavaScript converted” based implementations of the original
semantic analysis for the Mobl language.

Given the fact that this transformation would be on an already generated Java implemen-
tation of the analysis there was no need to implement this experiment neatly so we basically
took a trial and error, “duct tape”-facilitated, approach in order to get it to work. First we
obtained all required dependency source files such as the Stratego Term library, JSGLR and
the Stratego libraries and placed everything together in a single project. Next, through use
of the in Section 4.2.2 mentioned totsp-emu library, eliminations of unused library classes
and manually implementing necessary JSNI methods of our ownwe were able to get a first
version of a fully JavaScript based syntactic and semantic analysis for the Mobl language6.

4https://svn.strategoxt.org/repos/StrategoXT/spoofax /trunk/spoofax/org.spoofax.jssglr/
5http://hydra.nixos.org/job/spoofax/spoofax-jssglr/b uild
6https://svn.strategoxt.org/repos/StrategoXT/experim ental/mobl-gwt/

32

https://svn.strategoxt.org/repos/StrategoXT/spoofax/trunk/spoofax/org.spoofax.jssglr/
http://hydra.nixos.org/job/spoofax/spoofax-jssglr/build
https://svn.strategoxt.org/repos/StrategoXT/experimental/mobl-gwt/

4.5. Stratego to Java to JavaScript

Performance

In order to obtain performance data between the Java and javaScript based implementation
of a full semantic analysis we have modified our earlier mentioned Stratego entry-point to
perform the various parts of an analysis in measurable steps. We also added ten warm-up
runs to make sure the underlying platforms (JVM, NodeJS) andCPU are fully optimized
before taking the actual measurements. We have gathered theresults of our measurements
using the earlier mentioned data collecting server from Section 4.3.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (ms)

Lines of code

JavaScript Analyze time

+++ ++
+++

+++ ++
++

+
++

+
+

+ +

+
+
+Java Analyze time

××××××××××××××××××
××××××××××

×××××××
×
××

Figure 4.12: Performance of the Strj(Stratego→ Java)vs the GWTd(Stratego→ Java→
JavaScript) based implementations for the semantic analysis of ageneratedset of programs
in the Mobl language

In Figure 4.12 we present a graph which shows the performanceof executing the se-
mantic, in Stratego defined, analysis for both the Java and JavaScript implementations. The
test base we have used for this graph is a number ofgeneratedMobl source files. We have
measured the time it takes to obtain semantic errors for codeof up to 4500 LOC. Note that
the presented graphdoes notinclude the time it takes to parse the source code, in other
words, to obtain the corresponding AST using (J/JS)SGLR, asdiscussed in Section 4.4. We
have presented the performance of obtaining an AST using JSSGLR in Section 4.4.2.

In our generated test set we have introduced a number of trivial semantic flaws which
both the Java and JavaScript implementation equivalently reported. As with our results for
JSSGLR in Section 4.4, the JavaScript port of the Java implementation runs much slower.
Do note however that it is very uncommon to have such large source files, and this graph
is mainly used to emphasize the behavior of both implementations when their workloads

33

4. CLIENT BASED EDITOR SERVICES

increase. In Figure 4.13 we present a similar result set but for more typical real-world
scenarios with a range of up to around 250 lines of code. As canbe seen, the JavaScript
analysis takes roughly 100msfor very simple,< 50 LOC, programs and increases by around
25msfor every 10 lines of code.

0

100

200

300

400

500

600

0 50 100 150 200 250

Time (ms)

Lines of code

JavaScript Analyze time

+

+

+ +
+
+ + +

+ ++ + +

+
+

+ +

+

+

+ +
+

++
Java Analyze time

× ×× × ×
× × ×× ×× × ×× × ×× × ××

× ×× × ××

Figure 4.13: Performance of the Strj(Stratego→ Java) vs the GWTd(Stratego→ Java
→ JavaScript) based implementations of a semantic analysis for Mobl source code up to
250 LOC

4.5.1 Limitations

The main limitation in this proof of concept implementationis that it cannot run in the
browser in its current form. This is because of a number of, non-performance influencing,
simplifications we have made such as minor usage of NodeJS APIfunctions which are not
available in the browser. We have for example used the NodeJSfile I/O API to open and
parse the Mobl SGLR parse table. Even though this limitationexist in this crude attempt,
as we will show in Section 4.6, it is possible to embed the parse table in the JavaScript
implementation itself.

4.5.2 Discussion

We have spent a substantial amount of time and effort into getting the generated Java code
to be transformable to JavaScript using GWT which would indicate this approach to be
very unfeasible as it destroys the generative nature of developing a language using Spoofax.
However, most of our effort went into getting the non-generated dependencies which the

34

4.6. Stratego to JavaScript

generated Java code relies on to be transformable by GWT. In fact we have achieved to pro-
grammatically alter the language-specific generated Java implementation to be GWT-able
through the use of a series of regular expressions on the set of generated Java classes.

Even though we have achieved a decent performance in the Javato JavaScript converted
implementation, a major down side of GWT is that most of the conversion process seems
like a magic black box. For example we would like to be able to experiment with JavaScript
specific optimizations in the compilation step of Stratego code. All current optimizations
are Java specific and some parts such as the “Stratego Term” library implement non-required
functionality. We are confident that when focusing on a direct Stratego to JavaScript com-
piler similar, and better, results as the Java to JavaScriptimplementation should be possible.
In the next section we will discuss STR2JS, the Stratego to JavaScript compiler.

4.6 Stratego to JavaScript

The Stratego language currently has two compilers.Strc andstrj. The first compiler gen-
erates a C implementation of the Stratego program and the latter generates a Java based
version [9, 33, 15]. Thestrj Stratego to Java compiler is embedded in the Spoofax Lan-
guage Workbench.

Looking at the results we presented in our previous approachin Section 4.5 in which we
attempted to port Java to JavaScript using GWT we could not find much obvious optimiza-
tion points due to the complexity of dealing with generated code. Some optimization angles,
proceeding on our previous GWT based approach, are of coursepossible but we decided
a more maintainable approach would be to design a Stratego toJavaScript compiler. We
should be able to get at least similar results by simply mimicking the optimizations GWT
makes. In addition we would be able to manually implement andspecifically optimize
the Stratego back-end functions for JavaScript which couldprovide significant performance
increase.

4.6.1 Previous work

In December 2010, work was started at Delft University to implement a Stratego to JavaScript
compiler7, called “s2js”. This implementation consists of two parts.On one side the actual
compiler which transforms a Stratego program into JavaScript, and on the other a JavaScript
implementation of required primitive types and functions.For instance the “Stratego Terms”
type system and low-level implementations of strategies that handle core functionality such
as dynamic rules and the basic traversal strategies of Terms. This Stratego to JavaScript
compiler was created using a small subset of tests from the Stratego to Java and C compil-
ers in order to compare the JavaScript based binaries run time output to the correct output.

In mid 2011 this work was continued [49] in which a number of optimizations and alter-
ations were made. The contributions to s2js in this work particularly involved streamlining

7https://svn.strategoxt.org/repos/StrategoXT/strateg oxt-javascript-backend

35

https://svn.strategoxt.org/repos/StrategoXT/strategoxt-javascript-backend

4. CLIENT BASED EDITOR SERVICES

the transformation of Stratego to JavaScript. Regretfully, this work was never finished and
was not very usable.

4.6.2 S2JS

We have continued the work done on the Stratego to JavaScriptcompiler. In this section we
discuss the challenges we had to overcome in order to obtain an actually usable Stratego to
JavaScript compiler foranyStratego program which is created in Spoofax. Since the initial
set of non-failing tests was rather small compared to the available tests in the Stratego to
C and Java compilers we have added virtually most of these tests to the s2js project. With
exception of File I/O based tests. Next we implemented an easy way to run all these tests
and gather a list of failures using the in Section 4.1 described NodeJS environment.

Obviously, in our initial attempts we came across a lot of problems. We attempted to
group the problems into similar Stratego functionality in order to efficiently modify the
Stratego JavaScript back end to produce correct output. We have also made our additions to
the Stratego JavaScript keeping a close eye on the original Java implementations from the
Stratego Terms library. The JavaScript binaries the s2js compiler produces depend on the
following key components:

1. SRTS - Stratego RunTime System
The Stratego run time System is in essence the core dependency for any s2js’d Strat-
ego program. The three low-level implementations of the core traversal strategies in
Stratego, namely “one”, “some” and “all”, are implemented here. For exampleall(s)
is defined to apply the strategys on all sub terms of the current term. The low-level
implementation is platform-specific, so in s2js JavaScriptbased. The most commonly
used traversal strategies, bottomup and topdown, are defined in the Stratego library
and directly rely on theall(s) strategy. [61, 9]

bottomup(s) = all(bottomup(s)); s
topdown(s) = s; all(topdown(s))

2. JS ATerms - JavaScript ATerms (Annotated Terms)
The JS ATerms component in s2js contains the implementations of the JS Terms. This
is essentially a stripped down version of the Java based Stratego Terms. Each term
has a certain type such as (int, real, string, list, tuple, etc). The JS Term system
exposes functions to retrieve the type of, compare, construct and modify terms.

3. JS Primitives - JavaScript Primitive functions
The JS Primitives library consists of all core functionality which can not be (effi-
ciently) defined in Stratego itself. There are for instance primitives to add and subtract
integers. In the next subsection we will explain Stratego primitives in more depth.

36

4.6. Stratego to JavaScript

4.6.3 Primitives

The Stratego language is layered on top of a set of primitive strategies. These strategies
call native code which is platform specific and has to be implemented in the underlying
language. This is in our case of course JavaScript. In Stratego these primitive strategies
are mostly invisible from normal users because they lie at the heart of the various Stratego
libraries. The Stratego libraries provide a large set of commonly used functionalities such
as multiplication of numbers, concatenation of lists or testing for (in)equalities.

Eventually, most Stratego statements reach one or more of these primitive functions. In
Figure 4.14 is an example of an invocation of a primitive function.

call-primitive-func : x -> y
where y := < prim(‘‘Primitive_Function’’)>x

Figure 4.14: A Stratego call to a primitive function

Note that the Stratego to Java compiler translates this to aninvocation of a method in
a class which implements a special interface. In s2js this translates to a simple JavaScript
function call. In this examplex is the first parameter for this function call.

4.6.4 Obtaining an AST

At this point we are able to compile Stratego programs to JavaScript. This JavaScript im-
plementation is based on a custom implemented ATerm system.In order to be able to apply
our JavaScript based Stratego program to an AST we need to obtain such ASTs in a com-
patible format. The Stratego language provides access to anSGLR parser through a specific
Stratego SGLR library. In the Stratego to Java compiler thislibrary depends on JSGLR. We
could not simply use the output AST which JSSGLR provides directly in s2js because JSS-
GLR provides Java based Stratego Terms. Granted, these are actually JavaScript objects,
they are still based on the GWTd Java implementation which isnot compatible with the
earlier mentioned JavaScript ATerms in Section 4.6.2.

Thankfully the architecture of JSGLR allows for the implementation of a custom TermFac-
tory which provides an abstraction from whatever term system is used. Using JSNI, dis-
cussed in Section 4.2.1, we implemented a specific s2js-TermFactory. We made sure the in
native JavaScript implemented Term factory is called during the construction of the AST by
our improved version of JSSGLR.

We have mentioned a JavaScript aimed optimization for JSSGLR in Section 4.4.1 which
transforms an SGLR parse table into a set of JavaScript functions rather than a string which
has to be parsed in order to initialize an instance of JSSGLR.This optimization was imple-
mented in Stratego. We have essentially embedded this “table to functions” transformation
inside the s2js compiler by replacing the Stratego statement which imports a table file in the

37

4. CLIENT BASED EDITOR SERVICES

to be to compiled AST representation of the target Stratego program.

At this point we were able to write a Stratego program which accepts a string as pa-
rameter, parse this string into an AST by calling a custom Stratego Primitive which calls
JSSGLR, and pass the resulting AST to a strategy. This Stratego program can be compiled
by s2js and run on NodeJS.

From Spoofax

Because all language-specific aspects which are required for a semantically aware editor is
inside a Spoofax project in the form of SDF definitions and a Stratego program we have
created a general Stratego program which in essence glues everything together. An existing
Stratego program which retains inside a Spoofax project is wrapped by a custom Stratego
program which exposes a command line interface. This wrapper transforms a string into an
AST and feeds this AST into the original Stratego program which detects and reports the
possible semantic errors. In Chapter 6 we present a tool which automates the generation of
a Web IDE based on a Spoofax project.

4.6.5 Results

In this section we will present the benchmark results we haveobtained from running a set
of Stratego programs which were compiled using s2js. We willmirror these results with
the previous Java and GWTd Java implementation performance. In Figure 4.15 we have
included a graph representing the performance of the s2js implementation of Mobl. In this
image the initial comparison is between the native Java and native JavaScript implementa-
tion. Even though the directly to JavaScript transformed Stratego program is much slower
than the native Java implementation, these results are promising because we now have a
solid foundation to implement JavaScript specific optimizations on.

When looking at our second comparison, where we compare the GWTd implementation
from Section 4.5 with the implementation we have obtained using the Stratego to JavaScript
compiler we see a very similar performance. We suspect this to be a confirmation that
JavaScript interpreters are currently simply just less optimized than Java Virtual Machines
(JVMs). When looking closely it seems the GWTd implementation is always a fraction
quicker than the s2js implementation. We are however confident that future optimizations
in the s2js compiler can be made. One could specifically look at the Stratego language and
introduce optimizations which are specifically beneficial for JavaScript in order to further
improve the s2js compiler and obtain faster running semantic analysis implementations.
Both Figure 4.15 and Figure 4.16 are based on the performanceof a set of random files
from the Mobl library.

38

4.6. Stratego to JavaScript

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300

Time (ms)

Lines of code

JavaScript Analyze time

++++++++++

++

+++++++
+++++
+
+
+++
++
+++++++++++

++

++++++
++++++

++
++

++

++
+++

+
++

+++

+++++
++
++

+

+
+

++ +

+

++
+

++Java Analyze time

×× ×
××××××××××××××××× ×× ×

×××××××××
×× ×× ×××

××

Figure 4.15: Performance of the Strj(Stratego → Java) vs the S2JS(Stratego →
JavaScript) implementations of a semantically aware analysis for the Mobl language on
a random set of Mobl source code files<= 250 LOC

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300

Time (ms)

Lines of code

S2JS JavaScript Analyze time

++++++++++

++

+++++++
+++++++
+++
++++
+++++++++

++

++++++
++++++

++
++

++

++
+++

+
++

+++
+++++
+++
+

+

+
+

++ +
+

++
+

++
GWTd JavaScript Analyze time

××××××
×
×××
××
×
××
××
××
×××
××
×
××
×

×
×

×××××××××
×××××××××××××
××
××
××××

×

×

××
××
××××
×
××
×
××
××
×

×

×
×

×

××
×

×
××
××
××
×

×

×
×

××

×

×
×

×

×× ××

×

×
×

Figure 4.16: Performance of the GWTd(Stratego→ Java→ JavaScript) vs the S2JS
(Stratego→ JavaScript) implementations of a semantically aware analysis for the Mobl
language on a random set of Mobl source code files<= 250 LOC

39

Chapter 5

Server based editor services

Our second major approach to implementing a semantically aware Web based source code
editor is to rely on a server back end to perform the actual calculations required for the anal-
ysis. We have implemented a proof of concept service which provides semantic feedback to
remote clients. This new approach obviously poses a wide range of new problems such as
how to handle connectivity problems. In this section we willdiscuss the solutions we have
used to overcome these problems.

5.1 Disadvantages

It is clear that the radically different approach in where the calculations are performed in-
troduce a number of problems and aspects to take into consideration. The obvious first
requirement would be that the users who program in our Web editor shall always need to be
connected to the internet in order to receive the syntactic and semantic feedback. Also, the
availability and latency of an internet connection could greatly influence the performance
and the quality of the editor feedback.

5.1.1 Overhead

Whenever a key press occurs which alters the program being edited there could potentially
be new editor feedback which is why ideally the analysis should be executed. In comparison
to our previous approach when everything is calculated inside the browser there now are a
number of extra steps which have to be performed. In the most naive approach in which all
data is always sent over the line the following steps are at least required (in order):

1. Client side:

a) Packaging the program in a form which can be sent over the internet

b) Posting/uploading this package to the server back end

2. Server side:

a) Receive the package

41

5. SERVER BASED EDITOR SERVICES

b) Decode the package into the program which must be analyzed

c) Running the Stratego program which performs the analysis

d) Package the resulting editor-feedback in a form which canbe sent over the in-
ternet

e) Returning/uploading this package back to the client

3. Client side:

a) Decode the received editor-feedback package

b) Apply the editor-feedback to the running editor-instance

In contrast, in the method explained in Section 4.6 only steps 2c and 3b have to be
performed.

5.1.2 Loss of scalability

The fully client-based method described in Section 4.6 has in essence no limit to the amount
of concurrent users. The analysis is run on the browser at theprogrammer which only puts
a small amount of stress in a hosting entity in the form of serving the required files to the
users. This also needs to happen only once due to client-sidecaching.

Obviously, the client-server based approach we propose in this section will have a maxi-
mum amount of concurrent users because each user would put stress on the server back-end.
Even though with the recent developments in Cloud based architectures in which we can
scale seemingly indefinitely, the cost in doing so could still be a limiting factor.

5.2 Advantages

A major advantage is the fact we are no longer bound to the use of JavaScript to perform the
actual calculations in. As we have shown in both of our previous proof of concept imple-
mentations in Figure 4.12 and Figure 4.15, a native Java implementationcurrentlyexecutes
an analysis much faster than a JavaScript implementation. Also, because of this freedom in
choice of platform, problems regarding File I/O are much easier to cope with because such
functionality is natively available in most general purpose programming languages.

5.3 Justification

Even though there are many disadvantages in the client-server based approach, our previous
attempts in Section 4.5 and Section 4.6 have clearly shown a native Java approach to cur-
rently be much faster. In the proof of concept editor we will present in this section we have
made a number of abstractions in the form of a couple of assumptions. These assumptions
are:

• A non-failing connectivity between client and server

42

5.4. Proof of concept

• A constant latency

Based on the graphs mentioned in Section 5.2 we suspect that for larger analysis jobs
a server-based (Java) approach will “win” from the fully browser based implementations
even with the added complications of the overhead we have discussed in Section 5.1.1.
Obviously the loss of “cheap” scalability as mentioned in Section 5.1.2 can not easily be
solved.

5.4 Proof of concept

We have implemented a proof of concept client-server based semantically aware Web editor.
The enumerated steps mentioned in Section 5.1.1 have been implemented in JavaScript and
Java. We have created a bandwidth-heavy version which basically sends all data back and
forth between the client and server omitting the necessity of managing a state at either the
client or server side. At the server side we receive the source code which must be analyzed,
analyze it and return the semantic feedback back to the client.

5.4.1 Transport layer

The classical approach in developing a web-application which communicates with a server
back end is to use requests. These requests originate from the client side. There are a num-
ber of protocols a web developer can use to achieve this extralevel of communication such
as HTTP Get/Post and Ajax [46]. A common workaround tosimulateserver-initiated com-
munication (push) is by implementing long-polling or streaming as is done in Comet[52, 8].

Currently, W3C is in the process of standardizing the WebSockets[19] protocol. The
WebSockets protocol exposes the possibility for a full-duplex connection between client
and server and, more interestingly, allowseitherside of the connection to initiate the send-
ing of a message. Also, because of the nature of a socket thereare always two endpoints
which removes complexity in the managing of multiple sessions server side. At the server-
side, an open socket could simply be coupled to a session witha certain state whereas the
alternative would mean extra checks and overhead. In [25] a comparison is made between
the classic approach and WebSockets in which WebSockets clearly perform with less la-
tency and bandwidth overhead.

WebSockets

We have decided to use WebSockets as main transportation layer in our proof of concept.
We did come across a number of difficulties which were mainly due to the fact that at the
time of this writing the WebSocket API definition was not completely finished by W3C1

and therefore not uniformly implemented in all browsers. Our server-side implementation

1http://www.w3.org/TR/websockets/

43

http://www.w3.org/TR/websockets/

5. SERVER BASED EDITOR SERVICES

was implemented using Jetty2, a lightweight Java based HTTP server which supports Web-
Sockets. We identified a rather prohibitive problem in our first tries in which a WebSocket
message which originates from a client could be no longer than 16385, or 214+ 1, bytes.
The opposite way, from server to client there appeared to be no limitation at all indicat-
ing it was a Chrome browser-specific limitation. We have tested this by transmitting up to
50MB of data to the client. In order to overcome this client to server limitation we have
implemented a simple fragmentation protocol on top of the WebSocket API which slices a
message into multiple parts of maximally 16385 bytes and transmits the sub messages in
order, prefixed with information about the current slice andhow many slices exist in total.
At the server-side the original message is reconstructed.

5.4.2 Analyzing

We now arrive at the moment where we have the original source code which resides in the
editor at the server in a buffer. The next step is of course to actually perform the analysis in
order to obtain the editor-feedback. We have implemented our Java based Jetty WebSocket
servlet as a project which references the Java implementation of a Stratego program.

We obtain this Java implementation by compiling a wrapped target Stratego program
with a custom entry point like we did in Section 4.6 and Section 4.5. We compiled this
wrapped Stratego program using the Stratego to Java compiler, strj. Next we call the custom
entry-point for this compiled Stratego program and pass thesource code we obtained from
the WebSocket as parameter. The resultingStrategoTermwhich represents the AST, errors,
warnings and notes is then converted into a JSON[12] string representation which can be
used by the client side. This JSON string is then transmittedback over the WebSocket.

5.4.3 Receiving an analysis result

Once the client receives the response from the server back-end in the form of a JSON string,
the result is is parsed into a JavaScript object. At this stage we have all the syntactic and se-
mantic feedback a Spoofax derived editor would have used at our disposal. In Section 6.1.3
we will present an editor front-end in which we actually visualize these analysis results in
the browser.

The resulting feedback can in its current form be more precise due to the availability of
referenced files at the server side. In for instance the Mobl case, there is a large library which
defines a number of common types such as a “label” or a “table”.In the s2js approach each
reference or usage of such a type would result in a semantic error. In this current server-side
proof of concept it was however trivial to make the library available to the Stratego program
since the Java implementation could make easy use of Java’s file I/O functionalities.

2http://jetty.codehaus.org/jetty/

44

http://jetty.codehaus.org/jetty/

5.4. Proof of concept

Performance

In Figure 5.3 we present the performance of this approach fora full cycle between client
and server. We have used a subset of the generated set of Mobl programs from Section 4.5.
We have manually performed these measurements in a Chrome based editor. We hosted the
server back-end on our main test machine and initiated the editor on a physically distant
computer. The (internet) latency between these machines was at all times we performed the
tests between 25 and 30ms. Regarding bandwidth throughput between client and server, we
have obtained a stable 400kB/s to and from both ends. In Figure 5.2 and Figure 5.1 we
present the amount of incoming and outgoing bytes in these tests.

Since in practice an analysis will run after each key press (or after a sequence of key
presses) the amount of bandwidth required starts to become amajor bottleneck. In an aver-
age 100 lines of code Mobl program, each edit of the program would initiate the “upload”
of 2KB and the “download” of 80KB. This difference in size is because the server sends
tokens instead of only the source code itself. These tokens contain a significant amount of
annotated information such as the type of the token, its contents, its origin and a possible
error marker. Note that this implementation is not optimized at all and consists of raw,
unzipped, JSON data.

0

100

200

300

400

0 50 150 250 350 450

KB

Lines of code

Run time

++
+++

+ +++
+

+

Figure 5.1: The amount of incoming bytes for
our client-server based analysis for the Mobl
language

0

4

8

12

0 50 150 250 350 450

KB

Lines of code

Run time

++
+++

+ ++++

+

Figure 5.2: The amount of outgoing bytes for
our client-server based analysis for the Mobl
language

5.4.4 Reducing overhead

Our previous attempt has revealed an obvious point of optimization because of the high us-
age of bandwidth. With exception of the optimizations described in Section 6.1.2 regarding
insertion of new lines, practically each keystroke could trigger a full update cycle. We have
implemented bandwidth-saving functionality in our earlier proof of concept. Since most
of the source code which is being edited does not change, and any typical alteration of the
source can be viewed as a patch to the previous “version”, we have decided to incorporate a

45

5. SERVER BASED EDITOR SERVICES

0
0.2

0.6

1.0

1.4

0 50 150 250 350 450

Time(S)

Lines of code

Run time

++ +++
+

+
++

+

+

Figure 5.3: Total time working for a full cycle between client-server (210 KM physically
apart, with an average latency of 28 ms and a 400 KB/s up and downstream) for our client-
server based Mobl analysis

diff/match/patchalgorithm [45]. What such an algorithm basically does is take two versions
of a string, for instance a stringA andB, compares them, and outputs a patch to obtainB
from A. We have used the JavaScript and Java implementation of Google’s diff/match/patch
algorithm3.

In order to only require to send such a patch, the client has tomaintain two versions
of the source code. The first version is thelast sentversion, which effectively must be the
version currently known at the server-side. Of course the second version is the one currently
being edited. As soon as a patch is derived by “diffing” the oldand current versions, the
patch is sent to the server and thelast sentversion is updated.

At the server side, the patch is applied to the currently known version of the source code
after which the normal analysis is executed. The resulting JSON tokens are then “diffed”
in the same manner after which a patch of that JSON string is replied back to the client.
The client applies the patch to its previously most-recent server reply and updates the editor
using the new information.

Extra calculations

In essence, our bandwidth overhead reducing algorithm actually introduces extra calcula-
tions on both the client and server side. After all, thediff/match/patchalgorithm is being
run a number of extra times. It is in fact possible that addingthis layer actually slows down
the overall cycle from a modification in the editor to the actual display of updated feedback.
We have measured the added overhead inmsto actually perform thediff/match/patchalgo-
rithm. Because the first execution of the algorithm, in whichan empty string is compared to
whatever needs to be sent over, will produce a patch consisting of exactly the entire second
string we have taken this very first execution separate. Following this first execution we
ran five successive executions for each test case and took theaverage extra time it takes to

3http://code.google.com/p/google-diff-match-patch/

46

http://code.google.com/p/google-diff-match-patch/

5.4. Proof of concept

execute thediff/match/patchalgorithm on the client and server side.

0

20

40

60

80

0 50 150 250 350 450

time (ms)

Lines of code

Run time

++
+
++

+ +++

+
+

Figure 5.4: Overhead of executing diff/-
match/patch (first run) for our client-server
based analysis for Mobl

0
2
4
6
8

10

0 50 150 250 350 450

time (ms)

Lines of code

Run time

+
+

+
+

+ +
+++

+

+

Figure 5.5: Overhead of executing diff/-
match/patch (successive runs) for our client-
server based analysis for Mobl

In Figure 5.4 and Figure 5.5 we present our results. We can conclude that for a first
execution the algorithm is introducing most overhead. For successive runs however, the
amount of overhead is negligible compared to the full-cycleexecution times we have pre-
sented in Figure 5.3. At this point we are of course interested in the actual amount of data
which would be transmitted over the network.

48

50

52

54

0 50 150 250 350 450

Bytes

Lines of code

Run time

+

+

+

+

+ +

+

+

+
+

Figure 5.6: The amount of outgoing bytes in
the, with diff/match/patch, extended version
of our client-server based analysis for Mobl

170

190

210

230

0 50 150 250 350 450

Bytes

Lines of code

Run time

+

+

+

+

+

+

+
++

+
+

Figure 5.7: The amount of incoming bytes in
the, with diff/match/patch, extended version
of our client-server based analysis for Mobl

In Figure 5.6 we present the graph regarding the amounts of outgoing data when making
small modifications to the program in the editor. In Figure 5.7 we show the size of the
resulting patch message which is being received from the server. Depending on the type

47

5. SERVER BASED EDITOR SERVICES

of modification that was made, the size of the patch message fluctuates. When for instance
pasting in a number of lines, the patch message obviously contains the information from
these lines. In these measurements we have simply added arbitrary comments to the code.
These are the average sizes of the payloads sent over the network for five edits per test
case. Note that regardless of the size of the program which isbeing analyzed only the type
of modification to the program has effect on the size of the patch message. In essence,
for comparable acts of modification to the program in the editor, the patch message size is
constant.

Finally, in Figure 5.8 we present the combined measurementsfrom Figure 5.3 and our
with thediff/match/patchalgorithm extended implementation. Clearly much of the overhead
was caused by the large amount of data which was being sent over the internet. Looking
at the amount of data which needed to be sent, with a maximum of368KB in the original
attempt, one might wonder why this introduces such a significant delay. After all we were
able to get a stable 400KB/s between both the client and the server in both ways. In Fig-
ure 5.3 the maximum amount of time to complete an analysis lies at 1417ms. Looking at
the performance we have obtained in Figure 5.8 there is roughly 400ms“too much” time in
that original approach. This seemingly extra overhead can however be explained because
when initiating a (large) transfer over the internet, thereis a small “warm-up” time before
the maximum throughput is reached.

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300 350 400 450

Time (ms)

Lines of code

Extended

++ +++ + + +++ +

Original

××
××
×

×
×
××
×

×

Figure 5.8: Our original vs. the, with diff/match/patch, extended implementation of our
client-server based analysis for Mobl

The performance we achieved in our final version of the client-server based proof of
concept is close to the native-java performance. After all,the amount of data which is
actually sent over the internet is mostly constant because of the diff/match/patch approach
and the actual calculations are performed in a virtually equal environment.

48

5.5. Discussion

5.5 Discussion

We have set out to provide an alternative to the s2js implementation. In Figure 5.9 and
Figure 5.10 we present a comparison between our client-server approach versus the perfor-
mance we achieved in our s2js proof of concept.

Lines Time Time
Of s2js clnt/srvr

Code (ms) (ms)
14 45 53
23 79 56
32 110 79
77 318 80
95 396 94

140 567 114
176 740 148
203 870 161
221 1024 173
239 1570 185

Figure 5.9: Comparison table of
performance between s2js and our
client/server approach for a Mobl
analysisrunning in the browser

0
200
400
600
800

1000
1200
1400
1600

0 50 100 150 200 250

Time
(ms)

Lines of code

S2JS

+++

+
+

+
+

+
+

+

Client/Server

××× × × × × × × ×

Figure 5.10: Comparison graph of performance between s2js
and our client/server approach for a Mobl analysisrunning in
the browser

Recall that s2js runsfully in the browser, and the measurements from Section 5.4.4 are
based on a client-server based setup where there was a latency between 20msand 30msfrom
client to server. The measurements were all performed on thesame set ofgeneratedMobl
source files. Clearly, given these conditions, the client-server based approach wins. These
conditions are however optimal. When there would be significantly more latency it might
be more beneficial to switch to the locally executed s2js approach. In Section 6.5 we will
present a balancing algorithm to automatically decide which analysis strategy to perform.

49

Chapter 6

Generation

Because using S2JS in combination with JSSGLR, creating a custom Stratego entry point,
and incorporating it into a front-end requires quite some juggling with files, we have cre-
ated “spoofax2ace”. Spoofax2ace is a command line tool which takes an arbitrary Spoofax
project and converts it into a full blown web editor.

6.1 Front-end

The earlier discussed JavaScript back-ends are in their current form not very useful. In
order to actually obtain a code editor we also need a front endwhich communicates with
the generated back-end. Obviously this front-end has to runin the browser and should be
customizable to allow the implementation of the GUI aspectsour Web Editor shall require.
It must for instance be possible to attach an error marker to text in the editor, along with
some explanation as to the nature of the error.

6.1.1 Ace

The open-source Ace (Ajax.org Cloud9 Editor) editor, mentioned in Section 1.2, is fully
written in JavaScript. It is the successor of the well known web-editor called Mozilla Sky-
writer1 which is, in turn, the successor of the Bespin editor2. Ace is built up using a number
of modules. There are for example modules to add a style-theme, GUI elements andcustom
programming languages.The current implementations for such custom languages how-
ever have little support for syntax, let alone semantic checks. In fact most programming
languages the Ace editor and web-based editors such as the amy editor 3, ecoder4, and
codemirror5 support are implemented using a series of regular expressions.

1https://mozillalabs.com/en-US/skywriter/
2https://mozillalabs.com/en-US/projects/bespin/
3http://www.amyeditor.com/
4http://ecoder.quintalinda.com/
5http://codemirror.net/

51

https://mozillalabs.com/en-US/skywriter/
https://mozillalabs.com/en-US/projects/bespin/
http://www.amyeditor.com/
http://ecoder.quintalinda.com/
http://codemirror.net/

6. GENERATION

The quality and amount of feedback a programmer actually gets when programming in
such an editor is very limited. There is for instance only keyword highlighting and ideally
some basic forms of syntax checks such as making sure an opening bracket is eventually
succeeded by a matching closing bracket.

Ace does have full syntactic and semantic support for the JavaScript programming lan-
guage thanks to the inclusion of an external project, calledNarcissus6, which provides a
javaScript based parser and semantic check for JavaScript.Obviously such a project does
not exist for any arbitrary programming language which likely makes the research in this
thesis interesting for developers of the Ace editor.

A major extra advantage of using Ace as our target editor is the fact that Ace is used as
primary code editor in the Cloud9 IDE7. The Cloud9 IDE consists of a number of general
modules which work very well in its client-server architecture such as the storing of a file
into the cloud or pushing/pulling commits from/to a versionmanagement repository. A
Cloud9 IDE can be hosted on any platform since it is fully written in JavaScript itself and
runs on NodeJS. Cloud9 IDE serves purely in a browser runnable client side code and does
not require any third party plug-ins such as Silverlight or Java. In the spoofax2ace tool we
will present in this chapter we have included a Cloud9 IDE plug in as one of the targets to
which a Spoofax project can be converted to.

6.1.2 Previous work

In [49] a working proof of concept syntactically-aware Ace editor is presented. The most
interesting part in this work for our proof of concept is the implementation of a hook into
the inner workings of Ace with respect to events. They have for instance customized some
often-occurring aspects such as the insertion of a new line.When a new line is inserted
into the editor they have made sure that all tokens in the nextlines shift a position down,
omitting the requirement to re-execute the entire syntactic and semantic analysis for the
currently open piece of source code.

6.1.3 Back-end to front-end

The Ace editor internally manages the state of a program using a list of tokens. Each token
contains for instance information about the symbol it is attached to, its position, the coloring
and if applicable error marker. In order to actually displaythe editor feedback to a program-
mer we have to extract the required information from the result of a Stratego program. Since
we already have implemented a wrapping entity for a Strategoprogram in Section 4.6.4 we
have extended this wrapper to actually return Ace tokens. Wehave implemented a term
visiting function which exhaustively extracts information from the traversed AST, and the
errors/warnings/notes which were reported by the originalStratego program.

6http://mxr.mozilla.org/mozilla/source/js/narcissus/
7https://c9.io/

52

http://mxr.mozilla.org/mozilla/source/js/narcissus/
https://c9.io/

6.2. Spoofax

Finally we have added a listener to the “the editor text has changed” event in Ace. When
this event fires we call the wrapped JavaScript implementation of the Stratego program
which parses, analyzes and tokenizes the source code into usable Ace tokens. Thanks to the
previous work regarding WebWorkers described in Section 4.4.1 we were able to implement
this functionality without dramatically affecting the user interface responsiveness. Using
the implemented proof of concept on the basic Stratego wrapper described in Section 4.6.5
we have implemented a semantically-aware Web editor for theEntity language, which was
introduced in Section 2.4.1.

In Figure 6.1 we have included a screenshot of the semantic analysis of the Entity lan-
guage from Section 2.4.1 running in the Chrome browser.

Figure 6.1: A semantically aware Ace Web editor running the Entity language example

6.2 Spoofax

Since it would be beneficial to automate the process of obtaining a Web Editor from a
Spoofax project we need to investigate where the required language-specific dependencies
are located. In this section we will discuss which Spoofax based dependencies there are and
how we incorporated them into Spoofax2ace.

53

6. GENERATION

6.2.1 Settings

We have implemented a tool which obtains the required, project specific, information from
a Spoofax project. Such information could for instance be the name of the Stratego based
entry point for the build product, described in Section 2.4.1. Thankfully, Spoofax stores
such language-specific settings in a specialized configuration file for which we have imple-
mented a parser which can return the various project-specific variables to the Spoofax2Ace
generation program.

6.2.2 Build products

Spoofax transforms a contained Stratego program into an intermediate ATerm representa-
tion of the Stratego program, namely a.ctreefile. A language designer could potentially
influence this ATerm file to implement some custom required behaviour in the resulting
Java implementation of the Statego program. Because of thispossibility, we have decided
to support such a.ctreefile as actual input for the s2js compiler. Spoofax regenerates this
.ctreefile whenever a piece of Stratego code is changed. The second major dependency our
Spoofax2Ace tool relies on is the availability of an SGLR parse table. Spoofax also initiates
the regeneration of such a parse table based on the alteration of its source SDF definitions.
The generation of the.ctreeand.tbl files are handled through a set of Ant8 build files.
Since it would be beneficial to not rely on Spoofax to actuallyproduce the files Spoofax2Ace
requires in order to generate a JavaScript implementation of the analysis, we have attempted
to automate the invocation of these Ant build files. Even though this works in most cases,
we have been unable to iron out some problems which occasionally rise due to custom build
steps and complexities language designers could implement. Due to these issues we require
the required files to be available and generated by Spoofax for the time being.

6.3 Dependencies

Because there are multiple involved technologies, Spoofax2Ace couples a number of other
projects together in order to be able to produce a Web editor.Currently these dependencies
are:

• JSSGLR (Section 4.4)

• S2JS (Section 4.6)

• The Stratego Libraries

The first two requirements should be obvious due to our previous discussions regarding
parsing, semantic checking and the technologies we will useto achieve this. The Stratego
Libraries contain often used strategies which most Stratego programs reference. The loca-
tion of the actual files can however change from system to system which is why we require
a user of Spoofax2Ace to specifically define their location.

8http://ant.apache.org/

54

http://ant.apache.org/

6.4. Target platforms

6.4 Target platforms

Even though we are targeting JavaScript as platform, there are some subtle differences in
the potential build targets for Spoofax2Ace which have a potential relevant effect on the
resulting binaries. We have for instance made a separate target for implementations which
are going to be benchmarked. The actual measurements and optional preheating runs can
pose a significant decrease in production-performance. Also, during the development of
the s2js compiler we wanted to be able to make use of profiling tools in order to pinpoint
obvious problems in the JavaScript implementation. The profilers we have used, Firedebug
9 and Chrome’s internal profiler are unable to function on codewhich runs in a WebWorker,
described in Section 3.1.4. Therefore we have added a build target which runs the analysis
in the UI thread which is of course not very usable in production. Currently, Spoofax2Ace
can generate binaries for the following targets:

• NodeJS Executable

• Ace Editor

– Production

– Extended Debugging

• Cloud9 plug in files

• Chrome and FireDebug profilable implementation

Figure 6.2: A Cloud9 Web IDE showing Tiger-language semantic feedback

9https://addons.mozilla.org/nl/firefox/addon/firebug /

55

https://addons.mozilla.org/nl/firefox/addon/firebug/

6. GENERATION

We have also included some options to only generate a syntax checker and omit the se-
mantic checks in order to speed up benchmarking. To actuallygenerate one of these targets
a Spoofax project root has to be specified. Optionally an example program for the target
language can be specified which will be the generated editor’s default content. For conve-
nience we have also included a minimal HTTP server script which serves the generated Ace
editor. Because the generated client-side files are static,these files can also be uploaded to
a regular web service since there there are no server-side requirements.

In Figure 6.3 we have added a slightly modified screenshot. The modifications we
have made in this screenshot are the visibility of multiple error messages at the same time.
Showing multiple error messages at the same time is normallynot possible because an error
message is only shown when a user hovers his mouse over the error marker.

We have also included a screenshot of the Cloud9 IDE in which alanguage analysis
for the Tiger language, introduced in Section 3.1.6, is visible in Figure 6.2. The language
plug-in for this Cloud9 IDE instance was obtained using the spoofax2ace tool.

As final addition we have added the possibility to target a client-server based imple-
mentation in which all calculations are actually run remotely on a server or in the cloud. In
Chapter 5 we have discussed this approach.

6.5 Client/Server Balancing

In Chapter 4 and Chapter 5 we have presented our two main approaches. The fully client
and the client-server based approach. Our editor approaches can be combined into a single
back-end which can take either of these strategies to perform the program analysis. In this
section we will discuss the possibilities in automating thedecision regarding which strategy
to use.

The notion of balancing we present in this section is an obvious next step after designing
both our fully client and client-server based approaches. This was however one of the final
additions to this thesis and even though our proof of conceptimplementation is functional
the contributions and ideas we present in this section are mainly conceptual.

6.5.1 Approaches

Initially, one might think the best strategy is the fastest client-server approach. There are
however a number of possible scenarios in which this is undesirable. For instance the added
costs we described in Section 5.1.2 when providing a server with more workload is a reason
to move load more to the slower client side. A user of the editor could also prefer the
fully locally running analysis due to for instance roaming costs when using a dongle while
travelling.

56

6.5. Client/Server Balancing

Figure 6.3: A showcase of the features of our generated web-editor for a mobl program

Fully in the browser

Our initial approach in Chapter 4 revolves around running the syntactic and semantic anal-
ysis fully in the browser. Even though the analysis does not currently execute as fast as
a Desktop based implementation it is certainly functional.Compared to the client/server
approach, the fully client based approach is far less dependent on outside influences such as

57

6. GENERATION

the unavailability of a stable internet connectivity or a failing remote server.

Client/Server

In Chapter 5 we have presented our server based proof of concept design. We can in fact
divide that solution up into two parts, namely the CPU friendly but bandwidth heavy “raw-
data” sender version and the bandwidth light but CPU heavydiff/match/patchversion.

This division could be relevant because on fast computers the most beneficial way to go
will most likely be thediff/match/patchbased version of our server based analysis. Espe-
cially when bandwidth is scarce. However, on certain devices which have less CPU power
such as a tablet, it could in fact be more beneficial to utilizethe bandwidth heavier, but
less CPU intensive, approach. Especially if the editor runson a device with a fast internet
connection. In fact, because JavaScript is becoming increasingly important due to the rise
of Web applications, JavaScript engines are continually optimized and the gap between Java
and JavaScript performance is decreasing.

6.5.2 Determining the optimal approach

Based on the work we have presented in this document we define the following three possi-
ble options:

1. Fully client side, browser based

2. Server side calculations, transmitting raw data

3. Server side calculations, transmitting patch data

We would like to present an algorithm which determines the optimal approach for the
current situation in which a user is editing code. By this we strive to have the algorithm
switch to a fully client-side mode in for instance the event of a connection failure. If all
options are possible, all options should be occasionally attempted and weighted in order to
obtain a preference toward the most suitable underlying technology for a current situation.

This attractiveness should be influenceable by the user and the Web administrator who
hosts the Web editor in order to represent dynamic conditions regarding for instance costs
while roaming. Our asynchronous algorithm is defined in Figure 6.4.

In this algorithm,R[n] stands for an array of execution times of the various analysis
implementations which are supported. When such a mode is started a penaltyP is added
to the appropriate rowR[i]. When the analysis finishes the penaltyP is subtracted and the
execution time is added fromR[i]. In the event of a failure an extra penalty is added on top
of the initial penaltyP which is likely not going to be subtracted again.

A timer at an interval I is also defined. Its purpose is to vaporize the values inR. The
vaporization rates are defined inV for each analysis mode. The value must be∈ [0,1]. The
closer to 1 this constant is defined, the faster itsRwill vaporize, meaning that approach will

58

6.5. Client/Server Balancing

Initialization:
R[0..2]← 0;
V[0..2]← 0.01;

Perform Analysis:
mode←Min(R).Index;
S← Now;
R[mode]← R[mode]+P;
call(mode);

Analysis Finished:
elapsed← Now−S;
R[mode]← R[mode]+elapsed−P;

Analysis Unsuccessful:
R[mode]← R[mode]+P;

At interval I:
f or(i← [0..2])

i f (R[i]> 1)
R[i]← R[i]∗V[i]

Figure 6.4: Event-based pseudo code of our client-server balancing algorithm

be attempted more often. This allows a hosting entity to define a value forV in which cal-
culations are done client-side where possible, but keep thepossibility open to automatically
switch to a server-backed analysis. We have embedded this algorithm in the product the
spoofax2ace tool generates. We have executed some minor tests in various circumstances
and the proof of concept implementation chose strategies asexpected when we for instance
switched off our networking connectivity or sabotaged network latency.

59

Chapter 7

Future work

In this section we will speculate on some useful subjects forfuture work, improving and
extending the various approaches and ideas we have presented in this document.

7.1 Optimizations

Because our Stratego to Java to JavaScript approach, discussed in Section 4.5, was quite
prohibitive in introducing JavaScript specific optimizations, we have created the s2js im-
plementation in order to facilitate the implementation of specialized JavaScript optimiza-
tions. We have already implemented a number of optimizations which allowed us to roughly
match the performance we got from the Stratego to Java to JavaScript approach by pinpoint-
ing performance bottlenecks using profiling tools, as discussed in Section 6.4.

Even though we have suspended our efforts in optimizing the s2js approach in favor of
our client-server approach, there are still interesting angles for future work in continuing the
s2js optimization process. The s2js is, in our opinion, the most promising fully client-side
based analysis and deserves to be investigated and developed further.

As mentioned in Section 4.4, we have used GWT to port the Java based JSGLR parser
to JavaScript. In Section 4.6 we describe a custom tree builder which outputs simplified,
manually implemented, JavaScript terms. The inner workings of JSSGLR are however still
using much simulated Java functionality. We suspect that implementing the SGLR parser
algorithm in native JavaScript, putting effort into JavaScript-specific optimizations could
produce a faster SGLR implementation than GWT could produceout of JSGLR.

7.1.1 Stability

The client-server based approach we have presented in Chapter 5 was highly optimized by
adding the diff/match/patch algorithm. There are some issues which could rise in a number
of steps of this approach. For instance our fragmentation protocol has been implemented
without a consistency check on a reconstructed string at theremote side. Even though we
did not encounter any issues regarding corrupt messages in our extensive tests, adding a

61

7. FUTURE WORK

CRC or hash would still be a useful addition in order to prevent potential problems during
production.

7.1.2 Security

Currently, the server based approach implements no security at all. Because all program
source code must at some point be fully transferred to the server in order to perform the
analysis, there is a potential security issue. The most simple solution to solving this issue
is to configure the HTTP server which hosts the WebSocket servlet to only serve a HTTPS
connection. The most elegant addition would however be to incorporate a credentials system
which ideally also handles server-side access to referenced files.

7.2 Extensions

7.2.1 Editor services

We have only implemented the errors, warnings and notes a typical Spoofax based language
analysis returns. Spoofax however also provides the definition of hover help, code folding,
code outlining, content completion and reference resolving. Even though our efforts in
getting the Stratego based analysis to run in a browser were successful, there is still some
future work required to implement these extra editor services. Fundamentally all of these
editor services can be implemented using Stratego+SDF and can therefore also run in the
browser based on the work presented in this thesis. The main difficulty in implementing
these back-end functions are to obtain an AST node from a location in the source code. This
required information is however available in the back-end and could be efficiently stored in
order to obtain a tree node object based on a line and character number. From these editor
services content completion is most likely to be the most challenging because, obviously,
at the moment of initiating a content completion request there is likely no syntactically
correct program. As mentioned in Section 2.2.4, the research in recovering erroneous ASTs
[13, 36] is likely a suitable approach.

7.2.2 File API

In s2js we have introduced a major simplification by disallowing File I/O operations. As
stated in Section 4.6.3, Stratego library functions eventually reach a primitive function.
With File I/O based functionality this is no exception. Currently we return empty data in
order to make sure a Stratego program running in JavaScript does not fail. A useful point of
future work would be the implementation of these File I/O related primitive functions and
investigating the possibilities of some sort of AJAX or WebSocket based file system simu-
lation. This simulation should of course trigger actual requests to a server which contains
the files which are referenced.

Alternatively, by extending the s2js compiler, work can be done to determine which files
can ever be referenced by some input Stratego program and actually embedding these file

62

7.3. Collaboration

contents into the JavaScript result itself or some other resource which is cached at the user’s
machine.

7.2.3 Partitioning

The algorithm which handles the balancing between fully client and client-server approaches
we have presented in Section 6.5 is rather simple. We simply choose between running an
analysisfully at the client side orfully at the server side. An interesting field of further
research would be to investigate the issues which rise when attempting to balance smaller
portions of work. It could for instance be beneficial to execute a syntactic check locally in
the client itself frequently and a semantic check which runson a server with a smaller fre-
quency. Another example would be the execution of a parser atthe client side, and sending
(a portion of) an AST to a server which would then execute a semantically aware operation
based on previous knowledge.

7.2.4 Bootstrapping

Since s2js, the Stratego to JavaScript compiler, is writtenin Stratego itself, it would be
an interesting achievement to compile s2js to JavaScript and run it in the browser. If this
implementation which runs in the browser is used to compile the Stratego code s2js consists
of a bootstrap would have effectively been made. The advantage of bootstrapping s2js
would implicitly mean that there is no longer a fundamental requirement for either the
Stratego to C (strc) or Stratego to Java (strj) compiler in order to compile and run a Stratego
program in the browser.

7.3 Collaboration

Because of the nature of the Web is all about connections and communication, a natural
next step would be to introduce a form of (real-time) collaboration. The Google document
application provides a functionality to watch a collaborator edit a shared document in real-
time. Because in most software projects there are multiple developers working on the same
project at the same time, real-time collaboration in which programmers can be physically
apart can still engage in for instance a session of peer-programming [38]. At the time of
this writing, the Cloud9 IDE is starting to support real-time collaboration.

7.4 Editor state URIs

In our research paper “Software Development Environments on the Web: A Research
Agenda” [38], an interesting angle for web-editors is introduced. Because a web-editor
runs fully in the browser there fundamentally are very little to no machine or installation
specific configuration settings. All required data could be stored in the cloud making it pos-
sible for a programmer to turn off his laptop and continue hiswork straight away by simply
opening his editor instance from another computer. Continuing on the possibilities it could
be of great help to be able to store a certain state of the editor and obtain a URI which points

63

7. FUTURE WORK

to the editor instance in that particular state. In open source projects there could be a major
shift in the way bug-reports are presented because bugs could be pinpointed in the code
itself in a certain state after which an author of the involved code could simply open up the
URI and fix the problem. Managing these states would however be a complicated area of
research because of the sheer potential size such a state would consist of.

64

Chapter 8

Related work

8.1 Source code editors

JS Fiddle JS Fiddle1 is an online tool in which a web developer has four windows. An
HTML, a CSS, a JavaScript and a result window. The code view supports simple syntax
highlighting. Using a run button the result window is filled with the resulting HTML page.
As the name suggests, the main intention of this tool is to help developers quickly try out
things without having to redeploy or save multiple files every time.

Codemirror The Codemirror2 editor is a JavaScript based component which can be em-
bedded in a web page. The CodeMirror project is maintained byone person, Marijn Haver-
beke. It supports a large number of languages in the form of syntax highlighting and for
some languages auto completion. The support for every language has been manually crafted
and heavily relies on the use of regular expressions. The Codemirror project is one of the
oldest web editors around.

Ace Ace, the Ajax.org Cloud9 Editor3 is similar to Codemirror. It is also based fully on
JavaScript and natively supports a large amount of languages. The well known Web editor
projects Mozilla Bespin and Skywriter were merged to form the Ace project. Ace support
many features such as code folding, bracket matching and auto indentation. Quite notably
the Ace editor is used on the GitHub4 website providing users an elegant way to edit and
commit changes to their repositories without the requirement to checkout the files to their
local machine first.

1http://jsfiddle.net/
2http://codemirror.net/
3http://ace.ajax.org/
4https://github.com

65

http://jsfiddle.net/
http://codemirror.net/
http://ace.ajax.org/
https://github.com

8. RELATED WORK

8.2 Web IDEs

With the uprising of Web-applications the field of Web IDEs isexpanding at a rapid pace
[2]. There are a number of projects which provide a Web IDE. Inthis section we will discuss
a number of these Web IDEs.

Cloud9 The Ajax.org Cloud9 editor5 is a Web IDE which is actively being developed.
Due to its open source nature the community can make additions which are often adopted.The
Cloud9 IDE supports a number of programming languages such as C-Sharp, Java and PHP.
The main programming language the Cloud9 IDE supports is currently JavaScript. Cloud9
provides practically all features a typical Desktop IDE also would. There is for example
support for a file system, step/trace debugging and deploying a program into a production
environment such as Azure6. At the time of the writing of this thesis, Cloud9 has also
recently released a collaboration feature which offers real-time collaborative editing of a
program in a group, similar to Google Documents.

eXo Cloud The Exo Cloud IDE7 is very similar to Cloud9 IDE. It too provides practically
all functionality a Desktop based IDE would. The IDE currently supports ten programming
languages which is less than Cloud9. The editor supports syntax highlighting but lacks
real-time feedback regarding syntax or semantic errors. The Exo Cloud IDE also supports
deploying to production environments and collaborative coding.

CodeRun The CodeRun Web IDE8 is a code editor which only supports C-Sharp, JavaScript
and PHP. Regretfully there are not much technical details available regarding the editor por-
tion of the IDE. We have tested this IDE and were particularlyimpressed with the code
completion feature for C-Sharp which produces the exact same results MicroSoft Visual
Studio does. Code completion is not available for the other supported languages. We have
confirmed that the editor supports syntax highlighting, butdue to the lack of technical in-
formation and insight into the inner workings we were unableto determine whether the
editor can actually show syntax or semantic errors. During our tests we were only able to
get some feedback regarding errors in the program being edited by initiating a build and
viewing build errors show up in a log list. As the other IDEs wehave presented in this
related work section, this IDE also supports the deploymentto various production sites.

MiDebug MiDebug [54] is a web-based IDE for embedded system programming. They
have created a browser plug-in which can directly communicate with a physical micro con-
troller. Using this link they actually compile the program which is being edited server side,
after which the program is deployed to the physical device. Step and trace debugging is
made possible through the use of a persistent connection between the server back-end and

5https://c9.io/
6https://www.windowsazure.com
7http://cloud-ide.com
8http://www.coderun.com/ide/

66

https://c9.io/
https://www.windowsazure.com
http://cloud-ide.com
http://www.coderun.com/ide/

8.2. Web IDEs

the physical device through JavaScript WebSockets. The source code editor which was
used is based on the Codemirror project. The MiDebug projectis currently being used as
a teaching aid for students at the Electrical Engineering Department at the University of
California.

Collabode Much of current related work is done behind a collaboration mask. The work
done for Collabode is performed under the collaboration flagbut in fact is based on Web
editors, making the project an interesting topic for our research. In “Real-Time Collabora-
tive Coding in a Web IDE” [24, 23], a Web IDE is presented whichfeatures full syntactic
and semantic support for Java. They utilize Eclipse at the server side in order to obtain
syntactic and semantic feedback. This approach was also proposed in [59]. The front-end is
implemented using Ace. The focus of their work is in the issues which rise when multiple
people are editing the same file at the same time. They for instance discuss questions as to
what should happen when a peer is causing errors in a file whichis being edited by multiple
programmers at the same time. They present an algorithm to cope with such issues which,
as stated in Section 7.3, will be interesting for future workregarding the design presented
in this thesis.

67

Chapter 9

Contributions and Conclusions

9.1 Contributions

We have investigated the feasibility of generating a semantically aware web-editor. In the
process we have laid the groundwork for much potential future research. We have produced
a portable implementation of our proof of concepts which caneither be run from the com-
mand line or, in the target scenario, a browser. Further morewe have presented a reusable
approach to uniformly obtain benchmark results from multiple origins, both locally but also
remotely executed code in Section 4.3.

Quality checks With the exception of actual GUI components, all of the JavaScript based
software and proof of concept implementations we have presented in this thesis can be run
on the command line using a JavaScript interpreter such as NodeJS. We have implemented a
number of angles for each component in order to gain statistics in an automated way. These
measurements can easily be repeated and even reused in orderto extend our load-balancing
algorithm with.

9.1.1 JSSGLR

Even though we did not initiate the JSSGLR project we have certainly made useful contri-
butions. We have taken extensive measurements in order to confirm the scalability of the
JavaScript based SGLR parser and included an alternative, light weight, output format for
use in the S2JS output in Section 4.6.

9.1.2 Proofs of concept

We have presented two major possible approaches in implementing a browser-based seman-
tically aware source code editor. With exception of the availability of a recent installation
of a web browser, both proof of concepts do not require a user to install any extra arbitrary
software such as browser-plug ins. We have used our generator from Chapter 6 to derive
editors for three languages. We have included screenshots of the various implementations

69

9. CONTRIBUTIONS AND CONCLUSIONS

while focusing on specific aspects for the Entity language inFigure 6.1, the Tiger language
in Figure 6.2 and finally the Mobl language in Figure 6.3.

Client

The analysis which runs fully in a browser is in our opinion the most interesting approach.
We have extended and optimized the s2js compiler in order to obtain a functional semantic
analysis executing back-end which entirely runs on JavaScript. We have incorporated mul-
tiple build targets which provide the ability to produce a back-end which is optimized for
release, debugging or performance benchmarking.

Server

Our second main approach was the design of the client-serverbased editor in which the
actual semantic analysis logic is executed on a remote server instead of in the browser at the
client in Chapter 5. Even though our initial angle was mainlyaimed at running the actual
analysis fully on the browser, a server side will always be required in order to safely store
work. Also, looking at the future in which collaboration based editors are becoming more
popular, our research and proof of concept design for a client-server based analysis could
prove to be useful.

Balancing

The final contribution we have made is to tie our previous proof of concept implementations
together in an attempt to extract and use the best portions ofall. We have done this by
designing and implementing a load-balancing algorithm in Section 6.5 which makes an
effort to choose the best strategy to take in order to obtain the required analysis results.
In order to also make it possible for a hosting provider to tweak these settings we have
introduced the notion of weights which make it possible to bias the algorithm toward a
certain strategy such as a fully off-line analysis or a hybrid behavior.

9.2 Conclusions

The previous section has been a summary of the contributionswe have made. In this section
we will mainly discuss and answer our research questions we have presented in Section 1.4.

9.2.1 Research questions

• Can a web-based, Desktop IDE quality, source code editor be created for any context-
free programming language?
We have identified the features current IDEs provide in theirsource code editing
components. We have enumerated and illustrated some well known forms of feed-
back such editors provide in Section 1.3. During our research we have concluded that
all these features can eventually be based the availabilityof syntactic and semantic
knowledge about the program which is being modified in Chapter 2. We have also

70

9.2. Conclusions

determined an SGLR parser can recognise all context-free languages in Section 2.2.4.
Obviously, on the Web there are restrictions regarding the technologies which can be
used as explained in Chapter 3. These restrictions essentially mean the requirement to
base an implementation on JavaScript. A front-end to actually handle user input and
present feedback also has to be used or created. We have shownthat it is indeed pos-
sible to obtain a JavaScript implementation of an SGLR parser and semantic analysis
in Chapter 4 which positively answers this research question.

• Is generating a semantically aware Web based source code editor feasible?
Since we have based our work on Spoofax and technologies Spoofax uses we were
able to take advantage of the declarative world Spoofax is based on. In Chapter 4 and
Chapter 5 we have presented two approaches in obtaining a webbased source code
editor from a Stratego program and an SGLR parse table. Theseapproaches consist of
a number of steps and rely on the availability of multiple dependencies. Spoofax2ace,
which is described in Chapter 6 is an attempt at automating most of these steps by re-
trieving required language specific parameters from a Spoofax project and performing
all the necessary steps in order to generate a functional web-editor. Even though there
are currently a small amount of manual steps, enumerated in Section 6.2.2, involved
due to possible specific primitive functions of an underlying Stratego implementation
we answer this research question with ayes.

9.2.2 Remarks

During the course of this master’s thesis we have investigated what the language specific
components in a typical source code editor of IDE quality are. We have enumerated a list
of common editor features and identified the shared core technologies these features are
built on. In the Spoofax project, these core technologies lie in the SGLR parser for syntac-
tic, and Stratego for semantic functionalities. We have discussed JSSGLR, the JavaScript
SGLR parser and s2js, the Stratego to JavaScript compiler inwhich we have made these
technologies available for a browser environment. These tools have been added together in
spoofax2ace, the Spoofax to Ace Web-editor generation utility.

We have performed extensive measurements in order to compare the various techniques
we have considered. From these measurements, we have concluded that our client/server
based approach yields results with the best performance. Weare however of opinion that a
fully client-side analysis would be the most elegant solution. In order for this approach to
become more viable there are some optimizations which couldbe implemented. Also re-
cent developments in the field of JavaScript engines suggesta promising prospect. Looking
back at the proof of concept implementations and the performance we were able to achieve
we are very content with our results.

71

Bibliography

[1] A.V. Aho and J.D. Ullman. The theory of parsing, translation, and compiling.
Prentice-Hall, Inc., 1972.

[2] T. Aho, A. Ashraf, M. Englund, J. Katajamäki, J. Koskinen, J. Lautamäki, A. Niemi-
nen, I. Porres, and I. Turunen. Designing ide as a service.Communications of Cloud
Software, 2011.

[3] A.W. Appel. Modern compiler implementation in ML. Cambridge Univ Pr, 1998.

[4] L.A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The google cluster
architecture.Micro, IEEE, 23(2):22–28, 2003.

[5] H. Behrens, M. Clay, S. Efftinge, M. Eysholdt, and P. Friese. Xtext user guide.Dos-
tupńe z WWW: http://www. eclipse. org/Xtext/documentation/10 1/xtext. html, 2008.

[6] T. Berners-Lee, L. Masinter, M. McCahill, et al. Uniformresource locators (url).
CERN, 1994.

[7] T. Boudreau.NetBeans: the definitive guide. O’Reilly Media, 2002.

[8] E. Bozdag, A. Mesbah, and A. Van Deursen. A comparison of push and pull tech-
niques for ajax. InWeb Site Evolution, 2007. WSE 2007. 9th IEEE International
Workshop on, pages 15–22. IEEE, 2007.

[9] M. Bravenboer, K.T. Kalleberg, R. Vermaas, and E. Visser. Stratego/xt 0.17. a lan-
guage and toolset for program transformation.Science of Computer Programming,
72(1):52–70, 2008.

[10] N. Chomsky.Aspects of the Theory of Syntax, volume 119. MIT Press (MA), 1965.

[11] S. Cook, G. Jones, S. Kent, and A. Wills.Domain-specific development with visual
studio dsl tools. Addison-Wesley Professional, 2007.

[12] D. Crockford. The application/json media type for javascript object notation (json).
2006.

73

BIBLIOGRAPHY

[13] Maartje de Jonge, Emma Nilsson-Nyman, Lennart C. L. Kats, and Eelco Visser. Natu-
ral and flexible error recovery for generated parsers. In Mark G. J. van den Brand and
Jeff Gray, editors,Software Language Engineering (SLE 2009), volume 5969 ofLec-
ture Notes in Computer Science, pages 204–223, Heidelberg, October 2009. Springer.

[14] E. Dolstra and A. Löh. Nixos: a purely functional linuxdistribution. InACM Sigplan
Notices, volume 43, pages 367–378. ACM, 2008.

[15] F. Durán, M. Roldán, J.C. Bach, E. Balland, M. Van Den Brand, J. Cordy, S. Eker,
L. Engelen, M. De Jonge, K. Kalleberg, et al. The third rewrite engines competition.
Rewriting Logic and Its Applications, pages 243–261, 2010.

[16] J. Earley. An efficient context-free parsing algorithm. Communications of the ACM,
13(2):94–102, 1970.

[17] S. Efftinge. Xtext reference documentation.last accessed on May, 2009.

[18] M. Eysholdt and H. Behrens. Xtext: implement your language faster than the quick
and dirty way. InProceedings of the ACM international conference companionon
Object oriented programming systems languages and applications companion, pages
307–309. ACM, 2010.

[19] I. Fette and A. Melnikov. The websocket protocol. 2011.

[20] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext transfer protocol–http/1.1, 1999.

[21] E. Gamma and K. Beck.Contributing to Eclipse: Principles, Patterns, and Plugins.
Addison Wesley Longman Publishing Co., Inc., 2003.

[22] S. Ginsburg.The mathematical theory of context free languages, volume 3. McGraw-
Hill New York, 1966.

[23] M. Goldman, G. Little, and R.C. Miller. Collabode: collaborative coding in the
browser. InProceeding of the 4th international workshop on Cooperative and hu-
man aspects of software engineering, pages 65–68. ACM, 2011.

[24] M. Goldman, G. Little, and R.C. Miller. Real-time collaborative coding in a web ide.
In Proceedings of the 24th annual ACM symposium on User interface software and
technology, pages 155–164. ACM, 2011.

[25] C.A. Gutwin, M. Lippold, and TC Graham. Real-time groupware in the browser:
testing the performance of web-based networking. InProceedings of the ACM 2011
conference on Computer supported cooperative work, pages 167–176. ACM, 2011.

[26] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism
sdfreference manual.ACM Sigplan Notices, 24(11):43–75, 1989.

74

Bibliography

[27] Z. Hemel and E. Visser. Mobl: the new language of the mobile web. InProceedings of
the ACM international conference companion on Object oriented programming sys-
tems languages and applications companion, pages 23–24. ACM, 2011.

[28] Zef Hemel and Eelco Visser. Declaratively programmingthe mobile web with mobl.
Technical Report TUD-SERG-2011-024, Delft University of Technology, Delft, The
Netherlands, August 2011.

[29] Zef Hemel and Eelco Visser. Mobl: the new language of themobile web. InCompan-
ion to the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2011, part ofSPLASH 2011, Port-
land, OR, USA, October 22 - 27, 2011, pages 23–24. ACM, 2011.

[30] Zef Hemel and Eelco Visser. Programming the Mobile Web with Mobl. Technical
Report TUD-SERG-2011-01, Delft University of Technology,January 2011.

[31] S.C. Johnson and inc Bell Telephone Laboratories.Yacc: Yet another compiler-
compiler. Bell Laboratories, 1975.

[32] L. Kats, K.T. Kalleberg, and E. Visser. Generating editors for embedded languages.
Technical report, Technical Report Series TUD-SERG-2008-006, Delft University
of Technology, Software Engineering Research Group, 2008.http://swerl. tudelft.
nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2008-006. pdf, 2008.

[33] L.C.L. Kats. Building blocks for language workbenches. month, 2011.

[34] L.C.L. Kats, K.T. Kalleberg, and E. Visser. Domain-specific languages for composable
editor plugins. Electronic Notes in Theoretical Computer Science, 253(7):149–163,
2010.

[35] L.C.L. Kats, E. Visser, and G. Wachsmuth. Pure and declarative syntax definition:
paradise lost and regained.ACM Sigplan Notices, 45(10):918–932, 2010.

[36] Lennart C. L. Kats, Maartje de Jonge, Emma Nilsson-Nyman, and Eelco Visser. Pro-
viding rapid feedback in generated modular language environments. Adding error re-
covery to scannerless generalized-LR parsing. In Gary T. Leavens, editor,Proceedings
of the 24th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2009), volume 44 ofACM SIGPLAN Notices,
pages 445–464, New York, NY, USA, October 2009. ACM Press.

[37] Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench: rules for
declarative specification of languages and IDEs. In WilliamR. Cook, Siobhán Clarke,
and Martin C. Rinard, editors,Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2010, pages 444–463. ACM, 2010.

[38] Lennart C. L. Kats, Richard G. Vogelij, Karl Trygve Kalleberg, and Eelco Visser.
Software development environments on the web: A research agenda. InProceedings
of the 11th SIGPLAN symposium on New ideas, new paradigms, and reflections on
programming and software (Onward 2012). ACM Press, 2012.

75

BIBLIOGRAPHY

[39] D.E. Knuth. On the translation of languages from left toright. Information and control,
8(6):607–639, 1965.

[40] R. Kurki-Suonio. Notes on top-down languages.BIT Numerical Mathematics,
9(3):225–238, 1969.

[41] J. Lautamäki, A. Nieminen, J. Koskinen, T. Aho, T. Mikkonen, and M. Englund.
Cored: browser-based collaborative real-time editor for java web applications. In
Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work,
pages 1307–1316. ACM, 2012.

[42] P. Lubbers, B. Albers, and F. Salim. Using the web workers api. Pro HTML5 Pro-
gramming, pages 241–262, 2011.

[43] S. McPeak and G. Necula. Elkhound: A fast, practical glrparser generator. InCom-
piler Construction, pages 2725–2725. Springer, 2004.

[44] T. Mikkonen and A. Taivalsaari. Using javascript as a real programming language.
2007.

[45] E.W. Myers. An o (nd) difference algorithm and its variations. Algorithmica,
1(1):251–266, 1986.

[46] T. OReilly. What is web 2.0.Design patterns and business models for the next gener-
ation of software, 30:2005, 2005.

[47] T.J. Parr and R.W. Quong. Antlr: A predicated-ll (k) parser generator.Software:
Practice and Experience, 25(7):789–810, 1995.

[48] L. Powers and M. Snell.MicrosoftR© visual studio 2008 unleashed. Sams, 2008.

[49] S. Rabbelier. Declarative specification of web-based integrated development environ-
ments, 2011.

[50] D. Raggett, A. Le Hors, I. Jacobs, et al. Html 4.01 specification. W3C recommenda-
tion, 24, 1999.

[51] D.J. Rosenkrantz and R.E. Stearns. Properties of deterministic top-down grammars.
Information and Control, 17(3):226–256, 1970.

[52] A. Russell. Comet: Low latency data for browsers.alex. dojotoolkit. org, 2006.

[53] D.J. Salomon and G.V. Cormack. Scannerless nslr (1) parsing of programming lan-
guages.ACM SIGPLAN Notices, 24(7):170–178, 1989.

[54] C. Shen, H. Herman, Z. Charbiwala, and M.B. Srivastava.Midebug: microcontroller
integrated development and debugging environment. InProceedings of the 11th inter-
national conference on Information Processing in Sensor Networks, pages 133–134.
ACM, 2012.

76

Bibliography

[55] S. Tilkov and S. Vinoski. Node. js: Using javascript to build high-performance net-
work programs.Internet Computing, IEEE, 14(6):80–83, 2010.

[56] M. Tomita. Generalized LR parsing. Springer, 1991.

[57] M. van den Brand, J. Scheerder, J. Vinju, and E. Visser. Disambiguation filters for
scannerless generalized lr parsers. InCompiler Construction, pages 21–44. Springer,
2002.

[58] M. van den Brand, A. van Deursen, J. Heering, H. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P. Olivier, J. Scheerder, et al. The a sf+s df meta-environment:
A component-based language development environment. InCompiler Construction,
pages 365–370. Springer, 2001.

[59] A. Van Deursen, A. Mesbah, B. Cornelissen, A. Zaidman, M. Pinzger, and A. Guzzi.
Adinda: a knowledgeable, browser-based ide. InProceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume2, pages 203–206. ACM,
2010.

[60] E. Visser. Scannerless generalized-lr parsing. Technical report, Citeseer, 1997.

[61] E. Visser. Stratego: A language for program transformation based on rewriting strate-
gies system description of stratego 0.5. InRewriting techniques and applications,
pages 357–361. Springer, 2001.

[62] E. Visser. Webdsl: A case study in domain-specific language engineering.Generative
and Transformational Techniques in Software Engineering II, pages 291–373, 2008.

[63] Eelco Visser.Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, September 1997.

77

Appendix A

Glossary

In this appendix we give an overview of frequently used termsand abbreviations.

AST: Abstract Syntax Tree

SGLR (parser): Scannerless Generalized Left-to-right Rightmost derivation (parser)

JSGLR: Java based SGLR parser

SDF: Syntax Definition Formalism

GWT: The Google Web Toolkit

ATerm: Annotated Term

strj: The Stratego to Java compiler

strc: The Stratego to C compiler

s2js: The Stratego to JavaScript compiler

s2a: The Spoofax to Ace conversion tool

ACE: The Ajax.org Cloud9 Editor

JSON: JavaScript Object Notation

79

	Preface
	Contents
	List of Figures
	Introduction
	The Web
	Developing Web applications
	Regular Integrated Development Environments
	Research Questions
	Previous work
	Outline

	Language specific IDE components
	Syntax
	Parsing
	Semantics
	Language workbenches

	Requirements
	Background
	Deliverables

	Client based editor services
	Architecture
	GWT
	Measurements
	Syntax
	Stratego to Java to JavaScript
	Stratego to JavaScript

	Server based editor services
	Disadvantages
	Advantages
	Justification
	Proof of concept
	Discussion

	Generation
	Front-end
	Spoofax
	Dependencies
	Target platforms
	Client/Server Balancing

	Future work
	Optimizations
	Extensions
	Collaboration
	Editor state URIs

	Related work
	Source code editors
	Web IDEs

	Contributions and Conclusions
	Contributions
	Conclusions

	Bibliography
	Glossary

