Generating Web-based Semantically
Aware Source Code Editors

Master’s Thesis

Richard G. Vogelij

Generating Web-based Semantically
Aware Source Code Editors

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

COMPUTER SCIENCE

by

Richard G. Vogelij
born in Vlaardingen, the Netherlands

]
TUDelft

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

www.ewl.tudelft.nl

www.ewi.tudelft.nl

(© 2012 Richard G. Vogelij.

Generating Web-based Semantically
Aware Source Code Editors

Author: Richard G. Vogelij
Studentid: 4052676
Email: rchard@vogel.nl

Abstract

This thesis describes spoofax2ace, the tool to generateesoade editors which
can run in the browser. The features which are common in efatee art desktop-
computer based source code editors are investigated dftein the difficulties in get-
ting these features running on the Web are discussed. Wergrésmplement, and
compare multiple approaches in constructing a fully seioalty aware source code
editor which runs in the browser. The most useful aspecthaése approaches are
combined in the proposition of our “editor-generator” whijgroduces browser-based
source code editors with as sole input a language declariatitne form of a Spoofax
project.

Thesis Committee:

Chair: Dr. E. Visser, Faculty EEMCS, TU Delft
University supervisor. Dr. L.C.L. Kats, Faculty EEMCS, Tl¢h
Committee Member: Dr. M. Pinzger. Faculty EEMCS, TU Delft
Committee Member: Dr. A. losup. Faculty EEMCS, TU Delt

richard@vogelij.nl

Preface

I would like to thank my supervisor, Eelco Visser, for “bring me in” and providing me
with this project. Also, | would like to thank Lennart KatscdaiKarl Trygve Kalleberg
for always being available to answer any questions | hadgalba way. | have had some
very interesting conversations which broadened my horgreatly. Also, having worked
closely with Eelco, Lennart and Karl on a paper: “Software&@epment Environments on
the Web: A Research Agenda” [38] which got accepted for thev&@d! Conference 2012
has been a great experience.

Finally I would like to thank my girlfriend, parents, and fayfor their ongoing interest
and support in the road to completing this thesis.

Richard G. Vogelij
Delft, the Netherlands
December 4, 2012

Contents

L Introduction| 1
L1 Theweb. 1
[L.2 Developing Web applicatidns 2

l1.3 _Regular Integrated Development Environments 3

[1.4 Research Questions

CONTENTS

Vi

List of Figures

IJ_J_A_G_o_o,gIe Spreadsheet instance running entirely in a mhliﬁﬂ 2
[1.2_Editor services in a desktop-basedIDE 5

Nt g » whEges. 9
2.2 Svntactrcallv valid but semantrcallv invalid code $ep . .. 11
2.3 _The SDF grammar rules for an example language (the E_rarlguag_é) .12
2.4 _En example program in the Entity langdage 13
2.5 AST Fortheentity language 13

2.6 Stratego code to perform a semantic check on the Entigukage 14
2.7 _Form of the stratego entrypoint for editor feedback in@ax 15
2.8 List of errors returned by the example semantic gheck . - 15

4.1 _Recursive JavaScript benchmarkltest 22
4.2 Iterative JavaScript benchmarkltest 22
4.3 Performance of JavaScript on multiple platforms reedrs. 23
4.4 Performance of JavaScrlot on multiple platforms iteeat 23
24

4.7 Performance of JSGLR vs JSSGLR - Java (randorfn set) e ... 28
4.8 _Performance of JSGLR vs JSSGLR - Java (normahzed) e e ee ..., 28
4.9 Performance of JSSGLR vs JSSGLR - Mobl (generated) 29
4.10 Performance of JSGLR vs JSSGLR - Mobl (random set) 30
|4 11 Memory usaMLRWLR 31
Performance of the Ja pt based semaalysiarfor Mol 33

4 Performance of the Java ava ipt based analy$itofd up to 250 LOC . 34
4.14 A Stratego call to a primitive functiono 37
14.15 Performance of the S2JS output compared to native Java 39
4.16 Performance of the S2JS output compared to GWTd Java....... 39

45

45

Vii

LIST OF FIGURES

exiendaed el C C M PIeIdEDY
r extended client-server imple o

viii

Chapter 1

Introduction

Ever since the the World Wide Web (The Web) was introducedstlhecome an important
source of information and interaction. Most of its conterdadded through web-applications
which allow increasingly easy access to the various adsetd/eb has to offer. Regretfully,
the tools which are used toeateapplications with are not yet universally available on this
platform. Even though there are a number of online code esgitnost of them support the
programming languages they are built for very genericdlljot of feedback programmers
have grown accustomed to in desktop environments such asctygcking and reference
resolving, explained in Secti¢n 1.3, can not be taken fantgdhin typical web based source
code editors. This lack in availability of programming @ mainly because on the Web
the technologies to create client-side programs are veryeld and server-side resources
can become costly.

1.1 The Web

The Web is in its core built on three main technologies:

¢ URI (Uniform Resource Identifier) [6]
e HTTP (HyperText Transport Protocol) [20]

e HTML (HyperText Markup Language) [50]

These mostly static content enabling technologies stilVigie the building blocks on
which the Web is built. Since the introduction of richer olieside technologies such as
JavaScript Cascading Style Sheet€SS), theExtensible Markup LanguageXML) and
Asynchronous JavaScript And XMAjax) [46] web pages became greatly more dynamic
and interactive. This added interactiveness introduced/fhb as it is implemented today,
the user-generated Web, or Web 2.0. Practically all websiteich currently exist make
use of these Web 2.0 technologies and allow a degree of atimmavith a web page visi-
tor. Such interactions can vary from executing a searchyqdé¢mat the Google website to
logging in and posting messages on a forum.

1

1. INTRODUCTION

Web Applications

Many of the current websites can rightfully be called amdlimns as they can in principle
provide nearly the same, and sometimes much more, funétipagraditional desktop ap-

plication could. Take for instance Google Documents or G®egreadsheet in Figure 1.1
which allows a user to create and edit spreadsheets fullh®Meb. It features the same
functionalities Desktop spreadsheet applications sudlia®soft Excel provides.

Little League Spreadsheet

File Edit View Insert Format Data Toc

= o AL - 8 % 123- | dopt:

fx | Golden Eagles

A B

1
¢ DeftlLitle League
3
¢ Scheduled

Date Home Team
5 14-05-2012 Great Lakes
6 22-05-2012 Westsiders
T 28-05-2012 | Gaolden Eagles |_
3

Figure 1.1: A Google Spreadsheet instance running enfmedyweb browser

1.2 Developing Web applications

There are some fundamental differences when designingnapiérnenting an application
which will run on the web compared to classical desktop apgibhns. In typical web ap-
plications the actual work is done remotely on a web-servéhe cloud where the user is
presented with a user interface built in HTML. Through the a§ GET/POST requests or
AJAX communication is handled from the client to the servEnis communication layer
with the back-end is arguably where most differences betvdssktop and web applica-
tions lie because of its inherent asynchronous nature. é\sénver side a programmer has
virtually unlimited options in which he implements the wgipication back end. However
at the client side the web application has to be presentedviebabrowser. Currently this
means the implementation is bound to only use flavours of PMH, CSS and JavaScript.

Even though many Web applications have been created byaeftdevelopers, there
currently are few web applications which provide the neagstols to actually create ap-
plications with. The small amount of tools which do existclslas CoREDI[41],12] and

2

1.3. Regular Integrated Development Environments

Cloud9, are fundamentally limited in the sense that they only suppselect set of lan-
guages. Even though Cloud9 supports language plug-inse thleig-ins still have to be
implemented specifically for that platform (in JavaScrigad are mainly implemented us-
ing regular expressions which make sophisticated editmitfack impossible. In this thesis
will focus ongenerating desktop quality code editors which can run inbimevser based
on the higher level definition of the syntax and semantic tamgs of a programming lan-
guage.

1.3 Regular Integrated Development Environments

IDE stands for Integrated Development Environment anccglyi consists of a set of tools
which work together to provide a means to positively inflieetive productivity of an ap-
plication developer. This set of tools is integrated intorgyle application, an IDE. Even
though many IDEs frameworks currently exist such as Eclj@d$ Netbeans([7] and Vi-
sual Studio([4B], most IDE implementations are mainly teedeat a small fixed set of
programming languages. Modern IDEs do however usuallyigeoa way to add language
specific functionality in the form of plug-ins. Implemendisuch a plug-in for a previously
unsupported language is however a difficult task [11, 21].

We can split the functionalities of any given IDE into two gps, namely language spe-
cific and non-language-specific. The latter consists ofifeatsuch as version management
support, searching/replacing in files, keyboard shortaants so on. In this thesis we will
focus on thdanguage specifiaspects of an IDE.

1.3.1 Language specific aspects

In this subsection we will identify the components in a tgbilOE which are, or are based
on, language specific tooling.

A modern IDE provides a number of common features which aga semost desktop
based IDEs. In its core functionality obviously lies theliyito write or modify source
code (textual of visual). Usually the source code editornn@E differs from a normal
text editor in the amount of feedback a programmer gets vadbgpting or writing source
code. This feedback is possible thanks to a back-end whicti€tstands” the source code
to some degree. Such understanding is achieved througls¢hefa parser which checks
the syntax, described in Sectibnl2.2, and possibly even as@ranalysis, described in
Sectiol Z.B.

In most allround text editors, including the ones intendadelditing source code such
as Notepad+@ and UItraEdiiﬁ, a basic form of language specific feedback is achieved

Ihitp:/ic9.io/site/features/
Zhttp://notepad-plus-plus.org/
3http://www.ultraedit.com/

http://c9.io/site/features/
http://notepad-plus-plus.org/
http://www.ultraedit.com/

1. INTRODUCTION

through the use of regular expressions. These editors usguiar expression based ap-
proach to highlight keywords and for instance make sure amiog bracket is followed by
a closing bracket.

While this is acceptable for an allround code editing tdw, ¢ditor an IDE provides should
provide more meaningful feedback. The following featuras im principle only be imple-
mented when the editor has access to a deeper “understawnditng language in the form
of semantic knowledge:

e Outline
A code outline gives a brief summary of a piece of code whicheimg edited. It
can for instance show all method names in a class and usisdlyeovides a way to
quickly navigate to a portion of code.

e Folding
Code folding is used to hide and show a region of source code €litor has a
syntactic knowledge of the program which is being editedcivlallows a block of
code to be collapsed with a single click. This can for instahe used to hide the
body of methods in a class to improve the readability of theeeco

e Hover help
Hover help is shown when a programmer hovers his mouse oviEca pf source
code. Useful information can be shown such as the (posgilidyanced) type of a
variable or an explanation regarding a syntactic keyword.

e Error marking
When an error occurs, the IDE can provide useful feedbackrdéng the origin of an
error. This can be any type of error, ranging from a syntagmtidlem to uncompilable
code due to the use of an erroneous type. In advanced IDEs,rearking is also
often used to provide hints to a programmer when a code sooglifhon bad practise)
is detected.

e Reference resolving
Reference resolving is used to determine the origin of egpiécode. This can be the
interface a class is implementing, the definition of the tgpea variable and so on.
Usually this is implemented using control+click, where tbgt beneath the mouse
pointer becomes a clickable link. When this link is clickéue editor jumps to the
relevant piece of code.

The editor services shown in Figure11.2 are made possibletaliBnguage specific
knowledge. We split up the “understanding” an editor cam gddout a program into two
concepts. Syntax, explained in Section 2.1 and semankpkieed in Section 2]3.

1.4 Research Questions

We have formulated the following research questions whithbe answered in this docu-
ment.

4

1.5. Previous work

eNO

NBlog/blog.nwl — Eclipse SDK —}
'fj.ﬂﬂg‘@ |3~ Q- Q- | 4|8 G- | @ &~ | Tansform « | &~ G+ %0 & 5
[% Package Explor 52 = 0|iCha] calendar.nwi = 0| 5= Outline 52 =0
= ‘):’C - -module blog Iy 9,
» 35 Other Projects “entity Blog { 0 vBlog y
P (x] author : U .
K o o ——ff— Content completion
b & EntityLang name : § — I Al
¥ & NBlog posts su;er p posts
= ather —— Qutline view
¥ (= images —M ¥Post
» e url : String (id) Tt | i
i styles title : String (name) 3 Code fOIdIng
¥ (Ztests (x] blog : Blog :invcrse:postl\\\\ title
=] action-test.nwl n text @ WikiText ,‘_bl_ng____k
5] entity-test.omd author : Usell 1 text = Error markers
2] template-test.nwl | b JeNtity User M
1 [2 Problems $2 A] nsole| 57 Seal —\—__\—l:l .
13| blog.nw [& 2 it —— Reference resolving
1= calendar.nwl | 4 errors, 1 warning, 0 others -
|=) comments. nwl | Description & |Resource Location
4=l preferences.nwl v @ Errors (4 items) N Hover help
>!1:J' nwl @ Entity 'Blog' has no property 'post’ blog.nwi line 13 Probler|
} 1=* researchr 3 Type 'U' is not defined blog.nwi line 7 Probler ¢
» [Stratego «F) S
n® | Writable Smart Insert

Figure 1.2: Editor services in a desktop-based IDE (frionj)[37

1. Can aweb-based, Desktop IDE quality, source code editordated for any context-
free programming language?

2. Is generating a semantically aware Web based source dadefeasible?

1.5 Previous work

Previous work has been done at Delft University which lagsgioundwork for some of the
work we will present in this thesis [49, 59]. Especially tt#8GLR parser implementation
described in Section 4.4 is leaning heavily on this work.sThork is highly specific and
in order to keep a chronological order in which we will prestms thesis we explain the
previously done work in the sections where this is relevasteiad of in an introduction or

related work section.

1.6 Outline

We will begin to identify the various components a generdt iidnsists of. These compo-
nents will be briefly discussed and we will attempt to idgntiife components which change
between multiple programming languages, the languaggfspeomponents in ChaptEt 2.
We will further divide these language specific components their respective groups and
elaborate on the theory behind these components in Sécfiorrally we will introduce
the language-workbench Spoofax in Secfion 2.4.1 and ex{iei steps which are required
to generate an IDE using definitions in SDF and Stratego. ,Nestwill enumerate the
difficulties which rise when designing an application sfieally for the Web and mirror

5

1. INTRODUCTION

these difficulties to the implementation of the previousigcdssed IDE components in a
Web environment in Sectidn3.1. We will continue to enuneehumber of deliverables
we will produce in the form of benchmark results, proof of cept implementations and
tooling in Section 3.

We will present our work in designing, and implementingliant-sidebased approach
to perform the static analysis for our semantically awaré\&@itor. In Chapterl4 we will
introduce NodeJS, the architecture in which we will exeaue JavaScript based bench-
marks. We use GWT (The Google Web Toolkit) to transform the Jamplementation of
the SGLR parser, JSGLR into JavaScript and compare therpefae of the Java and
JavaScript implementations in Sectionl4.4. In Sedtioh 4e5will introduce our first ed-
itor back-end which runs fully on JavaScript. Next we willpéain s2js, the Stratego to
JavaScript compiler in Sectidn 4.6 and provide a compari$grerformance between the
GWT and s2js result implementations. Our second major @gpres aclient-serverbased
approach in Chaptéi 5. In this approach the actual syntanticsemantic calculations are
performed server side. We will identify the problems andoose ways to overcome these,
while presenting performance statistics comparing thewarpaths we have tried.

In Chaptef’6 we introducgpoofax2aceUsing this tool an implementation of a seman-
tically aware Web editor can be generated based on one o#theraliscussed approaches.
The input for this tool is a Spoofax project. The final additive have made is a balancing
algorithm which aims at automatically switching betweea Warious approaches we have
defined. In Chaptdr]7 we will go into a number of possible a@dsiture research and
work and we will present some related work which is curretwyng done in Chaptén 8.
Finally, in Chaptef B we will briefly summarize our work, andaliss our conclusions and
contributions.

Chapter 2

Language specific IDE components

2.1 Syntax

The syntax of a programming language specifies the requitesnseurce code must meet in
order to be part of the set of all possible programs for thegi@mming language. For pro-
gramming languages, or formal languages, the syntax isatkéia a set of rules which pose
constraints on which symbols can be used together in sonu#fisparder. Such symbols
can be non-terminal and terminal. Analogous to naturaldaggs, terminal symbols are
the building blocks which are used to define words, so theybeain a sense thought of as
letters. Non-terminal symbols are used to represent Vartabminal or other non-terminal
symbols. Combining these symbols is done through productites. A production rule
consist of a left-side, an arrow and a right side. On thedefé there has to be a non-
terminal symbol which can be replaced into an at the rigtie-slefined order of terminal
and non-terminal symbols [10].

A formal grammar can be used to define the syntax of a formgluage using a set of
terminal symbolsnonterminal symboland production rules[10]. In [35] a solid case is
made in favor of using SDF in [63, 26] to represent these talements which are required
to define a formal language. Such a formal grammar definitgomic turn be used tparse
source code in order to for instance determine whether theeea@ode is consistent with
the syntax of the language or to produce an abstract syrdaXAST).

2.2 Parsing

In order to provide useful syntax based feedback, the tagatce code has to be parsed.
Much research has been done in order to design optimal pangégmentations. Most
parsers are implemented using a lexer which forms a layerdset the actual input and the
parser implementation. There are two main strategies iheim@nting a parser, namely LL
based, discussed in Sectlon 2/2.1, and LR based, discusSedtior 2.2]2.

Either of these parsing strategies use a parse table in snme Possibly encoded in

7

2. LANGUAGE SPECIFICIDE COMPONENTS

an (automatically) derived parser implementation or arieily defined table. In essence
a parse table contains information a parser needs in orderat@ decisions based on a
current symbol. LL and LR parsers can be defined in a so callé#)lor LR(k) manner
wherek indicates the number of lookaheads the parser implementesin use]1, 47, 16]

2.2.1 LL Parsing

An LL parser parses input fromeft to right in a topdown fashion, constructing-aftmost
derivation. LL parsers can fundamentally not recognisefuiieset of regular grammars.
The grammars an LL parser can recognise is however a subet cbntext free grammar
space and is called tHd. grammar space Because of the topdown approach, starting at
a special start symbol is a somewhat intuitive approach hwimekes implementations of
LL parsers quite popular due to its relative simplicity. Amer major upside of a topdown
approach is easy error recovery; It is known what is expeated, if an expected token is
not there an error can be marked and the parsing can contirgLgriaightforward manner by
acting as if the missing token was found. Also, multiple Liaiggmars can not be composed

to form a new language. [40,51]

2.2.2 LR Parsing

An LR parser uses an opposite approach compared to LL patdRzarsers read input text
from L eft to right, but utilize eRightmost derivation, meaning the grammar rules are applied
bottom up. The parsing ends at a start symbol rather thamstat one. Because of this the
parser can handle ambiguities more easily than LL parskosjiag them to recognise the
LL grammar spacebut also some languages LL parsers cannot recognise. Evegit LR
parsers can recognise more languages than LL parsers theyuah more complicated and
counter intuitive to implement. We will call the grammarslaparser can recognise th&
grammar spaceln Figure 2.1 we have used Chomsky’s representation of graisto show
which set is a subset of another set. Compared to LL parsé&sl$o difficult to implement
general error recovery because of the bottom up nature whaites the naive solution of
simply continuing more complicated as there might be migltipaths” up. As is the case
with LL parsers, a typical LR parser cannot recognise andaguwgrammars. Multiple LR
grammars can however lmmmposedo form new languages, enabling sub languages in
a main language. In LR definitions it is for example possiblel¢fine SQL syntax rules
within the Java syntax enabling the possibility of for imsta a type safe Java+SQL hybrid

language.[[39,]1]

SGLR Parsing

The GLR parser [56, 43] is an extension of the LR parser algorto cope with ambiguous
and non-deterministic grammars. This is done through @naif parallelism by traversing
the parse table in all possible manners when an ambiguitpuad. This is done in a
breadth-first manner.

In [60] and [57] the GLR parser and a number of other parsiogrtigjues such as SLR
[53] (The Scannerless LR parser, which eliminates the nexea lexing step) are combined

8

2.2. Parsing

into SGLR introducing a parser which can recognise all odrfiee grammars [22]. In
Figure[2.1 we have emphasized the languages an SGLR parsezataynise with a gray
color.

Context Free

LL(D)

Regular

Figure 2.1: The various relevant grammar spaces for pragiaglanguages. Based on
[35,[10/56(43, 57]

2.2.3 Parser implementation strategies

The general way of implementing a parser is by usipgrser generatorA parser generator
takes a definition of a target language and compiles it intorgolementation of a parser.
It is of course also possible to manually implement a paf&gr This is in fact what is
being taught at most compiler construction classes to farizié students with the concept
of parsing source code. Obviously, a major downside of sudwdevel approach lies in
the fact a language designer is focusing more on the impletien of the parser instead
of the syntax rules themselves. Also when extensions oratibes need to be made in
the syntax definition of a language, changing the parseremehtation might be close to
impossible.

2.2.4 Parser generators

Parser generators are also known as compiler compiler$: Fdspect to current compilers
this name is not sufficient as a parser generator merely ésuride syntactic aspect of a

9

2. LANGUAGE SPECIFICIDE COMPONENTS

compiler. There exist a number of parser generators suciNdd.R E| Bison and Yacc
[31]]. In this thesis we will focus on JSGLR [58,132] 34] whichai Java based implementa-
tion of an SGLR parser, discussed in Secfion 2.2.2. JSGLBtistrictly a parser generator
because the language specific dynamic aspects of JSGLRratetidhrough the use of an
external parse table.

JSGLR

JSGLR is an SGLR parser implementation written in Java. ésus parse table which
contains all syntactic information for a target grammarctsa table can be derived from
an SDF[[63| 26] (The Syntax Definition Formalism) based dedimiof a grammar. Since
SDF has abstracted away from practically all implementaiisues it is very easy to take a
generative approach to design the syntax for a (new) largudgcently JSGLR has been
extended with sophisticated error recovery functioreditallowing the parser to mark an
error, and continue the parsing to still provide a valid ABB,[36] This makes JSGLR a
very suitable back-end for an IDE because as a programmegpirsgtthere will be many
moments where the program under construction is not stgthtactically correct. Due to
this error recovery a semantic analysis which relies on tistence of an up to date AST
can still be executed.

Furthermore, SDF and JSGLR lie at the core of the Spoofaxlaggworkbench which
allows for the generative development of a fully featuretggnated development environ-
ment for programming languages. In Secfion 2.4.1 we will&rpSpoofax and its relevant
components in more detalil.

2.3 Semantics

The semantics of a language go further than a language’sssykithile a syntax checker
merely tests whether a program is well formed with relatothe syntax definition, there
is no guarantee the program is actually runnable or even itaibg

A straightforward example would be the assignment of a éiaentifier in Java of a
variable that was not declared in the scope in which it wad.uSgntactically the program
would be perfectly valid, however a semantic analysis waqudtk this up and provide the
programmer with a suitable error message. See Figure 2.2.

A semantic analysis also allows an editor to gain knowledigeiacontext and be able to
provide suggestions to the programmer about what keywaedsxgpected next as he types
(code completion). Of course, depending on the compleXithe@language, implementing
the semantic analysis is usually a non-trivial task. Takdrfstance the Java language in
which inheritance is a major feature which greatly impabes way a type compatibility
check would be implemented. Refactoring functionality, iftstance renaming all occur-
rences of some identifier in its scope is also in most caseargecally aware operation.

Ihttp/7antir.org
Zhttp:/www.gnu.org/software/bison/

10

http:/antlr.org
http://www.gnu.org/software/bison/

2.4. Language workbenches

cl ass Test
public static void main(string]] args)

x =5 [//semantic error since x is not defined yet
int x

Figure 2.2: Syntactically valid but semantically invaliode snippet

2.4 Language workbenches

The most widely used set of tools to implement domain speeifiguages (DSLS) is Xtext
[18,[17,[5]. In Xtext the semantic aspects of languages apéeimented in a set of goal
specific domain specific languages such as a code complatigndge. Grammar rules are
also entered in a specific DSL. A major downside of Xtext it tha parser (ANTLR[4]7])
used to transform source code into an AST is limited tathgrammar spacediscussed in
Sectiof Z.Z11. Because of this limitation, languages ssdb-a+- can fundamentally not be
implemented using Xtext, indicating Xtext’s popularity sinplicity comes at a high price.

The alternative we have investigated, Spoofax, has arguabteeper learning curve,
but is also a lot more powerful. In the next section we will lekp Spoofax in relevant
depth and provide some examples of the various component#épis based on.

2.4.1 Spoofax

The Spoofax language workbench is a toolset to build texd¢oaftce code editors with. In
essence, it is an Eclipse plug in to create Eclipse plug im.vEcIipseE is an IDE written

in Java aimed at being extensible by being very plug-in tfignUsing SDF definitions the
full set of context free languagesan be described. By declaring term rewrite rules in the
Stratego language an AST can be traversed and manipulatede following paragraphs
we will elaborate SDF and Stratego.

SDF

As mentioned in Sectidn 2.2.4, an SDF definition can be coesténto an SGLR parse ta-
ble. The JSGLR parser implementation uses this parse t@bigld an abstract syntax tree
based on ATerms. An ATerm is basically a tree node which casisbof ATerms itself.
ATerms can carry additional arbitrary information as ditaent. In JSGLR such ATerms
contain for instance information about where in the soumdedhat tree node originated
from.

3http:/iwww.eclipse.org/

11

http://www.eclipse.org/

2. LANGUAGE SPECIFICIDE COMPONENTS

SDF is used in Spoofax to define the syntax of the designediéeyeg Spoofax takes
care of the conversion of the SDF definitions to an SGLR patiske using an external tool
which resides in the “SDF2 Bundi® When an SDF definition is updated and stored, the
equivalent SGLR parse table is automatically derived inbhekground allowing the lan-
guage designer to instantly see the effects his changesnmagte on a derived AST. This
makes debugging and tweaking the syntax definition of thigyded language a straightfor-
ward task.

In Figure[2.8 we have included the syntax definition for amepie language, the Entity
language, in SDF. In Figue2.4 we have included a progranhis éxample language

%0 Gammar for the Entity | anguage
nodul e Test
i mports Common
exports
context-free start-synbol s
Start

context-free syntax

"module” ID Definition * -> Start { cons("Module")}
“entity" ID "{" Property = "} -> Definition { cons("Entity")}
ID "" Type -> Property { cons("Property")}
ID -> Type { cons("Type")}

Figure 2.3: The SDF grammar rules for an example languageH(thity Language)

and finally Figurd 25 illustrates the AST an SGLR parser peced based on this example
program and syntax definition.

4hitp:/lwww.program-transtormation.org/Sdf/SdfBundle

12

http://www.program-transformation.org/Sdf/SdfBundle

2.4. Language workbenches

nodul e example

entity User {
name . String
password : String
homepage : URL
homepage2 : URL2

entity BlogPosting {

poster : User

body : String
entity URL {

location : String

Figure 2.4: An example program based on the language defirféidure 2.3

Module(
"example”
, [Entity(
"User"
, [Property("name", Type("String"))
, Property("password" , Type("String"))
, Property("homepage" , Type("URL"))
], Property("homepage2" , Type("URL2"))

)
, Entity(
"BlogPosting"

Me——-
=

ntity("URL", [Property("location" , Type("String"))])

[Property(~ "poster" , Type("User")), Property("body" , Type("String"

Figure 2.5: The resulting AST for the example program in Fe{@i4

13

2. LANGUAGE SPECIFICIDE COMPONENTS

Stratego

The Stratego language is a small domain-specific languagprémram transformation.

Stratego is, next to SDF, the core language in Spoofax. Usiwgte rules and so called

strategies an AST can be traversed and altered. Such rewiéte are based on pattern
matching. Using a number of strategies a tree can be tral/ersenumber of ways. There
is for instance the option of using a bottom up or top downtatyawhich allows the ap-

plication of a rewrite rule to all nodes in a tree. The thirdjon@oncept in Stratego is the
notion of dynamic rules. A dynamic rule can be defined wh#eersing the tree. This can
for instance be used when in a topdown traversal a scope teédglefined. Such rewrite
rules are globally accessible and can therefore also betaséore information which needs
to be accessed from some other part in the traversal stepsanily rules are particularly

useful to store declarations of variables in their scodewéhg a language designer to be
able to retrieve type information when such a variable isidsgher on in the program.

In Figure[2.6 we have included an example semantic checkhéexample Entity lan-
guage which determines whether a referred type is valid br no

strategies
analyze = topdown(try(record-entity))
rul es

/*Records the definition of an entity in
a dynamic rule called " CetEntity’ =/

record-entity:
Entity(x, body) -> Entity(x, body)
with
rul es(
GetEntity :+ x -> X

rul es

/* Reports an error if a property type is undefined.
This error is reported on the type nane 'type’ */

constraint-error:
Property(x, Type(type)) -> (type, $ [Type [type] is not defined])
where
not(type => "String");
not(ltype => "Int");
not(<GetEntity> type) /1$ no entity for this type

Figure 2.6: Stratego code to perform a semantic check onrtigyEanguage

Spoofax executes strategies through an entry-point ruteedbrm shown in Figurie 2.7.
Spoofax also allows for the creation of custduilderswhich are also a hooking point to
directly call a Stratego strategy. There could for instabeea builder to call a strategy

14

2.4. Language workbenches

which transforms an AST into an equivalent implementatioa different language. If that
different language would be bytecode, or an intermediatguage, it is effectively aom-
piler for the source language if the resulting AST is pretty-@@hinto an executable file.
Pretty printing is essentially the conversion of an AST biat& source code.

rul es

editor-analyze:
(ast, path, project-path) -> (ast, errors, warnings, notes

)
with
editor-init;
analyze;
errors = <collect-all(constraint-error, conc)> ast;
warnings =] ;
notes =]

Figure 2.7: Form of the stratego entrypoint for editor feszkin Spoofax

The rule shown in Figurle 2.7 matches on a tuple of the f@arh, c) wherea represents
the AST which was returned by the JISGLR parsing step. Thie fegewritten (or returns)
a tuple of the form(ast errors,warningsnote§ whereerrors, warningsandnotesare lists
of tuples of the form'nodestring). Thenodepart is the node in the tree where the error,

warning or note originated and the accompanystigng is the actual message which was
defined in the semantic check which should be shown to theamuger.

In our example in Figure 2.4, the typ#RL2 is not defined for properthiomepaga.

The semantic check we have shown in Figuré 2.6 and Flguleefiins the list of errors
shown in Figuré 218.

[("URL2", "Type URL2 is not defined")]

Figure 2.8: List of errors returned by the example sematméck

Note that in Figuré Z]J®& RL2 is actually the tree node which, in turn, is actually an
ATerm which (hiddenly) contains attached information abwhere in the source code this

node originated. Spoofax extracts this location from tke modes and shows the reported
error in the editor accordingly.

Moving on

As should be clear, Spoofax is a very powerful workbench &gielanguages with. The
SDF definitions and accompanying Stratego programs pr@general way to implement

15

2. LANGUAGE SPECIFICIDE COMPONENTS

advanced language analysis for existing and new languages.

In the following sections of this document we will use Spoada a base line to research
the possibilities and difficulties of building a semantigadware Web based source code

editor.

16

Chapter 3

Requirements

Since applications built for the Web are constrained to the af technologies which are
available in the browser (JavaScript), implementation Dlesktop IDE quality analysis is

not a trivial task. In this section we will define the requiramts the back-end components
of our source code analysis tooling should meet.

3.1 Background

In order to capture the essence of what would enable a Weld b2ge we will enumerate
the minimal functionalities our back end will need on whidldy featured Web IDE could
be built.

In Sectiori 2.411 we have enumerated editor services typicegnt IDEs support. All of
these editor services can be implemented using rewrite adeexplained in Section 2.14.1.
In our proof of concept design we will not actually implemetit mentioned flavours of
editor services. Instead we will solely focus on the quatityecking of source code. By
this we intend to be able to return Desktop IDE quality feeltr@garding errors, warnings
and notes. Since we will be investigating multiple angleamfroach we need some way
to compare these angles. We add the requirement of beingaabénchmark our proof of
concept implementations.

3.1.1 Benchmarks

For Web IDE based editor services to be feasible, the ratsofidack should be comparable
to a desktop based IDE. Based on our experience with IDEsieeit takes for language-
specific feedback to be visible is roughly around 300 mitigseds. This would allow for
up to around three full update cycles per second. We havaisegdal at 300 milliseconds
as a subjective answer to the question whether an editols*femooth while modifying
code. In real world situations Desktop editors provide Bssik in a non-constant time as
the size of the program or complexity of an edit fluctuatesvi@lsly the complexity of a
target language will also have great impact on the amountngf it will take to (re)analyse
a program in that language.

17

3. REQUIREMENTS

Since there are multiple steps our back-end will have tooperf at least parsing and
analyzing, it would likely be of help to increase the resolutof our data by obtaining
statistics about each back-end step. Such an increaseobitres could help in identifying
bottlenecks and provide clues where to introduce optintaat

3.1.2 Quality

In order to guard the quality of the feedback our back-endlevpuovide to a front-end
editor we add the requirement of being able to run tests baish. This would allow us
to compare the feedback our back-end provides to the reshii#sned from a proven to be
correct set of feedback based on a set of input programs.

3.1.3 Maintenance

Because our work will be based on state of the art technolbggetis a likelihood that
dependencies evolve. In order to make sure our proof of giriogplementation keeps
working while ongoing maintenance on dependencies is domauld be useful to auto-
matically rebuild our tools as soon as a dependencies getegbéh order to identify issues
as early as possible.

Another advantage of building automatically means the ri@k complicated build
steps are programmatically defined. Anyone who wants tonexte use our tools could
gain knowledge about the build complexities by investiggtihe build files. The NixX[14]
package manager has support for all of the above. Througtidmal definitions, packages,
their dependencies and build setups can be defined. Suchdsetilps can be automatically
built as soon as one of the dependencies gets altered. Araathi@ntage of using Nix is the
fact most of the dependencies Spoofax is based on have aaseekcripts.

3.1.4 Responsiveness

Since JavaScript was introduced it has mainly been useddtoder a way to execute some
simple client side scripts in order to handle for instanqautrvalidation or visual effects.

Because of this, JavaScript code is inherently implemetdedin in the same program
thread as the presentation layer of web pages. Even thoughtreaps in optimization and
performance of JavaScript engines, a “heavy” JavaScripition will still freeze the user

interface of a web browser until the function finishes.

In order to provide a way around this, W3C has proposed Wek&verin HTML5
@[@]. WebWorkers basically introduce threads to Java$eip are particularly useful
when needing to execute longer running code on the backdnaithout having the execu-
tion time interfering with the user interface.

Because our proof of concept Web Editor should not freezegine times an analysis
runs, interrupting the programmer, we add the requiremianon blocking user interface.

Thitp:/www.w3.0rg/ T R/2012/CR-workers- 201205017

18

http://www.w3.org/TR/2012/CR-workers-20120501/

3.1. Background

3.1.5 Generation

As added requirement in order to answer ttseegenerating a semantically aware Web based
source code editor feasiblé?research question, we propose a tool which can take any
typical Spoofax project and generate an equivalent badkadnich can run in the browser.
This would also introduce the possibility for future intation of a Web editor builder in
the Spoofax language workbench itself and provides a sbltraction on which to base
the experiments for this thesis.

3.1.6 Use cases

In this section we will list some languages for which we warptovide a Web editor. Since
we will base our work on the input of a Spoofax project, in pijpte any typical Spoofax
project should be convertible to a Web-based source coder ediing the products of this
thesis.

Entity Language

When a new project is created with Spoofax (Secfion 2.4. hjramalistic example lan-
guage template is added called the Entity language. Thisilege implementation includes
a simple but “door opening” definition for some simple errsush as a check on duplicate
names. It would be a good starting point to start with thispénianguage and introduce
more sophisticated languages from there.

Tiger Language

Since there already exist some Spoofax projects which imghé editor services for lan-

guages it would be useful to extend our use cases with sontesé real world scenarios.

The second use case next to the entity language we propdsensare complicated Tiger

languagel[B]. The Spoofax based editor for the Tiger langdagtures semantic analysis
for typed variables, functions, eéicEven though a powerful language, its specificaé)ns
are concise and therefore make Tiger a very suitable lamgtabe used to illustrate the

various components a language consists of. In fact, the Tagguage is currently used in

the Compiler Construction course at Delft University toghexplain how modern compilers

can be implemented.

Mobl Language

The last use case language we will explicitly create a Wetoetftir is the Mobl language.
[@I@@QFE The Mobl language is a statically typed domain specific laggu(DSL)

which can be used to implement web applications. These Walcafions are aimed at mo-
bile devices, optimizing the resulting Ul implementatiam fow resolution displays. Mobl

2http:/istrategoxt.org/ Tiger/ TigerLanguage
Shttp:/iwww.Irde.epita.fr/ ~ akim/ccmp/tiger.html
4http://www.mobl-lang.org/

19

http://strategoxt.org/Tiger/TigerLanguage
http://www.lrde.epita.fr/~akim/ccmp/tiger.html
http://www.mobl-lang.org/

3. REQUIREMENTS

also exposes most recent HTML5 features such as offline damb@ications, interaction
with GPS hardware and gyroscope libraries. Mobl is closelsted to WebDSL [62]. We
have chosen to use Mobl instead of WebDSL because WebDSLsmakeof much custom,
non-Spoofax native, functionality in the semantic aspéthe® analysis implementation.

The Entity, Tiger and Mobl language all have an open-sourggeémentation in Spoofax.

3.2 Deliverables

Based on the previously discussed requirements we propedeltowing deliverables our
research should produce:

e Being able to benchmark the various components
e Being able to run quality tests
e Provide Desktop IDE Editor comparable feedback

— Syntactic
— Semantic
— Location of the point in the program where the feedback patgd from
— Acceptable (300 ms) delay between an edit and feedback
— Non-blocking user interface while an analysis runs
We will present the following deliverables:
e A Web IDE back-end generator

e Proof of concept implementations

— A Web editor back-end for Mobl
— A Web editor back-end for Tiger
— A Web editor back-end for the Entity language

e Benchmark results

e Automatic builds (Nix[14])

20

Chapter 4

Client based editor services

With “fully client sidebased editor services” we mean having the complete backvhiuh
calculates the editor feedback to be executed locally irbtibesser. No connectivity to a
web server is required and no server side load or bandwidtises. In this chapter we
will discuss, implement and compare two approaches in oibigia fully browser-based
back-end for a semantically aware source code editor. Taktygof the back-ends we will
present will meet the requirements discussed in Chapter 3.

Because we are mainly interested in the feasibility of aatiically deriving a seman-
tically aware source code editor based on JavaScript, theder programming language,
we will not actually implement a front-end. Instead, we wikinly focus on comparing
the various aspects of our implementations such as sizErpemce and memory usage.
In Chaptef® we will present a front-end capable of actuadipgiand displaying the output
of the back-ends we will discuss in this chapter.

4.1 Architecture

NodeJSI[[55] is a platform which can execute JavaScript progrfrom the command line.
NodeJS is based on \Bwhich is used as JavaScript engine in the Google Chrome brows
and is one of the most optimized JavaScript engines cuyraudilable.

Because NodeJS and Chrome both use V8 as JavaScript erginggrformance be-
tween the two should be very similar if not equal when testedhe same machine. In
order to confirm this similarity we have devised an experimeghere we run the same
JavaScript program in both NodeJS and the Google ChromeskroW/e have implemented
a deliberately inefficient iterative prime number enumaraind a recursive Fibonacci se-
guence determination function for JavaScript in (Fiqud® 4nd timed the execution times
on NodeJS, Chrome and FireFox.

All benchmarks were performed onfAeMD quad core 3.2GHz 8 GB Raoomputer
running Windows 7. The version of NodeJS wa3.2and the version of Chrome was
18.0.1025

Ihitp:/icode.google.com/pivel

21

http://code.google.com/p/v8/

4. CLIENT BASED EDITOR SERVICES

Each test was executed five times straight, after which wietto®average run time. In
Figure[4.4 and Figure_4.3 we present the benchmark resuéizeaiuting these algorithms
on both NodeJS and Chrome.

function fib ($n)

{
if ($n <2
return $n;
return fib ($n-1)+ fib ($n-2);

Figure 4.1: Recursive Fibonacci function in JavaScriptprformance comparison

functi on PrimeCount ($max)

var $¢ =0,
for ($i =2 $ < $max; $i ++)

{ if (isPrime ($i))

$c++;
return $c;
}
function isPrime ($num)
$isPrime = true;
for (8 =2, $i < $num; $i +4)

{
i f (Math.round ($num / $i) === ($num / $i))
$isPrime = fal se;

return $isPrime ;

Figure 4.2: Inefficient iterative JavaScript based functio count the amount of prime
numbers smaller than $max

Clearly NodeJS and Chrome show a very similar performance. e¥pected the V8
implementation running in Chrome to always have a slightlyrse performance due to
overhead caused by the browser itself. This was however thielycase in our heavily
recursive test whereas the iterative test was practicglile As is also obvious from these
numbers, FireFox performs orders of magnitude worse fdr bat tests.

Since the in this document described work revolves arounoef pf concept we have
deemed it acceptable to mainly target Chrome. Also, a langeber of the benchmarks we
have performed and will present in the next chapters were darNodeJS for convenience

22

4.2. GWT

Platform 40 38 34 30
NodeJS | 1931.4 738.2 108.0 16.4
Chrome | 2128.0 814.6 1194 17.2
FireFox | crashes crashes 5366.8 785.4

Figure 4.3: Performance in milliseconds of running the reige JavaScripfib(x) test from
Figurel4.1 on multiple platforms.

Platform 20K 15K 10K 5K

NodeJS | 3333.2 1865.0 819.4 205.4
Chrome | 3316.4 1868.2 830.6 210.4
FireFox | 8311.2 4534.6 2019.0 5234

Figure 4.4: Performance in milliseconds of running the finet iterative
PrimeCoun{$max) JavaScript from Figure’4.2 on multiple platforms.

of being able to create scripts for a command line tool wheedomating performance
tests in a Ul based application such as Chrome would be csminer. Because of our
presented benchmark results between Chrome and NodeJ$une[Ei4 and Figuie 4.3, we
are of opinion using NodeJS to make claims about performareeould achieve in the
Chrome browser is justified in the following sections.

42 GWT

Spoofax produces a Java based back-end for editor servitieh are created for a target
language. The Google Web Toolkit (GWT) contains a transédion tool to convert Java to
JavaScript. Since our goal is to investigate the variousasmf Web baseDesktop quality
editor services, GWT is an obvious first attempt at obtaigmyoof of concept JavaScript
based implementation of the Java based back-end.

4.2.1 Difficulties

Regretfully GWT cannot transform the full set of Java largpsginto JavaScript. There

is for instance no support for file /O and threading. Everutiothe Spoofax generated

back-end currently does not actually rely on threadinggdtrsafe data types were used
to keep threading an option in the future. The back-end $popfoduces for the Eclipse

editor was likely designed without the requirement of itreveing portable to JavaScript

in mind. Therefore when attempting to use GWT to directlytodava based back-end to
JavaScript a lot of problems are reported by the transfooma&bol.

We have spent a fair amount of time manually fixing these ctatipn problems in the
generated Java code by for instance implementing dummyld€ses. These implemen-

23

4. CLIENT BASED EDITOR SERVICES

tations were made using JSNI (JavaScript Native Interfatksing JSNI it is possible to
write native JavaScript code inside Java methods. ThesenktvaScript methods can be
called from Java to JavaScript converted classes. Thelsddte possibility to have the
GWT compilerreplaceJava classes with a manually implemented JavaScript versio
Figure[4.5 is an example of JSNI. We have in addition to our tiwes used the totsp-emu
Iibrar;@ which is a set of JSNI Java classes which enabled us to addah @reount of
missing Java functionality in JavaScript and “repair” GWilt errors.

public static native int alert(String msg) [*-{
$wnd. al ert (nsQ);
| ER

public void test () {
alert(“Native JS alert popup message”);
}

Figure 4.5: A JSNI native JavaScript method body called fdawva

4.2.2 Limitations

Because JavaScript has a browser based nature some feattypeisal current program-
ming languages such as persistent storage access can akébédr granted. As previously
mentioned, GWT does not support converting Java to JayaStii makes use of file 1/0
classes. This poses a problem in particular for our IDE backi®cause any arbitrary pro-
gramming language is very likely to support the inclusioexiernal files. Take for instance
the possibility to reference public classes in Java or thigion of library functions which
are defined in another set of files.

These limitations are however in theory solvable by wragmh Java 1/O calls, and
forwarding them to some sort of client/server JavaScript WPRere a required file can be
downloaded on request through HTTP or by embedding all plessequired external file
contents in the analysis engine itself. However since wet Yearestrict ourselves to fally
(and potentially offline) browser based analysis of a pnognee have decided not to include
external file support in our initial proof of concept design.

4.3 Measurements

Measuring and capturing performance statistics on Desipgtications is usually a rather
straightforward task. There is however a complication wagempting to gather uniform
performance statistics on client and/or server side Webcapipns. Since we want to keep
the possibility open to measure performance between batimand-line run JavaScript

2http:/icode.google.com/pltotsp-emul

24

http://code.google.com/p/totsp-emu/

4.3. Measurements

applications and JavaScript programs which run in the beowse have decided to take a
logging-server based approach. The main advantage isitleat the Web based nature of
our research, (HTTP) requests can easily be made. Thiséahgpatrast with easy access to
persistent storage. Also having a single entity gather &éte ith a uniform manner allows us
to interpret the information more efficiently than havingnianually gather measurement
results from various locations.

We have implemented a data gathering service which liseng€oming results us-
ing a simple custom TCP protocol which allows for a (remdteheasuring entity to post
statistics. In order for the data to be meaningful we havesddde possibility of clients to
also provide a metric concerning the amount of work and wkesh they were perform-
ing. Obviously in our use of this server we have taken stepsssure the posting of the
results, or the measuring itself, does not influence whagiisgomeasured. This method of
measurement was used throughout the graphs and tables videpirothis document.

4.3.1 Metrics

The obvious first metric one thinks of when trying to compaggpams together is to count
the lines of code (LOC). Even though we shall mostly use LO@eisic we have attempted
to define areasy to obtairmore in-depth metric which should provide insight into tloene
plexity of a program. Because we will be working with progsaim multiple programming
languages, this metric should be applicable to any aripesgramming language.

The metric we will now present has been named “MDS”, shorifax Depths Summed.
Since we will base most of our measurements on SGLR parsahjgihges we can easily
obtain an AST for any given program in a language for which @B parse table exists.
MDS is calculated using the Stratego program in Figure #1@skence, a leaf node has the
weight 1, and each parent gains a point, where it takes thémax value of their children
if it has multiple. The result is a list of numbers which is flgummed together forming
a weight for the source program.

max-depths-summed = <sum><max-depths>
max-depths = collect-all(max-depth, conc)

max-depth = max-depth(|1)

max-depth(]d):
ast -> max-depth
with
params = <?_#(< id>)> ast;
max-depth := <list-max> [d|<map(max-depth(|<inc> d))> pa rams]

Figure 4.6: The Stratego definition of the MDS metric

This metric is especially useful when comparing sets of o which are written with
very different programmer signatures, where for instanoe grogrammer tends to make
one-liners a lot and another prefers to add comments befate gatement. MDS provides

25

4. CLIENT BASED EDITOR SERVICES

an easy to use method to obtain a comparable complexitydlvasight to programs written
in any language. In this document we will use either MDS or L&horizontal metric in
our graphs depending on the uniformness of the input-progret.

4.4 Syntax

Because a native JavaScript implementation for the SGL8rmaalgorithm does not exist,
we have prioritized getting JSGLR to run reliably on Javg®cht would have also been
possible to fully implement JSGLR in pure JavaScript butsithe Java implementation
consists of around 1000 lines of code and relies on a number of extra librarie$ sisc

the Stratego Terms library it would have taken too much timenplement SGLR in pure

JavaScript in the time frame of this thesis.

4.4.1 Previous work

A major step in previously conducted work has been the aeati the JSSGLR project in
[49]. GWT was used to port a wrapped version of the java baS&LR parser implemen-
tation to JavaScript. Most of the work done revolved arouptinuzing the loading times

for a JSSGLR parser. The time to initialize the JSGLR parséenvily dependent on the
parse table it is using.

In [49] an approach to transform a parse table from a filefstrepresentation into
JavaScript functions is described. The transformation oégular parse table into this
“JavaScript Functions” based representation of the inpusgtable is implemented as a
Stratego program. The resulting representation of theegalde is smaller than its original
because of a number of optimizations such as the sharingwoifrieg terms and optimally
renaming of internal tokens. Using this approach they hayeaved the initialization times
for JISSGLR.

The final relevant contribution in this previously condutieork has been the introduc-
tion of a wrapping JavaScript WebWorker, also mentionedenti8Sn[3.1.#. A JavaScript
WebWorker is in essence a thread which can execute a lomgagitask in the background
without slowing down the UI.

In order for this previously done work to be viable in our @sf we have decided to
rewrite much of JSSGLR so we could make use of the newestoveo$ithe JISGLR parser
so we could benefit from state of the art work suchl[as[[13, 36%0 An order to be able
to conduct performance tests in a straightforward mannewared JSSGLR to produce
a stand alone build rather than the product presented inrdweopis work which is highly
aimed at, and depends on, its target architecture. Fivedlyrequired the parser to be able
to produce custom AST nodes which would be more JavaScigotdiy, discussed in Sec-
tion[4.8.

26

4.4, Syntax

In the previously conducted work in_[49], most measuremeamts effort went into
speeding up the loading times of JSSGLR. Because we areynriatetested in the run
time performance of JSSGLR we have conducted a number ofimgms involving ran-
domly picked and generated source files for different laggsa In the following section
we will present the relevant statistics regarding the perémce JSSGLR offers.

4.4.2 Comparison

In order to be able to compare JSSGLR to JSGLR we have addeticalemeasurements
regarding performance of speed and memory usage insidarbplementations.

The Java Virtual Machine and a large number of CPUs becometisiifaster when they
have been busy with a workload directly prior to measurindgueance. This difference
in performance is due to in-memory optimizations the Jawausi machine makes, and
possible power saving functionalities which put an idle C&lh lower clock frequency.
Therefore, all the measurements we have performed areda@d®/ a preheating of run-
ning the parser for ten iterations.

The results we present in the following sections were obthioy running all bench-
marks on the same WindowsAMD quad core 3.2GHz 8 GB Ramachine, Java version
Java(TM) SE Runtime Environment (build 1.7.0 04-b22) NodeJS versiod.7.2

Size

The size of the to JavaScript transformed implementaticth@SGLR parser was (at max
GWT optimization and obfuscation setting) ¥62. The combined size of the Java imple-
mentation jars is 266B. We will present performance graphs for both the Java and Mob
language. The parse table for Java ist8B3&nd the parse table for Mobl is 6R8.

Speed

We will present a comparison between the native Java JSGURhenJavaScript based
JSSGLR implementation. We have used the Java syntax defirgitid a random selection
of 50 Java source files from the open source Torﬁ(f.mbject. We ran the tests three times
per input program and took the average numbers in our data base our analysis on.

3http://tomcat.apache.org/

27

http://tomcat.apache.org/

4. CLIENT BASED EDITOR SERVICES

6000

JSGLR—— y
c000l _JSSGLR I

4000

I
X
|

Time (ms)3000 - 7

1000 - XX i

XK | T
o LR o — | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Lines of code

Figure 4.7: Performance of executing the Java based JSGidrsvéhe JavaScript based
JSSGLR parser onrandomset of Java source code files

600 I T
500 | LJAvascript - y X |
400 - :

X X
Time(ms)300 |- L _
XX
2001 % .
100 <% X _
X
| | | |

0 ==
0 1000 2000 3000 4000 5000 6000 7000
MDS (as described in Sectién 4.8.1)

Figure 4.8: Performance of executing the Java based JSGidrsvéhe JavaScript based
JSSGLR parser onrandomset of Java source code files (Removed results for source files
with more than 200 LOC)

As can be seen in Figute’4.7 the native Java implementatideasly a lot faster than
the JavaScript version. This graph however does show arlgreavth in direct relation to

28

4.4, Syntax

the amount of lines of code indicating JSSGLR scales ligead JSGLR does. In Fig-
ure[4.8 we have graphed the same data set, withouttlz00) lines of code containing
Java source files. In this graph the curve is less straightiwieimost likely caused by fluc-
tuating complexity per source file. We have plotted this graging the MDS, discussed in
Sectionl 4.311, metric because simply looking at lines ofecddes not take the syntactical
complexity, especially deep nesting, into account. Thengha in syntactical complexity
are in this case especially significant because this is eorartdst set in which also Java
interfaces with large comment blocks reside. We can coecthd JavaScript implemen-
tation is slightly less stable performance wise comparethéoJava implementation but
does follow the general curve which was also visible in thgdaest set from Figuie4.7.
Since our previous comparison in Figlirel4.7 was basedrandgomset of source files we
will now present a test based generatedsource files. Each test steadily increases in size
which guarantees a reliable comparison. The following lgiagFigure[4.9 shows the per-
formance of JSGLR vs JSSGLR when parsing a generated sebgigons created in the
Mobl [29,12830] language and parsed using the Mobl SGLRasyparse table.

7000 I
Java XX
6000 - JavaScript - - - X _
X
5000 |- v .
X
4000 - X ,
Time(ms o
™300} i .
2000 - x .
X
1000+ v S i
X
o Jlx . : t | | |
0 500 1000 1500 2000 2500

Lines of code

Figure 4.9: Performance of executing the Java based JSGidrsvéhe JavaScript based
JSSGLR parser ongeneratedset of mobl source files

29

4. CLIENT BASED EDITOR SERVICES

350 ! : |
Java §

300 HJavaScript - - - E

250 - o
X

200 - y |
Time(ms) e X

150 - » |

100r %]

50 |- » _X_x.% X |

O * | >;Z|<I: f T + T T 1 —,—'% B

0 10 20 '30 40 50 60 70 80 90 100
Lines of code

Figure 4.10: Performance of executing the Java based JS@idRs/the JavaScript based
JSSGLR parser onrandomset of mobl source files

Figure[4.9 shows a similar straight linear curve as the gragfigure[4.Y which was
to be expected because we used a generated set of programst final comparison of
the Java vs the generated JavaScript based implementdt®GLdR we present the per-
formance of a set afandomMobl source files taken from the Mobl back-end library and
example files in Figure-4.10. Interpreting these graphs wecoaclude that the JavaScript
based implementation of the SGLR parser performs in a stablener and can be scaled
up to parse very large input files.

Memory

Finally we will present our obtained statistics regardingmnory usage. The memory usage
is of particular interest because this is currently a sigaift factor on portable devices.
Current portable devices have about 256 MB RAM. In Fidurélldvk present our results
for the generated Mobl programs set. As can be seen, the ngaeuired for JSSGLR
begins at roughly 30 MB and increases around 1 MB per thingdiof code. Memory wise,
these are promising results when looking at the possilgfitynning JSSGLR on a portable
device.

30

4.4, Syntax

200 I a
ava .
180 H JavaSCript R " : 1

160 o -

140 - X .

120 B

Memory (MB)100 (-

80

60 -

40 .

20 - .
4— | | | | | | | | |

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Lines of code

I
X
|

Figure 4.11: The memory usage of the Java based JSGLR aravtieclipt based JSSGLR
parser, parsing a set géneratedMobl source files

Discussion

The resulting size of the JavaScript implementation andélqeired parse table are quite
large. These sizes are however not prohibitive for usagé®h\ieb. The parser implemen-
tation and parse tables are also static and can therefahe leasached on the client after a
single transfer.

Comparing the curves of both SGLR and JSSGLR, it appearsI8@LR runs eight
times as fast as JSSGLR. This very noticeable differencepéed between JSGLR and
JSSGLR in the previous graphs was to be expected for muhgasons. For one, JISGLR
is optimized for Java in particular. Also, even though thisreo fundamental reason for
JavaScript to run slower than Jalal[44], in reality the stéthe art JavaScript engines run
much slower than current Java Virtual Machines (JVMs). Tifference is mainly because
of the historical difference of priority in which both teabingies were developed. There
simply has been a lot more research and effort into speegidgwa compared to JavaScript.
Given that the performance gap steadily decreases as Jgiaggins more public interest
in the ongoing movement toward Web applications, JSSGLRasto have a future.

Looking at the performance of JSSGLR, and knowing this isptiidormance we can
get when actually executing this JavaScript program in @anahdrowser, we qualify the
results as actually promising. For Mobl, every ten linesade account for roughly 15ms
increase in parsing time. Also, the average number of liieode for our Mobl test set
lies around 70 lines of code which accounts for an averageb0ms parse time. These

31

4. CLIENT BASED EDITOR SERVICES

results indicate that producing a syntactical feedbackweh editor is possible in around
150 milliseconds, which would “feel” quite responsive toeard user.

Maintenance

We have created a Nix script, mentioned in Secfion B.1.3ckvban automatically build
the JSSGLR projetﬂ. This build is executed automatically as soon as the project itself
or a dependency is changed. The great advantage is a fully dpté build can always
be downloaded. This makes it unnecessary to manually cerdSi8GLR which requires
checking out a number of dependency projects while JISSGERI&l alone after it has been
compiled. This makes it easy for other projects to dependSBGLR and also provides
future maintainers of the software a thorough insight i rrequirements to compile this
tool.

4.5 Stratego to Java to JavaScript

In this section we will provide the results of our experimenautomatically convert a gen-
erated Java based semantic analysis to JavaScript using (S¥¢tion4.R). The Spoofax
language workbench compiles an in Stratego defined langaiaglgsis into a Java based
implementation. This Java based implementation is noymmafi natively (in the JVM) on
the Desktop pc, providing the back-end for an Eclipsé [24¢leage plug-in.

Ouir first approach to building a Web editor back-end with tias semantic functional-
ity would be to automatically port the Java implementatioddvaScript. Since we require
to have no dependency on Eclipse, because Eclipse doesmonrdavaScript, we have
created a custom Stratego entry point like Fiduré 2.7 whagleg a source code string as
parameter and returns a list of tuples with semantic errditsis would allow us to call
the derived Stratego program from command line and enable cempare the “modified
Java” and “through GWT to JavaScript converted” based implgations of the original
semantic analysis for the Mobl language.

Given the fact that this transformation would be on an alyegherated Java implemen-
tation of the analysis there was no need to implement thisraxgnt neatly so we basically
took a trial and error, “duct tape”-facilitated, approaahorder to get it to work. First we
obtained all required dependency source files such as tae&r Term library, JISGLR and
the Stratego libraries and placed everything together inglesproject. Next, through use
of the in Sectiol 4.2]2 mentioned totsp-emu library, elimtions of unused library classes
and manually implementing necessary JSNI methods of ourveswvere able to get a first
version of a fully JavaScript based syntactic and semanttyais for the Mobl Ianguae

4hitps://svn.strategoxt.org/repos/StrategoX T/spoofax ftrunk/spootax/org.spoofax.jssglr/
Shitp://hydra.nixos.org/job/spoofax/spootax-jssgir/b uild
€https://svn.strategoxt.org/repos/StrategoX T/experim ental/mobl-gwt/

32

https://svn.strategoxt.org/repos/StrategoXT/spoofax/trunk/spoofax/org.spoofax.jssglr/
http://hydra.nixos.org/job/spoofax/spoofax-jssglr/build
https://svn.strategoxt.org/repos/StrategoXT/experimental/mobl-gwt/

4.5. Stratego to Java to JavaScript

Performance

In order to obtain performance data between the Java an8gaph based implementation
of a full semantic analysis we have modified our earlier nos@id Stratego entry-point to
perform the various parts of an analysis in measurable .si&jesalso added ten warm-up
runs to make sure the underlying platforms (JVM, NodeJS)@RY are fully optimized
before taking the actual measurements. We have gatheredshiés of our measurements
using the earlier mentioned data collecting server frontiSed.3.

18000 I | I I
JavaScript Analyze time——
16000 Java Analyze time - - - - A

14000 A
12000 £+ .
Time (msj)0000 A]

8000 A .
6000 - 44 -
4000 e -+ .

2000 - A %

OA«—L-""’\?'J S s 33 TR 3 XX X R XX

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Lines of code

I
l
\

I
X
|

Figure 4.12: Performance of the Si§tratego— Java)vs the GWTdStratego— Java—
JavaScript) based implementations for the semantic analysisgefreeratedset of programs
in the Mobl language

In Figure[4.12 we present a graph which shows the performahegecuting the se-
mantic, in Stratego defined, analysis for both the Java arabdaipt implementations. The
test base we have used for this graph is a numbgenératedviobl source files. We have
measured the time it takes to obtain semantic errors for obdp to 4500 LOC. Note that
the presented graptioes notinclude the time it takes to parse the source code, in other
words, to obtain the corresponding AST using (J/JS)SGLHRiszsissed in Sectidn 4.4. We
have presented the performance of obtaining an AST usinGlRSn Sectioi 4.4]2.

In our generated test set we have introduced a number ddltsemantic flaws which
both the Java and JavaScript implementation equivaleefgried. As with our results for
JSSGLR in Sectiofh 414, the JavaScript port of the Java imgéation runs much slower.
Do note however that it is very uncommon to have such largecsdiles, and this graph
is mainly used to emphasize the behavior of both implemienstwhen their workloads

33

4. CLIENT BASED EDITOR SERVICES

increase. In Figure~4.13 we present a similar result set doutnfore typical real-world
scenarios with a range of up to around 250 lines of code. Aseaseen, the JavaScript
analysis takes roughly 1@@sfor very simple,< 50 LOC, programs and increases by around
25msfor every 10 lines of code.

600
Javascript Analyze fime—

500 1 Java Analyze time - - - - N |

400 - |
Time (Ms)300 | |

200 - 4

o - ----><-><-><_

o XX 'X'>|<'>'<'><'><"X'X'lX'X'X"X'X'%'X'X"X'X'X'lx><
0 50 100 150 200 250

Lines of code

Figure 4.13: Performance of the S{§tratego — Java) vs the GWTd(Stratego — Java
— JavaScript) based implementations of a semantic analysis for Mobl socode up to
250 LOC

45.1 Limitations

The main limitation in this proof of concept implementati@nthat it cannot run in the
browser in its current form. This is because of a number afi-performance influencing,
simplifications we have made such as minor usage of NodeJ$uABtions which are not
available in the browser. We have for example used the NofieJBO API to open and

parse the Mobl SGLR parse table. Even though this limita¢ist in this crude attempt,
as we will show in Sectiofi 4.6, it is possible to embed the eéable in the JavaScript
implementation itself.

4.5.2 Discussion

We have spent a substantial amount of time and effort inttingethe generated Java code
to be transformable to JavaScript using GWT which woulddatd this approach to be
very unfeasible as it destroys the generative nature oflolevg a language using Spoofax.
However, most of our effort went into getting the non-getetadependencies which the

34

4.6. Stratego to JavaScript

generated Java code relies on to be transformable by GWactme have achieved to pro-
grammatically alter the language-specific generated Japéementation to be GWT-able
through the use of a series of regular expressions on thé geherated Java classes.

Even though we have achieved a decent performance in théaldaeaScript converted
implementation, a major down side of GWT is that most of theveosion process seems
like a magic black box. For example we would like to be ablexpegiment with JavaScript
specific optimizations in the compilation step of Strategdec All current optimizations
are Java specific and some parts such as the “Stratego Terar}limplement non-required
functionality. We are confident that when focusing on a diftcatego to JavaScript com-
piler similar, and better, results as the Java to JavaSornjggementation should be possible.
In the next section we will discuss STR2JS, the Strategov@aSkaipt compiler.

4.6 Stratego to JavaScript

The Stratego language currently has two compil&tc andstrj. The first compiler gen-
erates a C implementation of the Stratego program and tter lg¢nerates a Java based
version [9/33[15]. Thestrj Stratego to Java compiler is embedded in the Spoofax Lan-
guage Workbench.

Looking at the results we presented in our previous appreSkctiorf 4.5 in which we
attempted to port Java to JavaScript using GWT we could ndtfiach obvious optimiza-
tion points due to the complexity of dealing with generatedec Some optimization angles,
proceeding on our previous GWT based approach, are of cpossble but we decided
a more maintainable approach would be to design a StrategavaScript compiler. We
should be able to get at least similar results by simply miimig the optimizations GWT
makes. In addition we would be able to manually implement sekifically optimize
the Stratego back-end functions for JavaScript which cpudgide significant performance
increase.

4.6.1 Previous work

In December 2010, work was started at Delft University tolenpent a Stratego to JavaScript
compilelﬂ, called “s2js”. This implementation consists of two pa@ one side the actual
compiler which transforms a Stratego program into Javag@&nd on the other a JavaScript
implementation of required primitive types and functioRer instance the “Stratego Terms”
type system and low-level implementations of strategiasiiandle core functionality such
as dynamic rules and the basic traversal strategies of Tefimis Stratego to JavaScript
compiler was created using a small subset of tests from tiage§b to Java and C compil-
ers in order to compare the JavaScript based binaries rendirtput to the correct output.

In mid 2011 this work was continued [49] in which a number dfimizations and alter-
ations were made. The contributions to s2js in this worki@algrly involved streamlining

"hitps://svn.strategoxt.orgirepos/StrategoX T/strateg oxt-javascript-backend

35

https://svn.strategoxt.org/repos/StrategoXT/strategoxt-javascript-backend

4. CLIENT BASED EDITOR SERVICES

the transformation of Stratego to JavaScript. Regretfthiis work was never finished and
was not very usable.

4.6.2 S2JS

We have continued the work done on the Stratego to Javagonmpiler. In this section we

discuss the challenges we had to overcome in order to oleactaally usable Stratego to
JavaScript compiler foany Stratego program which is created in Spoofax. Since thialinit
set of non-failing tests was rather small compared to théadola tests in the Stratego to
C and Java compilers we have added virtually most of the¢e tieshe s2js project. With

exception of File I/O based tests. Next we implemented ay way to run all these tests
and gather a list of failures using the in Secfiod 4.1 deedridodeJS environment.

Obviously, in our initial attempts we came across a lot obpems. We attempted to
group the problems into similar Stratego functionality mder to efficiently modify the
Stratego JavaScript back end to produce correct output.axediso made our additions to
the Stratego JavaScript keeping a close eye on the original ilhplementations from the
Stratego Terms library. The JavaScript binaries the s2jspder produces depend on the
following key components:

1. SRTS - Stratego RunTime System
The Stratego run time System is in essence the core depgnfberany s2js'd Strat-
ego program. The three low-level implementations of the ¢aversal strategies in
Stratego, namely “one”, “some” and “all”, are implementedteh For examplall (s)
is defined to apply the strategyon all sub terms of the current term. The low-level
implementation is platform-specific, so in s2js JavaSdrgsted. The most commonly
used traversal strategies, bottomup and topdown, are definthe Stratego library
and directly rely on thall (s) strategy. [[6], 9]

bottomup(s) = all(bottomup(s)); s
topdown(s) = s; all(topdown(s))

2. JS ATerms - JavaScript ATerms (Annotated Terms)
The JS ATerms component in s2js contains the implemengtibtihe JS Terms. This
is essentially a stripped down version of the Java basede§traerms. Each term
has a certain type such ast(real, string, list, tuple, etc). The JS Term system
exposes functions to retrieve the type of, compare, cortstind modify terms.

3. JS Primitives - JavaScript Primitive functions
The JS Primitives library consists of all core functionahvhich can not be (effi-
ciently) defined in Stratego itself. There are for instanaeives to add and subtract
integers. In the next subsection we will explain Strategmpives in more depth.

36

4.6. Stratego to JavaScript

4.6.3 Primitives

The Stratego language is layered on top of a set of primitiregegyies. These strategies
call native code which is platform specific and has to be imgleted in the underlying
language. This is in our case of course JavaScript. In §odteese primitive strategies
are mostly invisible from normal users because they lie@hiart of the various Stratego
libraries. The Stratego libraries provide a large set of mmmly used functionalities such
as multiplication of numbers, concatenation of lists otitesfor (in)equalities.

Eventually, most Stratego statements reach one or mor@®é trimitive functions. In
Figurel4.14 is an example of an invocation of a primitive fiow

call-primitive-func : x >y
where y = < pri n{“Primitive_Function”)>x

Figure 4.14: A Stratego call to a primitive function

Note that the Stratego to Java compiler translates this fovatation of a method in
a class which implements a special interface. In s2js thisstates to a simple JavaScript
function call. In this exampl& is the first parameter for this function call.

4.6.4 Obtaining an AST

At this point we are able to compile Stratego programs toSewnpt. This JavaScript im-
plementation is based on a custom implemented ATerm systeonder to be able to apply
our JavaScript based Stratego program to an AST we needdmalhich ASTs in a com-
patible format. The Stratego language provides access$@GaR parser through a specific
Stratego SGLR library. In the Stratego to Java compilerlibiary depends on JSGLR. We
could not simply use the output AST which JSSGLR providesdily in s2js because JSS-
GLR provides Java based Stratego Terms. Granted, thesetaedyaJavaScript objects,
they are still based on the GWTd Java implementation whialotscompatible with the
earlier mentioned JavaScript ATerms in Secfion 4.6.2.

Thankfully the architecture of JSGLR allows for the implertaion of a custom TermFac-
tory which provides an abstraction from whatever term sysite used. Using JSNI, dis-
cussed in Sectidn 4.2.1, we implemented a specific s2jsHactary. We made sure the in
native JavaScript implemented Term factory is called dytie construction of the AST by
our improved version of JISSGLR.

We have mentioned a JavaScript aimed optimization for J$8iBSectio 4.4]1 which
transforms an SGLR parse table into a set of JavaScriptitunrsctather than a string which
has to be parsed in order to initialize an instance of JSSGbR.optimization was imple-
mented in Stratego. We have essentially embedded thig“talilinctions” transformation
inside the s2js compiler by replacing the Stratego statémbith imports a table file in the

37

4. CLIENT BASED EDITOR SERVICES

to be to compiled AST representation of the target Strateggram.

At this point we were able to write a Stratego program whicbeats a string as pa-
rameter, parse this string into an AST by calling a custorat&go Primitive which calls
JSSGLR, and pass the resulting AST to a strategy. This §togieogram can be compiled
by s2js and run on NodeJS.

From Spoofax

Because all language-specific aspects which are requireddemantically aware editor is
inside a Spoofax project in the form of SDF definitions and rat8go program we have
created a general Stratego program which in essence glesgleuag together. An existing
Stratego program which retains inside a Spoofax projectrépped by a custom Stratego
program which exposes a command line interface. This wrapgesforms a string into an
AST and feeds this AST into the original Stratego programciidetects and reports the
possible semantic errors. In Chaptér 6 we present a toolhwéhitomates the generation of
a Web IDE based on a Spoofax project.

4.6.5 Results

In this section we will present the benchmark results we lodtained from running a set
of Stratego programs which were compiled using s2js. We wiittor these results with
the previous Java and GWTd Java implementation performalmc€igure[4.1b we have
included a graph representing the performance of the s2jeimentation of Mobl. In this
image the initial comparison is between the native Java atidenJavaScript implementa-
tion. Even though the directly to JavaScript transformeatSgo program is much slower
than the native Java implementation, these results areigirgrbecause we now have a
solid foundation to implement JavaScript specific optirtiazes on.

When looking at our second comparison, where we compare\W€dmplementation
from Sectiori 4.6 with the implementation we have obtainedgithe Stratego to JavaScript
compiler we see a very similar performance. We suspect ¢hizeta confirmation that
JavaScript interpreters are currently simply just lesgngped than Java Virtual Machines
(JVMs). When looking closely it seems the GWTd implementatis always a fraction
quicker than the s2js implementation. We are however canifithat future optimizations
in the s2js compiler can be made. One could specifically ladkeaStratego language and
introduce optimizations which are specifically benefic@ JavaScript in order to further
improve the s2js compiler and obtain faster running seroaralysis implementations.
Both Figure[4.1b and Figufe 4116 are based on the performainaeset of random files
from the Mobl library.

38

4.6. Stratego to JavaScript

700

600 -

500
400
Time (Ms)
300
200

100

o ’:.,,,

Javascript Analyze fime |

Java Analyze time—— + _
+ |
: + o+
+
+ i
X
BRSO % S | x_‘x%—_l
50 100 150 200 250

Lines of code

300

Figure 4.15: Performance of the S{i$tratego — Java) vs the S2JSStratego —
JavaScript) implementations of a semantically aware analysis for théIMemguage on

a random set of Mobl source code files= 250 LOC

800
700
600
500
Time (ms)400
300
200
100

S2JS JavaScript Analyze time—
GWTd JavaScript Analyze time - - -

150
Lines of code

200

250

300

Figure 4.16: Performance of the GWT8tratego — Java — JavaScript) vs the S2JS
(Stratego — JavaScript) implementations of a semantically aware analysis for thélMo
language on a random set of Mobl source code fles250 LOC

39

Chapter 5

Server based editor services

Our second major approach to implementing a semanticalgreaweb based source code
editor is to rely on a server back end to perform the actualudations required for the anal-

ysis. We have implemented a proof of concept service whioliges semantic feedback to
remote clients. This new approach obviously poses a widgerahnew problems such as
how to handle connectivity problems. In this section we didicuss the solutions we have
used to overcome these problems.

5.1 Disadvantages

It is clear that the radically different approach in where dgalculations are performed in-
troduce a number of problems and aspects to take into coatmie The obvious first
requirement would be that the users who program in our Wetbreshall always need to be
connected to the internet in order to receive the syntaaticsemantic feedback. Also, the
availability and latency of an internet connection couldalily influence the performance
and the quality of the editor feedback.

5.1.1 Overhead

Whenever a key press occurs which alters the program beitegeatere could potentially
be new editor feedback which is why ideally the analysis khba executed. In comparison
to our previous approach when everything is calculatedientie browser there now are a
number of extra steps which have to be performed. In the napge @pproach in which all
data is always sent over the line the following steps areast leequired (in order):

1. Client side:

a) Packaging the program in a form which can be sent over theigt
b) Posting/uploading this package to the server back end

2. Server side:

a) Receive the package

41

5. SERVER BASED EDITOR SERVICES

b) Decode the package into the program which must be analyzed
¢) Running the Stratego program which performs the analysis

d) Package the resulting editor-feedback in a form whichlmsent over the in-
ternet

e) Returning/uploading this package back to the client
3. Client side:

a) Decode the received editor-feedback package
b) Apply the editor-feedback to the running editor-ins&nc

In contrast, in the method explained in Sectionl 4.6 only s&p and_3b have to be
performed.

5.1.2 Loss of scalability

The fully client-based method described in Secfion 4.6 hassence no limit to the amount
of concurrent users. The analysis is run on the browser girttgrammer which only puts
a small amount of stress in a hosting entity in the form of isgrthe required files to the
users. This also needs to happen only once due to clientaitteng.

Obviously, the client-server based approach we proposesséction will have a maxi-
mum amount of concurrent users because each user wouldgzrg eh the server back-end.
Even though with the recent developments in Cloud basedtectiires in which we can
scale seemingly indefinitely, the cost in doing so could Iséla limiting factor.

5.2 Advantages

A major advantage is the fact we are no longer bound to thefulssaScript to perform the
actual calculations in. As we have shown in both of our presiproof of concept imple-
mentations in Figure4.12 and Figlire 4.15, a native Javeem@htatiorcurrently executes
an analysis much faster than a JavaScript implementatitsw, Aecause of this freedom in
choice of platform, problems regarding File 1/0O are mucheas cope with because such
functionality is natively available in most general purp@sogramming languages.

5.3 Justification

Even though there are many disadvantages in the clien¢éisbased approach, our previous
attempts in Section 4.5 and Sectlon]4.6 have clearly shovatigenlava approach to cur-
rently be much faster. In the proof of concept editor we widgent in this section we have
made a number of abstractions in the form of a couple of asangp These assumptions
are:

e A non-failing connectivity between client and server

42

5.4. Proof of concept

e A constant latency

Based on the graphs mentioned in Secfioh 5.2 we suspectothlarger analysis jobs
a server-based (Java) approach will “win” from the fully Wweer based implementations
even with the added complications of the overhead we hawshed in Section 5.1.1.
Obviously the loss of “cheap” scalability as mentioned ict®®[5.1.2 can not easily be
solved.

5.4 Proof of concept

We have implemented a proof of concept client-server bas@dstically aware Web editor.
The enumerated steps mentioned in Se¢tion5.1.1 have beégmented in JavaScript and
Java. We have created a bandwidth-heavy version whichdilgssends all data back and
forth between the client and server omitting the necesgityanaging a state at either the
client or server side. At the server side we receive the sotwde which must be analyzed,
analyze it and return the semantic feedback back to thetclien

5.4.1 Transport layer

The classical approach in developing a web-applicatiorckvbommunicates with a server
back end is to use requests. These requests originate feoati¢ht side. There are a num-
ber of protocols a web developer can use to achieve this lextehof communication such
as HTTP Get/Post and Ajax [46]. A common workaroundgitaulateserver-initiated com-
munication (push) is by implementing long-polling or streag as is done in Comeét[52, 8].

Currently, W3C is in the process of standardizing the Wek&sf19] protocol. The
WebSockets protocol exposes the possibility for a fullldwponnection between client
and server and, more interestingly, allogither side of the connection to initiate the send-
ing of a message. Also, because of the nature of a socketdhemways two endpoints
which removes complexity in the managing of multiple sassiserver side. At the server-
side, an open socket could simply be coupled to a sessionawgértain state whereas the
alternative would mean extra checks and overhead. In [26hgparison is made between
the classic approach and WebSockets in which WebSocketdyclgerform with less la-
tency and bandwidth overhead.

WebSockets

We have decided to use WebSockets as main transportatienitapur proof of concept.
We did come across a number of difficulties which were mainig tb the fact that at the
time of this writing the WebSocket API definition was not cdatply finished by w3l

and therefore not uniformly implemented in all browsersr 8erver-side implementation

Ihttp:/www.w3.0rg/ TR/websockets/

43

http://www.w3.org/TR/websockets/

5. SERVER BASED EDITOR SERVICES

was implemented using JeEya lightweight Java based HTTP server which supports Web-
Sockets. We identified a rather prohibitive problem in owstfiries in which a WebSocket
message which originates from a client could be no longer 885, or 24+ 1, bytes.
The opposite way, from server to client there appeared tooblmitation at all indicat-

ing it was a Chrome browser-specific limitation. We haveeghis by transmitting up to
50MB of data to the client. In order to overcome this client to setimitation we have
implemented a simple fragmentation protocol on top of théo8deket APl which slices a
message into multiple parts of maximally 16385 bytes anastrats the sub messages in
order, prefixed with information about the current slice &od many slices exist in total.

At the server-side the original message is reconstructed.

5.4.2 Analyzing

We now arrive at the moment where we have the original sourde which resides in the
editor at the server in a buffer. The next step is of coursetigadly perform the analysis in
order to obtain the editor-feedback. We have implementedava based Jetty WebSocket
servlet as a project which references the Java implementafia Stratego program.

We obtain this Java implementation by compiling a wrappegetaStratego program
with a custom entry point like we did in Sectién 4.6 and SedidB. We compiled this
wrapped Stratego program using the Stratego to Java congpije Next we call the custom
entry-point for this compiled Stratego program and passtiece code we obtained from
the WebSocket as parameter. The resul8hgtegoTermvhich represents the AST, errors,
warnings and notes is then converted into a JSON[12] stepgesentation which can be
used by the client side. This JSON string is then transmbitezk over the WebSocket.

5.4.3 Receiving an analysis result

Once the client receives the response from the server batkig¢he form of a JSON string,
the result is is parsed into a JavaScript object. At thisesteg have all the syntactic and se-
mantic feedback a Spoofax derived editor would have usedratisposal. In Sectidn 6.1.3
we will present an editor front-end in which we actually \aéme these analysis results in
the browser.

The resulting feedback can in its current form be more peedige to the availability of
referenced files at the server side. In for instance the Mead® cthere is a large library which
defines a number of common types such as a “label” or a “tabdthe s2js approach each
reference or usage of such a type would result in a semamntic & this current server-side
proof of concept it was however trivial to make the libranagable to the Stratego program
since the Java implementation could make easy use of Jaed&Xifunctionalities.

Zhtp:/ljetty.codehaus.org/jetty/

44

http://jetty.codehaus.org/jetty/

5.4. Proof of concept

Performance

In Figure[5.8 we present the performance of this approacla foll cycle between client
and server. We have used a subset of the generated set of Mgbhms from Section 4.5.
We have manually performed these measurements in a Chrased bditor. We hosted the
server back-end on our main test machine and initiated thierazh a physically distant
computer. The (internet) latency between these machinesitnadl times we performed the
tests between 25 and 3@ Regarding bandwidth throughput between client and semesr
have obtained a stable 4®)/s to and from both ends. In Figufe’.2 and Figlrg 5.1 we
present the amount of incoming and outgoing bytes in thests. te

Since in practice an analysis will run after each key presafier a sequence of key
presses) the amount of bandwidth required starts to beconsga bottleneck. In an aver-
age 100 lines of code Mobl program, each edit of the programidvinitiate the “upload”
of 2KB and the “download” of 8RB. This difference in size is because the server sends
tokens instead of only the source code itself. These tokentin a significant amount of
annotated information such as the type of the token, itsersyt its origin and a possible
error marker. Note that this implementation is not optirdizg all and consists of raw,
unzipped, JSON data.

400 12

ﬂRllm tilme; |I l,/ —IRllm tilme; | | ,|/+
300 - gl o
KB 200 At KB A
100 ;/ﬁ/% 4+
O _. | | | | | | | | O $ | | | | | | | |
0 50 150 250 350 450 0 50 150 250 350 450
Lines of code Lines of code

Figure 5.1: The amount of incoming bytes for Figure 5.2: The amount of outgoing bytes for
our client-server based analysis for the Moblour client-server based analysis for the Mobl
language language

5.4.4 Reducing overhead

Our previous attempt has revealed an obvious point of opéititin because of the high us-
age of bandwidth. With exception of the optimizations distt in Section 6.1]2 regarding
insertion of new lines, practically each keystroke coulgiger a full update cycle. We have
implemented bandwidth-saving functionality in our earlpeoof of concept. Since most
of the source code which is being edited does not change,rantypical alteration of the

source can be viewed as a patch to the previous “version” ave tiecided to incorporate a

45

5. SERVER BASED EDITOR SERVICES

1.4

1.0
Time(S)0 6 B

0.2
0

0 50 150 250 350 450
Lines of code

Figure 5.3: Total time working for a full cycle between clieserver (210 KM physically
apart, with an average latency of 28 ms and a 400 KB/s up andstosam) for our client-
server based Mobl analysis

difffmatch/patchalgorithm [45]. What such an algorithm basically does igtako versions
of a string, for instance a strirdy and B, compares them, and outputs a patch to obBain
fromA. r’[V?ée have used the JavaScript and Java implementation ofl&€®ddf/match/patch
algorithnf.

In order to only require to send such a patch, the client hamsamtain two versions
of the source code. The first version is thet sentversion, which effectively must be the
version currently known at the server-side. Of course thers# version is the one currently
being edited. As soon as a patch is derived by “diffing” thead current versions, the
patch is sent to the server and thst sentversion is updated.

At the server side, the patch is applied to the currently kmeersion of the source code
after which the normal analysis is executed. The resultB@N tokens are then “diffed”
in the same manner after which a patch of that JSON stringpigeckback to the client.
The client applies the patch to its previously most-recentes reply and updates the editor
using the new information.

Extra calculations

In essence, our bandwidth overhead reducing algorithmakytintroduces extra calcula-
tions on both the client and server side. After all, th#&match/patchalgorithm is being

run a number of extra times. It is in fact possible that addivig layer actually slows down
the overall cycle from a modification in the editor to the atisplay of updated feedback.
We have measured the added overheausito actually perform theliff/match/patchalgo-

rithm. Because the first execution of the algorithm, in wkaohempty string is compared to
whatever needs to be sent over, will produce a patch camgisfiexactly the entire second
string we have taken this very first execution separate.owll this first execution we
ran five successive executions for each test case and toekehage extra time it takes to

Shitp://code.google.com/p/google-dift-match-patch/

46

http://code.google.com/p/google-diff-match-patch/

5.4. Proof of concept

execute theliff/match/patchalgorithm on the client and server side.

80

60

time (ms}40
20

0

450

150 250
Lines of code

350

[[[| |
| [Run time—— | +

150 250 350 450

Lines of code

Figure 5.4. Overhead of executing diff- Figure 5.5. Overhead of executing diff/-
match/patch (first run) for our client-server match/patch (successive runs) for our client-

based analysis for Mobl

server based analysis for Mobl

In Figure[5.4 and Figure 3.5 we present our results. We caolude that for a first
execution the algorithm is introducing most overhead. Fmcsssive runs however, the
amount of overhead is negligible compared to the full-cyptecution times we have pre-
sented in Figure5l3. At this point we are of course intetestehe actual amount of data
which would be transmitted over the network.

54

Bytes132 i

I I T 230 T A I 1

HRun time—— | HRun time—— |
= N 210 " —'_
_\—m Byteslgo W
= + + = + ++
= + 170 -

Py | | | | | | 1 | | | | | | |
0 50 150 250 350 450 0 50 150 250 350 450

Lines of code

Lines of code

Figure 5.6: The amount of outgoing bytes in Figure 5.7: The amount of incoming bytes in
the, with difffmatch/patch, extended version the, with diff/match/patch, extended version

of our client-server based analysis for Mobl

of our client-server based analysis for Mobl

In Figure[5.6 we present the graph regarding the amountstgbimg data when making
small modifications to the program in the editor. In Figur@d e show the size of the
resulting patch message which is being received from theeseDepending on the type

47

5. SERVER BASED EDITOR SERVICES

of modification that was made, the size of the patch messagieidlies. When for instance
pasting in a number of lines, the patch message obviousltait@nthe information from
these lines. In these measurements we have simply addeé@dariiomments to the code.
These are the average sizes of the payloads sent over therkdtw five edits per test
case. Note that regardless of the size of the program whioting analyzed only the type
of modification to the program has effect on the size of thelpanessage. In essence,
for comparable acts of modification to the program in thecedthe patch message size is
constant

Finally, in Figure[5.B we present the combined measurenfemts Figure[5.8 and our
with thedifffmatch/patctalgorithm extended implementation. Clearly much of thebgad
was caused by the large amount of data which was being sentre/énternet. Looking
at the amount of data which needed to be sent, with a maximue&B in the original
attempt, one might wonder why this introduces such a sigmifidelay. After all we were
able to get a stable 48@/s between both the client and the server in both ways. In Fig-
ure[5.3 the maximum amount of time to complete an analysisaiel41vs Looking at
the performance we have obtained in Fiduré 5.8 there is tpufidms“too much” time in
that original approach. This seemingly extra overhead cavelier be explained because
when initiating a (large) transfer over the internet, thisra small “warm-up” time before
the maximum throughput is reached.

12000 i i !
Extended——- y
10000 Original- - - - -- IR

8000 |

Time (ms) 6000 |- x -
4000 X i
2000 X

ol ey
0 50 100 150 200 250 300 350 400 450
Lines of code

I
X
|

Figure 5.8: Our original vs. the, with difffmatch/patcht@xded implementation of our
client-server based analysis for Mobl

The performance we achieved in our final version of the clgemver based proof of
concept is close to the native-java performance. Afterth#, amount of data which is
actually sent over the internet is mostly constant becatifeediff/match/patch approach
and the actual calculations are performed in a virtuallyaégavironment.

48

5.5. Discussion

5.5 Discussion

We have set out to provide an alternative to the s2js impléatien. In FigureL 5.0 and
Figure[5.10 we present a comparison between our clienesepproach versus the perfor-
mance we achieved in our s2js proof of concept.

Lines || Time Time
Of s2js | cInt/srvr
Code | (ms) (ms) 1600 lSZJS
14 45 53 1400H ~p: /—
23 79 56 12001 Client/Server) 1
32 110 79 1000 P
Time B Tt _
77 318 80 (ms) 800 o
95 396 94 600 it _
140 567 114 400 - +::,|_>—=”; i
176 740 148 200 - T S XX
203 | 870 161 olos® g XX
221 || 1024 173 0 50 100 150 200 250
239 1570 185 Lines of code

Figure 5.9: Comparison table of

performance between s2js and owfigure 5.10: Comparison graph of performance between s2js
client/server approach for a Mobland our client/server approach for a Mobl analysisning in
analysisrunning in the browser the browser

Recall that s2js runfully in the browser, and the measurements from Setfion]5.4.4 are
based on a client-server based setup where there was a/laemeen 2thsand 30nsfrom
client to server. The measurements were all performed ordire set ofjeneratedMobl
source files. Clearly, given these conditions, the cliemtxsr based approach wins. These
conditions are however optimal. When there would be signitiy more latency it might
be more beneficial to switch to the locally executed s2js@gogr. In Sectioh 615 we will
present a balancing algorithm to automatically decide tvaigalysis strategy to perform.

49

Chapter 6

Generation

Because using S2JS in combination with JSSGLR, creating@muStratego entry point,
and incorporating it into a front-end requires quite songgjing with files, we have cre-
ated “spoofax2ace”. Spoofax2ace is a command line toolhwiaikes an arbitrary Spoofax
project and converts it into a full blown web editor.

6.1 Front-end

The earlier discussed JavaScript back-ends are in theierduform not very useful. In

order to actually obtain a code editor we also need a frontvémdh communicates with

the generated back-end. Obviously this front-end has torrtine browser and should be
customizable to allow the implementation of the GUI aspeatsWeb Editor shall require.

It must for instance be possible to attach an error markeexbin the editor, along with

some explanation as to the nature of the error.

6.1.1 Ace

The open-source Ace (Ajax.org Cloud9 Editor) editor, mamdid in Sectioh 112, is fully
written in JavaScript. It is the successor of the well knowsbveditor called Mozilla Sky-
writet] which is, in turn, the successor of the Bespin efitérce is built up using a number

of modules. There are for example modules to add a styleg¢h&tl elements andustom
programming languagesThe current implementations for such custom languages how-
ever have little support for syntax, let alone semantic kbedn fact most programming
languages the Ace editor and web-based editors such as tyletﬁmrﬁ, ecodefd, and
codemirrof support are implemented using a series of regular expressio

Unhttps:/imozillalabs.com/en-US/skywriter/
2https:/imozillalabs.com/en-US/projects/bespin/
3http:/iwww.amyeditor.com/
4http:/lecoder.quintalinda.com/
Shttp://codemirror.net/

51

https://mozillalabs.com/en-US/skywriter/
https://mozillalabs.com/en-US/projects/bespin/
http://www.amyeditor.com/
http://ecoder.quintalinda.com/
http://codemirror.net/

6. GENERATION

The quality and amount of feedback a programmer actually\bBen programming in
such an editor is very limited. There is for instance onlyvikesd highlighting and ideally
some basic forms of syntax checks such as making sure anngperacket is eventually
succeeded by a matching closing bracket.

Ace does have full syntactic and semantic support for thaSewpt programming lan-
guage thanks to the inclusion of an external project, calaccissug, which provides a
javaScript based parser and semantic check for JavaS@iptiously such a project does
not exist for any arbitrary programming language whichliikeakes the research in this
thesis interesting for developers of the Ace editor.

A major extra advantage of using Ace as our target editoreigahbt that Ace is used as
primary code editor in the Cloud9 IDEThe Cloud9 IDE consists of a number of general
modules which work very well in its client-server archit@e such as the storing of a file
into the cloud or pushing/pulling commits from/to a versim@nagement repository. A
Cloud9 IDE can be hosted on any platform since it is fully tentin JavaScript itself and
runs on NodeJS. Cloud9 IDE serves purely in a browser ruerdiant side code and does
not require any third party plug-ins such as Silverlight aval In the spoofax2ace tool we
will present in this chapter we have included a Cloud9 IDEypluas one of the targets to
which a Spoofax project can be converted to.

6.1.2 Previous work

In [49] a working proof of concept syntactically-aware Additer is presented. The most
interesting part in this work for our proof of concept is tngplementation of a hook into
the inner workings of Ace with respect to events. They havenfstance customized some
often-occurring aspects such as the insertion of a new Miben a new line is inserted
into the editor they have made sure that all tokens in the g shift a position down,
omitting the requirement to re-execute the entire syrdamtid semantic analysis for the
currently open piece of source code.

6.1.3 Back-end to front-end

The Ace editor internally manages the state of a progranguslist of tokens. Each token
contains for instance information about the symbol it ia@tied to, its position, the coloring
and if applicable error marker. In order to actually dispiag editor feedback to a program-
mer we have to extract the required information from theltegua Stratego program. Since
we already have implemented a wrapping entity for a Strapeggram in Section 4.6.4 we
have extended this wrapper to actually return Ace tokens.hsMe implemented a term
visiting function which exhaustively extracts informatifrom the traversed AST, and the
errors/warnings/notes which were reported by the origstedtego program.

€http://mxr.mozilla.org/mozilla/source/|s/narcissus/
"hitps://c9.i0/

52

http://mxr.mozilla.org/mozilla/source/js/narcissus/
https://c9.io/

6.2. Spoofax

Finally we have added a listener to the “the editor text hasghd” event in Ace. When
this event fires we call the wrapped JavaScript implememtadf the Stratego program
which parses, analyzes and tokenizes the source code aftteusce tokens. Thanks to the
previous work regarding WebWorkers described in Sefidrl4ve were able to implement
this functionality without dramatically affecting the wsaterface responsiveness. Using
the implemented proof of concept on the basic Stratego veraggscribed in Sectidn 4.6.5
we have implemented a semantically-aware Web editor foEtiigy language, which was
introduced in Section 2.4.1.

In Figure[6.1 we have included a screenshot of the semardigsis of the Entity lan-
guage from Section 2.4.1 running in the Chrome browser.

: : E——
Editor %

&« C @ richardvogelij.nl:8888/editor.h
(",) Editor (',) Erase cache

T module webexample
2 _
3 entity User ({|
4 name : String
i password @ String
5] homepage : URL

e 7 phone : Sumber

g 3
[Type Number is not defined i

18 entity BlogPosting {

i1 poster : User
12 body : S5tring
13 }

14

13 entity URL {
16 location @ String
17 ¥

Figure 6.1: A semantically aware Ace Web editor running thétzlanguage example

6.2 Spoofax

Since it would be beneficial to automate the process of abia Web Editor from a
Spoofax project we need to investigate where the requimeguiage-specific dependencies
are located. In this section we will discuss which Spoofaseldadependencies there are and
how we incorporated them into Spoofax2ace.

53

6. GENERATION

6.2.1 Settings

We have implemented a tool which obtains the required, ptgjeecific, information from
a Spoofax project. Such information could for instance lgerthme of the Stratego based
entry point for the build product, described in Section 2.4Thankfully, Spoofax stores
such language-specific settings in a specialized configuaréite for which we have imple-
mented a parser which can return the various project-spegifiables to the Spoofax2Ace
generation program.

6.2.2 Build products

Spoofax transforms a contained Stratego program into annngdiate ATerm representa-
tion of the Stratego program, namelyaireefile. A language designer could potentially
influence this ATerm file to implement some custom requirekdab®ur in the resulting
Java implementation of the Statego program. Because opdsisibility, we have decided
to support such actreefile as actual input for the s2js compiler. Spoofax regersr#tis
.ctreefile whenever a piece of Stratego code is changed. The secajod dependency our
Spoofax2Ace tool relies on is the availability of an SGLRgestable. Spoofax also initiates
the regeneration of such a parse table based on the alteddtits source SDF definitions.
The generation of thetreeand.tbl files are handled through a set of Bitwild files.

Since it would be beneficial to not rely on Spoofax to actugilyduce the files Spoofax2Ace
requires in order to generate a JavaScript implementafitre@nalysis, we have attempted
to automate the invocation of these Ant build files. Even giothis works in most cases,
we have been unable to iron out some problems which occdlsioisa due to custom build
steps and complexities language designers could implerDeitto these issues we require
the required files to be available and generated by Spoofakédime being.

6.3 Dependencies

Because there are multiple involved technologies, Sp@#fe& couples a number of other
projects together in order to be able to produce a Web editamently these dependencies
are:

e JSSGLR (Section 4.4)
e S2JS (Section 416)

e The Stratego Libraries

The first two requirements should be obvious due to our pusviiscussions regarding
parsing, semantic checking and the technologies we wiltasehieve this. The Stratego
Libraries contain often used strategies which most Stoapeggrams reference. The loca-
tion of the actual files can however change from system te@systhich is why we require
a user of Spoofax2Ace to specifically define their location.

Ehttp://ant.apache.org/

54

http://ant.apache.org/

6.4. Target platforms

6.4 Target platforms

Even though we are targeting JavaScript as platform, there@ne subtle differences in
the potential build targets for Spoofax2Ace which have apil relevant effect on the
resulting binaries. We have for instance made a separajet fmr implementations which
are going to be benchmarked. The actual measurements andaygireheating runs can
pose a significant decrease in production-performanceo, Alsring the development of
the s2js compiler we wanted to be able to make use of profibotstin order to pinpoint
obvious problems in the JavaScript implementation. Thélpre we have used, Firedebug

and Chrome’s internal profiler are unable to function on csteh runs in a WebWorker,
described in Sectidn3.1.4. Therefore we have added a fardettwhich runs the analysis
in the Ul thread which is of course not very usable in productiCurrently, Spoofax2Ace
can generate binaries for the following targets:

e NodeJS Executable
e Ace Editor

— Production

— Extended Debugging
e Cloud9 plug in files

e Chrome and FireDebug profilable implementation

& | 192.168.1.125

File Edit View Windows Help [f @ debu &> Cloud

pretyprint fig . gueens.tig

1 ¢* A program to solve the 8-gueens problem */
F
3 let
a4 var N := 8
5
Qe e 6 type intArray = array of int
Open Fiies 4
8 var row := intArray [N] of @
g var col := intArray [N] of @
18 var diagl .= intArray [N+N-1] of @
11 var diag2 := intArray [N:+N-1] of @

function printboard{) =
(for 1 = 8 to -1
_
col[i]=] then " 0" else " .");

nrint/i™"n"yye

Figure 6.2: A Cloud9 Web IDE showing Tiger-language sencafietedback

9https:/faddons.mozilla.org/niffirefox/addon/firebug /

55

https://addons.mozilla.org/nl/firefox/addon/firebug/

6. GENERATION

We have also included some options to only generate a syhtoker and omit the se-
mantic checks in order to speed up benchmarking. To actgaligrate one of these targets
a Spoofax project root has to be specified. Optionally an @kmprogram for the target
language can be specified which will be the generated eslitiefault content. For conve-
nience we have also included a minimal HTTP server scriptiwkerves the generated Ace
editor. Because the generated client-side files are sthése files can also be uploaded to
a regular web service since there there are no server-sideements.

In Figure[6.3 we have added a slightly modified screenshote mbdifications we
have made in this screenshot are the visibility of multipl@emessages at the same time.
Showing multiple error messages at the same time is normatlpossible because an error
message is only shown when a user hovers his mouse over thererker.

We have also included a screenshot of the Cloud9 IDE in whitdnguage analysis
for the Tiger language, introduced in Section 3.1.6, isblésin Figure[6.2. The language
plug-in for this Cloud9 IDE instance was obtained using iheo$ax2ace tool.

As final addition we have added the possibility to target antliserver based imple-
mentation in which all calculations are actually run rerhota a server or in the cloud. In
Chaptef’b we have discussed this approach.

6.5 Client/Server Balancing

In Chaptef ¥ and ChaptEl 5 we have presented our two mainagms. The fully client
and the client-server based approach. Our editor appreasrebe combined into a single
back-end which can take either of these strategies to pertiee program analysis. In this
section we will discuss the possibilities in automatingdkeision regarding which strategy
to use.

The notion of balancing we present in this section is an als/ieext step after designing
both our fully client and client-server based approachdss Was however one of the final
additions to this thesis and even though our proof of conteplementation is functional
the contributions and ideas we present in this section amglynaonceptual.

6.5.1 Approaches

Initially, one might think the best strategy is the fastdstnt-server approach. There are
however a number of possible scenarios in which this is urat#s. For instance the added
costs we described in Sectiobn5]1.2 when providing a seritkmaore workload is a reason
to move load more to the slower client side. A user of the editiuld also prefer the
fully locally running analysis due to for instance roamirasts when using a dongle while
travelling.

56

6.5. Client/Server Balancing

€& - C @ richardvogelij.nl:8888/editor.htm! i
& 1 application Ehagg.i.;'.'rg

I Application name does not match file path. l

4 entity Item {

5 name : String
] favorite : Bool

7 order ¢ Mum

8 1

g
10 F74 spntax error from which 1s recovered
B 11 screen root() { A/}
13
[Syntax error, expected: '} L
14 =creen test{it : Item) {
15 /% Semantic error since '3 textField cannot be
16 Fiven 3 var of Num type &/

a 17 item { textField(zt.grder)
Expression should be of type mobl:String instead of

mabliMNum.

21 =creen editltem{it : Item) {
22 header("Edit item") {

23 button{ "Dane”, onclick={ screen return; })
24 3
25 group {
26 item { textField(it.name, placeholder="Name") }
27 AAintroduces 3 semantic error
@ 23 item o textFiEId(&:;.gmd. placeholder="NameTest"} }
20
[Property namee not defined on type mobl:ltern L
21 item { checkBox(it.favorite, label="favorite") }
B 32 ¥ } A extra closing bracket (syntax error)
2 |
[Syntax error, not expected here; '} L
35

LT

Figure 6.3: A showcase of the features of our generated itbrdor a mobl program

Fully in the browser

Our initial approach in Chaptét 4 revolves around runnirgyntactic and semantic anal-
ysis fully in the browser. Even though the analysis does notently execute as fast as
a Desktop based implementation it is certainly function@bmpared to the client/server
approach, the fully client based approach is far less deg@rah outside influences such as

57

6. GENERATION

the unavailability of a stable internet connectivity or difig remote server.

Client/Server

In Chaptef’b we have presented our server based proof of gbdesign. We can in fact
divide that solution up into two parts, namely the CPU frigrialit bandwidth heavy “raw-
data” sender version and the bandwidth light but CPU helifigmatch/patchversion.

This division could be relevant because on fast computerathst beneficial way to go
will most likely be thedifffmatch/patchbased version of our server based analysis. Espe-
cially when bandwidth is scarce. However, on certain devighich have less CPU power
such as a tablet, it could in fact be more beneficial to utithee bandwidth heavier, but
less CPU intensive, approach. Especially if the editor mms device with a fast internet
connection. In fact, because JavaScript is becoming iatrgly important due to the rise
of Web applications, JavaScript engines are continualtymoped and the gap between Java
and JavaScript performance is decreasing.

6.5.2 Determining the optimal approach

Based on the work we have presented in this document we dhaérfeltowing three possi-
ble options:

1. Fully client side, browser based
2. Server side calculations, transmitting raw data

3. Server side calculations, transmitting patch data

We would like to present an algorithm which determines thinogd approach for the
current situation in which a user is editing code. By this Wwe/es to have the algorithm
switch to a fully client-side mode in for instance the evehaa@onnection failure. If all
options are possible, all options should be occasionalgngited and weighted in order to
obtain a preference toward the most suitable underlyinigniglogy for a current situation.

This attractiveness should be influenceable by the userrend/éeb administrator who
hosts the Web editor in order to represent dynamic conditiegarding for instance costs
while roaming. Our asynchronous algorithm is defined in Fe{fi4.

In this algorithm,R[n| stands for an array of execution times of the various arglysi
implementations which are supported. When such a moderiedta penaltyP is added
to the appropriate roW[i]. When the analysis finishes the pendtys subtracted and the
execution time is added froR(i]. In the event of a failure an extra penalty is added on top
of the initial penaltyP which is likely not going to be subtracted again.

A timer at an interval | is also defined. Its purpose is to vigathe values irR. The
vaporization rates are defined\infor each analysis mode. The value mustbi®, 1]. The
closer to 1 this constant is defined, the fasteRitgill vaporize, meaning that approach will

58

6.5. Client/Server Balancing

Initialization: Analysis Unsuccessful.
R[0..2] « O; Rimodé «+ Rimodé + P;
V[0..2] + 0.01;

Atinterval I:
Perform Analysis: for([0..2])
mode«— Min(R).Index it (Rli] > 1)
S« Now, RIi] < Ri] «V[i]
Rimodé «+ Rimodé + P;
call(modse;

Analysis Finished:
elapsedk— Now— S
R[modé «— Rimode + elapsed- P;

Figure 6.4: Event-based pseudo code of our client-sentanbiag algorithm

be attempted more often. This allows a hosting entity to dedivalue fol in which cal-
culations are done client-side where possible, but keepdhsibility open to automatically
switch to a server-backed analysis. We have embedded tusitaim in the product the
spoofax2ace tool generates. We have executed some mitirtesrious circumstances
and the proof of concept implementation chose strategieg@ected when we for instance
switched off our networking connectivity or sabotaged rakntatency.

59

Chapter 7

Future work

In this section we will speculate on some useful subjectduture work, improving and
extending the various approaches and ideas we have preéseniés document.

7.1 Optimizations

Because our Stratego to Java to JavaScript approach, skstus Section 415, was quite
prohibitive in introducing JavaScript specific optimizais, we have created the s2js im-
plementation in order to facilitate the implementation péaalized JavaScript optimiza-
tions. We have already implemented a number of optimizatwnich allowed us to roughly
match the performance we got from the Stratego to Java t&daph approach by pinpoint-
ing performance bottlenecks using profiling tools, as dised in Section 6.4.

Even though we have suspended our efforts in optimizing 2jgeapproach in favor of
our client-server approach, there are still interestirglesfor future work in continuing the
S2js optimization process. The s2js is, in our opinion, tlestnpromising fully client-side
based analysis and deserves to be investigated and devéloger.

As mentioned in Sectidn 4.4, we have used GWT to port the JasedbJSGLR parser
to JavaScript. In Sectidn 4.6 we describe a custom treedyuilthich outputs simplified,
manually implemented, JavaScript terms. The inner wokknfig]SSGLR are however still
using much simulated Java functionality. We suspect thatéementing the SGLR parser
algorithm in native JavaScript, putting effort into Javafespecific optimizations could
produce a faster SGLR implementation than GWT could produt®f JISGLR.

7.1.1 Stability

The client-server based approach we have presented in&C@apias highly optimized by

adding the diff/match/patch algorithm. There are someeissvhich could rise in a number
of steps of this approach. For instance our fragmentatiotopol has been implemented
without a consistency check on a reconstructed string ateiimote side. Even though we
did not encounter any issues regarding corrupt messages iextensive tests, adding a

61

7. FUTURE WORK

CRC or hash would still be a useful addition in order to préyeiential problems during
production.

7.1.2 Security

Currently, the server based approach implements no sgairdll. Because all program
source code must at some point be fully transferred to theesén order to perform the
analysis, there is a potential security issue. The mostlsisgdution to solving this issue
is to configure the HTTP server which hosts the WebSocketetdosonly serve a HTTPS
connection. The most elegant addition would however bedorporate a credentials system
which ideally also handles server-side access to refedefiles.

7.2 Extensions

7.2.1 Editor services

We have only implemented the errors, warnings and notes@atyppoofax based language
analysis returns. Spoofax however also provides the definitf hover help, code folding,
code outlining, content completion and reference resglviiEven though our efforts in
getting the Stratego based analysis to run in a browser weaessful, there is still some
future work required to implement these extra editor seiccundamentally all of these
editor services can be implemented using Stratego+SDF amdherefore also run in the
browser based on the work presented in this thesis. The nifficuly in implementing
these back-end functions are to obtain an AST node from &idocia the source code. This
required information is however available in the back-end eould be efficiently stored in
order to obtain a tree node object based on a line and charagteer. From these editor
services content completion is most likely to be the mostlehging because, obviously,
at the moment of initiating a content completion requestethis likely no syntactically
correct program. As mentioned in Section 2.2.4, the rekéanecovering erroneous ASTs
[13,[3€] is likely a suitable approach.

7.2.2 File API

In s2js we have introduced a major simplification by disaitayvFile I/O operations. As
stated in Sectioh 4.6.3, Stratego library functions ewvahtueach a primitive function.
With File I1/0 based functionality this is no exception. Gamily we return empty data in
order to make sure a Stratego program running in JavaSags ot fail. A useful point of
future work would be the implementation of these File I/Catetl primitive functions and
investigating the possibilities of some sort of AJAX or Welbket based file system simu-
lation. This simulation should of course trigger actualuesis to a server which contains
the files which are referenced.

Alternatively, by extending the s2js compiler, work can beelto determine which files
can ever be referenced by some input Stratego program andllgembedding these file

62

7.3. Collaboration

contents into the JavaScript result itself or some othexures which is cached at the user’s
machine.

7.2.3 Partitioning

The algorithm which handles the balancing between fullgrtland client-server approaches
we have presented in Sectionl6.5 is rather simple. We sintplpse between running an
analysisfully at the client side ofully at the server side. An interesting field of further
research would be to investigate the issues which rise wttempting to balance smaller
portions of work. It could for instance be beneficial to execa syntactic check locally in
the client itself frequently and a semantic check which roms server with a smaller fre-
guency. Another example would be the execution of a pardbeatlient side, and sending
(a portion of) an AST to a server which would then execute seseitally aware operation
based on previous knowledge.

7.2.4 Bootstrapping

Since s2js, the Stratego to JavaScript compiler, is writteStratego itself, it would be
an interesting achievement to compile s2js to JavaScrigtran it in the browser. If this
implementation which runs in the browser is used to compiéeStratego code s2js consists
of a bootstrap would have effectively been made. The adgantd bootstrapping s2js
would implicitly mean that there is no longer a fundameneguirement for either the
Stratego to C (strc) or Stratego to Java (strj) compiler @eoto compile and run a Stratego
program in the browser.

7.3 Collaboration

Because of the nature of the Web is all about connections amgninication, a natural
next step would be to introduce a form of (real-time) collabion. The Google document
application provides a functionality to watch a collaboratdit a shared document in real-
time. Because in most software projects there are multipleldpers working on the same
project at the same time, real-time collaboration in whicbgpammers can be physically
apart can still engage in for instance a session of peergmuging [38]. At the time of
this writing, the Cloud9 IDE is starting to support real-firoollaboration.

7.4 Editor state URIs

In our research paper “Software Development Environmentshe Web: A Research
Agenda” [38], an interesting angle for web-editors is idioed. Because a web-editor
runs fully in the browser there fundamentally are veryditth no machine or installation
specific configuration settings. All required data could toeesi in the cloud making it pos-
sible for a programmer to turn off his laptop and continuewusk straight away by simply
opening his editor instance from another computer. Comgnan the possibilities it could
be of great help to be able to store a certain state of thereditbobtain a URI which points

63

7. FUTURE WORK

to the editor instance in that particular state. In opens®projects there could be a major
shift in the way bug-reports are presented because bugd beupinpointed in the code

itself in a certain state after which an author of the invdleede could simply open up the
URI and fix the problem. Managing these states would howegex bomplicated area of

research because of the sheer potential size such a stdt&soogist of.

64

Chapter 8

Related work

8.1 Source code editors

JS Fiddle JS Fiddi is an online tool in which a web developer has four windows. An
HTML, a CSS, a JavaScript and a result window. The code vigypaus simple syntax
highlighting. Using a run button the result window is filledthivthe resulting HTML page.
As the name suggests, the main intention of this tool is tp delvelopers quickly try out
things without having to redeploy or save multiple files gvame.

Codemirror The Codemirrd editor is a JavaScript based component which can be em-
bedded in a web page. The CodeMirror project is maintaineshieyperson, Marijn Haver-
beke. It supports a large number of languages in the form f&gyhighlighting and for
some languages auto completion. The support for every &geghas been manually crafted
and heavily relies on the use of regular expressions. The@oobr project is one of the
oldest web editors around.

Ace Ace, the Ajax.org Cloud9 EditBris similar to Codemirror. It is also based fully on
JavaScript and natively supports a large amount of languafjee well known Web editor
projects Mozilla Bespin and Skywriter were merged to form &ce project. Ace support
many features such as code folding, bracket matching amdisadntation. Quite notably
the Ace editor is used on the GitHllwebsite providing users an elegant way to edit and
commit changes to their repositories without the requirgne checkout the files to their
local machine first.

hitp://jstiddle.net/
Zhttp:/icodemirror.net/
3http://ace.ajax.org/
4https://github.com

65

http://jsfiddle.net/
http://codemirror.net/
http://ace.ajax.org/
https://github.com

8. RELATED WORK

8.2 Web IDEs

With the uprising of Web-applications the field of Web IDEsigpanding at a rapid pace
[2]. There are a number of projects which provide a Web IDEhisisection we will discuss
a number of these Web IDEs.

Cloud9 The Ajax.org Cloud9 editd is a Web IDE which is actively being developed.
Due to its open source nature the community can make adslitibich are often adopted.The
Cloud9 IDE supports a number of programming languages ssi€h@harp, Java and PHP.
The main programming language the Cloud9 IDE supports iently JavaScript. Cloud9
provides practically all features a typical Desktop IDEoalgould. There is for example
support for a file system, step/trace debugging and degjayiprogram into a production
environment such as Az{fte At the time of the writing of this thesis, Cloud9 has also
recently released a collaboration feature which offeré-tieee collaborative editing of a
program in a group, similar to Google Documents.

eXo Cloud The Exo Cloud IDH is very similar to Cloud9 IDE. It too provides practically
all functionality a Desktop based IDE would. The IDE curhgsupports ten programming
languages which is less than Cloud9. The editor supportgsymghlighting but lacks
real-time feedback regarding syntax or semantic errore. Bto Cloud IDE also supports
deploying to production environments and collaborativeirg.

CodeRun The CodeRun Web IDBis a code editor which only supports C-Sharp, JavaScript
and PHP. Regretfully there are not much technical detadgable regarding the editor por-
tion of the IDE. We have tested this IDE and were particulémypressed with the code
completion feature for C-Sharp which produces the exacesasults MicroSoft Visual
Studio does. Code completion is not available for the otbppsrted languages. We have
confirmed that the editor supports syntax highlighting, dwe to the lack of technical in-
formation and insight into the inner workings we were unabl@etermine whether the
editor can actually show syntax or semantic errors. Duringtests we were only able to
get some feedback regarding errors in the program beingcebi initiating a build and
viewing build errors show up in a log list. As the other IDEs heave presented in this
related work section, this IDE also supports the deploynerarious production sites.

MiDebug MiDebug [54] is a web-based IDE for embedded system programnThey
have created a browser plug-in which can directly commueiaéth a physical micro con-
troller. Using this link they actually compile the progranhieh is being edited server side,
after which the program is deployed to the physical devictep @&nd trace debugging is
made possible through the use of a persistent connectiovebptthe server back-end and

Shttps://c9.iof
€hitps://www.windowsazure.com
"hitp://cloud-ide.com
Ehttp:/www.coderun.com/ide/

66

https://c9.io/
https://www.windowsazure.com
http://cloud-ide.com
http://www.coderun.com/ide/

8.2. Web IDEs

the physical device through JavaScript WebSockets. Thecearode editor which was
used is based on the Codemirror project. The MiDebug pragectirrently being used as
a teaching aid for students at the Electrical Engineeringdenent at the University of
California.

Collabode Much of current related work is done behind a collaboratiaska The work
done for Collabode is performed under the collaboration lflaigin fact is based on Web
editors, making the project an interesting topic for ouesgsh. In “Real-Time Collabora-
tive Coding in a Web IDE"[[24], 23], a Web IDE is presented whiehtures full syntactic
and semantic support for Java. They utilize Eclipse at tineeseside in order to obtain
syntactic and semantic feedback. This approach was alpoged in[[59]. The front-end is
implemented using Ace. The focus of their work is in the isswhich rise when multiple
people are editing the same file at the same time. They fanostdiscuss questions as to
what should happen when a peer is causing errors in a file vidlding edited by multiple
programmers at the same time. They present an algorithmpi® wdh such issues which,
as stated in Sectidn7.3, will be interesting for future wigarding the design presented
in this thesis.

67

Chapter 9

Contributions and Conclusions

9.1 Contributions

We have investigated the feasibility of generating a seiwalht aware web-editor. In the
process we have laid the groundwork for much potential &itesearch. We have produced
a portable implementation of our proof of concepts which eimer be run from the com-
mand line or, in the target scenario, a browser. Further merbave presented a reusable
approach to uniformly obtain benchmark results from migdtgrigins, both locally but also
remotely executed code in Sectionl4.3.

Quality checks With the exception of actual GUI components, all of the JavigBbased
software and proof of concept implementations we have pteden this thesis can be run
on the command line using a JavaScript interpreter such deJ& We have implemented a
number of angles for each component in order to gain stistian automated way. These
measurements can easily be repeated and even reused itocoegand our load-balancing
algorithm with.

9.1.1 JSSGLR

Even though we did not initiate the JSSGLR project we haveardy made useful contri-
butions. We have taken extensive measurements in ordemforacthe scalability of the
JavaScript based SGLR parser and included an alternatie weight, output format for
use in the S2JS output in Sectionl4.6.

9.1.2 Proofs of concept

We have presented two major possible approaches in imptergenbrowser-based seman-
tically aware source code editor. With exception of the latidlity of a recent installation
of a web browser, both proof of concepts do not require a wsistall any extra arbitrary
software such as browser-plug ins. We have used our gendramo Chaptef’d to derive
editors for three languages. We have included screenshdite @arious implementations

69

9. CONTRIBUTIONS AND CONCLUSIONS

while focusing on specific aspects for the Entity languagdeigurel6.1, the Tiger language
in Figure[6.2 and finally the Mobl language in Figlrel 6.3.

Client

The analysis which runs fully in a browser is in our opinioer thost interesting approach.
We have extended and optimized the s2js compiler in ordebtimima functional semantic
analysis executing back-end which entirely runs on JavaiSaie have incorporated mul-
tiple build targets which provide the ability to produce &k&nd which is optimized for

release, debugging or performance benchmarking.

Server

Our second main approach was the design of the client-sbagad editor in which the
actual semantic analysis logic is executed on a remotersestead of in the browser at the
client in Chaptef5. Even though our initial angle was magilyed at running the actual
analysis fully on the browser, a server side will always lned in order to safely store
work. Also, looking at the future in which collaboration kdseditors are becoming more
popular, our research and proof of concept design for atelierver based analysis could
prove to be useful.

Balancing

The final contribution we have made is to tie our previous pobaoncept implementations
together in an attempt to extract and use the best portiordl.oMVe have done this by
designing and implementing a load-balancing algorithm éct®n[6.5 which makes an
effort to choose the best strategy to take in order to obtaénréquired analysis results.
In order to also make it possible for a hosting provider toakvéhese settings we have
introduced the notion of weights which make it possible tashihe algorithm toward a
certain strategy such as a fully off-line analysis or a hylehavior.

9.2 Conclusions

The previous section has been a summary of the contributiertsave made. In this section
we will mainly discuss and answer our research questionsawe presented in Sectibn11.4.

9.2.1 Research questions

e Can aweb-based, Desktop IDE quality, source code editordsged for any context-
free programming language?
We have identified the features current IDEs provide in tlkeurce code editing
components. We have enumerated and illustrated some welirkforms of feed-
back such editors provide in Sectionl1.3. During our reseasehave concluded that
all these features can eventually be based the availabiligyntactic and semantic
knowledge about the program which is being modified in Chd@teWe have also

70

9.2. Conclusions

determined an SGLR parser can recognise all context-frepiges in Sectidn 2.2.4.
Obviously, on the Web there are restrictions regardingehbriologies which can be
used as explained in Chapfér 3. These restrictions edgentan the requirement to
base an implementation on JavaScript. A front-end to dgthahdle user input and
present feedback also has to be used or created. We have sftaiitns indeed pos-

sible to obtain a JavaScript implementation of an SGLR pasd semantic analysis
in Chaptef# which positively answers this research questio

Is generating a semantically aware Web based source cotler éelasible?

Since we have based our work on Spoofax and technologiesfé&poses we were
able to take advantage of the declarative world Spoofaxdedban. In Chaptéd 4 and
Chaptef’b we have presented two approaches in obtaining dassul source code
editor from a Stratego program and an SGLR parse table. Hmseaches consist of
a number of steps and rely on the availability of multipleelggiencies. Spoofax2ace,
which is described in Chapter 6 is an attempt at automatingt ofdhese steps by re-
trieving required language specific parameters from a $pqmioject and performing
all the necessary steps in order to generate a functionakdibr. Even though there
are currently a small amount of manual steps, enumeratedatidB[6.2.2, involved
due to possible specific primitive functions of an undedyBtratego implementation
we answer this research question withes

9.2.2 Remarks

During the course of this master’s thesis we have invegtthathat the language specific
components in a typical source code editor of IDE quality & have enumerated a list

of common editor features and identified the shared corentdobies these features are
built on. In the Spoofax project, these core technologieslithe SGLR parser for syntac-

tic, and Stratego for semantic functionalities. We haveuwised JSSGLR, the JavaScript
SGLR parser and s2js, the Stratego to JavaScript compilehioh we have made these

technologies available for a browser environment. Thesks teave been added together in
spoofax2ace, the Spoofax to Ace Web-editor generatioityutil

We have performed extensive measurements in order to centparvarious techniques
we have considered. From these measurements, we have aemchat our client/server

based approach yields results with the best performancer®eowever of opinion that a
fully client-side analysis would be the most elegant solutiin order for this approach to
become more viable there are some optimizations which doalthplemented. Also re-

cent developments in the field of JavaScript engines suggastmising prospect. Looking

back at the proof of concept implementations and the pedooa we were able to achieve
we are very content with our results.

71

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

Bibliography

A.V. Aho and J.D. Ullman. The theory of parsing, translation, and compiling
Prentice-Hall, Inc., 1972.

T. Aho, A. Ashraf, M. Englund, J. Katajamaki, J. Koskme). Lautamaki, A. Niemi-
nen, I. Porres, and |. Turunen. Designing ide as a ser@oenmunications of Cloud
Software 2011.

A.W. Appel. Modern compiler implementation in MICambridge Univ Pr, 1998.

L.A. Barroso, J. Dean, and U. Holzle. Web search for a @laifhe google cluster
architecture Micro, IEEE, 23(2):22-28, 2003.

H. Behrens, M. Clay, S. Efftinge, M. Eysholdt, and P. Bee Xtext user guideDos-
tupré z WWW: http://www. eclipse. org/Xtext/documentatidhfl/xtext. htm|2008.

T. Berners-Lee, L. Masinter, M. McCabhill, et al. Uniformesource locators (url).
CERN 1994.

T. Boudreau.NetBeans: the definitive guid®’Reilly Media, 2002.

E. Bozdag, A. Mesbah, and A. Van Deursen. A comparisonushpand pull tech-
niques for ajax. InWeb Site Evolution, 2007. WSE 2007. 9th IEEE International
Workshop onpages 15-22. IEEE, 2007.

M. Bravenboer, K.T. Kalleberg, R. Vermaas, and E. VissBtratego/xt 0.17. a lan-
guage and toolset for program transformatiddcience of Computer Programming
72(1):52-70, 2008.

[10] N. Chomsky.Aspects of the Theory of Syntawlume 119. MIT Press (MA), 1965.

[11] S. Cook, G. Jones, S. Kent, and A. WillRomain-specific development with visual

studio dsl tools Addison-Wesley Professional, 2007.

[12] D. Crockford. The application/json media type for jagapt object notation (json).

2006.

73

BIBLIOGRAPHY

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

74

Maartje de Jonge, Emma Nilsson-Nyman, Lennart C. LsKand Eelco Visser. Natu-
ral and flexible error recovery for generated parsers. InkM&rJ. van den Brand and
Jeff Gray, editorsSoftware Language Engineering (SLE 2Q0&)lume 5969 ot ec-

ture Notes in Computer Sciengeges 204—-223, Heidelberg, October 2009. Springer.

E. Dolstra and A. Loh. Nixos: a purely functional linaistribution. INACM Sigplan
Notices volume 43, pages 367-378. ACM, 2008.

F. Duran, M. Roldan, J.C. Bach, E. Balland, M. Van Deraf, J. Cordy, S. Eker,
L. Engelen, M. De Jonge, K. Kalleberg, et al. The third regvehgines competition.
Rewriting Logic and Its Applicationgages 243-261, 2010.

J. Earley. An efficient context-free parsing algorith@ommunications of the ACM
13(2):94-102, 1970.

S. Efftinge. Xtext reference documentatidast accessed on Mag2009.

M. Eysholdt and H. Behrens. Xtext: implement your laage faster than the quick
and dirty way. InProceedings of the ACM international conference compaiion
Object oriented programming systems languages and afijgitacompanionpages
307-309. ACM, 2010.

I. Fette and A. Melnikov. The websocket protocol. 2011.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinte. Leach, and T. Berners-Lee.
Hypertext transfer protocol-http/1.1, 1999.

E. Gamma and K. BeckContributing to Eclipse: Principles, Patterns, and Plugin
Addison Wesley Longman Publishing Co., Inc., 2003.

S. Ginsburg.The mathematical theory of context free languagetume 3. McGraw-
Hill New York, 1966.

M. Goldman, G. Little, and R.C. Miller. Collabode: caliorative coding in the
browser. InProceeding of the 4th international workshop on Coopegatwnd hu-
man aspects of software engineeripages 65-68. ACM, 2011.

M. Goldman, G. Little, and R.C. Miller. Real-time cdilarative coding in a web ide.
In Proceedings of the 24th annual ACM symposium on User irderéaftware and
technology pages 155-164. ACM, 2011.

C.A. Gutwin, M. Lippold, and TC Graham. Real-time grewgre in the browser:
testing the performance of web-based networkingPioceedings of the ACM 2011
conference on Computer supported cooperative waalges 167-176. ACM, 2011.

J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekerse $intax definition formalism
sdfreference manuaRCM Sigplan Notice24(11):43-75, 1989.

Bibliography

[27] Z. Hemel and E. Visser. Mobl: the new language of the ieolveb. InProceedings of
the ACM international conference companion on Object dedrprogramming sys-
tems languages and applications companioaiges 23—24. ACM, 2011.

[28] Zef Hemel and Eelco Visser. Declaratively programmiing mobile web with mobl.
Technical Report TUD-SERG-2011-024, Delft University @chnology, Delft, The
Netherlands, August 2011.

[29] Zef Hemel and Eelco Visser. Mobl: the new language ofrtiodile web. InCompan-
ion to the 26th Annual ACM SIGPLAN Conference on Objecti@ei@ Programming,
Systems, Languages, and Applications, OOPSLA 2011, p&PbRASH 2011, Port-
land, OR, USA, October 22 - 27, 2Q1dages 23-24. ACM, 2011.

[30] Zef Hemel and Eelco Visser. Programming the Mobile WethwIobl. Technical
Report TUD-SERG-2011-01, Delft University of Technologgnuary 2011.

[31] S.C. Johnson and inc Bell Telephone Laboratorieécc: Yet another compiler-
compiler Bell Laboratories, 1975.

[32] L. Kats, K.T. Kalleberg, and E. Visser. Generating editfor embedded languages.
Technical report, Technical Report Series TUD-SERG-2008; Delft University
of Technology, Software Engineering Research Group, 206f://swerl. tudelft.
nl/twiki/pub/Main/TechnicalReports/TUD-SERG-20088)(df, 2008.

[33] L.C.L. Kats. Building blocks for language workbenchesonth 2011.

[34] L.C.L.Kats, K.T. Kalleberg, and E. Visser. Domain-sfiie languages for composable
editor plugins. Electronic Notes in Theoretical Computer Scigngg3(7):149-163,
2010.

[35] L.C.L. Kats, E. Visser, and G. Wachsmuth. Pure and datilee syntax definition:
paradise lost and regainedCM Sigplan NoticesA5(10):918-932, 2010.

[36] Lennart C. L. Kats, Maartje de Jonge, Emma Nilsson-Nynzand Eelco Visser. Pro-
viding rapid feedback in generated modular language emwiemts. Adding error re-
covery to scannerless generalized-LR parsing. In Gary dvéms, editoProceedings
of the 24th ACM SIGPLAN Conference on Object-Oriented Rnogning, Systems,
Languages, and Applications (OOPSLA 2008&ume 44 ofACM SIGPLAN Notices
pages 445-464, New York, NY, USA, October 2009. ACM Press.

[37] Lennart C. L. Kats and Eelco Visser. The Spoofax languagrkbench: rules for
declarative specification of languages and IDEs. In WillRnCook, Siobhan Clarke,
and Martin C. Rinard, editor®bject-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 201pages 444-463. ACM, 2010.

[38] Lennart C. L. Kats, Richard G. Vogelij, Karl Trygve Kaberg, and Eelco Visser.
Software development environments on the web: A researehdag InProceedings
of the 11th SIGPLAN symposium on New ideas, new paradigndstefiections on
programming and software (Onward 2012CM Press, 2012.

75

BIBLIOGRAPHY

[39] D.E.Knuth. Onthe translation of languages from leftigit. Information and contral
8(6):607-639, 1965.

[40] R. Kurki-Suonio. Notes on top-down languageBIT Numerical Mathematics
9(3):225-238, 1969.

[41] J. Lautamaki, A. Nieminen, J. Koskinen, T. Aho, T. Mdden, and M. Englund.
Cored: browser-based collaborative real-time editor &majweb applications. In
Proceedings of the ACM 2012 conference on Computer SugpGueperative Work
pages 1307-1316. ACM, 2012.

[42] P. Lubbers, B. Albers, and F. Salim. Using the web waskagpi. Pro HTML5 Pro-
gramming pages 241-262, 2011.

[43] S. McPeak and G. Necula. Elkhound: A fast, practicalpgirser generator. 16om-
piler Construction pages 2725-2725. Springer, 2004.

[44] T. Mikkonen and A. Taivalsaari. Using javascript as alrmgrogramming language.
2007.

[45] E.W. Myers. An o (nd) difference algorithm and its vdioas. Algorithmica
1(1):251-266, 1986.

[46] T. OReilly. What is web 2.0Design patterns and business models for the next gener-
ation of software30:2005, 2005.

[47] T.J. Parr and R.W. Quong. Antlr: A predicated-Il (k) par generator.Software:
Practice and Experien¢®5(7):789-810, 1995.

[48] L. Powers and M. SnellMicrosoftR) visual studio 2008 unleashe&ams, 2008.

[49] S. Rabbelier. Declarative specification of web-baseegrated development environ-
ments, 2011.

[50] D. Raggett, A. Le Hors, I. Jacobs, et al. Html 4.01 speatfon. W3C recommenda-
tion, 24, 1999.

[51] D.J. Rosenkrantz and R.E. Stearns. Properties of rdetestic top-down grammars.
Information and Contrqgl17(3):226-256, 1970.

[52] A. Russell. Comet: Low latency data for browseaex. dojotoolkit. org2006.

[53] D.J. Salomon and G.V. Cormack. Scannerless nslr (19ipguof programming lan-
guagesACM SIGPLAN Notice4(7):170-178, 1989.

[54] C. Shen, H. Herman, Z. Charbiwala, and M.B. Srivastadadebug: microcontroller
integrated development and debugging environmenrdceedings of the 11th inter-
national conference on Information Processing in Sensdwiiks pages 133-134.
ACM, 2012.

76

Bibliography

[55]

[56]
[57]

[58]

[59]

[60]
[61]

[62]

[63]

S. Tilkov and S. Vinoski. Node. js: Using javascript toild high-performance net-
work programs.Internet Computing, IEEEL4(6):80-83, 2010.

M. Tomita. Generalized LR parsingSpringer, 1991.

M. van den Brand, J. Scheerder, J. Vinju, and E. Vissesambiguation filters for
scannerless generalized Ir parsersCmpiler Constructionpages 21-44. Springer,
2002.

M. van den Brand, A. van Deursen, J. Heering, H. de Jongdélonge, T. Kuipers,
P. Klint, L. Moonen, P. Olivier, J. Scheerder, et al. The as@f meta-environment:
A component-based language development environmentompiler Construction
pages 365-370. Springer, 2001.

A. Van Deursen, A. Mesbah, B. Cornelissen, A. ZaidmanPihzger, and A. Guzzi.

Adinda: a knowledgeable, browser-based idePloceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Voliinpages 203-206. ACM,

2010.

E. Visser. Scannerless generalized-Ir parsing. Tieehreport, Citeseer, 1997.

E. Visser. Stratego: A language for program transfdiomabased on rewriting strate-
gies system description of stratego 0.5. Rewriting techniques and applicatigns
pages 357-361. Springer, 2001.

E. Visser. Webdsl: A case study in domain-specific laggiengineeringGenerative
and Transformational Techniques in Software Engineeringdges 291-373, 2008.

Eelco Visser.Syntax Definition for Language Prototypin&hD thesis, University of
Amsterdam, September 1997.

77

Appendix A

Glossary

In this appendix we give an overview of frequently used teamd abbreviations.

AST: Abstract Syntax Tree

SGLR (parser): Scannerless Generalized Left-to-right Rightmost deovafparser)
JSGLR: Java based SGLR parser

SDF: Syntax Definition Formalism

GWT: The Google Web Toolkit

ATerm: Annotated Term

strj: The Stratego to Java compiler

strc: The Stratego to C compiler

s2js: The Stratego to JavaScript compiler
s2a: The Spoofax to Ace conversion tool
ACE: The Ajax.org Cloud9 Editor

JSON: JavaScript Object Notation

79

	Preface
	Contents
	List of Figures
	Introduction
	The Web
	Developing Web applications
	Regular Integrated Development Environments
	Research Questions
	Previous work
	Outline

	Language specific IDE components
	Syntax
	Parsing
	Semantics
	Language workbenches

	Requirements
	Background
	Deliverables

	Client based editor services
	Architecture
	GWT
	Measurements
	Syntax
	Stratego to Java to JavaScript
	Stratego to JavaScript

	Server based editor services
	Disadvantages
	Advantages
	Justification
	Proof of concept
	Discussion

	Generation
	Front-end
	Spoofax
	Dependencies
	Target platforms
	Client/Server Balancing

	Future work
	Optimizations
	Extensions
	Collaboration
	Editor state URIs

	Related work
	Source code editors
	Web IDEs

	Contributions and Conclusions
	Contributions
	Conclusions

	Bibliography
	Glossary

