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Abstract

The increased diffusion of Renewable Energy Sources (RES) into energy distribution systems
gives rise to a number of issues that the Distribution Network Operators (DNOs) need to
face. The dependency of RES on weather, along with their intermittent and non-dispatchable
nature, urges us to develop frameworks that can guarantee a stable network, despite the
power fluctuations.

In this thesis, we develop a Data-Driven Optimal Power Flow (OPF) formulation in order
to achieve voltage regulation against operational problems that may occur because of the
high PV penetration into energy distribution systems. The unpredictable PV generation
deteriorates the system’s reliability and introduces instability. Thus, we develop appropriate
formulations to define a limit on exports from residential PV owners to the grid. For this
purpose, we employ Distribunally Robust Chance Constraint Programming (DRCCP), as
a method that can handle constraints that depend on the uncertain PV generation and
residential demand. We capture the distributional uncertainties with an ambiguity set and
we utilize the Wasserstein metric to parameterize the range of this set.

We divide the thesis into two case studies. In the first case study, we perform the DRCCP op-
timization with only few recorded data. We evaluate the results of our algorithm in a dataset
of 500 days of recorded data and we achieve to reduce significantly the overvoltage instances.
We tune the DRCCP in a way that we achieve at least 95% satisfaction of constraints that
emerge from the DRCCP, avoiding overconservative solutions and high generation cuts that
could harm the PV owners.

In the second case study, we intend to exploit plenty of historical data, but the computa-
tional burden hinders us from using them in the DRCCP. Therefore, we employ Wasserstein
Barycenters, and we utilize the Wasserstein distance in order to cluster the data. With
Wasserstein Barycenters we reduce significantly the running time and we provide an efficient
and robust output, for at least 95% satisfaction of the model’s constraints.
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Chapter 1

Introduction

1-1 Motivation

One major objective of public authorities and people around the globe concerns the reduction
of carbon dioxides that conventional fossil fuels emit. Climate change, peoples’ awareness and
high dependency on energy imports [1] urge European governments to prioritize green energy
transition from fossil fuels to sustainable and Renewable Energy Sources (RES). The global
impact of energy transition can be addressed by international conferences and agreements,
such as the Kyoto protocol in 1997, the Paris agreement in 2015, the European Green Deal and
the United Nations Framework Conventions on Climate Change (UNFCCC), where measures
and long term targets have been set for the future of the planet.

Solar photovoltaic (PV) units are one of the most promising renewable energy sources, and
their use is growing at an exponential rate. In particular, the global PV capacity from
480 GW in 2018 increased to 580 GW in 2019. If the same growth trends continues, PV
contributions are expected to reach 2840 GW by 2030 and 8500 GW by 2050 [2, 3]. The
main advantage of PV units, compared to other RES, is their easy installation in urban areas
and buildings. As a result, the cost of investment is affordable to individuals and not only
to private investing funds [4]. However, the gradual raise of PV penetration into residential
areas and their connection to the grid created new requirements for the network operators,
regarding the system’s balance. After the installation, the residential PVs are connected to
the distribution energy network and Distribution Network Operators (DNOs) need to face
challenges that concern technical and security issues.

One significant feature of PV units, is their uncertain generation. The PV generation is
intermittent and weather dependant. The difficulty to specify the net load and to determine
the most cost-efficient dispatch of the conventional generators introduces new problems for
the network operators. Overvoltage, congestion and ramping issues occur with high likelihood
and deteriorate the reliability of the grid. Except from these technical problems, the storage of
energy during peak generation and low demand may not be profitable for investors [5, 6]. Since
the historical data are limited and the probability distribution concerning the PV generation
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2 Introduction

and the residential demand is not known, we develop distributionally robust optimization
methods that can guarantee a stable network, despite the power deviations.

1-2 Research question and intended outcomes

In this report, we focus on data-driven control via Distribunally Robust Chance Constraint
Programming (DRCCP). We apply DRCCP for an optimal power flow (OPF) formulation in
a distribution energy network. Within this OPF formulation, we incorporate the uncertainties
of PV generation and residential demand and we evaluate ways to define the minimum cur-
tailment of excess power during time periods of low demand and high irradiation. Through
power curtailment, we achieve voltage regulation in a way that the voltages in the entire
network lie within the safety limits. The approach of PV power curtailment and optimiza-
tion problems that we develop to allocate the power demands, lead us to formulate the main
research question of this report :

How to achieve voltage regulation in distribution energy networks, by curtailing
appropriately the power exports from residential PV installations to the energy
grid?

We conduct the analysis of this research question in stages by answering the following sub-
questions:

What are the available optimization methods to incorporate the uncertain PV
generation and residential demand?

With this sub-question we investigate the optimization methods that can handle the uncertain
PV generation and residential demand.

How to exploit data from previous years, in order to mitigate the power mis-
match?

With this sub-question we examine the mismatch between PV power exports and residential
demand.

How to use data efficiently and reduce the computational effort?

With this sub-question we intend to evaluate the available options to decrease the computa-
tional effort of the problem.

The intended outcomes from this thesis are:

• To identify the problems that occur from PV diffusion into energy distribution systems.

• To achieve voltage regulation through curtailment of PV power exports during high sun
irradiation and low demand periods.

• To model the unknown distribution of PV generation and residential demand in a robust
way.

• To appropriately cluster the recorded data and obtain more efficient optimization algo-
rithms.

Dimitrios Fouskidis MSc Thesis



1-3 Methodology 3

1-3 Methodology

The methodology that we employ in order to address the research question is the following:

Data-driven Wasserstein ambiguity sets.

In order to model the uncertain distribution of PV generation and residential demand, we
construct an uncertainty set. We choose this set to capture both the deviation of PV gener-
ation and the deviation of the residential demand. We construct this set with the assistance
of the Wasserstein distance metric, that is derived from the Optimal Transport theory.

DRCCP over Wasserstein ambiguity sets on a Dutch energy distribution system
with high PV penetration.

In order to implement our research, we utilize a Dutch distribution energy network with high
PV penetration. We employ this network in order to define the curtailed PV output to the
power grid during a summer day with high mismatch between generation and demand. We
linearize the network, we insert real data from previous years and we simulate our experiments
on MATLAB 2020b environment. All simulations run on AMD Ryzen 4800h Processor with
8 GB of RAM.

Clustering data for efficient DRCCP

We develop two distinctive case studies. One scenario indicates that we form the DRCCP with
20 days of recorded data for consecutive time-instances. In the second scenario, we use the
whole dataset of 500 recorded days to form the DRCCP. However, due to high computational
effort, we cluster the data. Then, we evaluate the performance of these two case studies in
terms of robustness and computational effort.

1-4 Contributions

The solution of DRCCP over Wasserstein ambiguity sets is still limited for energy distribution
systems with high RES penetration. To the best of our knowledge, only [7] examines a relative
topic, but for simplicity they consider the risk of every constraint individually. Moreover, other
works exist, such as [8] and [9], that address either to energy transmission systems, or they
make use of moment ambiguity set. In our case, we leverage for the first time in literature the
DRCCP method with Wasserstein ambiguity sets for energy distribution systems, where the
violation probability is considered for all constraints simultaneously. A second contribution of
this thesis concerns the utilization of Wasserstein Barycenters in energy systems. Wasserstein
Barycenters correspond clusters of samples under optimal Wasserstein distance. We find
applications of Wasserstein Barycenters in machine learning and image processing tasks [10],
but until now there are no applications in energy systems. Since many OPF formulations
that incorporate RES face computational burdens due to model complexity [11], the sample
clustering is crucial to reduce the computational time without significant loss of information.
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4 Introduction

1-5 Thesis Outline

We divide the thesis into 7 distinctive chapters. We organize the chapters in a way that we
answer the sub-questions step by step until we reach consequently to the answer of the main
research question. The remainder of the thesis is organized as follows.

Chapter 2 analyzes the optimization methods that we can employ in problems with uncertain
constraints. We specify various optimization methods and we choose the approach that fits
to our problem the best.

Chapter 3 presents the DRCCP principles and builds the Wasserstein ambiguity set step
by step. In this chapter we also formulate the structure of the optimization problem that we
will use in our implementation.

Chapter 4 engages the power systems and the OPF in the problem. In this chapter, we
analyze the different types of networks in the energy grid, we introduce the benefits of power
curtailment from PVs and we present the linearized version of distribution energy networks.

Chapter 5 includes the implementation part of the DRCCP with a Wasserstein ambiguity
set into a Dutch energy distribution system. We formulate the case-study, we insert the data
and we present the results of our simulation.

Chapter 6 analyzes Wasserstein Barycenters. In this chapter, we examine the literature
behind Wasserstein Barycenters, we present the corresponding algorithm and we solve again
the OPF problem with the clustered dataset.

Chapter 7 is the final chapter of the thesis, where we place the conclusion by answering the
research question. Moreover, we provide recommendations for future work.
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Chapter 2

Optimization problems with uncertain
constraints

The diffusion of PVs into modern society has inserted numerous challenges that DNOs need
to face. DNOs are in charge of operating the distribution networks in a reliable way, by
enforcing operational constraints, such as voltage limits and thermal limits. In particular, the
high variability of PV generation affects the stability of the network, since it influences the
voltage of the network. To ensure that residential PV units do not violate the operational
constraints of the network, we analyze optimization methods that are able to handle problems
with uncertain parameters in constraints. The purpose of this chapter is to examine these
methods and then to determine the one that fits to our problem the best.

The remainder of this chapter is organized as follows. In Sections 2-1, 2-2 and 2-3 we in-
vestigate the available methods in literature. We introduce Robust Optimization, Chance
Constraints Programs and Scenario Approach and we present their theoretical principles with
their mathematical representations. However, in Section 2-4 we justify why the aforemen-
tioned methods do not suit to our case study and we introduce Distribunally Robust Chance
Constraint Programs (DRCCP) as an alternative.

2-1 Robust Optimization and Chance Constraint Optimization

Robust optimization (RO) and Chance Constrain Programming (CCP) are two methods that
we use widely to take decisions under constraints dependent on uncertain parameters. On
the one hand, the goal of RO is to determine the decision variables in a way that the result is
feasible in all possible realizations of the uncertainties in the constraints. In this approach we
assume the support of the uncertainties known and the main disadvantage is the conservative
solution that we may get [12, 13, 14, 15]. The mathematical representation of RO problems
is as follows [16]:
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6 Optimization problems with uncertain constraints

min
x∈X,c

c

s.t. max
ξ∈Ξ

f(x, ξ) ≤ c ∀ξ ∈ Ξ (2-1.1)

We know that maxξ∈Ξ f(x, ξ) ≤ c equals to f(x, ξ) ≤ c, so we set F (x, ξ) = f(x, ξ) − c and
we rewrite the optimization problem (2-1.1) as:

min
x∈X,c

c

s.t. F (x, ξ) ≤ 0 ∀ξ ∈ Ξ

where F is the constraints function and ξ ∈ Ξ represents the uncertainty parameter in the
constraints.

Likewise, if we set maxξ∈Ξ f(x, ξ) = c, then we get the min-max problem:

min
x∈X

max
ξ∈Ξ

f(x, ξ)

On the other hand, we classify Chance Constrained Programs (CCP) as a specific type of
Stochastic Optimization (SO) problems, and we intend to find a solution that satisfies the
constraints with high probability. While in RO we assumed only the support of the uncer-
tainties known, now in CCP we assume that the uncertainties belong to a known probability
distribution. The mathematical representation of the CCP problems is as follows:

min
x∈X

cTx

s.t. P(F(x, ξ) ≤ 0) ≥ 1− a (2-1.2)

where F is the constraints function, ξ ∈ Ξ is the uncertain parameter and a ∈ (0, 1) is
a predefined parameter, namely the violation parameter, which determines the probability
that the constraints are violated. Consequently, (1 − a) indicates the probability that the
constraints are feasible. We could see the CCP method as a way to solve problems whenever
the validity of the constraints F (x, ξ) ≤ 0 for all values of ξ ∈ Ξ is too costly or unfeasible.
[8, 12, 17, 18].

When we perform CCP, we may face some difficulties. In particular, we may need to use
Monte Carlo simulation in order to validate that a chance constraint is fulfilled at a specific
point x. As a result, this would increase the computational effort, especially when we select
very small violation parameter a. In addition to that, we may have scalability problems
because the feasibility set of a CCP may be nonconvex, even though our constraints function
F is convex [18]. In the following section we examine alternatives, in order to turn the possibly
non-convex CCP into a convex approximation.

Dimitrios Fouskidis MSc Thesis



2-2 Value at Risk and Conditional Value at Risk 7

2-2 Value at Risk and Conditional Value at Risk

Value at Risk (VaR) and Conditional Value at Risk (CVaR) are two risk measures that are
used in financial sector by investment companies and brokerage firms. We define VaR and
CVaR for a random variable Y with distribution P at the risk-sensitivity level a ∈ (0, 1) as
below:

VaRP
a (Y ) := inf

t∈R

(
t ∈ R

∣∣∣P (Y ≤ t) ≥ 1− α
)

(2-2.1)

CVaRP
a (Y ) := inf

t∈R

(
a−1EP ((Y − t)+) + t

)
(2-2.2)

where [t]+ =
{
t when t > 0,
0 when t ≤ 0.

Equation (2-2.1) describes VaRα as the lowest value t, where the probability of the random
variable Y under the distribution P to be less than a threshold t is greater or equal to (1−a).
We observe that the constraint of the classical CCPs of Equation (2-1.2) corresponds to
VaRa (F (x, ξ)) ≤ 0. On the other hand, Equation (2-2.2) indicates the conditional expecta-
tion when the random variable Y exceeds this value t [12, 19, 20]. Figure 2-1 illustrates the
aforementioned risk measures:

Figure 2-1: VaRa and CVaRa illustration. With VaRα we find the lowest value t where the
probability of the random variable Y under the distribution P to be less than a threshold t is
greater or equal to (1− a). The CVaRa indicates the conditional expectation when the random
variable Y exceeds this value t. The figure also illustrates the expected value of Y and the
essential supremum of Y [21].

Since VaR misses the property of convexity, we use the convex measure CVaRa for the approx-
imation of CCPs [18, 20, 21, 22]. In this way, we obtain a convex CCP formulation of Equation
(2-1.2), by considering the non-negative, non-decreasing, convex function ψ(z) : R→ R, given
as ψ(z) = max(z + 1, 0). For a given P ∈ P(Ξ), we define ΨP : Rn × R→ R as

ΨP(x, t) := t EP

(
ψ
(
t−1F (x, ξ)

))
(2-2.3)

For Equation (2-2.3), we know that if x 7→ F (x, ξ) is convex ∀ ξ ∈ Ξ, then ΨP is convex in x
and t. This is indeed true, because F (x, ξ) is convex, ψ(z) is non-decreasing and convex and
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8 Optimization problems with uncertain constraints

thus (x, t) 7→ tψ
(
t−1F (x, ξ)

)
is convex. With the following implication, according to [18], we

transform the CCP problem (2-1.2) into a convex conservative approximation.

inf
t>0

(ΨP(x, t)− ta) ≤ 0 =⇒ P(F (x, ξ) ≤ 0) ≥ 1− a

This is indeed true because through the implication we get that the inequality

inf
t>0

(ΨP(x, t)− ta) ≤ 0 (2-2.4)

acts as a conservative approximation of the constraint of the CCP (2-1.2). Therefore, we can
rewrite (2-1.2) as:

min
x∈X,t>0

cTx

s.t. inf
t>0

(ΨP(x, t)− ta) ≤ 0

If we substitute ψ(z) = max(z + 1, 0) to (2-2.4), we get:

inf
t>0

(
E
(
(F (x, ξ) + t)+

)
− ta

)
≤ 0

Then, we replace inft>0 with inft∈R without violating the validity of the expression and we
get:

inf
t∈R

(
E
(
−ta (F (x, ξ) + t)+

))
≤ 0

which is equal to the CVaRa term that we introduced in (2-2.2). Following the aforementioned
steps, we show that the convex conservative approximation of the original CCP (possible non-
convex) (2-1.2) is the following problem that employs the CVaRa measure:

min
x∈X

cTx

s.t. CVaRa (F (x, ξ)) ≤ 0

2-3 Scenario Approach

One alternative method to handle optimization problems with uncertain constraints is the Sce-
nario Approach (SA). In SA we extract randomly a specific number N of instances-scenarios
that describe the uncertain situations. The constraints should be feasible only for these spe-
cific scenarios that we draw. With this method we assume that there are plenty scenarios
available and the more we increase the number of instances that we choose, the more precise
the solution is. SA is a convex optimization problem when the original problem is convex and
it is computationally efficient in case N is not extremely large. The mathematical represen-
tation of SA method for N i.i.d. samples is as follows:
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2-4 Distributionally Robust Chance Constrained Programs 9

min
x∈X

cTx

s.t. F (x, ξi) ≤ 0, i = 1, · · · , N

where x ∈ Rn, F is the constraints function and the term ξi ∈ Ξ expresses the uncertainty
parameter through the scenarios i = 1, · · · , N that we draw.

The main idea of the SA is to determine appropriately the necessary number N of scenarios
that we use in our optimization through the constraints. By selecting the suitable number
of scenarios, we can guarantee that our solution satisfies all the rest unseen scenarios, except
from a fraction that we decide. This fraction goes to zero as we increase the number of
scenarios that we draw. The formula to determine the number of scenarios is as follows:

N ≥ 2
a

ln 1
β

+ 2n+ 2n
a

ln 2
a

(2-3.1)

where a ∈ (0, 1) is the violation parameter, similar to the a of the CCPs, and β ∈ (0, 1) is the
confidence parameter.

In other words, the SA method mentions that our solution x satisfies all the constraints except
from an a-fraction with probability no smaller than 1−β. The more we increase N , the more
we can decrease a. Moreover, for β we usually use small values, i.e 10−10, but not 0, since
β = 0 would correspond to N =∞ [12, 16].

2-4 Distributionally Robust Chance Constrained Programs

In the previous section we mentioned RO, CCPs and SA as methods that handle problems that
incorporate uncertain parameters in the constraints. The main principles of these methods
were that either these uncertainties belong to a known probability distribution or there are
plenty of samples available. However, in most cases the available samples are limited and they
may not represent the true probability distribution. In other words, the true distribution is
unknown to us and with the data that we have available we can only construct an empirical
distribution P̂. We define the empirical distribution by P̂ =: 1

N

∑N
i=1 δξ̂i

, where {ξ̂i}i∈N are
the N observed samples.

These two problems lead us to evaluate Distributionally Robust Chance Constrained Pro-
grams (DRCCPs) as an alternative approach. In this method, we focus to find a solution that
satisfies the constraints with high probability for the worst case realization of a wider family
of distributions, namely the ambiguity set. Literature works propose two distinctive methods
to form ambiguity sets. One approach is to construct moment-based ambiguity sets with
distributions that have the same mean and covariance as the uncertain parameters. With
this approach, we need to calculate the mean and the covariance of the uncertain parame-
ter through the empirical distribution. We employ moment-based ambiguity sets in power
systems implementations and OPF problems that incorporate RES. The second approach
is to construct the ambiguity set by including distributions that are close to our empirical
distribution in terms of a specific distance function. These functions can be the Prohorov
metric, the Kullback–Leibler divergence, the ϕ-divergence or the Wasserstein metric. In this
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10 Optimization problems with uncertain constraints

thesis we focus on Wasserstein ambiguity sets, since they offer significant out-of-sample per-
formance, asymptotic guarantees and we can also implement them in various OPF problems
[8, 12, 14, 19, 23, 24].

Wasserstein ambiguity sets resemble a ball in space of probability distributions. In the center
of this ball we place the empirical distribution and we expand the radius by adjusting the
aforementioned probability distance metric. If we increase the radius, we capture more dis-
tributions that match to the distribution of the center. On the other hand, if the radius is
set to zero, then the ambiguity set includes only the empirical distribution that we construct
from the available samples. However, there must be a trade-off when we define the ambiguity
set. More specifically, the radius should be big enough to include the true distribution with
high confidence, but small enough in order exclude pathological distributions [19]. Below we
present the mathematical representation of DRCCP:

min
x∈X

cTx

s.t. sup
P∈Bθ

P (F (x, ξ) ≤ 0) ≥ 1− α

where F is the constraints function, ξ ∈ Ξ is the uncertainty parameter in the constraints, Bθ

represents the ambiguity set and a is the violation parameter.

Synopsis of Chapter 2

The main objective of this chapter was to get an insight on the different optimization meth-
ods that can handle constraints depending on uncertain parameters. We analyzed the Robust
and the Chance Constraints optimization methods and we referred also to the Scenario Ap-
proach method. However, since the aforementioned optimization techniques are not suitable
in case studies where the amount of data is limited and the probability distribution of the
uncertain parameters is not known, we focus on Distributionally Robust Chance Constrained
Programming. In DRCCP, we search for solutions where the constraints are feasible with
high confidence not only for the empirical distribution that we have from our data, but for a
wider family of distributions. We call this family of distributions ambiguity set. The ambi-
guity set will assist us in the following chapters to capture the uncertainties that are derived
from the unpredictable nature of the PV generation and the residential demand, which lead
to overvoltages in the network.

Dimitrios Fouskidis MSc Thesis



Chapter 3

Wasserstein Distributionally Robust
Chance Constraint Programming

In the previous chapter, we explained the DRCCP method in order to solve optimization
problems that incorporate constraints with uncertain parameters. During the analysis of the
DRCCP, we mentioned the various probability distance functions that we have available in
order to construct the ambiguity set. Since in this report we focus mainly on the Wasserstein
distance metric, the purpose of this chapter is to present step by step the theoretical parts of
the DRCCP over Wasserstein ambiguity sets.
The remainder of this chapter is organized as follows. Initially, in Section 3-1 we introduce
the Wasserstein distance theory in order to build our ambiguity set and then in Section 3-2
we examine the way to determine the radius of the ambiguity set. In Section 3-3 we present
the DRCCP method, in Section 3-4 we formulate the convex DRCCP and in Section 3-5 we
propose the problem reformulation according to the affine class of constraints function.

3-1 Wasserstein ambiguity sets

In this section we intend to construct the ambiguity set that we mentioned for the first time
in Section 2-4. The ambiguity set consists of a family of distributions, close to the empirical
distribution, that we obtain from the recorded data. We use this ambiguity set to solve the
CCP of Section 2-1 and we call this class of optimization problems Distribunally Robust
Chance Constraint Programming (DRCCP). In DRCCP, the constraints are feasible with
high confidence for the worst-case distribution of the ambiguity set.
Initially, we define the Wasserstein distance as a metric that we utilize to construct the
ambiguity set. The Wasserstein distance emerges from the Optimal Transport Theory, where
our goal is to move a mass from one probability distribution to another probability distribution
with the cheapest possible way. Figure 3-1 illustrates the Optimal Transport concept, where
we have two distributions X and Y and our purpose is to move all the mass from distribution
X to distribution Y, with the most profitable transportation cost.
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12 Wasserstein Distributionally Robust Chance Constraint Programming

Figure 3-1: In Optimal Transport Theory we intend to move all the mass from distribution X to
distribution Y with the most economical transportation cost. [25]

Let B(Ξ) and P(Ξ) correspond to the Borel σ-algebra and the set of Borel probability measures
on the set Ξ, respectively. If we denote by Pp(Ξ) ⊆ P(Ξ) the set of Borel probability measures
with finite p-th moments, with p > [1,+∞), we define the type-pWasserstein distance between
two distributions Q,Q

′ , supported on the set Ξ ⊆ Rd, as:

Wp(Q,Q′) :=
(

inf
π∈Π(Q,Q′ )

∫
Ξ2
||ξ − ξ′ ||pπ(dξ, dξ′)

) 1
p

(3-1.1)

The term Π is the set of all joint probability distributions of ξ and ξ′ with marginals Q and Q
′ ,

respectively and π is a transportation plan for moving a mass from distribution Q to another
distribution Q

′ . Thus, the Wasserstein distance between Q and Q
′ represents the cost of an

optimal mass transportation plan, where the norm || · || encodes the transportation costs of
moving unit mass from ξ to ξ

′ . The Wasserstein distance is non-negative, symmetric and
goes to zero whenever Q = Q

′ [26].

Except from the primal problem that we introduced in (3-1.1), the dual problem of the most
efficient transportation cost between two distributions Q,Q

′ is the following:

sup
(∫

Ξ
ψ(ξ′)Q′(dξ)−

∫
Ξ
ϕ(ξ)Q(dξ)

)
s.t. ϕ and ψ are bounded continuous functions on Rd with
|ψ(ξ)− ϕ(ξ′)| ≤ ||ξ − ξ′ ||p ∀ξ, ξ′ ∈ Rd

In other words, the dual problem corresponds to a profit maximization problem, where the
owner of a mass decides to hire a third party company to change the position of a mass
from distribution Q to distribution Q

′ , instead of doing it on his own. Then, the third party
company buys a mass at the origin ξ with cost ϕ(ξ) and sells the mass at the final destination
place ξ′ with cost ψ(ξ′). The presence of the constraints reassures us that the owner prefers
to use a third party company to relocate the mass from the origin ξ to the destination ξ

′ ,
instead of moving the mass on his own paying transportation cost ||ξ − ξ′ ||p [26].

In case p = 1, we simplify the dual problem to

sup
ϕ∈L

(∫
Ξ
ϕ(ξ)Q(dξ)−

∫
Ξ
ϕ(ξ′)Q′(dξ′)

)
,

where L represents the space of all Lipschitz functions with |ϕ(ξ) − ϕ(ξ′)| ≤ ||ξ − ξ′ ||, ∀ξ, ξ′

∈ Ξ.
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3-2 Determination of the Wasserstein Radius θ 13

Now that we defined the Wasserstein distance metric, we create the Wasserstein ambiguity
set. The ambiguity set resembles a ball and at the center of the ball we place the empirical
distribution that we construct from the available data. We denote the empirical distribution
by P̂N := 1

N

∑N
i=1 δξ̂i

, with N the number of the available data that belong to the set Ξ̂N :=
{ξ̂i}i∈N . The mathematical representation of the Wasserstein ambiguity set is as follows:

Bθ(P̂N ) :=
{

Q ∈ Pp(Ξ) : Wp(P̂N ,Q) ≤ θ
}

which expresses the Wasserstein ball of radius θ centered at the empirical distribution, and
includes all distributions that are at maximum θ close to P̂N [19].

3-2 Determination of the Wasserstein Radius θ

The radius of the Wasserstein ball plays a significant role in the performance of the DRCCP.
As we explained in Section 2-4, there must be a balance between how big and how small this
radius should be. In particular, the Wasserstein ambiguity set should be big enough to include
the true distribution with high confidence, but small enough in order exclude pathological
distributions.

Initially, the radius of the Wasserstein ball depends on the number of the available samples N .
More information is available to the decision-maker when there are many samples available,
which results in smaller radii and less conservative solutions. Therefore, the radius θ, or
θ(N), decreases as we increase the number of available samples and it bounds Wp(P̂N ,P)
from above, where P the unknown true probability distribution [14].

We assume P is light-tailed, namely its tail decays at exponential rate withA := EP [exp (||ξ||a)] <
∞ and a > 1. Then, we know that the probability of the ambiguity set Bθ with radius θ to
contain the true distribution P goes exponentially towards unity for N samples. Therefore,
we can determine the radius of the Wasserstein ball that includes the distribution P with
confidence 1− β, β ∈ (0, 1) as below:

θN (β) =


(

log(c1β−1)
c2N

)1/max{m,2}
, if N ≥ log(c1β−1)

c2(
log(c1β−1)

c2N

)1/a

, if N <
log(c1β−1)

c2

where, m ̸= 2, ξ ∈ Rm and c1, c2 are positive constants that depend on a,A and m [19],[23].
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14 Wasserstein Distributionally Robust Chance Constraint Programming

3-3 Distributionally robust chance constraint program over Wasser-
stein ambiguity sets

In this section we combine all the aforementioned knowledge to present the Distributionally
Robust Chance Constraint Program (DRCCP) over Wasserstein ambiguity sets. The DRCCP
with Wasserstein ambiguity sets are NP-Hard problems and the feasibility set of DRCCPs is
non-convex in most cases [12]. This fact results from the possible non-convex feasibility set
of CCP. Therefore, we exploit the CVaR approximation of CCP that we defined in Section
2-2, which transforms the original DRCCP into a convex approximation program.

For the remainder of the thesis, the following assumption holds:

Assumption 1. The set Ξ is a subset of Rd and . The function F satisfies:

(i) for every ξ ∈ Ξ, x 7→ F (x, ξ) is convex on X

(ii) for every x ∈ X, ξ 7→ F (x, ξ) is bounded on Ξ

If we denote the empirical distribution by P̂N := 1
N

∑N
i=1 δξ̂i

, with N the number of the
available data that belong to the set Ξ̂N := {ξ̂i}i∈N , the mathematical representation of the
DRCCP with Wasserstein ambiguity sets problem with is the following:

min
x

cTx

s.t. sup
P∈Bθ

P ((F (x, ξ) > 0)) ≤ α

where x ∈ Rn and F : Rn × Ξ→ R the component-wise maximum function of K constraints.

The feasibility set of this optimization problem may be non-convex. Therefore in the next
sections we leverage the CVaR reformulation in order to get a tractable representation of the
DRCCP with Wasserstein ambiguity set.

3-4 CVaR approximation of DRCCPs over Wasserstein ambiguity
sets

The following expression describes the CVaR approximation of the DRCCP over Wasserstein
ambiguity set :

min
x,t

cTx

s.t. sup
P∈Bϵ

inf
t∈R

(
EP

(
(F (x, ξ) + t)+

)
− tα

)
≤ 0 (3-4.1)

According to [12] (Lemma IV.2) and [27] (Corollary 37.3.2), the inf and sup in the constraint
above can interchange and we can write:

sup
P∈Bϵ

inf
t∈R

(
EP

(
(F (x, ξ) + t)+

)
− tα

)
= inf

t∈R
sup
P∈Bθ

(
EP

(
(F (x, ξ) + t)+

)
− tα

)
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3-5 Reformulation of DRCCP for F piecewise affine in uncertainty 15

By using the sup-inf equality above and the dual representation of the Wasserstein distance
that we presented in 3-1 and it is further analyzed in [12] (Section II.B), we can construct
the convex reformulation of optimization problem (3-4.1) as:

min
x,λ,si,t

cTx

s.t. λθp + 1
N

N∑
i=1

si ≤ tα

si ≥ sup
ξ∈Ξ

(
F (x, ξ) + t− λ||ξ − ξ′ ||p

)
, ∀i ∈ N, (3-4.2)

λ ≥ 0, t ∈ R, x ∈ X, si ≥ 0, ∀i ∈ N

3-5 Reformulation of DRCCP for F piecewise affine in uncertainty

The minimization problem (3-4.2) is a general formulation which covers a wide variety of
classes of the constraints functions F . However, if we assume known the properties of F on
ξ, we can obtain more precise reformulations of (3-4.2). In particular, we develop different
reformulations, when we assume F to be piecewise affine in ξ, nonconvex in ξ and convex in
ξ. In this section we analyze the precise representation of (3-4.2) for piecewise affine F in ξ
and we neglect the rest cases, as they are out of the scope of the thesis.

In particular, let Ξ = {ξ ∈ Rd| Cξ ≤ h} be compact, with C ∈ Rq×d and h ∈ Rq for some q > 0.
Moreover, we write the constraints function F as F (x, ξ) := max k≤K

(
xTAkξ +Bkξ + bk(x)

)
for a K > 0, with Ak ∈ Rn×d and bk : Rn → R convex functions for all k ∈ K. We denote the
equivalent of (3-4.2) for a piecewise affine F in ξ as:

min
x,λ,si,t

cTx

s.t. λθ + 1
N

N∑
i=1

si ≤ tα(
bk(x) + t+

(
xTAk +Bk − CT ηik

)T
ξ̂i + ηik

Th

)
+
≤ si, (3-5.1)

||xTAk +Bk − CT ηik|| ≤ λ, ηik ≥ 0
x ∈ X, t ∈ R, λ ≥ 0

In the aforementioned optimization problem, the inequality involving the set of variables ηik

holds for i ∈ N and k ∈ K. If the support of the uncertain parameters is unknown or
unbounded, then we set C = 0, h = 0 and we neglect the variables η.

Proof. We base our proof on work [12]. For piecewise maximum of affine functions of the
form F (x, ξ) := maxk≤K

(
xTAkξ +Bkξ + bk(x)

)
, we have:
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16 Wasserstein Distributionally Robust Chance Constraint Programming

si ≥
(

sup
ξ∈Ξ

(
max
k∈K

(
xTAkξ +Bkξ + bk(x)

)
+ t− λ||ξ − ξ̂i||

))
+

= max
k∈K

(
bk(x) + t+ sup

ξ∈Ξ

(
xTAkξ +Bkξ − λ||ξ − ξ̂i||

))
+

≥
(
bk(x) + t+ sup

ξ∈Ξ

(
xTAkξ +Bkξ − λ||ξ − ξ̂i||

))
+

(3-5.2)

for every k ∈ K. The second equality interchanges the sup and the max. Then we compute

sup
ξ∈Ξ

(
xTAkξ +Bkξ − λ||ξ − ξ̂i||

)
(a)= sup

ξ∈Ξ

(
xTAkξ +Bkξ − sup

||zik||≤λ
zT

ik

(
ξ − ξ̂i

))
(b)= sup

ξ∈Ξ

(
xTAkξ +Bkξ + inf

||zik||≤λ
zT

ik

(
ξ̂i − ξ

))

= sup
ξ∈Ξ

(
inf

||zik||≤λ

(
xTAkξ +Bkξ + zT

ik

(
ξ̂i − ξ

)))

= inf
||zik||≤λ

(
zT

ikξ̂i + sup
ξ∈Ξ

((
xTAk +Bk − zT

ik

)
ξ
))

(c)= inf
||zik||≤λ

zT
ikξ̂i + inf

ηik≥0,
zik=xT Ak+Bk−CT ηik

ηT
ikh


= inf

||zik||≤λ,ηik≥0
zik=xT Ak+Bk−CT ηik

(
zT

ikξ̂i + ηT
ikh
)

= inf
ηik≥0

||xT Ak+Bk−CT ηik||≤λ

((
xTAk +Bk − CT ηik

)T
ξ̂i + ηT

ikh

)
(3-5.3)

Here, (a) uses the definition of the norm, (b) uses the inf-sup interchange according Lemma
IV.2 in [12] and the corollary 37.3.2 in [27] and (c) uses the dual form of the inner linear
program from Ξ = {ξ ∈ Rd|Cξ ≤ h}. We substitute Equation (3-5.3) to Equation (3-5.2) and
we get:

si ≥

bk(x) + t+ inf
ηik≥0

||xT Ak+Bk−CT ηik||≤λ

((
xTAk +Bk − CT ηik

)T
ξ̂i + ηT

ikh

)
+

,∀k ∈ K

(3-5.4)

Equation (3-5.4) holds if and only if there exists ηik ≥ 0 ∀k ∈ K suth that ∀k ∈ K

si ≥
(
bk(x) + t+

(
xTAk +Bk − Cη

ik

)T
ξ̂i + ηT

ikh

)
+
,

||xTAk +Bk − CT ηik|| ≤ λ (3-5.5)
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3-5 Reformulation of DRCCP for F piecewise affine in uncertainty 17

The validation of the "if" part is trivial according to Proposition V.1. of [12]. We examine the
"only if" part in two cases ∀k ∈ K, where the inf in (3-5.4) is either fulfilled or not fulfilled.
When the inf in (3-5.4) is fulfilled, then (3-5.5) is satisfied. Otherwise the optimal value of
inf is −∞, which turns constraint (3-5.4) to be si ≥ 0. As a result, there is a ηik such that
the term inside (·)+ is negative in the constraint of (3-5.5) and thus the constraint of (3-5.5)
is transformed into si ≥ 0.

Synopsis of Chapter 3

In this chapter we presented an analysis of the Wasserstein Distributionally Robust Chance
Constraint Programming (DRCCP). We explained the principles of the Wasserstein ambigu-
ity sets and we mentioned the procedure to determine the Wasserstein radius according to
the available data. We introduced the mathematical perspective of the DRCCP over Wasser-
stein ambiguity sets, then we analyzed the CVaR approximation of DRCCPs for a convex
reformulation and finally we examined the reformulation of DRCCPs according to the affine
class of the constraints.
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Chapter 4

Power Systems and Optimal Power
Flow

The sustainable transition from conventional fuel sources to green energy has been settled
as a national objective to many countries around the world. Global warming, environmental
awareness and financial incentives encourage many individuals to establish their own large
or small scale PV systems. Regarding the peak demand, PV systems prioritize among con-
ventional energy sources, since they their advantages of zero marginal costs and emissions
classify them as an efficient and green way of power production [28].

The purpose of this chapter is to get insights into the fundamentals of the energy grid and more
specifically into the structure of the distribution energy networks. The remainder is organized
as follows. In Section 4-1 we analyze the principles of the energy grid and we specialize in
energy distribution systems. In Section 4-2 we explain the reasons for power curtailment of
PV units, in Section 4-3 we present the nonlinear mathematical model of distribution energy
networks and finally, in Section 4-4 we linearize our model.

4-1 Energy Grid

This section introduces energy systems and the main elements that structure energy net-
works. We divide energy networks into three levels, namely the transmission network, the
subtransmission network and the distribution network. These networks are responsible to
deliver electrical energy from power plants to consumers and they are structured with towers,
wires, underground cables, substations and transformers. Figure 4-1 illustrates the energy
grid.
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20 Power Systems and Optimal Power Flow

Figure 4-1: The energy grid (a) Transmission, (b) Subtransmission, (c) Distribution networks
[29].

More specifically, transmission networks are in charge of transmitting large quantities of power
over long distances with minimum power loss. They operate at high voltage (400 kV or 225
kV) and they are responsible to interconnect adjacent countries and to transport electricity
from large generators (nuclear, hydro-electric and thermal plants) to subtransmission net-
works. Then, subtransmission networks provide the electricity they receive to large industrial
consumers and to regional distribution networks. The last part of the energy grid consists of
the distribution networks that operate at medium or low voltage (20 kV and 400 V), in order
to supply with electricity small businesses or residential consumers [30].
Since the scope of this report does not consider transmission or subtransmission networks, we
proceed to a further analysis of distribution networks. We sub-divide distribution networks
into three structural types, namely radial, loop, and meshed topologies. We illustrate these
types in Figure 4-2.

Figure 4-2: Types of Distribution Systems (a) Radial, (b) Loop, (c) Meshed. The radial topology
is the most economical type of distribution networks and it has a tree shape. The loop topology
is more expensive, but it is more reliable and the meshed topology consists of multiple loop
topologies [31].

The first type of distribution systems we examine is the radial distribution system. A radial
distribution system has a tree shape, where there are no closed loops and power is delivered
via a unique transformer that connects the distribution network with the subtransmission
network. When a failure occurs, then the problem affects the whole feeder and the customers
connected there. However, it is easier to trace the problem because there is only one path
that connects the consumers to the transformer. Moreover, we meet the radial distribution
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4-2 Power Curtailment 21

types almost everywhere due to their affordable cost, and especially in Netherlands, all the
low voltage networks are radial.

The second type of distribution systems we examine is the loop structure. In the loop struc-
ture, all the nodes are connected to each other in a way that they form a closed loop. Moreover,
one or more than one transformers are connected to the network, which supply the nodes with
electricity they receive from subtransmission networks. With the loop design of the network,
the customers may receive electricity from either directions. This type of systems is more
reliable than the radial systems, because the supply will not stop in case of a failure in the
lines. Unlike the radial networks, if there is a disruption in the lines, the consumers will
continue to receive power from the other direction of the loop. However, these systems are
expensive, because they need more switches and conductors during construction.

The third type of distribution networks are the meshed systems. We use this type highly dense
areas. Their design corresponds to multiple interconnected loop systems where a customer
could receive power by multiple sources. The complexity increases the cost of the construction,
but the main advantage of these systems is their high reliability [31, 32, 33].

4-2 Power Curtailment

Power curtailment of PV exports is a method that we investigate in order to mitigate the
increased phenomena of voltage rise and congestion. The integration of unpredictable PV
units may degrade the network’s reliability, since energy distribution systems were primarily
designed to perform one-way power flow, from the distribution substation to the consumption
users.

The aforementioned problems lead DNOs to take active measures by limiting the residential
PV exports to the network. The operators determine this limitation in kilowatts, or as
a percentage of the total production and the residential PVs do not export more than a
fraction of their installed capacity. Through power limitation, we manage to achieve voltage
regulation and consequently to avoid voltage rise in the network [28]. Since this limitation
affects the PV owners and their profit, there must be a trade-off during the determination of
the power curtailment. This trade-off should consider on the one side the PV investors and
on the other side the impacts on the grid during an overvoltage instance [34].

The main problem that power curtailment battles is the mismatch that arises between the
demand of the network and the PV generation. This mismatch could be the outcome of
two distinctive reasons. Firstly, it could be the result of a power mismatch when the PV
generation is high and the capability of the grid to absorb this generation is limited, due to
low demand. This phenomenon is very common during midday of summer seasons. Secondly,
there could be an energy mismatch due to geographic reasons. In this case, the PV generation
is far from the place where the power is consumed. These regions have a significant distance
from the load centers and the transmission capacity is poor [28].

Moreover, except from infrastructural reasons, there might be financial incentives for residen-
tial PV owners to curtail power of their own establishments. More specifically, PV investors
earn money for every MWh they provide to the grid. However, during high PV generation
and low demand the price of the MWh is very low, or even negative on the day-ahead market
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and on the real-time market Thus, in the future, PV owners may receive incentives to curtail
their generation in order to mitigate voltage problems [6].

4-3 Modelling of Distribution Networks

We represent three-phase radial distribution systems as a graph Γ (N , E), where N the set of
buses (nodes) and E the set of lines (edges). The term "bus" in energy systems corresponds
to a node of a graph, where a line or several lines are connected and it incorporates several
components such as loads and generators. The initial point of the graph is the place where
the substation connects the subtransmission system to the distribution system. We call this
point slack node and we denote it by 0. Moreover, we assume the voltage magnitude at the
slack point known and always equal to 1 per unit (p.u.). We denote the rest load nodes by d.
In addition, I0 and Id translate to the three-phase complex nodal current injection, V0 and
Vd concern the three-phase complex components of the nodal voltages and Sd corresponds to
the apparent power. Furthermore, let Y the symmetric three-phase admittance matrix of size
N ×N . In order to construct the admittance matrix, we introduce the impedance of the line
between bus i and bus j as zij . Then the admittance of the line is yij = 1/zij = gij + jbij

and the admittance matrix Ydd ∈ CN×N is as follows:

Yij =


∑

l∼i yil + yii if i = j

−yij (i, j) ∈ E
0 (i, j) ̸∈ E

where l ∼ i indicates that buses i and j are connected [24]. We use Kirchhoff’s laws to
describe the relationship between voltage and currents as [35]:[

I0
Id

]
=
[
Y00 Y0d

Yd0 Ydd

] [
V0
Vd

]
(4-3.1)

Since we can express the current as a function of the apparent power, we use the lower part
of Equation (4-3.1) and the apparent power takes the form:

Sd = diag(Vd)I∗
d = diag(Vd) (Y ∗

dd(Vd)∗ + Y ∗
d0(V0)∗) (4-3.2)

We also specify the apparent power as a vector Sd := [S1, S2, · · · , SN ] with rectangular coordi-
nates Si = Pi+jQi. Thus, we define the active and reactive power vectors p = [P1, P2, · · · , PN ]
and q = [Q1, Q2, · · · , QN ], respectively.

Equation (4-3.2) is nonconvex in the space of apparent power and bus voltages and therefore
we face computation complexity. Hence, in the following section we present an approximation
method in order to linearize Equation (4-3.2), such that the voltage magnitude is affine with
respect to apparent power.
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4-4 Linearization distribution networks

4-4-1 three-phase distribution networks

The purpose of this thesis is to achieve voltage regulation for energy distribution systems with
high PV penetration. As a result, we focus to express the limitation in voltage magnitude
of each node in a affine representation, with respect to the uncertain terms of PV generation
and residential demand. The desired representation has the form of:

|Vd| − Vmax ≤ 0↔ Kx+ a− Vmax ≤ 0
(4-4.1)

Firstly, we examine the three-phase energy distribution systems. We assume p := Re{Sd}, q :=
Im{Sd} and x :=

(
pT , qT

)T
. We determine the No Load voltage as the voltage across the

network when the current injections in the buses are zero [36, 37]. The No Load voltage is
equal to:

w := −Y −1
dd YdsV0

We approximate the voltages in the network as affine equations in the form:

Vd = Mx+ c

where

M :=
(
Y −1

dd diag(v̂d)∗−1,−jY −1
dd diag(v̂d)∗−1

)
c = w

Here, the term v̂d = |v̂d| θ corresponds to a predetermined voltage that should be close to
nominal voltage of the buses. For the ease of computation, we assume v̂d = w. Moreover,
we define W = diag(w) and we assume that the nominal voltages dominate over the voltage
drops. As a result, we express the voltage magnitudes of a three-phase system with the affine
approximation of the form [38]:

|Vd| = Kx+ a
where, K := |W |Re(W−1M)

x :=
(
pT , qT

)T

a := |w|

4-4-2 One-phase distribution networks

After analyzing the linearized version of Equation (4-3.2) for a three-phase system, we examine
the linearization for one-phase energy distribution systems. For x :=

(
pT , qT

)T
, our purpose
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is again to express the limitation in voltage magnitude of each node in a affine representation
in form

|Vd| − Vmax ≤ 0↔ Kx+ a− Vmax ≤ 0↔ K1p+K2q + a− Vmax ≤ 0 (4-4.2)

Let Vd = v̂d+∆v, with v̂d the pre-determined nominal voltage that we mentioned in Subsection
4-4-1 and ∆v the deviation from the nominal voltage. We can rewrite Equation (4-4.2) as:

Sd = diag(v̂d + ∆v) (Y ∗
dd(v̂d + ∆v)∗ + Y ∗

ds(Vs)∗)

If we neglect the second-order terms diag(∆vt)Y ∗(∆vt)∗ and change the order of terms in
Equation (4-3.2), we get:

Λ∆v + Φ(∆v)∗ = Sd + Ψ

where, Λ := diag(Y ∗
ddv̂

∗
d + Y ∗

dsV
∗

s ), Φ := diag(v̂d)Y ∗
dd, Ψ := −diag(v̂d)(Y ∗

ddv
∗ + Y ∗

dsV
∗

s ).
As nominal voltage we select the no Load Voltage, that we mentioned in Subsection 4-4-1

v̂d = w = −Y −1
dd YdsVs

which gives Λ = 0N×N and Ψ = 0N . Therefore the linearized version of Equation (4-4.2) for
one-phase energy distribution systems is:

Sd = diag(v̂d)Y ∗
dd(∆v)∗

and the deviation ∆v is:
∆v = Y −1

dd diag−1(v̂∗
d)(Sd)∗.

Then, we define Y −1
dd = (G + jB)−1 = ZR + jZI and by expanding ∆v in rectangular form,

we get:

K1 =
(
ZRdiag

(cos(θ)
|v̂d|

)
− ZIdiag

(sin(θ)
|v̂d|

))
K2 =

(
ZIdiag

(cos(θ)
|v̂d|

)
+ ZRdiag

(sin(θ)
|v̂d|

))
which specifies the rectangular matrices H := K1 + jK2, J := K2 − jK1 and the coefficient
c = v̂d. If we assume again that the nominal voltage dominates over voltage drops, i.e.
v̂d >> ∆v, then we get Vd = v̂d + Re{∆v} and the linearized coefficients of Equation (4-4.2)
for one-phase energy distribution systems become K1 := K1, K2 := K2 and a:= |v̂d| [24].

Synopsis of Chapter 4

The main goal of this chapter was to present the fundamentals of the energy systems that
we use in our OPF formulation. Initially, we introduced the structure of the energy grid and
its sub-division into transmission networks, subtransmission networks and then distribution
networks. Since the scope of this thesis is engaged with energy distribution networks, we
analyzed further the types of distribution networks. Our next step was to examine the
reasons of power curtailment, which occur as a result of the high penetration of PVs in
energy distribution networks. Finally, we modelled mathematically the energy distribution
networks and we presented the affine approximations of voltage magnitudes for three-phase
and one-phase systems.
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Chapter 5

DRCCP Power Flow

In this chapter we proceed to the simulation part of our work. We describe the steps of our
implementation and we present the results of the simulation. The main idea of this chapter
is that we do not use the entire dataset that we have available to tune our DRCCP model.
From the total 500 scenarios, we employ only 20 scenarios to determine a curtailment factor
for every time-instance between 7:00 a.m. and 18:00 p.m with a resolution of 15 minutes.
Then, we validate the output of the DRCCP in the whole dataset of 500 days. Hence, we
evaluate the DRCCP algorithm on both known days and unseen days and we examine how
to construct the ambiguity set in order to incorporate the uncertainty of demand and PV
generation.

The remainder of the chapter is organized as follows. Initially in Section 5-1 we present the
topology of the distribution energy network that we employ in our case study and we indicate
the mathematical representation of our implementation. Next, in Section 5-2 we describe
the methods to accelerate the running times of our algorithm by reducing the constraints of
the problem. In Section 5-3 we explain thoroughly via a flow chart the steps of the DRCCP
algorithm that we implement and finally, in Section 5-4 we present the simulation results.

5-1 Problem formulation

The distribution system that we employ for the purposes of our simulation is a three-phase
imbalanced Dutch radial distribution network with high PV penetration. The network con-
sists of 184 buses in total. The 96 buses correspond to connecting network nodes with zero
demand and no PV installations and 87 buses are residential consumers with specific demand
and PV generation. Additionally, there is one slack bus that we denote it by 0. Figure 5-1
illustrates the topology of the network, where the connecting network nodes have blue color
and the houses have green color.
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26 DRCCP Power Flow

Figure 5-1: The network to implement the DRCCP algorithm. This network is part of the Dutch
network and consists of 1 slack bus, 96 connecting buses with no demand and PV generation and
87 residential buses with PV installations.

The distribution energy system operates at 400 Volt, which is also the base to our per unit
(p.u.) transformations. The voltage magnitudes in the network should be below the highest
operation limit, Vmax = 1.05 p.u. [39]. The base apparent power that we use is 100 KVA. The
power factor cos(ϕ) of the buses, or alternatively the relation between active and apparent
power that the residential users consume, is equal to 0.95.

Our goal is to define the minimum curtailment factor, ac, at every time-instance that limits
the active power the PVs export to the network. This curtailment factor will be the same for
all PV units of the network, in order to achieve the desired voltage regulation. As a result,
we intend to create a stable network without voltage rises caused by the mismatch between
PV exports and residential demand. However, since our purpose is to avoid overconservative
solutions and high-cuts in the generation, we are flexible to some minor overvoltage instances.

The uncertain parameters of our problem are the active generation of the PVs, pP V and the
active demand consumed by the buses, pd. We denote these two random parameters by ξ1
and ξ2, respectively. Additionally, we assume zero reactive power generation by the PV units
and we compute the reactive power consumed by the buses as a relation of the active power
through the expression Q

P = tan(ϕ). The following table presents the variables that we use in
our formulation and their representation during the optimization.
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5-1 Problem formulation 27

Variables Variables in the optimization
Curtailment factor ac x

PV generation pP V ξ1
Active power demand of a house pd ξ2

Reactive power demand of a house qd = pd tan(ϕ) qd = ξ2 tan(ϕ)
Active power injected to the network p = pP V − pd p = ξ1 − ξ2

The available data correspond to 500 i.i.d. scenarios of residential consumption and PV
generation from the distribution energy network in Figure 5-1. These scenarios are recordings
of demand and PV generation during 500 different summer days. The resolution of these
data is 15 minutes and they concern the time window from 6:00 a.m. to 18:00 p.m. Since
the power generation from the PVs peaks around midday, we limit the time window to our
highest interest from 07:00 a.m. to 18:00 p.m. This time-slot corresponds to 45 recorded time
instances. We solve one DRCCP problem at every time-instance and thus in the end of the
procedure we obtain 45 distinctive curtailment factors of the PV exports to the grid.
We focus to construct our problem according to DRCCP Formulation (3-5.1), where the
constraints are piecewise affine with respect to our uncertainties. From Formulation (3-5.1),
we set C = 0, h = 0 and we neglect the variables η, as we assume the support of the
uncertain parameters unbounded. Furthermore, the constraints function should be in the
form F (x, ξ) := maxk≤K

(
xTAkξ +Bkξ + bk(x)

)
and we aim to transform the constraints

of voltage magnitudes accordingly. In the following optimization problem, we use the linear
approximations of the constraints function that we found in Expressions (4-4.1) and (4-4.2).

min
ac

ac

s.t. |Vdk
| ≤ Vmax for k = 1, 2, ...,K

0 ≤ ac ≤ 1

where,

|Vdk
| = K1k

p+K2k
q + ak

= K1k
[(1− ac) pP V − pd] +K2k

pd tan(ϕ) + |v̂|k
= K1k

[(1− ac) ξ1 − ξ2] +K2k
ξ2 tan(ϕ) + |v̂|k

= K1k
(1− ac) ξ1 −K1k

ξ2 +K2k
ξ2 tan(ϕ) + |v̂|k

= −xK1k
ξ1 +K1k

ξ1 −K1k
ξ2 +K2k

ξ2 tan(ϕ) + |v̂|k
= x

(
−K1k

0
)
ξ +

(
K1k

0
)
ξ −

(
0 K1k

)
ξ +

(
0 K2k

tan(ϕ)
)
ξ + |v̂|k

= x
(
−K1k

0
)

︸ ︷︷ ︸
Ãk

ξ +
(
K1k

K2k
tan(ϕ)−M

)
︸ ︷︷ ︸

B̃k

ξ + |v̂|k︸︷︷︸
b̃k(x)

= xT Ãkξ + B̃kξ + b̃k(x)

With K nodes we get the following K constraints

|Vdk
| − Vmax ≤ 0↔ xT Ãk︸︷︷︸

Ak

ξ + B̃k︸︷︷︸
Bk

ξ + b̃k(x)− Vmax︸ ︷︷ ︸
bk

≤ 0 for k = 1, 2, ...,K (5-1.1)
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28 DRCCP Power Flow

We summarize all constraints above and we represent them by only one constraint, which
is equal to maxk=1,2,...,K

(
xTAkξ +Bkξ + bk

)
≤ 0. When we adopt this representation for

the constraints, we consider the violation probability for all constraints simultaneously and
not individually. Now, we managed to express all the constraints according to the DRCCP
formulation (3-5.1).

5-2 Reducing the constraints of the problem

To reduce the number of constraints and the running time of the DRCCP algorithm, we focus
on two of the longest feeders of the distribution network of Figure 5-1. In this way, we achieve
to reduce the number of buses and to accelerate the running time of the DRCCP algorithm.
In particular, we illustrate the sub-network that we use for the DRCCP implementation in
Figure 5-2:

Figure 5-2: The sub-network to implement the DRCCP algorithm. Our sub-network consists
now of 1 slack bus, 38 connecting buses with zero demand and PV generation and 30 residential
buses with PV installations and demand. We do not consider the part of the original network
with grey color.

The sub-network that we apply our formulation on consists of 69 buses. 38 buses correspond
to connecting network nodes, 30 are residential consumers with PV installations and one slack
bus. We do not consider the buses of the network in Figure 5-2 with grey color. We choose
this part of the network, because there are houses relatively far from the slack bus that have
higher chance of experiencing overvoltage problems [34]. After focusing only on a part of the
network, the empirical distribution lies in space R204×500×45 and with less buses compared
to the original network of Figure 5-1, our problem includes significantly less constraints.
Regarding the empirical distribution, the space R204×500×45 is a result of the three-phase
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5-3 Data-Driven tuning of the Wasserstein radius 29

nature of each of the 69 buses, minus the slack bus, the 500 available scenarios, and the 45
time instances of each scenario.

5-3 Data-Driven tuning of the Wasserstein radius

For the implementation of the DRCCP problem we need to tune the Wasserstein radius θ.
Our goal is to achieve 95% satisfaction of constraints, or in other words, no more than 5% of
our total 500 scenarios to present overvoltages at every time-instance. The 500 samples are a
reasonably representative dataset from the distribution. Due to the fact that we solve multiple
optimization problems across our time-window, we pick 20 scenarios out of the 500 to form the
DRCCP. These 20 scenarios that we draw are the tuning samples of the DRCCP algorithm
and they can be considered sufficiently representative, in the sense that some of them will
be optimistic sub-samples of the original dataset and some of them will be pessimistic sub-
samples of the original dataset. With the term optimistic samples we refer to samples that
lead to less curtailment of the PV generation, and as a result, during the validation over the
500 samples we experience high numbers of overvoltage instances. On the other hand, we
describe as pessimistic samples the tuning samples that lead to high curtailment of the PV
generation through the DRCCP. If we tune the DRCCP algorithm with pessimistic samples,
the number of overvoltage violations during the validation process will be small. However, the
pessimistic samples will lead us to overconservative solutions. Our purpose is to determine the
Wasserstein radius, so that even for the optimistic samples, the system is sufficiently robust
to present more than 95% feasibility of constraints when we validate over the entire dataset
of 500 scenarios. We pick the minimum such radius to exclude overconservative solutions.

In Section 3-2 we introduced the function θ(N) to determine the Wasserstein radius of the
ambiguity set, regarding the available number of samples N . Considering that choosing
apriori the Wasserstein radius through Equation (3-2) will result to conservative solutions
and high loss of profit for the PV investors, we follow an alternative heuristic method. We
initiate our optimization with θ = 0 and then, we run iteratively the optimization increasing
the Wasserstein radius in each step. With this heuristic method, we assume that for the
network in Figure 5-2, we can employ the DRCCP algorithm with the same Wasserstein
radius θ for different weather conditions and consequently for a different distribution of PV
generation. In other words, we only need new recordings of 20 days to perform a DRCCP
of the network in Figure 5-2 for a different distribution of PV generation, without having to
adjust the Wasserstein radius θ. We base this assumption to the fact that even though the
distribution may change, the optimization problem remains the same.

As we mentioned before, we initialize our heuristic algorithm with θ = 0. When we set
the Wasserstein radius equal to zero, we solve the DRCCP as if our empirical distribution
P̂ is the true distribution and we can rely only on it. However, as previously stated, the
true distribution of demand and PV generation is unknown and differs from the empirical
distribution P̂. As a result, as we gradually increase the Wasserstein radius, we indicate
that we trust less our empirical distribution. We keep increasing the ambiguity set and we
validate on the entire set, until we meet the performance goal of the problem, namely the
95% satisfaction of the constraints at every time-instance. The next flow chart of Figure 5-3
depicts all of the preceding steps that we follow when we implement the DRCCP algorithm.
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30 DRCCP Power Flow

Figure 5-3: Flow chart of the DRCCP implementation. For the DRCCP we need a linearized
model of the distribution network. The initial radius of the ambiguity set is θ = 0. We start the
DRCCP with θ = 0 at 7:00 a.m. We use 20 days of recorded data for this time-instance and
we compute the curtailment factor for that specific time-instance. Then, we move to the next
time-instance and we compute again the curtailment factor using 20 days of recorded data. When
we have computed the curtailment factor for every time-instance of the day, we validate over the
entire dataset of 500 days. If we do not fulfil the design criterion for at least 95% satisfaction of
constraints for all time instances, we increase the radius of the ambiguity set and we repeat the
whole procedure. Once we fulfil we design criterion and the violated scenarios do not exceed the
5% of the total dataset for all time-instances, we stop the iterations and we do not increase the
θ anymore.

5-4 Simulation and Results

5-4-1 Tuning of the Wasserstein radius θ

In this section we present the outcome of our algorithm depicted in the flow chart of Figure 5-
3. We set the violation parameter a = 0.05 and we investigate the relation of the curtailment
factor with the radius of our uncertainty Wasserstein ball. Our design goal is to achieve at
least 95% satisfaction of the constraints over the validation data, which corresponds to no
more than 25 scenarios out of 500 with overvoltages at each time-step. Figure 5-4 depicts the
number of scenarios with overvoltages that occur every time-instance without any curtailment
factor and the number of problematic scenarios that preserve after curtailment for different
values of θ.
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(a) Number of scenarios with overvoltage violations
without curtailment and with curtailment for differ-
ent values of θ.

(b) Number of scenarios with overvoltage violations
after curtailment for different values of θ.

Figure 5-4: Violated scenarios without and with curtailment for different values of θ. Without
curtailment the number of overvoltage instances is high and hence we need to control the PV
output through DRCCP. After curtailment, the number of overvoltage instances drops significantly
and depends on the radius of the ambiguity set. The number of violated scenarios decreases
monotonically as we increase the radius of our ambiguity set. The black horizontal line indicates
the design requirement of maximum 25 scenarios with overvoltage instances. We choose the
minimum radius θ that does not exceed the black horizontal line.

Figure 5-4a shows that PV power curtailment is necessary because of the vulnerability of
the network to overvoltages. If we do not implement any curtailment, we see in Figure 5-4a
that many more than 5% of the 500 scenarios (days) of our dataset are very likely to face
overvoltages at many time-instances. Once the curtailment is in place, the days with violation
incidents decrease significantly during the entire day and they are highly dependent on the
Wasserstein radius, as shown in Figure 5-4b. We indicate with a black horizontal line the
allowable 5% of days with overvoltages at all time-instances, which also dictates the minimum
Wasserstein radius of the ambiguity set that we choose. We start our iterations with θ = 0
and we observe that we do not fulfil our performance goal, since in two time instances, namely
at 9:00 a.m. and at 10:00 a.m., the number of scenarios with overvoltage problems exceeds
the black horizontal line. We expected this behaviour, because with θ = 0 we perform the
optimization as if the empirical distribution P̂ is the true distribution P. This assumption
is not valid and hence we need to increase the Wasserstein radius, in order to incorporate
the uncertainty of PV generation and demand. We choose to increase the θ value on each
iteration with a step of 1.25 · 10−4, because with smaller steps the output of the DRCCP
algorithm presents only minor changes. On the other hand, adopting a bigger step on each
iteration would lead us to miss important information for the intermediate values of θ.
We consider θ = 0 as the lower extreme case for our iterations, regarding the radius of the
ambiguity set. In contrast to θ = 0, the DRCCP solution for θ = 3 · 10−4 is the upper
extreme case. We observe in Figure 5-4b, that for θ = 3 · 10−4 the violations are almost
vanished and we can guarantee a highly stable network with only 20 days of recorded data for
the tuning of the DRCCP. As a result, and since we have already rejected θ = 0, all possible
values of parameter θ should lie in space (0, 3 · 10−4]. In Figure 5-4b, we depict the scenarios
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with overvoltages after we implement the DRCCP output for the upper extreme case of θ,
the lower extreme case of θ and some intermediate values of θ. The intermediate values are
θ = 7.5 · 10−5, θ = 10−4 and θ = 1.25 · 10−4, because the results of these values approach the
desired goal the most.

Now, we focus on cases where θ = 7.5 · 10−5, θ = 10−4 and θ = 1.25 · 10−4. In Figure 5-4b,
we see that when we assign θ = 7.5 · 10−5, we cannot fulfil the design criterion of maximum
5% violation of the constraints at all time-instances. At 09:00 a.m. the number of violated
scenarios exceeds our limit and hence our ambiguity set with radius θ = 7.5 · 10−5 is not
adequate to guarantee a network according to our requirements. Therefore, we increase our
ambiguity set by one one step and for θ = 10−4 we observe in Figure 5-4b that for the first
time we fulfil the design criterion for 95% satisfaction of constraints at every time-instance.
According to the flow chart of Figure 5-3, once we meet the design criterion for the first time,
we stop the DRCCP iterations. We do not prefer the DRCCP output for θ = 1.25 · 10−4,
since it provides a solution with unnecessary PV cuts. Hence, we choose θ = 10−4 as the
radius of the ambiguity set, that fulfils the design criterion of our problem, while at the same
time it does not provide a conservative solution. If we decrease our θ just for one step, then
we violate our design criterion. One the other hand, if we increase θ just for one step and
choose θ = 1.25 · 10−4, then we provide a conservative solution. In the following Table 5-1
we provide the exact numbers of the overvoltage scenarios before and after curtailment with
different values of θ.

Violated Scenarios
Time instance 7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 10:00 10:15 10:30

Without Curtailment 0 0 0 4 25 62 93 136 163 178 182 190 202 212 21
With Curtailment θ = 0 0 0 0 4 5 11 12 9 52 7 19 20 28 5 11
With Curtailment θ = 7.5 · 10−5 0 0 0 2 3 3 2 3 31 2 12 7 13 2 3
With Curtailment θ = 10−4 0 0 0 2 3 3 2 3 24 2 10 5 10 1 2
With Curtailment θ = 1.25 · 10−4 0 0 0 1 2 1 2 3 15 2 9 3 8 1 2
With Curtailment θ = 3 · 10−4 0 0 0 0 0 0 0 2 1 0 1 0 0 1 0

Violated Scenarios
Time instance 10:45 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00 14:15

Without Curtailment 245 248 258 253 256 253 260 253 248 238 238 224 222 217 201
With Curtailment θ = 0 8 4 14 12 2 3 2 2 1 4 6 1 0 2 6
With Curtailment θ = 7.5 · 10−5 1 2 7 4 2 2 1 2 0 2 3 0 0 1 3
With Curtailment θ = 10−4 1 2 6 3 2 2 0 2 0 2 2 0 0 1 2
With Curtailment θ = 1.25 · 10−4 1 2 4 3 1 1 0 2 0 2 2 0 0 1 1
With Curtailment θ = 3 · 10−4 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0

Violated Scenarios
Time instance 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15 17:30 17:45 18:00

Without Curtailment 181 180 167 123 89 70 39 15 3 0 0 0 0 0 0
With Curtailment θ = 0 7 1 12 4 14 6 7 8 3 0 0 0 0 0 0
With Curtailment θ = 7.5 · 10−5 3 0 5 2 7 2 1 3 3 0 0 0 0 0 0
With Curtailment θ = 10−4 2 0 3 1 5 2 1 2 3 0 0 0 0 0 0
With Curtailment θ = 1.25 · 10−4 2 0 1 0 4 0 1 1 3 0 0 0 0 0 0
With Curtailment θ = 3 · 10−4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5-1: Violated scenarios during the day before and after the optimized curtailment factor
for different radii of the ambiguity set.

In Table 5-1, we indicate with bold the number of scenarios with overvoltages that preserve
after the curtailment and exceed the desired 5% performance limit. If we do not implement
any control on the output of the PVs, then the overvoltage instances initiate at 7:45 a.m.
and end at 16:30 p.m. The curtailment of PV exports is significant for the stability of the
network, because without any control there are 62 overvoltage instances even from 8:15 a.m.
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that violate our performance criterion of maximum 25 scenarios with violations at every
time-instance.

Once the curtailment is in place, the number of violated scenarios drops. However, we need to
tune appropriately the Wasserstein radius that we use in our DRCCP. For the lower extreme
case of θ = 0, the overvoltage instances are significantly less at every time-instance, compared
to the power flow when no PV control is active. However, with an ambiguity set of radius
θ = 0, we cannot capture distributions close to the empirical distribution of the 20 days of
recordings and as a result there are two time instances, at 9:00 a.m. and at 10:00 a.m., that
violate our design criterion of maximum 25 violated scenarios. Therefore, we need a bigger
uncertainty ball to incorporate more uncertainty regarding the empirical distribution. By
increasing the Wasserstein radius to θ = 7.5 · 10−5, the violated scenarios at every time step
decrease even more. The time-instances that we do not fulfil the design criterion reduce to
only one, namely at 9:00 a.m. Furthermore, Figure 5-4b indicates that the number of violated
scenarios drops monotonically, as we increase the radius of the ambiguity set. As a result,
we increase θ by one step and for θ = 10−4, we observe that for the first time we do not
experience more than 25 overvoltage instances at any time-instance. With θ = 1.25 · 10−4

and θ = 3 · 10−4 the overvoltage scenarios decrease even more during the whole day, but the
solutions they provide are conservative.

Next, in Figure 5-5 we illustrate how the radius of the ambiguity set affects the PV exports to
the network. We use Scenarios 1 and 2 to illustrate the output of our DRCCP optimization,
so in Figure 5-5 we examine the behaviour of the algorithm in two days that we used to tune
the DRCCP. For the DRCCP algorithm, we use the same Wasserstein radii as in Figure 5-4.
For lack of space, we provide the analysis for only two scenarios, but the same principles
apply to the remaining 18 known scenarios. We see from Scenarios 1 and 2 of Figure 5-5
that the PV exports after curtailment decrease monotonically, as we increase the radius of
our ambiguity set. Thus, a large increase in the Wasserstein radius leads to very conservative
solutions and significant PV cuts.

Furthermore, in Figure 5-4b we noticed that with θ = 3 · 10−4 we obtain a highly robust
network with a small number of violated scenarios. As a trade-off to the small number of
violations, we observe in Figure 5-5 that for that specific value of θ, we curtail a significant
portion of PV generation. Moreover, from Scenario 1 and Scenario 2 of Figure 5-5, we notice
that without the PV control, the active power that the PVs export peaks around midday,
as expected. On the other hand, when we implement curtailment, there is not an explicit
peak in the active power during the whole day. The deviations of the active power that the
PVs export across the day after the curtailment are small, as they depend on the residential
demand. Since in our problem the demand remains low with small deviations between 7:00
a.m. and 18:00 p.m., the PV contribution to the network after curtailment presents similarly
only small fluctuations in order to prevent overvoltages.
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(a) Scenario 1 (b) Scenario 2

Figure 5-5: Uncurtailed PV contribution compared to PV contribution under curtailment with
different Wasserstein radii θ for two scenarios. The available PV exports after curtailment do not
present any high peaks during the whole day and they decrease monotonically as we increase the
Wasserstein radius θ.

Time instance 7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 10:00 10:15 10:30
θ = 0 0 0 0 0 0.035 0.086 0.137 0.175 0.149 0.263 0.249 0.287 0.285 0.352 0.344
θ = 7.5 · 10−5 0 0 0 0.029 0.073 0.121 0.171 0.204 0.178 0.288 0.274 0.311 0.307 0.373 0.364
θ = 10−4 0 0 0 0.042 0.086 0.133 0.182 0.214 0.188 0.296 0.282 0.318 0.314 0.380 0.371
θ = 1.25 · 10−4 0 0 0 0.055 0.098 0.145 0.193 0.224 0.198 0.304 0.290 0.326 0.321 0.387 0.378
θ = 3 · 10−4 0 0.024 0.057 0.142 0.181 0.222 0.265 0.288 0.263 0.359 0.345 0.378 0.371 0.434 0.424

Time instance 10:45 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00 14:15
θ = 0 0.366 0.401 0.376 0.388 0.423 0.443 0.442 0.430 0.435 0.413 0.386 0.398 0.400 0.381 0.342
θ = 7.5 · 10−5 0.386 0.420 0.395 0.406 0.441 0.461 0.460 0.448 0.453 0.432 0.405 0.417 0.419 0.400 0.362
θ = 10−4 0.392 0.427 0.401 0.412 0.447 0.466 0.466 0.454 0.460 0.438 0.411 0.424 0.425 0.407 0.368
θ = 1.25 · 10−4 0.399 0.433 0.407 0.419 0.453 0.472 0.472 0.459 0.466 0.444 0.417 0.430 0.432 0.413 0.375
θ = 3 · 10−4 0.443 0.477 0.450 0.460 0.494 0.512 0.512 0.500 0.508 0.487 0.459 0.473 0.475 0.457 0.419

Time instance 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15 17:30 17:45 18:00
θ = 0 0.311 0.320 0.251 0.242 0.129 0.127 0.074 0.018 0 0 0 0 0 0 0
θ = 7.5 · 10−5 0.332 0.341 0.276 0.267 0.158 0.156 0.106 0.053 0 0 0 0 0 0 0
θ = 10−4 0.339 0.349 0.284 0.276 0.168 0.166 0.117 0.065 0 0 0 0 0 0 0
θ = 1.25 · 10−4 0.346 0.356 0.292 0.284 0.178 0.175 0.127 0.077 0 0 0 0 0 0 0
θ = 3 · 10−4 0.393 0.405 0.346 0.341 0.242 0.239 0.198 0.153 0.073 0.034 0 0 0 0 0

Table 5-2: Curtailment factors of PV generation for different radii of the ambiguity set

In Table 5-2 we quantify Figure 5-5 and we observe once more that the more we increase the
radius of the ambiguity set, the more we limit the PV exports. Considering that the curtail-
ment factor ac takes values in space [0, 1], a "0" in Table 5-2 corresponds to no curtailment,
while a "1" corresponds to 100% curtailment of the PV contribution to the grid. Moreover,
in Table 5-2 we observe that the radius of the ambiguity set determines the first and the last
time-instance that the curtailment is active. More specifically, in Table 5-1 we noticed that
the first and the last overvoltage instances when we do not apply any curtailment are at 7:45
a.m. and at 16:30 p.m., respectively. Therefore, we expect zero curtailment factor ac before
7:45 a.m. and after 16:30 p.m. However, when the radius of the ambiguity set is θ = 3 · 10−4,
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the curtailment ignites at 7:15 a.m. and ends at 16:45 p.m., which means that due to a big
ambiguity set, our overconservative solution starts limiting the PV output too early and stops
too late. On the other hand, when we rely only on our empirical data and we set θ = 0, the
curtailment starts after the first violation instances at 8:00 a.m. For the intermediate steps of
θ = 7.5 · 10−5, θ = 10−4 and θ = 1.25 · 10−4, the curtailment starts when the first overvoltage
instances appear, namely at 7:45 a.m. and stops at 16:15 p.m. As a result, we see that for
higher values of θ the curtailment process lasts longer, limiting the PV exports when it might
not be necessary. On the other hand, for smaller values of θ, the curtailment process initiates
in later time-instances.

After choosing θ = 10−4 as the most appropriate radius of our ambiguity set, we mentioned
that the power curtailment starts at 7:45 a.m. and ends at 16:15 p.m. according to Table
5-2. We expected this behaviour, since in the 20 recorded days that we insert to the DRCCP
algorithm, we face two distinctive scenarios with overvoltage instances at 8:00 a.m., when we
do not impose any curtailment. Figure 5-6 depicts the voltage magnitudes of specific buses
in Scenario 8 and Scenario 10 and illustrates how overvoltages that take place at 8:00 a.m.
evolve over the day when no curtailment is in place.
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Figure 5-6: Two scenarios of the tuning dataset that indicate when the first voltage violation
occurs, when there is no curtailment. The time-instance of the first overvoltage violation deter-
mines the starting time of the curtailment. In scenario 8, the first overvoltage occurs at 8:00 a.m.
in bus 154 and in Scenario 10 the first overvoltages occur at 8:00 a.m. in bus 152 and bus 154.

The presence of Scenario 8 and Scenario 10 in the tuning dataset of the DRCCP is significant,
since they indicate when the curtailment in the network should begin. In Figure 5-6 we observe
that the first overvoltages in the training set of the DRCCP happen at 8:00 a.m. in bus 154 for
Scenario 8 and at 8:00 a.m. in buses 152 and 154 for Scenario 10. If we would choose θ = 0 for
our ambiguity set, then we would assume that the empirical distribution P̂ of the 20 scenarios
represents the true distribution P of PV generation and residential demand. In that case, the
data would dictate the DRCCP to start curtailing at 8:00 a.m., when the first overvoltages
occur in bus 152 of Scenario 8 and in buses 152 and 154 of Scenario 10. We confirm our
assumption from the first row in Table 5-2 that concerns θ = 0, where the curtailment starts
indeed at 8:00 a.m. Since in our case we chose θ = 10−4 for the radius of our ambiguity set,
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we increase the uncertainty that we have regarding the empirical distribution P̂, we assume
that there are overvoltages even earlier than 8:00 a.m. and we start the curtailment at 7:45
a.m.

The next step is to examine how the curtailment of PV exports affects the voltage magnitudes
to our network. For this purpose, we run the DRCCP algorithm with θ = 10−4 and we depict
in Figure 5-7 Scenarios 1 and 2 as two training days to the DRCCP, and Scenarios 21 and 22
in Figure 5-8 as two unknown days to the DRCCP. For lack of space, we provide the analysis
for only two scenarios of known days and two scenarios for unknown days. The rest of the
scenarios exhibit the same behavior.
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(a) Voltage violations in Scenario 1
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(b) Elimination of voltage violations in Scenario 1
after curtailment
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(c) Voltage violations in Scenario 2
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(d) Elimination of voltage violations in Scenario 2
after curtailment

Figure 5-7: Voltage magnitudes before and after curtailment in two known scenarios. On the
left side, the voltage magnitudes of 6 buses in Scenario 1 and 6 buses of Scenario 2 that present
overvoltage issues, when we do not implement PV curtailment. On the right side, the same
buses of Scenario 1 and Scenario 2 when we run the DRCCP algorithm with θ = 10−4. After
implementing curtailment, the voltage magnitudes of the buses lie below the limitation of 1.05
p.u.
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(a) Voltage violations in Scenario 21
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(b) Elimination of voltage violations in Scenario 21
after curtailment
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(c) Voltage violations in Scenario 22
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(d) Elimination of voltage violations in Scenario 22
after curtailment

Figure 5-8: Voltage magnitudes before and after curtailment in two unseen scenarios. On the
left side, the voltage magnitudes of 6 buses in Scenario 21 and 7 buses of Scenario 22 that
present overvoltage issues, when we do not implement PV curtailment. On the right side, the
same buses of Scenario 21 and Scenario 22 when we run the DRCCP algorithm with θ = 10−4.
After implementing curtailment, the voltage magnitudes of the buses lie below the limitation of
1.05 p.u.

In Figure 5-7 we depict voltage magnitudes of specific buses of Scenarios 1 and 2 before and
after curtailment. We set the safety limit to 1.05 p.u. and we indicate it by a black horizontal
line. In Figures 5-7a and 5-7c we observe six buses in Scenario 1 and six buses in Scenario
2 exceeding this limit. Then, we implement the DRCCP algorithm with θ = 10−4 and we
compute the appropriate curtailment factor in each time-step, according to Table 5-2. Figure
5-7b corresponds to Scenario 1 after the curtailment and likewise, Figure 5-7d corresponds
to Scenario 2 after the curtailment. The results from Figures 5-7b and 5-7d indicate that
the DRCCP algorithm achieves voltage regulation and the voltage magnitudes of all buses
for both Scenario 1 and Scenario 2 lie below the safety limit for all time-instances. However,
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38 DRCCP Power Flow

Scenarios 1 and 2 of Figure 5-7 belong to the known dataset that we use to tune the DRCCP
model. Our purpose is to check the model’s robustness during the validation over the 500
scenarios and therefore, in Figure 5-8 we depict our implementation in two days that are
completely unknown to the DRCCP model.

Figure 5-8 depicts the voltage magnitudes of Scenarios 21 and 22. These two scenarios are
not involved in the tuning of the DRCCP algorithm, so we run the DRCCP algorithm with
θ = 10−4, we determine the curtailment factor at every time-instance and we validate the
results on Scenarios 21 and 22. In Figure 5-8a we observe six buses of Scenario 21 that present
overvoltage issues, mainly in midday, when we do not control the output of the PVs to the
network. Likewise, Figure 5-8c depicts 7 buses of Scenario 22 that exceed the voltage limit
of 1.05 p.u., when there is no curtailment. Even though that Scenarios 21 and 22 do not
belong to the training dataset, we achieve to eliminate the overvoltages when we implement
the output of the DRCCP algorithm. In particular, in Figures 5-8b and 5-8d we observe
that the voltage magnitudes of the buses in both scenarios lie below the voltage limit for all
time-instances.

Finally, in Figure 5-9 we illustrate the mismatch between uncurtailed PV exports and resi-
dential demand. This mismatch can lead the network to instability and thus we curtail the
PV exports to the grid, in order to achieve voltage regulation. For this purpose we depict
Scenarios 1 and 2 from the dataset that we use to tune the DRCCP algorithm with θ = 10−4

and Scenarios 21 and 22 from the recorded days that we validate the DRCCP output.

When we do not implement any control on the PV exports, we notice in Figure 5-9 that the
PV contribution to the grid peaks around midday for all scenarios. The residential demand
remains low throughout the day, with small deviations for all scenarios of Figure 5-9. This
low demand determines the curtailed PV output to the grid. Before 7:45 a.m., the shape
of curtailed PV exports follows the shape of uncurtailed PV exports, since the curtailment
factor ac is 0, according to Table 5-2. Then, the curtailment ignites and PV exports do not
present any peak exclusively, compared to uncurtailed PV exports. The shape of the curtailed
PV contribution to the network follows the shape of the residential demand and it presents
small deviations, until 16:30 p.m., where the curtailment factor ac is again 0 and the curve of
curtailed PV exports coincide with the curve of uncurtailed PV exports.
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(a) Scenario 1
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(b) Scenario 2
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(c) Scenario 21
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(d) Scenario 22

Figure 5-9: Residential demand compared to uncurtailed PV exports and curtailed PV exports
after DRCCP with θ = 10−4 for 4 scenarios. The low residential demand without high fluctuations
determines the shape of the curtailed PV exports.

Synopsis of Chapter 5

In this chapter we conducted a step by step analysis of our DRCCP algorithm and we pre-
sented the results of our implementation. In order to form the DRCCP, we used 20 days of
our recorded data during summer days. We modelled the problem by utilizing a part of the
Dutch energy distribution system with high PV penetration. However, the big size of the
network and the high number of constraints urged us to considered only two branches of it.
We focused our the attention on two of the longest feeders of the distribution network, since
due to their long nature, they have higher chance to present voltage problems.

The next step was to simulate the model and to determine one curtailment factor every 15
minutes for the time-instances between 7:00 a.m. and 18:00 p.m. One of the inputs to the
optimization problem was the empirical distribution of the PV generation and the demand
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40 DRCCP Power Flow

of each house. The other input was the Wasserstein distance θ that controls the size of the
ambiguity set. We performed our iterations by tuning accordingly the radius of our ambiguity
set and we investigated the behavior of the network .

Table 5-3 indicates the curtailment factor ac of each time-step and the scenarios with overvolt-
ages that preserved after the DRCCP output with θ = 10−4. Considering that the curtailment
factor ac takes values in space [0, 1], a zero in Table 5-3 corresponds to no curtailment, while
a one corresponds to 100% curtailment of the PV contribution to the grid.

Violated Scenarios
Time instance 7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 10:00 10:15 10:30

Without Curtailment 0 0 0 4 25 62 93 136 163 178 182 190 202 212 215
With Curtailment 0 0 0 2 3 3 2 3 24 2 10 5 10 1 2
Curtailment factor 0 0 0 0.042 0.086 0.133 0.182 0.214 0.188 0.296 0.282 0.318 0.314 0.380 0.371

Violated Scenarios
Time instance 10:45 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00 14:15

Without Curtailment 245 248 258 253 256 253 260 253 248 238 238 224 222 217 201
With Curtailment 2 0 3 1 5 2 1 2 3 0 0 0 0 0 0
Curtailment factor 0.392 0.427 0.401 0.412 0.447 0.466 0.466 0.454 0.460 0.438 0.411 0.424 0.425 0.407 0.368

Violated Scenarios
Time instance 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15 17:30 17:45 18:00

Without Curtailment 181 180 167 123 89 70 39 15 3 0 0 0 0 0 0
With Curtailment 3 0 1 0 1 0 0 2 3 0 0 0 0 0 0
Curtailment factor 0.339 0.349 0.284 0.276 0.168 0.166 0.117 0.065 0 0 0 0 0 0 0

Table 5-3: Violated scenarios during the day before and after the optimized curtailment factor.
The goal of less than 25 scenarios with overvoltages at every time-instance has been achieved
with an ambiguity set with radius θ = 10−4.

In Table 5-3 we notice that the curtailment ignites at 7:45 a.m. and it lasts until 16:15 p.m.
We see from the results on the validation data that when we do not impose any curtailment,
the network faces overvoltage problems in many days of our dataset. Therefore it is clear
that we need to control the PV exports. The goal of our algorithm was not to eliminate
completely all potential disruptions. We designed the DRCCP algorithm in a way to battle
at least 95% of problematic scenarios at every time-instance. We achieved this purpose and
we observe from Table 5-3 that there are not time-instances where the violated scenarios
exceed the number 25. In that way we showed that we can design a network that fulfills our
design criterion without making overly conservative decisions due to the limited data that we
use to tune the DRCCP.
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Chapter 6

Wasserstein Barycenters

In this chapter we leverage a second case study and we intend to solve the same OPF formu-
lation, using more data in the DRCCP algorithm. While in the previous chapter we used only
20 days of recorded data to tune the DRCCP algorithm, now we exploit the entire dataset of
500 days for the DRCCP tuning. One could assume that the high availability of data could
assist us to find easily and precisely the appropriate curtailment factor. However, the high
computational effort that arises from the bulk data lead us to seek alternatives in order to
incorporate efficiently the entire information.

For this purpose, in this chapter we use the theory of Wasserstein Barycenters for a single
distribution to cluster the samples, based on the Wasserstein distance. To the best of our
knowledge, this is the first application of Wasserstein Barycenters in energy systems, and
through this chapter we evaluate their performance in terms of scalability and robustness.

The remainder of the chapter is organized as follows. In Section 6-1 we introduce the main
ideas behind Wasserstein Barycenters and some application examples. In Section 6-2 we
present the stages to compute the Wasserstein Barycenter through three interconnected algo-
rithms and n Section 6-3 we compare the DRCCP from the Wasserstein Barycenter with both
the SA method and the DRCCP with the empirical distribution. Section 6-4 concerns the
computation of the Wasserstein Barycenter and finally, in Section 6-5 we utilize the Wasser-
stein Barycenter to the DRCCP algorithm.
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42 Wasserstein Barycenters

6-1 Introduction to Wasserstein Barycenters

With the term Wasserstein Barycenters we describe clusters of empirical data that are formed
by optimal transport distances. In other words, we intend to get a more economical discrete
distribution than the empirical distribution and we classify the samples from the empirical
distribution to weighted clusters according to their most efficient transport cost [10, 40, 41, 42].

(a) Various nested random ellipses

(b) Barycenters using the (a) Euclidean distance
(b) Euclidean after re-centering images (c) Jeffrey
centroid (d) RKHS distance (Gaussian kernel, σ =
0.002) (e) 2-Wasserstein distance

Figure 6-1: Barycenters of 30 random nested ellipses with different distances. The 2-Wasserstein
Barycenters achieve to cluster the random ellipses capturing also the structure, while for other
distances the structure is not preserved. [10].

Wasserstein Barycenters are mainly used in machine learning problems and image processing
tasks, since they are able to incorporate the geometric structure of objects [43]. Figure 6-1
from [10] indicates how Wasserstein Barycenters are able to preserve the geometric structure
of the data, compared with Barycenters defined for other distances. In Chapter 2, we ana-
lyzed the advantages of the Wasserstein distance when we create the uncertainty set of PV
generation and residential demand, and now our purpose is to utilize again the Wasserstein
distance in order to group effectively our empirical data before using them to the DRCCP.

6-2 Computation of the Wasserstein Barycenter

For the construction of the Wasserstein Barycenter we consider, as in Section 3-1, the set
Ξ ∈ Rd, d ≥ 1. Moreover, B(Ξ) and P(Ξ) correspond to the Borel σ-algebra and the set
of Borel probability measures on the set Ξ, respectively. We also consider two probability
measures µ, ν ∈ P (Ξ). If we denote two families of points in Ξ by X = (x1, · · · , xn) and
Y = (y1, · · · , yn), the aforementioned measures are on the form µ =

∑n
i=1 aiδxi , X ∈ Rd×n

and ν =
∑n

i=1 biδyi , Y ∈ Rd×m. The terms ai belongs to the probability simplex Σn, where

Σn
def=
{
u ∈ Rn

∣∣∣∀i ≤ n, ui ≥ 0,
ν∑

i=1
ui = 1

}
. (6-2.1)

Likewise, the same holds for the terms bi.
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6-2 Computation of the Wasserstein Barycenter 43

We also consider, as in Section 3-1, the Wasserstein distance Wp(µ, ν) between the two prob-
ability measures µ and ν, as given by Equation (3-1.1). In our case we consider p = 2 and we
define the Wasserstein Barycenter µ with points X and weights a the minimizer of f , where
f is:

f(µ) = W 2
2 (µ, ν) (6-2.2)

Given an empirical distribution of n samples, we intend to find a discrete distribution sup-
ported on n points, where typically n < m, which is as close as possible to the empirical
distribution with respect to the Wasserstein distance. For this discrete distribution, or alter-
natively the Wasserstein barycenter, we take into consideration firstly, the cost MXY ∈ Rn×m

corresponding to pairwise euclidean distances between points X and Y and secondly, the
transportation polytope Π(a, b) =

{
π ∈ Rn×m

+

∣∣∣π1m = a, πT 1n = b
}

. Here, 1m represents a
column vector with m entries of ones.
Given the matrix MXY ∈ Rn×m, we construct the dual linear program of the primal mini-
mization problem of Equation (6-2.2). The dual optimal transport problem is as follows:

max
a,β∈C

aTa+ βT b, (6-2.3)

where the polyhedron CM of dual variable is as follows:

CM =
{

(a, β) ∈ Rn+m
∣∣∣ai + βj ≤ mij

}
.

According to Proposition 1 of [10], any optimal dual vector "a" of the optimization problem
(6-2.3), is a subgradient of the primal optimization problem (6-2.2) as a function of a.
In order to find the Wasserstein Barycenter, we divide the procedure into two interconnected
sub-algorithms. In the first algorithm we assume that the points of the barycenter X are
fixed and we search for the optimal weights a that lie in the simplex Σn. We could resemble
this procedure as the formation of the cluster when the center of the cluster is known. We
present the first algorithm below, where for the convergence of the algorithm we make use of
the subgradient that is derived from the solution of the dual problem of Equation (6-2.3):

Algorithm 1
1: Inputs: X ∈ Rd×n, Y ∈ Rd×m, b ∈ Σm, tol = 10−4

2: Create MXY

3: Set â = ã = 1n/n
4: while not converged do
5: β = (t+ 1)/2, α← (1− β−1)â+ β−1ã
6: Form the subgradient of the primal problem
7: ã← ã ◦ e−βa

8: ã← ã/ãT 1n

9: â← (1− β−1)â+ β−1ã, t← t+ 1
10: Return â

Then, we move to the second algorithm where we are free to choose the support of the
barycenter. More specifically, we iterate in order to recalculate the center of the clusters X.
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In order to achieve convergence for the center of the cluster, we make use of the optimal
transport π that corresponds to the primal problem of Equation 6-2.2. The second algorithm
is as follows:

Algorithm 2
1: Inputs: Y ∈ Rd×m, b ∈ Σm, tol = 10−4

2: Initialize X ∈ Rd×n and a ∈ Σn

3: while X and a have not converged do
4: a← â from Algorithm 1
5: find the optimal solution of the primal problem π
6: X ← (1− θ)X + θY π∗T diag(a−1), setting θ ∈ [0, 1] with line-search or a preset value
7: Return X

We repeat these two interconnected algorithms until they both converge. The whole procedure
is non-convex and our optimum is a local minimum. Assuming that there are no constraints
regarding the weights, this approach is equivalent to Lloyd’s k-means algorithm [10]. How-
ever, we choose this alternative implementation instead of Lloyd’s algorithm, because we can
directly calculate the Wasserstein distance to move the samples from the empirical distribu-
tion to the Wasserstein Barycenter, using Equation (3-1.1). The same procedure with the
Lloyd’s algorithm would require post-processing calculations.

In Algorithm 1 and Algorithm 2 we utilize explicitly the primal and dual optimal transports
problems through the terms π and a, respectively. It terms of computational time, these two
steps add extra burden to the scalability of the problem. In particular, in Algorithm 1 we
need to calculate the subgradient from the optimum of the dual transportation problem in
each iteration, which corresponds to a problem with n + m variables and n ×m inequality
constraints. The computational cost of Algorithm 2 is even higher, because we compute
Algorithm 1 in every iteration and additionally we solve the primal problem to update X.

In order to accelerate the procedure, we present the alternative of the smoothed primal and
dual problems’ solutions, πλ and aλ, respectively. If we define K = e−λMXY , with λ > 0 the
smoothing parameter, we can compute the optimal solutions of the primal and dual problems
by a pair of vectors (u, v) ∈ Rn

+ × Rm
+ as follows:

πλ = diag(u)Kdiag(v)

aλ = log(u)
λ
− log(u)T 1n

λn

Below we present the steps to define the aforementioned pair of vectors (u, v) and consequently
the regularized terms πλ and aλ that we will use in Algorithm 1 and Algorithm 2 instead of
π and a.
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Algorithm 3
1: Inputs: M,λ, a, b, tol = 10−5

2: K = e−λM

3: K̃ = diag(a−1)K
4: u = ones(n, 1)/n
5: while u changes do
6: u = 1./

(
K̃
(
b./
(
KTu

)))
7: v = b./(KTu)
8: aλ = 1

λ log(u)− log(u)T 1n

λn 1n

9: Return aλ, πλ

10: πλ = diag(u)Kdiag(u)

6-3 Motivation behind Wasserstein Barycenters

The presence of a high amount of i.i.d. data has a positive impact on our formulation. In
our case study, we inspect a data-driven problem that most of the times the lack of data
hinders us from getting efficient solutions. Now that we have plenty of data available, we
can formulate a more precise model and decrease the radius of the ambiguity set. The 500
available scenarios can provide us with significant information about the real probability
distribution of the PV generation and residential demand. The presence of this amount of
data gives us incentives to implement the SA approach that we explained in Section 2-3. The
SA approach guarantees that the constraints are feasible and, at the same time, we exploit
the absence of slack variables and additional constraints that a DRCCP inserts. These slack
variables and extra constraints put additional effort to the optimization procedure and hence,
the SA becomes significantly faster.
The main disadvantage of high bulk of data is the computational effort. As we mentioned in
Section 5-2, we intend to reduce the constraints of the problem as much as possible. Now,
the integration if 500 scenarios for precise solutions, comes with the cost of extremely high
computational time.
To mitigate this drawback, we utilize Wasserstein Barycenters. With Algorithm 1, Algorithm
2 and Algorithm 3 that we presented in the previous section, we can efficiently incorporate the
information of 500 scenarios into few clusters of data, accompanied with their corresponding
weights. In particular, we compare the robustness and the computational time that we need
for the SA approach and the computational time that we need for the DRCCP with the
Wasserstein Barycenter. In this comparison we make use of the entire available dataset,
namely the 500 scenarios and we choose 10 points for the Wasserstein Barycenter.
In Section 2-3, we mentioned the Formula (2-3.1) for the SA to determine the appropriate
number of scenarios that we need, in order to guarantee that our solution satisfies the con-
straints with the probability level that we decide. For a reminder, the formula is as follows:

N ≥ 2
a

ln 1
β

+ 2n+ 2n
a

ln 2
a
,

where the decision variable ∈ Rn, a is the violation parameter and β is the confidence param-
eter. Since in DRCCP we chose the violation parameter to be equal to a = 0.05, we assign
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correspondingly a = 0.05 for 95% satisfaction set in the SA method. With the term (1 − a)
in the SA, we express the probability that the constraints are feasible. Moreover, we assign
the values n = 1, because our decision variable (curtailment factor) is scalar, and β = 10−10

for the confidence parameter.

Filling in the values of a, n and β in (2-3.1), we get N ≥ 1070.59, or in other words, we see
that we need at least 1071 scenarios to achieve 95% satisfaction of the constraints with the
SA. Therefore, it is impossible to guarantee at least 95% satisfaction of the constraints with
only 500 available scenarios when we implement the SA method. Hence, the DRCCP with
the Wasserstein Barycenter outperforms in terms of robustness, because with the appropriate
tuning of the Wasserstein radius we can achieve the desired 95% satisfaction of constraints.

However, we want to prove that the DRCCP with the Wasserstein Barycenter outperforms
in computational time as well. For this reason, we compare the running time of the original
DRCCP when we use 500 scenarios, with the running time of the DRCCP when we use
Algorithm 1, Algorithm 2 and Algorithm 3 for the Wasserstein Barycenter. We perform
this comparison only for one time-instance of our problem. While for the computation of the
DRCCP with the presence of the Wassserstein Barycenter we need 117 seconds, for the original
DRCCP we interrupted the execution of the algorithm after 6770 seconds without finishing.
Finally, we check also the execution time of the SA, even though that the performance is
limited, and we see that we need 288 seconds. With these results, we conclude that the
approach of the Wasserstein Barycenter with the DRCCP outperforms in terms of robustness
compared to the SA approach and in terms of computational time compared to SA approach
and to the original DRCCP for 500 scenarios.

6-4 Wasserstein Barycenters for DRCCP power flow

In order to find the Wasserstein Barycenter, we need to specify the parameters that appear
in Algorithm 1, Algorithm 2 and Algorithm 3. From Table 5-3 we observe that there are no
overvoltage violations before 7:45 a.m. and after 16:30 p.m. and therefore, we limit our time-
window between 7:45 a.m. and 16:30 p.m. We assume Ξ ∈ R(408×36) and Y ∈ R(408×36)×500.
The dimensions of Y emerge from the recorded three phase PV generation of 68 houses and
the three phase demand of 68 houses. We divide our time-window into quarters of an hour,
and as a result, we obtain 36 time-instances with recordings of PV generation and residential
demand. Our purpose is to cluster the recordings of 500 scenarios. The Barycenter that we
intend to construct reduces the 500 points of distribution Y to only 10 in distribution X, so
X ∈ R(408×36)×10. The parameter b is a vector and equals to b = {1m/m} = {1500/500}. We
set λ = 60/median(MXY ) and for the parameter t, which represents the gradient steps, we
assign the value t = 60 according to [10].

After the successful implementation of Algorithm 1, Algorithm 2 and Algorithm 3, we specify
the upper bounds of the Wasserstein distances in each time-step. We refer to upper bounds,
because the solution of the Wasserstein Barycenter is a local minimum and because we regu-
larize the solutions of the primal and dual transportation problems through Algorithm 3. In
Table 6-1 we present the Wasserstein distances θwb that we compute in each time-step, which
represent the upper bound of the cost to move the data of 500 scenarios from distribution Y
to 10 points in distribution X:
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Time instance 7:45 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 10:00 10:15 10:30
Wasserstein Distance 9.48e-4 1.23e-3 1.55e-3 1.74e-3 2.41e-3 3.22e-3 3.62e-3 3.65e-3 4.45e-3 5.38e-3 5.05e-3 4.41e-3

Time instance 10:45 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30
Wasserstein Distance 3.95e-3 4.21e-3 3.93e-3 3.79e-3 3.64e-3 3.89e-3 3.84e-3 3.44e-3 4.37e-3 5.24e-3 4.59e-3 4.68e-3

Time instance 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30
Wasserstein Distance 3.70e-3 3.69e-3 4.13e-3 3.64e-3 2.75e-3 3.68e-3 4.02e-3 3.45e-3 2.66e-3 2.95e-3 2.87e-3 2.25e-3

Table 6-1: Wasserstein distance computed for the Wasserstein Barycenter with 10 points.

According to our experience, if we reduce the points of the Wasserstein Barycenter, then the
Wasserstein distances θwb at each time instance will increase. On the other hand, in the
extreme case of constructing a Wasserstein Barycenter with 500 points for this problem, then
we will experience 0 Wasserstein distances θwb at each time-step. This fact emerges from
the fact that the samples will not have to move from Y to X. We confirm our expectations
in Table 6-2, where we present the Wasserstein distances for a Wasserstein Barycenter of
20 points. When we compare Wasserstein distances in Tables 6-1 with their corresponding
Wasserstein distances in Table 6-2, we notice that the Wasserstein distances for a Barycenter
of 20 points are smaller than those for a Barycenter of 10 points. On the other hand, through
this comparison, we observe that the order of magnitude of the Wasserstein distances between
Tables 6-1 and 6-2 remains the same. In other words, the travel cost to cluster a distribution
of 500 samples to a Barycenter of 20 points is lower than clustering the same distribution
to a Barycenter of 10 points, but it does not change significantly. We choose to construct
our Wasserstein Barycenter with 10 points, because we accelerate the running time of the
procedure compared to a Barycenter of 20 points without losing important information.

Time instance 7:45 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 10:00 10:15 10:30
Wasserstein Distance 8.76e-4 1.08e-3 1.33e-3 1.55e-3 2.29e-3 2.29e-3 3.28e-3 3.29e-3 3.94e-3 4.90e-3 4.61e-3 4.04e-3

Time instance 10:45 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30
Wasserstein Distance 3.64e-3 3.79e-3 3.57e-3 3.42e-3 3.23e-3 3.57e-3 3.37e-3 3.17e-3 3.93e-3 4.67e-3 4.27e-3 4.27e-3

Time instance 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30
Wasserstein Distance 3.27e-3 3.29e-3 3.83e-3 3.29e-3 2.46e-3 3.26e-3 3.60e-3 3.12e-3 2.32e-3 2.59e-3 2.57e-3 2.05e-3

Table 6-2: Wasserstein distance computed for the Wasserstein Barycenter with 20 points.
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6-5 DRCCP using the Wasserstein Barycenter

In this section we perform the DRCCP with the Wasserstein Barycenter that we computed
in the previous section. The optimization algorithm (3-5.1) now turns to:

min
x,λ,si,t

cTx

s.t. λ

(
θ + θwb

µ

)
+

N∑
i=1

awbi
si ≤ tα(

bk(x) + t+
(
xTAk +Bk − CT ηik

)T
ξ̂i + ηik

Th

)
+
≤ si, (6-5.1)

||xTAk +Bk − CT ηik|| ≤ λ, ηik ≥ 0
x ∈ X, t ∈ R, λ ≥ 0

In this new DRCCP reformulation, we add the distance of the Wasserstein Barycenter θwb

that we found in Table 6-1 to the radius of the ambiguity set θ. Moreover, we substitute the
term 1/N with the term awb, which is the weight of every point of the Barycenter. With
the Wasserstein Barycenters each point has a different weight from others, so we need to
assign the points with their corresponding weight. Once more, we assume the support of the
uncertain parameters unbounded and we set C = 0, h = 0 and we neglect the variables η.

Furthermore, from Table 6-1 we observe that the distances from Wasserstein Barycenter θwb

at each time instance are one order of magnitude greater than the ambiguity radius θ = 10−4

that we defined in Chapter 5. Due to that fact, θwb dominates over θ and we suspect that
the output of the OPF algorithm will be conservative, with high generation cuts for the PV
owners. Therefore, we use an empirical parameter µ > 1 that scales down the distance of
the Barycenter. The more we increase µ the less conservative solution we get. We implement
the new DRCCP formulation of Equation (6-5.1) and in Figure 6-2 we illustrate the number
of scenarios in our dataset that present overvoltage violations. In this case we examine the
performance before and after applying the curtailment factor that we compute from the
Barycenter with n = 10 points instead of 500 scenarios.

Figure 6-2a depicts the vulnerability of the network to overvoltage instances when we do
not control the PV output. Without PV power curtailment, the number of scenarios with
overvoltage instances exceeds the design requirement of maximum 25 violations per time-
instance for almost the entire time-window of 7:45 a.m. to 16:30 p.m. When PV curtailment
is active, we observe that the number of violated scenarios drops significantly. Figure 6-2b
illustrates the violated scenarios when we implement the solution of the DRCCP with the
Wasserstein Barycenter for four different values of µ. After multiple iterations with different
values of µ, we choose to depict the solutions of the DRCCP with the Wasserstein Barycenter
for those µ that approach the desired performance the most. The iterations that we present
in Figure 6-2b initiate with µ = 13. Our purpose is to define the maximum µ that does
not violate the performance goal of 95% feasibility of constraints at every time-instance. In
our case, µ takes integer values and the step of µ at each iteration is 1. With smaller steps
of µ, the output of the DRCCP algorithm with the Wasserstein Barycenter presents minor
changes, while for bigger steps of µ we lose significant information.
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(a) Number of scenarios with overvoltage violations
without curtailment and with curtailment for differ-
ent values of µ and θ = 10−4

(b) Number of scenarios with overvoltage violations
after curtailment for different values of µ and
θ = 10−4

Figure 6-2: Violated scenarios without and with curtailment for different values of µ and
θ = 10−4 after DRCCP with the Wasserstein Barycenters. Without curtailment the number of
overvoltage instances is high and hence we need to control the PV output through the optimized
curtailment factor. After curtailment, the number of overvoltage instances drops significantly and
depends on the scaling factor µ. The number of violated scenarios decreases monotonically as we
decrease µ. The black horizontal line indicates the design requirement of maximum 25 scenarios
with overvoltage instances. We choose the maximum µ that does not exceed the black horizontal
line.

In Figure 6-2b, we notice that for higher values of µ the overvoltage instances increase and
the output is less conservative. This fact confirms our expectation for conservative solutions
without the scaling parameter µ and as a result, the presence of a µ > 1 in the optimization
problem of Equation (6-5.1) contributes to prevent high PV cuts. Furthermore, the black
horizontal line dictates which values of µ we should avoid in order to meet the design criterion
of 95% satisfaction of the constraints at every time-instance. With µ = 16 and µ = 15 our
DRCCP implementation exceeds the limit three times and a single time, respectively. This
fact indicates that we need to decrease the µ parameter, in order to increase our uncertainty
of PV generation and residential demand. With µ = 14, we fulfil our design criterion for the
first time and hence, we choose µ = 14 as the most profitable solution for the PV owners that
guarantees at least 95% satisfaction of constraints at every time-instance. For µ = 13 and
even lower values, our solutions satisfy the design goal, but they perform overconservative
PV cuts.

We quantify the aforementioned results in Table 6-3 and Table 6-4. Initially, in Table 6-3
we present how the µ parameter affects the number of violated scenarios at each iteration.
Furthermore, in Table we examine 6-4 how the µ parameter affects curtailment factor that
emerges from the DRCCP algorithm at every time-instance.
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Violated Scenarios
Time instance 7:45 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 10:00 10:15 10:30

Without Curtailment 4 25 62 93 136 163 178 182 190 202 212 215
With Curtailment µ = 13 4 25 20 24 15 10 15 12 4 4 2 8
With Curtailment µ = 14 4 25 22 25 16 13 18 17 5 6 4 14
With Curtailment µ = 15 4 25 24 26 17 14 19 18 9 6 4 16
With Curtailment µ = 16 4 25 25 26 19 18 23 21 12 7 8 19

Violated Scenarios
Time instance 10:45 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30

Without Curtailment 245 248 258 253 256 253 260 253 248 238 238 224
With Curtailment µ = 13 1 5 11 11 9 12 17 11 10 7 5 4
With Curtailment µ = 14 3 6 12 12 12 13 21 13 11 10 7 4
With Curtailment µ = 15 5 7 14 13 14 16 24 17 13 10 9 5
With Curtailment µ = 16 8 9 18 13 16 18 27 20 16 12 12 7

Violated Scenarios
Time instance 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30

Without Curtailment 222 217 201 181 180 167 123 89 70 39 15 3
With Curtailment µ = 13 4 9 6 8 11 14 10 5 16 9 11 3
With Curtailment µ = 14 5 9 9 11 15 16 12 5 16 13 13 3
With Curtailment µ = 15 8 14 9 12 15 17 12 5 23 15 15 3
With Curtailment µ = 16 17 16 10 13 17 20 13 7 26 17 15 3

Table 6-3: Violated scenarios during the day before and after the optimized curtailment factor
for different values of µ and θ = 10−4.

In Table 6-3 we specify with bold the number of problematic scenarios that preserve after the
curtailment and exceed the desired 5% violation limit. The first row in Table 6-3 indicates
the number of violated scenarios without curtailment and it is the same as in Table 5-1,
since in both cases we have not implemented any PV control yet. Once more, we observe
the susceptibility of the network to overvoltages, because without any control there are 62
instances even from 8:15 a.m. that violate our performance criterion of maximum 25 scenarios
with overvoltages at every time-instance.

Then, the next rows of Table 6-3 present the number of overvoltage instances that remain
after we impose the optimized curtailment factor for different values of µ. The values of µ
that we use in our iterations to construct Table 6-3 are the same as in Figure 6-2. Once the
curtailment is in place, the number of violated scenarios drops. Since Figure 6-2 indicates that
the number of violated scenarios increase monotonically as we increase µ, we search for the
maximum value of µ that fulfils our design criterion of at least 95% satisfaction of constraints
at every time-instance. We initiate our iterations with µ = 13. For µ = 13, we observe that
the performance criterion is not violated throughout the day. Then, we increase µ by one
step and we notice that even though the number of scenarios with overvoltages increase at all
time-instances, we still satisfy the performance goal. Especially at 8:30 a.m., we experience
25 violated scenarios, which is a sign that µ = 14 is probably the maximum µ that fulfils the
criterion. This is indeed the case, because when we increase the µ parameter by one more
step, we observe that there is one time-instance, at 8:30 a.m., where the number of violated
scenarios exceeds 25. Likewise, for µ = 16, the time-instances where there are more than 25
violated scenarios increase from one to three, namely at 8:30 a.m., at 12:15 p.m. and at 15:45
p.m. Therefore, we confirm that the appropriate value for the µ parameter is µ = 14.
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Time instance 7:45 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 10:00 10:15 10:30
µ = 13 0 0 0.072 0.107 0.165 0.213 0.239 0.265 0.321 0.348 0.371 0.349
µ = 14 0 0 0.068 0.102 0.159 0.206 0.232 0.258 0.313 0.339 0.363 0.342
µ = 15 0 0 0.064 0.099 0.155 0.201 0.226 0.252 0.307 0.332 0.356 0.336
µ = 16 0 0 0.061 0.096 0.150 0.196 0.221 0.247 0.301 0.325 0.350 0.331

Time instance 10:45 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30
µ = 13 0.385 0.400 0.387 0.395 0.408 0.404 0.398 0.397 0.406 0.400 0.391 0.371
µ = 14 0.380 0.394 0.382 0.389 0.402 0.398 0.393 0.392 0.400 0.392 0.385 0.363
µ = 15 0.374 0.389 0.377 0.385 0.398 0.394 0.388 0.388 0.395 0.385 0.379 0.357
µ = 16 0.370 0.384 0.372 0.380 0.394 0.389 0.383 0.384 0.390 0.380 0.373 0.352

Time instance 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30
µ = 13 0.358 0.349 0.342 0.303 0.268 0.242 0.215 0.174 0.096 0.071 0.013 0
µ = 14 0.352 0.343 0.336 0.296 0.263 0.235 0.207 0.167 0.090 0.063 0.005 0
µ = 15 0.347 0.338 0.330 0.291 0.258 0.229 0.200 0.161 0.084 0.057 0 0
µ = 16 0.343 0.333 0.324 0.286 0.254 0.224 0.194 0.155 0.079 0.051 0 0

Table 6-4: Curtailment factors of PV generation for different values of µ and θ = 10−4.

In Table 6-4 we introduce the curtailment factor ac of every time-instance that concerns
the time-window between 7:45 a.m. and 16:30 p.m. In this table, we present the output
of the DRCCP algorithm with the Wasserstein Barycenter for four different values of the µ
parameter. The values of µ that we use in our iterations to construct Table 6-4 are the same
as in Figure 6-2 and Table 6-3. Considering that the curtailment factor ac takes values in
space [0, 1], a "0" in Table 6-4 corresponds to no curtailment, while a "1" corresponds to 100%
curtailment of PV exports to the network. The curtailment process ignites simultaneously
for all values µ, namely at 8:15 a.m. However, the ending time is not the same for all µ.
In particular, for µ = 15 and µ = 16, the curtailment process stops at 16:15 p.m., while
for µ = 13 and µ = 14 the curtailment process ends at 16:00. We justify that result, since
the µ parameter in the minimization problem of Equation (6-5.1) is in the denominator, and
for smaller values of µ the parameter θwb dominates more over the radius of the ambiguity
set θ. As a result, for smaller values of µ the uncertainty increases and we experience more
conservative solutions with longer curtailment periods and bigger curtailment factors. On the
other hand, if we choose higher values of µ, the domination of θwb over θ is mitigated, the
curtailment factor decrease and we experience higher probability of violating the design goal
of 95% satisfaction of constraints at every time-instance.
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Figure 6-2 and Table 6-3 assist us to choose µ = 14 in order to fulfil the design goal without
overconservative PV cuts. Furthermore, Table 6-3 indicates that our dataset includes 4 cases
with overvoltage instances at 7:45 a.m., when we do not implement any control over the PV
contribution to the grid. Figure 6-3a depicts the voltage magnitude of bus 152 in Scenario
154 and illustrates how the overvoltage that occurs at 7:45 a.m. evolves over the day without
curtailment. In Figure 6-3b, we depict how the overvoltage evolves after the implementation
of the optimized curtailment factor with µ = 14 and θ = 10−4.
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(a) Voltage magnitude of bus 154 before curtailment
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(b) Voltage magnitude of bus 154 after curtailment

Figure 6-3: Voltage magnitudes of bus 152 in Scenario 154 before and after curtailment. The
optimized curtailment factor from the DRCCP algorithm with the Wasserstein Barycenters and
µ = 14 and θ = 10−4 cannot eliminate the overvoltage instances of that bus.

From Figure 6-3 we observe that our algorithm cannot regulate the voltage of the node in the
initial time-instances. Hence, in this case, we have a scenario where the overvoltage persist
despite the application of the curtailment factor. However, this is a result that lies within
our compromise of maximum 5% violation of constraints at every time-instance and it is not
our purpose to increase the curtailment factor in order to eliminate this specific overvoltage.

Finally, in Figure 6-4 we present in three sub-figures the results of our two case studies. The
first case study concerns the DRCCP approach with 20 tuning scenarios of Chapter 5 and the
second case study concerns the approach of the DRCCP with the Wasserstein Barycenter.
For the DRCCP method of Chapter 5, we set θ = 10−4 and for approach of the DRCCP with
the Wasserstein Barycenter, we set µ = 14 and θ = 10−4. However, these two approaches
address to different case studies and we cannot extract a fair comparison. The purpose of
Figure 6-4 is to indicate that in both cases, through the DRCCP and the Wasserstein distance
metric, we succeed to regulate the voltage within the network and guarantee 95% satisfaction
of constraints during the whole day.
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(a) Comparison of curtailment factors at every time-
instance of the DRCCP approach with 20 tuning sce-
narios with the DRCCP approach with the Wasser-
stein Barycenters. The curtailment factors of the
DRCCP approach with the Wasserstein Barycenters
are mainly smaller than the DRCCP approach with
20 tuning scenarios.

(b) Number of scenarios with overvoltage violations
without curtailment and with curtailment for the DR-
CCP approach with 20 tuning scenarios with the
DRCCP approach with the Wasserstein Barycenters.
The violated scenarios dominate when there is no PV
control.

(c) Number of scenarios with overvoltage violations
after curtailment for the DRCCP approach with 20
tuning scenarios with the DRCCP approach with the
Wasserstein Barycenters. In both approaches the
performance goal is achieved.

Figure 6-4: Concentrated results of 1. DRCCP approach with 20 tuning scenarios and θ = 10−4

and 2. DRCCP approach with the Wasserstein Barycenter of µ = 14 and θ = 10−4.
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In particular, in Figure 6-4a, we see that in most cases the curtailment factor of the DRCCP
with the Wasserstein Barycenter lies below the curtailment factor of the DRCCP of Chapter
5. We expected this result, since in the DRCCP with the Barycenter we have much more
information available and we can get more precise solutions. On the other hand, with the
original DRCCP with the 20 tuning scenarios, we intend to cover many unseen days, and
therefore the curtailment factor is higher and more conservative. In Figure 6-4b we observe
the number of scenarios with overvoltages that occur at every time-instance without any
curtailment factor, the number of problematic scenarios that preserve after curtailment with
the DRCCP method and the 20 tuning scenarios of Chapter 5 and the number of problematic
scenarios that preserve after curtailment with the DRCCP and the Wasserstein Barycenter
approach. It is clear that the network undergoes high number of overvoltage instances if none
of our approaches is active. However, we notice in Figure 6-4c, that when we implement
any of our two approaches, then the curtailment ignites and the overvoltage instances drop.
Moreover, for both case studies, we achieve to fulfil our design criterion of at least 95%
scenarios without any violations, since in Figure 6-4c the number of problematic scenarios
lies below the limit that we have set.
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Synopsis of chapter 6

In this chapter we examined the application of the Wasserstein Barycenters in order to han-
dle appropriately the large amount of available data. With the Wasserstein Barycenter we
achieved to cluster the data with respect to Wasserstein distance metric and to assign them
to clusters with the appropriate weight. We analyzed the algorithms of the Wasserstein
Barycenter and then we inspected their efficiency. In terms of robustness, the DRCCP with
the Wasserstein Barycenter achieves higher percentage of constraints’ feasibility than the
SA approach. Moreover, with this approach we manage to exploit the whole information
by accelerating the optimization process compared to the DRCCP without the Wasserstein
Barycenter. Finally, we performed the DRCCP algorithm with the Wasserstein Barycen-
ter instead of the empirical distribution of 20 scenarios and we presented the corresponding
results.

Table 6-5 concentrates the results of our DRCCP reformulation with the Wasserstein Barycen-
ter. In this table we observe that, during the entire time-window, we do not exceed the 25
scenarios with overvoltage violations, which corresponds to no more than 5% violation of con-
straints. At the same time, we choose the parameter µ of the problem in order to provide the
PV owners with the highest profit without overly conservative solutions and high PV cuts.

Violated Scenarios
Time instance 7:45 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 10:00 10:15 10:30

Without Curtailment 4 25 62 93 136 163 178 182 190 202 212 215
With Curtailment 4 25 22 25 16 13 18 17 5 6 4 14
Curtailment factor 0 0 0.068 0.102 0.159 0.206 0.232 0.258 0.313 0.339 0.363 0.342

Violated Scenarios
Time instance 10:45 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30

Without Curtailment 245 248 258 253 256 253 260 253 248 238 238 224
With Curtailment 3 6 12 12 12 13 21 13 11 10 7 4
Curtailment factor 0.380 0.394 0.382 0.389 0.402 0.398 0.393 0.392 0.400 0.392 0.385 0.363

Violated Scenarios
Time instance 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30

Without Curtailment 222 217 201 181 180 167 123 89 70 39 15 3
With Curtailment 5 9 9 11 15 16 12 5 16 13 13 3
Curtailment factor 0.352 0.343 0.336 0.296 0.263 0.235 0.207 0.167 0.090 0.063 0.005 0

Table 6-5: Violated scenarios during the day before and after the optimized curtailment factor
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Chapter 7

Conclusion

In this chapter, we conclude the findings of our thesis and we answer the sub-research ques-
tions, and consequently the main research question. Moreover, we present our recommenda-
tions for future research.

7-1 Conclusions

In this section we answer the three sub-questions that we introduced in the introduction.
What are the available optimization methods to incorporate the uncertain PV
generation and residential demand?
In order to achieve voltage regulation we needed to configure the optimization method in
a way that the uncertain PV generation does not lead the voltage rises in the network.
Through the PV curtailment our purpose was to keep the voltage magnitudes below the
infrastructural limit. For this reason we leveraged RO, CCP, SA and DRCCP as methods
that can handle constraints that depend on uncertain parameters. We analyzed the principles
and the assumptions of each parameter and we examined which one was the most suitable
for our problem.
After our analysis, we concluded that the most appropriate optimization method to to in-
corporate the uncertain PV generation and residential demand is the DRCCP approach. In
CCP, we assume that the whole probability distribution of the PV generation and residential
demand is known. In RO we assume known only the support probability distribution of the
PV generation and residential demand. However, a fact that hinders us from using these
two approaches is that the true probability distribution of the PV generation and residential
demand is unknown. From the available data we can construct only an empirical distribution
P̂, but the true distribution remains unknown. On the other hand, for the SA approach we
assume plenty of scenarios available. We examined the implementation of the SA, since in
our dataset there are 500 scenarios available. The high computational time and the limited
feasibility of the constraints that SA guarantees with this number of available scenarios, lead
to the conclusion that the most appropriate method for us is the DRCCP method.
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How to exploit data from previous years, in order to mitigate the power mis-
match?

When we implement the DRCCP, we focus to find a solution that satisfies the constraints
with high probability for the worst case realization of a wider family of distributions that are
close to the empirical distribution. We call this family of distributions ambiguity set. The fact
that the implementation of the DRCCP requires the construction of the ambiguity set, leads
us to the conclusion that the recorded data from previous years were significant in order to
create a Wasserstein uncertainty ball. The center of this ball was the empirical distribution
from recorded data of previous years and the radius of the ball changed by adjustments
in the Wasserstein distance. The more we increased the radius, the more uncertainty we
incorporated to our problem.

How to use data efficiently and reduce the computational effort?

In our thesis we examined two distinctive case studies. In the first case study, we used
20 scenarios to tune the DRCCP algorithm. In this case study we did not experience any
computational effort and we managed to reduce significantly the overvoltages, despite the
limited data that we had to train the model.

In the second case study we intended to use the whole dataset of 500 scenarios to form
the DRCCP. The 500 scenarios imposed significant computation burden and the problem was
unable to converge even after two hours for one time-instance. The high computational effort,
in case we use high bulk of data in the DRCCP, leads us to the conclusion that we need to
examine the method of the Wasserstein Barycenter. With the Wasserstein Barycenter we
achieved to cluster the 500 days of recording into only 10 points with their according weights.
After the implementation of the Wasserstein Barycenters, the running time of the DRCCP
dropped to 117 seconds for one time-instance.

These three sub-questions lead us step by step to answer the main research question of the
thesis:

How to achieve voltage regulation in distribution energy networks, by curtailing
appropriately the power exports from residential PV installations to the energy
grid??

7-2 Recommendations for future work

In this section we present recommendations for future work that could extend the research of
this thesis.

Use cross-validation during the tuning of DRCCP algorithm.

Our approach in Chapter 5 was to utilize the first 20 scenarios of our dataset in order to tune
the Wasserstein distance of our ambiguity set. In a future work, we could use cross-validation
during this tuning. With cross-validation, we divide the dataset into folds of 20 samples and
we use a different fold to tune the radius of the ambiguity set and different folds to validate the
results at each iteration. In this way, we will get wider insights into the size of our ambiguity
set, since we will consider more optimistic and pessimistic samples of the dataset.
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Add electric vehicles (EV) to the network.

In this thesis we examined the network failures that emerged from the excess power of the PV
exports. More research can be conducted in distribution networks that include PV units and
EVs. The intended outcome of this future research is to extend the empirical distribution, in
order to incorporate the charging part of EVs. In this case, part of the excess power would
be consumed by EVs, and thus the curtailment factor would be reduced.

One other aspect that this recommendation should consider is the undervoltage instances. The
undervoltage instances occur mainly in the night, during high demand and low generation.
Regarding the PVs, the generation during the night is zero. A feature research should consider
the uncertain power needs of EV charging, by incorporating Battery Energy Storage (BES)
systems.

Consider overcurrent instances and limitations of the grid-connected devices.

In this thesis we intend to achieve voltage regulation. In feature, we could also consider
overcurrent constraints and constraints that concern the connected devices, such as SOC lim-
itations for storage devices, ramping limits and reserve needs. These constraints are necessary
to examine further the stability of the network. However, they may increase the computa-
tional time of the DRCCP algorithm.

Develop a techno-economic analysis in the network.

In the thesis we mentioned the trade-offs that we need to consider when we curtail the PV
exports. We should not take overconservative decisions, otherwise the investors would endure
unnecessary loss of profit due to high cuts of PV exports. In a future work, this trade-off
could be modelled by a parameter that takes into consideration the risk level when we do
not curtail the excess power combined with the economic impact of the curtailment to PV
owners.

Consider individual power curtailment for each PV unit.

In this work we adopted a common curtailment factor for all the PV installations of the
network. A feature work could extend the research to individual PV limitations. With this
approach the role of the PV owners is upgraded and they have the chance to determine on
their own their generation.

MSc Thesis Dimitrios Fouskidis



60 Conclusion

Dimitrios Fouskidis MSc Thesis



Bibliography

[1] F. Gökgöz and M. T. Güvercin, “Energy security and renewable energy efficiency in eu,”
Renewable and Sustainable Energy Reviews, vol. 96, pp. 226–239, 2018.

[2] M. A. Franco and S. N. Groesser, “A systematic literature review of the solar photovoltaic
value chain for a circular economy,” Sustainability, vol. 13, no. 17, 2021.

[3] A. Allouhi, S. Rehman, M. S. Buker, and Z. Said, “Up-to-date literature review on
solar pv systems: Technology progress, market status and r&d,” Journal of Cleaner
Production, p. 132339, 2022.

[4] A. Vulkan, I. Kloog, M. Dorman, and E. Erell, “Modeling the potential for pv installation
in residential buildings in dense urban areas,” Energy and Buildings, vol. 169, pp. 97–109,
2018.

[5] K. Petrou, A. Procopiou, L. Gutierrez-Lagos, M. Liu, L. Ochoa, T. Langstaff, and J. The-
unissen, “Ensuring distribution network integrity using dynamic operating limits for pro-
sumers,” IEEE Transactions on Smart Grid, vol. 12, pp. 3877–3888, 09 2021.

[6] N. W. Stauffer, “Researchers find benefits of solar photovoltaics outweigh costs,” 2020.

[7] Y. Guo, K. Baker, E. Dall’Anese, Z. Hu, and T. H. Summers, “Data-based distribution-
ally robust stochastic optimal power flow—part ii: Case studies,” IEEE Transactions on
Power Systems, vol. 34, no. 2, pp. 1493–1503, 2019.

[8] A. Arrigo, C. Ordoudis, J. Kazempour, Z. De Grève, J.-F. Toubeau, and F. Vallée,
“Wasserstein distributionally robust chance-constrained optimization for energy and re-
serve dispatch: An exact and physically-bounded formulation,” European Journal of
Operational Research, vol. 296, no. 1, pp. 304–322, 2022.

[9] R. Mieth and Y. Dvorkin, “Data-driven distributionally robust optimal power flow for
distribution systems,” IEEE Control Systems Letters, vol. 2, no. 3, pp. 363–368, 2018.

MSc Thesis Dimitrios Fouskidis



62 Bibliography

[10] M. Cuturi and A. Doucet, “Fast computation of wasserstein barycenters,” in Proceedings
of the 31st International Conference on Machine Learning (E. P. Xing and T. Jebara,
eds.), vol. 32 of Proceedings of Machine Learning Research, (Bejing, China), pp. 685–693,
PMLR, 22–24 Jun 2014.

[11] L. Kotzur, L. Nolting, M. Hoffmann, T. Groß, A. Smolenko, J. Priesmann, H. Büsing,
R. Beer, F. Kullmann, B. Singh, A. Praktiknjo, D. Stolten, and M. Robinius, “A mod-
eler’s guide to handle complexity in energy systems optimization,” Advances in Applied
Energy, vol. 4, p. 100063, 2021.

[12] A. Hota, A. Cherukuri, and J. Lygeros, “Data-driven chance constrained optimization
under wasserstein ambiguity sets,” pp. 1501–1506, 07 2019.

[13] A. Zhou, M. Yang, M. Wang, and Y. Zhang, “A linear programming approximation
of distributionally robust chance-constrained dispatch with wasserstein distance,” IEEE
Transactions on Power Systems, vol. 35, no. 5, pp. 3366–3377, 2020.

[14] C. Duan, W. Fang, L. Jiang, L. Yao, and J. Liu, “Distributionally robust chance-
constrained approximate ac-opf with wasserstein metric,” IEEE Transactions on Power
Systems, vol. 33, no. 5, pp. 4924–4936, 2018.

[15] X. Geng and L. Xie, “Data-driven decision making with probabilistic guarantees (part
1): A schematic overview of chance-constrained optimization,” arXiv: Optimization and
Control, 2019.

[16] M. C. Campi, S. Garatti, and M. Prandini, “The scenario approach for systems and
control design,” Annual Reviews in Control, vol. 33, no. 2, pp. 149–157, 2009.

[17] C. Ordoudis, V. A. Nguyen, D. Kuhn, and P. Pinson, “Energy and reserve dispatch with
distributionally robust joint chance constraints,” Operations Research Letters, vol. 49,
no. 3, pp. 291–299, 2021.

[18] A. Nemirovski and A. Shapiro, “Convex approximations of chance constrained pro-
grams,” SIAM Journal on Optimization, vol. 17, pp. 969–996, 01 2006.

[19] P. Esfahani and D. Kuhn, “Data-driven distributionally robust optimization using the
wasserstein metric: Performance guarantees and tractable reformulations,” Mathematical
Programming, vol. 171, 05 2015.

[20] R. Rockafellar and S. Uryasev, “Optimization of conditional value-at-risk,” Journal of
risk, vol. 2, pp. 21–42, 01 2000.

[21] M. Chapman, R. Bonalli, K. Smith, I. Yang, M. Pavone, and C. Tomlin, “Risk-sensitive
safety analysis using conditional value-at-risk,” 01 2021.

[22] S. Sarykalin, G. Serraino, and S. Uryasev, “Value- at-risk vs conditional value-at-risk in
risk management and optimization,” 09 2008.

[23] B. K. Poolla, A. R. Hota, S. Bolognani, D. S. Callaway, and A. Cherukuri, “Wasserstein
distributionally robust look-ahead economic dispatch,” IEEE Transactions on Power
Systems, vol. 36, no. 3, pp. 2010–2022, 2021.

Dimitrios Fouskidis MSc Thesis



63

[24] Y. Guo, K. Baker, E. Dall’Anese, Z. Hu, and T. H. Summers, “Data-based distribution-
ally robust stochastic optimal power flow—part i: Methodologies,” IEEE Transactions
on Power Systems, vol. 34, no. 2, pp. 1483–1492, 2019.

[25] F. Cazals, T. Dreyfus, and D. Mazauric, “Earth mover distance,” Structural Bioinfor-
matics Library, 2016.

[26] D. Kuhn, P. Esfahani, V. Nguyen, and S. Shafieezadeh-Abadeh, Wasserstein Distribu-
tionally Robust Optimization: Theory and Applications in Machine Learning, pp. 130–
166. 10 2019.

[27] R. T. Rockafellar, Convex analysis. Princeton Mathematical Series, Princeton, N. J.:
Princeton University Press, 1970.

[28] E. O’Shaughnessy, J. R. Cruce, and K. Xu, “Too much of a good thing? global trends
in the curtailment of solar pv,” Solar Energy, vol. 208, pp. 1068–1077, 2020.

[29] United States Department of Labour, ““electric power generation, transmission, and
distribution : Illustrated glossary - transmission lines”,” 2022.

[30] Commission de régulation de l’énergie, “Electricity networks,” République française,
2018.

[31] F. Islam, K. Prakash, K. Mamun, A. Lallu, and H. Pota, “Aromatic network: A novel
structure for power distribution system,” IEEE Access, vol. PP, pp. 1–1, 10 2017.

[32] A. Siddiqui, “Determination of size and location of capacitors for placement on a ra-
dial distribution system using fuzzy technique,” International Journal on Power System
Optimization and Control, vol. 3, pp. 1–8, 06 2011.

[33] K. Prakash, A. Lallu, F. Islam, and K. Mamun, “Review of power system distribution
network architecture,” pp. 124–130, 12 2016.

[34] M. Z. Liu, A. T. Procopiou, K. Petrou, L. F. Ochoa, T. Langstaff, J. Harding, and
J. Theunissen, “On the fairness of pv curtailment schemes in residential distribution
networks,” IEEE Transactions on Smart Grid, vol. 11, no. 5, pp. 4502–4512, 2020.

[35] J. S. Giraldo, O. D. Montoya, P. P. Vergara, and F. Milano, “A fixed-point current
injection power flow for electric distribution systems using laurent series,” 22nd Power
Systems Computation Conference, 01 2022.

[36] S. V. Dhople, S. S. Guggilam, and Y. C. Chen, “Linear approximations to ac power flow in
rectangular coordinates,” in 2015 53rd Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pp. 211–217, 2015.

[37] S. S. Guggilam, E. Dall’Anese, Y. C. Chen, S. V. Dhople, and G. B. Giannakis, “Scal-
able optimization methods for distribution networks with high pv integration,” IEEE
Transactions on Smart Grid, vol. 7, no. 4, pp. 2061–2070, 2016.

[38] A. Bernstein and E. Dall’Anese, “Linear power-flow models in multiphase distribution
networks,” in 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe
(ISGT-Europe), pp. 1–6, 2017.

MSc Thesis Dimitrios Fouskidis



64 Bibliography

[39] L. Yu, D. Czarkowski, and F. de Leon, “Optimal distributed voltage regulation for sec-
ondary networks with dgs,” IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 959–967,
2012.

[40] N. Ho, X. Nguyen, M. Yurochkin, H. Bui, V. Huynh, and D. Phung, “Multilevel clustering
via wasserstein means,” 06 2017.

[41] J. M. Altschuler and E. Boix-Adserà, “Wasserstein barycenters are np-hard to compute,”
SIAM Journal on Mathematics of Data Science, vol. 4, no. 1, pp. 179–203, 2022.

[42] J. M. Altschuler and E. Boix-Adserà, “Wasserstein barycenters can be computed in
polynomial time in fixed dimension,” J. Mach. Learn. Res., vol. 22, pp. 44:1–44:19, 2021.

[43] P. Dvurechenskii, D. Dvinskikh, A. Gasnikov, C. Uribe, and A. Nedich, “Decentralize
and randomize: Faster algorithm for wasserstein barycenters,” in Advances in Neural
Information Processing Systems (S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, eds.), vol. 31, Curran Associates, Inc., 2018.

Dimitrios Fouskidis MSc Thesis



Glossary

List of Acronyms

3mE Mechanical, Maritime and Materials Engineering
RES Renewable Energy Sources
DCSC Delft Center for Systems and Control
UNFCCC United Nations Framework Convention on Climate Change
PV Photovoltaics
DNO Distribution Network Operators
DRCCP Distribunally Robust Chance Constraint Programming
OPF Optimal Power Flow
WB Wasserstein Barycenters
RO Robust optimization
CCP Chance Constraint Programming
SA Scenario Approach
BES Battery Energy Storage
EV Electric Vehicles

3mE RES DCSC UNFCCC PV DNO DRCCP OPF WB RO CCP SA BES EV
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List of Symbols

β Confidence parameter
cos(ϕ) Power factor
E Expectation
P Probability distribution
R Real numbers
θ Wasserstein radius
Ξ Uncertain set
ξ Uncertain parameter
ξ1 Uncertain PV generation
ξ2 Uncertain residential demand
a Violation parameter
ac Curtailment factor
awb Weight that corresponds to a point of a Wasserstein Barycenter
p Vector of active powers Pi

q Vector of reactive active powers Qi

Sd Apparent power of a node
Vd Voltage of a node
Vmax Maximum voltage magnitude
Wp Wasserstein distance
yij Admittance of a line

ξ ξ1 ξ2 Ξ β a ac P R E Wp θ awb yij Sd p q Vd Vmax cos(ϕ)
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