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Figure S1. Full IR spectra of the four PEls as a function of the offset from the
theoretical stoichiometric ratio.

Yield

Percent yield of the polymer was calculated according to equation:

Actual mass of the product )

Percent yield (%) = 100(
ercent yield (%) Predicted mass of the product

where predicted mass of the product was calculated according to the stoichiometric balance,
assuming that 1 mol of ODPA and 1 mol of DD1 give 1 mol of PEl and 2 mol of water (4.25 wt% of

water):

Predicted mass of the product/g = m(ODPA)+m(DD1)-m(H0)

H NMR

Solution state 'H NMR spectra were collected using the Agilent-400 MR DD2 at 25°C at 400 MHz. The
solutions of polymers and DD1 were prepared in CDCl;, and ODPA was measured in deuterated
DMSO. Spectra were referenced to the solvent residual peak for DMSO and to TMS for CDCl;,
respectively. Spectra were not normalized. PAA’s were not tested due to the insolubility in the
available NMR solvents. Furthermore, D-1.2 was insoluble as well, but due to the partial crosslinked

nature.
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Figure S2. 'H NMR spectra of the monomers: ODPA in DMSO and DD1 in CDCl; and their assignment
to the molecular structure.
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Figure S3. 'H NMR spectra of the three polymers in CDCl; and their assignments to the polymer

structure.
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X-ray diffraction measurements

Wide Angle X-ray diffraction (WAXS) data were collected on a Bruker D8 Advance diffractometer with
Co Ko radiation at the room temperature. Temperature controlled Small Angle X-ray Scattering
(SAXS) was conducted using an AXS D8 Discover instrument from Bruker AG. SAXS scans were
collected at five different temperatures: preliminary scan at room temperature followed by heating
to 60°C. In a cooling ramp at the 0.5°C/min rate, the scans were further collected at 50, 25 and 5°C.
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Figure S4. a) WAXS and b) temperature controlled SAXS diffractogram of the D-1.1 polymer with
representative patterns of all polymers in this work.
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Figure S5. a) TGA curves showing weight loss of SH-PEIs in the high temperature range; b) DSC curves
from the second heating cycle showing glass transitions.
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Swelling tests

The crosslinking density was determined by solvent-swelling measurements for 72h and calculated
according to the Flory—Rehner equation (eq. S1).

1
In(1- @,) + & + y@ = —A’:I—TCVS (dﬁr/3 —%) eq-S1

where:

@,= volume fraction of swollen polymer

7= polymer-solvent interaction parameter. In this work a value of 0.3 (cis-polybutadiene raw
elastomer-toluene') was taken as reference due to the lack of existing values for this new class of
polymers.

o= polymer density

M= molecular weight of polymer between two crosslinks

V= molar volume of solvent (106.8 mL/mol for tquenel)

f=functional cross-links (3)

The volume fraction (@) of swollen polymer was calculated according to:

Wl/p
> = Wi, ¥ (Ws_rwd)/p eq-52
where:
w;= initial weight of the sample
w,= swollen weight of the sample after 72h of immersion
wg= weight of the sample dried at 60°C in vacuum for 72h
ps=solvent density (0.87 g/cm3 for toluene)
The crosslink density (v) is then calculated as:
1
v = M, eq-S3
Table S-1. Results of the swelling tests.
Q, Swelling ratio Soluble fraction v, Crosslinking density
Pol M |
olymer after 72h (%) (%) < (8/mol) (mol/cm?)
D-0.9 / 100 / /
D-1.0 / 100 / /
D-1.1 2680 + 186 60+8 2609 + 62 1.92 £ 0.05
D-1.2 441+8 13+0,3 929+ 14 5.39+0.08

! Hansen, C.M., Hansen solubility parameters: a user’s handbook, CRC Press LLC: USA, 2000.
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Rheological parameters
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Figure S6: a) van Gurp-Palmen plot; b) horizontal shift factors (a7) from the TTS mastercurves,
T.i=25°C; c) loss tangent (tan8) as a function of temperature (T) from the temperature sweep
experiments. Dotted lines are guidance for a reader’s eye showing the elastic/viscous dominance
region determined by tand=1. Arrows point the values of T (tan,) for the non-crosslinked
polymers that heal at 25°C (red and blue) and does not heal at 25°C (black).
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Tensile test

Table S-1I: Tensile properties of the virgin polymers.

Polymer

D-0.9

D-1.0

D-1.1

D-1.2

Op
(MPa)

5.9+0.2
5.7+0.1
4.4+0.2

2.0+0.4

Healing tests in tension at elevated T

Stress / MPa

&p
(%)

330+20
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Figure S7. Stress-strain curves showing the D-0.9 healing behaviour at the higher healing T, that
corresponds to T of the maximum of tand determined from the rheological T-sweep test, as function
of the healing time. Full lines represent pristine (—) and dashed lines represent healed (---) samples
after given healing time.



SUPPORTING INFORMATION

Reference: non-branched PEI

Table S-lll. Effect of branching on the generic polymer properties. Where ND-1.0 contains a linear
non-branched C12 aliphatic diamine and D-1.0 a branched C18 aliphatic diamine (DD1) in
(theoretical) stoichiometric ratio.

TGA-T (2% .
Mw Mn . Densit
polymer PDI DSC-T, (°C) weight loss) 3y
(g/mol) (g/mol) °C) (g/cm’)
ND-1.0 & & & 69 435 1.20
D-1.0 32k 16k 2,0 13 380 1.05
* GPC data not available since ND-1.0 is not soluble in the GPC solvents available.
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Figure S8. a) TTS mastercurve of ND-1.0 and b) van Gurp-Palmen plots of the referent non-branched
PEI (orange) ND-1.0 in comparison to its branched counterpart D-1.0 (blue). T,=25°C

Table S-IV. Characteristic parameters obtained from rheology for the non-branched PEI (ND-1.0) as
compared to its branched counterpart (D-1.0).

Polymer fs fe fe G T Te slcc:pe slipe Gv* M.**
() | (W) | (W) | ) ()| ) | S | (Pal | (e/mol)
75 | 38 | 28 | 133 . . 1.39:
ND-LO | | jo7 o6 qon | 26107 3.610° | 106 | 0.49 106 2140
D-1.0 2001 5035 | 15 | 2O 28.0 0.7 125 | o083 | ©&9¥ 4270

10° 10* 10°
* Gy calculated from the Van Gurp-Palmen plot, 6(|G|*).>>
** M. were calculated using experimentally determined densities (Table S-Ill) according to M. = pRT / Gy (Doi

and Edwards) equation.

? Ahmadi, M.; Hawke, L. G. D.; Goldansaz, H.; van Ruymbeke, E. Macromolecules 2015, 48, 7300.
®Trinkle, S.; Friedrich, C. Rheol. Acta 2001, 40, 322.
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Neat branched dimer diamine (DD1); T-sweep
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Figure S9. Temperature dependant rheological behaviour of the neat DD1.
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