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The anomalous 4π -periodic ac Josephson effect, a hallmark of topological Josephson junctions, was experi-
mentally observed in a quantum spin Hall insulator. This finding is unexpected due to time-reversal symmetry
preventing the backscattering of the helical edge states and therefore suppressing the 4π -periodic component of
the Josephson current. Here, we analyze the two-particle inelastic scattering as a possible explanation for this
experimental finding. We show that a sufficiently strong inelastic scattering restores the 4π -periodic component
of the current beyond the short Josephson junction regime. Its signature is an observable peak in the power
spectrum of the junction at half the Josephson frequency. We propose to use the exponential dependence of
the peak width on the applied bias and the magnitude of the dc current as means of verifying that the inelastic
scattering is indeed the mechanism responsible for the 4π -periodic signal.

DOI: 10.1103/PhysRevB.98.125124

I. INTRODUCTION

Quantum spin Hall (QSH) insulators [1–3] are a promising
platform for creation and manipulation of Majorana bound
states. The Majorana bound states arise in the topological edge
states of QSH insulators, at the interface between the regions
proximitized by a conventional s-wave superconductor and
the regions with a magnetic gap [4]. Since a pair of Majorana
states in a Josephson junction gives rise to an anomalous 4π -
periodic Josephson effect [5,6], a magnetic Josephson junc-
tion in a QSH insulator should exhibit this phenomenon (see
Fig. 1). Recent experimental progress [7,8] has shown signa-
tures of 4π periodicity in topological SNS (superconductor-
normal metal-superconductor) junctions based on the QSH
HgTe/CdTe quantum wells proximitized with Al supercon-
ducting leads.

Unexpectedly, the experimental observation of the anoma-
lous Josephson effect did not require magnetic insulators, or
any other source of time-reversal symmetry breaking. This
is unexpected since, as explained in Ref. [4] and in later
works, the time-reversal symmetry protects the finite-energy
Andreev level crossings and results in a perfect pumping of
quasiparticles to the energies above the superconducting gap,
ultimately giving rise to a 2π -periodic occupation of Andreev
states and the conventional ac Josephson effect. Extending this
single-particle picture with elastic scattering due to interac-
tions [9,10] or to interaction with spinful impurities [11,12]
removes the protection of the higher level crossings by al-
lowing simultaneous elastic backscattering of two Andreev
states. Nevertheless, this leads to an 8π -periodic and not a 4π -
periodic Josephson effect. Further phenomenological studies,
where the Josephson junctions host both 2π and 4π currents,
were done in the resistively shunted junction model [13].

The inconsistency between the experimental observations
and the theoretical predictions is the starting point of our
investigation. We propose and analyze the generation of a

4π -periodic Josephson current due to the inelastic two-
particle relaxation (a similar idea was mentioned in Ref. [11]).
We show that if the dissipation is sufficiently strong and
the Josephson junction contains several levels to enable the
pairwise annihilation of the copropagating quasiparticles (see
Fig. 1), the fractional Josephson effect develops. In the limit
of large relaxation rate, the two-particle relaxation forces the
Josephson junction to always stay in the lowest-energy state of
a given fermion parity, and therefore results in a deterministic
4π -periodic current-phase relationship. Going beyond the
limit of strong relaxation, we show that the fractional peak
survives as long as the rate of losing quasiparticles into the
continuum spectrum is much lower than the Josephson fre-
quency. In this regime, despite relaxation events taking place
at arbitrary times, the correlation time of the fermion parity
stays long, and guarantees the sharpness of the fractional peak.

The 4π -periodic Josephson peak may appear also in a
topologically trivial junction due to several reasons [14–16].
In order to distinguish the relaxation-enabled fractional
Josephson effect from the one appearing due to alternative
origins, we analyze the I (V ) characteristic of the Josephson
junction as well as the shape of the fractional emission peak.
First, we find that there should be a critical Josephson fre-
quency above which the fractional Josephson peak disappears.
This happens when the relaxation rate is not strong enough
to ensure isolation of Andreev states from continuum states.
Because of the protected crossings in the spectrum, the inelas-
tic processes become available already in the adiabatic limit,
resulting in a linear (and square-root) voltage-dependent dc
current already at low Josephson frequency, in contrast to the
Landau-Zener tunneling processes that produce an exponen-
tially vanishing dc current. The low-frequency saturation of
the amount of dissipated energy is a unique characteristic of
this topological junction. Finally, we predict that the width
of the fractional peak should decrease exponentially with
the Josephson frequency, and therefore with the applied bias
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FIG. 1. Josephson junctions created at the edge of a QSH in-
sulator and the corresponding Andreev bound-state spectrum. Two
superconducting leads S1,2 with a phase difference ϕ connect the
helical edge states of a QSH insulator. (Left) Conventional setup
for a topological junction. A magnetic material M couples the coun-
terpropagating edge states. For example, a quasiparticle inhabits the
lowest Andreev state. At fixed parity, the ground state is 4π periodic,
but Landau-Zener transitions (wavy line), which excite higher states,
may destroy the 4π -periodic effect. (Right) The model studied in
this paper, where two-particle dissipation generates a 4π -periodic
effect. Time-reversal symmetry prohibits elastic scattering of single
quasiparticles between counterpropagating edge states. Several dissi-
pative processes are allowed: (i) excitation of a particle at Fermi level
and loss of quasiparticle into the continuum states, (ii) single-particle
relaxation, and (iii) two-particle relaxation with pairwise annihilation
of copropagating and antipropagating quasiparticles and emission of
a photon.

voltage in the regime where the dc current is linearly or
square-root varying with voltage.

The organization of the paper is the following. In Sec. II
we present the model for the QSH Josephson junction. The
section also describes the rate-equation approach used to
characterize the system dynamics and the basic tools used
to extract the power spectrum of the junction. Section III
treats the limit case of short junctions where two-particle
relaxation takes place only at odd ϕ/π . Section IV extends the
study to long junctions with many levels. Here, we investigate
two models for two-particle dissipation, one in which the
relaxation rates are energy and time independent and one in
which rates have a cubic dependence on excited quasiparticle
energies. In the latter, two-particle relaxation is facilitated
by the junction coupling to an electromagnetic bath (see
Appendix A). Finally, Sec. V holds the concluding remarks
of the study.

II. MODEL

A. Spectrum of Andreev bound states

The Josephson current in the QSH junction depends on the
Andreev bound states in the junction and their occupation.
For this reason, we start by reviewing the Andreev bound-

state spectra of such junctions. Specifically, we consider ideal
QSH edges connected by two superconducting leads placed
at ±L/2. The setup is that of a symmetric SNS junction
where the two leads have a relative superconducting phase
difference ϕ. The helical states of the QSH insulator carry a
current between the leads over a distance L. Therefore, the
Thouless energy associated to the quasiparticle dwell time in
the junction is ET = h̄v/L, with v the Fermi velocity of the
helical states.

The effective Hamiltonian for the Josephson junction at
one edge of the QSH insulator reads as

H = (−ih̄vσ3∂x − μ)τ3 + �(x)eiϕ(x)τ3τ1, (1)

with σ and τ the Pauli matrices in spin and particle-hole
space, respectively. The Fermi velocity v and chemical po-
tential μ depend on material parameters. The superconducting
gap � is real, homogeneous, and present only in the supercon-
ducting leads �(x) = ��(L/2 + x)�(L/2 − x), with � the
Heaviside step function. Since the physics depends only on
the relative phase difference ϕ between the superconducting
leads, we choose ϕ(x) = ϕ�(x − L/2).

The Andreev bound-state spectrum is determined by solv-
ing the Schrödinger equation with Hamiltonian (1) at fixed
ϕ using appropriate boundary conditions at the interface be-
tween the QSH insulator and the superconducting leads:

arccos

(
ε±
n

�

)
± ϕ

2
− ε±

n

ET

= nπ, (2)

with ± standing for the right- (say spin-up) and left-moving
(spin-down) eigenstates (see Fig. 1). The above formula
reproduces the short-junction spectrum by taking the limit
ET � �:

ε± = ∓(−1)k� cos(ϕ/2), ϕ ∈ 2π [k, k + 1), (3)

with k an integer. In the opposite (long-junction) limit ET �
�, the spectrum is linearized:

ε±
n

πET

=
(

n + 1

2

)
± ϕ

2π
. (4)

Here, we neglect corrections to the current of the order eET /h̄

in the low-dissipation/high-voltage regime, where Andreev
levels with E ≈ � become occupied. In the long junction
there are approximately 2N positive levels, N = ��/πET �,
which may be filled by quasiparticles (here and later �x� is
the floor function).

The electric current carried by an Andreev level is
2e∂ϕε±

n /h̄ = ±ev/L. The ground-state energy of the junc-
tion is obtained by summing over all negative levels Egs =
1
2

∑
σ=±,n εσ

n �(−εσ
n ) [17–19]. The supercurrent contribution

from the ground state Igs = 2eh̄−1∂ϕEgs follows readily,
yielding a piecewise linear dependence of the current on the
superconducting phase difference [20]:

Igs

i0
= ϕ

2π
−
⌊

ϕ + π

2π

⌋
, i0 = ev

L
. (5)

The ground-state current is 2π periodic and odd in phase.
The sawtooth shape of the current exhibits jumps of height
i0 associated to the relaxation of a quasiparticle at odd ϕ/π ,
with i0 the current carried by a single Andreev state.
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B. Quasiparticle distribution

The nonequilibrium current and the correlation of its fluc-
tuations depend on the statistical distribution of the quasiparti-
cle occupation. We study classical dynamics of the occupation
numbers of quasiparticle states, neglecting any coherent phe-
nomena. In other words, we only consider the evolution of the
diagonal part of the density matrix in the basis of Fock states.
This neglects coherent many-particle interaction and therefore
neglects the 8π -periodic Josephson effect. The nonadiabatic
effects suppress the 8π -periodic Josephson effect, and they
have a larger rate in long junctions [9]. On the other hand, the
4π -periodic Josephson effect becomes more pronounced in
long junctions, justifying our approximation. The dynamics
of the junction is then determined by a rate equation which
models possible relaxation processes. In this section, we
derive the quasiparticle distribution in long junctions with 2N

levels and the rate equation governing its time evolution.
Due to the particle-hole symmetry of the BdG Hamiltoni-

ans, every positive-energy eigenstate has a partner at opposite
energy. Nevertheless, a level and its opposite-energy partner
[shown in Fig. 2(a)] describe the same physical excitation.
Hence, a filled positive level is the same as an empty level at
the opposite energy, and vice versa. Therefore, the system has
4N eigenstates (4) between −� and �, but only 2N distin-
guishable quasiparticle excitations. This leads to a total of 22N

possible states describing the occupation of the Andreev levels
in the junction at a certain time. Since elastic backscattering
is not allowed, the level crossings in Fig. 2 are protected. This
allows us to identify ε+ levels as carrying positive current
(right moving) because ∂ϕε+

i > 0 and ε− levels as carrying
negative current (left moving).

A common way of counting the many-body states is to
consider quasiparticle occupation only at positive energy, with
both right- and left-moving eigenstates. We use a different
convention where only right-moving eigenstates are consid-
ered, but at both positive and negative energy. Therefore, an
empty right-moving negative-energy state represents physi-
cally a counterpropagating (left-moving) quasiparticle. The
levels are labeled in the order of increasing energy from the
first level near −� to 2N th level near �, half of the levels
with positive energy and half with negative.

Since, in every period, a new eigenstate enters at −�

and one leaves at �, we relabel the levels in each period to
always start from one. To simplify the notation, we omit the
superscript for the right-moving level energies, such that from
now on εi ≡ ε+

i . Therefore, a system state s is represented by
a set of right-moving level occupation numbers:

s = {s1, s2, . . . , s2N }, (6)

with sj being the fermionic occupation number of Andreev
level j, sj = 0 or 1. The ground state has all negative-energy
levels filled and all the positive-energy levels empty.

We consider a constant voltage V between the supercon-
ducting leads turned on abruptly at t = 0 such that ϕ(t ) =
2eV t/h̄ + ϕ0 and the junction starts in equilibrium with no
quasiparticle excitations. Without loss of generality, we set
the arbitrary initial phase difference between superconductors
ϕ0 = −π , such that energy levels ε (4) cross the Fermi level
E = 0 at times tn multiples of the driving period: tn = nT or

(a) (b) (c)

FIG. 2. Schematic representation of energy eigenstates and their
occupation in an ideal model of a four-level junction with a linear
spectrum. On the x axis, the superconducting phase difference ϕ

varies always in the first Brillouin zone with ϕ ∈ (−π, π ]. Solid
dots represent a particle occupying a level, while an empty circle, an
unfilled level. Panel (a) shows a comparison between two equivalent
ways to count the states. Left side shows the convention used in
this paper, where only right-moving states are counted in order from
−� to �. The right side shows the usual representation considering
only positive-energy excitations, where it is necessary to consider
both left- and right-moving states. Note that a negative filled (empty)
right-moving state corresponds in the usual picture to a empty
(filled) left-moving state. Panel (b) represents energetically favorable
spin-flip two-particle dissipation events where the system relaxes
to the ground state from an initial excited state. Note that the first
process is equivalent in the alternative picture to a relaxation from
a left mover to a right mover. Panel (c) represents energetically
favorable spin-conserving relaxation events where, starting from the
same initial quasiparticle distribution as in (b), the system relaxes
to the ground state. Note that the last process depicts a two-particle
relaxation where a pair of counterpropagating quasiparticles are
lost to the condensate. Since (c) are faster processes which relax
the system before (b), this initial distribution of quasiparticles is
equivalent to the ground state for the rate equation (12). In contrast,
the quasiparticle distribution in (a) is immune to spin-conserving
relaxation processes.

2πn/ωJ , with the Josephson angular frequency ωJ = 2eV/h̄.
Since the spectrum is 2π periodic with the phase ϕ and
∂ϕεi > 0, one quasiparticle is added in the beginning of every
period T . In the absence of additional inelastic scattering, all
2N levels in the junction become filled after a time NT . After
all the levels are occupied, one new quasiparticle is excited at
the Fermi level in every period, while the quasiparticle in the
highest level escapes to the continuum spectrum at E > �.
Since the pattern of quasiparticle occupation repeats when the
phase varies by 2π , the resulting current is 2π periodic and
the usual integer Josephson effect ensues.

In contrast, inelastic scattering processes allow quasipar-
ticles to annihilate, leading to partially occupied levels. We
classify them into spin-conserving and spin-flip dissipative
processes (see Fig. 2), which we expect to be fast and
slow, respectively. The spin-conserving processes include (a)
single-particle relaxation of a quasiparticle into an energet-
ically lower empty copropagating state and (b) two-particle
relaxation of a pair of two counterpropagating quasiparticles
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into the condensate. In contrast, the spin-flip processes include
(a) single-particle relaxation of a quasiparticle into an empty
antipropagating eigenstate of lower energy and (b) pairwise
annihilation of copropagating quasiparticles into the conden-
sate. We note here that even in the presence of relatively large
Rashba spin-orbit coupling, the association of a pseudospin
with the variable s allows the nearly spin-conserving limit to
be applicable.

The spin-conserving relaxation preserves the 2π period-
icity of the Josephson current. In absence of the spin-flip
scattering, the bulk of the system has a quantized spin Hall
conductance, and therefore injects a single spin 1

2 into the
junction every time the flux is increased by a flux quantum.
This excites a right-moving Andreev bound state in the junc-
tion. Eventually, all the 2N levels of the junction fill up,
following which the spin accumulated in each cycle is ejected
from the junction into the bulk of the superconductor. The
Andreev bound-state occupation is then 2π periodic in ϕ,
leading to a 2π -periodic current.

In contrast, spin-flip processes may empty any two right-
moving levels, prevent the population of all the junction
states, and, consequently, the ejection of quasiparticles into
the continuum. In this case, the fermionic parity is not con-
stant in every period since the periodic injection of a particle
in the lowest level is not offset by the periodic ejection of
the quasiparticle from the highest level into the continuum.
This leads to a non-2π -periodic Josephson current, whose
signatures will be investigated in the following sections.

The quasiparticle occupation is described by the probabili-
ties ps (t ) for the occurrence of any state s at time t . The rate
equations model relaxation events in the junction, described
by a time, energy, and state-dependent transition rate �s→s ′ (t )
from a state s to s ′. The time evolution of the quasiparticle
distribution is given by the rate equation

dps (t )

dt
=
∑
s ′

�s ′→s (t )ps ′ (t ) −
∑
s ′

�s→s ′ (t )ps (t ), (7a)

�s→s ′ =
2N∑

1�j<i

{γij (t )[sisj (1 − s ′
i )(1 − s ′

j )�(εi + εj )

+ (1 − si )(1 − sj )s ′
i s

′
j�(−εi − εj )]

+χij si (1 − sj )s ′
j (1 − s ′

i )�(εi − εj )}
∏
k �=i,j

δsks
′
k
,

(7b)

with δij the Kronecker delta. The microscopic rates χ govern
the fast spin-conserving dissipative processes: the relaxation
of a quasiparticle on a lower empty co-propagating level,
when sgn(εi ) = sgn(εj ), and annihilation of counterpropagat-
ing quasiparticles when sgn(εi ) �= sgn(εj ).

The spin-flip relaxation rates γij depend on the micro-
scopic origins of dissipation. We consider either phenomeno-
logical constant rates γij = γ or γij (t ) = α|εi (t ) + εj (t )|3 ap-
propriate for coupling to a photon bath (see Appendix A), with
α the dissipation strength. When sgn(εi ) = sgn(εj ), they de-
note (a) the annihilation of two copropagating quasiparticles
and (b), when sgn(εi ) �= sgn(εj ), relaxation of a quasiparticle
into a lower empty counterpropagating level.

In addition to the relaxation processes, at every nT a
new quasiparticle is excited in the junction, the lowest state
becomes filled, and the quasiparticle occupations shift by one.
If the highest level ε2N near E = � is filled, the respective
quasiparticle is lost to the continuum. Therefore, the state
probability ps (t ) in Eq. (7a) satisfies boundary conditions

ps (nT + 0+) =
∑
s ′

Ws ′→sps ′ (nT − 0+),

(8)

Ws ′→s = s1

2N−1∏
j=1

δs ′
j sj+1 .

Here, W is a shift operator of the level occupation numbers.
For brevity, we rewrite Eq. (7a) in vector form:

d p(t )

dt
= �(t ) · p(t ), (9)

with p the 22N -dimensional vector of state probabilities and
t ∈ (n, n + 1)T . The corresponding evolution of the prob-
ability over one period is p(t + T ) = U (t + T , t ) p(t ) with
time-evolution operator:

U (t + T , t ) = T e
∫ T −t

0 �(t ′ )dt ′WT e
∫ T

t
�(t ′ )dt ′ , (10)

and T denoting time-ordered product of operators. The peri-
odicity of the dissipation matrix �(t + T ) = �(t ) allowed us
to bring all integrals in the first period (0, T ].

The periodic steady-state probability p∞(t + T ) = p∞(t )
follows as a normalized solution to

[1 − U (t + T , t )] · p∞(t ) = 0, (11)

with 0 and 1 the zero and the identity matrices, respectively.
Since U (t + T , t ) is a Markov matrix, it has always at least
one steady-state solution. Moreover, all states are either part
of a single closed set of communicating states, or transient
states towards this set.1 The steady state is unique since the
closed set has a unique steady state under Perron-Frobenius
theorem [21].

C. Fast relaxation approximation

The rate equation (7) together with the boundary condi-
tion (8) describes the evolution of the quasiparticle distri-
bution in a 2N -level junction in a space of 22N states. The
accessible state space and the rate equation simplifies in the
limit when the spin-conserving relaxation is much faster than
the spin-flip scattering, i.e., χ � γ . In this regime the system
relaxes over the time scale 1/χ to the lowest-energy state with
a given total spin (i.e., the difference between the number of
occupied positive levels and empty negative levels): when all
the levels below a certain energy are occupied and the levels
above are empty. The slower spin-flip relaxation processes
then reduce the total spin by removing a pair of quasiparticles
by annihilating a pair of positive levels or by creating a pair
of occupied negative levels, followed by the quick relaxation
to the lowest-energy state. Therefore, except for the time

1When spin-flip processes are neglected γ = 0, the closed set
contains a single state, the one with all levels filled.
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fraction O(γ /χ ) the system occupies one of the 2N + 1
lowest-energy states with a fixed total spin and total number
of particles n: n ∈ {0, 1, . . . , 2N}. Consequently, the time
evolution on the long-time scale is obtained by solving the
rate equation for pn(t ) in this reduced space. Finally, note
that while spin-conserving relaxation cannot generate non-
2π -current signatures, it enhances the fractional Josephson
signatures by keeping the system in the lowest-energy state
with a given particle number, and therefore preventing excited
quasiparticles from reaching continuum before n = 2N (see
Appendix B).

The transition rate from state n to n′ is the sum of all
the transition rates to intermediate states that are accessible
through a spin-nonconserving relaxation process:

�n→n′ (t ) =
n∑

N+�( t
T

)�i<j

γij (t )δn−2,n′ +
N+1−�( t

T
)∑

n<i<j

γij (t )δn+2,n′ .

(12)

Here, if the lower bound of the sum is higher than its upper
bound, the sum equals to zero and �(x) ≡ �(frac(x) − 1/2),
with frac(x) the fractional part of x. The first term in Eq. (12)
is the loss of two occupied levels, energetically favorable
when n > N + 1 in the first half of a period and n > N in
its second half. The second term models the gain of two
occupied levels, favorable when n < N in the first half of
the period and n < N − 1 in the second half of the period.
Note that the junction ground state n = N remains always
an absorbing state (immune to spin-flip relaxation processes),
while additionally the excited state n = N + 1 is an absorbing
state in the first half of the period, and n = N − 1 is an
absorbing state in the second half of the period. Finally, the
shift operator W in Eq. (8) becomes in the reduced basis
Wn→n′ = δn+1,min{n′,2N}. For a positive bias voltage, the state
space could be further reduced by eliminating the transient
states 0 � n < N − 1. The remaining N + 2 states are all
communicating and form an irreducible Markov chain.

D. Current and power spectrum

The Josephson current I carried by the junction consists of
the ground-state contribution Igs , and the nonequilibrium part
Ine, due to excited quasiparticle states:

I = Igs + Ine. (13)

In the following, we consider a long Josephson junction with
2N levels. Because each Andreev level carries current i0 and
there are N levels filled in equilibrium, the nonequilibrium
current equals

Ine(t ) = i0(ns − N ), (14)

with the total number of particles ns = ∑2N
j=1 sj .

In the steady state, 〈I∞
ne (t )〉 is 2π periodic (here and

later 〈x〉 is the statistical average), and the approximate 4π

periodicity manifests as a peak in the noise power spectrum
at half-integer multiples of the Josephson frequency [4,15].
The finite-frequency power spectrum of the Josephson current

reads as

P (ω) = lim
C→∞

1

C

∫ C

0
dt

∫ C

0
dt ′〈I (t )I (t ′)〉eiω(t−t ′ ). (15)

Using the 2π periodicity of ps (t ) in the steady state, the power
spectrum simplifies to

P (ω) = 1

T

∫ T

0
dt

∫ ∞

0
dt ′〈I (t )I (t ′)〉eiω(t−t ′ ). (16)

When expanding the current operator using Eq. (13),
the power spectrum splits into three contributions involv-
ing the correlators 〈IneIne〉, 〈IgsIgs〉, and 〈IneIgs〉. Accord-
ingly, the power spectrum decomposes into contributions from
the respective correlators:

P (ω) = Pne-ne(ω) + Pgs-gs (ω) + Pne-gs (ω), (17)

with the contribution from both ne-gs and gs-ne correlators
included in the last term.

The terms in the power spectrum decomposition containing
the contribution from the 2π -periodic ground-state current do
not exhibit signatures of a fractional Josephson effect. For
example, Pgs-gs (ω) consists of a series of delta peaks at integer
multiples of the Josephson frequency. By substituting Igs from
Eq. (5) in Pgs-gs (ω), it follows that the power spectrum at
positive frequency reads as

Pgs-gs (ω) = i2
0

2π

∞∑
k=1

1

k2
δ(ω − kωJ ). (18)

The same holds for the cross-term contribution to the power
spectrum since in the long-time limit the steady-state nonequi-
librium current is independent of the ground-state current:

Pne-gs (ω) = 2

C
Re

∫ C

0
dt

∫ C

0
dt ′
〈
I∞
ne (t )

〉
Igs (t ′)eiω(t−t ′ ),

= 2 Re
[〈
I∞
ne (ω)

〉
I ∗
gs (ω)

]
. (19)

Since both 〈I∞
ne (ω)〉 and Igs (t ) are 2π periodic, Pne-gs (ω) is

also a series of Dirac delta functions at integer multiples of
the Josephson frequency.

The non-2π -periodic contributions to the Josephson effect
are due entirely to the nonequilibrium correlator 〈IneIne〉.
Using the definition (14) it reads as

〈Ine(t + τ )Ine(t )〉= i2
0

∑
s,s ′

(ns ′ − N )(ns − N )p(s ′, t + τ ; s, t ),

(20)

where the joint probability p(s ′, t + τ ; s, t ) denotes the prob-
ability that the system is in state s ′ at time t + τ (τ > 0)
and in state s at time t . The joint probability is further
expanded using the conditional probability p(s ′, t + τ ; s, t ) =
p(s ′, t + τ |s, t )p(s, t ). Since the quasiparticle occupation dy-
namics is Markovian, we compute the conditional probability
p(s ′, t + τ |s, t ) by solving Eqs. (7) or (12) with the initial
condition ps (t ) = 1. Furthermore, in the long-time limit, t is
far from an initial time t0, such that the system has already
reached its steady state and ps (t ) may be replaced by ps,∞(t ).
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Consequently, the power spectrum (16) reads as

Pne-ne(ω) = 2i2
0

∫ ∞

0
dτ cos(ωτ )

1

T

∫ T

0
dt
∑
s,s ′

(ns ′ − N )

× (ns − N )p(s ′, t + τ |s, t )ps,∞(t ). (21)

The expression (21) allows us to compute the noise power
spectrum by numerically determining the steady state ps,∞(t ),
solving the rate equation with different initial conditions and
numerical integration.

III. SHORT JUNCTIONS

In order to illustrate the role of two-particle relaxation
in the appearance of the 4π -periodic Josephson effect, we
consider first a minimal setup for the case of short junctions
where there are at most two levels in the junction. In the short-
junction limit ET � �, any terms on the order of �/ET are
neglected. Consequently, the dispersion has a cosine shape (3)
with a single level in the junction, and therefore no two-
particle relaxation for most values of ϕ. Nevertheless, for any
finite ratio �/ET , there are always two levels in the junctions
near ϕ = 2nπ allowing for two-particle relaxation. The small
phase interval over which the two levels coexist reads as, from
Eq. (2), �ϕ ≈ 4�/ET .

Since the spectrum is 2π periodic, it is sufficient in
the following to focus on a single period ϕ ∈ (−π, π ].
The two right-moving states coexisting at ϕ � 0 are deter-
mined from Eq. (2): ε0 = � cos(ε0/ET − ϕ/2) > 0 and ε1 =
−� cos(ε1/ET − ϕ/2) < 0. At ϕ = 0, the negative-energy
state ε1 is empty, which is equivalent to having an excited left-
moving quasiparticle in eigenstate ε−

0 . Relaxation of the right-
moving quasiparticle into an empty left-moving quasiparticle
or equivalently emptying levels ε0 and ε1 leads to an energy
change:

−(ε0 + ε1) ≈ −2�2

ET

sin(ϕ/2). (22)

Therefore, two-particle relaxation is energetically favorable
when ε0 > −ε1 for 0 < ϕ < 2�/ET . This conclusion holds
in general due to spectrum periodicity, such that two-particle
relaxation is allowed whenever 2nπ < ϕ < 2nπ + 2�/ET .

When an excited quasiparticle is close to the continuum
at any ϕ ∈ [2πn, 2πn + 2�/ET ), it can either go through a
two-particle relaxation process with a probability r , or escape
into the continuum with probability 1 − r . Since for short
junctions �/ET � 1, we model both relaxation processes
as occurring at discrete times when ϕ = 2πn (see Fig. 3).
After this simplification, the effect of two-particle relaxation
becomes formally equivalent to the opening of the spectral
gap by an applied in-plane magnetic field [15,22]. In that case,
1 − r is the probability that the fermion parity of the junction
changes due to Landau-Zener tunneling across a magnetically
induced gap at ϕ = 2πn. Because the models are identical,
we naturally reproduce the results of Refs. [15,22] in the
short-junction limit.

We choose ϕ0 = 0, so that ϕ = 2eV t/h̄, and the occu-
pation probability of the single Andreev level is constant
within each period p(t ) ≡ p(n) with n = �t/T �. The master

FIG. 3. Model for short junctions ET � �. The figure shows
two-particle relaxation generating a 4π -periodic occupation of single
right-moving state. The sine-shaped curves are the Andreev state
energies as a function of ϕ. The overlap of two energy levels near ϕ =
2πn is not shown. By convention we only consider right-moving
states (black solid lines) and their occupation marked with solid
dots for filled and open circles for empty states. At ϕ = −2π the
excited quasiparticle escapes into the continuum (gray area) with
probability 1 − r . Therefore, the right-moving state remains filled for
−2π < ϕ < 0. In contrast, at ϕ = 0 a two-particle relaxation process
takes place (with probability r). Then, the Andreev state becomes
empty for 0 < ϕ < 2π . Consequently, the occupation of the state in
(−2π, 0) is recovered only after two periods for 2π < ϕ < 4π .

equation now assumes the form

p(n) = 1 − rp(n − 1). (23)

In the limit of infinitely strong two-particle dissipation r = 1,
the occupation probability has period 2T and the level occu-
pation alternates indefinitely. Without two-particle dissipation
r = 0, a steady state where the Andreev level is always filled
p(n) = 1 is reached already after a single period.

The conditional probability of the level to be filled after
any k periods reads as

p(n + k) = 1

1 + r
+ (−r )k

[
p(n) − 1

1 + r

]
, (24)

and accordingly the steady-state occupation probability fol-
lows in the limit k → ∞:

p∞ = 1

1 + r
. (25)

The current associated with left- or right-moving eigen-
states in an arbitrary period k follows from the dispersion
Eq. (3):

I±
k (ϕ) ≈ ±Ic |sin(ϕ/2)|, Ic = e�

2h̄
, (26)

with Ic the critical current in the short-junction limit and
ϕ ∈ 2π (k, k + 1]. We have neglected small corrections to the
dispersion on the order of �2/ET near the continuum at ±�.

The mean current in the kth period reads as

〈Ik (ϕ)〉 = Ic(2pk − 1) |sin(ϕ/2)|, (27)
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leading to a 2π -periodic average steady-state current:

〈I∞(ϕ)〉 = Ic

1 − r

1 + r
|sin(ϕ/2)|. (28)

Therefore, the dc current obtained by averaging 〈I∞(ϕ)〉 over
ϕ reads as

Idc = 2Ic

π

1 − r

1 + r
. (29)

As expected, the dc current decreases to zero in the limit of
strong dissipation r → 1.

The power spectrum from Eq. (16) is determined using the
autocorrelation function for t > t ′:

〈I (t )I (t ′)〉 = I 2
c

[
(1 − r )2

(1 + r )2
+ 4r (−r )�

t
T

�−� t ′
T

�

(1 + r )2

]

×
∣∣∣∣ sin

(
πt

T

)
sin

(
πt ′

T

)∣∣∣∣. (30)

Here, the first term is the product of mean currents in the
long-time limit 〈I∞(t )〉〈I∞(t ′)〉. Since these mean currents are
2π periodic, they yield delta peaks in the power spectrum at
integer frequencies. In the following, we focus on the non-
trivial part of the spectrum and investigate the noise spectrum
S(ω) = P (ω) − |〈I∞(ω)〉|2. Integration over the autocorrela-
tor in Eq. (16) yields

S(ω) = 1 − r

1 + r

I 2
c

2πωJ

1(
1
4 − ω2

ω2
J

)2

4r cos2
(

πω
ωJ

)
(1 − r )2 + 4r cos2

(
πω
ωJ

) .
(31)

As expected, Eq. (31) recovers the functional form of the noise
spectrum from Ref. [15]. A peak in S(ω) at ωJ /2 appears
for strong two-particle relaxation 1 − r � 1 (see Fig. 4). In
this limit, the peak has a Lorentzian shape with the height
πI 2

c /(1 − r )ωJ . The width at half-maximum gives the inverse
lifetime of the 4π -periodic mean current: (1 − r )ωJ /π =
(1 − r )/T , and it matches the parity lifetime τ4π predicted
by Eq. (24):

τ4π = T

1 − r
≈ − T

ln r
. (32)

0.2 0.4 0.6 0.8

ω/ωJ

0

20

40
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80

2π
ω

J
S

(ω
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I
2 c

r = 0.2

r = 0.4

r = 0.6

r = 0.8

FIG. 4. Peak at half the Josephson frequency in the noise spec-
trum of the supercurrent in short junctions [Eq. (31)] for different
two-particle dissipation probabilities r .

We have therefore shown that also in time-reversal sym-
metric short Josephson junctions, two-particle relaxation can
create a 4π -periodic ac Josephson effect. Nevertheless, we
expect this effect to be suppressed with the junction size be-
cause the probability of two-particle relaxation r ∝ �/ET �
1. Instead, we will focus in the following on long Josephson
junctions, where the case for two-particle relaxation as a
source for observable 4π periodicity becomes stronger. This
is due to the existence of many subgap levels, such that there
are more channels for relaxation, and spin-flip dissipation
processes may occur in general at arbitrary phase values.

IV. LONG JUNCTIONS

A. Introduction and asymptotic behavior

We now turn to analyze long Josephson junctions with mul-
tiple Andreev levels 2N � 2�/πET and a linear dispersion
relation (4). The subsequent rate equation describing the dy-
namics of the 22N vector of state probabilities can no longer be
solved analytically. Using the methods described in Sec. II, we
identify signatures of the fractional Josephson effect mainly
through numerical simulations and asymptotic analysis. We
focus on the fast relaxation approximation (Sec. II C) where
the system evolves in a reduced 2N + 1 set of states. The
power spectrum governed by the full rate equation (7) pro-
vides qualitatively similar results as we show in Appendix B.

Simulations start with zero excited quasiparticles in the
junctions and an initial phase difference between supercon-
ductors ϕ0 = −π . Therefore, at initial time t = 0, the ground-
state current is at its minimum Igs = −i0/2. The first Andreev
level crosses the Fermi level after a period T and it carries an
excited quasiparticle, thus contributing to the nonequilibrium
current Ine. The time evolution of the system is solved through
numerically propagating the vector of probabilities from the
initial state.

Before eventually reaching a periodic steady state,
i.e., when the mean current becomes 2π periodic, the system
goes through a transient regime. Two timescales define the
evolution in the transient regime. The first one is set by the
time required to fill the N energy levels of the junction in
the absence of dissipation. Due to injection of a particle every
period, this timescale is τfill = NT . Simulations are required
to exceed τfill. The second timescale τ4π is characteristic for
the decay of the 4π -periodic mean current. This may be ex-
tremely long in our ideal setup, growing exponentially (as we
will establish later) with the number of levels and dissipation
strength. Nevertheless, Eq. (11) determines the steady state
even when τ4π exceeds feasible simulation times. In fact,
the long correlation time τ4π � T will be shown to be the
regime where a sharp fractional peak develops in the power
spectrum. Asymptotic analysis uncovers in the following the
scaling behavior for τ4π , confirmed by simulations in the next
subsection.

As explained in Sec. I, the condition to have a clear signa-
ture for the 4π -periodic effect is that two-particle dissipation
is effective enough such that quasiparticles have a small
probability to reach the continuum. Since the 4π -periodic
signal is due to spin-flip relaxation processes, we consider
in the following the evolution of the system in the reduced
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space of 2N + 1 steady states of spin-conserving relaxation
processes (see Sec. II C). Let n � N be the average steady-
state occupation of a 2N -level junction, or in other words
that there are ≈n − N right-moving excited quasiparticles.
In this 2π -periodic state, the generation of a quasiparticle
at the lowest level is compensated by the loss due to two-
particle dissipation. Since there are on average (n − N )(n −
N + 1)/2 pairs of quasiparticles which may annihilate within
a period T with rate γ , the total loss of quasiparticles in the
case of time-independent dissipation reads as

γ (n − N )2T ∼ 1. (33)

This condition translates to an average number of filled levels

n ∼ N + (γ T )−1/2. (34)

The above expression assumes a long junction with many
levels and excited quasiparticles 2N > n − N � 1.

If there are many levels, it is necessary to have a large
number of excited quasiparticles before one quasiparticle is
ejected into the continuum. In the absence of such a pro-
cess, the fermion parity is only changed by the injection of
quasiparticles from negative energies with every 2π varia-
tion in ϕ. In the case of fermion parity preserving spin-flip
relaxations, the 4π -periodic oscillations of fermion parity
leads to a 4π -periodic current. However, the above argument
misses rare events where a string of relaxation events do not
occur. Including such processes can lead to the ejection of
a quasiparticle into the continuum. Such events flip the 4π -
periodic current reducing the periodicity of the current to 2π

beyond a potentially long but finite correlation time. In order
to estimate this correlation time, we compute the probability
that the system evolves from the steady state n to the state
with all levels occupied, such that the highest quasiparticle
subsequently escapes into the continuum. The shortest path to
the state 2N requires the system to advance in increasing order
over states n, n + 1, . . . , 2N . A further simplification to the
rate equation (12) involves neglecting the coupling between
the differential equations for different states j . We see that this
approximation is equivalent to assuming pj+2 � pj , which is
the case for larger dissipation rates, leading to lifetimes τ4π

longer than a period T . Since this approximation underes-
timates pj (by ignoring decay of states into j ), the scaling
analysis gives a lower bound for the probability to eject a
particle into continuum, and correspondingly an upper bound
for the lifetime τ4π . Keeping in mind that within each period
the state j evolves into the state j + 1, the approximations
discussed above yield that the solution to Eq. (7a) can be
approximated as

pj ∼ pj−1 exp

[
−γ

(
j − N

2

)
T

]
, (35)

with the binomial coefficient being a result of counting the
number of possible ways in which two particles may be lost
due to dissipation in Eq. (12).

If the system reaches the state j = 2N , then it ejects a
quasiparticle at the end of a period. Therefore, the average
time over which a quasiparticle is emitted, τ4π , relates to the
inverse of the probability that the system is in state j = 2N

(excited here from the steady state n):

T

τ4π

∼ pj=2N ∼ exp

⎡
⎣−γ

2N∑
j=n

(
j − N

2

)
T

⎤
⎦. (36)

This leads to an estimate for the correlation time:

τ4π ∼ T exp{[γ (n − N )2(2N − n)T ]}. (37)

When τ4π � T , a quasiparticle is ejected almost every pe-
riod, which means that the 4π -periodic component of the
current flips almost every period and is therefore ill defined.
Thus, τ4π ∼ T represents a critical value of dissipation be-
low which the 4π -periodic current disappears. Therefore,
Eqs. (33) and (37) with τ4π ∼ T allow us to estimate the
critical dissipation rate γc and number of occupied levels nc:

γc ∼ N−2, nc ∼ 2N, (38)

that demarcates the appearance of a 4π -periodic component
of the current with a long correlation time for weak dissipation
and large N . In the regime of strong dissipation rates γ � ωJ ,
any quasiparticle pair is annihilated within a period, so the
system is in a steady state close to ground state n � N (see
also Fig. 5). This means that n � N and the estimate for τ4π

using Eq. (36) is revised to

τ4π

T
∼

N∏
j=0

e
γ (

j

2)T ∼ eγN3T , (39)

which clearly shows how the correlation time τ4π for the 4π -
periodic component of the current diverges exponentially as
the number of levels N and Josephson period T increases.

Similar arguments apply for the case of energy-dependent
dissipation, but lead to different scaling behaviors for critical
dissipation. In the steady state, the excitation of one quasi-
particle due to driving is compensated by the quasiparticle

0.0 0.5 1.0

t/T
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FIG. 5. Mean periodic nonequilibrium steady-state current for
an 2N = 10 level junction at different dissipation rates. The rates
in the legend are in units of Josephson frequency 1/T either for
(a) time- and energy-independent relaxation (γ T ) or (b) time- and
energy-dependent relaxation [αT , with dissipation strength α in
units of (πET )3]. At small dissipation rates αT � 1 or γ T � 1, all
positive-energy levels in the junction are occupied and contribute to
a current ≈Ni0.
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relaxation:

αT

n∑
N<i<j

(i + j )3 ∼ αT (n − N )5 ∼ 1. (40)

Moreover, the probability that a quasiparticle escapes from the
steady state by advancing to the 2N state follows using the
same reasoning leading to Eqs. (36) and (37):

τ4π

T
∼ exp

⎡
⎣α

2N∑
k=n

k∑
N<i<j

(i + j )3T

⎤
⎦ ∼ eα(n−N )5(2N−n)T .

(41)

Therefore, the scaling of the critical dissipation strength αc

and the average number of quasiparticles nc follow from the
estimate of Eq. (40) and the criticality condition τ4π ∼ T in
Eq. (41):

αc ∼ N−5, nc ∼ 2N. (42)

As in the case of time- and energy-independent relaxation
rates, the scaling arguments which assumed n − N � 1 are
consistent with the results for long junctions with many An-
dreev levels N � 1 since nc ∼ 2N .

In the limit of strong dissipation, the average number of
quasiparticles tends to n � N in the steady state, which is
close to the ground-state distribution. Therefore, the scaling
law for the lifetime in the strong-dissipation regime reads as

τ4π ∼ T eαN6T . (43)

Note that the above relations hold for α in units of (πET )3,
used in simulations, while the physical dissipation strength
αphys = α/(πET )3 ∼ αN3. Therefore, the scaling of the criti-
cal strength reads as αc,phys ∼ N−2 and, for strong dissipation,
τ4π ∼ T exp(αphysN

3T ).
In the strong-dissipation limit, the 4π -periodic part of

the current develops an exponentially long correlation time
[Eqs. (39) and (43)] making the width of the peak in the power
spectrum difficult to resolve within our simulation time. Nev-
ertheless, we observe in our simulations the expected asymp-
totic behavior even for relatively small dissipation strength
ranges and number of levels.

The mean current in the steady state follows readily in the
limit of strong dissipation. Since energy levels in the long
junction are linear in phase with a fixed slope, the mean
current is related to the mean number of excited quasiparticles
in the junction i0(〈n〉 − N ). Simulations in Fig. 5 show that
in the limit of strong dissipation the mean current tends to
a step-function shape. This result is readily understood from
the rate equation (12) by identifying the absorbing states
of the Markov chain in each half of a period. In the first
part of the period there are two absorbing states, the ground
state N which carries zero current Ine = 0 and the state with
one excited right-moving quasiparticle N + 1, Ine = i0. Since
each state comes with a probability 1/2 to be realized, the
mean nonequilibrium current in the steady state in the limit of
strong dissipation is 0.5i0. Similarly, in the second half of the
period, the absorbing states are the ground state N and N − 1
(physically the state with a left-moving quasiparticle), due to
relaxation of a right-moving particle becoming energetically
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FIG. 6. Current-voltage characteristic with increasing number of
2N levels in the junction. Dissipation rates are (a) time independent
γ or (b) time and energy dependent, with dissipation strength α in
units (πET )3. For strong dissipation or small voltage V = h/2eT

the dc current tends to 0, while at large voltage (but eV < �) or
low-dissipation rates the dc current must saturate at Ni0. The panels
share the legend showing the number of 2N levels in the junctions.

favorable. Consequently, the mean nonequilibrium current is
−i0/2. Indeed, the limiting behavior of the mean nonequilib-
rium current in Fig. 5 reads as

lim
γ,α→∞

〈I∞
ne (t )〉
i0

=
[

1

2
− �

(
t

T

)]
. (44)

The dc current contribution of the Andreev levels in the
junction is obtained by averaging the 2π -periodic steady-state
current over a period. The resulting current-voltage charac-
teristic is shown in Fig. 6 for both (a) time-independent and
(b) time-dependent dissipation. In the low-bias or strong-
dissipation limit, the occupation essentially follows the
ground state of the appropriate fermion parity, leading to an
almost vanishing average current due to perfect compensation
of mean currents inside a period [Eq. (44)]. However, due to
excitation of a particle in every period, it is equally likely that
a single positive level becomes occupied (i.e., the state N + 1,
with different fermion parity from the ground state). In this
case, according to the rate equation (12), when the quasipar-
ticle is excited beyond the first (positive energy) crossing in
the Andreev spectrum it is favorable for the state to decay
into the state N − 1 on a timescale γ −1 for time-independent
dissipation. Therefore, a straightforward calculation gives the
average current over the period

Idc � i0

γ T
= 2eV i0

hγ
, (45)

which linearly goes to zero at small bias voltages as seen
from Fig. 6(a). In the limit of a very long junction N � 1,
the average occupancy is given by Eq. (34). This leads to a
dc current at intermediate voltages where γ T � N2 that is
given by

Idc ∼ i0(γ T )−1/2 ∝
√

V , (46)

which is nonlinear in a rather N -independent way as seen
from Fig. 6(a). Therefore, the observation of a linear voltage
dependence [Eq. (45)] or the square-root voltage dependence
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[Eq. (46)] of the dc current indicates a low filling of the
junction.

In the small dissipation limit or large voltage limit (but
eV < �) relaxation becomes ineffective and all 2N levels in
the junction are eventually occupied (physically only the N

right-moving excited quasiparticles survive). This leads to a
total dc current which saturates at Ni0. For a large number
of level junction, the saturation is difficult to observe since it
requires exponentially small dissipation rates (see Fig. 6).

At very strong dissipation rates, the simulations are unable
to faithfully reproduce the exponentially narrow fractional
peak in the power spectrum due to a limited frequency resolu-
tion. Nevertheless, we determine analytically the qualitative
features of the power spectrum in the asymptotic limit of
strong dissipation τ4π � T or rates γ � ωJ . In the following,
we prove that indeed the fractional Josephson peak in this
parameter regime has a Lorentzian shape with height propor-
tional to the lifetime τ4π .

The fermion parity σ (t ) = ±1 in an ideal long QSH
Josephson junction without two-particle dissipation is con-
stant since the excitation of a quasiparticle at the Fermi level
is offset by loss of a quasiparticle to continuum. In contrast,
strong two-particle relaxation may prevent quasiparticles to
reach the continuum through recombination and loss of quasi-
particles as soon as they are excited in the lower Andreev
levels. Hence, the fermion parity flips every 2π change of
phase due only to the 2π -periodic excitation of a quasiparticle
at the Fermi level. Since the fermion parity is recovered only
after a 4π phase change, the Josephson current is 4π periodic.
In this limit, the fermion parity autocorrelator reads as

〈σ (t )σ (t ′)〉 ≈ sgn[cos(πt/T ) cos(πt ′/T )]e−|t−t ′ |/τ4π . (47)

Defects to the 4π -periodic order occur on the scale of time
intervals |t − t ′| longer than τ4π due to a finite probability to
promote quasiparticles to the last level and to eject them into
the continuum. Therefore, in the long-time limit, rare events
ultimately decorrelate the current yielding 〈σ (t )〉 = 0 and a
2π -periodic mean current ensues.

Signatures of 4π periodicity are still captured in the power
spectrum of the junction. We focus here only on the nonequi-
librium current autocorrelator which yields the nontrivial
signal. The autocorrelator with explicit dependence on the
fermion parity reads as

〈Ine(t )Ine(t ′)〉 =
∑
σσ ′

E[Ine(t )Ine(t ′)|σ (t ) = σ, σ (t ′) = σ ′]

×p(σ (t ) = σ ; σ (t ′) = σ ′), (48)

with E[. . . | . . . ], the conditional expected value. Any topo-
logical character of the power spectrum must be related to
the cases where the 4π -periodic fermion parity lifetime τ4π

is long compared to fluctuations of the quasiparticle occupa-
tion τqp and the inverse Josephson frequency. In the strong
two-particle relaxation limit, we assume that the conditional
expectation value of the current factorizes as

E[Ine(t )Ine(t ′)|σ (t )σ (t ′)] ≈ E[Ine(t )|σ (t )]E[Ine(t ′)|σ (t ′)],

(49)

for |t − t ′| � tqp. This is because at times much longer than
τqp, aspects of the quasiparticle occupation apart from the
fermion parity should become completely uncorrelated.

From the autocorrelator definition

〈σ (t )σ (t ′)〉 =
∑
σσ ′

σσ ′p(σ (t ) = σ ; σ (t ′) = σ ′), (50)

we obtain the joint probability distribution for the fermion
parity in Eq. (48):

p(σ (t ); σ (t ′)) = 1 + σ (t )σ (t ′)〈σ (t )σ (t ′)〉
4

. (51)

Therefore, the current autocorrelator reduces to

〈Ine(t )Ine(t ′)〉 = 〈Ine(t )〉〈Ine(t ′)〉 + IF (t )IF (t ′)〈σ (t )σ (t ′)〉,
(52)

with the parity-dependent average current

IF (t ) = 1

2

∑
σ

σE[Ine(t )|σ (t ) = σ ]. (53)

In the limit of a large τ4π , the leading contribution of the
nonequilibrium current to the power spectrum reads as

Pne-ne(ω) ≈ |〈Ine(ω)〉|2 +
∫ 2T

0
dt dt ′IF (t )IF (t ′)

×
∑

n

eiω(t−t ′+2nT )〈σ (t )σ (t ′)〉. (54)

The first term depends on the product of 2π -periodic mean
currents and it only contributes to integer peaks in the power
spectrum. The second contribution to the power spectrum
reads as, after performing a Poisson resummation over the
correlator,

Pne-ne(ω) − |〈Ine(ω)〉|2

= ωJ

2πτ4π

∫ 2T

0
dt dt ′

∑
k

IF (t )IF (t ′)

× eikωJ (t−t ′ )/2

(ω − kωJ /2)2 + 1/τ 2
4π

sgn[cos(ωJ t/2) cos(ωJ t ′/2)]

=
∑

k

|Īk|2 ωJ /2πτ4π

(ω − kωJ /2)2 + 1/τ 2
4π

, (55)

with Īk = ∫ 2T

0 dt IF (t )sgn[cos(ωJ t/2)]eikωJ t/2. The strong-
dissipation result (55) shows that the lifetime τ4π is propor-
tional to the peak height, which is displayed in Figs. 10, 11,
and 12, and it is inversely proportional to the peak width.

B. Numerical results

Following the qualitative analysis of the 4π -periodic cur-
rent behavior, we now discuss the results of our numeri-
cal simulations in 2N -level junctions for both models of
dissipation.

The mean current in the steady state is 2π periodic, as
determined by the state probability vector in the long-time
limit (11). The computation of the steady-state vector ad-
ditionally simplifies for the energy-independent dissipation
rate model since the dissipation matrix � is time independent
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FIG. 7. Mean current as a function of time shows loss of 4π

periodicity at small time-independent dissipation rates in a 2N = 10
level junction.

in each half of a period for the evaluation of Eq. (10). For
time- and energy-dependent dissipation, the state probability
vector in the long-time limit (11) is obtained through finite-
time-difference evaluation of Eq. (10) and the resulting mean
nonequilibrium current is shown in Fig. 5(b). As expected
from Eq. (44), for both models, in the limit of strong dissipa-
tion γ T � 1 or αT � 1, the mean number of quasiparticles
in the junction relaxes towards the same distribution and
yields the same mean current. Integrating the steady-state
current over a period yields the dc current shown in Fig. 6.
Both low and strong-dissipation limits discussed in the pre-
vious section are confirmed in the numerical simulations. At
low dissipation, the dc current saturates at Ni0 and at strong
dissipation it goes to linearly in voltage and inverse dissipation
rate to zero.

To gain intuition about the power spectrum, we also in-
vestigate the mean currents in the transient regime. The total
mean current 〈I 〉 (I = Igs + Ine) of the system follows by
solving the rate equation and using Eqs. (5) and (14). The 4π

pattern of the Josephson current remains visible in the mean
current when the system evolves for timescales below τ4π . We
exemplify in a 2N = 10 level junction the loss of 4π peri-
odicity in the current occurring either for time-independent
dissipation (Fig. 7) or for time-dependent dissipation (Fig. 8).
The current evolution over the first periods is dictated by the
timescale required to fill the levels τfill ≈ NT . We see that τ4π

becomes larger when increasing dissipation rates (more than
40 cycles in Fig. 8), while at lower dissipation rates it quickly
decays into a 2π -periodic current. The amplitude of the mean
current may become very small in some cases. This is due to
compensation between the linear increase of the ground-state
current within a period and the almost linear decrease of the
nonequilibrium current inside a period [see Figs. 5(a) and
5(b)].

The lifetime of the 4π -periodic current is separately de-
termined from the knowledge of the evolution operator (10)
over a period U (t + T , t ). The evolution operator for the
rate equation is a Markov matrix with eigenvalues |λ1| >

|λ2| � · · · � |λ2N+1|. The unique steady state corresponds to
the largest eigenvalue |λ1| = 1. The other states are transient
and over n periods they decay to the steady state as |λi>1|n.

0 10 20 30 40

t/T

0

2

4

〈I
〉/

i 0

αT = 10−4

αT = 10−3

αT = 10−2

αT = 10−1

FIG. 8. Mean current as a function of time shows loss of 4π

periodicity in a 2N = 10 level junction at small time-dependent
dissipation rates α in units of (πET )3.

Therefore, an upper bound estimate of τ4π is given by second
largest eigenvalue λ2, which controls the decay of the last,
most long-lived transient state:

|λ2|n � e−nT/τ4π , τ4π � − T

ln |λ2| . (56)

Note that this equation reproduces the short-junction re-
sult (32), where λ2 = −r . The scaling relations, drawn in
the previous subsection, predicting exponential growth of
τ4π with dissipation strength and number of levels are now
verified directly using Eq. (56). Since the transient state
approaches exponentially fast the steady state (|λ2| → 1),
the difference between them surpasses quickly the machine
precision as either dissipation strength or number of levels
increases. The results are presented in Fig. 9 for both dissi-
pation models. At strong dissipation, the results confirm the
exponential dependence of τ4π lifetime on dissipation strength
and on the number of levels [exp(N3) for time-independent
dissipation or exp(N6) for time-dependent dissipation] from
Eqs. (39) and (43).

Finally, we compute the power spectrum in both models
and show the presence of the fractional peak at strong two-
particle dissipation rates. For time- and energy-independent
dissipation rates γ , the expression for the nonequilibrium
power spectrum (21) further simplifies by analytically inte-
grating over the long measurement time τ [see Appendix (C)].
For time-dependent dissipation rates, the time evolution oper-
ator for the state probabilities becomes time dependent. Con-
sequently, the time integrals in the power spectrum require
time-ordered products and the simple expression (C2) for the
power spectrum may no longer be used. Instead, the power
spectrum is determined by numerically propagating the vector
of probabilities according to Eqs. (11) and (21).

The power spectrum for time-independent dissipation
(Figs. 10 and 11) and for time- and energy-dependent dissipa-
tion (Fig. 12) shows the signature of 4π -periodic Josephson
effect in peaks at half-Josephson frequency ω/ωJ = 1/2.
The integer peaks in the power spectrum are also present,
as Dirac delta peaks, or diverging with the length of the
simulation. In contrast, the fractional peaks develop at some
critical dissipation strength and have a finite width, associated
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FIG. 9. Lifetime of the 4π -periodic current evaluated from the
largest subunitary eigenvalue of the evolution operator. Panels (a)
and (b) stand for energy-independent dissipation and panels (c) and
(d) time-dependent relaxation. The common y axis uses logarithmic
scale. Exponential growth with dissipation strength in (a) and (c).
Panels (b) and (d) show exponential growth with the number of
levels for time-independent and, respectively, time-dependent re-
laxation αT in accordance with the scaling relations in Eq. (39),
respectively (43).

with the lifetime of the 4π -periodic mean current. For time-
independent dissipation we run simulations of 105 Josephson
cycles, for increasing number of levels in the junction. Using
Eq. (C2), we extract the behavior of the peak corresponding
to even longer simulation times (see Fig. 11). At relative high
dissipation rates or number of levels, the lifetime surpasses
the simulation time, leading to an unphysical saturation of
the peak height. The observed exponential dependence on
dissipation strength, before saturation, reinforces the previous
results from Fig. 9. Moreover the exponential peak develops
at some critical dissipation which is indeed lowered with the
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FIG. 10. Fractional peak in the finite-frequency power spectrum
for a six-level junction with time- and energy-independent relaxation
rates γ . The inset shows also the usual delta peaks at integer
frequencies ω/ωJ due to trivial 2π components of the Josephson
current at a given dissipation strength. The system was evolved over
105 cycles.
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FIG. 11. Height of the fractional peak in the power spectrum for
the time- and energy-independent dissipation rates γ for increasing
number 2N of levels in the junction. The peak height is proportional
to the lifetime τ4π and shows the predicted exponential growth with
dissipation strength. The peak for any junction deviates at large
values from the correct result and saturates due to finite simulation
length (here 107 cycles).

number of levels increase as suggested by Eq. (38). The same
conclusions are supported in the case of time- and energy-
dependent dissipation rates in Fig. 12. The fractional peak
diverges even faster with dissipation strength and number of
levels, as suggested by Eq. (43), and the critical dissipation
strength is lowered with the number of levels.

Our hypothesis, that the lifetime τ4π is inversely propor-
tional with the probability that the particles reach the contin-
uum, is checked once more in the strong dissipation regime.
The particle loss to the continuum due to ejection from the last
level is given by the average population of quasiparticles in the
steady state, in the highest Andreev level at its entrance into
the continuum of states above the gap p2N

∞ (T ). Therefore, the
product τ4π × p2N

∞ must tend to a constant, independent on the
number of levels. Figure 13 shows that at strong dissipation,
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FIG. 12. Fractional peak in the finite-frequency power spectrum
for a six-level junction in the time- and energy-dependent relaxation
model at different dissipation strengths α (simulation time span is 105

cycles). The inset presents the evolution of the fractional peak height
(proportional to the lifetime τ4π ) for 6-, 8-, and 10-level junctions
(simulation time span is 104 cycles). The dissipation strength α is
measured in units of (πET )3.
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FIG. 13. The fermion parity lifetime τ4π is inverse proportional
to the average population of the last level at its entrance into the
continuum p2N

∞ (T ). Data where τ4π/T exceeds 1014 are excluded.
The main panel shows the results for the time-independent relaxation
model, with the inset, for the time-dependent dissipation model. The
shared legend shows the number of levels in the junctions.

where τ4π is well estimated by the second eigenvalue of the
evolution operator over a period, the fermion parity lifetime
τ4π is indeed inverse proportional to the population of the last
level for both our models for relaxation.

V. CONCLUDING REMARKS

In this paper we have proved that two-particle relaxation
in long QSH junctions generates a long-lived 4π -periodic
Josephson current for two different models of dissipation.
The 4π periodicity is due to a 4π periodicity in the fermion
parity of the junction. We have shown how effective two-
particle relaxation protects such periodicity as it counteracts
the single-particle dissipation events into the continuum of
states above the superconducting gap.

The signatures of 4π periodicity manifest in the junction
power spectrum as a peak at half of the Josephson frequency
ω/ωJ = 1

2 similar to the one expected in topological junctions
supporting Majorana fermions. These findings offer a possible
explanation to the observed signatures of 4π periodicity in
Josephson junctions made of HgTe/CdTe quantum wells [8].
This hinges, however, on the effectiveness of two-particle dis-
sipation rates in the experiments. Nevertheless, our proposed
mechanism to generate a 4π periodicity is generic. The two-
particle dissipation leads to a dc current in addition to the 4π -
periodic current, which has universal (i.e., N -independent)
voltage dependencies [Eqs. (45) and (46)]. At low voltages
corresponding to the limit of small but universal dc current, we
find that the lifetime of the 4π periodic diverges exponentially,
limited only by quasiparticle poisoning and voltage noise for
both our relaxation models with the number of levels, two-
particle dissipation strength, and inverse Josephson frequency
or bias. This leads to an exponentially higher and sharper
fractional Josephson peak in the power spectrum of the cur-
rent. Additionally, voltage noise will likely lead to line width
broadening, as seen in experiments [8]. The observation of
such correlation between voltage dependence of the dc current

as well as the spectral peak height in the long junction limit
would be a validation of the fractional Josephson effect.
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APPENDIX A: CIRCUIT DAMPING

This appendix derives the cubic energy dependence of
two-particle relaxation rates due to coupling of the Josephson
junction to its electromagnetic environment.

The QSH junction and its environment are modeled fol-
lowing Ref. [23] which treats dephasing of a superconducting
qubit. The Josephson junction (S) plus bath (B) are described
by the Hamiltonian

H = HS + HB + HSB, (A1)

where the last term is the Josephson junction coupling to
the bath. The Josephson junction Hamiltonian is expanded
near ϕ0:

HS = EC

2
n2 + HJ (ϕ)

≈ EC

2
n2 + HJ (ϕ0) + h̄

2e
J (ϕ0)δϕ + 1

2
EJ δϕ2, (A2)

where J is the current in the junction and EJ the Josephson
energy. Without loss of generality, ϕ0 is set to 0, and δϕ is
denoted simply by ϕ.

A large set of harmonic oscillators indexed by α models
the electromagnetic bath:

HB = 1

2

∑
α

(
p2

α

m
+ mω2

αx2
α

)
. (A3)

The system-bath Hamiltonian models the coupling between
the environment voltage fluctuation δV and the charge n on
the superconducting leads:

HSB = enδV = en
∑

α

λαxα, (A4)

with xα the oscillator displacements. The coupling constant
λα are effective impedances determined by the bath spectral
density

J = π

2m

∑
α

λ2
α

ωα

δ(ω − ωα ) = ω Re[Zt (ω)], (A5)

where Zt (ω) = [iωC + Z−1(ω)]−1, with Z(ω), the
impedance of the environment seen by the junction.

Since the level spacing δ for bath’s energy levels is
very small, the dispersion of the coupling constants is
approximated:

λ2
α ≈ 2mω2ReZt (ω)δ/π h̄. (A6)

125124-13



DORU STICLET, JAY D. SAU, AND ANTON AKHMEROV PHYSICAL REVIEW B 98, 125124 (2018)

The total Hamiltonian, after neglecting the irrelevant shift
HJ (0), reads as

H = 1

2m

(
mEJ ϕ2 +

∑
α

p2
α

)

+ m

2

(
EC

m
n2 +

∑
α

ω2
αx2

α + 2en

m

∑
α

λαxα

)
+ h̄

2e
Jϕ.

(A7)

The total Hamiltonian H is more transparently written in
vector-matrix notation in a basis of canonically conjugate
variables, momentumlike η = (

√
mEJ ϕ, pα )T and position-

like ζ = (h̄n/
√

mEJ , xα )T :

[ζj , ηk] = ih̄δjk, (A8)

as

H = 1

2m
ηT η + m

2
ζ T Mζ + h̄

2e

η1J√
mEJ

. (A9)

The position-mixing matrix M reads as

M =
(

�2 λT

λ diag
({

ω2
α

})
)

, (A10)

where h̄� = √
ECEJ , λ is the vector of couplings

eλα

√
EJ /m/h̄, and diag({ω2

α}) is a large diagonal matrix
of environment oscillator frequencies.

The matrix M is diagonalized M = UDUT , with D =
diag(�′2, {ω′2

α }). In new canonically conjugate variables η′ =
Uη and ζ ′ = Uζ , the total Hamiltonian becomes diagonal,
except for the “interaction” term in J :

H = 1

2m
η′T η′ + m

2
ζ ′T Dζ ′ + h̄

2e

(UT η′)1J√
mEJ

. (A11)

The last term explicitly reads as

(UT η′)1J√
mEJ

= U11ϕ
′J +

∑
α

Uα1√
mEJ

p′
αJ, (A12)

where U1 = (U11, Uα11, Uα21, . . . )T is the first eigenvector of
M with corresponding eigenvalue close to �2. First-order
perturbation theory in small coupling constants λα determines

Uα1 = U11

√
EJ

m

eλα/h̄

�2 − ω2
α

, (A13)

where U11 is fixed by requiring that U1 is normalized. Remark
that to first order �′ = � and ω′

α = ωα .
Therefore, the interaction term reads as

Hint = U11J

2

[
h̄ϕ′

e
+
∑

α

λα

m
(
�2 − ω2

α

)p′
α

]
. (A14)

To compute the two-particle relaxation rates in the junction,
we expand the current operator in the basis of Bogoliubov
operators:

Ĵ =
∑
ij

�ij c
†
i c

†
j + H.c + · · · , (A15)

where only the terms responsible for spin-flip relaxation pro-
cesses are written explicitly. We remind again that a term
like cicj , when, e.g., sgn(εi ) > 0 and sgn(εj ) < 0, signifies
that a right-moving quasiparticle on level i is destroyed and
becomes a left-moving quasiparticle in j .

The Fermi golden rule determines the two-particle relax-
ation rate with the Hamiltonian from Eq. (A14):

γij ≈ 2π

δ

∫
dωα

(|�ij |λαU11|〈α′|p′
α|0〉|)2

4m2
(
�2 − ω2

α

)2 δ(h̄ωα − εij ),

(A16)

where εij = εi + εj is the sum of level i and j energies. If
εi + εj > 0, then γij is the rate to annihilate two particles in
levels i and j and, if εi + εj < 0, it is the rate to fill two holes.
Note again that in our convention a particle in a negative-
energy level is physically equivalent to an empty positive-
energy left-moving state, and a hole at negative energy is
physically an excited left-moving quasiparticle.

Substituting Eq. (A6) for λα and the matrix element for
momentum p′

α yields

γij ≈ |�ij |2U 2
11Re[Zt (εij /h̄)]|εij |3

2
(
h̄2�2 − ε2

ij

)2 . (A17)

The normalization factor U11 is on the order 1 in a perturbation
theory for small coupling constants. Further simplifications
are available by assuming a resistive inductance Z(ω) ≈ R

and � � |εij |/h̄. Therefore, to first order, the rates read as

γij ≈ R|�ij |2|εij |3
2h̄4�4

(
1 + R2C2ε2

ij

/
h̄2
) . (A18)

To get the leading behavior for the rates, we approximate
the plasma frequency by the superconducting gap h̄� ≈ �

and assume that the constant frequency 1/RC is longer than
the other frequencies in the problem, as for an overdamped
junction.

Under these assumptions, we find

γij (t ) ≈ R|�ij |2
2�4

|εi (t ) + εj (t )|3, (A19)

where levels i and j are filled in a state s and empty in its
descendant state s ′.

The matrix element �ij is suppressed by the spin part of
matrix elements of the quasiparticle modes and cannot be
determined without a microscopic theory. The matrix element
becomes zero in a pristine junction. Nonidealities allow for a
nonzero value of �.

We have thus showed that a good approximation for the
two-particle relaxation rates assumes a cubic dependence on
the energies of excited quasiparticle levels.

APPENDIX B: COMPLETE RATE EQUATION

This appendix gathers a few results concerning the full
rate equation (7), which comprises both spin-conserving and
spin-flip relaxation processes. We show here that the pre-
vious results are recovered when spin-conserving processes
are much faster than the spin-flip ones, χ � γ . While the
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FIG. 14. Steady state for different values of spin-conserving
dissipation processes χ in a six-level junction, when γ T varies in the
set {0.01, 0.1, 1, 10, 100}. At strong spin-flip dissipation, the effect
of spin-conserving dissipation processes is negligible.

spin-conserving relaxation processes cannot generate a 4π -
periodic current, they help to enhance the visibility of the
fractional peak by reducing the probability that quasiparti-
cles escape into the continuum. To simplify the analysis,
we choose here a model with time- and energy-independent
relaxation rates χ (fast spin conserving) and γ (slow spin flip).

The steady states depend very little on spin-conserving
relaxation processes, with differences seen only at small
dissipation strengths. Once the spin-flip particle relaxation
becomes relevant γ > γc, the effects of spin-conserving re-
laxation processes become negligible (see Fig. 14). In the
strong-dissipation limit the mean steady-state current evolves
towards the same step distribution as in Eq. (44). Since the
periodic steady states are unchanged, the same conclusions
also hold for dc currents as in Sec. IV.

The lifetime τ4π corresponding to the decay of most long-
lived transient state (56) is presented in Fig. 15 for a 6-level
junction (with similar behavior observed for 8- and 10-level
junctions). When χ processes are faster than γ (which is
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FIG. 15. Lifetime for the 4π -mean current for different ratios
of rates χ and γ in a six-level junction. When spin-conserving
processes are fast χ/γ > 1 the lifetime behavior tends to the result
in the fast relaxation approximation.
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FIG. 16. Typical peak at half the Josephson frequency in the
spectrum of a six-level junction. The strength of spin-conserving
relaxation processes χ varies for a given magnitude of spin-flip
relaxation strength γ T = 0.8. Simulation length is 105 cycles.

physically the case) χ/γ > 1, the dependence of the lifetime
on dissipation strength γ becomes exponential as in the fast
relaxation approximation and approaches the known results
displayed in Fig. 9(a).

Finally, we compute the power spectrum at some known
dissipation γ in a six-level junction, but now including the
effects of spin-flip dissipation processes. At low spin-flip rates
χ , the fractional peak in the spectrum is small and broad.
As χ becomes larger than γ , spin-conserving processes help
preventing quasiparticles escape into continuum and spin-flip
processes become effective in generating the 4π currents. The
fractional peak shown in Fig. 16 recovers the results from
Fig. 11 when spin-conserving processes become much faster
on the scale of spin-flip processes χ � γ .

APPENDIX C: POWER SPECTRUM FOR
TIME-INDEPENDENT DISSIPATION

The general expression for the nonequilibrium power
spectrum (21) further simplifies when considering time- and
energy-independent dissipation rates, by first assuming that
the long-time interval over which measurement is carried
contains a large integer number of M periods, τ = MT . The
rate matrix is different in each half of a period due to the
possibility of having a positive hole involved in two-hole
annihilation processes in the first period, and a negative-
energy particle involved in two-particle annihilation processes
[Eqs. (7) or (12)]. Nevertheless, the dissipation matrix is
constant in time in each half of a period:

�(t ) =
{
�1 frac(t/T ) < 1/2,

�2 frac(t/T ) � 1/2
(C1)

with �i not commuting with each other. The evolu-
tion operator within any period is denoted by U (T ) =
e�2

T
2 e�1

T
2 . Integrating over the measurement time τ yields the
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nonequilibrium power spectrum:

Pne-ne(ω) = 2

T
Re

{∫ T
2

0
dt IT

ne ·
[

e�1
T
2 +iω( T

2 −t ) − e�1t

iω + �1
+ eiω(T −t ) − e−�2

T
2 +iω( T

2 −t )

iω + �2
U + e�1t+iωT − eiω(T −t )

iω + �1
WU

]

×
M−1∑
k=0

(WUeiωT )k · e−�1t · [Ine ◦ p∞(t )]

+
∫ T

T
2

dt IT
ne ·

[
eiω(T −t ) − e�2(t−T )

iω + �2
+ e�1

T
2 +iω( 3T

2 −t ) − eiω(T −t )

iω + �1
W + e�2(t−T )+iωT − e−�2

T
2 +iω( 3T

2 −t )

iω + �2
UW

]

×
M−1∑
k=0

(UWeiωT )k · e�2(T −t ) · [Ine ◦ p∞(t )]

}
(C2)

with ◦ denoting the Hadamard (element-wise) product and
the nonequilibrium current vector Ine = i0(n − N1), with n
the state occupation vector and 1T = (1, 1, . . . , 1). The geo-
metric sum diverges at integer frequencies ω = nωJ , n ∈ Z,
because the evolution operators WU and UW have one as
an eigenvalue. At large dissipation or for large number of
levels, τ4π diverges, which leads to additional divergences at

fractions of the Josephson frequencies ω = (2n + 1)ωJ /2. At
any other frequencies it is safe to perform the summation over
k and take the limit M → ∞ to obtain (1 − UWeiωT )−1 or
(1 − WUeiωT )−1.

Compared to Eq. (21), the expression (C2) allows to evolve
the system over longer times, thus improving the power
spectrum resolution in frequency.
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